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Abstract

We present a study on the transitivity of surface endomorphisms admit-
ting critical points. In this work, we obtain some answers about necessary
conditions for the existence of robustly transitive endomorphisms. We show
that the only surfaces that admits a robustly transitive endomorphism are
the torus and the Klein bottle. Furthermore, we show that a robustly transi-
tive endomorphism exhibits dominated splitting and must be homotopic to a
linear endomorphism with at least one eigenvalue with modulus bigger than
one.

We also give sufficient conditions over the critical set in order to get tran-
sitivity. We show that a non-wandering endomorphism on the torus with
topological degree at least two, hyperbolic linear part and for which the crit-
ical points are in some sense “generic” is transitive. This is an improvement
of a result by Andersson [And16] since it allows critical points and relaxes
the volume preserving hypothesis.

Key-words: Transitivity, linear Algebra, topology, dynamical systems, dom-
inated splitting.
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Chapter 1

Introduction

In order to understand the C1-maps on surfaces is important to study
topological properties. We say that a system is transitive if there exists a
point with dense forward orbit. In this work, we study sufficient conditions
for continuous maps on the torus to be transitive. Moreover, we study ro-
bust transitivity. That is, every C1-close system to a transitive one is also
transitive.

The problem of sufficient conditions for a map to be transitive was address
by Andersson, in [And16]. He proved that volume preserving non-invertible
covering maps of the torus with hyperbolic linear part must be transitive.
This also implies robust transitivity in the conservative context. In this work,
we improve Andersson’s result by allowing critical points and relaxing the
volume preserving hypothesis, assuming that the non-wandering set is the
whole torus. We call an endomorphism verifying the previous property by
non-wandering endomorphism. The critical points that we allow are in some
sense “generic”(see definition in Chapter 2). This result is the following:

Theorem A. Let f : T2 → T2 be a non-wandering endomorphism with
topological degree at least two and generic critical set. If the linear part of f
is hyperbolic, then f is transitive.

The other problem that we address is to find necessary conditions for
robust transitivity. This kind of problem is well understood in the context of
diffeomorphisms. It was proved in [DPU99] and [BDP03] for compact mani-
folds of any dimension that robust transitivity implies a weak form of hyper-
bolicity, so-called dominated splitting. In dimension two, R. Mañé proved
in [Mañ82] that robust transitivity implies hyperbolicity and moreover, that
the only surface that admits such systems is the torus.

We contribute to this problem obtaining positive results in the context
of C1-maps on surface which admits critical points. In a joint work with
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C. Lizana, we obtain that dominated splitting (see Definition 3.1.4), a weak
form of hyperbolicity, is a necessary condition for robust transitivity of endo-
morphisms admitting critical points. More precisely, we proved the following
result:

Theorem B. If f ∈ End1(M) is a robustly transitive endomorphism and the
set of its critical points is nonempty, then M admits a dominated splitting
for f .

In order to prove the Theorem B, first we will prove the following result:

Theorem B’. If f ∈ End1(M) is a robustly transitive endomorphism and the
set of its critical points has nonempty interior, then M admits a dominated
splitting for f .

Theorem B is almost a consequence of Theorem B’. “Almost” is because,
we still have to prove that the dominated splitting extends to the limit.

The result is a weaker version of Mañé’s result previously mentioned for
endomorphisms with critical points. The techniques used to prove it are
different. In this proof, we do not use any of the classical results such as
the Closing Lemma, or the Connecting Lemma, like it is used for diffeomor-
phisms. As a consequence of this result, one has the following topological
obstruction:

Theorem C. If M admits a robustly transitive endomorphism, then M is
either the torus T2 or the Klein bottle K2.

We also prove that there is no robustly transitive map with critical points
and homotopic to the identity. In a more general way, we show the following
result:

Theorem D. If f ∈ End1(M) is a robustly transitive endomorphism, then
f is homotopic to a linear map having at least one eigenvalue with modulus
larger than one.

The proof of this theorem is based on the proof Brin, Burago and Ivanov’s
result (see [BBI09]) which shows that on three manifolds the action of a par-
tially hyperbolic diffeomorphism on the first homology group is also partially
hyperbolic. In both cases, it is necessary to have arcs where the length
of their iterates grows exponentially. For diffeomorphisms, this is obtained
through the Ergodic Closing Lemma which is unknown for endomorphisms
admitting critical points. In our case, we use similar topological arguments
as in [PS07].
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Finally, we build new examples of robustly transitive map admitting crit-
ical points. The first examples of maps of this kind appeared in [BR13] and
in [ILP16], both of them on T2. We construct a new example on T2 extending
the class of examples in [BR13] and [ILP16].

This thesis is organized as follows, in the second chapter we present and
prove the Main Theorem 1 that implies Theorem A. In the third chapter, we
present the results obtained in a joint work with C. Lizana. We show two
technical results, called Main Theorem 2 and Main Theorem 3, which implies
Theorems B, C and D. Finally, in the last chapter, we build a new example
of robustly transitive endomorphism on T2, this is also a joint work with C.
Lizana.
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Chapter 2

Transitive endomorphisms with
critical points

The interplay between the dynamics on the homology group and prop-
erties of dynamical systems have attracted recently a lot of attention. One
of the most well known problems in this topic is the Entropy conjecture of
Shub (see [Shu74]). In a sense, one tries to obtain some dynamical properties
(which are of asymptotic nature) by the a priori knowledge of how a certain
map wraps the manifold in itself.

In this chapter we are interested in properties of the action induced by
a map on the torus on the homology group of T2 that allow to promote
a mild recurrence property (being non-wandering) to a stronger one (i.e.,
transitivity). This improves a recent result by Andersson (see [And16]) by
allowing the presence of critical points.

Let us fix some notations. Let T2 be two-dimensional torus and let
M(2,Z) be the set of all square matrices with integer entries. A toral endo-
morphism or, simply, an endomorphism is a continuous map f : T2 → T2. It
is well known that given two endomorphisms f, g : T2 → T2 then f and g are
homotopic if and only if f∗ = g∗ : H1(T2)→ H1(T2). From this fact, we have
that given a continuous map f : T2 → T2 there is a unique square matrix
L ∈ M(2,Z) such that the linear endomorphism induced by L, denoted by
L : T2 → T2 as well, is homotopic to f . The matrix L, we call linear part of
f . When L is a hyperbolic matrix1, we call it hyperbolic linear part.

Let f : T2 → T2 be an endomorphism with linear part L ∈M(2,Z). We
define the topological degree of f by the determinant of L.

The following question naturally arises:

Question 1: Under which conditions an endomorphism with hyperbolic

1The matrix has no eigenvalues of modulus one.
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linear part is transitive?

Recently, Andersson (in [And16]) showed that volume preserving non-
invertible covering maps of the torus with hyperbolic linear part is transitive.
Thus, some natural questions about the critical set and the volume preserving
condition given by Andersson can be posed:

Question 2: Can the result be extended to allow critical points?

Question 3: Can the volume preserving condition be relaxed?

In this direction, we are interested to give some answer about questions 2
and 3. We show that it is possible to obtain an analogous result changing the
volume preserving property given by a milder topological property even in
the case where there are critical points. Notice that one can create sinks for
maps of T2 in any homotopy class, so at least some sort of a priori recurrence
is necessary to obtain such result.

In order to state the main result of this work, let us introduce some
notations before.

A point p ∈ T2 is a non-wandering point for f if for every neighborhood
Bp of p in T2 there exists an integer n ≥ 1 such that fn(Bp)∩Bp is nonempty.
The set Ω(f) of all non-wandering points is called non-wandering set. Clearly
Ω(f) is closed and f -forward invariant. We call an endomorphism f : T2 →
T2 by non-wandering endomorphism if Ω(f) = T2. A point p belonging to
T2 is said to be a critical point for f if for every neighborhood Bp of p in
T2, we have that f : Bx → f(Bx) is not a homeomorphism. We will denote
by Sf the set of all the critical points. Clearly Sf is a closed set in T2. A
critical point p is called generic critical point if for any neighborhood B of p
in T2, f(B)\{f(p)} is a connected set. When all critical points are generics,
Sf we will be called generic critical set. It is easy to see that the fold and
cusp critical points are generic critical points , this justifies the name since
by H. Whitney (see [Whi55]) the maps whose critical points are folds and
cusps are generic in the C∞-topology.

In this chapter, we will prove the following result:

Theorem A. Let f : T2 → T2 be a non-wandering endomorphism with
topological degree at least two and generic critical set. If the linear part of f
is hyperbolic, then f is transitive.

It is not known whether the hypothesis of generic critical set is necessary.
It is utilized as a technical hypothesis.

The Theorem-A can be rephrased as follows:
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Main Theorem 1. Let f : T2 → T2 be a non-wandering endomorphism with
topological degree at least two and generic critical set. If f is not transitive,
then its linear part has a real eigenvalue of modulus one.

Before starting of the proof, we give some immediate consequences of the
main theorem:

Corollary 2.1. Let f : T2 → T2 be a volume preserving endomorphism with
topological degree at least two and generic critical set. If f is not transitive,
then its linear part has a real eigenvalue of modulus one.

The proof follows from of the fact that volume preserving implies that
the non-wandering set is the whole torus. Furthermore, in the case that the
critical set is empty. That is, when the endomorphism is a covering maps.
We also have the following consequence:

Corollary 2.2. Let f : T2 → T2 be a non-wandering endomorphism with
topological degree at least two and without critical points (i.e., Sf = ∅). If f
is not transitive, then its linear part has a real eigenvalue of modulus one.

The chapter is organized as follows. In section 2.1, we give a sketch of
the proof of the main theorem. In sections 2.2 and 2.3, we prove some results
that will be used in the proof of the main theorem which is presented in
section 2.4.

2.1 Sketch of the proof of the main theorem

We prove in the section 2.2 that if a non-wandering endomorphism is
not transitive, then we can divide the torus in two complementary open sets
which are f -invariant. After, in the section 2.3, we use the generic critical
points to prove that those open sets are essential (see Definition 2.3.1) and
their fundamental groups have just one generator. Then, in section 2.4, we
prove that the action of f on the fundamental group of the torus has integer
eigenvalues and that at least one has modulus one.

2.2 Existence of invariant sets

An open subset U ⊂ T2 is called regular if U = int(U) where U is the
closure of U in T2 that sometimes we will also be denoted like cl(U).

Given a subset A ⊂ T2 we write A⊥ := T2\A. Note that for any open set
U ⊆ T2, we have U⊥ = int(U⊥), i. e., U⊥ is regular.
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We say that a subset A ⊆ T2 is f-backward invariant if f−1(A) ⊆ A and
f-forward invariant if f(A) ⊆ A. We say that A ⊆ T2 is f-invariant when it
is f -backward and f -forward invariant set.

An endomorphism f : T2 → T2 is transitive if for every open set U in
T2 we have that ∪n≥0f

−n(U) is dense in T2. This definition is equivalent to
previous definition given in the Introduction.

The lemma below gives a topological obstruction for a non-wandering
endomorphism to be transitive.

Lemma 2.3. Let f : T2 → T2 be a non-wandering endomorphism. Then,
the following are equivalent:

(a) f is not transitive;

(b) there exist U, V ⊆ T2 disjoint f -backward invariant regular open sets.
Furthermore, U and V are f -forward invariant.

Proof. (b)⇒ (a): It is clear. Since f−n(U) ∩ V = ∅ for every n ≥ 0.

(a)⇒ (b): Since f is not transitive, there exist U ′0 and V ′0 open sets such
that

f−n(U ′0) ∩ V ′0 = ∅ for every n ≥ 0.

Claim 1: U ′ = ∪n≥0f
−n(U ′0) and V ′ = ∪n≥0f

−n(V ′0) are disjoint f -
backward invariant open sets.

Indeed, it is clear that U ′ and V ′ are f -backward invariant open sets.
Then, we must show only that U ′ and V ′ are disjoint sets. For this, suppose
by contradiction that U ′∩V ′ 6= ∅. That is, suppose that there exist n,m ≥ 0
such that

f−n(U ′0) ∩ f−m(V ′0) 6= ∅.

Let x ∈ f−n(U ′0) ∩ f−m(V ′0). Then fn(x) ∈ U ′0 and fm(x) ∈ V ′0 .
Then, we have the following possibilities:

• n ≥ m : fn−m(fm(x)) ∈ U ′0 ⇒ f−n+m(U ′0) ∩ V ′0 6= ∅.

• n < m : By continuity of f , we can take a neighborhood B ⊆ U ′0 of
fn(x) such that fm−n(B) ⊆ V ′0 . Since Ω(f) = T2, we can take B and
k ≥ m− n such that fk(B) ∩B 6= ∅. Hence, f−(k−m+n)(U ′0) ∩ V ′0 6= ∅.
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In both cases, we have a contradiction.

The following statement will be used to choose the sets U and V .

Claim 2: f−1(U ′) is dense in U ′. The same holds for V ′.

Indeed, given any open subset B of T2 contained in U ′, since f is a non-
wandering endomorphism there exists n ≥ 1 such that fn(B)∩B 6= ∅. Then,
f−n(B)∩B 6= ∅, in particular, f−n(U ′)∩B 6= ∅. Therefore f−1(U ′)∩B 6= ∅
, since f−m(U ′) ⊆ f−1(U ′) for all m ≥ 1. In particular, U ′ = f−1(U ′). This
proves the claim 2.

Finally, we define

U = int(U ′) and V = int(V ′). (2.2.1)

Claim 3: U and V satisfy:

(i) U and V are regular;

(ii) f−1(U) ⊆ U and f−1(U) ⊇ U , the same holds for V .

Item (i) follows from the fact that U = U ′.

To prove item (ii), it is sufficient to show that

int(f−1(U ′)) = U.

Because f−1(U) ⊆ int(f−1(U ′)), since f−1(U) = f−1(int(U ′)) ⊆ f−1(U ′).
Hence, we have f−1(U) ⊆ U and U = f−1(U) ⊆ f−1(U), by Claim 2.

Now, we will prove that

int(f−1(U ′)) = U. (∗)
Note that U = int(U ′) ⊆ int(f−1(U ′)), since U ′ = f−1(U ′) ⊆ f−1(U ′).

Hence, we have to show only that

int(f−1(U ′)) ⊆ U. (∗∗)

To prove this, let B be an open set contained in f−1(U ′). Suppose that B
is not contained in U ′. Then, we may take an open subset B′ of T2 contained
in B such that B′ ∩ U ′ = ∅. Since Ω(f) = T2 and fn(B′) ⊆ fn(U ′) ⊆ U ′

for every n ≥ 1, we have a contradiction because fn(B′) ∩B′ 6= ∅ for n ≥ 1.
Therefore, B is contained in U ′. Thus, we conclude (∗∗), and so, (∗). This
proves the Claim 3.
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Henceforth, we assume that f is a non-wandering endomorphism with
topological degree at least two and U, V are the sets given by proof of the
item (b) of the lemma above.

Remark 2.4. Note that as f−1(U) ⊆ U and f−1(U) ⊃ U , one gets f(U) = U
and, consequently, f(∂U) = ∂U . Moreover, since int(U) = U , ∂U = ∂U , one
has
∂Ui ⊆ ∂U for every Ui connected component of U . Thus, given Ui a connected
component of U , we have f(∂Ui) ⊆ ∂U .

The following proposition shows that the points belonging to U whose
images are in the boundary of U are critical points.

Proposition 2.5. Let p ∈ U . If f(p) ∈ ∂U then p ∈ Sf .

Proof. Suppose that there exist a neighborhood B of p contained in U such
that f : B → f(B) is a homeomorphism and f(B) is an open set contained
in U . In particular, f(B) ⊆ int(U) = U .

The following lemma shows that the image of a component of U which
intersect two other components of U intersects the boundary of U in a unique
point.

Lemma 2.6. Given U0, U1 and U2 connected components of U such that
U1 and U2 are disjoint and let U01 and U02 be connected components of
f−1(U1), f−1(U2) contained in U0, respectively. If C := ∂U01 ∩ ∂U02 is a
non-empty set contained in U0, then f(C) is a point.

Proof. Consider C ′ := f(C), without loss of generality, suppose that C is a
nontrivial connected set. Then, as f(∂Ui) ⊆ ∂U , we have C ′ ⊆ ∂U1 ∩ ∂U2 is
a connected set.

Figure 2.1: Components U01 and U02 in U0.

Given y ∈ C ′, denote by Bε(y) a ball in T2 centered in y and radius ε.
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Claim 1: For every ε � 1, we have that Bε(y) ∩ U1 or Bε(y) ∩ U2 has
infinitely many connected components.

Indeed, suppose that for every ε > 0, Bε(y)∩U1 and Bε(y)∩U2 has finitely
many connected components. Denote by W+ the connected component of
Bε(y)∩U1 and by W− the connected component of Bε(y)∩U2 which intersect
C ′. Note that, up to subsets of C ′, we may suppose that C ′ ⊆ Bε(y) and
that C ′ = W+ ∩W−.

Figure 2.2: connected components.

Hence, we can choose ε0 > 0 such that W+∪W− contain an open set and
Bε(y) is contained in W+ ∪W− for every 0 < ε < ε0. In particular, Bε(y) is
contained in U1 ∪U2. Contradicting the fact that U = int(U) and U1, U2 are
connected components of U . This proves of claim 1.

To finish the proof of the lemma, we may suppose, without loss generality,
that
Bε0(y) ∩ U1 has infinitely many connected components. Then, we know,
by continuity of f , that for 0 < ε < ε0

2
there is δ > 0 such that

d(x, y) < δ ⇒ d(f(x), f(y)) < ε,∀x, y ∈ T2.

Now, we consider x ∈ C such that y = f(x) and a curve γ in Bδ(x) that
intersect C at x and γ(0) ∈ U01, γ(1) ∈ U02. Then f(γ) is a curve such
that f(γ)∩Bε0(y) has infinitely many components. In particular, there exist
t, s ∈ [0, 1] such that

d(f(γ(t)), f(γ(s))) ≥ ε0 > ε,

which is a contradiction, because f is uniformly continuous, the desired result
follows.

The lemma below is important because it shows the existence of critical
points that are not generic for f .

10



Figure 2.3: Connected components.

Corollary 2.7. Let U01 and U02 be as in Lemma 2.6. If p belongs to
C = ∂U01 ∩ ∂U02 then p is not a generic critical point.

Proof. By item (b) of the Lemma 2.3 and by Remark 2.4, U and V are disjoint
f -backward invariant open sets satisfying:

• T2 = U ∪ V ;

• f(∂U) = ∂U and f(∂V ) = ∂V .

Then, f−1(f(p)) has empty interior. Otherwise, f(int(f−1(f(p))) = f(p) ∈
∂U that is f -forward invariant, contradicting the fact that f is a non-wandering
endomorphism. Now, we can choose a neighborhood B of p contained in U0

such that B\{f−1(f(p))} has at least two connected components which are
contained in U01 and U02. By Lemma 2.6, it follows that the boundary com-
ponent of U0i contained in U0 has as image a point, where U0i is a component
connected of f−1(Ui) contained in U0. Then, as U0 = {U0i : U0i ⊂ U0}, we
have that

f(B)\{f(p)} = f(B\{f−1(f(p))}) ⊂ {f(B ∩ U0i) : U0i ⊂ U0}.

In particular, f(B ∩ U01) ⊆ U1 and f(B ∩ U02) ⊆ U2.

Figure 2.4: p is not generic critical point.
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Therefore, one has that p is not a generic critical point.

In the following lemma we will show that f satisfies: for each Ui connected
component of U there exists a unique connected component Uj of U such that
U j = f(U i). Hence, we will say that f preserves the connected components
of U .

Now, we suppose, in addition to the hypothesis of f be non-wandering
endomorphism of degree at least two, that the critical points of f are generics.

Lemma 2.8. f preserves the connected components of U . Moreover, every
connected component Ui of U is periodic (i.e.,∃ni ≥ 1 such that fni(U i) = U i

and f−ni(Ui) ⊆ Ui).

Proof. Suppose that f(Ui) intersect at least two connected components of
U . Then, by Corollary 2.7, it follows that there exists a non-generic critical
point, contradicting that Sf is a generic critical set. Thus, we have that for
each connected component Ui of U , f(Ui) must intersect a unique connected
component Uji of U . In particular, since f(∂Ui) ⊆ ∂U , one has f(U i) ⊆ U ji .
More precisely, one has that for each connected component Ui of U there
exists a unique Uji such that f(Ui) ⊆ U ji .

We want to prove that every connected component Ui of U is periodic
but before that, we prove that for each Ui there exists a unique Uj such that
f−1(Ui) ⊆ Uj.

Indeed, suppose that f−1(Ui) intersects at least two connected compo-
nents Uj and Uk of U . Then, by we saw above, we have that f(U j) ⊆ U i and
f(Uk) ⊆ U i. Since Ω(f) = T2, there exist ni, nk ≥ 1 such that fnj(U j) ⊆ U j

and fnj(U j) ⊆ U j that imply fnj−1(Ui) ⊆ Uj and fnk−1(Ui) ⊆ Uk. Hence,
one has nj = nk and Uj = Uk.

Therefore, for each connected component Ui of U there exist unique Uji
and Uki such that f−1(Ui) ⊆ Uji and f(U i) ⊆ Uki implying that f preserves
the connected components of U , fni(U i) = U i, and f−ni(Ui) ⊆ Ui.

Corollary 2.9. There is a finite number of connected components of U .

Proof. By definition of U (see equation 2.2.1), we can take a connected com-
ponent U0 of U such that U = ∪n≥0f−n(U0). Hence and by Lemma 2.8, for
each connected component Uj of U there exists nj ≥ 1 and n0 ≥ 1 such that
fnj(U j) = U0 and fn0(U0) = U0. Therefore, U has finitely many connected
components.
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2.3 Essential sets

Now, our goal is to show that f for a non-wandering endomorphism with
topological degree at least two and generic critical set that is not itself tran-
sitive, every connected component of U has fundamental group with just one
generator in the fundamental group of the torus. Before to formalize this
idea, let us fix some notations. Let L be the linear part of f which is an
invertible matrix in M(2,Z) and has determinant of modulus at least two.
Let π : R2 → T2 be the universal covering of the torus and let f̃ : R2 → R2

be a lift of f . It is known that f̃(x̃+ v) = L(v) + f̃(x̃) for every x̃ ∈ R2 and
v ∈ Z.

Definition 2.3.1. We say that a connected open set A in T2 is essential if
for every connected component Ã of π−1(A) in R2,

π := π|Ã : Ã→ A

is not a homeomorphism. Otherwise, we say that A is inessential.

The following proposition shows properties of the essential sets.

Proposition 2.10. Let W ⊆ T2 be a connected open set. Then the following
are equivalent:

(i) W is essential;

(ii) W contains a loop homotopically non-trivial in T2;

(iii) there is a non-trivial deck transformation Tw : R2 → R2 such that every
connected component of π−1(W ) is Tw-invariant.

Moreover, if W is path connected in T2, then i∗ : π1(W,x) → π1(T2, x) is a
non-trivial map, where x ∈ W and i : W ↪→ T2 is the inclusion.

Heuristically, an essential set is a set that every connected component of
its lift has infinite volume.

The following lemma is fundamental in the proof of Main Theorem. That
lemma is interesting, because it shows that every closure of a connected
component of U contains a closed curve homotopically non-trivial in T2.

Lemma 2.11. Let Uj be any connected component of U . Then U j contains
a closed curve homotopically non-trivial in T2.
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Proof. By Corollary 2.9, we can suppose U j = f j(U0) and Un0 = U0. If U0

is essential there is nothing to prove. Now, suppose that U0 is inessential.
Let Ũ0 ⊂ R2 be a connected component of π−1(U0), then, π : Ũ0 → U0 is
injective. Consider w ∈ Z2\L(Z2), such w exists because | det(L)| ≥ 2. We

denote by W ′ the interior of the set π(f̃−1(w + f̃(Ũ0))) that is not empty,
because f(U0) has interior non-empty. Then

f(W ′) = f ◦ π(f̃−1(w + f̃(Ũ0))) = π(w + f̃(Ũ0)) = f(U0).

But as W ′ is a open set and f(W ′) ⊂ U1, and so W ′ ⊂ U . Then,

fn(W ′) ∩W ′ 6= ∅ ⇐⇒ n = kn0, for some k ≥ 1.

In particular, W ′ must intersect to U0. Hence W ′ is contained in U0.
Since W ′ is contained in U0, we have that f̃−1(w+ f̃(Ũ0)) is contained in

Ũ0. Thus, f̃(Ũ0) contains w+ f̃(Ũ0) and f̃(Ũ0). Hence, there exist x̃ and ỹ in

Ũ0 such that f̃(ỹ) = w+f̃(x̃), and so taking a curve γ̃ in Ũ0 joining x̃ to ỹ, one
has f̃(γ̃) is a curve joining f̃(x̃) to f̃(ỹ). In particular, γ := π ◦ γ̃ is a curve
such that γf := f ◦ γ is a closed curve whose homology class is w. Therefore,
f j−1 ◦ γf is a closed curve in U j whose homology class is Lj−1(w).

Next lemma is important because it shows that the closure of the con-
nected components of U and V obtained in Lemma 2.3 are essential sets.

Lemma 2.12. If Uj is a connected component of U such that fn(U j) = U j

for some n ≥ 1. Then, Uj is essential.

Proof. Suppose, without loss of generality, j = 0. Let Ũ0 be a connected
component of π−1(U0) in R2. Suppose that U0 is an inessential set. Since the

degree of f is at least two and f(∂U0) ⊆ ∂U , one has that f̃(Ũ0) contains at

least two connected components of π−1(U0) and f̃(∂Ũ0) ⊆ ∂π−1(U0). Then,
there exist at least two connected components of π−1(U0), suppose, without

loss of generality, that Ũ0 and Ũ0 + v for some v ∈ Z2 are contained in f̃(Ũ0)

and that the component components Ũ00 and Ũ0v of f̃−1(Ũ0) and f̃−1(Ũw),

respectively, contained in Ũ0 so that C̃ = ∂Ũ00 ∩ ∂Ũ0w is a nonempty set in
Ũ0.

Then, from the proof of Lemma 2.6, f(π(C̃)) is a point and ,by the proof

of the Corollary 2.7, there exists p ∈ π(C̃) so that p is not a generic critical
point.

The lemma below shows what happens when two essential sets are linearly
independent.
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Figure 2.5: The components Ũ0 and Ũv.

Lemma 2.13. Suppose that γ and σ are loops in T2 such that [γ] and [σ]
are linearly independent in Z2. Then γ and σ intersect.

Proof. See Lemma 4.2 in [And16].

The lemma below shows the existence of integer eigenvalues of L.

Lemma 2.14. The eigenvalues of L are integers.

Proof. By Lemma 2.12, the connected components Uj and Vi of U and V are
essentials. We consider two loops γ and σ in Uj and Vi such that [γ] and [σ]
are different to zero in Z2. As Uj∩Vi = ∅, it follows, by Lemma 2.13, that [γ]
and [σ] are linearly dependent in Z2. analogously, as U j+1 ∩Vi = ∅ and f ◦ γ
is loop in U j+1, we have that [f ◦ γ] = L[γ] and [σ] are linearly dependent in
Z2, in particular L[γ] and [γ] are linearly dependent in Z2. Therefore, there
exits k ∈ Z\{0} such that L[γ] = k[γ]. This proves the lemma.

The lemma below is fundamental. It shows that all connected components
of U and V are essential.

2.4 The proof of Main Theorem

Let f : T2 → T2 be a non-wandering endomorphism with generic criti-
cal set and degree at least two which is not transitive. Then we know from
Lemma 2.3 that there exist U and V in T2 f -backward invariant regular
open sets such that U and V are f -forward invariant sets. Since all crit-
ical points are generics, from Lemma 2.12 and Corollary 2.9 follow that
all connected component of U and V are essential and that U0 is peri-
odic. Let U0, f(U0), · · · , fn−1(U0) be all connected components of U with

U0 = fn(U0). Then, consider two connected components Ũ0 and Ṽ0 of
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Figure 2.6: The sets U0 and V0.

π−1(U0) and π−1(V0), respectively, and choose f̃ : R2 → R2 a lift of f such

that f̃n(Ũ0) ⊆ cl(Ũ0).
Let us now prove that L has a real eigenvalue of modulus one. First,

note that as U0 and V0 are disjoints, Lemma 2.14 implies that L has integer
eigenvalues l and k. Let w and u be the eigenvectors of L associated to
l and k, respectively, are in Z2. Suppose, without loss generality, that w
and u = e2. That is, as Ũ0 is Tu-invariant, we have that Ũ0 is a ”vertical”
component of π−1(U0).

To finish, suppose that |k| ≥ 2. Then, consider in R2 a curve γ̃ which

γ̃(0) ∈ Ũ0 and γ̃(1) = γ̃(0)+e1. Thus, f̃n◦γ̃ is a curve with f̃n◦γ̃(0) ∈ Ũ0 and

f̃n◦γ̃(1) = f̃n◦γ̃(0)+Ln(e1). However, there exist a and b in Z with b different
from zero such that e1 = ae2 + bw. Hence, we have L(e1) = ake2 + blw and,
in particular,

f̃(Ũ0 + e1) ⊆ cl(Ũ0 + L(e1)).

Figure 2.7: The curves γ̃ and f̃ ◦ γ̃.

Then, if |l| ≥ 2, we have that the first coordinate of L(e1) has modulus

at least two. Hence there is c ∈ Z such that Ũr + ce1 is between Ũ0 and
Ũ0 +L(e1), and so, we have a contradiction because U ′rs are disjoint and fn-
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backward invariant. Hence there is not a set W in between Ũ0 and Ũ0 + e1

such that f̃n(W ) = Ũ0 + ce1.
Therefore, |l| = 1. And so, L is not an Anosov endomorphism, contra-

diction. This proves the Main Theorem.

2.5 Examples

Consider a map f on S1 itself of form:

Figure 2.8: The graph of f .

such that f is not transitive map, but is volume preserving. Let g : S1 → S1

be any volume preserving degree 2 map and let H : T2 → T2 be any vol-
ume preserving endomorphism without critical points homotopic to (x, y) 7→
(2x, y). Then F : T2 → T2 given by

F (x, y) = H(f(x), g(y))

is a volume preserving endomorphism with generic critical points and homo-
topic to (x, y) 7→ (2x, 2y). Therefore, by the Main Theorem, F is transitive.
More general, given endomorphisms f and g on S1 itself which f has criti-
cal points and g is an expanding such that f × g : T2 → T2, f × g(x, y) =
(f(x), g(y)), is a volume preserving endomorphism, then for every H : T2 →
T2 a volume preserving covering map such that F = H ◦ (f×g) is homotopic
to Anosov endomorphism degree at least two, we have F is transitive.
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Chapter 3

Topological obstruction for
robustly transitive
endomorphism on surfaces

This chapter is a joint work with C. Lizana. One of the main goal in dy-
namics is to study robust phenomena. That is, phenomena that are persistent
under perturbations. Robust transitivity (C1-robustly transitive systems are
systems that are transitive and all systems nearby in the C1- topology are
transitive as well, that is, they have a dense orbit) is an important topological
phenomenon in dynamical systems.

It was first studied for diffeomorphisms on surfaces by Mañé (see [Mañ82]).
He showed that robustly transitive diffeomorphisms are Anosov diffeomor-
phisms and the surface must be T2. In higher dimension, Bonatti, Diaz, Pu-
jals and Ures in (see [DPU99] and [BDP03]) showed that robustly transitive
diffeomorphisms exhibit a kind of hyperbolicity, called volume hyperbolic.
However, in higher dimension there is no topological obstructions for the
manifolds as it is obtained by Mañé on surface.

Typically studied in the context of diffeomorphisms, the interest in robust
transitivity for endomorphisms (C1-maps on a manifold to itself) is growing.
However, in the endomorphisms setting, this kind of behavior is no longer
true. For endomorphisms, hyperbolicity is not a necessary condition in order
to have robust transitivity.

The first work that address the problem about necessary and sufficient
conditions for robustly transitive endomorphisms was [LP13]. In [LP13]
is proved that volume expanding is a C1-necessary condition for endomor-
phisms without critical points (local diffeomorphisms) not exhibiting domi-
nated splitting (in a robust way). However, it is not a sufficient condition.

So far the study of robust transitivity has been done in the local diffeo-
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morphisms setting, meanwhile the case of endomorphisms admitting critical
points has received less far attention. In this context, we present necessary
conditions for the existence of robustly transitive endomorphisms on surface
with critical points. The following result is similar to Mañé’s results (see
[Mañ82]). However, we can not exhibit hyperbolicity as for diffeomorphisms,
but we obtain a weaker property called dominated splitting (see definition
3.1.2):

Theorem B. If f ∈ End1(M) is a robustly transitive endomorphism and the
set of its critical points is nonempty, then M admits a dominated splitting
for f .

For the proof of this result, we will use the following theorem:

Theorem B’. If f ∈ End1(M) is a robustly transitive endomorphism and the
set of its critical points has nonempty interior, then M admits a dominated
splitting for f .

For proving Theorem B, observe that there exists a sequence of endo-
morphisms exhibiting dominated splitting converging to f . Then, we show
that the angle between the subbundles of the splitting for the sequence are
uniformly bounded away from zero. Hence, we prove that f exhibits a dom-
inated splitting.

The proof of the Theorem B’ is different from the proof in the diffeomor-
phisms case. For diffeomorphisms, it is used the existence of sinks or sources
as obstruction for transitivity.It is defined a splitting on the vector bundle
over periodic points, then it is proved that the periodic points are hyper-
bolic. Hence, using classical results such as Closing Lemma and Connecting
Lemma, we are able to extend the splitting to the whole manifold.

To prove the Theorem B’, we will consider a dense subset of the surface
where it is possible to define a dominated splitting. Then, we use the fact that
the existence of critical points whose kernel has full dimension (see Proposi-
tion 3.7) is an obstruction for robust transitivity to prove the domination. In
this proof, we are not using classical results such as Closing Lemma, neither
Connecting Lemma. Moreover, we avoid the periodic points as candidates to
define a dominated splitting. This is very different from the diffeomorphisms
case, since the periodic points has an important role in the development of
the proof.

A consequence of this result is that there are not robustly transitive endo-
morphisms on the sphere S2. Otherwise, we would have a robustly transitive
endomorphism on S2 and, as S2 is simply-connected and by Mañé’s result
[Mañ82], it admits critical points. Up to a perturbation, we can suppose
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the critical set has nonempty interior, and by theorem above follows that S2

admitting a dominated splitting implies the existence of a continuous vector
field without singularity. More general, we prove the following result:

Theorem C. If M admits a robustly transitive endomorphism, then M is
either the torus T2 or the Klein bottle K2.

Furthermore, we also obtain another homological necessary condition for
robust transitivity. We prove the following result:

Theorem D. If f ∈ End1(M) is a robustly transitive endomorphism. Then
f is homotopic to a linear map having at least one eigenvalue with modulus
larger than one.

The proof of this result is based in the proof of Brin, Burago and Ivanov’s
result (see [BBI09]) which shows that the action of a partially hyperbolic
diffeomorphism on the first homology group of a three-manifold is partially
hyperbolic.

3.1 Preliminaries

3.1.1 Linear algebra

Let V and W be inner product spaces. If L : V → W is a linear map we
denote

‖L‖ = sup
‖v‖=1

‖Lv‖ and m(L) = inf
‖v‖=1

‖Lv |

which are called norm and conorm of L, respectively.

Remark 3.1. Let L : R2 → R2 be a linear map which is not a rotation
composed with a homothety. It is known from standard linear algebra that if
v and w are unit vector such that ‖L(v)‖ = ‖L‖ and ‖L(w)‖ = m(L), then
v and w are orthogonal vectors.

Indeed, consider ξ : S1 → R defined by ξ(v) = 〈L(v), L(v)〉 or 〈L∗L(v), (v)〉,
where L∗ denotes the adjoint operator of L. Using that v and w are the max-
imum and minimum of ξ, we have that they are critical points of ξ and

dξv(u) = 〈L∗L(v), u〉 = 0, ∀ u ∈ TvS1

and
dξw(u) = 〈L∗L(w), u〉 = 0, ∀ u ∈ TwS1.
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Hence, it follows that v and w are the eigenvectors of L∗L. But, v⊥ is an
eigenvector of L∗L, because

〈L∗L(v⊥), v〉 = 〈v⊥, L∗L(v)〉 = 〈v⊥, ‖L‖v〉 = 0.

Therefore, v⊥ = w.

Definition 3.1.1. Let V and W be two one-dimensional subspaces of an
inner product space Z such that Z = V ⊕W . Let L : V → V ⊥ be the unique
linear map such that

W = graph(L) = {v + L(v) : v ∈ V }.

Then, we can define the angle between V and W by

�(V,W ) = ‖L‖.

Definition 3.1.2 (Cones). Given two one-dimensional subspaces V and W
of a bi-dimensional vector space Z. We define a cone of length η > 0 con-
taining the subspace V by:

CV,W (η) = {v + w ∈ V ⊕W : ‖w‖ ≤ η‖v‖}

and when W = V ⊥, we denote by:

CV (η) = {v + w ∈ V ⊕ V ⊥ : ‖w‖ ≤ η‖v‖},

or equivalently
CV (η) = {w ∈ Z : �(V,R〈w〉) ≤ η}.

Moreover, we define the dual cone C ∗V,W (η) by the closure of Z\CV,W (η).
When W = V ⊥, we denote C ∗

V,V ⊥(η) by C ∗V (η).

3.1.2 Dominated splitting

Let us consider f : M → M a surjective endomorphism from a surface
M into itself.

Dominated splittings for endomorphisms by cones

Let Λf be a compact, f -invariant subset ofM (i.e., f(Λf ) = Λf ). Consider
a (not necessarily invariant) one-dimensional subbundle Ẽ defined over Λf .
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Definition 3.1.3 (Dominated splitting for endomorphisms). We say that Λf

admits a dominated splitting for f if: there exist η > 0 and m ≥ 1 such that
the cone field on Λf ,

C : x ∈ Λf 7→ CẼ(x, η) := CẼ(x)(η) ⊆ TxM, (3.1.1)

satisfies for every x ∈ Λf ,

(a) Transversality: CẼ(x, η) ∩ ker(Dfx) = {0};

(b) Invariance: Dfmx
(
CẼ(x, η)

)
⊆ int(CẼ(fm(x), η)).

Next, we give another definition of dominated splitting for endomor-
phisms which can be seen as a natural definition of dominated splitting for
non-invertible linear cocycle over shift map.

Inverse limit dominated splitting

Let M be a closed surface and MZ denote the compact product space
MZ = {(xj)j : xj ∈ M,∀j ∈ Z}. A homeomorphism σ : MZ → MZ, defined
by σ((xj)j) = (xj+1)j, is called shift map. For f , we define the inverse limit
of f by the set

Mf = {x̄ ∈MZ : f(xj) = xj+1,∀j ∈ Z}.

Then Mf is a closed subset of MZ. Since Mf is σ-invariant (i.e.,
σ(Mf ) = Mf ), we may define a homeomorphism

σf := σ |Mf
: Mf →Mf .

The restriction σf is called the shift map determined by f .
Let j ∈ Z and denote as πj : Mf → M the projection defined by

(xj)j 7→ xj. Then πj ◦ σf = f ◦ πj holds. That is, the diagram

Mf

πj
��

σf //Mf

πj
��

M
f
//M

commutes, and π0 ◦ σjf = f j ◦ π0 for every j ≥ 1.
Denote by TMf the vector bundle π∗0(TM), called the pullback of TM

by π0. That is,

TMf = {(x̄; v) ∈Mf × TM | v ∈ Tπ0(x̄)M}.
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It is the unique maximal subset of Mf × TM which makes the following
diagram commute

TMf

π̄

��

' TM

π

��
Mf π0

//M

where π̄ : TMf → Mf and π : TM → M are the natural projections. The
fiber Tx̄Mf of TMf over x̄ ∈ Mf is isomorphic to the vector space Tπ0(x̄)M .
We denote such isomorphism by TMf ' TM .

Let Λ be a subset of Mf . We define by TΛMf the vector bundle TMf |Λ.
That is,

TΛMf = {(x̄, v) ∈ TMf : x̄ ∈ Λ} =
⊔
x̄∈Λ

Tx̄Mf .

If Λ is a σf -invariant set, we define the linear cocycle of f over Λ by

Df : TΛMf → TΛMf , Df(x̄, v) = (σf (x̄), Dfπ0(x̄)v).

That is, Df((xj)j, v) = ((xj+1)j, Dfx0v).
We define the norm of Dfx̄ by

‖Dfx̄‖ = sup{‖Dfπ0(x̄)(v)‖ : ‖v‖ = 1, v ∈ Tx̄Mf} = ‖Dfπ0(x̄)‖.

Given Λ ⊆ Mf , a splitting over Λ, TΛMf = E ⊕ F , is a linear decompo-
sition such that for every x̄ ∈ Λ, one has

• dim(E(x̄)) = dim(F (x̄)) = 1;

• Tx̄Mf = E(x̄)⊕ F (x̄).

Note that as the fiber Tx̄Mf of TMf over x̄ ∈ Mf is the vector space
Tπ0(x̄)M , we have that E(x̄) and F (x̄) are one-dimensional subspaces in
Tπ0(x̄)M .

Definition 3.1.4 (Dominated splitting for linear cocycle). Let Λ ⊆ Mf σf -
invariant. We say that Λ admits a dominated splitting for the linear cocycle
Df if: there exists a splitting over Λ,

TΛMf = E ⊕ F,

satisfying:

(a′) Invariance: The subbundles E and F are invariant for the linear cocycle
Df(or Df -invariant). That is, for every x̄ ∈ Λ,

Df(E(x̄)) ⊆ E(σf (x̄)) and Df(F (x̄)) = F (σf (x̄)).
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(b′) Uniform angle: The angle between E and F is uniformly away from
zero. That is, there exists α > 0 such that

�(E(x̄), F (x̄)) ≥ α, ∀x̄ ∈ Λ.

(c′) Domination: There exists m ≥ 1 such that for every x̄ ∈ Λ,

‖Dfm |E(x̄) ‖ ≤
1

2
‖Dfm |F (x̄) ‖, (3.1.2)

where Dfm |E(x̄) and Dfm |F (x̄) denote the linear maps:

Dfmx̄ |E(x̄): E(x̄)→ E(σmf (x̄)) and Dfmx̄ |F (x̄): F (x̄)→ F (σmf (x̄)),

and ‖Dfm |E(x̄) ‖ and ‖Dfm |F (x̄) ‖ denote their norms, respectively.

The proposition below gives a natural candidate for the dominated sub-
bundle in the splitting over the critical points.

Proposition 3.2. Let TΛMf = E ⊕ F be a dominated splitting for the co-
cycle Df . If x0 = π0(x̄) ∈ Sf , then ker(Dfx0) = E(x̄). In particular,
dim(ker(Dfx)) ≤ 1 for every x ∈M .

Proof. Let v ∈ E(x̄) and w ∈ F (x̄) be vectors such that v+w ∈ ker(Dfx0)\{0}.
Then, Dfx0(v) = Dfx0(−w). Since E, F are Df -invariant, we get that
v, w ∈ ker(Dfx0). By domination w = 0, and so ker(Dfx0) = E(x̄).

The following proposition shows the uniqueness of the dominated splitting
E ⊕ F .

Proposition 3.3 (Uniqueness). For f ∈ End1(M), if Λ ⊆ Mf is a σf -
invariant set admitting two dominated splittings E ⊕ F and G ⊕ H. Then,
E(x̄) = G(x̄) and F (x̄) = H(x̄) for every x̄ ∈ Λ.

Proof. First, suppose xj = π0(σjf (x̄)) /∈ Sf for every j ∈ Z. Then, given
a vector v ∈ E(x̄) one decomposes v = vG + wH in an unique way where
vG ∈ G(x̄) and wH ∈ H(x̄). Similarly, one can decompose vG = v′E +w′F and
wH = v′′E+w′′F with v′E, v

′′
E ∈ E(x̄) and w′F , w

′′
F ∈ F (x̄). Then, by domination,

there exists n0 ≥ 1 such that for n ≥ n0, we have

‖Dfnx0
(v)‖ ≥ ‖Dfnx0

(wH)‖ − ‖Dfnx0
(vG)‖ ≥ ‖Dfnx0

(vG)‖

≥ ‖Dfnx0
(w′F )‖ − ‖Dfnx0

(v′E)‖ ≥ 1

2
‖Dfnx0

(w′F )‖
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or

‖Dfnx0
(v)‖ ≥ ‖Dfnx0

(wH)‖ − ‖Dfnx0
(vG)‖ ≥ 1

2
‖Dfnx0

(wH)‖

≥ 1

2

(
‖Dfnx0

(w′′F )‖ − ‖Dfnx0
(v′′E)‖

)
≥ 1

4
‖Dfnx0

(w′′F )‖.

Since v ∈ E(x̄) and F (σjf (x̄)) ∩ ker(Dfxj) = {0} for every j ∈ Z, then both
w′F and w′′F must be zero. Therefore, one deduces that vG ∈ E(x̄) ∩ G(x̄)
and wH ∈ E(x̄) ∩ H(x̄). Symmetrically one deduces that if v ∈ G(x̄) is
decomposed as v = vE + wF with vE ∈ E(x̄) and wF ∈ F (x̄) one has
vE ∈ G(x̄) ∩ E(x̄) and wF ∈ G(x̄) ∩ F (x̄).

Assume by contradiction that E(x̄) is not contained in G(x̄). One can
choose v ∈ E(x̄) such that wH 6= 0 and is contained in E(x̄) ∩ G(x̄). Since
dim(E(x̄)) = dim(G(x̄)) and as they do not coincide, one gets a non-zero vec-
tor w ∈ F (x̄)∩G(x̄) by the same argument. Using the fact that H dominates
G one deduces that ‖Dfnx0

(v)‖ grows faster than ‖Dfnx0
(w)‖ contradicting the

fact that F dominates E.
Note that, in this case, we can consider the inverse cocycle Df−1 over

the orbit (σjf (x̄))j, and use the same argument to get that F (x̄) = H(x̄).
Therefore, E(x̄) = G(x̄) and F (x̄) = H(x̄) for every x̄ ∈ Λ such that
π0(σjf (x̄)) /∈ Sf for every j ∈ Z.

Now, assume xj0 = π0(σj0f (x̄)) ∈ Sf for some j0 ∈ Z. Then, we have, by

Proposition 3.2, that E(σjf (x̄)) = G(σjf (x̄)) = ker(Dfxj) for every xj ∈ Sf .
In particular, for j0. For xj /∈ Sf , consider nj = min{n ≥ j : xn ∈ Sf}, we
get by the invariance of E and G that

E(σjf (x̄)) = R〈v〉 = G(σjf (x̄)), Dfnj−j
xj

(v) ∈ ker(Dfxnj
).

Therefore, E(σjf (x̄)) = G(σjf (x̄)) for every j ∈ Z.

In order of proving that F (σjf (x̄)) = H(σjf (x̄)), we will consider two cases:

Case 1: xj /∈ Sf for every j < j0.

We may suppose, without loss of generality, that j0 = 0 and consider the
inverse cocycle Df−1 over the orbit (σjf (x̄))j<0. Since F and H are dominated
by E and G for Df−1, respectively. We can repeat the same arguments in
the first part of the proof and get F (σjf (x̄)) = H(σjf (x̄)) for j < 0. Finally, as

F and H are Df -invariants, one has: F (σjf (x̄)) = H(σjf (x̄)) for every j ∈ Z.

Case 2: xjn ∈ Sf for n ≥ 1 for some sequence (jn)n≥0 ∈ Z, jn ↘ −∞.
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Assume, without loss of generality, that xj /∈ Sf for jn < j < jn+1, n ≥ 0.
Since E(σjnf (x̄)) = G(σjnf (x̄)) = ker(Dfxjn ) for n ≥ 0, we have

F (σjn+1
f (x̄)) = Df(F (σjnf (x̄)) = Df(H(σjnf (x̄)) = H(σjn+1

f (x̄)).

Therefore, by invariance of F and H, we get

F (σjf (x̄)) = Df j−jn(F (σjnf (x̄))) = Df j−jn(H(σjnf (x̄))) = H(σjf (x̄)).

This proves the proposition.

Remark 3.4. It follows from the proof of the uniqueness of the subbundles
E and F that the subbundle E only depend of forward iterates. That is,

E(x̄) = E(ȳ) whenever π0(x̄) = π0(ȳ).

The next proposition, gives the continuity of the dominated splitting.
Moreover, it shows that a dominated splitting can be extended to the closure.

Proposition 3.5 (Continuity and extension to the closure). The map

x̄ ∈ Λf 7−→ E(x̄)⊕ F (x̄)

is continuous. Moreover, it can be extended to the closure Λ̄ of Λ continu-
ously.

Proof. Let (x̄n)n≥1 ⊆ Λf be a sequence such that x̄n → x̄ when n → ∞.
Suppose, unless of a subsequence, that E(x̄n) and F (x̄n) converge to sub-
spaces Ẽ(x̄) and F̃ (x̄) (e.g., taking unit vectors of E(x̄n) and F (x̄n)). By
item (c′) of Definition 3.1.4, the angle between Ẽ(x̄) and F̃ (x̄) is at least α.
In particular, Ẽ(x̄) ∩ F̃ (x̄) = {0}. Furthermore, by continuity of Df , the
subspaces Ẽ(x̄) and F̃ (x̄) are Df -invariant, and they satisfy the domination
property (3.1.2).

By Proposition 3.3, we have that Ẽ(x̄) and F̃ (x̄) do not depend of the
subsequence. Then, Ẽ(x̄) and F̃ (x̄) are well defined, and we denote it by

E(x̄) = limE(x̄n) and F (x̄) = limF (x̄n).

Therefore, we can extend the subbundles E and F continuously to the closure
of Λf .
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Equivalence of the definitions

In what follows, we show that the two definitions of dominated splitting,
by cones and inverse limit, given above are equivalents.

Indeed, suppose, without loss of generality, that Λ̄ ⊆Mf admits a domi-
nated splitting. Let TΛ̄Mf = E⊕F be the dominated splitting over Λ̄. Then,
we define Λf by the projection of Λ̄ by π0, that is, Λf = π0(Λ̄). Since Λ̄ is a
compact subset of Mf and σf -invariant, we have that Λf is a compact subset
of M and f -invariant.

Since, by Remark 3.4, E : x̄ ∈ Λ̄ 7→ E(x̄) only depend of forward iterates,
we can define a subbundle on Λf , which we also denote by E, as follows

E : x ∈ Λf 7−→ E(x̄) ⊆ Tx̄Mf ' TxM,

where x = π0(x̄). Now, we define the dual cone in the natural way by

C ∗ : x ∈ Λf 7−→ C ∗E(x, η)

where
α

2
< η < α with α > 0 given by the property (b′) in Definition 3.1.4.

Next, we show that C ∗ satisfies the items (a) and (b) of Definition 3.1.3.
First, by definition of the dual cone C ∗, note that:

C ∗E(x, η) ∩ E(x) = {0}.

In particular, as E(x) = ker(Dfx) for x ∈ Sf , C ∗ satisfies the item (a).
Furthermore, we have, for any x̄ ∈ Λ̄ such that π0(x̄) = x, that

F (x̄) ∈ C ∗E(x, η).

Fix any F (x̄) and denote it by F (x).
Given v ∈ C ∗E(x, η), we consider β and θ the angles �(E(x), F (x)) and

�(E(x),R〈v〉), respectively. Using elementary trigonometry theory, we get
that

‖vE‖
‖vF‖

= | sin(β)||θ−1 − β−1| (3.1.3)

where vE ∈ E(x) and vF ∈ F (x) are such that v = vE + vF . In other words,

‖vE‖
‖vF‖

= | sin(β)|
∣∣�(E(x)⊥,R〈v〉)−�(E(x)⊥, F (x))

∣∣ .
Then, for Dfkmx (v) = Dfkmx (vE) +Dfkmx (vF ), we have

‖Dfkmx (vE)‖
‖Dfkmx (vF )‖

= | sin(βkm)|
∣∣�(E(fkm(x))⊥,R〈Dfkmx (v)〉)−�(E(fkm(x))⊥, F (fkm(x)))

∣∣ .
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On the other hand,

‖Dfkmx (vE)‖
‖Dfkmx (vF )‖

=
‖Dfkmx |E ‖
‖Dfkmx |F ‖

‖vE‖
‖vF‖

≤ 1

2k
‖vE‖
‖vF‖

,

so it is sufficient to prove the case �(E(x)⊥,R〈v〉) = η−1 and βkm = α. Thus,
we get

|η−1 −�(E(x)⊥, F (x))| ≥ 2k
| sin(α)|
| sin(β)|

|�(E(fkm(x))⊥,R〈Dfkmx (v)〉)− α−1|.(3.1.4)

Since �(E(x)⊥, F (x)) ≥ 1/α and β ≥ α, we have

(3.1.4) =⇒ |η−1 − α−1| ≥ 2k|�(E(fkm(x))⊥,R〈Dfkmx (v)〉)− α−1|

⇐⇒ |�(E(fkm(x))⊥,R〈Dfkmx (v)〉)| ≤ 1

2k
(η−1 + α−1) ≤ 1

2k
η−1.

Therefore, Dfkmx (C ∗E(x, η)) ⊆ int(C ∗E(fkm(x), η)). Thus, we conclude that
Definition 3.1.4 implies Definition 3.1.3.

Reciprocally, let Λf be a f -invariant compact subset of M , and we con-
sider a cone field C : x ∈ Λf 7→ C (x, η) satisfying (a) and (b) in the Definition
3.1.3. By item (b), we get that the dual cone C ∗ : x ∈ Λf 7→ C ∗(x, η) satisfies:

Df−1
x (C ∗(f(x), η)) ⊆ int(C ∗(x, η)), ∀ x /∈ Sf ,

since C ∗(x, η) is the closure of TxM\C (x, η).
Define

Λ = {x̄ ∈Mf : xj = π0(σjf (x̄)) ∈ Λf ,∀j ∈ Z}.
Then, for each x̄ ∈ Λ, we define n+(x̄) = min{n ≥ 0 : xn = π0(σnf (x̄)) ∈ Sf}
and the following sets

E(x̄) =

{
ker(Dfn

+

x0
);⋂

j≥0Df
−j
x0

(C ∗(xj, η)), otherwise;

and
F (x̄) =

⋂
j≥0

Df jx−j
(C (x−j, η)).

It follows by item (a) of Definition 3.1.3 that E(x̄) ∩ F (x̄) = {0}. The proof
that E(x̄) and F (x̄) are subspaces of Tx̄Mf and satisfy the properties (a′),(b′),
and (c′) is left to the readers. It can be found in [CP, Theorem 2.6].

For simplicity from now on, we will say that Λ ⊆Mf admits a dominated
splitting for f instead of saying that Λ admits a dominated splitting for the
linear cocycle Df .
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3.1.3 Robust transitivity

Remember that f ∈ End1(M) is topologically transitive (or transitive) iff:

∃ x ∈M such that {fn(x) : n ≥ 0} is dense in M.

The following result relates the transitivity of f on M with the transi-
tivity of the shift map σf on Mf . Since this is a well known result in the
literature we left the proof to the readers, further details may be find in
[AH94, Theorem 3.5.3].

Proposition 3.6. Let f : M →M be a surjective endomorphism. Then,

f is transitive if and only if the shift map σf : Mf →Mf is transitive.

We say that f is robustly transitive if

∃ Uf C1 neighborhood of f in End1(M) such that every g ∈ Uf is transitive.

The proposition below shows that dim(ker(Dfnx )) = 1, for x ∈ Sf and
n ≥ 1, is a necessary condition for robust transitivity.

Proposition 3.7. Let f ∈ End1(M), x ∈ Sf , and n ≥ 1 such that
Dfnx ≡ 0. Then, given any neighborhood Uf of f in End1(M), there exist
g ∈ Uf and a neighborhood B of x in M such that gn(B) = {gn(x)}. In
particular, f is not robustly transitive.

We first present a lemma, similar to Franks’ Lemma (see [Fra71]), that
will be used in the proof of the proposition above.

Fix f ∈ End1(M). Given p ∈M , we consider δ0 > 0 and η0 > 0 such that
expx : Bδ0 → B′(x, δ0) and expf(p) : Bη0 → B′(f(p), η0) are diffeomorphisms,
where Br is a ball of radio r and centered at the origin of the tangent space.
Moreover, assume that f(B′(x, δ0)) ⊆ B′(f(x), η0).

Lemma 3.8. Let L = D(exp−1
f(p) ◦f ◦ expp)(0). Then, for any neighborhood

Uf of f in End1(M), there exist 0 < r < δ0
2

and g ∈ Uf such that g(p) = f(p)
and

exp−1
f(p) ◦g ◦ expp(x, y) = L(x, y), ∀ (x, y) ∈ Br.

Proof. Let ϕ : R2 → [0, 1] be a C∞-bump function with ϕ(x, y) = 1 if
‖(x, y)‖ ≤ 1 and ϕ(x, y) = 0 if ‖(x, y)‖ ≥ 2. For r > 0, let ϕr : R2 → [0, 1] be
defined by ϕr(x, y) = ϕ(x

r
, y
r
). The estimates on ϕr and its derivative depend

on r in the following fashion:

sup{ϕr(x, y)} = sup{ϕ(x, y)} = 1 and sup{‖Dϕr(x, y)‖} =
C0

r
,
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where C0 = sup{‖Dϕ(x, y)‖}.
Using the bump function ϕr, we can define a perturbation gr. First we

write f in terms of its linear and nonlinear terms:

exp−1
f(p) ◦f ◦ expp(x, y) = L(x, y) + f̃(x, y),

where f̃(0, 0) = (0, 0) and Df̃(0, 0) = 0. Thus, ‖Df̃(x, y)‖ and ‖f̃(x,y)‖
‖(x,y)‖

both go to zero as ‖(x, y)‖ goes to zero. We only consider r > 0 for which
supp(ϕr) ⊆ B2r. Let gr be equal to f outside Bδ0 , and

exp−1
f(p) ◦gr ◦ expp(x, y) = ϕr(x, y)L(x, y) + (1− ϕr(x, y)) exp−1

f(p) ◦f ◦ expp(x, y)

= L(x, y) + (1− ϕr(x, y))f̃(x, y),

for (x, y) ∈ Bδ0 . Note that exp−1
f(p) ◦gr ◦ expp(x, y) = exp−1

f(p) ◦f ◦ expp(x, y)

for ‖(x, y)‖ ≥ 2r. On the other hand for ‖(x, y)‖ ≤ r, we have ϕr(x, y) = 1
and exp−1

f(p) ◦gr ◦ expp(x, y) = L(x, y).
To check that gr is near f for small r, we need to calculate the derivative

of gr:

D(exp−1
f(p) ◦gr ◦ expp)(x, y) = L+ (1− ϕr(x, y))Df̃(x, y) + f̃(x, y)Dϕr(x, y)

= L+Df̃(x, y)− ϕr(x, y)Df̃(x, y)

+ f̃(x, y)Dϕr(x, y).

Therefore,

D(exp−1
f(p) ◦gr ◦ expp)(x, y) = D(exp−1

f(p) ◦f ◦ expp)(x, y)− ϕr(x, y)Df̃(x, y)

+ f̃(x, y)Dϕr(x, y).

For ‖(x, y)‖ ≥ 2r, D(exp−1
f(p) ◦gr ◦ expp)(x, y) = D(exp−1

f(p) ◦f ◦ expp)(x, y), so

we only need to consider (x, y) with ‖(x, y)‖ ≤ 2r. For ‖(x, y)‖ ≤ 2r, we
have

‖D(exp−1
f(p) ◦gr ◦ expp)(x, y) − D(exp−1

f(p) ◦f ◦ expp)(x, y)‖

≤ |ϕr(x, y)|‖Df̃(x, y)‖+ ‖f̃(x, y)‖‖Dϕr(x, y)‖

≤ ‖Df̃(x, y)‖+
C0

r
‖f̃(x, y)‖

≤ ‖Df̃(x, y)‖+ 2C0
‖f̃(x, y)‖
‖(x, y)‖

.

In this last calculation, we used the estimates given above for ‖(x, y)‖ ≤
2r and that sup{‖Dϕr(x, y)‖} =

C0

r
. From the estimate, the derivative of
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gr approaches to the derivative of f as r goes to zero. Since gr(p) = f(p),
the Mean Value Theorem proves that the C0-distance from gr to f goes to
zero also. Therefore, given any neighborhood Uf of f in End1(M), we may
choose r > 0 such that gr ∈ Uf .

Now we are able to prove Proposition 3.7.

Proof of Proposition 3.7. Suppose x0 = x and xj = f(xj−1) for 1 ≤ j ≤ n.
Assume also that x0, xn ∈ Sf and xj /∈ Sf for 1 ≤ j ≤ n − 1. Then, by
Lemma 3.8, there exist g ∈ Uf and a neighborhood B of 0 in Tx0M such that

exp−1
xn ◦g

n ◦ expx0
(v) = Dfnx0

(v) ≡ 0

for v ∈ B ⊆ Tx0M . Therefore, gn(B′) = {xn} = {gn(x0)}, where B′ =
expx0

(B). In particular, g is not transitive. Because, gm(x) ∈ B′ for infinitely
many m ≥ 1, then there exists m0 ≥ 1 such that gm0(x) is a periodic point.

The next result is well known, hence we do not present its proof, for
further details see for instance [Fra71].

Theorem 3.9 (Franks’ Lemma). Let f ∈ End1(M). Given a neighborhood
Uf of f in End1(M), there exist ε > 0 and a neighborhood U ′f of f contained
in Uf such that if g ∈ U ′f and Γ = {x0, ..., xn} and

L :
⊕
xj∈Γ

TxjM →
⊕
xj∈Γ

Tg(xj)M

is a linear map satisfying ‖L−Dg |⊕
xj∈Γ

TxjM
‖ < ε. Then, there exist g̃ ∈ Uf

and a neighborhood W of Γ such that Dg̃ |⊕
xj∈Γ

TxjM
= L and g̃ |W c= g |W c.

3.2 Precise statement of the Main Theorem

2

In this section, we present a technical result that is important to prove
Theorem B’ stated at the Introduction. Before we state the theorem, let us
fix some notation.

Let f ∈ End1(M) with dim(ker(Dfnx )) ≤ 1 for every x ∈ M and n ≥ 1.
Then, define

Λ =

x̄ ∈Mf

∣∣∣∣∣∣
• ∀j ≥ 0, π0(σjf (x̄)) /∈ Per(f);

• ∃(jn)n ⊆ Z, jn → ±∞ when n→ ±∞,
such that π0(σjnf (x̄)) ∈ Sf .

 (3.2.1)
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Note that Λ is a σf -invariant set.
Given x̄ = (xj)j ∈ Λ. We define xn = π0(σnf (x̄)), and the following

splitting on TΛMf :

E(x̄) = ker

(
Df

n+(x̄)

x0

)
and F (x̄) = Im

(
Df

|n−(x̄)|

x
n−(x̄)

)
,

where n−(x̄) and n+(x̄) are defined as max{n < 0 : xn ∈ Sf and xn+1 /∈ Sf}
and min{n ≥ 0 : xn ∈ Sf}, respectively.

For simplicity, from now on we suppress the explicit dependence on x̄ in
n

+(−)
j (x̄).

The theorem below is a technical result and shows that Λ as it was defined
above admits a dominated splitting.

Main Theorem 2. Suppose Λ 6= ∅ as defined above and there exists a
neighborhood Uf of f in End1(M) such that for every g ∈ Uf holds
dim(ker(Dgnx)) ≤ 1, ∀x ∈ M,n ≥ 1. Then, TΛMf = E ⊕ F is a dominated
splitting for f .

3.3 Consequences of the Main Theorem 2

The goal of this section is to prove that M is covered by the torus T2.
For this, we first present some preliminary results.

3.3.1 Proof of Theorem B’

Let f ∈ End1(M) be robustly transitive with Sf 6= ∅. Consider Uf a
neighborhood of f in End1(M) such that every g ∈ Uf is transitive.

Proposition 3.7 implies that

∀g ∈ Uf , dim(ker(Dgnx)) ≤ 1 for every x ∈M and n ≥ 1.

Furthermore, by Lemma 3.8, we may assume, after considering a perturba-
tion, that Sf has nonempty interior.

Let us show now that generically the forward and backward orbits by the
shift map are dense in Mf . Concretely,

Lemma 3.10. There exists a residual set G ⊆Mf such that for every x̄ ∈ G
the forward and backward orbits of x̄ by σf are dense in Mf . That is, the
sets

O+(x̄, σf ) = {σjf (x̄) : j ≥ 0} and O−(x̄, σf ) = {σjf (x̄) : j ≤ 0}

are dense in Mf .
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Proof. Since f is transitive, by Proposition 3.6, σf is transitive as well. Then,
consider a open basis C = {Cn}n of Mf and define

A+
n = {x̄ ∈Mf : ∃j ≥ 0 such that σjf (x̄) ∈ Cn} =

⋃
j≥0

σ−jf (Cn)

and

A−n = {x̄ ∈Mf : ∃j ≤ 0 such that σjf (x̄) ∈ Cn} =
⋃
j≥0

σjf (Cn).

Since σf is a transitive homeomorphism, A+
n and A−n are dense open sets of

Mf . Therefore,

R+ =
⋂
n

A+
n and R− =

⋂
n

A−n

are residual sets in Mf . In particular, R = R+ ∩R− is so.

Now, we are in condition to prove Theorem B’.

Proof of Theorem B’. Since Sf has nonempty interior and Lemma 3.10, we
have that Λ defined on (3.2.1) by

Λ =

x̄ ∈Mf

∣∣∣∣∣∣
• ∀j ≥ 0, π0(σjf (x̄)) /∈ Per(f);

• ∃(jn)n ∈ Z, jn → ±∞ when n→ ±∞,
such that π0(σjnf (x̄)) ∈ Sf .


is a dense set in Mf . Therefore, Main Theorem 2, implies that the splitting
TΛMf = E ⊕ F defined in Section 3.2 is a dominated splitting over Λ for f .
Furthermore, by Proposition 3.5, we can extend it to Mf the closure of Λ.
In other words, Mf admits a dominated splitting. This concludes the proof
of Theorem B’.

3.3.2 Proof of Theorem C

Consider f : M →M a robustly transitive endomorphism.

Proof of Theorem C. The proof will be divided in two cases.

Case 1: The critical set Sf is empty.

Then, f is a local diffeomorphism. In particular, f is a covering map.
Let n be the degree of f . It is well known that for any n-sheeted covering
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p : Ñ → N of the compact surface N by the compact surface Ñ , the Euler
characteristic of surfaces are related by the formula χ(Ñ) = nχ(N) (see for
instance [Shu74]). Then,

χ(M) = nχ(M) =⇒ either n = 1 or χ(M) = 0.

If χ(M) = 0, by Classification of Surfaces Theorem, either M is the torus
T2 or the Klein bottle K2.

If n = 1, we get that f is a diffeomorphism and it is well known that there
exists robustly transitive diffeomorphisms on the torus T2 (see [Mañ82]).

Case 2: The critical set Sf is nonempty.

Theorem B’ implies that Mf admits a dominated splitting, let us say
TMf = E ⊕ F . By Remark 3.4, we may define a continuous subbundle over
M by

E : x ∈M 7→ E(x̄) ⊆ TxM

where x = π0(x̄). Let (M̃, p, p∗(E)) be the double covering of E over M .
Hence, since the subbundle p∗(E) of TM̃ is orientable, we can define a vector
field X : M̃ → TM̃ such that X(x) 6= 0 ∈ p∗(E). Therefore, one gets that
χ(M̃) = 0 and so χ(M) = 0. Thus, M either is the torus T2 or the Klein
bottle K2.

3.4 Proof of the Main Theorem 2

Consider f ∈ End1(M) and a neighborhood Uf of f in End1(M) such that

∀g ∈ Uf , dim(ker(Dgnx)) ≤ 1, for every x ∈M,n ≥ 1.

Moreover, assume that Λ as it was defined in (3.2.1) is nonempty. Let
TΛMf = E ⊕ F the splitting defined in Section 3.2.

The proposition below shows that TΛMf = E ⊕ F is a splitting over Λ,
and E and F are Df -invariant, as defined above. In particular, the splitting
satisfies the invariance property, (a′), in Definition 3.1.4.

Lemma 3.11. Suppose Λ 6= ∅. Then, the following properties hold:

(i) The maps E,F : x̄ ∈ Λ 7−→ E(x̄), F (x̄) are well defined;

(ii) TΛMf = E ⊕ F is a splitting over Λ;

(iii) Df(E(x̄)) ⊆ E(σf (x̄)) and Df(F (x̄)) = F (σf (x̄)),∀x̄ ∈ Λ.
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Proof. Given x̄ = (xj)j ∈ Λ, then E(x̄) and F (x̄) are well defined. In fact,
if x0 ∈ Sf , then n+ = 0 and E(x̄) = ker(Dfx0). If x0 /∈ Sf , then xj /∈ Sf for
0 ≤ j ≤ n+ − 1. Thus, Dfn

+

x0
is an isomorphism and, as dim(ker(Dfx)) ≤ 1,

there exists v ∈ Tx0M such that Dfn
+

x0
(v) ∈ ker(Dfxn+ ), showing that E(x̄)

is well defined. F (x̄) is well defined follows from its definition. Proving item
(i).

Item (ii) follows from observing that, as dim(ker(Dfnx )) ≤ 1 for every
x ∈M and n ≥ 1, we have

dim(E(x̄)) = dim(F (x̄)) = 1 and Tx̄Mf = E(x̄)⊕ F (x̄).

In order to prove the item (iii), consider x̄ = (xj)j any point in Λ and
denote ȳ = σf (x̄) = (yj)j where yj = xj+1 for j ∈ Z. Note that, if x0 ∈ Sf
then n+(x̄) = 0 and either n−(ȳ) = n−(x̄) − 1 (i.e., y0 = π0(ȳ) ∈ Sf ) or
n−(ȳ) = −1(i.e., y0 /∈ Sf ). Hence, we have

E(x̄) = ker(Dfx0) and so Df(E(x̄)) = {0} ⊆ E(σf (x̄))

and, for n−(ȳ) = n−(x̄)− 1 we get yn−(ȳ) = xn−(x̄), hence

F (σf (x̄)) = F (ȳ) = R〈Df |n−(ȳ)|
yn−(ȳ)

(w)〉
(

where w ∈ ker⊥(Dfyn−(ȳ)
)
)

= R〈Df |n−(x̄)|+1
xn−(x̄)

(w)〉 (3.4.1)

= Dfx0(R〈Df |n−(x̄)|
xn−(x̄)

(w)〉) = Df(F (x̄)),

or, for n−(ȳ) = −1 we get y0 /∈ Sf and so

F (σf (x̄)) = R〈Dfy−1(w)〉, where w ∈ ker⊥(Dfy−1), and E(x̄) = ker(Dfx0).

Therefore, as y−1 = x0, we have

Tx̄Mf = ker(Dfx0)⊕ker⊥(Dfx0), and, hence, Df(Tx̄Mf ) = Df(ker⊥(Dfx0)).

In particular,

Df(F (x̄)) = Df(ker⊥(Dfx0)) = F (σf (x̄)).

Finally, if x0 /∈ Sf then n+(x̄) ≥ 1 and n−(ȳ) = n−(x̄) − 1. Thus, by
equation (3.4.1), we have Df(F (x̄)) = F (σf (x̄)). Furthermore, by definition,
we have that Dfxj is an isomorphism, for 0 ≤ j ≤ n+(x̄)− 1, and that

E(σf (x̄)) = E(ȳ) = R〈v〉
(

where Dfn
+(ȳ)

y0
(v) ∈ ker(Dfxn+(ȳ)

)
)
.
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Using that Dfx0 is an isomorphism and n+(ȳ) = n+(x̄) − 1, we have that
yn+(ȳ) = xn+(x̄) and there exists a unique v′ ∈ Tx0M such that Dfx0v

′ = v.
Therefore, since

Dfn
+(x̄)

x0
(v′) = Dfn

+(ȳ)
y0

(v) ∈ ker(Dfxn+(ȳ)
) = ker(Dfxn+(x̄)

),

we get E(x̄) = R〈v′〉 and E(σf (x̄)) = Dfx0(R〈v′〉) = Df(E(x̄)). This com-
plete the proof.

The next lemma states that the angle between E and F is uniformly
bounded away from zero. In particular, it shows property (b′) of Definition
3.1.4.

Lemma 3.12. There exists α > 0 such that for any x̄ ∈ Λ holds

�(E(x̄), F (x̄)) ≥ α.

Proof. Suppose by contradiction that given αn, there exists x̄n ∈ Λ such that

�(E(x̄n), F (x̄n)) < αn.

By Lemma 3.9 (Franks’ Lemma), there exists ε > 0 such that if a linear map
L : TxM → Tf(x)M satisfies ‖L − Dfx‖ < ε, then there exist g ∈ Uf and a
neighborhood B of x in M such that:

g |M\B= f |M\B and Dgx = L.

Choosing αn and x−1 = π0(σ−1
f (x̄n)) small enough such that L = R ◦Dfx−1 ,

where R is the rotation of angle smaller than αn for which R(F (x̄n)) = E(x̄n),
satisfies:

‖L−Dfx−1‖ = sup{‖Dfx‖ : x ∈M}‖R− I‖ < ε,

where I is the identity. Therefore, there exist g ∈ Uf and a neighborhood B
of x−1 in M such that

• xj = π0(σjf (x̄n)) /∈ B, for n−(x̄n) ≤ j ≤ −2 and 0 ≤ j ≤ n+(x̄n);

• g(xj) = xj+1, for every n−(x̄n) ≤ j ≤ n+(x̄n);

• Dgx−1 = L.

Then, as xj /∈ B for n−(x̄n) ≤ j ≤ −2 and 0 ≤ j ≤ n+(x̄n), we have
Dgxj = Dfxj . Hence,

Dg
|n−|

xn−
(F (σn

−

f (x̄n))) = Dgx−1(F (σ−1
f (x̄n))

= R(F (x̄n)) = E(x̄n).

In particular, for n = |n−|+n+, we have Dgnxn− ≡ 0 which is a contradiction.
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Therefore, to conclude the proof of the Main Theorem remains to prove
the domination property (3.1.2), item (c′) of Definition 3.1.4.

We will define a splitting over a neighborhood of Sf which will be useful
to show some properties about the splitting TΛMf = E ⊕ F .

Denote by vx and wx unit vectors in TxM such that m(Dfx) = ‖Dfvx‖
and ‖Dfx‖ = ‖Dfwx‖ for x ∈ M . Note, in particular, that vx ∈ E(x) for
x ∈ Sf .

It is not hard to see that the maps x 7→ Vx and x 7→ Wx are continuous,
where Vx and Wx are the vector spaces generated by vx and wx, respectively.
Hence, given δ > 0 and θ > 0 with δ < θ, we may take a neighborhood U of
Sf such that m(Dfx) < δ and ‖Dfx‖ > θ for every x ∈ U . In particular, by
Remark 3.1, it follows that vx and wx are orthogonal vectors.

Consider the cone field

C : x ∈ U 7−→ CV (x, η) := CVx(η) ⊆ TxM.

We will prove some technical results that relate the splitting E ⊕ F and
V ⊕W in a neighborhood of Sf .

Lemma 3.13. For every ε > 0 and η > 0, there exists a neighborhood
U ′ ⊆ U of Sf such that for every x ∈ U ′, we have Dfx(C ∗V (x, η)) is contained
in CDfx(Wx)(f(x), ε).

Proof. Note that it is enough to prove for x ∈ U\Sf , because for x ∈ Sf we
have

Vx = ker(Dfx) and C ∗V (x, η) ∩ ker(Dfx) = {0},
then

Dfx(C
∗
V (x, η)) = Dfx(Wx) for every η > 0.

Thus, suppose x ∈ U\Sf . In this case, we will show that Dfx(C ∗V (x, η)) is
contained in the following cone:{

u1 + u2 ∈ Df(Vx)⊕Df(Wx) : ‖u1‖ ≤
δ

ηθ
‖u2‖

}
.

Indeed,

‖Dfv‖
‖Dfw‖

=
m(Dfx)‖v‖
‖Dfx‖‖w‖

≤ δ

θ

‖v‖
‖w‖

≤ δ

ηθ
,

for v + w ∈ C ∗V (x, η). Then, to conclude the proof, we take a neighborhood
U ′ of Sf contained in U such that δ > 0 is small enough so that:

CDfx(Wx),Dfx(Vx)(f(x), δη−1θ−1) ⊆ CDfx(Wx)(f(x), ε).

This finishes the proof.
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Proposition 3.14. Given ε > 0, there exists a neighborhood U ′ of Sf such
that for every x̄ ∈ Λ with x0 = π0(x̄) ∈ U ′, we have

�(F (σf (x̄)), Dfx0(Wx0)) < ε and �(E(x̄), Vx0) < ε.

Proof. It is sufficient to prove for x0 /∈ Sf . Because, if x0 ∈ Sf , we have that
Vx0 = E(x0) = ker(Dfx0) and, consequently, Dfx0(Wx0) = F (σf (x̄)). In
particular, it follows the statement.

Choose α > 0 and η > 0 small enough so that 0 < η < α < ε. Then, by
Lemma 3.13, there exists U ′ a neighborhood of Sf such that Dfx(C ∗V (x, η))
is contained in CDfx(Wx)(f(x), α/2) for every x ∈ U ′.

We prove our assertion by contradiction. The proof is divided in two
parts.

First Part: �(F (σf (x̄)), Dfx0(Wx0)) < ε.

Indeed, suppose by contradiction that �(F (σf (x̄)), Dfx0(Wx0)) > α/2. Then,
F (σf (x̄)) /∈ Dfx0(C ∗V (x0, η)). Since Dfx0 : Tx0M → Tπ0(σf (x̄))M is an isomor-
phism, F (x̄) must belong to CV (x0, η). Thus, by Lemma 3.12, we have that
E(x̄) /∈ CV (x0, η).

Then, by Lemma 3.9(Franks’ Lemma), there exist g ∈ Uf , and B and B′

disjoint neighborhoods of π0(σ−1
f (x̄)) and x0 in M , respectively, such that:

• g |M\(B∪B′)= f |M\(B∪B′);

• g(π0(σjf (x̄))) = π0(σj+1
f (x̄)) for every n− ≤ j ≤ n+;

• Dgπ0(σ−1
f (x̄)) = R1 ◦ Dfπ0(σ−1

f (x̄)) and Dgx0 = R2 ◦ Dfx0 , where R1 and

R2 are rotation maps of angle smaller than α satisfying:

F ′(x̄) = R1(F (x̄)) /∈ CV (x0, η) and R2(Df(F ′(x̄))) = E(σf (x̄)).

This is possible, since F (x̄) ∈ CV (x0, η) and F ′(x̄), E(x̄) ∈ C ∗(x0, η). Hence,
Df(F ′(x̄)), E(σf (x̄)) ∈ CDfx0 (Wx0 )(f(x0), α/2). Therefore, there exist n ≥ 1
and x ∈ Sf such that Dgnx ≡ 0 which is a contradiction. Then, we conclude
that �(F (x̄), Dfx0(Wx0)) < α/2. In particular, this concludes the proof of
first part.

Second Part: �(E(x̄), Vx0) < ε.

Suppose by contradiction that �(E(xj), Vxj) ≥ η. Then, E(x̄) ∈ C ∗V (x0, η)
and so E(σf (x̄)) ∈ Dfx0(C ∗V (x0, η)). In particular,

E(σf (x̄)) ∈ CDfx0 (Wx0 )(f(x0), α/2).
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In other words, �(F (σf (x̄)), E(σf (x̄))) < α. Contradicting the Lemma 3.12.
Therefore, �(E(x̄), Vx0) < η proves the second part and, consequently, the
proposition.

The next lemma is very important for proof the domination property,
item (c′). This lemma can be found in the Potrie’s thesis (see
[Pot12, Appendix A]). However, the following proof is little bit different.

Lemma 3.15. Given ε > 0 and K > 0, there exists l > 0 such that if
A1, ..., Al is a sequence in GL(2,R) verifying:

• max
1≤i≤l
{‖Ai‖, ‖A−1

i ‖} ≤ K for each 1 ≤ Ai ≤ l;

• ‖Al...A1(v)‖ ≥ 1
2
‖Al...A1(w)‖ for unit vectors v, w ∈ R2.

Then, there exist rotations R1, ..., Rl of angles smaller than ε such that

RlAl...R1A1(R〈w〉) = Al...A1(R〈v〉).

Before to start the proof, let us introduce some notations. Denote by
P 1(R) the real projective space which is the set of all one-dimensional sub-
spaces of R2. Then, for any subspaces V,W ∈ P 1(R) the distance between
them is defined by the angle between them.

Proof. Define An = An · · ·A1, Vn = An(R〈v〉) and Wn = An(R〈w〉).
First, let us define by recurrence a sequence of intervals (In)≥1,

I0 is the vector w;
I1 is a ε-neighborhood of A1(I0);
I2 is a ε-neighborhood of A2(I1);
...

...
...

In+1 is a ε-neighborhood of An+1(In), for n ≥ 1,

where a ε-neighborhood of X ⊆ P 1(R) is a set of all V ∈ P 1(R) which the
angle between it and some one-dimensional subspace of R2 in X is smaller
or equal than ε.

We introduce to follow a statement that will be useful to the proof of
lemma.

Claim 1: If a neighborhood around Vl of length ε > 0 intersects Al(Il−1)
for some l ≥ 1, then we obtain that there exist rotations R1, ..., Rl of angles
smaller than ε such that

RlAl...R1A1(R〈w〉) = Al...A1(R〈v〉).

39



Proof of Claim 1. To construction of In, we will build by induction:
Suppose z belongs a ε-neighborhood around Vl intersection Il, then there

exist zl−1 ∈ Il−1 and a rotation Rl such that RlAl(zl−1) ∈ Vl and z = Al(zl−1).
But, since zl−1 belongs a ε-neighborhood around Al−1(Il−2), there exist Rl−1

rotation and zl−2 ∈ Il−2 so that zl−1 = Rl−1Al−1(zl−2). Repeating the process,
one has the wished.

Now, we will prove that there exists l ≥ 1 satisfying the statement above.
For this, suppose, without loss of generality, that

Θ = inf{�(Wn, Vn) | n ≥ 0} > 0.

Otherwise, the lemma is clearly obtained.
Note that for each R〈z〉 ∈ P 1(R), we can right z = αv + βw. Then, we

have that
An(z) = α‖An(v)‖vn + β‖An(w)‖wn

and using the supposition, one has for very n ≥ 1 that:

�(Wn,An(R〈z〉)) =
|α|‖An(v)‖ sin �(Wn, Vn)

|β|‖An(w)‖+ |α|‖An(v)‖ cos �(Wn, Vn)

≥ |α|‖An(v)‖ sin �(Wn, Vn)

2|β|‖An(v)‖+ |α|‖An(v)‖ cos �(Wn, Vn)

≥ |α| sin �(Wn, Vn)

2|β|+ |α| cos �(Wn, Vn)
≥ (|α|/|β|) sin Θ

2 + (|α|/|β|) cos Θ
.

This implies that there exists 0 < λ < 1 depending only of Θ, the maximal
contraction, so that any interval I ⊆ P 1(R) around of R〈w〉 has its image by
An contracted with rate at most λ. That is,

diam(An(I)) ≥ λdiam(I),∀n ≥ 1.

Hence, one has that the diam(In) is growing as n is growing. Therefore, there
exists l ≥ 1 satisfying the Claim 1.

Let us prove this auxiliary lemma before proving finally the existence of
a dominated splitting.

Lemma 3.16. There exists m ≥ 1 such that for every x̄ ∈ Λ, there exists
1 ≤ k(x̄) ≤ m, so that

‖Dfk |E(x̄) ‖ <
1

2
‖Dfk |F (x̄) ‖.
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Proof. Suppose by contradiction that given m ≥ 1 there exists x̄m ∈ Λ such
that

‖Dfk |E(x̄m) ‖ ≥
1

2
‖Dfk |F (x̄m) ‖, (3.4.2)

for 1 ≤ k ≤ m. Note that 1 ≤ m ≤ n+(x̄m), otherwise ‖Dfm |E(x̄m) ‖ = 0.
Denote by ym the point π0(x̄m).
We would like to show that

∃ g ∈ Uf such that Dgnx ≡ 0 for some x ∈M and n ≥ 1, (3.4.3)

which is a contradiction, since dim(ker(Dgnx)) ≤ 1 for every g ∈ Uf and every
x ∈M,n ≥ 1.

For this, we assume the following assertion that will be prove later.

Claim 1: There exist a neighborhood U of Sf and m0 ≥ 1 such that

ym, f(ym), ..., fm(ym) /∈ U for m ≥ m0.

Let U be a neighborhood of Sf given by Claim 1 above. By continuity
of Df , we can choose K > 0 such that max{‖Dfx‖, ‖Df−1

x ‖} ≤ K in M\U .
Then, by Lemma 3.15, we have that for every ε > 0, there exist l ≥ 1 and
R1, . . . , Rl rotations of angle smaller than ε verifying that

RlDff l−1(ym) . . . R1DfymF (ym) = Dff l−1(ym) . . . DfymE(ym)

= Df lymE(ym).

Let ε > 0 given by Lemma 3.9(Franks’ Lemma) such that

‖Rk+1Dffk(ym) −Dffk(ym)‖ < ε, for 0 ≤ k ≤ l − 1.

Then, there exist g ∈ Uf and a neighborhood B of {ym, ..., f l−1(ym)} in M
satisfying:

• Dgfk(ym) = Rk+1Dffk(ym), for 0 ≤ k ≤ l − 1;

• g(fk−1(ym)) = fk(ym), for 0 ≤ k ≤ l;

• g |M\B= f |M\B.

Therefore, taking n = |n−(x̄m)| + n+(x̄m), we get Dgn
π0(σn−

f (x̄m))
≡ 0. This

proves the statement (3.4.3).
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Now, we can prove the Claim 1.

Proof of Claim 1. Suppose by contradiction that there exist two sequences,
(Un)n of neighborhoods of Sf such that Un ⊆ Un+1 and

⋂
n Un = Sf , and

(yn)n subsequence of (ym)m such that for any n ≥ 1 there exists 1 ≤ ln ≤ mn

such that f ln(yn) ∈ Un, where mn goes to infinity as n goes to infinity.
Assume that equation (3.4.2) holds. We will show that the statement

(3.4.3) holds, and so, we get a contradiction. Then, we conclude the proof.
We fix ε > 0, given by Lemma 3.9(Franks’ Lemma), such that given

Γ = {x0, ..., xn} and

L :
⊕
xj∈Γ

TxjM →
⊕
xj∈Γ

Tf(xj)M

a linear map satisfying ‖L−Df |⊕xj∈ΓTxjM
‖ < ε. Then, there exist g ∈ Uf

and a neighborhood B of Γ such that Dg |⊕xj∈ΓTxjM
= L and g |M\B= f |M\B.

Let α > 0 be the number given by Lemma 3.12. We fix 0 < θ < α such
that any rotation R of angle smaller than θ satisfies:

‖RDfx −Dfx‖ ≤ sup{‖Dfx‖ : x ∈M}‖R− I‖ < ε.

By Proposition 3.14, we have that given ε′ > 0 there exists a neighborhood
U of Sf in M such that for every x̄ ∈ Λ which π0(x̄) ∈ U , we get

�(F (σf (x̄)), Dfx0(Wx0)) < ε′ and �(E(x̄), V (x0)) < ε′.

Hence, given β > 0 we can choose ε′ > 0 small enough such that the cone

CF,E(σf (x̄), β/2) =

{
v + w ∈ E(σf (x̄))⊕ F (σf (x̄)) : ‖v‖ ≤ β

2
‖w‖

}
contains the cone CDfx(Wx)(f(x), ε′) for every x̄ ∈ Λ which x = π0(x̄) ∈ U .
Then, we consider 0 < β < θ small enough such that

CF,E(x̄, β) ⊆ CF (x̄, θ),

or equivalently
∀v ∈ CF,E(x̄, β), �(F (x̄),R〈v〉) < θ.

By Lemma 3.13, for 0 < η < θ/2 there exists U ′ ⊆ U such thatDfx(C ∗V (x, η))
is contained in CDfx(Wx)(f(x), ε′) for x ∈ U ′. In particular, Dfx(C ∗V (x, η)) is
contained in CF (σf (x̄), θ) for every x̄ ∈ Λ which x = π0(x̄) ∈ U ′.

Note that E(x̄) ∈ CV (x, η) for every x = π0(x̄) ∈ U ′. Indeed,
if E(x̄) ∈ C ∗V (x, η) then

E(σf (x̄)) = Df(E(x̄)) ∈ CF (σf (x̄), θ).
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Contradicting that �(E(x̄), F (x̄)) ≥ α for every x̄ ∈ Λ.
Now, we can prove the statement (3.4.3).
Assume, without loss of generality, that Un ⊆ U ′ for every n. We consider

(x̄n)n a subsequence of (x̄m)m such that yn = π0(x̄n). Then, we have that

Dfk(C ∗F,E(x̄n, β)) ⊆ C ∗F,E(σkf (x̄n), β/2)

for 1 ≤ k ≤ mn. Since

C ∗F,E(x̄n, β) = {v + w ∈ E(x̄n)⊕ F (x̄n) : ‖w‖ ≤ β−1‖v‖},

we get, by equation 3.4.3, that

‖Dfk(w)‖ = ‖Dfk |F (x̄n) ‖‖w‖ ≤ 2‖Dfk |E(x̄n) ‖‖w‖
≤ 2β−1‖Dfk |F (x̄n) ‖‖v‖ = 2β−1‖Dfk(v)‖.

In other words, Dfk(C ∗F,E(x̄n, β)) ⊆ C ∗F,E(σkf (x̄n), β/2). In particular, one

has CF,E(σkf (x̄n), β/2) is contained in Dfk(CF,E(x̄n, β)).
Note that, as Dfx(C ∗V (x, η)) is contained in CDfx(Wx)(f(x), ε′), and

CDfx(Wx)(f(x), ε′) is contained in CF,E(x̄, β/2) for every x = π0(x̄) ∈ U ′,
we have

Dfx(C
∗
V (x, η)) ⊆ CF,E(x̄, β/2)

for every x = π0(x̄) ∈ U ′. Therefore, we have

Df ln(C ∗F,E(x̄n, β)) ⊆ CV (f ln(yn), η)

where f ln(yn) = π0(σlnf (x̄n)) ∈ Un ⊆ U ′. Since,

Df ln+1(C ∗F,E(x̄n, β)) = C ∗F,E(σln+1
f (x̄n), β/2)

and
Dff ln (yn)(C

∗
V (f ln(yn), η)) ⊆ CF,E(σln+1

f (x̄n), β/2).

Therefore, we get

E(σlnf (x̄)) ∈ CV (f ln(yn), η) and Df ln(C ∗F,E(x̄n, β)) ⊆ CV (f ln(yn), η).

In particular, there exist v ∈ CF,E(x̄n, β) such that

�(F (x̄n),R〈v〉) < θ and �(E(x̄n),R〈Df ln(v)〉) < η

Then, we take Γ = {π0(σ−1
f (x̄n)), π0(σln−1

f (x̄n))} and the following linear
maps

L1 : Tπ0(σ−1
f (x̄n))M → TynM, defined by L1 = R1Dfπ0(σ−1

f (x̄n)),
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and

L2 : Tf ln−1(yn)M → Tf ln (yn)M, defined by L2 = R2Dff ln−1(xn),

where R1 and R2 are rotations of angle smaller that θ such that

R1(F (x̄n)) = R〈v〉 and R2(R〈Df ln(v)〉) = E(x̄n).

By Franks’ Lemma, there exist g ∈ Uf and a neighborhood B of Γ in M
satisfying:

• g |M\B= g |M\B;

• g(π0(σjf (x̄n))) = π0(σj+1
f (x̄n)) for n−(x̄n) ≤ j ≤ n−(x̄n);

• Dgπ0(σ−1
f (x̄n)) = L1 and Dgπ0(σln

f (x̄n)) = L2

Therefore, for n = |n−| + n+, one has Dgn
π0(σn−

f (x̄n))
≡ 0, which is a contra-

diction.

Finally, we are able to prove the domination property (3.1.2).

Lemma 3.17. There exists l ≥ 1 such that for any x̄ ∈ Λ,

‖Df l |E(x̄) ‖ <
1

2
‖Df l |F (x̄) ‖.

Proof. Consider m ≥ 1 given by Lemma 3.16. Then, for x̄ ∈ Λ, there exist
k0 := k(x̄), with 1 ≤ k0 ≤ m, such that if l� m, then

‖Df l |E(x̄) ‖ ≤ ‖Df l−k0 |
E(σ

k0
f (x̄))

‖‖Dfk0 |E(x̄) ‖

≤ 1

2
‖Df l−k0 |

E(σ
k0
f (x̄))

‖‖Dfk0 |F (x̄) ‖.

Assuming l− k0 � m and x̄1 = σk0
f (x̄), there exists k1 := k(σk0

f (x̄)), with
1 ≤ k1 ≤ m, such that

‖Df l |E(x̄) ‖ ≤
1

2
‖Df l−k0 |E(x̄1)) ‖‖Dfk0 |F (x̄) ‖

≤ 1

2
‖Df l−(k0+k1) |

E(σ
k1
f (x̄1))

‖‖Dfk1 |
E(σ

k1
f (x̄1))

‖‖Dfk0 |F (x̄) ‖

≤
(

1

2

)2

‖Df l−k0−k1 |E(x̄2) ‖‖Dfk1+k0 |F (x̄) ‖.
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where x̄2 = σk1
f (x̄1).

We consider n+(x̄)� l. Then, repeating the process, we get 1 ≤ Lr ≤ m,
where
Lr = l −

∑r−1
i=0 ki, such that

‖Df l |E(x̄) ‖ ≤
(

1

2

)r
‖DfLr |

E(σ
kr−1
f (x̄r−1))

‖‖Df l−Lr |F (x̄) ‖

≤
(

1

2

)r
C0‖Df l |F (x̄) ‖.

where C0 is chosen so that

max{‖Df i |E(x̄) ‖ : i = 1, 2, . . . ,m} ≤ C0 max{‖Df i |F (x̄) ‖ : i = 1, 2, . . . ,m}

for every x̄ ∈ Λ. Therefore, taking l� 1 such that (1/2)rC0 ≤ 1/2, for every
x̄ ∈ Λ we get that:

• If n+(x̄) ≥ l, we have

‖Df l |E(x̄) ‖ <
1

2
‖Df l |F (x̄) ‖.

• If n+(x̄) < l, we have ‖Df l |E(x̄) ‖ = 0. In particular,

‖Df l |E(x̄) ‖ = 0 <
1

2
‖Df l |F (x̄) ‖.

This concludes the proof.

Finally, we prove Main Theorem 2.

Proof of Main Theorem 2. Therefore, by Lemma 3.12 and 3.17, we have that
items (b′) and (c′) hold, and, by item (iii) of Lemma 3.11, one has that item
(a′) of Definition 3.1.4 holds. This concludes the proof of Main Theorem
2.

3.5 Proof of Theorem B

Finally, we can prove the Theorem B. Let f ∈ End1(M) be a robustly
transitive endomorphism with nonempty critical set. By Proposition 3.6 and
Lemma 3.10, we may choose a point x̄ = (xj) ∈Mf such that

O+(x̄, σf ) = {σjf (x̄) : j ≥ 0} and O−(x̄, σf ) = {σjf (x̄) : j ≤ 0}
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are dense in Mf .
In order to show that M admits a dominated splitting for f , we will prove

that the orbit
O(x̄, σf ) = {σnf (x̄) : j ∈ Z}

exhibits a dominated splitting. And so, by Proposition 3.5, we can extend it
to the whole Mf .

Before starting the proof, let us introduce some useful results.
Let p ∈ Sf . By Lemma 3.9, there exist three sequences, two sequences

(Bn) and (B′n) of neighborhoods of p, with B̄n ⊂ B′n, and a sequence (fn) of
C1-endomorphisms satisfying:

(i) fn |Bn= Dfp, for each n ≥ 1, and diam(B′n)→ 0;

(ii) fn |M\B′n= f and fn(p) = f(p), for each n ≥ 1;

(iii) fn converges to f in End1(M).

Claim 1: There exists a sequence (x̄n), x̄n ∈ Mfn for each n ≥ 1, such that
x̄n → x̄ as n→∞ in MZ.

Note that

x̄n −→ x̄ in MZ ⇐⇒
{

∀ε > 0, N ≥ 0, ∃n0 ≥ 1 such that
d(xnj , xj) < ε, for |j| ≤ N and n ≥ n0.

(S)

Proof of Claim 1. First, we build the sequence (x̄n), x̄n ∈ Mfn . For this,
note that, given N1 ≥ 0, we may choose n1 ≥ 1 such that

xj /∈ Bn\{p}, for |j| ≤ N1 and n ≥ n1.

This is possible because the orbits O+(x̄, σf ) and O−(x̄, σf ) are dense in Mf .
Thus, we may define x̄n ∈Mfn so that xnj = xj for |j| ≤ N1 and n ≥ n1.

Given ε > 0 and N > 0, we may choose N1 > N large enough so that

sup{d(x, y) : x, y ∈M}
2|j|

<
ε

2
, for every |j| = N1 + 1.

Therefore, choosing n1 ≥ 1 as above, we have for every n ≥ n1 that

d̄(x̄n, x̄) =
∑
j∈Z

d(xnj , xj)

2|j|
=
∑
|j|>N1

ε

2|j|−N1
< ε,

since xnj = xj for |j| ≤ N1. Therefore, by (S), one has x̄n → x̄ in MZ.
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It follows from Theorem B’ that Mfn admits a dominated splitting for
each n ≥ 1. Suppose, TMfn = En ⊕ Fn is the dominated splitting for fn.

Lemma 3.18. There exists α > 0 such that the angle between En and Fn is
greater than or equal to α, for every n ≥ 1.

Proof. By the proof of Lemma 3.12 follows that if

�(En(ȳ), Fn(ȳ)) < α,

for some α > 0 small enough, then there exist a point y0 ∈M and a number
k ≥ 1 such that

dim(ker(Dfky0
)) = 2.

Contradicting the fact that fn is a robustly transitive endomorphism.

For the next lemma, remember that

Λn =

x̄ ∈Mfn

∣∣∣∣∣∣
• ∀j ≥ 0, π0(σjfn(x̄)) /∈ Per(fn);

• ∃(jk)k ⊆ Z, jk → ±∞ when k → ±∞,
such that π0(σjkf (x̄)) ∈ Sf .

 (3.5.1)

Lemma 3.19. There exists m ≥ 1 so that for every ȳ ∈ Λn, there exists
k := k(ȳ) ∈ N, 1 ≤ k ≤ m, such that

‖Dfkn |En(ȳ) ‖ <
1

2
‖Dfkn |Fn(ȳ) ‖ for every n ≥ 1.

Proof. Suppose by contradiction that for each m ≥ 1, there exist n ≥ 1 and
y ∈ Λfn such that

||Dfkn |En(ȳ) ‖ ≥
1

2
‖Dfkn |Fn(ȳ) ‖,

for every 1 ≤ k ≤ m. Then, repeating the proof of Lemma 3.16, one obtain
a contradiction.

Lemma 3.20. O(x̄, σf ) admits a dominated splitting.

Proof. Note that σjfn(x̄n)→ σjf (x̄) inMZ. Since σfn = σ |Mfn
and σf = σ |Mf

,

where σ : MZ → MZ is the shift map which is a continuous map. Then, by
Proposition 3.5, we define

E(σjf (x̄)) = limEn(σjfn(x̄n)) and F (σjf (x̄)) = limFn(σjfn(x̄n)).
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It follows from Lemma 3.18 that E and F satisfy the property (b′) of
Definition 3.1.4. Moreover, by construction of fn, we have that:

∀j ∈ Z,∃N > 0 such that (Dfn)xnj = Dfxj for n ≥ N.

Hence, E and F are Df -invariant, i.e., they satisfy the property (a′) of
Definition 3.1.4.

Finally, to conclude the proof we will show that f satisfies the property
(c′) of Definition 3.1.4. And so, we conclude the proof.

Indeed, let m ∈ N be given by Lemma 3.19. Then, given ȳ = σjf (x̄)

for some j ∈ Z, we may choose n0 ≥ 1 large enough such that σjfn(x̄n) =
(xnl+j)l ∈Mfn satisfies xnl+j = yl and (Dfn)xnl+j

= Dfyl for |l| ≤ m and n ≥ n0.

Thus, there exists k := k(ȳ), 1 ≤ k ≤ m, such that

‖Dfk |E(ȳ) ‖ = lim ‖Dfkn |En(σj
fn

((x̄n)) ‖

≤ ‖Dfk |F (ȳ) ‖ = lim ‖Dfkn |Fn(σj
fn

((x̄n)) ‖.

Therefore, for every ȳ ∈ O(x̄, σf ) there exists 1 ≤ k ≤ m such that

‖Dfk |E(ȳ) ‖ <
1

2
‖Dfk |F (ȳ) ‖.

It follows from Lemma 3.17 that f satisfies the property (c′) of Definition
3.1.4.

Proof of Theorem B. Since O(x̄, σf ) admits a dominated splitting and it is
a dense subset of Mf , it follows from Proposition 3.5 that M admits a dom-
inated splitting for f .

3.6 Isotopy classes

3.6.1 Precise statement of the Main Theorem 3

Main Theorem 3. If f ∈ End1(M) is a transitive endomorphism admitting
a dominated splitting. Then f is homotopic to a linear map having at least
one eigenvalue with modulus greater than one.

The section below is based on [PS07] . For completeness we give here the
details adapting the proof of [PS07] in our setting.
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3.6.2 Topological expanding direction

Let f ∈ End1(M) be a transitive endomorphism and M is either the
torus T2 or the Klein bottle K2. Assume that M admits a dominated split-
ting for f . Suppose that TM = E ⊕ C ∗E is the dominated splitting, where
C ∗E : x ∈M 7→ C ∗E(x) := C ∗E(x, η) is a cone field and E a subbundle over M,
both Df -invariants.

An E-arc is an injective Lipschitz curve γ : [0, 1]→M such that γ′ ∈ C ∗E,
where γ′ denote the set of tangent vectors of γ. We denote by `(γ) the length
of γ.

Definition 3.6.1. We say that an E-arc γ is a δ-E-arc provided the next
condition holds:

`(fn(γ)) ≤ δ, for every n ≥ 0.

In other words, a δ-E-arc is a Lipschitz curve that does not grows in
length for the future and always remains transversal to the E subbundle,
since C ∗E is Df -invariant.

The following result give us an interesting property of a δ-E-arc.

Lemma 3.21. There exist 0 < λ < 1, δ > 0, C > 0 and n0 ≥ 1 such that
given any δ-E-arc γ follows that for every x ∈ fn0(γ) holds

‖Df j |E(x) ‖ < Cλj, for every j ≥ 1. (3.6.1)

Proof. By dominated splitting, we have that there exists m ≥ 1 such that

‖Dfm |E(x) ‖ ≤
1

2
‖Dfm(v)‖, ∀v ∈ C ∗E(x), ‖v‖ = 1, and x ∈M.

Furthermore, given a > 0, there exist δ1 > 0 and θ1 > 0 such that for every
x, y with d(x, y) < δ1 and v ∈ C ∗E(x), w ∈ C ∗E(y), with �(w, v) < θ1

1, one
has

‖Df(v)‖ > (1− a)‖Df(w)‖,

and
‖Df |E(y) ‖, ‖Df |E(x) ‖ < a, if x, y ∈ B(Sf , δ1/2),

or
‖Df |E(x) ‖ ≤ (1 + a)‖Df |E(y) ‖, if x /∈ B(Sf , δ1/2),

where B(Sf , δ1/2) = {x ∈M : d(x, Sf ) < δ1/2}.
Fix 0 < δ < δ1 and n0 ≥ 1 such that fn0(C ∗E(x)) ⊆ C ∗E(fn0(x), θ1) for

every x ∈ M . Then for γ′ ⊆ C ∗E(x), we have γ′n0
⊆ C ∗E(x, θ1), where γn

1The angle between v and w is calculated using the local identification TM |U= U×R2.
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denotes the curve fn(γ). We now apply the observation above, for β >
0 such that 1 < (1 − a)(1 + β) < 2 , we have for every t ∈ (0, 1) that
‖Dfk |R〈γ′n0

(t)〉 ‖ ≤ (1 + β)k for every k sufficiently large.
In fact, assume that γ := γn0 is parametrized by arc length. Suppose by

contradiction that there exists a sequence (kj)j going to infinity as j goes to
infinity such that

‖Dfkj |R〈γ′(tj)〉 ‖ > (1 + β)kj .

Then, we have that

‖Dfkj(γ′(t))‖ ≥ (1− a)kj‖Dfkj(γ′(tj))‖ ≥ ((1− a)(1 + β))kj .

In particular, `(fkj(γ)) ≥ ((1− a)(1 + β))kj`(γ) > δ. Contradicting that γ is
a δ-E-arc.

To finish the proof, choose β>0 small enough such that 1 < ((1− a)(1 +
β))m < 2. Hence,

‖Dfkm |E(x) ‖ ≤ λk, for all k ≥ 1, x ∈ γn0 ,

where ((1−a)(1+β))m

2
< λ < 1. This shows that (3.6.1) holds.

We can suppose that, up to taking an iterated, γ satisfies Lemma 3.21.
The next lemma ensures the existence of the local stable manifold for points
belonging to a δ-E-arc. Fix 0 < λ < 1 given by Lemma 3.21 and λ′ > 0 such
that (1 + a)λ < λ′ < 1.

Lemma 3.22. Let γ be a δ-E-arc given by Lemma 3.21. Then, there exists
α > 0 such that for every x ∈ γ, there is a unique curve σx : (−α, α) → M
orientation preserving satisfying:{

σ′x(t) ∈ E(σ(t)) with ‖σ′x(t)‖ = 1;
σx(0) = x.

(∗)

Proof. We prove that the equation (∗) has a unique solution for x0 ∈ γ.
There exists α0 > 0 such that it has at least one solution defined on (−α0, α0).
Suppose by contradiction that σ1, σ2 : (−α0, α0) → M are solutions of (∗).
For every 0 < α < α0, consider γα the set of points x ∈ M such that there
exists a solution σx of (∗) with σx(α) = x. Note that γα is a closed connected
set in M (see [Sot79],Appendix). Now, consider for a > 0 small enough given
in Lemma 3.21,

‖Df |E(y) ‖, ‖Df |E(x) ‖ < a, if x, y ∈ B(Sf , α0)

or
‖Df |E(x) ‖ ≤ (1 + a)‖Df |E(y) ‖, if x /∈ B(Sf , α0).
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Figure 3.1: Bounded region Q

We fix 0 < α < α0 and γα as above, then we denote by Q the region
bounded by σ0, σ1 and γα as in figure 3.1.
Then, the diameter of the set fn(Q) goes to zero as n goes to infinity. For
any point x ∈ Q, d(fn(x), fn(x0)) goes to zero uniformly, because

d(fn(x), fn(x0)) ≤ `(fn ◦ σx) ≤ ‖Dfn |E (x0)‖(1 + a)n`(σx)

≤ Cλn(1 + a)nα ≤ Cλ′nα.

Now, we can take an open set B contained in int(Q) such that the distance
between the closure of B and M\int(Q) is larger than ε > 0. Then, by
observation above and the transitivity of f , it follows that we can choose
n ≥ 1 such that the diameter of fn(int(Q)) is smaller than ε > 0 and
fn(int(Q)) ∩ B 6= ∅. Thus, fn(int(Q)) ⊆ Q. Contradicting the transitivity.

Denote by W s
ε (x) the set {σx(t) : t ∈ (−ε, ε)}. In particular, note that

W s
ε (x) = {y ∈ B(x, ε) ⊆M : d(fn(x), fn(y))→ 0, as n→ +∞}.

We can consider the box

W s
ε (γ) =

⋃
x∈γ

W s
ε (x).

It is an open set.
The next result shows that the existence of δ-E-arc is an obstruction for

transitivity.

Theorem 3.23. There exists δ0 > 0 such that if γ is a δ-E-arc with 0 < δ ≤
δ0, then one of the following properties holds:

(1) ω(γ) ⊆ β̃, where β̃ is a periodic simple closed curve normally attracting.
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(2) There exists a normally attracting periodic arc β̃ such that γ ⊆ W s
ε (β̃).

(3) ω(γ) ⊆ Per(f), where Per(f) is the set of periodic points of f. Moreover,

one of the periodic points is either a semi-attracting periodic point or an
attracting one (i.e., the set of points y ∈M such that d(fn(p), fn(y))→
0 contains an open set in M).

Proof. Define γn := fn(γ). Since f is transitive, we have that there exists
n0 ≥ 1 such that

W s
ε (γ) ∩W s

ε (γn0) 6= ∅.
If `(γkn0) goes to zero as k goes to infinity, then ω(γ) consist of a periodic

orbit.
Indeed, if `(γkn0) → 0 , then `(γn) → 0 as n → ∞. Let p be an accu-

mulation point of γkn0 . That is, there exist a subsequence (kj)j and x ∈ γ
such that fkjn0(x) → p. In particular, as `(γn) → 0, one has γkjn0 → p as
j →∞, and by the property W s

ε (γ)∩W s
ε (γn0) 6= ∅, it follows that the limit is

independent of the subsequence (kj)j, and so, we have γkn0 → p as k → ∞.
Hence, γkn0+r → f r(p) for 0 ≤ r ≤ n0−1, implying that p is a periodic point.
Thus, for any x ∈ γ we have that ω(x) consist only of the periodic orbit of
p. This proves item (3).

If `(γkn0) does not go to zero as k goes to infinity, then there exists (kj)j
such that γkjn0 → β, where β is an arc which is at least C1 and tangent to
C ∗E, since

γ′(t−) = lim
s→0(s<0)

γ(t+ s)− γ(t)

s
and γ′(t+) = lim

s→0(s>0)

γ(t+ s)− γ(t)

s

belong to C ∗E, hence lim
j→∞

Dfkjn0(γ′(t−)) = lim
j→∞

Dfkjn0(γ′(t+)). Note that

β′ = fn0(β) is the limit of fn0(1+kj)(γ). Moreover, β ∪ β′ is a C1-curve. Let

β̃ =
⋃
k≥0

fkn0(β).

Then, there exist two possibilities: either β̃ is an arc or a simple closed curve.
To prove this, notice that fkn0(β) is a δ-E-arc for every k ≥ 0. In particular,
for each x ∈ β̃ there exists ε(x) > 0 such that W s

ε(x)(x) is the local stable
manifold for x. Thus,

W s
ε(x)(β̃) =

⋃
x∈β̃

W s
ε(x)(x)

is a neighborhood of β̃. We only have to show that, given x ∈ β̃, there exists
a neighborhood B(x) of x in M such that B(x) ∩ β̃ is an arc. This implies
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that β̃ is a simple closed curve or an interval. Thus, take x ∈ β̃, in particular
x ∈ fk1n0(β). Take I an open interval in fk1n0(β) containing x and let B(x)
be a neighborhood of x such that B(x) ⊆ W s(β̃) and B(x) ∩ β1 ⊆ I, where
β1 is any interval containing fk1n0(β) and `(β1) ≤ 2δ0 (δ0 small). Now let
y ∈ β̃ ∩ B(x). We prove that y ∈ I. There is k2 such that y ∈ fk2n0(β).
Since

fk1n0(β) = lim
j→∞

fkjn0+k1n0(γ), fk2n0(β) = lim
j→∞

fkjn0+k2n0(γ),

and both have nonempty intersection with B(x), we conclude that for some
j follows that fkjn0+k1n0(γ) and fkjn0+k2n0(γ) are linked by a local stable
manifold. Hence fk1n0(β) ∩ fk2n0(β) is an arc β′ tangent to C ∗E with `(β′) ≤
2δ0. Therefore y ∈ B(x) ∩ β′ ⊆ I as we wish, completing the proof that β̃
is an arc or simple closed curve. Moreover, since fn0(β̃) ⊆ β̃, it follows that
for any x ∈ γ, ω(x) is the ω-limit of a point in β̃, hence (1) or (2) holds,
completing the proof.

Corollary 3.24. There is no δ-E-arc provided δ small.

Proof. From Theorem 3.23 follows that the ω-limit of a δ-E-arc is either a
periodic simple closed curve normally attracting, or a semi-attracting peri-
odic point or there exists a normally attracting periodic arc. In any case, it
contradicts that f is transitive.

Lemma 3.25. Given δ > 0, there exists n0 ≥ 1 such that for every E-arc γ
with δ/2 ≤ `(γ) ≤ δ, one has that the length of fn(γ) is at least 2δ for some
0 ≤ n ≤ n0.

Proof. Fix δ0 > 0 given by Theorem 3.23. Suppose by contradiction that
there exists 0 < δ < δ0/2 such that for every n ≥ 0, there exists an E-arc γn
with γ′n ⊆ C ∗E so that

`(fk(γn)) ≤ 2δ for every 0 ≤ k ≤ n.

As γ′n ⊆ C ∗E, one has that the Lipschitz constant of γn is uniformly
bounded. In particular, the family {γn}n is uniformly bounded and equicon-
tinuous. That is,

• d(γn(t), γn(0)) ≤ δ for every t ∈ [0, 1] and n ≥ 1;

• ∀ε > 0,∃ν > 0 such that for every n ≥ 1,

∀ t, s ∈ [0, 1], |t− s| < ν =⇒ d(γn(t), γn(s)) < ε.
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Then, by Arzelà-Ascoli’s Theorem, up to take a subsequence, γn converges
uniformly to the 2δ-E-arc γ, since γ is a Lipschitz curve with `(fk(γ)) ≤ 2δ
and γ′ ⊆ C ∗E. Contradicting the Corollary 3.24.

Lemma 3.26. Let δ > 0 and n0 ≥ 1 be given by Lemma 3.25. Then, there
exists ε > 0 such that for every E-arc γ with `(γ) ≥ δ/2, one has `(fk(γ)) ≥ ε
for every 1 ≤ k ≤ n0.

Proof. Suppose that for every εn > 0 there exist E-arc γn with `(γn) ≥ δ/2
and 1 ≤ kn ≤ n0 such that `(fkn(γn) < εn. Then, up to take a subsequence,
we have that there exists E-arc γ, γ = limn→∞ γn, with `(γ) ≥ δ/2 so that
`(fk(γ)) = 0 for some 1 ≤ k ≤ n0. Therefore, there exists t ∈ (0, 1) and
γ′(t) ∈ C ∗E such that ‖Dfk(γ′(t)‖ = 0 which contradicts the fact that the
dominated splitting.

To prove Main Theorem 3 we use similar arguments as in [BBI09] and
[PT72].

3.6.3 Proof of the Main Theorem 3

Let R2 be the universal covering of M and let Ẽ be the lift of the sub-
bundle E on R2. In particular, one has that Ẽ is orientable. Considering the
metric on R2 which is the lift of the metric on M , we have that the cone field
C ∗
Ẽ

is the lift of the cone field C ∗E on R2.

Lemma 3.27. There exist ε > 0 and a constant C > 0 such that for any
curve γ̃ : [0, 1]→ R2 of class C1 such that γ̃′ ⊆ C ∗

Ẽ
, we have

area(B(γ̃, ε)) ≥ C`(γ̃),

where B(γ̃, ε) = {x̃ ∈ R2 : d(x̃, γ̃) < ε}.

Proof. We prove first that γ̃ is injective. Moreover, there exists ε > 0 such
that the ball B(x, ε), centered in x ∈ γ̃ and radio ε, intersects γ̃ just once.

Indeed, suppose γ̃(0) = γ̃(1). Let D be a disk such that its boundary ∂D

is the curve γ̃. Since Ẽ is orientable and transversal to ∂D, we can define a
non-vanishing field on D. Then, by Poincaré-Bendixson Theorem, it has a
singularity in D which is a contradiction. Therefore, γ̃ is injective.

Fix ε > 0 small enough such that the tangent curve to Ẽ passing through
the point x divides B(x̃, ε) in two connected components. It is possible,

because Ẽ induces a continuous vector field on R2 and it is bounded. Now,
suppose that γ̃(t1) ∈ B(γ(t0), ε) for some 0 ≤ t0 < t1 ≤ 1. Since γ̃′ ⊆ C ∗

Ẽ
, we

can take a disk D such that the distribution Ẽ induce a continuous vector
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Figure 3.2: Distribution Ẽ and the disk D

field on D (D is a disk whose boundary is the union of a tangent curve to Ẽ
from γ̃(t1) to γ̃(t0) and γ̃). Then, repeating the same arguments one gets, by
Poincaré-Bendixson Theorem, that such vector field has a singularity in D,
which is a contradiction. Therefore, we conclude that there exists ε > 0 such
that γ̃ intersects B(x, ε) at most once. Up to changing ε, we can assume
that any C1-curve tangent to the cone field with length larger than `0 is not
contained in a ball of radio ε.

Finally, we can prove the lemma. Assume `(γ̃)� `0. Then, we consider
k ≥ 1 the largest integer less than or equal to `(γ̃)/`0 and the set {x̃1, ..., x̃k}
contained in γ̃ such that the curve γ̃j in γ̃ that passes through x̃j has length
`0 and {B(x̃j, ε/2)}j are two-by-two disjoints. Thus, we have

area(B(γ̃, ε)) ≥
∑

1≤j≤k

area(B(x̃j, ε/2)) ≥ C0
`(γ̃)

2`0

,

where C0 is the area of the ball of radio ε/2. Therefore, taking C = C0

2`0
, one

has
area(B(γ̃, ε)) ≥ C`(γ̃).

Proof of Main Theorem 3. Let f̃ : R2 → R2 be a lift of f . Then, there exists
a unique square matrix L with integers entries such that f̃ = L + φ, where
φ is π1(M)-periodic map (that is, φ(x̃ + v) = φ(x̃) for every v ∈ π1(M) and
x̃ ∈ R2). Assume by contradiction that the absolute value of all eigenvalues
of L are less than or equal to one. Thus, the diameter of the images of any
compact set under the iterates of f̃ grows polynomially.

We now apply this observation to the ball Bn of center x̃n ∈ γ̃n and
radio the diameter of γ̃n plus ε, where γ̃n is the image by f̃n of a C1-curve
γ̃ with γ̃′ ⊆ C ∗

Ẽ
and ε > 0 is given by Lemma 3.27. Note that Bn contains

the neighborhood B(γ̃n, ε) of γ̃n. Then, the area of Bn grows polynomially,
implying that the diameter of γ̃n grows polynomially. This is a contradiction,
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because, by Lemmas 3.25 and 3.26, we have that `(γ̃n) grows exponentially
and, by Lemma 3.27, we have that

area(B(γ̃n, ε)) ≥ C`(γ̃n).

Therefore, L has at least one eigenvalue with modulus larger than one.

3.6.4 Proof of Theorem D

Let f ∈ End1(M) be a robustly transitive endomorphism. So, we have two
possibilities, either f admits a dominated splitting or not. Suppose f admits
a dominated splitting, then, Main Theorem 3 implies that f is homotopic
to a linear map having at least one eigenvalue with modulus larger than
one, proving our assertion. Now, assume f does not admit a dominated
splitting. If Sf the critical set of f is nonempty, from Lemma 3.8 follows
that there exists g sufficiently close to f such that Sg has nonempty interior.
Hence, Theorem A implies that g admits a dominated splitting, and so, by
the same argument before, g is homotopic to a linear map that has at least
one eigenvalue with modulus larger than one; since g and f are close, they
are homotopic and therefore f is also homotopic to a linear map having at
least one eigenvalue with modulus larger than one. Finally, if the critical set
Sf is empty, then f is a local diffeomorphism, and [LP13] proved that f is
volume expanding. Thus, using the same arguments as in the proof of Main
Theorem 3, we have that if the absolute value of all eigenvalues of L are less
or equal to one, then the area of a ball B grows polynomially, contradicting
the fact that f is volume expanding. �
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Chapter 4

Examples of robustly transitive
endomorphisms

This chapter is another joint work with C. Lizana. In context of diffeo-
morphisms the first examples of non-hyperbolic robustly transitive diffeomor-
phisms were given by M. Shub ([Shu71]) in T4 and by R. Mañé ([Mañ78]) in
T3. In the endomorphisms context, the first examples appear in [LP13] and
[HG13]. In both cases, the endomorphisms does not admit critical points. For
endomorphisms admitting critical points the first example was constructed
in [BR13] and later in [ILP16] both on T2.

In This chapter, we present new examples of robustly transitive endo-
morphisms with critical points. We construct a new example on the torus
complementing the classes of example constructed in [BR13] and [ILP16].

4.1 Preliminaries

4.1.1 Iterated function systems-(IFS)

In this section we introduce a very useful tool known as Iterated Function
System that we will apply in the following sections.

More concretely, given f1, . . . , fn : S1 → S1 orientation preserving maps,
not necessarily invertible, we defined as Iterated Function System, IFS for
short, the set <f1, . . . , fn> of all possible finite compositions of f ′is, that is,

<f1, . . . , fn>:= {h : h = fim ◦ · · · ◦ fik ◦ · · · ◦ fi1 , ik ∈ {1, . . . , n}, m ∈ N}.

The orbit of x is given by O(x) := {h(x) : h ∈<f1, . . . , fn>}. A subset I of
S1 is minimal if O(x) ⊃ I for every x ∈ I. Note that this is equivalent to say
that for every x ∈ I and J ⊂ I open interval, there exists h ∈<f1, . . . , fn>
such that h(x) ∈ J .
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Example 4.1.1. Fix ε, δ0 > 0 small enough and µ ∈ N. Consider the C1 ori-
entation preserving local homeomorphisms f0 : S1 → S1, f0(x) = µx (mod1)
and f1, f2 : S1 → S1 of topological degree µ defined as follows (see figure 4.1):

(1) There exist pi0 attractor fixed points and pi1, p
i
2 repeller fixed points of

fi, for i = 1, 2;

(2) There exist Ii = (ai, bi), i = 1, 2, open intervals contained in (−3ε
2
, 3ε

2
)

such that

• (p1
1, p

1
2) ∪ (p2

1, p
2
2) is contained (−2ε, 2ε);

• I = (p1
0, p

2
0) ⊂ I1 ∩ I2 and f ′i(ai) = f ′i(bi) = 1, i = 1, 2;

• fi |Ii is contracting, i = 1, 2;

• a2 < −ε < p1
0 < 0 < p2

0 < ε < b1 and
p1

0 < f2(p1
0) < 1 < f1(p2

0) < p2
0;

(3) 1− δ0 < |f ′i(x)| < 1− δ0/2, with x ∈ I, i = 1, 2;

(4) µ− 2ε < f ′i < µ+ 2ε in S1\(−2ε, 2ε), i = 1, 2.

Figure 4.1: The graphs of f1 and f2 with topological degrees µ > 1.

Remark 4.1. We may take fi 2ε C0-close to f0(x) := µx (mod 1), i = 1, 2.

Let us consider fi,0 : S1 → S1 the inverse branch of fi such that fi,0 |Ii
is expanding. Let us study the IFS generated by them. Note that pi0 is a
repeller fixed point for fi,0, with i = 1, 2.
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4.1.2 Homotopy

Proposition 4.2. Given δ > 0, there exists ε0 > 0 such that if
f, g : S1 → S1 are ε0 C0-close of topological degree µ ∈ N, there exists
an homotopy Ht between f and g such that |∂tHt| < δ.

Proof. Let π : R → S1 be the universal covering map. Let f̃ and g̃ be the
lift of f and g such that f̃ and g̃ are ε C0-close each other. Then we define
the homotopy from f̃ to g̃ by

H̃t(x̃) = (1− t)f̃(x̃) + tg̃(x̃),

for every x̃ ∈ R, t ∈ [0, 1]. Since

H̃t(x̃+m) = (1− t)f̃(x̃+m) + tg̃(x̃+m)

= (1− t)(f̃(x̃) + µm) + t(g̃(x̃) + µm) = H̃t(x̃) + µm,

for every x̃ ∈ R, m ∈ Z, we have that the homotopy Ht(x) = π ◦ H̃t(x̃)
between f and g is well defined. Furthermore,

|∂tHt| ≤ (max
x̃∈R
|Dπ(x̃)|)|∂tH̃t| ≤ (max

x̃∈R
|Dπ(x̃)|)ε.

Since |∂tH̃t| = |f̃(x̃) − g̃(x̃)| < ε0 and maxx̃∈R |Dπ(x̃)| is bounded, we may
chose ε0>0 small enough such that |∂tHt| < δ finishing the proof.

4.2 Construction of the examples

4.2.1 Construction of the skew-product map on T2

Let L be a matrix with spectrum σ(L) = {λ, µ}, λ, µ ∈ Z and
|λ| > |µ| > 1. After a change of coordinates, if necessary, we may assume
that

L =

(
µ 0
0 λ

)
.

Consider ε, δ0 and f1, f2 as the Example 4.1.1. Since the map
f0(x) = µx (mod 1) is transitive, there exists a residual set of points with
dense forward orbit. Hence, given αi ∈ (µ− δ0, µ+ δ0), i = 1, 2, there exists
βi such that

• O+
µ (βi) = {µkβi : k ∈ N} is dense in S1; and

• fi may be defined in S1 \ (pi1, p
i
2) by the affine map fi(x) = αix+ βi.
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Remember that f1 and f2 have unique attractor fixed points p1
0 and p2

0,
respectively, which are contained in (−ε, ε).

The following results show that every orbit of the IFS<f0, f1, f2> contain
the open interval I = (p1

0, p
2
0). Before, remember that fi,0 : S1 → S1 the

inverse branch of fi such that fi,0 |Ii is expanding.

Lemma 4.3. For every open interval J ⊂ I, there exists h ∈< f1,0, f2,0 >
such that p1

0 ∪ p2
0 ⊂ h(J).

Proof. It is enough to prove that there exists h ∈< f1,0, f2,0 > such that
h(J) contain either p1

0 or p2
0. Because if there exists h ∈< f1,0, f2,0 > such

that p1
0 ∈ h(J), since p1

0 is a repeller for f1,0 there exists n ∈ N such that
fn1,0(h(J)) ⊃ I.

Since f1,0(p1
0, f1(p2

0)) = I and f2,0(f2(p1
0), p2

0) = I, given J an open interval
contained in I follows that there exists h ∈<f1,0, f2,0> such that h(J) contain
f2(p1

0) or f1(p2
0), since diam(h(J)) > (1− δ0

2
)−mdiam(J), where m ∈ N is such

that h = fim ◦ . . . ◦ fi1 and fik ∈ {f1,0, f2,0}. Hence, if f2(p1
0) ∈ h(J) then

apply f2,0 and we get that p1
0 ∈ f2,0 ◦ h(J).

The following result shows that the interval I is contained in the closure
of the orbit of IFS <f0, f1, f2> given by example above.

Proposition 4.4. For every x ∈ I, the set O(x) contain the interval I.

Proof. Note that by construction of fi, fi |S1\(pi1,pi2)= αi + βi, one has that for

every x ∈ S1, there exists h ∈<f0, fi> such that h(x) ∈ (pi1, p
i
2).

Indeed, suppose that there exists x ∈ S1 such that h(x) ∈ S1 \ (pi1, p
i
2) for

every h ∈<f0, fi>. This contradicts the construction, because

f0 ◦ · · · ◦ f0︸ ︷︷ ︸
n−k

◦fi ◦ f0 ◦ · · · ◦ f0︸ ︷︷ ︸
k−1

(x) = fn−k0 (fi(f
k−1
0 (x))

= µn−1αix+ µkβi,

for 1 ≤ k ≤ n − 1, belongs to the set {h(x) : h ∈<f0, fi>} ⊂ O(x). Since,
by construction, {µkβi : k ∈ N} is dense in S1, we can choose n ≥ 1 such
that µn−1αix + µkβi ∈ (pi1, p

i
2), and so we can take h ∈< f0, fi > such that

h(x) ∈ I.
Therefore, it is enough to show that the interval I is minimal for the IFS

<f1, f2>. In order to prove minimality for <f1, f2<, it is sufficient to prove
that the associated IFS <f1,0, f2,0> has the property that for every J open
interval contained in I follows that

I ⊂
⋃

h∈<f1,0,f2,0>

h(J).
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From this property follows immediately that given any point x ∈ I and any
open interval J ⊂ I, there exists h ∈<f1,0, f2,0> such that x ∈ h(J). Hence,
there exists h′ ∈< f1, f2 > such that h′(x) ∈ J . In particular, O(x) for
<f1, f2> is dense in I. By Lemma 4.3 we may consider an open interval J
containing pi0 for i = 1, 2. Since fi,0 |Ii is expanding and remembering that
pi0 is a repeller fixed point of fi,0, there exists n ∈ N such that fni,0(J) contain
I. Thus, we have

I ⊂
⋃

h∈〈f1,0,f2,0〉

h(J).

Now, we can define the skew-product map on T2.
Fix y1 < y0 = 0 < y2 ∈ S1, J an open interval in S1 containing yi for

i = 0, 1, 2, and r > 0 small enough such that Ir(yi) = [yi−r, yi+r] are pairwise
disjoint sets for i = 0, 1, 2, Ir(yi) ⊂ J ⊂ λ(Ir(yi))(mod 1) for i = 0, 1, 2.
Denote by Rr(yi) = S1 × Ir(yi) and RJ = S1 × J horizontal strips.

Let us define F : T2 → T2 by

F (x, y) = (fy(x), λ y),

where fy is the homotopy, given by Proposition 4.2, satisfying

fy(x) =


fi(x), y ∈ Ir(yi), i = 0, 1, 2;

f(x), y ∈ J c,

where we denote f0(x) = µx (mod 1) by f in J c for simpleness.
Pick a point z = (z1, z2) ∈ T2 \ RJ . Fix small neighborhood Bz of z in

T2 \ RJ and consider θ0 > 0 such that Iθ0(0) = (−θ0, θ0) ⊂ I and F n(V )
and Bz are disjoint for n = 0, . . . , N0, where N0 is such that λN0r > 3/2 and
V := (−θ0, θ0)× S1.

Let ε, δ > 0 such that Iδ(z1)× Iε(z2) ⊂ Bz. Consider ψ : R→ [0, µ+ 1
2
]

C∞ map such that ψ(y) = ψ(−y), y = 0 the unique maximum point,
µ < ψ(0) < µ + 1

2
and ψ(y) = 0 for |y| ≥ ε. Let ϕ : R → [−1, 1] be

a C∞ odd map such that ϕ(0) = 0, ϕ(x) = 0 for x /∈ [−δ, δ] defined by
ϕ(x) =

∫ x
−δ ϕ

′(t)dt where ϕ′ is as in Figure 4.2, and min{ϕ′} > −λ−µ
µ+1

and

max{ϕ′} = ϕ′(0) = 1. By slight abuse of notation we will denote ψ(y) and
ϕ(x) by ψ(y− z2) and ϕ(x− z1) respectively. Now, we define Fε,δ : T2 → T2

by
Fε,δ(x, y) = (fy(x)− Φ(x, y), λy),
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where

Φ(x, y) =


ϕ(x)ψ(y), (x, y) ∈ Iδ(z1)× Iε(z2);

0, otherwise.

Figure 4.2: The graphs of ψ and ϕ′, respectively.

Remark 4.5. Note that |ϕ| goes to zero as δ goes to zero. Hence, Fε,δ
goes to F in the C0 topology, when ε and δ go to zero. In particular, since
F was constructed C0 close to L, it follows that Fε,δ is C0 close to L. In
consequence, Fε,δ is homotopic to L.

By slight abuse of notation, we will denote from now on by F the map
Fε,δ defined above.

Proposition 4.6. There exists a neighborhood WF such that for every G ∈
WF , the critical set SG of G is nonempty. Moreover, G(Rr(yi)) ⊃ RJ

Proof. The critical set of F is

SF = {(x, y) : µ− ϕ′(x)ψ(y) = 0} ⊂ Iδ(z1)× Iε(z2).

Since det(DF (z1, z2)) = λ(µ−ϕ′(z1)ψ(z2)) < 0 and far from z = (z1, z2) the
map is expanding, we guarantee SF is non empty. Then there exists a C1

neighborhoodWF of F such that SG 6= ∅, it is contained in Iδ(z1)×Iε(z2) for
all G ∈ WF . Moreover, picking a smaller WF , if necessary, we may assume
that G(Rr(yi)) ⊃ RJ .

Proposition 4.7. There exists a C1 neighborhoodWF of F such that GN0(Rr(y0)) =
T2 for every G ∈ WF .

Proof. It is clear. Since λN0r > 3/2 > 1 and the image by G of any horizontal
strip is a horizontal strip.

Given a ∈ R positive and p ∈ T2, we consider C u
a (p) ⊂ Tp(T2) the family

of unstable cones defined by

C u
a (p) = {(v1, v2) ∈ Tp(T2) : |v1|/|v2| < a}.
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The following lemma shows that it is possible to construct a family of unstable
cones for the map F . For the statement of the following lemma we use the
fact that |λ| >

√
2, this follows from |det(L)| ≥ 2.

Lemma 4.8 (Existence of unstable cones for F ). Given ε, δ, a > 0 and λ′

with
√

2 ≤ λ′ < |λ|, there exist a0 > 0 and δ1 > 0 with 0 < a0 < a and
0 < δ0 < δ such that if F = Fε,δ0 , then the following properties hold:

(i) DFp(C u
a0

(p)) \ {(0, 0)} ⊂ C u
a0

(F (p)), for every p ∈ T2;

(ii) if v ∈ C u
a0

(p), then |DFp(v)| ≥ λ′|v|;

(iii) if γ is a curve such that γ′(t) ⊂ C u
a0

(γ(t)), then

diam(F (γ)) ≥ λ′diam(γ).

Proof. Proof of (i): Given p = (x, y) ∈ T2 and a > 0, pick a0 such that
0 < a0 < a. Let v = (v1, v2) ∈ C u

a0
(p), then

DFp(v1, v2) =

(
∂xfy(x)− ∂xΦ(x, y) ∂yfy(x)− ∂yΦ(x, y)

0 λ

)(
v1

v2

)
= ((∂xfy(x)− ∂xΦ(x, y))v1 + (∂yfy(x)− ∂yΦ(x, y))v2, λv2)
= (u1, u2).

I If (x, y) ∈ Iδ(z1) × Iε(z2) remembering that min{ϕ′} > −λ− µ
µ+ 1

,

max{ϕ′} = ϕ′(z1) = 1 and fy(x) = f0(x). Then, observing that ∂yfy(x) = 0,
we get that

|u1|
|u2|

=
|(µ− ϕ′(x)ψ(y))v1 − ϕ(x)ψ′(y)v2|

|λv2|

≤
∣∣∣∣µ− ϕ′(x)ψ(y))

λ

∣∣∣∣ |v1|
|v2|

+

∣∣∣∣ϕ(x)ψ′(y)

λ

∣∣∣∣
≤
∣∣∣∣max{1, µ−min{ϕ′}(µ+ 1

2
)}

λ

∣∣∣∣ |v1|
|v2|

+

∣∣∣∣ϕ(x)ψ′(y)

λ

∣∣∣∣
≤ a

∣∣∣∣1− (λ− µ)

2λ(µ+ 1)

∣∣∣∣+a

∣∣∣∣ϕ(x)ψ′(y)

aλ

∣∣∣∣ .
By Remark 4.5, |ϕ| → 0 when δ → 0, and since |ψ′| is bounded, we may

choose δ small enough such that

|u1|
|u2|

< a.
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I If y ∈ J \ ∪2
i=0Ir(yi), fy is the homotopy between fi and f0 given by

Proposition 4.2. Without loss of generality we prove the case that fy is the
homotopy between f1 and f0, the other case is analogous.

Given δ > 0 fix ε0 given by Proposition 4.2, so that f1 is 2ε0 C
0 close to

f0, |∂xfy(x)| < µ+ 2ε0 and |∂yfy(x)| < δ. Hence,

|u1|
|u2|

=
|∂xfy(x)v1 + ∂yfy(x)v2|

|λv2|
≤

∣∣∣∣∂xfy(x)

λ

∣∣∣∣ |v1|
|v2|

+

∣∣∣∣∂yfy(x)

λ

∣∣∣∣
≤

∣∣∣∣µ+ 2ε0
λ

∣∣∣∣ |v1|
|v2|

+
δ

|λ|
.

Fixing δ > 0 small enough such that∣∣∣∣µ+ 2ε0
λ

∣∣∣∣+
δ

a|λ|
< 1

follows that
|u1|
|u2|

< a.

I If y ∈ Ir(yi), for i = 1, 2, we have fy(x) = fi(x). Then, |f ′i(x)| < µ+2ε0.

|u1|
|u2|

=
|∂xfy(x)v1 + ∂yfy(x)v2|

|λv2|
≤

∣∣∣∣f ′i(x)

λ

∣∣∣∣ |v1|
|v2|
≤
∣∣∣∣µ+ 2ε0

λ

∣∣∣∣ |v1|
|v2|

< a.

I In the other cases, noting that F (x, y) = (µx, λy), it follows the result
by straightforward calculation. This prove (i).

Proof of (ii): Let λ′ be such that
√

2 ≤ λ′ < |λ|. Note that

(
|DF(x,y)(v1, v2)|
|λ′(v1, v2)|

)2

=
|(∂xfy(x)− ∂xΦ(x, y))v1 + (∂yfy(x)− ∂yΦ(x, y))v2, λv2)|2

(λ′)2|(v1, v2)|2

=
λ2 +

(
(∂xfy(x)− ∂xΦ(x, y))v1

v2
+ (∂yfy(x)− ∂yΦ(x, y))

)2

(λ′)2

(
1 +

(
v1

v2

)2
)

≥ λ2

(λ′)2(1 + a2)
.
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Since
|v1|
|v2|

< a. Therefore, taking a0 > 0 small enough, we have

(
|DF(x,y)(v1, v2)|
|λ′(v1, v2)|

)2

≥ λ2

(λ′)2(1 + a2
0)
> 1.

Proof of (iii). It follows from the previous items.

Lemma 4.9. There exists WF a C1 neighborhood of F such that for every
G ∈ WF the properties (i), (ii) and (iii) of Lemma 4.8 hold.

Proof. The proof follows from observing that (i), (ii) and (iii) of
Lemma 4.8 are open properties.

Given x ∈ S1, we define a vertical curve is defined by γx := {x}×J , where
J is fixed at the beginning of the section. Let JV be the set V ∩RJ .

In the following results we prove that every vertical curve in RJ has dense
forward orbit in JV and this is an open property. In fact,

Lemma 4.10. For every vertical curve γx in RJ with x ∈ Iθ0(0) holds that

JV ⊂
⋃

h∈<f1,f2>

γh(x). In particular, JV ⊂
⋃
n≥0

F n(γx).

Proof. Observing that γh(x) ⊂ F n(γx), where h(x) = fin ◦ · · · ◦ fi1(x) and
ij ∈ {1, 2}, we get that

⋃
h∈<f1,f2>

γh(x) ⊂
⋃
n≥0 F

n(γx). By Lemma 4.3, we

have that O(x) ⊃ Iθ0(0) following the density of the iterates of the vertical
curves.

As a consequence of Lemma 4.10, we show that every vertical curve in
RJ has dense forward orbit in JV , that is, γx has dense forward orbit in JV
for every x ∈ S1.

Corollary 4.11. Given any vertical curve γx in RJ holds that
JV ⊂ ∪n≥0F n(γx).

Proof. It is sufficient to see that h0 ∈< f0, f1, f2 > such that
h0(x) ∈ Iθ0(0) to prove our result. This follows by Proposition 4.4.

Let us set some notation that we will use for next results. Considering
T2 = S1 × S1, denote by πi : T2 → T2 the natural projection onto the ith-
coordinate. Observe that Corollary 4.11 implies that JV ∩∪n≥0F

n(γx) 6= ∅ for
every x ∈ S1, hence the projection of ∪n≥0F

−n(JV ) onto the first coordinate
contain S1, that is,

π1

(
∪n≥0 F

−n(JV )
)

= S1, for i = 1, 2. (4.2.1)
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Hence, there exists W ′F ⊂ WF such that G ∈ WF ,

π1(∪j≤NG−j(JV )) = S1 for i = 1, 2. (4.2.2)

Now we are in condition to prove that the property in Corollary 4.11 is per-
sistent under perturbations, that is, the density of the forward orbit of every
vertical curve in RJ in JV is an open property. Concretely,

Proposition 4.12. There exists W ′F a C1 neighborhood of F such that for
every G ∈ W ′F holds that JV ⊂ ∪n≥0Gn(γx) for every vertical curve γx in RJ .

Proof. Let us assume first the following claim that will be proved after:

Claim 1: For every 0 < θ < θ0
2

, there exists n ∈ N such that
⋃n
i=0 F

i(γx) is
θ-dense in JV , for every x ∈ S1; that is,

⋃n
i=0 F

i(γx) intersect every open set
U in T2 contained in JV with length of π1(U) greater than θ.

Fix 0 < θ < θ0
2

and n given by Claim 1. Then there exists W ′F a C1

neighborhood of F such that every G ∈ W ′F has the property
⋃n
i=0 G

i(γx)
is 2θ-dense in JV , for every x ∈ S1. We may write G = (g1, g2), where
gi : T2 → S1 satisfy:

• g1(x, y) = g1
y(x) is C1 close to fi(x) for (x, y) ∈ Rr(yi) and i = 0, 1, 2;

• g2(x, y) = g2
x(y) is C1 close to λy (mod 1) for x ∈ S1.

We have also that the repeller fixed points of g1
y are close to the repeller fixed

points of fi for y ∈ Ir(yi) such that g1
y |(pi1−2θ,pi2+2θ) is a contracting map for

i = 1, 2.
Let U be an open set in T2 contained in JV .Consider backward iterates

of U by G, since the length of π1(G−n(U)) grows as n grows, there exists m
sufficiently large such that π1(G−m(U)) has length greater than 2θ. There-
fore, by the assumption of G we get that ∪ni=0G

i(γx) ∩ G−m(U) 6= ∅, so
∪n≥0G

n(γx) ∩ U 6= ∅.

Proof of the Claim 1. Suppose there exists θ > 0 such that for every n∈N,
there exists xn ∈ S1 and wn ∈ JV such that
∪ni=0F

i(γxn) ∩ Bθ(wn) = ∅. Let w ∈ JV and x ∈ S1 be accumulation
points of {wn}n and {xn}n respectively. Take n0 sufficiently large such that
Bθ(wn) ⊃ Bθ/2(w) for every n ≥ n0. Therefore, ∪n≥0F

n(γx) ∩ Bθ/2(w) = ∅.
On the other hand, Lemma 4.10 implies there exist N sufficiently large and
h ∈< f1, f2 > such that |h| = N and γh(x) ∩ Bθ/2(w) 6= ∅, then we may
choose n > N and xn close to x such that γh(xn) ∩ Bθ/2(w) 6= ∅. Since
γh(xn) ⊂

⋃n
i=0 F

i(γxn) follows that
⋃n
i=0 F

i(γxn) ∩Bθ(wn) 6= ∅, which contra-
dict our assumption, finishing the proof.
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We say that a curve α cut across RJ if α intersects both components of
the boundary ∂RJ of RJ . We are going to prove that this type of curves
has dense forward orbits in JV and this is an open property as well, as we
did for the vertical curves. Before proving these assertions, let us prove an
auxiliary result that is a little bit technical but it is an analogous version of
the Inclination-Lemma(diffeomorphisms setting).

Proposition 4.13. There exists WF ⊂ W ′F (W ′F given Proposition 4.12) a
C1 neighborhood of F such that for every G ∈ WF , ε′ > 0, and any curve
α cutting across RJ with α′ ⊂ C u

a , there exist k ≥ 1, and a family {αn}n≥0

of curves with αn ⊂ Gn(α) cutting across RJ such that the projection of αn
onto the first coordinate is contained in an interval of diameter ε′ for n ≥ k
(i.e., α is “almost” a vertical curve).

Proof. LetWF be a C1 neighborhood of F such that if G ∈ WF , G = (g1, g2)
then |∂yg1|, |∂xg2| < η and |∂xg1| < µ0, |∂yg2| > λ0 where µ < µ0 < λ0 < λ
in Rr(y0). Moreover, suppose G(Rr(yi)) ⊃ RJ for i = 0, 1, 2. Then taking
α0 = α ∩ Rr(0) and αn the connected component of G(αn−1) ∩ Rr(y0), we
get that there exists z0 ∈ α0 such that zn = Gn(z0) ∈ αn, zn = (z1

n, z
2
n), for

every n ≥ 0.
Note that for (x, y) ∈ Rr(y0), we have

DG(x, y) =

(
∂xg

1 ∂yg
1

∂xg
2 ∂yg

2

)
.

Thus, given v0 = (vc0, v
u
0 ) an unit vector in C u

a with ρ0 the slope of v0,
ρ0 = ‖vc0‖/‖vu0‖. Let vn = DG(zn)v0 and ρn its slope. Then

ρ1 =
‖vc1‖
‖vu1‖

=
‖∂xg1vc0 + ∂yg

1vu0‖
‖∂xg2vc0 + ∂yg2vu0‖

≤ |∂xg
1||vc0|+ |∂yg1||vu0 |

|∂yg2||vu0 | − |∂xg2||vc0|

≤ µ0ρ0 + η

λ0 − ηρ0

=
µ0ρ0

λ0 − ηρ0

+
η

λ0 − ηρ0

.

More general,

ρn =
‖vcn‖
‖vun‖

=
‖∂xg1vcn1

+ ∂yg
1vun1
‖

‖∂xg2vcn1
+ ∂yg2vun1

‖
≤
|∂xg1||vcn1

|+ |∂yg1||vun1
|

|∂yg2||vun1
| − |∂xg2||vcn1

|

≤ µ0ρn−1 + η

λ0 − ηρn−1

=
µ0ρn−1

λ0 − ηρn−1

+
η

λ0 − ηρn−1

.

Since DG(C u
a )\{(0, 0)} ⊂ C u

a , we have ρn < a and
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ρn ≤
µ0ρn−1 + η

λ0 − ηρn−1

≤ ρn−1

b
+

η

µ0b

where b = (λ0 − aη)/µ0. Then,

ρn ≤
µ0ρn−1 + η

λ0 − ηρn−1

≤ ρn−1

b
+

η

µ0b
≤ ρn−2

b2
+

η

µ0

2∑
j=1

1

bi

≤ · · · ≤ ρ0

bn
+

η

µ0

n∑
j=1

1

bi
=

ρ0

bn
+
η(1− b−n)

µ0(b− 1)
.

Since Rr(y0) is a compact set, v0 we can be chosen so that ρ0 is the maxi-
mum possible slope of unit vectors in C u

a . Then, changing the neighborhood
WF , if necessary, we may suppose that b > 1 and ρn < δ′ for every n ≥ k0.
Thus, all the nonzero tangent vectors to αn have slope less than δ′ for n ≥ k0.

Let us compare the norm of a tangent vector of αn with its image by DG:

‖DGvn‖
‖vn‖

=
‖vn+1‖
‖vn‖

=

√
|vcn+1|2 + |vun+1|2√
|vcn|2 + |vun|2

=
|vun+1|
|vun|

√
1 + ρ2

n+1

1 + ρ2
n

.

Then, by the item (ii) of Lemma 4.9, there exists λ′ > 1 such that

‖DGv‖
‖v‖

≥ λ′,∀v ∈ Cua .

Hence, we have that

‖vn+1‖
‖vn‖

=
‖DGvn‖
‖vn‖

√
1 + ρ2

n

1 + ρ2
n+1

≥ λ′

√
(1 + ρ2

n)(λ0 − ηρn)2

(λ0 − ηρn)2 + (µ0ρn + η)2

≥ λ′

√
(1 + ρ2

n)(λ0 − ηρn)2

(λ0)2 + (µ0ρn + η)2
.

We may take WF and δ′ > 0 enough small such that

‖vn+1‖
‖vn‖

≥ λ′

√
(λ0 − δ′)2

(λ0)2
= λ′

(
λ0 − δ′

λ0

)
> 1. (4.2.3)
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for n ≥ k0. Since δ′ depends on n, µ0, λ0 and η, we may choose δ′ > 0 such
that the curves αn is ε′ C1-close to γn for n ≥ k0 where γn is the connected
component of γz1

n
⊂ Rr(y0) and (γz1

n
)n≥0 is a sequence of vertical curves in

RJ .

As a consequence of the (Proposition 4.13) follows that any curve cutting
across RJ has dense forward orbit in JV .

Lemma 4.14. LetWF given by proposition above. For every curve α cutting
across RJ such that α′ ⊂ C u

a holds that JV ⊂ ∪n≥0Gn(α).

Proof. It sufficient to prove that given any open set U ⊂ JV , there exists
n ≥ 1 such that Gn(α) intersects to U . In order to prove that, note that
by Proposition 4.12 given an open set U contained in JV one has that the
projection of G−n(U) onto the first coordinate is a interval Un ⊂ S1 such
that ∪n≥0Un is a covering of S1. Then, we can choose ε1 > 0 the Lebesgue’s
number of the covering {Un}. Finally, by Proposition 4.13, there exist k ≥ 1
and a family {αn}n≥0 of curves with αn ⊂ Gn(α) cutting across RJ such that
the projection of αn onto the first coordinate is contained in an interval of
diameter at most ε′, for n ≥ k. Therefore, αn intersects to family {Uj}j.
That is, Gn(α) intersects to U , and so, ∪n≥0G

n(α) is dense in JV .

So far we have proved that the forward orbit of any curve cutting across
RJ is robustly dense in JV . Now let us prove that JV is robustly eventually
onto, that is, there exists n0 ≥ 1 such that Gn0(JV ) = T2 for G sufficiently
close to F. We prove first for F and then for an open neighborhood of F .

Lemma 4.15. There exists N ≥ 1 such that given G ∈ W ′F , one has
Gn(JV ) = T2.

Proof. Since S1×{y0} is F−invariant and F is expanding in both direction in
Rr(y0), we get that there exists n0 ≥ 1 such that Rr(y0) ⊂ F n0(JV ). Hence,
by Lemma 4.7 holds that FN0+n0(JV ) = T2. Analogously, we can suppose
that for G ∈ W ′F , G is expanding in both direction in Rr(y0). Then, there
exists n1 ≥ 1 such that Rr(y0) ⊂ Gn1(JV ), and so, GN0+n1(JV ) = T2.

Finally, we can prove that F is robustly transitive.

Proof of the robust transitivity. Given G ∈ WF , and U and B open sets in
T2, by Lemma 4.15 there exists N ≥ 0 such that JV ∩G−N(B) 6= ∅. Let B′

be an open set of T2 contained in the interior of JV ∩G−N(B).
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Now consider a curve α in U such that α′ ⊂ C u
a . Then, by Lemma 4.9,

there exists an iterate of α cutting across RJ , that is, there exists m0 ∈ N
such that Gm0(α) intersect both boundaries of RJ . Let α̃ be a connected
component of this intersection, so α̃ cuts across RJ and α̃′ ⊂ C u

a by Lemma
4.9, and Lemma 4.14 implies ∪n≥0Gn(α̃) ⊃ JV . Then, there exists k0 ≥ 1
such that Gk0(α̃) ∩ B′ 6= ∅. Hence, Gk0+N(α̃) ∩ B 6= ∅. Therefore, it follows
that Gk0+N+m0(U) ∩B 6= ∅ proving that G is transitive.
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[Mañ78] Ricardo Mañé. Contributions to the stability conjecture. Topology,
17(4):383–396, 1978.
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