Introducción a la Teoría de Números

1. Números primos - entrega 3/9

- 1. Usar la criba de Eratóstenes para hacer una lista de todos los primos hasta 100.
- 2. Probar que hay infinitos primos de la forma 6x 1.
- 3. Usar el Teorema de los Números Primos $(\pi(x) \sim x/\log x)$ para deducir que

$$\lim_{x\to\infty}\frac{\pi(x)}{x}=0.$$

4. \star Sea $f(x)=ax^2+bx+c\in\mathbb{Z}[x]$ un polinomio cuadrático con coeficientes enteros y a>0, e.g. $f(x)=x^2+x+6$. Formular una conjetura sobre cuándo el conjunto

$$\{f(n) : n \in \mathbb{Z} \text{ y } f(n) \text{ es primo}\}$$

es infinito.

- 5. Si p es un entero positivo tal que p y $p^2 + 2$ son primos entonces p = 3.
- 6. Si $a^n 1$ es primo, con $n \ge 2$, mostrar que a = 2 y que n es primo. Los primos de la forma $2^p 1$ se llaman primos de Mersenne, por ejemplo $2^3 1 = 7$ y $2^5 1 = 31$. El número primo más grande conocido a la fecha es el primo de Mersenne $2^{32.582.657} 1$. No se sabe si hay infinitos primos de Mersenne (se conocen 44 a la fecha).
- 7. Si $a^n + 1$ es primo, con $n \ge 2$, mostrar que a es par y que n es una potencia de 2. Primos de la forma $2^{2^t} + 1$ se llaman primos de Fermat. Por ejemplo, $2^{2^1} + 1 = 5$ y $2^{2^2} + 1 = 31$. No se sabe si hay infinitos primos de Fermat.
- 8. * Mostrar que $\sum '1/n$, la suma sobre los enteros libres de cuadrados, diverge. Deducir que $\prod_n (1+1/p)$ diverge. Como $e^x > 1+x$, concluir que $\sum_n 1/p$ diverge.
- 9. Calcular el máximo común divisor gcd(455, 1235) a mano.
- 10. Encontrar $x, y \in \mathbb{Z}$ tales que 2261x + 1275y = 17.
- 11. Sean $a,b,c\in\mathbb{Z}$. Mostrar que la ecuación ax+by=c tiene solución en enteros sii $\gcd(a,b)\mid c$.
- 12. Sea $d=\gcd(a,b)$. Mostrar que uno puede usar el algoritmo de Euclides para encontrar enteros m y n tales que am+bn=d. Sugerencia: escribir cada resto sucesivo como combinación lineal de a y b (e.g. r=a-bq en el primer paso).
- 13. Para todo impar n, mostrar que $8 \mid n^2 1$. Si $3 \nmid n$, entonces $6 \mid n^2 1$.
- 14. Para todo n mostrar que $30 \mid n^5 n$ y que $42 \mid n^7 n$.