
ANOSOV REPRESENTATIONS

RAFAEL POTRIE

ABSTRACT. This are informal notes on Anosov representations for a minicourse joint
with F. Kassel in the conference ’Beyond Uniform Hyperbolicty’ (Provo, 2017). They con-
tain more than it will be presented and should (ideally) serve as a map to the references.
They have not been revised, and it is likely they contain errors of all types, use with cau-
tion. (It is also likely that some important references are missing, please let me know if
you find some problems in this regard, or any other.)

1. INTRODUCTION

Let Γ be a subgroup of a (semisimple) Lie group G . We are interested by the study of
those subgroups which are discrete in G (i.e. the restriction of the topology to Γ makes
it discrete). We will assume throughout that G ⊂ GL(d ,R) for some d > 1 (this is no big
restriction) and in several ocasions we will restrict to very specific groups in order to work
mainly with linear algebra instead of lie theory. We refer the reader to the excelent notes
[Be] (and references therein) for some background on such subgroups.

Some general (and quite imprecise/incomplete) goals can be described as follows:

• Understand the interaction between the geometry of G and that of Γ. This may
be particularly rich when Γ is quasi-isometrically embedded.

• When Γ = π1(M) and M is a (closed) manifold, undertstand to which extent the
embedding provides some geometric structure on M .

• Counting problems; how many elements of Γ are there in a ball of radius R of G?
• Understand deformations of the structure. E.g. how flexible is the embedding?

how does the counting vary with the deformation?.
• Rigidity properties: A way to see this is the understanding of the Zariski closure

of Γ and when it is (much) smaller than G . Describe this closure is a relevant
problem and sometimes rigidity is claimed when some weak hypothesis impose
some constraints on the Zariski closure.

We are interested in properties which are stable under deformations. To study defor-
mations of Γ⊂G it is convenient to work with representations: Given Γ an abstract group
and G a Lie group, we say that a map ρ : Γ→G is a representation if it is a group morphism
(i.e. ρ(γβ) = ρ(γ)ρ(β) and ρ(γ−1) = (ρ(γ))−1). We say that:

• ρ is faithful if it is injective.
• ρ is discrete if the image of Γ in G (which is a subgroup) is discrete in G .

We denote Hom(Γ,G) to the set of representations of Γ into G . We give a topology
to Hom(Γ,G) stating that a sequence ρn converges to ρ if ρn(γ) → ρ(γ) for every γ ∈ Γ
(pointwise convergence). We will restrict to the case where Γ is finitely generated so that
Hom(Γ,G) can be identified with a subset of Gk with the product topology (where k ≥ 1
is larger than the size of a generator of Γ).

The author would like to thank the organisers for the invitation to deliver this course, and in particular
to F. Kassel for accepting to deliver the course jointly.
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Remark 1.1. Indeed, when Γ is finitely generated and G is an algebraic group; the set
Hom(Γ,G) is an algebraic sub-variety of G . This important fact will be irrelevant in this
minicourse.

Of fundamental importance to us will be the existence of representations of a given
group Γwhich are robustly faithful and discrete. Notice that in this case one can consider
G/ρ(Γ) to be the quotient space that will have the structure of orbifold1 locally modelled
in G .

Remark 1.2. Tipically, one considers the action of Γ into the symmetric space of G defined
as G/K where K is a maximal compact subgroup of G . If ρ(Γ) is discrete in G ∼= Isom(G/K )
then it is also discrete in G/K .

A well known result, known as Ehresmann-Thurston’s principle (see [BeGu]) states that
when Γ is cocompact, this is always the case:

Theorem (Ehresmann-Thurston). If ρ : Γ→G is a faithful and discrete representation so
that G/ρ(Γ) is compact, then, ρ is robustly faithful and discrete.

This is a transversality result, and implicitly uses the fact that Γ is finitely generated.
Compactness is crucial as it allows to establish this sort of uniform transversality (see
the proof in [BeGu] which makes this fact very clear). In fact, Ehresmann-Thurston’s
theorem is a much more general statement dealing with (G , X )-structures on manifolds
and the corresponding statement for cocompact lattices can be shown in many other
ways (e.g. in higher rank by appealing to Margulis’ rigidity results and in real rank 1
except for SL(2,R) by appealing to Mostow’s rigidity).

We will see later that Anosov representations, the object of this notes, are representa-
tions satisfying some sort of uniform transversality condition that allows, in a certain
way, to prove that they are stably faithful and discrete by a similar argument without us-
ing cocompactness (though some form of cocompactness is hidden as shown recently in
[DGK]). These representations are interesting, among many other things, because they
provide open sets of faithful and discrete representations (which also enjoy other impor-
tant properties).

Other examples of robustly faithful and discrete representations are given by rigidity
results such as Mostow rigidity or Margulis superrigidity, but these are in a sense artifi-
cial as the reason for the robustness is tied with the lack of deformations of the group
rather than to a way in which the group is embedded in the Lie group. More interesting
examples of (non Anosov) representations which are robustly faithful and discrete have
recently appeared (see [DGK2]).

Stil, I find the following open question quite important and a motivation for the study
of Anosov representations in the same way as hyperbolic dynamics appears in the study
of smooth dynamics:

Question 1. Is every robustly faithful and discrete representation of a hyperbolic group Γ

Anosov? What about a robustly quasi-isometric representation of Γ into a higher rank Lie
group2?

1Due to the possible existence of finite order elements in Γ one cannot ensure that the quotient is a
manifold, but due to Selberg’s theorem [Be, Proposition 2.1] one can take a finite index subgroup Γ′ of Γ for
which the quotient is a true manifold.

2Quasi-isometry will be defined below. Here one needs to add higher rank because as we will see, every
quasi-isometric representation into a rank one Lie group is automatically Anosov.
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We will see that if a group admits an Anosov representation then it must be hyperbolic.
We remark that this question admits a positive answer3 for G = PSL(2,C) ([Su]) and into
G = PSL(2,R) ([Go, ABY]). In higher rank, as far as I am aware, the only result in this
direction concerns certain connected components of representations of certain Coexeter
groups into PSL(d ,R) (see [DGK2, Section 11]).

Let me close this introduction by stating what I believe to be the first case I would
consider4:

Question 2. Let A,B ∈ SL(3,R) be two matrices so that for every pair (Â, B̂) close to (A,B)
one has that there exists c > 0 such that:

For any k > 0 and any W a (reduced) product of k matrices in {Â, B̂ , Â−1, B̂−1} it
holds

‖W ‖ ≥ ck .

Then, is there some ĉ > 0 so that

For any k > 0 and any W a (reduced) product of k matrices in {A,B , A−1,B−1} it
holds

‖W ‖2

‖W −1‖ ≥ ĉk .

2. SOME PRELIMINARIES

2.1. Geometry of finitely generated groups. When Γ is a finitely generated group and F
a finite symmetric generator of Γ we denote, for γ,β ∈ Γ:

dF (γ,β) := |β−1γ|F ,

where | · |F denotes the word length (i.e. |γ|F := min{k : γ= fi1 · · · fik where fi j ∈ F }). The
distance dF is invariant under left multiplication and it is independent on F up to quasi-
isometry; i.e. if F ′ is other finite generating set, then, there exists C > 1 such that for every
γ,β ∈ Γ:

C−1dF ′(γ,β)−C ≤ dF (γ,β) ≤C dF ′(γ,β)+C .

2.2. Geometry of Lie groups. Semisimple Lie groups can be characterized as the isome-
try groups of symmetric spaces of non-positive curvature withoutRk -factors. If X is such
a symmetric space and G ∼= Isom(X ) is a semisimple Lie group, it follows that there is an
invariant non-degenerate form κ (the Killing form) such that if K is a maximal compact
subgroup of G then G/K is Riemannian with respect to the induced form of κ in the quo-
tient and is isometric to X . We refer the reader to [BPS, Section 7 and 8] and references
therein for a more detailed account in a language not so far from dynamicists. A great
general reference is [Eb]; also one can look at the very complete [He].

2.3. Boundaries.

3In fact, for PSL(2,C) and PSL(2,R) there might be easier ways as the results of [Su] and [ABY] only assume
’robust faithfulness’....

4Probably out of ignorance. It makes sense to believe that other groups might have a better way to be
attacked too (for example, see [DGK2] where they can even manage the robust faithful and discreteness to
imply Anosov). The advantage of SL(3,R) is that, as we will see, verifies that there is only ’one way’ to be
Anosov



4 R. POTRIE

2.3.1. Word hyperbolic groups. A finitely generated group Γ is said to be word hyperbolic
if its Cayley graph is hyperbolic (in the sense of Gromov) as a metric space with the met-
ric defined by giving unit length to edges of the graph [Gr, CDP, GH]. This metric in the
Cayley graph restricts to the word metric in the vertices (i.e. elements of Γ). As being
hyperbolic in the sense of Gromov is invariant under quasi-isometries, this does not de-
pend on the choice of the finite (symmetric) generating set (though the graph itself and
its topology does depend on this).

Recall that a (geodesic) metric space X is said to be δ-hyperbolic if for every triplet
x, y, z ∈ X if one considers [x, y], [x, z] and [y, z] geodesic segments joining such points,
then it holds that [x, y] is contained in the δ-neighborhood of [x, z]∪ [y, z]. This is some-
times expressed by saying that triangles are δ-thin.

Exercise 1. Show that if d(x, y) > δ then there is a unique geodesic joining x and y .

For a δ-hyperbolic space X it is possible to construct a boundary at infinity ∂X which
consist of equivalence classes of geodesic rays where the equivalence is given by being
at bounded Hausdorff distance apart (this is sometimes called the visual boundary and
can be defined in more generality, an important aspect of hyperbolic spaces is that many
different definitions of boundary coincide).

The working definition of a hyperbolic group in this notes is the one given by the fol-
lowing result of Bowditch [Bow]:

Theorem 2.1 (Bowditch). Let Γ be a group that acts on a proper and compact (infinite)
metric space X . Let X (3) = {(x1, x2, x3) : xi 6= x j , i 6= j } and assume that the diagonal
action of Γ is properly discontinuous and cocompact in X (3). Then, Γ is word hyperbolic.

The converse statement holds if Γ is not elementary (i.e. virtually Z) and the set X for
which the statement holds is what it is called the boundary at infinity of Γ and denoted
by ∂Γ as above.

In what follows, the reader can assume that the group is one of the following which
already provide a large class of examples:

• free groups in finitely many generators,
• fundamental groups of negatively curved closed manifolds.

For free groups, one can think of the group as lying as a (quasi-isometrically embed-
ded) subgroup of PSL(2,R) whose boundary ∂Γ is a Cantor set and corresponds to the
uniformisation of a non-compact surface of finite type and no cusps.

In the case of a negatively curved closed manifold M , one thinks of the boundary of
the group as the set of geodesic rays in M̃ through a point x which is identified with a
(dim(M)−1)-dimensional sphere.

We refer the reader to [Led] for an excellent introduction in the setting of fundamen-
tal groups of closed manifolds of negative curvature. Classical references to hyperbolic
groups are [Gr, GH, CDP, BH].

Remark 2.2. The metric in ∂Γ is well defined up to Hölder equivalence, so it makes sense
to speak about Hölder maps from and to ∂Γ but it does not make sense to speak about
more regularity unless some specific choices are made.

Remark 2.3. If Γ is a hyperbolic group, then Γ naturally acts on ∂Γ. Every non-torsion
(i.e. infinte order) element of Γ acts as a north-south dynamics: with two fixed points,
one which is a attracts everything except from the other fixed point and one which is an
attractor for the inverse. For γ ∈ Γ, we denote as γ− and γ+ to the repeller and attractor
respectively.
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2.3.2. Semisimple Lie groups. The symmetric space of a semisimple Lie group is a non-
positively curved space, and, when the real rank of G is larger than 1 there curvature
attains 0 at some flats. Therefore, there are several possible boundaries one can consider
and in general these do not coincide (as in the real rank 1 case), see e.g. [BH, Eb].

The Furstenberg boundary is F := G/P where P is a minimal parabolic subgroup. A
pair of elements of F in general position correspond to a flat in the symmetric space.
Sometimes, one wants boundaries that identify different flats, for this, one considers
larger parabolic subgroups (with respect to some roots of the Lie algebra).

To say this in a language familiar to dynamicists (i.e. myself), when G = SL(d ,R) these
boundaries correspond to several choices of (not necessarily complete) flags onRd . Again,
we refer the reader to [BPS, Sections 7 and 8] for a (hopefully) gentle introduction to these
objects. Also, one can look at [Fil] for other nice introduction making use of not so much
Lie theory.

2.4. Geodesic flow on hyperbolic groups. Let Γ be a word hyperbolic group. Let ŨΓ :=
∂(2)Γ×Rwhere ∂(2)Γ= {(x, y) ∈ (∂Γ)2 : x 6= y}.

One can consider a flow φ̃t : ŨΓ→ ŨΓ as φ̃t (x, y, s) = (x, y, s + t ).

A cocycle will be a (Hölder) continuous map c : Γ×∂(2)Γ→R such that for every γ1,γ2 ∈
Γ and (x, y) ∈ ∂(2)Γ:

c(γ1γ2, x, y) = c(γ1,γ2x,γ2 y)+ c(γ2, x, y).

One says that a cocycle c is positive if for every γ ∈ Γ one has that c(γ,γ−,γ+) > 0 (c.f.
Remark 2.3).

Given a cocycle c one can define a Γ action on ŨΓ as γ · (x, y, s) = (γx,γy, s − c(γ, x, y)).
This action clearly commutes with the flow φ̃t .

Theorem 2.4 (Gromov [Gr, Min]). There exists a positive cocycle c : Γ×∂(2)Γ→R such that
the action of Γ on ŨΓ via c is properly discontinuous and cocompact. The quotient flow
φt of φ̃t on the quotient UΓ of ŨΓ is a topologically Anosov flow.

Remark 2.5. The cocycle is not unique; changing the cocycle corresponds to reparametris-
ing the flow (which does not affect the topological Anosov nature of it).

Remark 2.6. If Γ = π1(M) where M is a closed manifold of negative curvature then one
can choose c so thatφt acts on UΓ∼= T 1M as the geodesic flow of the metric. In this case,
ŨΓ corresponds to T 1M̃ on which it is well known that geodesics are determined by two
different points in the visual boundary of M̃ . The cocycle c is the Busseman cocycle. See
[Led] for an extensive presentation of this in the context of manifolds.

Remark 2.7. For Γ=π1(S) where S is a negatively curved surface, then ŨΓ is a connected
component of (∂Γ)(3) in Theorem 2.1 and the diagonal action is a way to choose the co-
cycle. In higher dimensional negatively curved manifolds M , there is also a relationship
as one can think of the space (∂Γ)(3) as a certain frame bundle over M and the diagonal
action giving rise to some frame flow but this is more complicated.

2.5. Dominated splittings and singular values. Consider T : X → X a homeomorphism
of a compact metric space X and let A : X → GL(d ,R) a continuous function.

We define the linear cocycle A over T to be the pair (T, X ) which induces an (invertible)
dynamics on X ×Rd as follows:

(T, A) : X ×Rd → X ×Rd ; (x, v) 7→ (T (x), A(x)v).
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We denote A(n)(x) to be the matrix A(T n−1(x))◦ · · · ◦ A(x) if n > 0, the identity if n = 0
and the matrix (A(T n(x))◦ · · · ◦ A(T −1(x)))−1 if n < 0.

We remark that similar definitions can be made for flows (see e.g. [BPS, Section 2]). A
more complete introduction to dynamics of linear cocycles can be found in [Via]).

We say that (T, A) admits a dominated splitting of index p if there exists a pair of maps
(a priori not continuous) E cs : X →Gd−p (Rd ) and E cu : X →Gp (Rd ) and `> 0 such that:

(equivariance:) A(x)E cs(x) = E cs(T (x)) and A(x)E cu(x) = E cu(T (x)),
(transversality:) E cs(x)⊕E cu(x) for every x ∈ X ,
(domination:) for every unit vectors v ∈ E cs(x) and w ∈ E cu(x) one has that:

‖A(`)(x)v‖ ≤ 1

2
‖A(`)(x)w‖.

Continuity of the bundles follows from these conditions. Other standard characteri-
sations include cone-field criteria (which is important as it shows its robust nature and
allows to detect domination with only ’finitely many iterates’), see e.g. [BG] or [BDV,
Appendix B].

There is a nice characterisation of dominated splitting in terms of singular values. This
was first developed by Yoccoz [Yoc] for 2× 2 matrices and then extended by Bochi and
Gourmelon in all generality [BG]. This will be a key tool in our proof and it is the only
place where ’non-elementary’ methods will be used (the proof of Bochi-Gourmelon re-
quires a form of ’Oseledets theorem’ for linear cocycles).

We first give some definitions: for A ∈ GL(d ,R) we define σ1(A) ≥σ2(A) ≥ ·· · ≥σd (A) >
0 to be the singular values of the matrix A (i.e. the square-root of the eigenvalues of the
symmetric positive matrix A A∗). It holds that σ1(A) = ‖A‖ and σd (A) = ‖A−1‖−1.

Theorem 2.8 (Bochi-Gourmelon). A linear cocycle (T, A) admits a dominated splitting of
index p if and only if there are constants C ,λ> 0 such that for every x ∈ X and n > 0:

σp (A(n)(x))

σp+1(A(n)(x))
≥Ceλn .

In this setting, one can define the universal p-dominated set with constants C ,K ,λ,
more precisely. We say that a sequence {An}n∈Z of matrices is a p-dominated sequence if
there are constants C ,K ,λ so that it belongs to:

D(C ,K ,λ, p,Z) :=
{

{An}n∈Z : ‖A±1
i ‖ ≤ K ;

σp (A j · · · Ai )

σp+1(A j · · · Ai )
≥Ceλ( j−i ) ∀i < j

}
.

Notice that D(C ,K ,λ, p,Z) is a compact shift invariant subset of the set of sequences
of matrices in GL(d ,R)Z and therefore we can consider T to be the shift restricted to this
subspace and if one considers the cocycle {An} 7→ A0 then Theorem 2.8 applies to show
that there is a dominated splitting. In particular, by continuity of the bundles and com-
pactness, there is a lower bound on the angle between the ’invariant subspaces’. One can
make a further compactness argument to speak about p-dominated sequences which
are finite instead of infinite and obtain bounds on the angles of expanded and contracted
subspaces (we refer the reader to [BPS, Lemma 2.5] for a precise statement).

Let us remark that in [GGKW, Section 5] the concept of CLI-sequences is introduced
which is very related to that of p-dominated sequences. Essentially the same results are
obtained but by elementary methods (the proof of [BG] uses Oseledets theorem). Other
proof of a similar result was also announced in [Mo].
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3. ANOSOV REPRESENTATIONS

3.1. Classical definition. Anosov representations were introduced in [Lab] for funda-
mental groups of closed manifolds with negative curvature. This was generalised by
[GW] to work in any hyperbolic groups. Today, there exist several equivalent definitions,
some of which do not require (a priori) that the group is hyperbolic (see for instance:
[BCLS, GGKW, KLP, BPS, DGK, DGK2]).

Let Γ be a word hyperbolic group with boundary ∂Γ.

Let ρ : Γ→ G be a representation. We start by assuming that G = GL(d ,R) (or SL(d ,R)
to be able to give a definition independent of Lie theory. We denote as Gp (Rd ) to the
Grassmanian of p-planes in Rd endowed with its natural topology.

The representation is said to be p-Anosov if the following conditions are verified:

• There exist continuous maps ξp : ∂Γ→ Gp (Rd ) and ξd−p : ∂Γ→ Gd−p (Rd ) which
are:

– equivariant, i.e. ρ(γ)ξp (x) = ξp (γx) and ρ(γ)ξd−p (x) = ξd−p (γx) for every
γ ∈ Γ and x ∈ ∂Γ,

– transverse, i.e. if x 6= y ∈ ∂Γ then one has that ξp (x)⊕ξd−p (y) =Rd .
• Moreover, the maps verify a uniform contraction-expansion property that we will

explain below.

Let us remark that it is shown in [GW] that the contraction-expansion property is im-
mediate if the image of ρ is irreducible (i.e. there is no proper subspace of Rd invariant
under all ρ(γ) with γ ∈ Γ). Also, in [GGKW] it is shown that one can express the con-
traction and expansion of the bundles in terms of the expansion and contraction of ρ(γ)
along ξp (γ+) and ξd−p (γ−) where γ+ and γ− ∈ ∂Γ are the attractor and repeller of γ in ∂Γ.

The expansion and contraction property is expressed in terms of linear cocycles over
the geodesic flow of Γ. Define Ṽ to be the trivial vector bundle over ŨΓ with fiber Rd , i.e.
Ṽ = ŨΓ×Rd . Consider the linear flow over the geodesic flow in Ṽ defined by ψ̃t (x, v) =
(φ̃t , v). Given a representation ρ of Γ one can define the bundle Vρ over UΓ by making
the quotient of Ṽ by the action of Γ given by:

γ((x, y, s), v) 7→ (γ(x, y, s),ρ(γ)v).

(The action in the first coordinate (x, y, s) ∈ ∂(2)Γ×R∼= ŨΓ is one given by Theorem 2.4.)

When ρ admits equivariant boundary maps ξp ,ξd−p as above, these give rise to in-
variant bundles Ẽ(x, y, s) = ξd−p (y) and F̃ (x, y, s) = ξp (x). It follows that these bundles
project to bundles E ,F which are invariant by the flow ψt due to the equivariance. We
endow Vρ with a riemannian metric (varying continuously on the base point).

We will say that they verify a contraction/expansion property whenever there are con-
stants C ,λ > 0 such that for every z ∈ UΓ, v ∈ E(z) and w ∈ F (z) unit vectors and t > 0
one has:

‖ψt v‖
‖ψt w‖ ≤Ce−λt .

In the language of linear cocycles, one can say equivalently that the bundle F domi-
nates the bundle E . Indeed, it is shown in [BPS, Proposition 4.6] that if the flowφt admits
a dominated splitting of index p, then when lifted to Ṽ the bundles only depend on one
of the points at infinity and therefore give rise to equivariant maps (and in particular, the
representation must be p-Anosov).
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Exercise 2. Show that if p ≤ d/2 then ξp (x) ⊂ ξd−p (x) for all x ∈ ∂Γ.

When the group G is not GL(d ,R) but is semisimple, then one can define the notion
of P-Anosov where P is a parabolic subgroup of G . For this, one needs the parabolic
subgroup to be invariant under the Cartan involution and one defines a map ξ : ∂Γ→
G/P . (In the case of G = SL(d ,R) for each p there is such a parabolic subgroup and the
quotient G/P is exactly the set of pairs of p-planes and d −p-planes in general position.
See [BPS, Section 7] for a ’translation’ from one setting to the other.)

We also remark that if one has a representation to GL(p,R) then one can use exterior
powers to define a representation into another GL(k,R) (in fact, k is the dimension of∧p Rd ) so that the representation becomes 1-Anosov (sometimes also called proyectively
Anosov). Using some representation theory, it is shown in [GW, Section 4] that this pro-
cedure is completely general and every P-Anosov representation into a semisimple Lie
group P can be ’transformed’ into a 1-Anosov representation into SL(d ,R). See [BPS,
Section 8] for more information on these equivalences.

3.2. Some equivalences. The above definition is very useful, and enjoys several very
nice properties explored in the papers mentioned above. One clear drawback of the def-
inition is that finding equivariant maps is not so trivial in general. As in the theory of
dominated splittings, it is however natural to expect that if some ’cone contraction’ con-
dition is verified, then the maps will exist (this allows, e.g. to detect domination by just
knowing finitely many images of ρ).....

One of the main purposes of this notes is to give an indication of the proof of the fol-
lowing result from [KLP] which was obtained by other means5 in [BPS]. See also [GGKW]
for similar results. This allow to give characterisation of Anosov representations without
need to find the equivariant maps and without knowledge a priori on the geometry of
the group Γ. We will work with G = GL(d ,R) but of course all extends to semisimple Lie
groups using the above comments.

Given a group Γ with a finite generating set F we say that a representation ρ : Γ →
GL(d ,R) is p-dominated if there exists C ,λ> 0 such that for every γ ∈ Γ one has that:

σp (ρ(γ))

σp+1(ρ(γ))
>Ceλ|γ|F . (3.2.1)

We remark that other related notions of domination appear in the literature (see e.g.
[DT, GKW] or [GGKW, Section 7]) and can be related to this one too.

So we can now state the announced result:

Theorem 3.1. If Γ admits a p-dominated representation into GL(d ,R) then Γ is word hy-
perbolic and ρ is p-Anosov.

We will use sometimes the following fact: the (left invariant) Riemannian metric on the

symmetric space PSL(d ,R)/PSO(d ,R) of PSL(d ,R) is given by d(id, g ) =
√∑d

i=1(log(σi (g )))2.
This implies that

d(g ,h) ∼ log‖g−1h‖.

(Notice that if k1,k2 ∈ PSO(d ,R) then d(g k1,hk1) = d(g ,h).)

In GL(d ,R) one needs to normalize through the determinant to get that

5In particular, by using linear cocycles and an interpretation of domination due to [Yoc, BG] explained in
section 2.5.
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d(id, g ) =
√

(log(σ̂1(g )))2 + . . .+ (log(σ̂d (g ))2)+ (log(det(g )))2

where σ̂i (g ) = σi (g )(det(g ))−1, as det(g ) = σ1(g ) · · ·σd (g ) may be different from one as
is the case in PSL(d ,R). Similar formulas exist for general Lie groups (see e.g. [BPS, Sec-
tion 8]). As we’ve mentioned, one can always reduce to consider PSL(d ,R). In the case
of GL(d ,R) this consists on dividing by the determinant which does not affect the defini-
tions (see [BPS, Section 3]).

Once one shows that if a group Γ admits a p-dominated representation then Γ is word
hyperbolic ([BPS, Section 3]), then the equivalence between definitions is not hard but
still requires some amount of work (see [BPS, Section 4] or [GGKW, Section 5]).

4. PROPERTIES

We prove some direct properties which follow from the definition of p-dominated or
p-Anosov representations.

4.1. Quasi-isometry. First we show the following direct property:

Proposition 4.1. If ρ : Γ→ GL(d ,R) is p-dominated, then, it is quasi-isometric.

Proof. We assume the image of ρ is in PSL(d ,R) for simplicity. Notice that in this case
we have that σ1(ρ(γ)) · · ·σd (ρ(γ)) = 1 for all γ ∈ Γ. Recall that d(g ,h) ∼ log‖g−1h‖ =
logσ1(g−1h).

Chooseγ,β ∈ Γ. We want to estimate d(ρ(γ),ρ(β)) ∼ log‖ρ(γ−1)ρ(β)‖ in terms of d(γ,β) =
|γ−1β|. So, it is enough to estimate d(id,ρ(γ)) in terms of |γ|. Notice that if F is a symmet-
ric generating set and K > 0 is the maximum norm of ‖ρ( f )‖ with f ∈ F then it follows
immediately that:

d(id,ρ(γ)) ∼ log‖ρ(γ)‖ ≤ |γ| logK .

To estimate from below, choose γ ∈ Γ and fix the constants c,λ> 0 from p-domination.
Let qγ ∈ {1, . . . ,d −1} be the largest q for which σq (ρ(γ)) ≥ 1

The fact that ρ is p-dominated implies that: σp (ρ(γ)) > cλ|γ|σp+1(ρ(γ))

• if qγ ≥ p +1 it follows that σp+1(γ)) ≥ 1 and therefore σ1(ρ(γ)) ≥σp (ρ(γ)) ≥ ceλ|γ|

showing that log‖ρ(γ)‖ ≥λ|γ|+ logc.
• the same holds if qγ ≤ p − 1 by using the fact that σd−i (ρ(γ)−1) = σi (ρ(γ)) and

that |γ| = |γ−1|.
• if qγ = p we get (using either γ or γ−1 that log‖ρ(γ)‖ ≥ λ

2 |γ|+ logc.

This completes the proof. �

4.2. Robustness. To prove robustness of p-dominated representations, we shall use The-
orem 3.1 (which does not need robustness in the proof) by assuming at some point that
Γ is hyperbolic.

Let Γ be a finitely generated group with symmetric generator F and ρ : Γ→ GL(d ,R) a
p-dominated representation. Let:

GF := {{ fi }i∈Z ⊂ FZ : | fi · · · fi+ j | = j +1 for i ∈Z, j ∈Z>0}.

The set GF parametrizes all infinite geodesics passing through id in the group Γ: if
{γn}n∈Z is such a geodesic (with γ0 = id), then the sequence {gn}n∈Z ∈ GF with gn =
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γ−1
n γn+1. Indeed, since d(γn ,γn+1) = 1 it follows that γ−1

n γn+1 ∈ F and one has that
gn · · ·gn+m = γ−1

n γn+m+1 = d(γn ,γn+m+1) therefore |gn · · ·gn+m | = m+1. The fact we force
γ0 = id is to have a bijective correspondence.

Denote σ : FZ→ FZ the shift map {xn}n 7→ {xn+1}n . Notice also that:

Claim 4.2. The set GF is closed and shift invariant in FZ.

Proof. The fact that it is shift invariant is immediate as the definition does not involve
the position of the elements (just its relative position). To show it is closed, choose a
sequence { fn}n∈Z not in GF and numbers i , j so that | fi · · · fi+ j | < j +1. There is a neigh-
borhood of the sequence which coincides with { fn}n for n ∈ {i , . . . , i + j } therefore, the
complement of GF is open. This completes the proof. �

Define the following linear cocycle over σ. A : FZ → GL(d ,R) is such that { fn}n 7→
ρ( f0)−1. It follows that A(k)({ fn}n) = ρ( fk−1)−1 · · ·ρ( f0)−1 = ρ( f0 · · · fk−1)−1 (if k > 0, for
negative k it is similar).

The domination condition translated to this setting6 is exactly the condition of [BG]
and therefore we obtain:

Theorem 4.3 (Bochi-Gourmelon, see section 2.5). The cocycle A overσ|GF admits a dom-
inated splitting of index p.

Dominated splittings are robust, therefore, we know that for ρ′ ∼ ρ the induced cocycle
will also admits a dominated splitting of index p. It is in this moment that we need to
assume that Γ is hyperbolic to deduce from this that ρ′ is p-dominated. For this we
will use the following fact (which is a very weak version of the automatic property of
hyperbolic groups, see [CDP] or [BPS, Section 5]):

Fact 4.4. There exists k > 0 so that for every γ ∈ Γ there is an infinite geodesic through id
that lies at distance ≤ k of γ.

With this fact in mind, it is easy to extend domination along elements in GF (i.e. that
belong to infinite geodesics through the origint) to any element in Γ just by loosing some
uniform constants. Notice that there are many groups beyond hyperbolic groups that
enjoy this property (e.g. Zd ).

In [BPS, Section 5] stronger properties of the subset GF are discussed (having to do with
Cannon’s cone types and the automatic structure of hyperbolic groups, see e.g. [CDP]).
In particular, the restriction σ|GF is a sofic shift.

5. EXAMPLES

The following list is not exhaustive and is meant to provide references for examples
rather than developing them. It turns out that each of the examples can be viewed as a
topic of research by itself and one of the beautiful features of Anosov representations is
that it unifies several aspects of these rather different settings.

5.1. Schottky subgroups. This is kind of the easiest family of examples. Schottky sub-
groups consist on representations of the free group into G . As before, we restrict to
SL(d ,R) for simplicity.

Whenever there are two matrices A,B ∈ SL(d ,R) which verify that A,B , A−1 and B−1

are proximal in the sense that they have a largest eigenvalue with multiplicity one and

6Notice that since we took inverses, the p-domination becomes d −p-domination. But it is clear that if
a representation is p-dominated then it is also d −p-dominated.
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whose modulus is larger than the second eigenvalue, it follows from a simple application
of cone-fields that if the eigenspaces of A and B are in general position, then there is
n > 0 so that the group generated by An and B n is 1-Anosov. This is easy to show using
cone-fields (and a kind of ping-pong argument).

See [Be, Be2] as well as [KLP, CLS] for more examples and proofs.

5.2. Fuchsian representations of surface groups. Let Σ be a higher genus closed ori-
entable surface and π1(Σ) be its fundamental group. Recall that a Fuchsian represen-
tation of π1(Σ) is a faithful and discrete representation which then induce a hyperbolic
metric on Σ. It has been shown by Goldman that (given an orientation on Σ) these rep-
resentions are connected. Moreover, they constitute a whole connected component of
Hom(π1(Σ),PSL(2,R)). In this way, it is natural to identify the Teichmuller space ofΣwith
this component of Hom(π1(Σ),PSL(2,R))/PSL(2,R).

The group PSL(2,R) acts naturally on the circleP(R2) by the linear action on subspaces.
The stabiliser of a line is exactly the (unique strict) parabolic subgroup of PSL(2,R) up to
conjugacy .

Given a point x ∈ ∂π1(Σ) one can choose a geodesic ray {γn}n≥0 in π1(Σ) converging to
x and associate ξ(x) in P(R2) via the limit of U (ρ(γn)) the most expanded direction of the
matrix ρ(γn). It is an exercise (using e.g. the Morse Lemma inH2) to show that this direc-
tion is well defined, continuous and independent of the chosen geodesic. In particular,
this gives a continuous mapping from ∂π1(Σ) to P(R2) which for periodic elements (i.e.
geodesics of the form γn = γn) corresponds to the expanding eigendirection of γ.

Notice that if ρ a Fuchsian representation then ρ(γ) is diagonalizable for all γ ∈ ∂π1(Σ),
therefore, this gives that the map ξ verifies that ξ(x)⊕ ξ(y) = R2 at least when x and y
correspond to the attractor and repeller of elements γ. One can push this to show that it
is indeed an Anosov representation (and it is a quite nice way to see that being faithful
and discrete is an open property7!)

5.3. Quasi-Fuchsian representations of surface groups. When ρ : π1(Σ) → PSL(2,R) is
faithful and discrete, it follows that the action is cocompact8 and therefore quasi-isometric
via the Svarc-Milnor Lemma. This allows to show that being faithful and discrete is an
open propery (as it implies that the representation is Anosov!). Closedness of faithful
and discrete representations is typically simpler by Margulis Lemma (or in the case of
PSL(2,R) or PSL(2,C) by Jorgensen’s inequality).

However, when a representation is discrete and faithful into a rank one Lie group but
not quasi-isometric, there is no reason for the discretness and faithfullness to resist per-
turbations. This is key in the proof of geometrisation of 3-manifolds that fiber over the
circle on which the following notion appears:

A representation ρ : π1(Σ) → PSL(2,C) is quasi-Fuchsian if it is quasi-isometric. Be-
ing quasi-isometric, it is easy to construct a continuous limit map from ∂π1(Σ) into the
boundary at infinity of the symmetric space H3 of PSL(2,C) ∼= Isom+(H3) (notice that in
rank one, the symmetric space is hyperbolic and therefore ’all’ notions of boundary co-
incide). This gives the Anosov property and opennes of such representations follow.

It is relevant to remark though, that Anosov representations from π1(Σ) to PSL(2,C)
do not represent the whole connected component, indeed, one can go to the ’limit’ to

7To show closedness, one uses Jorgensen’s inequality
8One way to see this is that the symmetric space is homeomorphic to R2 and then, by a cohomological

dimension argument it follows that the quotient must be compact.
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find representations for which the ’limit curve’ is a Peano curve (also called Cannon-
Thurston’s curve) and corresponds to the inclusion of the fundamental group of a fiber
in the case of a hyperbolic 3-manifold which fibers over the circle.

5.4. Convex cocompact subgroups in rank 1. Rank one lie groups correspond to the
isometry groups of symmetric spaces of negative curvature. These include PSL(2,R) ∼=
Isom+(H2), PSL(2,C) ∼= Isom+(H3), SO(1,n) ∼= Isom+(Hn), PU(1,n) ∼= Isom+(Hn

C
), etc....

(see [He, Qui]).

A finitely generated subgroupΓof a rank one Lie group G is said to be convex-cocompact
if it is quasi-isometrically embedded. This implies directly that it is Anosov with respect
to the unique possible parabolic. The name has to do with another equivalent charac-
terisation: there is a convex set in the symmetric space X =G/K of G which is preserved
by Γ with compact quotient (for this characterisation it is not needed to assume a priori
that Γ is finitely generated as it is a consequence of the definition). See [GW, Bou] for a
proof of these equivalences. These generalise some Schottky subgroups, Fuchsian and
quasi-Fuchsian representations of surface groups, etc.

A particularly important class of examples is given by (finitely generated) Fuchsian and
Kleinian groups without parabolic elements. (See [Su].)

5.5. Hitchin representations. Hitchin components ([Hi]) of representations of surface
groups into PSL(d ,R) generalize to higher rank the well known Fuchsian representations
(see [Lab]).

5.6. Benoist representations. We refer the reader to [Be4] for a survey. We will just indi-
cate one specific example which is in some sense, the analogue of quasi-fuchsian repre-
sentations from fundamental groups of surfaces in PSL(2,C) but instead of growing the
dimension and keeping the rank, we increase the rank (this example is also an example
of a Hitchin representation, and also the easiest one).

In fact, one can see PSL(2,R) as SO(1,2). If one has a fuchsian representation ρ :
π1(Σ) → SO(1,2) then one can think of quasi-fuchsian representations as deformations
of ρ̂ : π1(Σ) → SO(1,3) ∼= PSL(2,C) via the natural inclusion of SO(1,2) into SO(1,3). This
increases the dimension while keeping the rank equal to one.

Another way to extend this is to use the embedding SO(1,2) ,→ SL(3,R). This way, de-
formations of a fuchsian representation give rise to convex projective structures onΣ. No-
tice that SL(3,R) acts on the projective space P(R3) which is a surface.

It is not hard to check that the composition of a fuchsian representation with the natu-
ral embedding SO(1,2) ,→ SL(3,R) is 1-Anosov and the boundary map defines an injective
circle in P(R3). It is not hard to show that the curve after perturbation will still bound a
strictly convex set included in an affine chart on which the surface group will act prop-
erly discontinously and therefore induce a ’convex projective structure’ on the surface.
It can be shown that the whole connected component of such representations represent
convex projective structures but this is more involved (see [Be4, Lab] and references9

therein).

5.7. Maximal representations. See [BIW, BILW]. Also we recommend the survey [BIW].

9In fact, opennes of such representations follows for a much more general theorem of [Ko] which pro-
vides opennes of convex projective structures (notice that the fact that the structure remains convex after
perturbation does not follow from Ehresmann-Thurston’s principle, in the case of ’strictly convex’ struc-
tures such as it is the case here, there is a simpler argument for opennes due to Benoist [?]). For closedness
of convex projective structures on surfaces, see [?]. This follows in more generality too, see [?].
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5.8. Quasi-fuchsian representations in higher rank. See e.g. [Ba2, BaM]

5.9. Other examples. Recently, several new examples have appeared, notably those in
[DGK, DGK2]. This will maybe the subject of one of Fanny’s talks.

Let us also point out other examples [Ba] where there is a very nice construction of a
geometric structure in terms of the representation.

6. GEOMETRIC MEANING

Anosov representations are now known to have induce some proper actions in certain
homogeneous spaces giving rise to some geometric structures on the groups. See [GW,
GGKW]. Fanny will discuss some of this in one of her lectures.

7. WORD HYPERBOLICITY OF GROUPS ADMITTING ANOSOV REPRESENTATIONS

In this section we indicate the main steps of the proof of Theorem 3.1 and refer the
reader to [BPS, Section 3] for a complete (elementary) proof. It is worth indicating that
some ideas here also appear in [GGKW, Section 5].

7.1. Strategy of the proof. We will use Theorem 2.1 as working definition of (non-elementary)
word hyperbolic group. We will assume for simplicity (and without loss of generality) that
p = 1.

We recall that an action of Γ in a topological space X is:

• properly discontinuous if given any compact subset K ⊂ X there exists n such that
if |γ| > n then γK ∩K =;;

• cocompact if there exists a compact subset K ⊂ X such that Γx ∩K 6= ; for every
x ∈ X .

The strategy is then to use condition (3.2.1) in order to construct a set X in P(Rd ) con-
taining all the ’expanding’ directions of large elements in Γ and show that the action of Γ
in this set satisfies the desired properties. Using some linear algebra, one can reduce the
proof to the following:

• Show that the set X is perfect, and for this it will be enough to show that X (3) is
non-empty and use correctly condition (3.2.1).

• Show that the action on X (3) is properly discontinuous, this is probably the easi-
est part: we will just use that if one chooses a very large element satisfying (3.2.1)
and considers 3 sufficiently separated points in X then at least two of them will
be mapped very close-by.

• Show that the action is cocompact, this is a bit subtler, but the idea is simple, if
one finds an element whose ’repeller’ is close to some very small angle between
a triplet of points in X then this element will make all angles between elements
sufficiently large, obtaining a compact fundamental domain for the action.

In what follows we give some more details on these steps and prove the key technical
statement that uses domination (and the main result of [BG]) crucially.

7.2. Some preliminaries in linear algebra and the key lemma. For a matrix A we will
say that it has a gap if σ1(A)/σ2(A) > 1 and a large gap if σ1(A)/σ2(A) is much larger than
1.
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When a matrix A has a gap, one can define U (A) ∈ P(Rd ) to be A(Rv) for the unique
direction v such that ‖Av‖

‖v‖ = ‖A‖ = σ1(A). Similarly, we define S(A) to be the d − 1-
dimensional subspace orthogonal to v .

The following observations will be crucial (for precise computations and complete
proofs see e.g. [BPS, Appendix A]):

Lemma 7.1. Let B be a given matrix, and A a matrix with a large gap (with respect to B)
then:

(1) U (AB) ∼U (A),
(2) U (B A) ∼ BU (A),
(3) if P makes a good angle with S(A) then A(P ) is very close to U (A) and the expan-

sion along P is comparable to ‖A‖.

Proof. For the first two items, notice that it is trivial if B is an isometry. The general case
looks exactly the same as the norm of B and B−1 is chosen much smaller than the gap of
A.

The last item is kind of the definition of U (A) and S(A), one can compute exactly the
expansion along P with respect to the angle that P makes with S(A) and the gap of A. �

Using this estimate and the main result of [BG] we can prove the following key (tech-
nical) statement:

Lemma 7.2. Let ρ : Γ→ SL(d ,R) be a 1-dominated representation and γ,β ∈ Γ sufficiently
large elements, then, if the angle between U (ρ(γ)) and U (ρ(β−1)) is big, then so is the angle
between U (ρ(γ)) and S(ρ(β)).

Notice that this is non-trivial as even if U (ρ(β−1)) ⊂ S(ρ(β)) the subspace S(ρ(β)) has
dimension d −1 instead of 1. The lemma tells us that if the attractor of an element and
the attractor of the inverse of another element are far away, then so is the repeller of the
element. This knowledge is crucial for the proof of hyperbolicity of the group and its
proof needs to use domination.

Sketch of the proof. Consider γ and η−1 and write γ = g1 . . . gn where gi are elements of
the fixed symmetric generator F and β−1 = h1 . . .hm with hi ∈ F . Notice that we can
choose them in order to have |gi . . . gi+ j | = j and |hi . . .hi+ j | = j for every i , j which make

sense. Therefore, the sequences {γi = g1 . . . gi }n
i=0 and {β̂i = h1 . . .hi }m

i=0 are geodesics

(WARNING: β̂−1
i and γ−1

i have no reason to be geodesics).

The first important remark is that if U (ρ(γ)) and U (ρ(β−1)) form a good angle, then one
can kind of ’concatenate’ the geodesics into (uniform) quasi-geodesics. More precisely
(still not so precise), we can show that 10:

d(γi , β̂ j ) = |h−1
j h−1

j−1 . . .h−1
1 g1 . . . gi | ∼ i + j .

This is implied essentially by the domination property and Lemma 7.1 item (1) ap-
plied (if say i > j ) to A = ρ(γi ) and B = ρ(γ−1

i β̂ j ): Indeed, if the quantities were not
quasi-the same, then the matrix B would be ’small’ compared to A and therefore the
angle between U (A) = U (ρ(γi )) and U (AB) = U (ρ(β̂ j )) would be small contradicting
our hypothesis (notice that for i , j large enough one has that U (ρ(γi )) ∼ U (ρ(γ)) and
U (ρ(β̂ j )) ∼U (ρ(β−1).

10Here we will use ∼ to denote that the quantities are quasi the same in the sense of quasi-geodesics or
quasi-isometries.
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Using this fact, the Lemma follows by noticing that the sequence

{ρ(gn), . . . ,ρ(g1),ρ(h−1
1 ) . . . ,ρ(h−1

m )}

is a dominated sequence (in the sense of subsection 2.5), this guarantees the good angle
between S(ρ(β)) and U (ρ(γ)).

�

7.3. Limit set. We define the following set:

X = ⋂
n>0

{U (ρ(γ)) : |γ| > n} ⊂ P(Rd ).

This set has been previously considered in [Be2] for the Zariski dense case and in
[GGKW] in the general case.

It is easy from Lemma 7.1 item (2) to show that it is equivariant and it is clearly compact
and non-empty.

7.4. The limit set is perfect. The main point here is to show that the limit set has at least
3 points. Once one has this, then applying Lemma 7.2 and Lemma 7.1 item (3) one can
easily show that every point in the limit set is an accumulation point (see [BPS, Lemma
3.12]).

Let us sketch the main ingredients to show that there are more than 2 points in X :

• Assuming there are finitely many points X = {P1, . . . ,Pk } one can (up to passing
to a finite index subgroup which does not affect domination) define a morphism
ϕ : Γ→ Rk defined as ϕ(γ) = (‖ρ(γ)v1‖, . . . ,‖ρ(γ)vk‖) where vi are unit vectors in
Pi .

• The image of this morphism is abelian and it is possible to show using Lemma
7.2 and Lemma 7.1 item (3) that its kernel is finite.

• This will force the image to be Z as a simple argument shows that Z` cannot ad-
mit dominated representations (very briefly: one can connect γ and γ−1 through
paths which are away from identity but whose length is comparable to |γ|, this
allows to exchange the contracting and repelling direction ’continuously’ show-
ing that they must coincide and this contradicts Lemma 7.2 for well chosen ele-
ments).

See [BPS, Section 3.4] for more details.

7.5. Proper discontinuity. Given a triple T = (x1, x2, x3) ∈ X (3) we denote

|T | = min
i 6= j

d(xi , x j ) > 0.

Notice that for any δ> 0 the set of triples so that |T | ≥ δ is a compact subset of X (3) and
any compact set is contained in a set of this form.

To show proper discontinuity it is enough to show that:

Proposition 7.3. For every δ> 0 there exists `> 0 such that if |γ| > ` one has that for every
T with |T | ≥ δ one has that |ρ(γ)T | < δ.

The proof follows again by combining Lemma 7.2 and Lemma 7.1 item (3). Indeed, for
a large enough element γ using Lemma 7.2 one has that S(ρ(γ)) can be close to at most
one of the elements of T . Therefore, by Lemma 7.1 item (3) the image of ρ(γ) of the other
two will be very close. See [BPS, Section 3.5] for more details.
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7.6. Cocompactness. We want to show that there exists δ > 0 so that for every triple
T = (x1, x2, x3) there exists γ ∈ Γ such that |γT | > δ. This combines similar ideas as before,
one assumes that some points, say x1, x2 in T are closer than δ and chooses elements γn

so that U (γn) ∼ x1, x2. One expects that iterating by ρ(γ)−1 these points will separate
but one needs to be careful not to choose a very large element which could make other
points to get closer... We refer the reader to [BPS, Section 3.6] for the details.
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