Introducción a la Teoría de Números Curso 2012

Lista 4. Reciprocidad cuadrática - entrega 12/10

- 1. Calcular a mano: $\left(\frac{3}{97}\right)$, $\left(\frac{3}{389}\right)$, $\left(\frac{22}{11}\right)$ y $\left(\frac{5!}{7}\right)$.
- 2. Encontrar $x \in \mathbb{N}$ tal que $x^2 \equiv 69 \pmod{389}$.
- 3. Encontrar el natural x < 97 tal que $x \equiv 4^{48} \pmod{97}$ (notar que 97 es primo).
- 4. ¿Cuántos números naturales $\kappa < 2^{13}$ satisfacen la ecuación

$$x^2 \equiv 5 \pmod{2^{13} - 1}$$
?

Asumir que $2^{13} - 1$ es primo.

- 5. Encontrar todas las soluciones a las siguientes ecuaciones cuadráticas
 - (a) $19x^2 + 1783x + 29485 \equiv 0 \pmod{29527}$.
 - (b) $x^2 + 2^{87} \equiv 0 \pmod{2^{89} 1}$.
 - (c) $x^2 + 2^{47} \equiv 0 \pmod{2^{53} + 5}$.
- 6. Usar la Ley de Reciprocidad Cuadrática para mostrar que, para todo primo $p \ge 5$,

$$\left(\frac{3}{p}\right) = \begin{cases} 1 & \text{si } p \equiv 1,11 \pmod{12}, \\ -1 & \text{si } p \equiv 5,7 \pmod{12}. \end{cases}$$

- 7. Usar que la existencia de raíces primitivas módulo un primo p para dar una demostración directa de que $\left(\frac{-3}{p}\right)=1$ cuando $p\equiv 1\pmod 3$. (Sugerencia: mostrar que en tal caso hay un $c\in\mathbb{Z}$ de orden 3 módulo p, y ver que $(2c+1)^2\equiv -3\pmod p$.)
- 8. Mostrar que $\left(\frac{5}{p}\right)=1$ cuando $p\equiv 1\pmod 5$ por el método del egercicio anterior. (Sugerencia: si c tiene orden 5 módulo p, entonces $(c+c^4)^2+(c+c^4)-1\equiv 0\pmod 5$.)
- 9. Probar que para $n \in \mathbb{Z}$, el entero $n^2 + n + 1$ no tiene ningún divisor de la forma 6k 1.
- 10. Usar la Ley de Reciprocidad Cuadrática para determinar los primos para los cuales 7 es un residuo cuadrático. Hacer lo mismo para 15.
- 11. Suponer que $p \equiv 3 \pmod 4$ y que q = 2p + 1 también es primo. Probar que $2^p 1$ no es primo. (Sugerencia: usar el carácter cuadrático de 2 para mostrar que $q \mid 2^p 1$.) Hay que asumir que p > 3.
- 12. Sea $\zeta = e^{2\pi i/8}$ una raiz octava primitiva de la unidad, y sea $\tau = \zeta + \zeta^{-1}$.
 - (a) Mostrar que $\tau^2=2$ y concluir que, si p es un primo impar, $\tau^p\equiv\left(\frac{2}{p}\right)\tau\pmod{p}$.
 - (b) Usar que $\zeta^8 = 1$ y que $\zeta^4 = -1$ para ver que

$$\zeta^p + \zeta^{-p} = \begin{cases} \tau, & \text{si } p \equiv \pm 1 \pmod{8}, \\ -\tau, & \text{si } p \equiv \pm 3 \pmod{8}. \end{cases}$$

(c) Deducir la fórmula complementaria para $\left(\frac{2}{p}\right)$.