Introducción a la Teoría de Números Curso 2012

Lista 6. Formas cuadráticas y curvas elípticas - entrega 9/11

1. ¿Cuáles de los siguientes números son suma de dos cuadrados? Escribir aquellos que lo sean como suma de dos cuadrados.

- 2. Encontrar un entero positivo que tenga por lo menos tres representaciones diferentes como suma de dos cuadrados, sin contar signos ni orden de los sumandos.
- 3. Escribir 2001 como suma de tres cuadrados.
- 4. Mostrar que si un número natural es suma de dos cuadrados racionales, entonces también es suma de dos cuadrados enteros.
- 5. Sea p un primo impar. Mostrar que $p = x^2 + 2y^2$ si y sólo si $p \equiv 1,3 \pmod{8}$.
- 6. Mostrar que dados cuatro enteros consecutivos cualesquiera, al menos uno de ellos no se representa como suma de dos cuadrados.
- 7. Un *número triangular* es un número que es suma de los primeros \mathfrak{m} enteros para algún $\mathfrak{m}>0$. Si \mathfrak{n} es un número triangular, mostrar que $8\mathfrak{n}^2$, $8\mathfrak{n}^2+1$ y $8\mathfrak{n}^2+2$ pueden ser escritos como suma de dos cuadrados.
- 8. Mostrar que $13x^2 + 36xy + 25y^2$ y $58x^2 + 82xy + 29y^2$ son equivalentes a la forma $x^2 + y^2$, y encontrar enteros x e y tales que $13x^2 + 36xy + 25y^2 = 389$.
- 9. ¿Cuáles son los discriminantes de las formas $199x^2 162xy + 33y^2$ y $35x^2 96xy + 66y^2$? ¿Son equivalentes?
- 10. Escribir una ecuación E : $y^2 = x^3 + ax + b$ sobre un cuerpo K tal que $-16(4a^3 + 27b^2) = 0$. ¿Qué es lo que falla al tratar de definir la ley de grupo en E(K)?
- 11. Una solución racional a la ecuación $y^2 = x^3 2$ es (3,5). Encontrar otra solución racional (con $x \neq 3$) considerando la recta tangente en (3,5).
- 12. Sea E la curva elíptica sobre el cuerpo finito $K=\mathbb{Z}/5\mathbb{Z}$ definida por

$$y^2 = x^3 + x + 1$$
.

- (a) Listar los 9 elementos de E(K).
- (b) ¿Cuál es la estructura de E(K) como producto de grupos cíclicos?
- 13. Sea E la curva elíptica definida por la ecuación $y^2=x^3+1$. Para cada primo $p\geq 5$, sea N_p el cardinal de $E(\mathbb{Z}/p\mathbb{Z})$. Por ejemplo, $N_5=6$, $N_7=12$, $N_{11}=12$, $N_{13}=12$, $N_{17}=18$, $N_{19}=12$, $N_{23}=24$, $N_{29}=30$. Enunciar una conjetura para el valor de N_p cuando $p\equiv 2\pmod 3$.