Introducción a la Teoría de Números Curso 2012

Lista 5. Fracciones continuas – entrega 26/10

- 1. Mostrar que cualquier número racional no nulo puede representarse como fracción continua finita en exactamente dos maneras distintas.
- 2. Evaluar la fracción continua infinita $[2, \overline{1, 2, 1}]$.
- 3. Determinar la fracción continua infinita de $\frac{1+\sqrt{13}}{2}$.
- 4. Sea $[a_0, a_1, \ldots, a_n]$ una fracción continua $(a_i > 0 \text{ para } i \neq 0)$. Si b > 0, entonces

$$[a_0, a_1, \ldots, a_n + b] < [a_0, a_1, \ldots, a_n]$$

si y sólo si n es impar.

- 5. Sea d un entero coprimo con 10. Probar que la expansión decimal de 1/d tiene período igual al orden de 10 módulo d. Sugerencia: $\frac{1}{10^r-1} = \sum_{n\geq 1} 10^{-rn}$.
- 6. Sea $c_m=\frac{p_m}{q_m}$ el m-ésimo convergente parcial de $[a_0,a_1,\dots,a_n]$ con $a_0>0$. Mostrar que

 $[a_n, a_{n-1}, \dots, a_1, a_0] = \frac{p_n}{p_{n-1}}$

у

$$[\alpha_n,\alpha_{n-1},\dots,\alpha_2,\alpha_1]=\frac{q_n}{q_{n-1}}$$

Sugerencia: notar que $\frac{p_n}{p_{n-1}}=a_n+\frac{p_{n-2}}{p_{n-1}}=a_n+\frac{1}{\frac{p_{n-1}}{p_{n-2}}}$.

- 7. ** Probar que si $\alpha > 1$ es un irracional cuadrático tal que su conjugado $\alpha' \in (-1,0)$ entonces la fracción continua de α es puramente periódica.
- 8. Sea N un natural, no cuadrado perfecto.
 - (a) Probar que $\sqrt{N}=[\alpha_0,\overline{\alpha_1,\dots,\alpha_n,2\alpha_0}]$. Sugerencia: $\sqrt{N}+\alpha_0$ está en las condiciones del problema anterior. [Se puede probar más aún: que $\alpha_1=\alpha_n,\,\alpha_2=\alpha_{n-1},$ etc. es decir que hay una simetría extra en el desarrollo en fracción continua.]
 - (b) Probar que

$$\sqrt{N} = \frac{(\sqrt{N} + a_0)p_n + p_{n-1}}{(\sqrt{N} + a_0)q_n + q_{n-1}}$$

donde p_n/q_n es el n-ésimo convergente parcial de \sqrt{N} . Sugerencia: $\sqrt{N}+\alpha_0=r_{n+1}$ en la notación usada en clase.

- (c) Despejar p_{n-1} y q_{n-1} en términos de p_n y q_n , usando que 1 y \sqrt{N} son linealmente independientes sobre $\mathbb Q$ (porque \sqrt{N} es irracional).
- (d) Concluir que

$$p_n^2 - Nq_n^2 = (-1)^{n+1}$$

9. Encontrar una solución a la ecuación

$$X^2 - 14Y^2 = 1$$

con $X, Y \in \mathbb{Z}, Y \neq 0$.