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Motivation

Understand “typical” behaviour of orbits of “typical” dynamics.

Two approaches:

- Study of attracting regions (semilocal study).

- Understand global robust dynamical behaviour.
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Attractors and attracting sets

Theorem (Araujo ’89, unpublished)

In surfaces, C 1-generic diffeomorphisms admit hyperbolic attractors.

Higher dimensions: Bonatti-Li-Yang provided the first examples of
dynamics without attractors in a robust fashion (C r -generically in C r -open
sets).

These examples pose a number of questions:

- Structure of quasi-attractors.

- Basin problem, ergodic attractors, Milnor attractors.
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Definitions: Decomposition of the dynamics.

Conley’s theory: f : X → X homeomorphism of a compact metric space,
∃ϕ : X → R such that:

- ϕ(f (x)) ≤ ϕ(x) for every x .

- ϕ(f (x)) = x if and only if x is chain-recurrent.

- Each chain-recurrence class attains different values for ϕ. The image
of the chain-recurrence set has empty interior.

x is chain-recurrent if ∀ε exists ε-pseudo-orbit from x to x : i.e. x = z0, . . . zk = x

with k ≥ 1 and d(zi+1, f (zi )) < ε.

The set of chain-recurrent points CR(f ) is partitioned into chain-recurrence

classes: x ∼ y if ∀ε there exists ε-pseudo-orbit from x to y and from y to x .
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Definitions: Quasi-attractors and attractors

Definition (Quasi-attractors)

A chain recurrence class Q is a quasi-attractor if it admits a basis of
neighborhoods Un such that f (Un) ⊂ Un.

Definition (Attractors)

A quasi-attractor is an attractor if it is isolated as chain-recurrence class.
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Attractors and attracting sets

Theorem

If Q is a quasi-attractor of a C 1-generic diffeomorphism having a
dissipative periodic orbit, then it admits a dominated splitting.

The existence of a periodic point is a necessary hypothesis (Bonatti-Diaz).

Dissipativeness is not clear.
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Recall on invariant splittings

Definition

A compact f -invariant set Λ has a dominated splitting if TΛM = E ⊕ F is
a Df -invariant splitting and ∃N ≥ 0 s.t. ∀x ∈ Λ and ∀vE ∈ E (x) and
∀vF ∈ F (x) unit vectors we have:

‖Df NvE‖ <
1

2
‖Df NvF‖

One can have splittings into more bundles: TΛM = E1 ⊕ . . .⊕ Ek .

A Df -invariant bundle E is uniformly contracting (resp. uniformly
expanding) if ∃N > 0:

‖Df N |E‖ <
1

2
(resp.‖Df −N |E‖ <

1

2
)
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Attractors and attracting sets

Theorem

If Q is a quasi-attractor of a C 1-generic diffeomorphism having a
dissipative periodic orbit, then it admits a dominated splitting.

Difficulty: We do not know if the points after bifurcation lie inside the
class.

We overcome by using Gourmelon’s Franks Lemma, Bonatti-Bochi’s cocyle
perturbation techniques and Lyapunov stability.
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Bi-Lyapunov stable classes.

Corollary

For C 1-generic diffeomorphisms we know:

- In dimension 2, if Q is a bi-Lyapunov stable homoclinic class then
Q = T2 and f is Anosov.

- In dimension 3, a bi-Lyapunov stable homoclinic class has non-empty
interior.

- In any dimension we know they admit some dominated splitting.

Bi-Lyapunov classes for C 1-generic diffeomorphisms are classes which are
both quasi-attractors and quasi-repellers.
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Wild-Tame dynamics

For f a C 1-generic diffeomorphism we have a dichotomy:

- Either there are robustly finitely many chain-recurrence classes (Tame
dynamics)

- C 1-generic diffeomorphisms in a neighborhood U of f have infinitely
many chain-recurrence classes (Wild dynamics).

Question

Can a C 1-generic diffeomorphism have countably infinitely many
chain-recurrence classes?

Would be opposed with concept of Viral Dynamics.
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New examples

Theorem

There exists U open in Diffr (T3) (r ≥ 1) such that there exists a residual
subset G ⊂ U such that:

- For every f ∈ U , f has a unique quasi-attractor Q which is a Milnor
attractor (and if f is C 2 it admits a unique SRB measure).

- For every f ∈ U if R 6= Q is a chain-recurrence class, R is contained
in a periodic normally expanding two-dimensional disk.

- For every f ∈ G the diffeomorphism f has no attractors (the
quasi-attractor is not isolated).
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Milnor attractors-SRB measures

An SRB-measure for f : M → M is an invariant measure µ such that there
exists a positive Lebesgue measure subset B(µ) ⊂ M such that for every
continuous function ϕ : M → R and x ∈ B(µ) we have:

1

n

n−1∑
i=0

ϕ(f i (x))→
∫
ϕdµ

Sometimes called ergodic attractors

A weaker notion is that of Milnor attractor which is a compact invariant
set Λ such that there is a positive Lebesgue measure set of points whose
omega-limit set is contained in Λ.

Seems well suited for C 1-dynamics where we do not control distortion.
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New examples

Theorem

There exists U open in Diffr (T3) (r ≥ 1) such that there exists a residual
subset G ⊂ U such that:

- For every f ∈ U , f has a unique quasi-attractor Q which is a Milnor
attractor (and if f is C 2 it admits a unique SRB measure).

- For every f ∈ U if R 6= Q is a chain-recurrence class, R is contained
in a periodic normally expanding two-dimensional disk.

- For every f ∈ G the diffeomorphism f has no attractors (Q is not
isolated).

- We can do this also on any manifold (of dimension ≥ 3) but we do
not know about the SRB measure.

- The examples of Bonatti-Li-Yang are accumulated by classes which
are not in disks (Bonatti-Shinohara).

- If Smale conjecture (dimension 2) is true one would obtain (generic)
examples with countably many chain-recurrence classes.
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Main ingredients

The example is based on Carvalho’s example (and Bonatti-Viana’s
construction).

It is semiconjugated to the linear Anosov and partially hyperbolic (i.e.
there is a dominated splitting TT3 = E cs ⊕ Eu and Eu is uniformly
expanding).

Main ingredient: A mechanism that guaranties chain-recurrence classes
different from the quasi-attractor are contained in the preimages of
periodic points by the semiconjugacy.

Key point: The boundary of the fibers of the semiconjugacy are contained
in the quasi-attractor. Fibers are invariant under unstable holonomy.
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Digression

Natural question: Is an attractor of a C 1-generic diffeomorphism robustly
transitive?

With C.Bonatti,S.Crovisier and N.Gourmelon we proved:

Theorem

There exist open sets of diffeomorphisms where isolated chain recurrence
classes which are not robustly transitive (in any C r -topology, r ≥ 1).

Our examples are not quasi-attractors, it remains open whether it can be
done for quasi-attractors.
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Global robust dynamical behavior

Motivated by the examples above which are globally partially hyperbolic,
we studied global partial hyperbolicity in T3.

Generalizing results of Mañe in dimension 2 we have:

Theorem (Diaz-Pujals-Ures)

f : M3 → M3 is robustly transitive then f is partially hyperbolic.

Two kinds of partial hyperbolicity: TT3 = E cs ⊕ Eu and strong:
TT3 = E s ⊕ E c ⊕ Eu.
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Long term goal

Understand the relationship between:

Robust dynamical behavior.

Invariant geometric structures.

Topological properties.

(Pujals-Bonatti-Wilkinson) Proposal for classification of strong partially
hyperbolic transitive diffeomorphisms in dimension 3.

The classification is modulo center foliations.
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Integrability problem

Definition

Let f : M → M be partially hyperbolic (i.e. it has a dominated splitting
TM = E ⊕ F with either E uniformly contracting or F uniformly
expanding). We say that f is dynamically coherent if there exist
f -invariant foliations FE and FF tangent respectively to E and F .

The uniform bundles are always uniquely integrable (Hirsch-Pugh-Shub
1970’s).

Definition

A partially hyperbolic diffeomorphism f (with splitting TM = E cs ⊕ Eu) is
almost dynamically coherent if there exists a foliation F transverse to Eu.

It is an open and closed property!
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Strong partial hyperbolicity

In dimension 3.

Definition

A diffeomorphism f : M3 → M3 is strongly partially hyperbolic (SPH) if
there exist a dominated splitting

TM = E s ⊕ E c ⊕ Eu

into one-dimensional bundles. E s is uniformly contracting and Eu is
uniformly expanding.

Dynamical coherence: All the subbundles (E s ⊕ E c , E c ⊕ Eu and E c)
are integrable to a f -invariant foliation.
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Previous Results

Theorem (Brin-Burago-Ivanov)

Under a stronger (absolute) version of SPH, if f : T3 → T3 is SPH then it
is dynamically coherent.

This was used by Hammerlindl to get leaf conjugacy.

Theorem (Rodriguez Hertz-Rodriguez Hertz-Ures)

There exists a (non transitive) SPH diffeomorphism in T3 which is NOT
dynamically coherent.
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Statement of results

Theorem

Let f : T3 → T3 a PH diffeomorphism isotopic to Anosov and almost
dynamically coherent. Then f is dynamically coherent.

Theorem

Let f : T3 → T3 a SPH diffeomorphism.

Either there exists a repelling torus T tangent to E s ⊕ Eu or,

There exists an f -invariant foliation Fcs tangent to E s ⊕ E c .

Corollary

If f : T3 → T3 is SPH and Ω(f ) = T3 then f is dynamically coherent.
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Some results on foliations

To prove the previous theorems, we must improve slightly some well
known results on codimension one foliations:

Classification in T3: We give a classification of foliations without torus
leaves in T3.

Global product structure: We give a quantitative version of how small
must the holonomy be with respect to the local product structure in order
to get global product structure.
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Results of Brin-Burago-Ivanov

Let f : M3 → M3 be a SPH diffeomorphism.

(Burago-Ivanov) f is almost dynamically coherent.

(Brin-Burago-Ivanov)If M = T3. f∗ : R3 → R3 is SPH (either f∗ is
hyperbolic or f∗ “is” Anosov×IdS1).
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Strategy of the proof in the SPH case

Structure of Reebless foliations.

Global product structure is enough

Separate on cases:

f∗ is Anosov: Easy case (codimension one foliations without holonomy
have global product structure)
f∗ is Anosov×IdS1 : We discuss depending on the invariant subspaces
close to the foliations:

The plane projects into a torus: We find a repelling torus.
The plane close to the center stable leaf is the center unstable plane:
Estimate growth of diameter and apply Novikov’s theorem.
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Conclusions and Questions

Many questions remain:

- Understand the attracting regions in 3-dimensional manifolds.
Quasi-atractors, new examples, classification.

- Study partial hyperbolicity in other 3-manifolds. Leaf conjugacy
results.

- Obtain dynamical consequences from the existence of foliations.

With Hammerlindl, we have obtained leaf conjugacy for SPH diffeos in T3

and nilmanifolds. We have advanced in the Solvemanifold case.
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Thanks! Gracias! Merci!
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