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Preface

Dear friend, theory s all gray,
and the golden trec of life s green.
Goethe, from “Faust”

The ability to simplify means to eliminate the unnecessary so that
the necessary may speak.

Hans Hoffmann

Statistics is a subject of amazingly many uses and surprisingly
few effective practitioners. The traditional road to statistical knowl-
edge is blocked, for most, by a formidable wall of mathematics.
Our approach here avoids that wall. The bootstrap is a computer-
based method of statistical inference that can answer many real
statistical questions without formulas. Our goal in this book is to
arm scientists and engineers, as well as statisticians, with compu-
tational techniques that they can use to analyze and understand
complicated data sets.

The word “understand” is an important one in the previous sen-
tence. This is not a statistical cookbook. We aim to give the reader
a good intuitive understanding of statistical inference.

One of the charms of the bootstrap is the direct appreciation it
gives of variance, bias, coverage, and other probabilistic phenoin-
ena. What does it mean that a confidence interval contains the
true value with probability .90?7 The usual textbook answer ap-
pears formidably abstract to most beginning students. Bootstrap
confidence mtervals are directly constructed from real data sets,
using a simple computer algorithm. This doesn’t necessarily make
it easy to understand confidence intervals, but at least the diffi-
culties are the appropriate conceptual ones, and not mathematical
mnuddles.




PREFACE xv

Much of the exposition in our book is based on the analysis of
real data sets. The mouse data, the stamp data, the tooth data,
the hormone data, and other small but genuine examples, are an
important part of the presentation. These are especially valuable if
the reader can try his own computations on them. Personal com-
puters are sufficient to handle most bootstrap computations for
these small data sets.

This book docs nol give a rigorous iechnical treatinent of the
bootstrap, and we concenirate on the ideas rather than their math-
ematical justification. Many of these ideas are quite sophisticated,
however, and this book is not just for beginners. The presenta-
tion starts off slowly but builds in both its scope and depth. More
mathematically advanced accounts of the bootstrap may be found
in papers and books by many researchers that are listed in the
Bibliographic notes at the end of the chapters.

We would like to thank Andreas Buja, Anthony Davison, Peter
Hall, Trevor Hastie, John Rice, Bernard Silverman, James Stafford
and Sami Tibshirani for making very helpful comments and sugges-
tions on the manuscript. We especially thank Timothy Hesterberg
and CLiff Lunneborg for the great deal of time and effort that they
spent on reading and preparing comments. Thanks to Maria-Luisa
Gardner for providing expert advice on the “rules of punctuation.”
We would also like to thank numerous students at both Stanford
University and the University of Toronto for pointing out errors
in earlier drafts, and colleagues and staff at our umiversities for
their support. Thanks to Tom Glinos of the University of Toronto
for maintaining a healthy computing environment. Karola DeCleve
typed much ol the first drall of this book, and maintained vigi-
lance against errors during its entire history. All of this was done
cheerfully and m a most helpful manner, for which we are truly
grateful. Trevor Ilastic provided cxpert “S” and TEX advice, at
crucial stages 1 the project.

We were lucky to have not one but two superb editors working
on this project. Bea Schube got us going, before starting her re-
tirement; Bea has done a great deal for the statistics profession
and we wish her all the best. John Kimimel carried the ball after
Bea left, and did an excellent job. We thank our copy-editor Jim
Geronimo for his thorough correction of the manuscript, and take
. responsibility for any errors that remain.

“ The first author was supported by the National Institutes of
Health -and the National Science Foundation. Both groups have
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supported the development of statistical theory at Stanford, in-
cluding much of the theory behind this book. The second author
would like to thank his wife Cheryl for her understanding and
support during this entire project, and his parents for a lifetime
of encouragement. He gratefully acknowledges the support of the
Natural Sciences and Engimeerimg Research Council of Canada.

Palo Alto and Toronto Bradley Elron
June 1993 Robert Tibshirani




CHAPTER 1

Introduction

Statistics is the science of learning from experience, especially ex-
perience that arrives a little bit at a time. The earliest information
science was statistics, originating in about 1650. This century has
seen statistical techniques become the analytic methods of choice
in biomedical science, psychology, education, economics, commun-
cations theory, sociology, genetic studies, epidemiology, and other
areas. Recently, traditional sciences like geology, physics, and as-
tronomy have begun to make increasing use of statistical methods
as they focus on areas that demand informational efficiency, such as
" the study of rare and exotic particles or extremely distant galaxies.

Most people are not natural-born statisticians. Left to our own
devices we are not very good at picking out patterns from a sea
of noisy data. To put it another way, we are all too good at pick-
ing out non-existent patterns that happen to suit our purposes.
Statistical theory attacks the problem from both ends. It provides
optimal methods for finding a real signal in a norsy background,
and also provides strict checks against the overmnterpretation of
random patterns.

Statistical thecory atlempts to answer three basic questions:

(1) How should I collect my data?

- (2) How should I analyze and sumimarize the data that I've col-
lected?

. (3) How accurate are my data summaries?

Question 3 constitutes part of the process known as statistical in-
ference. The bootstrap is a recently developed technique for making
certain kinds of statistical inferences. It is only recently developed
because it requires modern computer power to simplify the often
intricate calculations of traditional statistical theory.

The explanations that we will give for the bootstrap, and other
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computer-based methods, involve explanations of traditional ideas
in statistical inference. The basic ideas of statistics haven’t changed,
but their implementation has. The modern computer lets us ap-
ply these ideas flexibly, quickly, easily, and with a mmimum of
mathematical assumptions. Qur primary purpose in the book is to
explain when and why bootstrap methods work, and how they can
be applied in a wide variety of real data-analytic situations.

All three basic statistical concepts, data collection, summary and
ference, are illustrated in the New York Times excerpt of Figure
1.1. A study was done to see if small aspirin doses would prevent
heart attacks in healthy middle-aged men. The data for the as-
pirin study were collected in a particularly efficient way: by a con-
trolled, randomized, double-blind study. One half of the subjects
recerved aspirin and the other half received a control substance, or
placebo, with no active ingredients. The subjects were randomly
assigned to the aspirin or placebo groups. Both the subjects and the
supervising physicians were blinded to the assignments, with the
statisticians keeping a secret code of who received which substance.
Scientists, like everyone else, want the project they are working on
to succeed. The elaborate precautions of a controlled, randomuzed,
blinded experimment guard against secing benefits that don’t exist,
while maximizing the chance of detecting a genwine positive effect.

Tlhe summary stalistics in the newspaper article are very simple:

heart attacks subjects
(fatal plus non-fatal)
aspirin group: 104 11037
placebo group: 189 11034

We will see examples of much more coruplicated summaries in later
chapters. One advantage of using a good experimental design is a
simplification of its results. What strikes the eye here is the lower
rate of heart attacks in the aspirin group. The ratio of the two
rates 1s

104/11037

h=—L_— —
189/11034

55. (1.1)
If this study can be believed, and its solid design makes it very
believable, the aspirin-takers only have 55% as many heart attacks
as placebo-takers.

Of course we are not really interested in 5, the estimated ratio.
What we would like to know is 6, the true ratio, that is the ratio
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HEART ATTACK RISK
| FOUND T0 BE CUT
BY TAKING ASPIRIN

IIFESAVING EFFECTS SEEN

Study Finds Benefit of Tablet
Every Other. Day Is Much
Greater Than Expected

By HAROLD M. SCHMECK Jr.

A major nauonwide study shows that
a single aspirin tablet every-other day
can sharply reduce a man's risk of
heart attack and death from heart at-
tack.

The lifesaving effects were so dra-
matic that the study was halted m mid-
December so that the results could be
reported as soon as possible to the par-
tiei s and to the medical prof
in general.

The magnitude of the beneficial ef-
fect was far greater than expected, Dr.
Charles H. Hennekens of Harvard,
principal invesuigator in the research,
said n a telephone interviesv. The risk
of myocardial infarction, the techmcal
name for heart attack, was cut almost
inhalf.

*Extremnre Beneficial Effect’

A special report said the results
shawed “a statistically extreme benefi-
cial effect’* from the use of aspirin. The
report is to be published Thursday n
The New Engiland Journal of Medicine.

In recent years smaller studies have
demonstrated that a person who has
had one heart attack can reduce the
risk of a second by taking aspirin, but
there had been no proof that the benefi-
cial effect would extend to the general
maie papuiation,

Dr. Claude Lenfant, the director of
the National Heart Lung and Blood In-
stitute, said the findings were’ ‘“‘ex-
tremely important,” but he said the
general public should not take the re-
port as an indication that everyone

should start taking aspirin.
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we would see if we could treat all subjects, and not just a sample of

them. The value 8 = .55 is only an estimate of 8. The sample seems
large here, 22071 subjects in all, but the conclusion that aspirin
works is really based on a sx[xdlE£ nurmber, the 293 observed heart
attacks. How do we know that 6 might not come out much less
favorably if the experiment were run again?

This is where statistical inference comes in. Statistical theory
allows us to make the following inference: the true value of 0 lies
m the interval

43< 6 < .70 (1.2)

with 95% confidence. Statement (1.2) is a classical confidence in-
terval, of the type discussed in Chapters 12-14, and 22. It says that
if we ran a much bigger experiment, with millions of subjects, the
ratio of rates probably wouldn’t be too much different than (1.1).
We almost certainly wouldn’t decide that @ exceeded 1, that is that
aspirin was actually harmful. It 1s really rather amazing that the
same data that give us an estimated value, § = .55 in this case,
also can give us a good idea of the estimate’s accuracy.

Statistical inference is serious business. A lot can ride on the
decision of whether or not an observed effect is real. The aspirin
study tracked strokes as well as heart attacks, with the following
results:

strokes  subjects

aspirin group: 119 11037
placebo group: 98 11034 (1.3)
For strokes, the ratio of rates is
~ 119/11037
0 =— =1.21. 1.4
98/11034 (14)

1t now looks like taking aspirin 1s actually harmiful. Tlowever the
interval for Lhe true stroke ratio 8 turns out to be

93 < 6 <1.59 (1.5)

with 95% confidence. This includes the neutral value 6 = 1, at
which aspirin would be no better or worse than placebo vis-a-vis
strokes. In the language of statistical hypothesis testing, aspirin
was found to be significantly beneficial for preventing heart attacks,
but not significantly harmful for causing strokes. The opposite con-
clusion had been reached in an older, smaller study concerning men

ine

T€]
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who had experienced previous heart attacks. The aspirin treatment
remains mildly controversial for such patients.

The bootstrap is a data-based simulation method for statistical
inference, which can be used to produce inferences like (1.2) and
(1.5). The use of the term bootstrap derives from the phrase to
pull oneself up by one’s bootstrap, widely thought to be based on
one of the eighteenth century Adventures of Baron Munchausen,
by Rudolph Erich Raspe. (The Baron had fallen to the bottom of
a deep lake. Just when it looked like all was lost, he thought to
pick himself up by his own bootstraps.) It 1s not the same as the
term “bootstrap” used in computer science meaning to “boot” a
computer from a set of core instructions, though the derivation is
similar.

Here is how the bootstrap works in the stroke example. We cre-
ate two populations: the first consisting of 119 ones and 11037-
119=10918 zeroes, and the second consisting of 98 ones and 11034-
98=10936 zeroes. We draw with replacement a sample of 11037
items from the first population, and a sample of 11034 items {rom
the second population. Each of these is called a bootstrap sample.
Frow these we derive the bootstrap replicate of 6:

6 = Proportion of ones in bootstrap sample #1

" Proportion of ones in bootstrap sample #2 (1.6)
We repeat this process a large numper of times, say 1000 times,
and obtain 1000 bootstrap replicates 6*. This process is easy to im-
plement on a computer, as we will see later. These 1000 replicates
contain information that can be used to make inferences from our
data. For example, the standard deviation turned out to be 0.17
in a batch of 1000 replicates that we generated. The value 0.17
is an estimate of the standard error of the ratio of rates §. This
indicates that the observed ratio 8 = 1.21 is only a little more than
one sthndard error larger than I, and so the neutral value 6 = 1L
cannot be ruled out. A rough 95% confidence interval like (1.5)
can be derived by taking the 25th and 975th largest of the 1000
. replicates, which in this case turned out to be (.93, 1.60).

> In this simple example, the confidence interval derived from the
" bootstrap agrees very closely with the one derived from statistical
theory. Bootstrap methods are intended to simplify the calculation
of inferences like (1.2) and (1.5), producing them in an automatic
way even in situations much more complicated than the aspirin
study.
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The ternunology of statistical summaries and inferences, like re-
gression, correlation, analysis of variance, discriminant analysis,
standard error, significance level and confidence interval, has be-
come the lingua franca of all disciplines that deal with noisy data.
We will be examining what tlis language means and how it works
m practice. The particular goal of bootstrap theory is a computer-
based implementation of basic statistical concepts. In some ways it
15 easier to understand these concepts in computer-based contexts
than through traditional mathematical exposition.

1.1 An overview of this book

This book describes the bootstrap and other methods for assessing
statistical accuracy. The bootstrap does not work 1n isolation but
rather is applied to a wide variety of statistical procedures. Part
of the objective of this book is expose the reader to many exciting
and useful statistical techniques through real-data examples. Some
of the techniques described include nonparametric regression, den-
sity estimation, classification trees, and least median of squares
regression.

Here 15 a chapter-by-chapter synopsis of the book. Chapter 2
introduces the bootstrap cstimate of standard crror for a simple
mean. Chapters 3-5 coutain some basic background material,
and may Dbe skinuned by readers cager to get to the details of
the bootstrap in Chapter 6. Randon; samples, populations, and
basic probability theory are reviewed in Chapter 3. Chapter 4
defines the empirical distribution function estimate of the popula-
tion, which simply estimates the probability of each of n data items
to be 1/n. Chapter 4 also shows that many familiar statistics can
be viewed as “plug-in” estimates, that is, estimates obtamed by
plugging in the empirical distribution function for the unknown
distribution of the population. Chapter 5 reviews standard error
estimation for a mean, and shows how the usual textbook formula
can be derived as a simple plug-in estimate.

The bootstrap 1s defined in Chapter 6, for estimating the stan-
dard error of a statistic from a single sample. The bootstrap stan-
dard error estimate is a plug-in estimate that rarely can be com-
puted exactly; instead a simulation (“resampling”) method is used
for approximating it.

Chapter 7 describes the application of bootstrap standard er-
rors in two complicated examples: a principal components analysis

AD
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and a curve fitting problem.

Up to this point, only one-sample data problems have been dis-
cussed. The application of the bootstrap to more complicated data
structures is discussed in Chapter 8. A two-sample problem and
a time-series analysis are described.

Regression analysis and the bootstrap are discussed and illus-
trated in Chapter 9. The bootstrap estimate of standard error 1s
applied in a number of different ways and the results are discussed
in two examples.

The use of the bootstrap for estimation of bias is the topic of
Chapter 10, and the pros and cons of bias correction are dis-
cussed. Chapter 11 describes the jackknife method in some detail.
We see that the jackknife is a simple closed-form approximation to
the bootstrap, in the context of standard error and bias estimation.

The use of the bootstrap for construction of confidence intervals
18 described in Chapters 12, 13 and 14. There are a number ol
different approaches to this important topic and we devote quite
a bit of space to them. In Chapter 12 we discuss the bootstrap-t
approach, which generalizes the usual Student’s ¢ method for con-
structing confidence intervals. The percentile method (Chapter
13) uses instead the percentiles of the bootstrap distribution to
define confidence limits. The BC,, (bias-corrected acceleraled in-
terval) makes immportant corrections to the percentile mterval and
1s described in Chapter 14.

Chapler 15 covers permutation tests, a time-honored and use-
ful set of tools for hypothesis testing. Their close relationship with
the bootstrap is discussed; Chapter 16 shows how the bootstrap
can be used in more general hypothesis testing problems.

Prediction error estimation arnses in regression and classification
problems, and we describe some approaches for it in Chapter 17.
Cross-validation and bootstrap methods are described and illus-
trated. Ixtending this idea, Chapter 18 shows how the boot-
strap and cross-validation can be used to adapt estimators to a set
of data.

Like any statistic, bootstrap estimates are random varables and
so have inherent error associated with them. When using the boot-
strap for making inferences, it is important to get an idea of the
magnitude of this error. In Chapter 19 we discuss the jackknife-
. after-bootstrap method for estimating the standard error of a boot-
strap quantity.

Chapters 20—25 contain more advanced material on selected
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topics, and delve more deeply mnto some of the material introduced
m the previous chapters. The relationship between thie bootstrap
and jackknife i1s studied via the “resampling picture” in Chapter
20. Chapter 21 gives an overview of non-paraiuetric and para-
metric inference, and relates the bootstrap to a number of other
techniques for estimating standard errors. These include the delta
method, Fisher information, infinitesimal jackknife, and the sand-
wich estimator.

Some advanced topics in bootstrap confidence intervals are dis-
cussed in Chapter 22, providing some of the underlying basis
for the techniques introduced in Chapters 12-14. Chapter 23 de-
scribes methods for efficient computation of bootstrap estimates
including control variales and importance sampling. In Chapter
24 the construction of approximate likelihoods is discussed. The
bootstrap and other related methods are used to construct a “non-
parametric” likelihood in situations where a parametric model is
not specified.

Chapter 25 describes in detail a bioequivalence study in which
the bootstrap is used to estimate power and sample size. In Chap-
ter 26 we discuss some general issues concerning the bootstrap and
its role in statistical inference.

Finally, the Appendix contains a description of a number of dif-
ferent computer programs for the methods discussed 1n this book.

1.2 Information for instructors

We envision that this book can provide the basis for (at least)
two different one semester courses. An upper-year undergraduate
or first-year graduate course could be taught from some or all of
the first 19 chapters, possibly covering Chapter 25 as well (both
authors have done this). In addition, a more advanced graduate
course could be taught from a selection of Chapters 6-19, and a se-
lection of Chapters 20-26. For an advanced course, supplementary
material might be used, such as Peter Hall’s book The Bootstrap
and Edgeworth Frpansion or journal papers on selected technical
topics. The Bibliographic noles in the book contain many sugges-
tions for background reading.

‘We have provided numerous exercises at the end of each chap-
ter. Some of these involve computing, since it i1s important for the
student to get hands-on experience for learning the material. The
bootstrap is most effectively used in a high-level language for data.
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analysis and graphics. Our language of chotce (al present) 15 “S”
(or “S-PLUS”), and a number of S programs appear in the Ap-
pendix. Most of these programs could be easily translated into
other languages such as Gauss, Lisp-Stat, or Matlab. Details on
the availability of S and S-PLUS are given in the Appendix.

1.3 Some of the notation used in the book

Lower case bold letters such as x refer to vectors, that is, x =
(z1,Z2,.-.Tp). Matrices are denoted by upper case bold letters
such as X, while a plain uppercase letter like X refers to a random
variable. The transpose of a vector is written as x7_ A superscript
“* indicates a bootstrap random variable: for example, x* indi-
cates a bootstrap data set generated from a data set x. Parameters
are denoted by Greek letters such as 6. A hat on a letter indicates
an estimate, such as . The letters I” and G refer to populations. In
Chapter 21 the same symbols are used for the cumulative distribu-
tion function of a population. I is the indicator function equal to
1 if condition C is true and 0 otherwise. For example, Tr,c0) =1
if z < 2 and 0 otherwise. The notation tr(A) refers to the trace
of the matrix A, that is, the sum of the diagonal elements. The
derivatives of a function g(z) are denoted by ¢'(z),g" (z) and so
on.
The notation
I"— (g, 2)

indicates an independent and identically distributed sample drawn

from F. Equivalently, we also write z,"~" F for 1 = 1,2, .. n.
Notation such as #{z, > 3} means the number of z;s greater
than 3. log & refers to the natural logarithm of z.



CHAPTER 2

The accuracy of a sample mean

The bootstrap is a computer-based method for assigning measures
of accuracy to statistical estimates. The basic idea behind the boot-
strap 1s very simple, and goes back at least two centuries. After
reviewing some background material, this book describes the boot-
strap method, its implementation on the computer, and its applica-
tion to some real data analysis problems. First though, this chapter
focuses on the one example of a statistical estimator where we re-
ally don’t need a computer to assess accuracy: the sample mean.
In addition to previewing the bootstrap, this gives us a chance to
review some fundamental ideas [romn elementary statistics. We be-
gin with a simple example concerning means and their estimated
accuracies.

Table 2.1 shows the results of a small experiment, in which 7 out
of 16 mice were randomly selected to receive a new medical treat-
ment, while the remaining 9 were assigned to the non-treatment
(control) group. The treatment was intended to prolong survival
after a test surgery. The table shows the survival time following
surgery, in days, for all 16 mice.

Did the treatment prolong survival? A comparison of the means
for the two groups offers preliminary grounds for optimism. Let
2y, 22, -, wr indicate the lifetimes m the Lrealiment group, so a2 =

94,20 = 197, -,27 = 23, and likewise let yy,y2, - -, ys indicate
the control group lifetiies. The group means are
7 9
F=Y x,/7=8686 and §=) 1/9=56.22  (2.1)
=1 =1

so the difference T — g equals 30.63, suggesting a considerable life-
prolonging ellect for the treatment.

But how accurate are these estimates? After all, the means (2.1)
are based on small samples, only 7 and 9 mice, respectively. In
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Table 2.1. The mouse data. Sizteen mice were randomly assigned to a
treatment group or a control group. Shown are their survival times, n
days, follounng a test surgery. Did the treatment prolong survival?

Estimated
(Sample Standard
Group Data Sizce) Mean Error
Treatment: 91 197 16
38 99 141
23 (7) 86.86 25.24
Control: 52 104 146
10 51 30
40 27 46 (9) 56.22 14.14

Difference:  30.63 28.93

order to answer this question, we need an estimate of the accuracy
of the sample means Z and j. For sample means, and essentially
. only for sample means, an accuracy formula is easy to obtain.

The estimated standard error of a mean Z based on n indepen-
- dent data points zi,T2, * ,%n, T = Y. &/n, is given by the

: formula
2
— 2
/e (22)

where 52 = > (%, — Z)%/(n — 1). (This formula, and standard
errors in general, are discussed more carefully in Chapter 5.) The
standard error of any estimator is defined to be the square root of
its variance, that is, the estimator’s root mean square variability
around its expectation. This is the most common measure of an
estimator’s accuracy. Roughly speaking, an estimator will be less
than one standard error away from its expectation about 68% of
i the time, and less than two standard errors away about 95% of the
- time.

. If the estimated standard errors in the mouse experiment were
very small, say less than 1, then we would know that z and § were
close to their expected values, and that the observed difference of
30.63 was probably a good estimate of the true survival-prolonging
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capability of the treatment. On the other hand, if formula (2.2)
gave big estimated standard errors, say 50, then the difference es-
timate would be too inaccurate to depend on.

The actual situation is shown at the right of 'l'able 2.1. The
estimated standard crrors, calculated from (2.2), arc 25.24 for T
and 14.14 for . The standard ervor for the diflerence  — 7 equals
28.93 = 25.242 + 14.142 (since the vamance of the difference of
two independent quantities is the sum of their variances). We see
that the observed difference 30.63 is only 30.63/28.93 = 1.05 es-
timated standard errors greater than zero. Readers familiar with
hypothesis testing theory will recognize this as an insignificant re-
sult, one that could easily arise by chance even if the treatment
really had no effect at all.

There are more precise ways to verify this disappointing result,
(e.g. the permutation test of Chapter 15), but usually, as in this
case, estimated standard errors are an excellent first, step toward
thinking critically about statistical estimates. Unfortunately stan-
dard errors have a major disadvantage: for most statistical estima-
tors other than the mean there is no formula like (2.2) to provide
estimated standard errors. In other words, it is hard to assess the
accuracy of an estimate other than the mean.

Suppose for example, we want to compare the two groups in Ta-
ble 2.1 by their medians rather than their means. The two medians
are 94 for treatment and 46 for control, giving an estimated dif-
ference of 48, considerably more than the difference of the means.
But how accurate are these medians? Answering such questions is
where the bootstrap, and other computer-based techniques, come
in. The remainder of this chapter gives a brief preview of the boot-
strap estimate of standard error, a method which will be fully
discussed 1 succeeding chapters.

Suppose we observe independent data points zy,z2, - -, zn, for
convenience denoted by the vector x = (z1, %2, - -, %y ), from which
we compute a statistic of interest s(x). For example the data might
be the n = 9 control group observations in Table 2.1, and s(x)
might be the sample mean.

The bootstrap estimate of standard error, invented by Efron in
1979, looks completely different than (2.2), but in fact it is closely
related, as we shall see. A bootstrap sample x* = (x},z},---,z%) is
obtained by randomly sampling n times, with replacement, from
the original data points 1, z9,- -,z,. For instance, with n = 7 we
might obtain x* = (x5, zr, Ts5, T4, T7, T3, Ty )-
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Figure 2.1. Schematic of the bootstrap process for estimating the stan-
dard error of a statistic s(x). B bootstrap sample. are generated from
the original data set. Each bootstrap sample has n elements, generated
by sampling with replacement n times from the omginal date set. Boot-
strap replicates s(x*'), s(x*?),...s(x*5) are obtamned by calculating the
value of the statistic s(x) on each booistrap sample. Finally, the stan-
dard dewation of the values s(x*'), s(x*?),...s(x*F) 1s our estimate of
the standard error of s(x).

Figure 2.1 is a schematic of the bootstrap process. The boot-
strap algorithm begins by generating a large number of indepen-
dent bootstrap samples x*!,x*?,- -, x*Z, each of size n. Typical
values for B, the number of bootstrap samples, range from 50 to
200 for standard error estimation. Corresponding to each bootstrap
sample is a bootstrap replication of s, namely s(x*°), the value of
the statistic s evaluated for x*°. If s(x) is the sample median, for
instance, then s(x*) is the median of the bootstrap sample. The
bootstrap estimate of standard error is the standard deviation of
the bootstrap replications,

B 1
Rroor = { D ls(x**) = s(N2/(B -1}, (2.3)

“where s(-) = E§=1 s(x*")/B. Suppouse s(x) is the mean Z. In this
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Table 2.2. Bootstrap estimates of standard error for the mean and me-
dian; treatment group, mouse data, Table 2.1. The median 13 less accu-
rate (has larger standard error) than the mean for this data set.

B: 50 100 250 500 1000 00
nea: 19.72 23.63 22.32 23.79 23.02 23.36
median: 32.21 36.35 34.46 36.72 36.48 37.83

case, standard probability theory tells us (Problem 2.5) that as B
gets very large, formula (2.3) approaches

D (@, - 2)2/m2yh (2.4)

=i

This 15 alinost the same as formula (2.2). We could make it ex-
actly the same by multiplying definition (2.3) by the factor [n/(n—
1)]%7 but there is no real advantage in doing so.

Table 2.2 shows bootstrap estimated standard errors for the
mean and the median, for the treatment group mouse data of Ta-
ble 2.1. I'he estinated standard errors settle down to linuting val-
ues as the number of bootstrap samples B increases. The limiting
value 23.36 for the mean is obtained from (2.4). The formula for
the limiting value 37.83 for the standard error of the median is
quite complicated: see Problem 2.4 for a derivation.

We are now n a position to assess the precision of the differ-
ence in medians between the two groups. The bootstrap procedure
described above was applied to the control group, producing a stan-
dard error estimate of 11.54 based on B = 100 replications (B = oo
gave 9.73). Therefore, using B = 100, the observed difference of 48
has an estimated standard error of 1/36.352 + 11.54% = 38.14, and
hence 1s 48/38.14 = 1.26 standard errors greater than zero. This is
larger than the observed difference in means, but is still insignifi-
cant.

For most statistics we don’t have a formula for the limiting value °
of the standard error, but in fact no formula i1s needed. Instead
we use the mnmerical outpud of the bootstrap program, for some
convenient, value of 3. We will see in Chapters 6 and 19, thal 13
in the range 50 to 200 usually malkes $¢po01 a good standard error
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estimator, even for estimators like the median. It is easy to write
a bootstrap program that works for any computable statistic s(x),
- as shown in Chapters 6 and the Appendix. With these programs
in place, the data analyst is free to use any estimator, no matter
~ how complicated, with the assurance that he or she will also have
a reasonable idea of the estimator’s accuracy. The price, a factor
of perhaps 100 in increased computation, has become affordable as
computers have grown faster and cheaper.

Standard errors are the simplest measures of statistical accu-
racy. Later chapters show how bootstrap methods can assess more
complicated accuracy measures, like biases, prediction errors, and
confidence intervals. Bootstrap confidence intervals add another
factor of 10 to the computational burden. The payoff for all this
computation is an increase in the statistical problems that can be
analyzed, a reduction in the assumptions of the analysis, and the
elimination of the routine but tedious theoretical calculations usu-
ally associated with accuracy assessment.

2.1 Problems

: 2.17 Suppose that the mouse survival times were expressed in
weeks mstead of days, so that the entries in Table 2.1 were
all divided by 7-

(a) What effect would this have on Z and on its estimated
standard error (2.2)7 Why does this make sense?

(b) What effect would this have on the ratio of the differ-
ence T — ¥ to its estimated standard error?

2.2 Imagine the treatment group in Table 2.1 consisted of R rep-
© etitions of the data actually shown, where R 1s a positive inte-
ger. That is, the treatment data consisted of R 94’s, @ 197’s,
etc. What effect would this have on the estimated standard
error (2.2)7

2.3 It is usually true that the errvor of a statistical estimator de-
creases at a rate of about 1 over the square root of the sample
size. Does this agree with the result of Problem 2.27

2.4 Let Zay < 2oy < Tz < Ty < Es) < Ty < T be an
ordered sample of size n = 7 Let x* be a bootstrap saiple,
and s(x*) be the correspouding bootstrap replication of the
median. Show that
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(al) zs(x*) ?quals one of the original data values x(;, ¢ =
(b) t s(x*) equals x(;y with probability
1—1

n

p() = Y {BiGin, =) = Biim, D)}, (2:5)

1=0
where Bi(yin, p) is the binonnal probabilily (3‘)]}7(1 —p)n?
[The numerical values of p(z) are .0102,.0981,.2386,.3062,
.2386,.0981,.0102. These values were used to compute
$8boot { median} = 37.83, for B = co, Table 2.2.]

2.5 Apply the weak law of large numbers to show that expression
(2.3) approaches expression (2.4) as n goes to infinity.

1 Indicates a difficult or more advanced problem.




CHAPTER 3

Random samples and
probabilities

3.1 Introduction

Statistics is the theory of accumulating information, especially -
formation that arrives a little bit at a thne. A typical statistical
situation was illustrated by the mouse data of Table 2.1. No one
mouse provides much information, since the individual results are
so variable, but seven, or nine mice considered together begin to
be quite informative. Statistical theory concerns the best ways of
extracting this information. Probability theory provides the math-
ematical framework for statistical inference. This chapter reviews

.. the simplest probabilistic model used to model random data: the

case where the observations are a random sample from a single
" nnknown population, whose properties we are trying to learn from
the observed data.

3.2 Random samples

It is easiest o visualize random samples in terms of a finite popu-
lation or “universe” U of individual units U,,U,, - ,Uy, any one
of which is equally likely to be selected in a single random draw.
The population of units might be all the registered voters in an
area, undergoing a political survey, all the men that might con-
ceivably be selected for a medical experiment, all the high schools
in the United States, etc. The individual units have properties we
would like to learn, like a political opinion, a medical survival time,
or a graduation rate. Tt is too difficnlt and expensive to examine
every unit in ¢, so we select for observation a random sample of
manageable size.

A random sample of size n 18 defined to be a collection of n
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units uy,uq, -, u, selected at random from U. In principle the
sampling process goes as follows: a random number device inde-
pendently selects integers jp,72,: -, In, each of which equals any
value between 1 and N with probability 1/N. These integers deter-
mine which members of I{ are selected to be in the random sample,
wy = U ug = Uy, -ty = Uy, . In practice the selection process
is seldom this neat, and the population I/ may be poorly defined,
but the conceptual framework of random sampling is still useful for
understanding statistical inference. (The methodology of good ex-
perimental design, for example the random assignment of selected
units to Treatment or Control groups as was done in the mouse
experiment, helps make random sampling theory more applicable
Lo real situations like that of Table 2.1.)

Our definition of random sampling allows a single unit U; to ap-
pear more than once m the sample. We could avoid this by nsisting
that the mtegers 31, j2, -, 7. be distinet, called “sampling with-
out replacement.” It is a little simpler to allow repetitions, that is
to “sample with replacement”, as in the previous paragraph. If the
size n of the random sample is much smaller than the population
size IV, as is usually the case, the probability of sample repetitions
will be small anyway. See Problem 3.1. Random sampling always
means sampling with replacement in what follows, unless otherwise
stated.

Having selected a random sample uy, ug, - -, 1, we obtain one
or more measurements of interest for each unit. Let x, indicate
the measurements for unit u;. The observed daia are the collec-
tion of measurements 1, T2, - ,&n. Sometimes we will denote the
observed data (x1,z2,: *,z,) by the single symbol x.

We can imagine making the measurements of interest on ev-
ery member Uy, Uy, -, Uy of U, obtaining values X7, Xy, -+, Xy
This would be called a census of U.

The symbol X will denote the census of measurements
(X1, X2, -, Xn). We will also refer to X as the population of mea-
surements, or simply the population, and call x a random sample of
size n from X. In fact, we usually can’t afford to conduct a census,
which 1s why we have taken a random sample. The goal of statisti-
cal inference 1s to say what we have learned about the population X
front the observed data x. In particular, we will use the bootstrap
to say how accurately a statistic calculated from x1,x9, -, x, (for
mstance the sample median) estimates the corresponding quantity
for the whole population.
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Table 3.1. The law school data. A random sample of size n = 15 was
taken from the collection of N = 82 American law schools participating
wn a large study of admassion practices. Two measurements were made
on the entering classes of each school wn 1973: LSAT, the average score
for the class on a national law test, and GPA, the awerage undergraduate
grade-point average for the class.

School LSAT GPA | School LSAT GPA
1 576  3.39 | 9 651  3.36
2 635 3.30 | 10 605  3.13
3 558  2.81 | 11 653  3.12
4 578  3.03 | 12 575  2.74
5 666  3.44 | 13 545  2.76
6 580 3.07 11 572 2.88
7 555  3.00 | 15 594 2.96
8 661  3.43

Table 3.1 shows a random sample of size n = 15 drawn from
a population of N = 82 American law schools. What 1s actually
shown are two measurements made on the entering classes of 1973
for each school in the sample: LSAT, the average score of the class
on a national law test, and GPA, the average undergraduate grade
point average achieved by the members of the class. In this case
the measurement z, on u;, the 2th member of the sample, is the
_parr
z, = (LSAT,,GPA,)  1=1,2,---,15.

The observed data z1,z2,---,z, is the collection of 15 pairs of
numbers shown in Table 3.1.

This example is an artificial one because the census of data
" X1,X3,- -, Xsz was actually made. In other words, LSAT and
“ GPA are available for the entire population of N = 82 schools.
Figure 3.1 shows the census data and the sample data. Table 3.2
gives the entire population of N measurements.

In a real statistical problem, like that of Table 3.1, we would sce
only the sample data, from which we would be trying to infer the
properties of the population. For example, consider the 15 LSAT
cores in the observed sample. These have mean 600.27 with esti-
mated standard error 10.79, based on the data in Table 3.1 and
ormula (2.2). There is about a 68% chance that the trne T.SAT
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IFigure 3.1. The left pancl 1s a scatlerplot of the (LSAT, GPA) data
for all N = 82 law schools; circles indicate the n = 15 data pownts
comprising the “observed sumple” of Table 8.1. The right panel shows
only the observed sample. In problems of statistical inference, we are
tryang to wnfer the situation on the left from the picture on the right.

mean, the mean for the entire population from which the observed
data was sampled, lies in the mterval $00.27 & 10.79.

We can check this result, since we are dealing with an artifi-
cal example for which the complete population data are known.
The mean of all 82 LSAT values 1s 597.55, lying nicely within the
predicted interval 600.27 £ 10.79.

3.3 Probability theory

Statistical inference concerns learning from experience: we observe
a random sample x = (zy, %2, -, Zy) and wish to infer properties
of the complete population X = (X1, X5, -+, Xy) that yielded
the sample. Probability theory goes in the opposite direction: from
the composition of a population X we deduce the properties of a
random sample x, and of statistics calculated from x. Statistical
mierence as a mathemalical science has been developed almost ex-
clusively 1 ters of probability theory. llere we will review brielly
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Table 3.2. The population of measurements (LSAT,GPA), for the una-
verse of 82 law schools. The data wn Table 3.1 was sampled from thas
population. The +’s indicate the sampled schools.

school LSAT GPA | schooi LSAT GPA | school LSAT GPA
1 622 3.23 | 28 632 3.29 | 56 641  3.28
2 542 283 | 29 587 3.16 | 57 512  3.01
3 579  3.24 | 30 581 3.17 | 58 631  3.21
4+ 653 3.12 | 314+ 605 3.13 | 59 597  3.32
5 606  3.09 | 32 704  3.36 | 60 621 3.24
6+ 576  3.39 | 33 477 257 | 61 617  3.03
7 620 3.10 | 34 591  3.02 | 62 637  3.33
8 615  3.40 | 35+ 578  3.03 | 62 572  3.08
9 553  2.97 | 36+ 572 2.88 | 64 610 3.13
10 607 291 | 37 615 3.37 | 65 562 3.01
11 558  3.11 | 38 606 3.20 | 66 635 3.30
12 596 324 | 39 603 323 | 67 614 3.15
13+ 635 3.30 | 40 535 298 | 6R 546 2.82
14 581 3.2 | 41 595 3.1 | 69 598 3.20
154 661 3.43 | 42 575  2.92 | 70+ 666  3.44
16 547 291 | 43 573  2.85 | 71 570  3.01
17 599 3.23 | 44 644  3.38 | 72 570 2.92
.18 646  3.47 | 45+ 545  2.76 | 73 605 3.45
19 622 3.15 | 46 645 3.27 | 74 565  3.15
20 611  3.33 | 47+ 651 3.36 | 75 686  3.50
21 546  2.99 | 48 562 3.19 | 76 608 3.16
22 614 3.19 | 49 609 3.7 | 77 595  3.19
23 628 3.03 | 50+ 555 3.00 | 78 500 3.15
24 575 3.01 | 51 586  3.11 | 79+ 558  2.81
25 662 3.39 | 52+ 580 3.07 | 80 611 3.16
26 627 3.41 | 53+ 594 2.96 | 81 564  3.02
27 608 3.04 | 54 594  3.05 | B2+ 575  2.74
55 560 2.93

‘some fundamental concepts of probability, including probability
{distributions, expectations, and independence.

As a first example, let @ represent the outcome of rolling a fair
ie so z is equally likely to be 1,2,3,4,5, or 6. We write this in
robability notation as

Prob{z =k} =1/6 for k=1,2,3,4,5,6. (3.1)

‘A random quantity like = 1s often called a random varable.
Probabilitics are idealized or theoretical proportions. We can
magine a universe U = (U, Uy, ,Un} of possible rolls of the
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die, where U, completely describes the physical act of the jth roll,
with corresponding results X = (X;,X,, - -, Xpy). Here N mght
be very large, or even infinite. The statement Prob{z = 5} = 1/6
means that a randomly selected member of A’ has a 1/6 chance of
equaling 5, or more simply that 1/6 of the members of X equal 5.
Notice that probabilities, like proportions, can never be less than
0 or greater than 1.

For convenient notation define the frequencies fi,

fx = Prob{z = k}, (3.2)

so the fair die has fy = 1/6 for k£ = 1,2,---,6. The probability
distribution of a random variable x, which we will denote by F, is
any complete description of the probabilistic behavior of z. F is
also called the probability distribution of the population X. Here
we can take F' to be the vector of frequencies

=, s fe)=(1/6,1/6,-- ,1/6). (3.3)

An  unfarr dic would be one for which 17 did wnot cqual
(1/6,1/6,---,1/6).

Note: In many books, the symbol F' is used for the cumulative
probability distribution function F(zo) = Prob{z < z¢} for —co <
To < oo. This is an equally valid description of the probabilistic
behavior of z, but it 1s only convenient for the case where z is a real
number. We will also be interested n cases where z is a vector, as
in Table 3.1, or an even morce general object. This 1s the reason for |
defining F' as any description of x's probabilities, rather than the :
specific description in terms of the cumulative probabilities. When
no confusion can arise, in later chapters we use symbols like F' and
G to represent cumulative distribution functions.

Some probability distributions arise so frequently that they have
received special names. A random variable z is said to have the
binomaal distribution with size n and probability of success p, de-
noted

z ~ Bi(n, p), (3.4)
if its frequencies are
fi = (:)ﬂ“(l —-p)* % for k=0,1,2,- .n (3.5)

Here nas a positive integer, pos a number belween 0 and 1, and
(;") = the binomnal cocllicieut nt/[kl(r — A)!]. Figure 3.2 shows the
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“distribution F' = (fo, f1, -, fa) for £ ~ Bi(n,p), with n = 25
+and p = .25,.50, and .90. We also write F' = Bi(n,p) to indicate
“situation (3.4).

Let A be a set of integers. Then the probability that = takes a
“value in A, or more simply the probability of A, 1s

Prob{z € A} = Prob{A} = Y _ fi (3.6)
KEA
For cxample if A = {1,3,5,---,25} and & ~ Bi(25, p), then Prob{A}
-is the probability that a binomial random variable of size 25 and
" probability of success p equals an odd integer. Notice that since f,
is the theoretical proportion of times x equals &, the sum >, . 4 fx =
"Prob{A} is the theoretical proportion of times z takes its value in
A.

The sample space of z, denoted S, is the collection of possible
values z can have. Tor a fair dic, S, = {1,2,- -,6}, while §, =
{0,1,2,---,n} lor a Bi{n,p) distribution. By definition, x oconrs

~in Sy every time, that 1s, with theoretical proportion 1, so

Prob{S.} — Z fe =L (3.7)
kES:

For any probability distribution on the integers the frequencies f,
are nonnegative numbers summing to 1.

- In our examples so far, the sample space S, has been a subset
of the integers. One of the convenient things about probabilily
distributions is that they can be defined on quite general spaces.
Consider the law school data of Figure 3.1. We mught take S, to
be the positive quadrant of the plane,

Se =R* = {(y,2),y > 0,2 > 0}. (3.8)

(This includes values like z = (10%,10%), but it doesn’t hurt to lct
Sz be too hig.) For a subset A of S, we would still write Prob{A}
to indicate the probability that = occurs in A4.

For example, we could take

A={(y.2): 0 <y <600,0<2z<3.0} (3.9)

law school z € A if its 1973 entering class had LSAT less than
600 and GPA less than 3.0. In this case we happen to know the
complete population X, 1t 1s the 82 pomts mdicated on the left
anel of Figure 3.1 and in Table 3.2, Of these, 16 e o A, so

Prob{A} = 16/82 = .195. (3.10)
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Figure 3.2. The frequencies fo, f1, -, fa for the binomual distributions
Bi(n,p), n = 25 and p = .25,.50, and .90. The pownts have been con-
nected by lines to enhance wisibility.

Here the idealized proportion Prob{A4} is an actual proportion.
Only in cases where we have a complete census of the population
1s it possible to directly evaluate probabilities as proportions.

The probability distribution F of z is still defined to be any
complete deseription of a’s probabilitics. In the law school example,
I can be described as follows: for any subsct A of S, = R*T,

Prob{z € A} = #{X, € A}/82, (3.11)

where #{X, € A} is the number of the 82 points in the left panel
of Figure 3.1 that lie in A. Another way to say the same thing 1s
that F is a discrete distribution putting probability (or frequency)
1/82 on each of the indicated 82 points.

Probabilities can be delined continuously, rather than discretely
as in (3.6) or (3.11). The most famous example is the normal (or |
Gausswan, or bell-shaped) distribution. A real-valued randomn vari
able 2 15 defined to have the normal distribution with mean p and
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ariance o2, written

z~ N(g,0?) or F=N(uo?), (3.12)
if
Prob{zx € A} = / —1—|r375(Lﬂi)2¢i:1: (3.13)
. 270

for any subset A of the real line RY The mtegral in (3.13) 15 over
he values of z € A.

There are higher dimensional versions of the normal distribu-
ion, which involve taking integrals similar to (3.13) over multi-
dimensional sets 4. We won’t need continuous distributions for
development of the bootstrap (though they will appear later in
some of the applications) and will avoid mathematical derivations
based on calculus. As we shall sec, one of the main incentives for the
development of the bootstrap is the desire to substitute computer
power for theoretical calculations involving special distributions.
(. The expectation of a real-valued random variable z, written E(z),
is its average value, where the average is taken over the possible
outcomes of = weighted according to its probability distribution F'.

n

E(z)=) x(:)f(l —p)7 for z~Binp),  (3.14)

=0

L(?_:.E)2

* 1 .
Exz/ z——-e 205 ) dy for z~ N(p,o?). (3.15
@= s - (o). (315

It is not diflicult to shiow that 15(x) = np for & ~ Bi(n,p), and
E(z) = p for 2 ~ N(j2,02). (See Problems 3.6 and 3.7.)

We sometimnes write the expectation as Ep(z), to indicate that
the average is taken with respect to the distribution F.

uppose 7 = g(z) is some function of the random vanable z.
Then E(r), the expectation of r, is the theoretical average of g(x)
eighted according to the probability distribution of z. For exam-
e if £ ~ N(1,0?) and r = 23, then

00
E(r) = / wa\/—z—ir——_a_z_e“é(z_}&)zdz. (3.16)

robabilities are a special case of expectations. Let A be a subset
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of Sz, and take r = I ¢} where I{ ¢4} 1s the wndicator function

1 if zeA
I{WGA}"{O if z¢ A (3.17)

Then E(r) equals Prob{z € 4}, or equivalently
E(I{ZEEA)) = PrOb{l‘ € A} (3.18)
For example if z ~ N(u,c?), then

E(r) = =35 (524 4y

[ ez
oo {=€4) 27r02€
= / #cfé(%ﬂ)zdax,

1 V2mo?

(3.19)
which 1s Prob{z € A} according io (3.13).

The notion of an expectation as a theoretical average is very
general, and includes cases where the random variable z is not
real-valued. In the law school situation, for instance, we might
be interested in the expectation of the ratio of LSAT and GPA.
Writing « = (y,2) as in (3.8), then r = y/z, and the expectation
of r 1s
82

E(LSAT/GPA) = oo Y (1;/%) (3.20)
=1

where z, = (y;, 2;) is the jth point in Table 3.2. Numerical evalu-
ation of (3.20) gives E(LSAT/GPA) = 190.8.

Let i, = Ep(r), for ¢ a real-valued random variahle with distri-
bution F. The varmance of z, indicated by o2 or just o2, is defined
to be the expected value of y = (x — u)?. In other words, o2 is the
theoretical average squared distance of a random variable z from
its expectation g,

ol =EBp(e — p.)? (3.21)
The variance of £ ~ N(u,0%) equals 0?; the variance of z ~
Bi(n,p) cquals np(l — p), sce Problem 3.9. The standard devia-
tion of a random variable 1s defined to be the square root of its
variance.
Two random variables y and z are said to be independent if

Elg(3)h(2)] — Cla(y)IElA()] (3.22)
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. for all functions g(y) and h(z). Independence 1s well named: (3.22)
- implies that the random outcome of y doesn’t affect the random
" outcome of z, and vice-versa.

To see this, let B and C be subsets of S, and S, respectively,
the sample spaces of y and z, and take g and h to be the indicator
functions g(y) = Ijyepy and h(z) = I{,ecy. Notice that

1 if ye B and ze(C

Tyemlizec) = {O otherwise. (3.23)

So IiyeB)I{zccy is the indicator function of the intersection {y €
B} n {z € C}. Then by (3.18) and the independence definition
(3:22),

Prob{(y,2) e BNnC} = E(I{yeu)l(zec}) = E(I{?IGIJ))E(I{zG(/})
Prob{y € B}Prob{z € C}.

(3.24)

Looking at Figure 3.1, we can see that (3.24) does not hold for
the law school example, see Problem 3.10, so LSAT and GPA are
not independent.

- Whether or not y and z are independent, expectations {ollow the
simple addition rule

Elg(y) + h(2)] = Elg(y)] + E[1(2)]. (3.25)
In general,

ED gi(z)] =) Eloi(w.)] (3.26)

r any functions g; of any n random variables z1, 23, -, Zp.
Random sampling with replacement guarantees independence: if

= (1,72, -, T,) is a random sample of size n from a popula-
'tlon X, then all n observations z, are identically distributed and
«‘mutually independent of each other. In other words, all of the z,
have the same probability distribution F', and

Erlgi(x)ge(z2), - gnlen)] =
Erlg1(21)|Erlg2(x2)l-  Erlgn(zn)] (3.27)

or any functions g1, g2, -, gn- (This is almost a definition of what
indom sampling means.) We will write

F — (z1,29, -, Zn) (3.28)
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to indicate that x = (z1,%2, - ,,) is a randomn sample of size n »
from a population with probability distribution F. This is some-
times written as

NP =12, ,m, (3.29)

where 1.i.d. stands for independent and identically distributed.

3.4 Problems

3.1 A random sawmple of s1ze 1 1s Laken wilh replacenient from
a population of size N. Show that the probability of having :
no repetitions in the sample is given by the product

n—1

H(k—]z\—,].

=0

3.2 Why might you suspect that the sample of 15 law schools in
Table (3.1) was obtained by sampling without replacement
rather than with replacement?

3.3 The mean GPA for all 82 law schools is 3.13. How does this|
compare with the mean GPA for the obscrved sample of 15 |
law schools in Table 3.17 Is this difference compatible with'
the estimated standard error (2.2)?

3.4 Denote the mean a,ni standard deviation of a set of number:
X, X3, -, Xy by X and S respectively, where

N N
X=3 X/N  5={) (X, - XN}

g=1 9=1

(&) Asawplexi, s, -, x,1ssclected from X, Xo;, -, Xn
by randonm sampling with replacenment. Denote the stan-

. . . — n
dard deviation ol the sample average T = 3., @;/n,

usually called the standard error of Z, by se(Z). Use
basic result of probability theory to show that

S
se(z) = —=.
V'
(b) T Suppose instead that x,,x2, -, Zn is selected b

random sampling withoui replacement (so we must hav
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n < N), show that

B S [N - n] 3
se(Z) = —=
v N-1]
(c) We sce that sampling without replacement gives a
smaller standard error for . Proportionally how much
smaller will 1t be 1 the case of the law school data?

3.5 Given a randow saple x1,x2, -, &y, the empirical proba-
bility of a set A is delincd to be the proportion of the sample
in A, writlen

Prob{A} = #{z, € A}/n. (3.30)

(a) Find Prob{A} for the data in Table 3.1, with A as
gwven in (3.9).

(b) The standard error of an empirical probability 1s
[Prob{A} - (1 — Prob{A})/n]'/? How mauy standard er-
rors is Prob{A} from Prob{A}, given m (3.10)?

6 A very simple probability distribution I puts probability on

© only two outcomes, 0 or 1, with frequencies

fo=1-p, fi=p (3.31)

This 1s called the Bernoulli distribution. Here p 1s a number
between 0 and 1. If 1, -, x, is a random sample from F,
then elementary probability theory tells us that the sun

s=zy+az3+ -+, (3.32)

has the binonnal distribution (3.5),

s ~ Bi(n,p). (3.33)
(2) Show thal the empirical probability (3.30) satsfics
n-Prob{A} ~ Bi(n,Prob{A}). (3.34)

Expression (3.34) can also Dbe written as
Prob{A} ~ Bi(n,Prob{A4})/n.)
(b) Prove that if z ~ Bi(n, p), then k(z) = np.

Without using calculus, give a symmetry argument to show
that E(z) = p for « ~ N(u,o?).
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3.8 Suppose that y and z are independent random variables,

with variances o2 and o2.

(a) Show that the variance of y + z is the sum of the
variancees
ol =0L+al. (3.35)
(In general, the variance of the sum is the sum of the vari-
ances for independent random variables z1, 3, -+, %p.)
(b) Suppose F — (z1,Z3, --,z,) where the probability
distribution F* has expectation u and variance o2. Show
that Z has expectation y and variance o” /n.

3.9 Use the results in Problems (3.6) and (3.8) to show that
a2 = np(l — p) for x ~ Bi(n,p).
3.10 Forty-three of the 82 points in Table 3.1 have LSAT < 600;
17 of the 82 points have GPA < 3.0. Why do we know that
LSAT and GPA are not independent?

3.11 In the discussion of random sampling, 71,72, - ,Jn Were
taken to be iudependent integers having a uniform distri-
bution on the numbers 1,2,---,N. That is, 71,2, *,Jn 18
itself a random sample, say

FI:N - (jla]?y' ) a]")v (336)

where Fy.n is the discrete distribution having frequencies
f; = 1/N, for 3 = 1,2,--- | N. In practice, we depend on
ouwr computer’s random number generator to give us (3.36).
If (3.36) holds, then a random sample as defined in this
chapter has the “i.a.d.” property defined in (3.29). Give a
brief argument why this is so.

| Indicates a difficult or more advanced problem.

DT O € 6 A e



CHAPTER 4

The empirical distribution
function and the plug-in
principle

4.1 Introduction

Problems of statistical inference often involve estimating some as-
pect of a probability distribution F on the basis of a random sample
-drawn from F'. The empirical distribution function, which we will
~call F, is a simple estimate of the entire distribution F'. An ob-
vious way to estimate somc intcresting aspect of I, like its mean
-or median or correlation, is to use the corresponding aspect of F'
:This is the “plug-in principle.” The bootstrap method is a direct
application of the plug-in principle, as we shall see in Chapter 6.

4.2 The empirical distribution function

. Having observed a random sample of size n from a probability
distribution F',

F — (21,22, ", Zn), (4.1)
he empirical distribution function F is defined to be the dis-
rete distribution that puts probability 1/m on each value z,, @ =

,2,---,n. In other words, I assigns to a set A 1 the sample space
f = its empirical probability

Prob{A} = #{z, € A}/n, (4.2)
he proportion of the observed sample x = (z;,Z2,--+,Z,) oc-

urring in A. We will also write Prob;{A} to indicate (4.2). The
at symbol “A” always indicates quantities calculated from the
bserved data.
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Table 4.1. A random sample of 100 rolls of the die. The outcomes
1,2,3,4,5,6 occurred 13,19,10,17, 14, 27 tumes, respectively, so the em-
peracal distribution s (.13,.19,.10,.17, .14, .27).

6 3 2 4 6 6 6 5 3 6 2 2 6 2 3 1 5 1
6 6 4 1 5 3 6 6 4 1 4 2 5 6 6 5 5 3
6 2 6 6 1 4 1 5 6 1 6 3 3 2 2 2 5 2
2 4 1 4 5 6 6 6 2 2 4 6 1 2 2 2 5 1
5 3 5 4 2 1 4 6 6 5 6 4 6 4 3 6 4 1
4 5 4 4 2 3 2 1 4 6

Consider the law school sample of size n = 15, shown in Table 3.1
and in the right panel of Figure 3.1. The empirical distribution £
puts probability 1/15 on each of the 15 data points. Five of the 15
points lie in the set A = {(y,2) : 0 <y < 600,0 < z < 3.00},
S0 P/rgb{A} = 5/15=.333. Nolice that we get a different empirical
probability for the set {0 < y < 600,0 < z < 3.00}, since one of
the 15 data points has GPA = 3.00, LSAT < 600.

Table 4.1 shows a random sample of n = 100 rolls of a die:
T; = 6,29 = 3,23 = 2,---,Z100 = 6. The empirical distribution b
puts probability 1/100 on cach of the 100 outcomes. In cases like
this, where there are repeated values, we can CXpress I more cco-
nomically as the vector of observed frequencies f, k=1,2,- -6,

i = #{x, = k}/n. (1.3)

For the data in Table 4.1, " = (.13,.19,.10,.17, .14, .27).

An empirical distribution is a list of the values taken on by the
sample x = (21,22, -, 2n), along with the proportion of times
each value occurs. Often each value occurring in the sample appears
only once, as with the law data. Repetitions, as with the die of
Table 4.1, allow the list to be shortened. In either case each of
the n data points z, is assigned probability 1/n by the empirical
distribution.

Is it obvious that we have not lost information in going from the
full data set (zy,Z2, --,%100) in Table 4.1 to the reduced repre-
sentation in terms of the frequencies? No, but it is true. It can be
proved that the vector of observed frequencies F = (fy, f1, - -} is
a sufficient statistic for the true distribution F = (f), f2, --). This

means that all of the information about F' contained in x is also
contaimed m F'
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‘Table 4.2. Rawnfall data. The yearty rainfall, in inches, mn Nevada City,
California, 1873 through 1978. An example of time series data.

a 1 2 3 4 5 6 7 8 9

1870: 80 40 65 46 68 32 58
1880: 60 61 60 45 48 63 44 66 39 35
1890: 44 104 36 45 69 50 72 57 53 30
1900: 40 56 55 416 46 T2 50 68 71 37
1910: 64 46 69 31 33 61 56 55 40 37
1920: 40 34 60 54 52 20 49 43 62 44
1930: 33 45 30 53 32 38 56 63 52 79
1940: 30 62 75 70 60 34 54 51 35 53
1950: 44 53 73 80 54 52 40 V7 B2 75
1960: 42 43 39 54 70 40 T3 41 75 43
1970: 80 60 59 41 67 83 56 29 21

The sufficiency theorem assumes that the data have been geu-
erated by random sampling from some distribution . This 1s cer-
tainly not always true. For example the mouse data of Table 2.1
~ involve two probability distributions, one for Treatment and one for
. Control. Table 4.2 shows a time-series of 106 numbers: the annual
rainfall in Nevada City, California from 1873 through 1978. We
could calculate the empirical distribution F' for this data set, but
it would not include any of time series information, for example,
if high numbers follow high numbers. Later, in Chapter 8, we will
see how Lo apply boolstrap methods to situations like the rainfall
data. For now we are restricting attention to data obtained by ran-
dom sampling from a single distribution, the so-called one-sample
sttuation. This is not as restrictive as it sounds. In the mouse data
example, for instance, we can apply one-sample results separately
to the Treatment and Control populations.

In applying statistical theory to real probleins, the answers to
questions of interest are usually phrased i terms of probability
distributions. We might ask if the die giving the data in Table 4.1
is fair. This is equivalent to asking if the die’s probability distribu-
tion F equals (1/6,1/6,1/6,1/6,1/6,1/6). In the law school exam-
ple, the question might be how correlated are LSAT and GPA. In
terms of F, the distribution of x = (y,z) = (LSAT, GPA), this 1s
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a question about the value of the population correlation coefficient

82
Z;:l(yj — uy)(Z; — i2)

82 82 2"
o2 —wy)? 2202 (2, pe)?]H?
where (V 7,) 18 the 7th point in the law school population X, and

. —82 .,
oy = L,_,, \,/‘u fis = L»]:-:I 7%, /82

When the probability distribution £ 1s known (i.e. when we have

a complete census of the population X), answering such questions

involves no more than arithmetic. For the law school population,
the census in Table 3.2 gives u, = 597.5, u, = 3.13, and

corr(y, z) = (4.4)

corr(y, z) = .761. (4.5)

This is the original definition of “statistics.” Usually we don’t have
a census. Then we need statistical inference, the more modern sta-
tistical theory for inferring properties of F' from a random sample
X.

If we had available only the law school sample of size 15, Ta-
ble 3.1, we could estimate corr(y, z) by the sample correlation co-
efficrent

15 . N
Zz 1(yi Ny)(zz‘ )
a2y (s — )2 X024 (26— )]/
where (y;,2;) 1s the ith point in Table 3.1, = = 1,2,-- ,15, and

frg = 02 yi/15, fi, = Souo, #i/15. Table 3.1 gives f1, = 600.3,
Jiz = 3.09, and

Gorily, =) —

(4.6)

cori(y, z) = .776. (4.7

Here 1s another example of a plug-in estimate. Suppose we are
interested in estimating the probability of a LSAT score greater
than 600, that is

82
1
=3 D Iy >600)- (4.8)
1

Since 39 of the 82 LSAT scores exceed 600, § = 39/82=0.48. The
plug estimate of 0 is

15
A 1
= Tg § :I{yosoo) (4~9)
1
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the sample proportion of LSAT scores above 600. Six of the 15
LSAT scores exceed 600, so § =6/15 = 0.4.

For the die of Table 4.1, we don’t have census data but only the
sample x, so any questions about the fairness of the die must be
answered by inference from the empirical {requencies

Fo=(fi,f2, fo) = (13,.19,.10,.17,.14,.27). {1.10)

Discussions of statistical inference are phrased in terms of pa-
rameters and statistics. A parameter is a function of the probabil-
ity distribution F'. A statistic 1s a function of the sample x. Thus
corr(y, z), (4.4), is a parameter of I, while cori(y, z), (4.6), is a
statistic based on x. Similarly fy is a parameter of F' in the die
example, while fk is a statistic, £ = 1,2,3,---,86.

We will sometimes write parameters directly as functions of F,
. say

8 = +(F). (4.11)

This notation emphasizes that the value 6 of the parameter is ob-
tained by applying some numerical evaluation procedure t( ) to the
distribution function F. For example if F' is a probability distri-
bution in the real line, the expectation can be thought of as the
parameter

8 = t(F) = Ep(z). (4.12)

Here t(F) gives 6 by the expectation process, that is, the average
value of z weighted according to I. For a given distribution F' such
as F' = Bi(n, p) we can evaluate ¢(¥') = np. Even if F is unknown,
the form of ¢(F') tells us the functional mapping that inputs F' and
outputs 8.

4.3 The plug-in principle

he plug-in principle is a simple method of estimating parameters
om samples. The plug-in estimate of a parameter § = ¢(F) is
efined to be

0 = t(F). (4.13)

other words, we estimate the function 8 = t(F) of the probability
istribution F' by the same function of the empirical distribution
, 6 = t(F). (Statistics like (4.13) that are used to estimate param-
ters are sometimes called summary statistics, as well as estimates
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and estimators.)

_ We have alrcady used the plug-in principle w cstimaling fi by
fr, and in estimating corr(y, z) by corr(y, z). To see this, note that
our law school population F' can be written as F' = (f1, fa, .- - fs2)
where each f;, the probability of the jth law school, has value 1/82.
Tlus is the probability distribution on X, the 82 law school pairs.
The population correlation coeflicient can be written as

2331 Fi(Y, — I-Lv)(ZJ — Hr)

corrly. ) = [Zjil fJ(YJ - ﬂy)2 2511 fj(ZJ - 1“'2)2]1/2i

(4.14)

where
82 82
By =Zf]Y]’ ,uz=szZ]. (4.15)
71=1 ]:1

Setting each f;, = 1/82 gives expression (4.4). Now for our sample

(z1, %2, . - . %15), the sample frequency fJ is the proportion of sample
points equal to X:

fy=#{z. = X,}/15, 7=1,2,.. 82. (4.16)

For the sample of Table 3.1, f1 =0,fo= 0, fg, =0,f = 1/15 etc.
Now plugging these values f, into expressions (4.15) and (4.14)
gIVes fy, by and corr(y, 2) respectively. That is, fi,, feo and corr(y, z)
are plug-n estimates of fuy, o, and corr(y, z).
In general, the plug-in estimate of an expectation 8§ = Ep(z) is
R 1 < _
0 =Fg(r) = S m=T (4.17)
=1
How good is the plug-in principle? It is usually quite good, if
the only available information about F' comes from the sample .
x. Under this circumstance ¢ = t(F') cannot be improved upon -
as an estimator of 6 = ([), at least not in the usual asymptotic
(n — oo) sense of statistical theory. For example if fy is the plug-in *;
frequency eslimate #{x, = k}/n, then

fi ~ Bi(n, fi)/n (4.18)

as in Problem 3.6. In this case the estimator fx is unbiased for
Jrr E(fx) = fx, with variance fi(1 ~ fx)/n. This is the smallest
possible variance for an unbiased estimator of f.
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We will use the bootstrap to study the bias and slandard error
of the plug-in estimate § = #(F). The bootstrap’s virtue 1s that
it produces biases and standard errors m an automatic way, no
matter how complicated the functional mapping § = ¢(F') may be.
We will see that the bootstrap itself is an application of the plug-in
principle.

The plug-in principle 1s less good in situations where there is

information about I other than that provided by the sample x. We
might know, or assume, that F' is a member of a parametric family,
.like the family of multivariate normal distributions. Or we mught
be in a regression situation, where we have available a collection
“of random samples x(z) depending on a predictor variable z. Then
even if we are only interested m F,,, the distribution function for
: some specific value zy of z, there may be information about F,,
in the other samples x(z), especially those for which z is near 2.
Regression models are discussed in Chapters 7 and 9.
The plug-in principle and the bootstrap can be adopted to para-
metric families and to regression models. See Section 6.5 of Chapter
'6 and Chapter 9. For the next few chapters we assume that we are
-in the situation where we have only the one random sample x from
“a completely unknown distribution F' This is called the ane-sample
I nonparametric setup.

4.4 Problemns

.1 Say carefully why the plug-in estimate of the expectation of
a real-valued random variable is &, the sample average.

.2 We would like to estimate the variance o2 of a real-valued ran-
dom variable z, having observed a random sample
T1,x9, -, Tn. What is the plug-in estimate of ¢2?

.3 (a) Show that the standard error of an empirical frequency

Fr is /Fu(1 = fi)/n. (You can use the result in problem
3.5b.)

(b) Do you believe that the die used to generate Table 4.1
is fair?

Suppose a random variable  has possible values 1,2,3,---
Let A be a subset of the positive integers.

(a) Show that Prob{A} = 3,4 fr-
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(b) Compare problems 4.3a and 3.5b, and conclude that
the observed frequencies fA;D are not independent of each
other.

(c) Say in words why the observed frequencies aren’t inde-
pendent.




CHAPTER 5

Standard errors and estimated
standard errors

5.1 Introduction

Summary statistics such as § = {(F') are often the first outputs of
a data analysis. The next thing we want to know is the accuracy of
6. The bootstrap provides accuracy estimates by using the plug-in
principle to estimate the standard error of a summary statistic.
This is the subject of Chapter 6. First we will discuss estimation
of the standard crror of a mean, where the plug-in principle can
be carried out explicitly.

5.2 The standard error of a mean

Suppose that z is a real-valued random vanable with probability
distribution F. Let us denote the expectation and variance of F
by the symbols pp and 0% respectively,

pr =Ep(z),  of =varp(z) = Epl(z - ur)’]. (5.1)

hese are the quantities called p, and o2 in Chapter 3. Here
e are emphasizing the dependence on F. The alternative nota-
on “varp(z)" for the variance, sometimes abbreviated to var(z),
‘means the same thing as ¢%. In what follows we will sometimes
Tite

2 A
T~ (pp;0F) (5.2)

.to indicate concisely the expectation and variance of z.
Now let (z1, - -,z ) be a random sample of size n from the distri-

ution F'. The mean of the sample £ = }_;, z./n has expectation
‘r and variance o% /n,

T~ (ur,oh/n). (5.3)
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In other words, the expectation of & i1s the same as the expectation
of a single x, but the variance of Z is 1/n times the variance of z.
See Problem 3.8b. This is the reason for taking averages: the larger
n 18, the smaller var(Z) is, so bigger n means a better estimate of
IF-

The standard error of the mean Z, written sep(T) or se(Z), is the
square root, of the variance of z,

sep(z) = [varp(2)]Y/? = op/v/n. (5.4)

Standard error is a general term for the standard deviation of a
summary statistic.! They are the most common way of indicating
statistical accuracy. Roughly speaking, we expect Z to be less than
one standard error away from pp about 68% of the time, and less
than two standard errors away from ur about 95% of the time.
These percentages are based on the central limit theorem. Un-
der quite general cunditions on F, the distribution of Z will be
approximately normal as n gets large, which we can write as

Z ~ N(up,o0%/n). (5.5)

The expectation pp and variance 6% /n 1n (5.5) are exact, only the
norality being approxumate. Using (5.5), a table of the normal
distribution gives

= OF . - 20F .
- 1= 683, b{|Z — pr| < —=}=.954,
Prob{|z up|<ﬁ} 683 Prob{|Z — pr| < \/ﬁ} 95
(5.6)

as illustrated 1in Figure 5.1. One of the advantages of the boot-
strap is that we do not have to rely entirely on the central limit
theorem. Later we will see how to get accuracy statements like
(5.6) directly from the data (see Chapters 12-14 on bootstrap con-
fidence mtervals). It will then be clear that (5.6), which is correct
for large values of n, can sometimes be quite inaccurate for the
sample size actually available. Keeping this in mind, it is still true
that the standard error of an estimate usually gives a good idea of
its accuracy.

A simple example shows the limitations of the central limit the-
orem approximation. Suppose that F' is a distribution that puts

! In some books, the term “standard error” is used to denote an estimated
standard deviation, that is, an estimate of or based on the data. That
differs from our usage of the term.
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95.4%

68.3%

e —20/n12 pe—ogmt2 He+og/n'2  ne+20/n12

Figure 5.1. For large values of n, the mean T of a random sample from F

will have an approzimate normal distribution with mean pr and varwance
2

ox/n.

probability on only two outcomes, 0 or 1, as in problem 3.6, say
Probp{z =1} =p and Probp{zx=0}=1—-p. (5.7)

Here p is a parameter of F, often called the probability of suc-
cess, having a value between 0 and ‘L. A random sample I —
- (z1,22,+ -, &) can be thought of as n independent flips of a com
having probability of success (or of “heads”, or of = 1) equal-
ng p. Then the sum s — 3.7 ; x, is the number of successes in n
ndependent flips of the coin; s has the binomial distribution (3.3),

s ~ Bi(n, p). (5.8)
The average Z = s/n equals P, the plug-in estimate of p. Distribu-
" tion (5.7) has pup = p, 0% = p(1 — p), so (5.3) gives

b~ (p,p(1—p)/n) (5.9)

" for the mean and variance of p. In other words, p is an unbiased
. estimate of p, E(p) = p, with standard error
s [p(L—p)/2

se(p) = [B—22] .

n

(5.10)

Figure 5.2 shows the central limit theorem working for the bhi-
nomial distribution with n = 25, p = .25 and p = .90. (Problem
5.3 says what is actually plotted in Figure 5.2.) The central limit
theorem gives a good approximation to the binomial distribution
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Figure 5.2. Comparison of the binomaal distribution with the normal
distribution suggested by the central limwt theorem; n = 25, p = .25 and
p = .90. The smooth curves are the normal densities, sce problem 5.3;
curcles windicate the bimomaal probabilities (3.5). The approximation s
good for p = .25, but 1s somewhat off for p = .90.

for n = 25,p = .25, but is somewhat less good for n = 25,p — .9.

5.3 Estimating the standard error of the mean

Suppose that we have in hand a random sample of numbers F —
Z1,Z2, ,Zn, such as the n = 9 Control measurements for the
mouse data of Table 2.1. We compute the estimate Z for the ex-
pectation pr, equaling 56.22 for tlie mouse data, and want to know
the standard error of Z. Formula (5.4), serp(Z) = op//n, involves
the unknown distribution F' and so cannot be directly used. R

At this point we can use the plug-in principle: we substitute F’
for I in the formula sep(Z) = op//n. The plug-in estimate of
op = [EF(CC - uF)Z]l/Z is

R _ _1_ a2y
G= = ngz Z)° 2, (5.11)
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since pp =Z and Egg(z) = 2 3" | g(=,) for any function g. This
gives the estimated standard error $&(Z) = sep (%),

(@) = o /v = (3 (@1 — 2 [} 2 (5.12)
=1
For the mouse Control group data, s&¢(z) = 13.33.

Formula (5.12) is slightly different than thie usual estimated
standard error (2.2). That is because op 18 usually estimated by
&= {3z, 2)%/(n— 1)}1/2 rather than by ar, (5.11). Dividing by
n — 1 rather than n makes 3* unbiased for o%. For most purposes
0 is just as good as & for estimating op.

Notice that we have used the plug-in principle twice: first to
estimate the expectation ur by pp = Z, and then to estimate
the standard error ser(Z) by sex(Z). The bootstrap estimate of
standard error, which is the subject of Chapter 6, amounts to using
the plug-in principle (o estimate the standard error of an arbitrary
statistic 8. Here we have seen that if § = &, then this approach
leads to (almost) the usual estimate of standard error. As we will
see, the advantage of the bootstrap is that it can be applied to
virtually any statistic §, not just the mean z.

5.4 Problems

5.1 Formula (5.4) exemplifies a general statistical truth: most
eslimates of unknown quantities improve at a rate propor-
tional to the square root of the sample size. Suppose that it
were necessary to know pp for the mouse Control group with
a standard error of no more than 3 days. How many more
Control mice should be sampled?

5.2 State clearly why p = s/n is the plug-in estimate of p for the
binomial situation (5.8).

5.3 Figure 5.2 compares the function

/

k”)p'”(kp)”“—-ﬂ for  £=0,1/252/25 --,1
nx

with

1 1 1 T —np 2

e — | f € [0,1].
n\/ZTrp(l—p)/nexp{ 2(\/71,]7(1—-13)]} or =< 0.1]
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5.4

:

STANDARD ERRORS AND ESTIMATED STANDARD ERRORS
Why is this the correct comparison?

In the binomial case there seems to be two plug-in estimates
for sep(p) = or/v/n = [p(1 — p)/n]*/?, one based on (5.12)
and the other equal to [ (1 — p)/n]'/%. Show that they are
the same. [Tt helps to write the variance in the form ¢% =
Er(z?) - pf ]

The coefficient of varation of a random variable x is defined
to be the ratio of its standard deviation to the absolute value
of its mean, say

evr(z) = or/|upl. (5.13)

(cvr measures the randomness in z relative to the magnitude
of its deterministic part up.)

(a) Show that cvp(Z) = cvp(z)/vn.

(b) Suppose z ~ Bi(n,p). How large must n be in order
that cv(z) = .107 cv(z) = .057 cv(z) = .017 Give a formula
for n as a function of p, and give specific values for p =
.5,.25, and .1.
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CHAPTER 6

The bootstrap estimate of
standard error

6.1 Introduction

. Suppose we find ourselves in the following common data-analytic
situation: a random sample x = (21,22, - -, 2y) from an unknown
probability distribution F' has been observed and we wish to es-
timate a parameter of interest § = t(F') on the basis of x. For
this purpose, we calculate an estimate 0 = s(x) from x. [Note
that s(x) may be the plug-in estimate t(F), but doesn’t have to
be.] How accurate is §? The bootsirap was introduced in 1979 as a
computer-based method for estimating the standard error of 6. It
énjoys the advantage of being completely automatic. The bootstrap
estimate of standard error requires no theoretical calculations, and
is available no matter how mathematically complicated the estima-
tor 6 = s(x) may be. It 1s described and illustrated in this chapter.

6.2 The bootstrap estimate of standard error

Bootstrap methods depend on the notion of a bootstrap sample. Let
F be the empirical distribution, putting probability 1/n on cach
of the obscrved values z,, 2 = 1,2,---,n, as described in Chapter
4.-A bootstrap sample is defined to be a random sample of size n
drawn from F, say x* = (2}, 23, -, 2}),

The star notation indicates that x* is not the actual data set x,
ut rather a randomized, or resampled, version of x.

“There is anolher way to say (6.1): the bootstrap data points
1,23, -, 2k are a random sample of size n drawn wrth replace-
ent from the population of n objects (z1,22,- -, 2n). Thus we
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might have ] = x7,2; = 3,25 = 3,05 = T2z, L), = L7.
The bootstrap data sel (z},z3, --,z}) consists of members of the
original data set (w1, 72, - ,2s), SOme appearing zero times, some
appearing once, sonle appearing twice, etc.

Corresponding to a bootstrap data set x* is a bootstrap replica-
tron of 8,

0 = s(x*). (6.2)

The quantity s(x*) 1s the result of applying the same function s(-)
to x* as was applied to x. For example if s(x) is the sample mean z
then s(x*) is the mean of the bootstrap data set, T =Y.' | z}/n.

The bootstrap estimate of sex(6), the standard error of a statis-
tic §, is a plug-in estimate that uses the empirical distribution
function F 1 place of the unkitown distribution F. Specifically,
the bootstrap estimate of sep(6) is defined by

sep(0%). (6.3)

In other words, the bootstrap estimate of sep(6) is the standard
error of & for data sets of size » randomly sampled from F'.

Formula (6.3) is called the tdeal bootstrap estimate of standard
error of 6. Unlortunately, for virtually any estunate 6 other than
the mean, there 1s no neat formula like (5.4) on page 40 that cnables
us to conipute the numerical value of the ideal estimate exactly.
The bootstrap algorithm, described next, is a computational way of
obtaining a good approximation to the numerical value of sep(é*‘).

1t 1s easy to unplement bootstrap sampling on the computer. A
random number device selects integers 11,23, - - ,1,, each of which
equals any value between 1 and n with probability 1/n. The boot-
strap sample consists of the corresponding members of x,

"= T, (6.4)

The bootstrap algorithm works by drawing many independent
bootstrap samples, ewluating the corresponding bootstrap repli-
cations, and estimating the standard error of # by the empirical
standard deviation of the replications. The result is called the boot-
strap estimate of standard error, denoted by Sep, where B is the
number of bootstrap samples used.

Algorithm 6.1 is a more explicit description of the boolsirap
procedure for estimating the standard error of 6= s(x) from the
observed data x.

,,"‘_,, ,.*_,. - T
XY =Xy, Ty = Ay, T
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Algorithm 6.1

The bootstrap algorithm for estimating standard errors

L, Select B independent  bootstrap  samples
x* x*2 - x*Beach consisting of n data values drawn
with replacement from x, as in (6.1) or (6.4). [For estimat-
ing a standard error, the number B will ordinarily be in

the range 25 — 200, see Table 6.1.]

2. Evaluate the bootstrap replication corresponding to each
bootstrap sainple,
0*(b) = s(x**)  b=1,2,,B. (6.5)

3. Estimate the standard error sep(6) by the sample stan-
dard deviation of the B replications

B

@ = {0 -i0r@-0" ©o

b=1

where 0*(-) = 3.2 | 0*(b)/B.

Figure 6.1 15 a schematic diagram of the bootstrap standard
error algorithm. The Appendix gives programs for computing §é g,
written in the S language.

The limit of é¢5 as B goes to infinity is the ideal bootstrap
estimate of sep(f),

lgl;o fep = sep = sep(é*). (6.7)
The fact thal §2; approaches sey as 3 goes to infinily amounts to
saying that an empirical siandard deviation. approaches the pop-
ulation standard deviation as the number of replications grows
large. The “population” in this case is the population of values
0* = s(x*), where F' — (z},25,---,z5) = x*.

The ideal bootstrap estimate sepé* and its approximation §ép
are sometimes called nonparametric bootstrap estimates because
they are based on F . the nonparametric estimate of the population
F. In Section 6.5 we discuss the parametric bootstrap, which uses
a different estimate of F'
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Figure 6.1. The bootstrap algorithm for estimating the standard error of
a statistic § = s(x); each bootstrap sample 15 an mdependent random
sample of size n from F The number of bootstrap replications B for
estimating a standard error 18 usually between 25 and 200. As B — oo,
sep approaches the plug-in estimate of ser(9).

Bootstrap Bootstrap Bootstrap Estimate
Empirical ~ Samples of  Replications of Standard Error
Distribution Size n of &
v v l
w/ X — dr () =s(x*)  —
x*2

—> 0%(2) = s(x*})

B — 4@y = s(x*

K () = s(x*)

f\

P e =B

ség =

~ B [9 (b)- 9'()]:]

B b
where e() ot B

A word about notation: m (6.7) we write S(,,((;*) rather than
se;(f) to avoid confusion between 6, the value of s(x) based on
the observed data, and 6* = s(x*) thought of as a random variable
based on the bootstrap sample. The fuller notation seﬁ(é(x*)) em-
phasizes that sez is a bootstrap standard error: the actual data x
is held fixed in (6.7); the randomuess in Lhe calculalion comes from

the variability of the bootstrap samples x*, gwen x. Similarly we
will write Ezg(x*) to indicate the bootstrap expectation of a func-
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tion g(x*), LlLie expectation with x (and F) fixed and x* varying
according to (6.1).

The reader is asked in Problem 6.5 to show that there is a total
of (2"—1) distinct bootstrap samples. Denote these by z!,2z2,... 2™

where m = (2"71_1). For example, if n = 2, the distinct sam-
ples are (z1, 1), (z3,22) and (z1,22); since the order doesn’t mat-
ter, (x2,z1) is the same as (z1,22). The probability of obtaining
one of these samples under sampling with replacement can be ob-
tained from the multinomial distribution: details are in Problem
6.7. Denote the probability of the jth distinct sample by w;,5 =
1,2,... (E"n"l). Then a direct way to calculate the ideal bootstrap
estimate of standard error would be to use the population standard
deviation of the m bootstrap values s(z?):

m
sep(0) =) w;{s(z") — s()}}"/? (6.8)
7=1
where s(-) = Z;’;I w;s(z?). The difficulty with this approach is
that unless n is quite small (< 5), the number (znn_l) is very large,
making computation of (6.8) impractical. Hence the need for boot-
strap sampling as described above.

6.3 Example: the correlation coefficient

We have already seen two examples of the bootstrap standard error
estimate, for the mean and the median of the Treatment group
of the mouse data, Table 2.1. As a second example consider the
sample correlation coefficient between y = LSAT and z = GPA
for the n — 15 law school data points, Table 3.1, cori(y, z) = .776.
How accurate is the estimate .776? Table 6.1 shows the bootstrap
estimate of standard error sep for B ranging from 25 to 3200. The
last value, $€3200 = .132, 1s our estimate for scp-(corr). Later we
will see Lhat §éqgq 18 nearly as good an cstimate of scp as is §é3200.

Looking at the night side of Figure 3.1, the reader can imagine
the bootstrap sampling process af work. The sample correlation of
the n = 15 actual data points is éorr = .776. A bootstrap sample
consists of 15 points selected at random and with replacement from
the actual 15. The sample correlation of the bootstrap sample is a

. bootstrap replication ¢ori*, whicli may be either bigger or smaller

than ¢orr. Independent repetitions of the bootstrap sampling pro-
cess give bootstrap replications éorr* (1), éorr* (2), - -,éori”(B). Fi-
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Table 6.1. The bootstrap estimate of standard error for corr(y,z) = .776,
the law school data of Table 3.1, n = 15; a run of 3200 bootstrap repli-
cations gave the tabled values of Sep as B wncreased from 25 to 3200.
B: 25 50 100 200 400 800 1600 3200
sep: .140 .142 151 .143 .141 137 .133 .132

nally, $&p is the sample standard deviation of the ¢ort”(b) values.

The left panel of Figure 6.2 is a histogram of the 3200 boot-
strap replications €ort"(b). It is always a good idea to look at the
bootstrap data graphically, rather than relying entirely on a single
summary statistic like sép. In the correlation example it may turn
out that a few outlying values of éott”(b) are greatly inflating e,
in which case it pays to use a more robust measure of standard
deviation; see Problem 6.6. In this case the histogram is noticeably
non-normal, having a long tail toward the left. Inferences based
on the normal curve, as in (5.6) and Figure 5.1, are suspect when
the bootstrap histogram is markedly non-normal. Chapters 12-14,
discuss bootstrap confidence intervals, which use more of the infor-
mation in the bootstrap histogram than just its standard deviation
sep.

In the law school situation we happen to have the complete
population A" of N = 82 points, Table 3.2. The nght side of
Figure 6.2 shows the histogram of ¢ort(y,z) for 3200 samples of
size n = 15 drawn from X'. In other words, 3200 random sam-
ples x = (21,22, -,z15) were drawn with replacement from the
82 points in X', and cort(x) evaluated for each one. The standard
deviation of the 3200 cort(x) values was .131, so §ég is a good
estimate of the population standard error mn this case. More im-
pressively, the bootstrap histogram on the left strongly resembles
the population histogram on the right. Remember, in a real prob-
lem we would only have the information on the left, from which we
would be trying to infer the situation on the right.

6.4 The number of bootstrap replications B

How large should we take B, the number of bootstrap replications
used to evalnate Ség? The ideal bootsirap estimate “Séos” takes
B = oo, in which case §&, equals the plug-in estimate se(6*).
Formula (5.12) gives §éuo for § = Z, the mean, but for most other
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Figure 6.2. Left panel: histogram of 3200 bootsirap replications of
corr(x*), from the law school data, n = 15, Table 3.1. Right panel: has-
togram of 3200 replications corr(x), where X 1s a random sample of size
n from the N = 82 pownts wn the law school population, Table 3.2. The
bootstrap histogram strongly resembles the population hisiogram. Both
are notably non-normal.

statistics we must actually do the bootstrap sampling. The amount
of computer time, which depends mainly on how long it takes to
evaluate the bootstrap replications (6.5), increases linearly with B.
Time constraints may dictate a small value of B if § = s(x) is a
very complicated function of x, as in the examples of Chapter 7.

We want the same good behavior from a standard error estimate
as from an estimate of any other quantity of interest: small bias
and small standard deviation. The bootstrap estimate of standard
error usually has relatively little bias. The ideal bootstrap estimate
$éco has the smallest possible standard deviation among nearly
unbiased estimates of sep(8), at least in an asymptotic (n — oo)
sense. These good properties follow from the fact that sé. is the
plug-in estimate sez(0*). It is not hard to show that sep always
has greater standard deviation than $é.,; see Problem 6.3. The
practical question is “how much greater?”

An approximate, but quite satisfactory answer can be phrased in
terms of the coefficient of variation of $ep, the ratio of sép’s stan-
dard deviation Lo ils expectation, see Problem 5.5. The increased
variability due to stopping after B bootstrap replications, rather
than going on to infinity, is reflected in an increased coefficient of
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variation,

E(A) 42\ 1/2
e
'I'his formula is derived in Chapter 19. Here A is a parameter that
measures how long-tailed the distribution of #* is: A is zero for
the normal distribution, it ranges from —2 for the shortest-tailed
distributions to arbitrarily large values when F is long-tailed. * In
practice, A 1s usually no larger than 10. The coefficient of varia-
tion in equation (6.9) refers to variation both at the resampling
{bootstrap) level and at the population sampling level. The ideal
" estimate 56, = sep(é*) isn’t perfect. It can still have considerable
variability as an estimate of seF(é), due to the varability of I as
an estimate of F. For example if z, @2, -+, 2, is a random sample
fromn a normal distribution and = Z, then cv(sey) = 1/v2n,
equaling .22 for n = 10. Formula (6.9) has an important practi-
cal consequence: for the values of cv(§8.) and A likely to arise in
practice, ev{(sép) 1s not much greater than cv(sé.) for B > 200.

Table 6.2 compares cv($€p) with cv(§é) for various choices of
B, assuming A = 0. Very often we can expect to have ¢v($€,) no
smaller than .10, in which case B = 100 gives quite satisfactory
results.

Here are two rules of thumb, gathered from the authors’ experi-
ence:

cv(sep) = {Cv(s/éoo)z -+ {6.9)

(1) Even a small number of bootstrap replications, say B = 25,
is usually informative. B = 50 is often enough to give a good

estimate of ser(6).

(2) Very seldom are more than B = 200 replications needed for
estimating a standard error. (Much bigger values of B are re-
quired for bootstrap confidence intervals; see Chapters 12-14
and 19.)

Approximations obtained by random sampling or simulation are
called Monte Carlo estimates. We will see in Chapter 23 that com-
putational methods other than strayghtforward Monte Carlo simu-
lation can sometimes reduce manyfold the number of replications

Let 6 be the kurtosis oii 0% = 5(x*), Le. 65 = Ep(6* — [L)“/(Ep(é* -
1)2)? — 3, where 4 = Ez(0"). Then A is the expected value of 6, where F
is the empirical distribution based on a random sample of size n from F. If
§ = £, then A equals about 1/n times the kurtosis of F itself. See Section
9 of Efron and Tibshiram (1986).
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Table 6.2. The coefficient of varation of sep as a function of the coeffi-
ctent of varation of the wdeal bootstrap estimate e and the number of
bootstrap samples B, from formula (6.9) assuming A = 0.

B —
25 50 100 200 oo

ov(%®ee) 25 .29 27 26 25 .25
) 20 24 22 21 21 .20
A5 21 18 .17 .16 .15
10 17 14 12 11 .10
05 15 11 .09 .07 .05
00 .14 10 .07 .05 .00

B needed to attain a prespecified accuracy. Meanwhile it pays to
rerember that bootstrap data, like real data, deserves a close look.
In particular, it is almost never a waste of time to display the his-
togram of the bootstrap replications.

6.5 The parametric bootstrap

It might seem strange to use a resampling algorithm to estimate
standard errors, when a textbook formula could be used. In fact,
bootstrap sampling can be carried out parameirically and when
it is used in that way, the results are closely related to textbook
standard error formulae.

The parametric bootstrap estimate of standard error is defined
as

N¥
sep  (07), (6.10)

where Fpar is au estimate of F' denived from a parametric model
for the data. Parametric models are discussed in Chapter 21: here
we will give a simple example to illustrate the 1dea. For the law
school data, instead of estimating F' by the empirical distribution
F, we could assume that the population has a bivariate normal
distribution. Reasonable estimates of the mean and covariance of

this population are given by (7, ) and

i 2oy — 17)2 S{yi — Tz — 2)
14 (Z(yi — )z — 2) Sz — 2)? ) . (6.11)
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Denote the bivariate normal population with this mean and co-
variance by F}wml; it 1s an example of a parametric estimate of
the population F'. Using this, the parametric bootstrap estimate
of standard error of the correlation f is sep (6*). As in the non-
parametric case, the ideal parametric bootstrap estimate cannot be
easily evaluated except when € is the mean. Therefore we approxi-
mate the ideal bootstrap estimate by bootstrap sampling, but in a
different manner than before. Instead of sampling with replacement,
from the data, we draw B samples of size n from the parametric
estimate of the population Fp,,:

Fpar = (1,23, .})

After generating the bootstrap samples, we proceed exactly as in
steps 2 and 3 of the bootstrap algorithm of Section 6.2: we evalu-
ate our statistic on each bootstrap sample, and then compute the
standard deviation of the I3 bootstrap replicalions.

In the correlation coellicienl example, assuming a hivariale nor-
mal population, we draw B samples of size 15 from Fyorm and com-
pute the correlation coefficient for each bootstrap sample. (Prob-
lem 6.8 shows how to generate bivariate normal random variables.)
The left panel of Figure 6.3 shows the histogram of B = 3200 boot-
strap replicates obtained in this way. It looks quite similar to the
histograms of Figure 6.2. The parametric bootstrap estimate of
standard error from these replicates was .124, close to the value of
.131 obtained fromn nonparametric bootstrap sampling.

The textbook formula for the standard error of the correlation
coefficient is (1 — 02)/\/n — 3. Substituting § = .776, this gives a
value of .115 for the law school data.

‘We can make a further comparison (o our parametric bootstrap
result. Textbook results also state that Fisher’s transformation of
6

(=.5 log(

1+0)

T3 (6.12)

is approximately normally distributed with mean ¢ = .5- log( 1+9)

and standard deviation 1/v/n— 3, 0 being the population correla-
tion coefficient. From this, one typically carries out inference for ¢
and then transforms back to make an inference about the corre-
lation cocflicient. To compare this with our paramectric bootstrap
analysis, we caleulated ¢ rather than 0 for cach of our 3200 bool-
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Figure 6.3. Left panel: histogram of 3200 parametric booistrap replica-
tions of corr(x"), from the law school data, n = 15. Right panel: has-
togram of 8200 rcplications of C Fisher’s transformation of the corre-
lation coefficrient, defined i (6.12). The left hstogram looks much like
the histograms of (6.2), while the right histogram looks quite normal as
predicted by statistical theory.

strap samples. A histogram of the ¢* values 1s shown in the right
panel of Figure 6.3, and looks quite normal. Furthermore, the stan-
dard deviation of the 3200 ¢* values was .290, very close to the
value 1/4/15 — 3 = .289.

This agreement holds quite generally. Most textbook formulae
for standard errors are approximations based on normal theory,
and will typically gives answers close to the parametric bootstrap
that draws samples from a normal distribution. The relationship
between the bootstrap and traditional statistical theory is a more
advanced topic mathematically, and is explored in Chapter 21.

The bootstrap has two somewhat different advantages over tra-
ditional textbook methods: 1) when used m nonparametric mode,
it relieves the analyst from having to make parametric assump-
tions about the form of the underlying population, and 2) when
used in parametric mode, it provides more accurate answers than
textbook formulas, and can provide answers in problems for which
no textbook formulae exist.

Most of this book concentrates on the nonparametric application
of the bootstrap, with some exceptions being Chapter 21 and cxain-
. ples in Chapters 11 and 25. The paramctric bootstrap s useful in
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problems where some knowledge about the form of the underlying
population is available, and for comparison to nonparametric anal-
yses. However, a main reason for making parametric assumptions
in traditional statistical analysis is to facilitate the derivation of
textbook formulas for standard errors. Since we don’t need formu-
las in the bootstrap approach, we can avoid restrictive parametric
assumptions.

[inally, we mention that i Chapters 13 and 14 we describe
bootstrap methods for construction of confidence intervals m which
transformations such as (6.12) are incorporated in an automatic
way.

6.6 Bibliographic notes

The bootstrap was introduced by Efron (1979a), with further gen-
eral developments given in Efron (1981a, 1981b). The monograph
of Efron (1982) expands on many of the topics in the 1979 pa-
per and discusses some new ones. Expositions of the bootstrap for
a statistical audience include Efron and Gong (1983), Efron and
Tibshirani (1986) and Hinkley (1988). Efron (1992a) outlines some
statistical questions that arose from bootstrap research. The lec-
ture notes of Beran and Ducharme(1991) and Hall’s (1992) mono-
graph give a mathematically sophisticated treatment of the boot-
strap. Non-technical descriptions may be found in Diaconis and
Efron (1983), Lunneborg (1985), Rasmussen (1987), and Efron and
Tibshirani (1991). A general discussion of computers and statistics
may be found m Efron {1979b). Young (1988a) studies bootstrap-
ping of the correlation coefficient.

While Efron’s 1979 paper formally introduced and studied the
bootstrap, sunilar ideas had been suggested in different contexts.
These include the Monte Carlo hypothesis testing methods of
Barnard (1963), Hope (1968) and Marriott (1979). Particularly
notable contributions were made by Hartigan (1969, 1971, 1975)
in his typical value theory for constructing confidence intervals.
J.L. Simon discussed computational methods very similar to the
bootstrap in a sociometrics textbook of the 1960’s; see Simon and
Bruce (1991).

The jackknife and cross-validation techniques predate the boot-
strap and are closely related to it. References to these methods are
given in the bibliographic notes in Chapters 11 and 17.
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6.7 Problems

6.1

6.2

We might have divided by B instead of B — | in definition
(6.6) of the bootstrap standard error estimate. How would
that change Table 6.17

With 3¢5 defined as in (6.6), show that
Ep(seh) = s, (6.13)

where se equals the ideal bootstrap estlmate se (9 ). In
other words, the variance estimate &% based on B boot-
strap replications has bootstrap expectation equal to the
ideal bootstrap variance sAe2

6.3 Show that EF(sféB) Er(862,), but var p(56%) > VBI[‘(SE ).

6.4

In other words &% has the same expectation as &2, but
larger variance. (Notice that these results involve the usual
expectation and variance Ep and varg, not the bootstrap
quantities By and varg.)

The data in Table 3.2 allow us to compute the quantities
cv(Ses) and A in formula (6.9) for the law school data:
cv{see) = .41, A = 4. What value of B makes cv($ep) only
10% larger than cv(§8s)? 5%7 1%7?

6.5 T Given a data set of n distinct values, show that the number

6.6

of distinct bootstrap samples is
\

(2" - 1)_ (6.14)

n
How many are there for n = 157

A biased but more robust estimate of the bootstrap standard
error 1s
é*(a) . é*(lvoz)

o (6.15)

SNeB,a =
where 6*(®) is the 100ath quantile of the bootstrap repli-
cations (i.e. the 100ath largest value in an ordered list of
the 6*(b)), and 2(® is the 100ath percentile of a standard
normal distribution, 2(-?9) = 1.645 etc. Here 1s a table of
the quantiles for the 3200 bootstrap replications of 6* in
Table 6.1 and the left panel of Figure 6.2:
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o .05 .10 .16 .50 .84 .90 .95
524 596 .647 793 906 927 948

(a) Compute ség o for a = .95,.90, and .84.
(b) Suppose that a transcription error caused one of the

6*(b) values to change from .42 to —4200. Approzimately
how much would this change sey? $ég o7

6.7 Suppose a bootstrap sample of size n, drawn with replace-
ment from z,,Z3,. .. Z,, contains j; copies of z1, 2 copies of
Z4, and so on, up to j, copies of z,, with 33 +79.. .43, = n.
Show that the probability of obtaining this sample 1s the
multinomial probability

(Ju:- 'Jn) ﬁ (%)J (6.16)

1—1

where

1
( " ):"g (6.17)
J1J2 dn ! !

6.8 Generation of bwarwate normal random variables. Suppose
we have a random number generator that produces inde-
pendent standard normal variates? r; and r2 and we wish
to generate bivariate randcm variables y and 2z with means
Loy Kz and covariance matrix

0} Oys
oy: 02 )
Let p = 0y./(0y0.) and define

- L= _ 92 o
Y = fy + OyT1; Z—Nz“‘m(rl"‘C 73)

where ¢ = 1/(1/p?) — 1. Show that y and 2 have the required
bivariate normal distribution.

6.9 Generate 100 bootstrap replicates of the correlation coef-

ficient for the law school data. From these, compute the

2 Most statistical packages have the facility for generating independent stan-

dard normal variates. For a compiehensive reference on the subject, see
Devroye (1986).
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bootstrap estimate of standard error for the correlation co-
efficient. Compare your results to those in Table 6.1 and
Figure 6.2.

6.101 Consider an artificial data sct consisting of the 8 numbers

1,2,3.5,4,7,7.3,8.6,12.4,13.8, 18.1.

Let 6 be the 25% trimmed mean, computed by deleting the
smallest, two numbers and largest two numbers, and then
taking the average of the remaining four numbers.

(a) Calculate ség for B = 25, 100, 200, 500, 1000, 2000. From
these results estimate the ideal bootstrap estimate §é4,.

(b) Repeat part (a) using ten different random number
seeds and hence assess the varability in the estimates.
ITow large should we take B to provide satisfactory accu-
racy?

(c) Calculate the ideal bootstrap estimate $é., directly us-
ing formula (6.8). Compare the answer to that obtained
in part (a).

t Indicates a difficult or more advanced problem.



CHAPTER 7

Bootstrap standard errors: some
examples

7.1 Introduction

Before the computer age statisticians calculated standard errors
using a combination of mathematical analysis, distributional as-
surmnptions, and, often, a lot of hard work on mechanical calcula-
tors. One classical result was given in Section 6.5: it concerns the
sample correlation coefficient ¢ott(y, z) defined in (4.6). If we are
willing to asswne that the probability distribution F' giving the n
data points (y;, ;) is bivariate normal, then a reasonable estimate
for the standard error of Cort is

Seuormal = (1 — €0Tt°)/vV/n — 3. (7.1)

An obvious objection to $&,0rmar concerns the use of the bivariate
normal distribution. What right do we have to assume that F is
normal? To the trained eye, the data plotted in the right panel of
Figure 3.1 look suspiciously non-rormal - the point at (576, 3.39) is
too far removed from the other 14 points. The real reason for con-
sidering bivariate normal distributions is mathematical tractabil-
ity. No other distributional form leads to a simple approximation
for se(cort).

There is a second important objection to Sepormai: it requires
a lot of mathematical work to derive formulas like (7.1). If we
choose a statistic more complicated than cort, or a distribution
less tractable than the bivariate normal, then no amount of math-
ematical cleverness will yield a simple formula. Because of such
limitations, pre-computer statistical theory focused on a small set
of distributions and a limited class of statistics. Computer-based
methods like the bootstrap free the statistician from these con-
straints. Standard errors, and other measures of statistical accu-
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racy, are produced automatically, without regard to mathematical
complexity. *

Bootstrap methods come into their own in complicated estima-
tion problems. This chapter discusses standard errors for two such
problems, one concerning the eigenvalues and eigenvectors of a
covarlance matrix, the other a computer-based curve-fitting algo-
rithm called “loess.” Describing these problems requires some ma-
trix terminology that may be unlaudliar to the reader. However,
matrix-theoretic calculations will be avoided, and in any case the
theory isn’t necessary to understand the main point being made
here, that the simple bootstrap algorithm of Chapter 6 can provide
standard errors for very complicated situations.

At the end of this chapter, we discuss a simple problem in which
the bootstrap fails and look at the reason for the failure.

7.2 Example 1: test scorc data

Table 7.1 shows the score data, from Mardia, Kent and Bibby (1979);
n = 88 students each took 5 tests, in medmmcs vectors, algebra,
analysis, and statistics.

The first two tests were closed book, the last three open book.
It is convenient to think of the score data as an 88 x 5 data matrix
X, the ith row of X being

X, = (11, Tiny T43, Tid, Tis), (7.2)

the 5 scores for student 1,1 =1,2,---,88.
The mean vector x = Z?i 1 X,88 is the vector of column 1neans,

X = (Z1,%2,%3,%4,7T5)
88 88
= Zw“ /88, Zm /88, - Zm /88)
— (38.95,50.50,50.60, 46.68, 42.31). (7.3)

The empirical covartance matrix G is the 5 x 5 matrix with (3, )th

1 This is not all pure gaimn. Theoretical formulas like (7.1) can help us under-
stand a situation in a different way than the numerical output of a bootstrap
program. (Later, m Chapter 21, we will examne the close connections be-
tween formulas like (7.1) and the bootstrap.) It pays to remember that
methods like the bootstrap free the statistician to look more closely at the
data, without fear of mathematical difficulties, not {ess closely.
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Table 7.1. The score data, from Mardia, Kent and Bibby (1979); n = 88
students each took five tesis, wn mechamics, vectors, algebra, analysts,
and statistics; “c” and “o” wndicate closed and open book, respectively.

# mec vec alg ana sta| # mec vec alg ana sta
(¢) (&) (o) (o) (o) () (& (o) (o) (o)
77 82 67 67 81| 45 46 61 46 38 41
63 78 80 70 81| 46 40 57 51 52 3L
75 73 071 66 81 | 47 49 49 45 48 39
55 72 63 70 68| 48 22 58 53 56 41
47 54 33
53 61 72 64 73| 50 48 56 49 42 32
51 67 65 65 68 | 51 31 57 50 54 34
59 70 68 62 56 [ 52 17 53 57 43 51
9 62 60 o8 62 70 | 53 49 57 47 39 26
10 64 72 60 62 45 | b4 59 50 47 15 46
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element
1 88
ij = @}_{(mm —3_3_7)(93“‘; 73—376) j:k:1127374v5 - (74)
=1

Notice that the diagonal clement G is the plug-in estimate (5.11)
for the variance of the scores on test 3. We compute

302.3 125.8 1004 105.1 116.1
125.8 1709 84.2 93.6 979
G = | 1004 84.2 111.6 110.8 1205 |. (7.5)
105.1 936 110.8 217.9 153.8
116.1 97.9 120.5 153.8 2044

Educational testing theory 1s often concerned with the eigen-
values and etgenvectors of the covariance matrix G. A 5 X 5 co-
variance matrix has 5 positive eigenvalues, labeled in decreasing
order A7 > Az > A3 > Ay > X Corresponding to each Misa
5 dimensional eigenvector ¥; = (i1, 92, Vi3, D14, 9i5). Readers not
familiar with eigenvalues and vectors may prefer to think of a func-
tion “eigen”, a black box 2 which inputs the matrix G and outputs
the A; and corresponding V;. Here are the eigenvectors and values
for matrix (7.5):

A = 679.2 ¥ = (.505,.368,.346, .451, .535)
X2 =1998 x‘; = (-.749,—.207, 076, .301, .54R)
As = 102.6 V3 = (—.300, 416, .145, .597, —600)
Ay =837 V4 = (.296, -.783, —.003, 518, —.176)
Js =31.8 Vs = (.079,.189, —.924, .286, 101)

(7.6)

Of what interest are the eigenvalues and eigenvectors of a co-
variance matrix? They help explain the structure of multivarate
data like that in Table 7.1, data for which we have many inde-
pendent units, the n = 88 students in this case, but correlated
measurements within each unit. Notice that the 5 test-scores are
highly correlated with each other. A student who did well on the
mechanics test is likely to have done well on vectors, etc. A very

2 The eigenvalues and eigenvectors of a matrix arc actually computed by a
complicated series of algebraic manipulations requiring on the order of p°
calculations when G is a p x p matrnx. Chapter 8 of Golub and Van Loan,
1983, describes the algorithm.
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simple model for correlated scores is
X, = Qv 1=1,2, ,88 (7.7)

Here Q, is a single number representing the capability ol studeut ¢,
while v = (vq,va, v3,v4,v5) 18 a fixed vector of 5 numbers, applying
to all students. @; can be thought of as student #’s scientific Intel-
ligence Quotient (IQ). IQs were originally motivated by a model
Jjust slightly more complicated than (7.7).

If model (7.7) were true, then we would find this out from the
eigenvalues: only 5\1 would be positive, 5\2 = 5\3 = 5\4 = 5\5 = 0;
also the first eigenvector v, would equal v. Let 6 be the ratio of
the largest eigenvalue to the total,

5
=5/ A (7.8)

Model (7.7) is equivalent to 6 = 1. Of course we don’t expect (7.7)
to be exactly true for noisy data like test scores, even if the model
is basically correct.

Figure 7.1 gives a stylized illustration. We have taken just two
of the scores, and on the left depicted what their scatterplot would
look like if a single number @; captured both scores. The scorcs lie
exactly on a line; Q; could be defined as the distance along the line
of each point from the origin. The right panel shows a more realistic
situation. The points do not lic exactly ou a line, but are fairly
collinear. The line shown i1 the plot points i the direction given by
the first eigenvector of the covariance matrix. It is sometimes called
the first principal component line, and has the property that it
minimizes the sum of squared orthogonal distances from the points
to the line (in contrast to the least-squares line which minimizes
the sum of vertical distances from the points to the line). The
orthogonal distances are shown by the short line segments in the
right panel. It is difficult to make such a graph for the score data:
the principal component line would be a line in five dimensional
space lying closest to the data. If we consider the projection of
each data point onto the line, the principal component line also
maximizes the sample variance of the collection of projected points.

For the score data

679.2 _
679.2 +1998 + ---+ 31.8

§= 619 . (7.9)
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Figure 7.1. Hypothetical plot of mechanics and vector scores. On. the left,
the pawrs line exactly on a straght line (that 1s, have corvelation 1) and
hence a single measure captures the two scores. On the mght, the scores
have correlation less than one. The principal component line minimazes
the sum of orthogonal distances to the line and has direction given by
the largest eigenvector of the covariance matriz.

In many situations this would be considered an interestingly large
value of §, indicating a high degree of explanatory power for model
(7.7). The value of 6 measures the percentage of the variance ex-
plained by the first principal component. The closer the points lie
to the principal component, line, the higher the value of 4.

How accurate is §7 This is the kind of question that the bootstrap
was designed to answer. The mathematical complexity going into
the computation of @ is irrelevant, as long as we can compute 6*
for any bootstrap data set. In this case a bootstrap data set is an
88 x 5 matrix X*. The rows x} of X* are a random sample of size
- 88 from the rows of the actual data matrix X,

X){ = xlﬂXE = Xogs® ’X;S = Xigss (7‘10)
as in (6.4). Some of the rows of X appear zero times as rows of

X*, some once, some twice, etc., for a total of 88 rows.
Having generated X*, we calculate its covariance matrix G* as
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Table 7.2. Quantiles of the bootsirap distribution of 8* defined in (7.12)

a .05 .10 .16 50 .84 90 .95
quantile .545 557 .576 .629 .670 .678 .693

in (7.4)
138
e = é-é-L(m;j —z)(zh, — Zh) 7,k =1,2,3,4,5.
=1
(7.11)
We then compute the eigenvalues of G*, namely ;\’{, ;\;, B ,J\;, and
finally
~ -~ 5 "
- =X1/> A, (7.12)
1=1

the bootstrap replication of é.

Figure 7.2 is a histogram of B = 200 bootstrap replications 6*.
These gave estimated standard error §eqgo = .047 for 6. The mean
of the 200 replications was .625, only slightly larger than 6 = .619.
This indicates that § is close to unbiased. The histogram looks
reasonably normal, but B = 200 is not enough replications to see
the distributional shape clearly. Some quantiles of the empirical
distribution of the * values are shown in Table 7.2. [The ath
quantile is the number g(a) such that 100a% of the 8*’s are less
than g(a). The .50 quantile is the median.|

The standard confidence interval for the true value of 6, (the
value of § we would see if n — o) is

6€h+z1"" - 5 (with probability 1 — 2a) (7.13)
where 27 s the 100(1 — a)th percentile of a standard normal
distribution (7% = 1.960, 2(9%) = 1.645, 2{-84D) = 1.000, etc.
This 15 based on an asymptotic theory which extends (5.6) to gen-
eral summary statistics 6. In our case

6 € .619 £ .047 = [.572,.666] with probability .683
6 € .619 & 1.645,.047 = [.542,.696] with probability .900.
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Figure 7.2. 200 bootstrap replications of the statistic 6= 5\1/ Zf Xi. The
bootstrap standard error 1s .047. The dashed line wndicates the observed
value 6 = .619.

Chapters 12-14 discuss improved bootstrap confidence intervals
that are less reliant on asymptotic normal distribution theory.

The eigenvector ¥; corresponding to the largest eigenvalue is
called the first principal component of G. Suppose we wanted to
summarize each student’s performance by a single number, rather
than 5 numbers, perhaps for grading purposes. It can be shhown
that the best single linear combination of the scores is

5
Yi = Z'ﬁlkmiky (714)
k=1

that is, the linear combination that uses the components of ¥; as
weights. This linear combination is “best” in the sense that it cap-
tures the largest amount of the variation in the original five scores
among all possible choices of v If we want a two-number summary
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[or each student, say (y:, 2;), the second linear combination should

be

5
5= Ok, (7.15)
k=1

with weights given by the second principal component V¥4, the sec-
ond eigenvector of G.

The weights assigned by the principal components often give
wsight into the structure of a multivariate data set. For the score
data the interpretation might go as follows: the first principal com-
ponent vy = (.51,.37,.35, .45, .54) puts positive weights of approx-
imately equal size on each test score, so y; is roughly equivalent
to taking student ¢'s total (or average) score. The second principal
component vg = {—.75, —.21,.08, .30, .55) puts negative weights on
the two closed-book tests and positive weights on the three open-
book tests so z; is a contrast between a student’s open and closed
book performances. (A student with a high z score did much better
on the open book tests than the closed book tests.)

The principal component vectors vy and Vv, are summary statis-
tics, just like 6, even though they have several components each.
We can use a bootstrap analysis to learn how variable they are.
The same 200 bootstrap samples that gave Lhe 6*’s also gave boot-
strap replications ¥} and ¥3. These are calculated as the first two
eigenvectors of G*, (7.11).

Table 7.3 shows 8éypg, for eack component of ¥; and ¥,5. The
first thing we notice is the greater accuracy of ¥;; the bootstrap
standard error for the components of v; are less than half those
of V5. Table 7.3 also gives the robust percentile-based bootstrap
standard errors $ezpo,, 0f Problem 6.6 calculated for oo = .84,.90,
and .95. For the components of Vj, $€200,« nearly equals §ezp0. This
1s1n’t the case for vz, particularly not for the first and {ifth compo-
nents. Figure 7.3 shows what the trouble is. This figure indicatles
the emipirical distribution of the 200 bootstrap replications of 97,
separately for 1 = 1,2, k = 1,2,-- ,5. The empirical distributions
are indicated by bozplots. The center line of the box indicates the
median of the distribution; the lower and upper ends of the box are
the 25th and 75th percentiles; the whiskers extend from the lower
and upper ends of the box to cover the entire range of the distri-
bution, except for points deemed outliers according to a certain
definition; these outliers are individually indicated by stars.
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Table 7.3. Bootstrap standard errors for the components of the first and
second principal components, ¥1 and V2, 5ex0 18 the usual bootstrap
standard error estimate based on B = 200 bootstrap replications; sea0o,.84
15 the standard error estimate Sep.o of Problem 6.6, with B = 200, o =
84; likeunse sexno,.00 and sexo,.95. The values of 5exo0 for do1 and igs
are greatly inflated by a few outlying bootstrap replications, see Figures
7.8 and 7.4.

Gy P12 iz g Dus | P21 B2 Doy Do Dos

$ea00 057 .045 .029 .041 .049 | .189 .138 .0GG .129 .150
seaon,s4 -055 .041 .028 041 .047 | 078 .122 064 .110 .114
8ea00,.00 055 .04L .027 .042 .046 | .084 .129 .067 .11i .125
Se200.05 054 .048 .029 .040 .047 | .080 .130 .066 .114 .120

The large values of §é00 for 757 and 095 are seen to be caused by
a few extreme values of ©},. The approximate confidence interval
6 € 6+ z(1-95 will be more accurate with §¢ equaling §epg.q
rather than §e9q0, at least for moderate values of « like .843. A
histogram of the #3; values shows a normal-shaped central bulge
with mean at —.74 and standard deviation .075, with a few points
far away from the bulge. This imndicates a small probability, perhaps
1% or 2%, that 9, is grossly wrong as an estimate of the true value
vyy. If this gross error hasn’t happened, then @ is probably within
one or two Seggp units of vg;.

Figure 7.4 graphs the bootstrap replications v7(b) and v3(b),
b = 1,2, --,200, connecting the components of each vector by
straight lines. This is less precise than Table 7.3 or Figure 7.3, but
gives a nice visual impression of the increased variability of v,.
Three particular replications labeled “1”, “2”, “3”. are seen to be
outliers on several components.

A reader familiar with principal components may now see that
part of the dilliculty with the second eigenvector 1s definitional.
Technically, the definition of an eigenvector applies as well to —v as
to v. The computer routine that calculates cigenvalues and eigen-
vectors makes a somewhat arbitrary choice of the signs given to
V1, Vg, - . Replications “1” and “2” gave X* matrices for which
the sign convention of ¥; was reversed. This type of definitional
instability is usually not important in determining the statistical
properties of an estimate (though it 1s nice to be reminded of it by
the bootstrap results). Throwing away “1” and “2”, as Sezgp does,
we see that ¥, is still much less accurate than ¥;.
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Figure 7.3. 200 bootstrap replications of the first two principal component
vectors ¥, (left panel) and 2 (right panel); for each component of the
tawe vectors, the boaplot indicates the empuncal distribution of the 200
boolstrap replications 8. We sce thal V2 18 less accurate than Vo, having
greater bootstrap varwability for cach component. A few of the bootstrap
samples gave completely different results than the others for v,.

7.3 Example 2: curve fitting

In this example we will be estimating a regression function in two
ways, by a standard least-squares curve and by a modern curve-
fitting algorithm called “loess.” We begin with a brief review of
regression theory. Chapter 9 looks at the regression problem again,
and gives an alternative bootstrap method for estimating regres-
sion standard errors. Figure 7.5 shows a typical data set for which
regression methods are used: n = 164 men took part in an exper-
iment to see if the drug cholostyramine lowered blood cholesterol
levels. The men were supposed to take six packets of cholostyra-
mine per day, but many of them actually took much less. The
horizontal axis, which we will call “z” measures Cormpliance, as a
percentage of the intended dose actually taken,

z; = percentage compliance for man 2, 1 =1,2,---,164.

Compliance was measured by counting the number of uncon-
sumed packets that each man returned. Men who took 0% of the
dose are at the extreme left, those who took 100% are at the ex-
treme right. The horizontal axis, labeled “y”, 18 Improvement, the
decrease in total blood plasma cholesterol level from the beginning
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component component

Figure 7.4. Graphs of the 200 boolsirap replications of Vi (lefl panel) and
V2 (rght panel). The numbers 1, 2, 3 wm the right panel follow three of
the replications v3(b) that gave thc most discrepant values for the first
component. We see that these replications were also discrepant for other
components, particularly component 5.

to the end of the experiment,
y; = decrease in blood cholesterol for man 2, :=1,2, -,164.

The full data set is given 1 Table 7.4.

The figure shows that men who took more cholostyramine tended
to get bigger improvements n their cholesterol levels, just as we
might hope. What we see in Figure 7.5, or at least what we think
we see, is an increase 1n the average response y as z increases from
0 to 100%. Figure 7.6 shows the data along with two curves,

Pauad(2) and  Fioess(2). (7.16)

Each of these is an estimated regression curve. Here is a brief re
view of regression curves and their estimation. By definition the
regression of a response variable y on an explanatory variable z is
the conditional expectation of y gwen z, written

7(z) = E(ylz). (7.17)

Suppose we hac available the entire population I of men cligible
for the cholostyramine experiment, and obtained the population
X = (X1,X3, -+, Xn) of their Compliance-Improvement scores,

X, - (2,,Yy), 7 = 1,2,- -,N. Then for each valuc of z, say
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Table 7.4. The cholostyramune data. 164 men were supposed to take 6
packets per day of the cholesterol-lowering drug cholostyramine. Compli-

ance “z” 1s the percentage of the wintended dose actually taken. Improve-
ment “y” 1s the decrease wn total plasma cholesterol from the beginning

till the end of treatment.

-6.26 | 27 -1.50 | 71 59.50 | 95 32.50
-7.25 | 28 23.50 | 71 14.75 | 95 70.75
-6.25 | 29 33.00 | T2 63.00 | 95 18.25
11.50 | 31 4.25 | 72 0.00 | 95 76.00
21.00 | 32 18.75 [ 73 42.00 | 95 75.75
-23.00 | 32 8.50 | 74 41.25 | 95 78.75
5.75 | 33 3.25 | 75 36.25 | 95 54.75
3.25 | 33 27.75 | 76 66.50 | 95 77.00
8.75 | 34 30.75 | 77 61.75 | 96 68.00
8.25 | 34 -1.50 | 77 14.00 | 96 73.00
-10.25 | 34 1.00 | 78 36.00 | 96 28.75
-10.50 | 34 7.75 | 78 39.50 | 96 26.75
19.75 | 35 -15.75 | 81 1.00 | 96 56.00
-0.50 | 36 33.50 | 82 53.50 | 96 47.50
29.25 | 36 36.25 | 84 46.50 | 96 30.25
36.25 | 37 5.50 | 85 51.00 | 96 21.00
10.75 | 38 25.50 | 85 39.00 | 97 79.00
19.50 | 41 20.25 | 87 -0.25 | 97 69.00
9 17.25 | 43 33.25 | 87 1.00 | 97 80.00
10 3.50 | 45 56.75 | 87 46.75 | 97 86.00
10 11.25 | 45 4.25 | 87 11.50 | 98 54.75
11 -13.00 | 47 32.50 | 87 275 | 98 26.75
12 24,00 | 50 54.50 | 88 48.75 | 98 80.00
13 2.50 | 50 -4.25 | 89 56.75 | 98 42.25
15 3.00 | 51 42.75 | 90 29.25 | 98 6.00
15 5.50 | 54 62.75 [ 90 72.50 | 98 104.75
16 21.25 | 52 04.25 | 91 41.75 | 98 94.25

L O WOeK KN dWwNNDN OOO O

16 29.75 | 53 30.25 | 92 48.50 | 98 41.25
17 7.50 | 54 14.75 [ 92 61.25 | 98 40.25
18  -16.50 | 54 47.25 | 92 29.50 | 99 51.50

20 4.50 | 56 18.00 | 92 59.75 | 99 82.75
20 39.00 | 57 13.75 | 93 71.00 | 99 85.00
21 -5.75 | 57 48.75 | 93 37.75 | 99 70.00
21  -21.00 | 58 43.00 | 93 41.00 | 100 92.00
21 0.25 | 60 27.75 | 93 9.75 | 100 73.75
22 -10.25 | 62 44.50 | 93 53.75 | 100 54.00
24 -0.50 | 64 22.50 | 94 62.50 | 100 69.50
25 -19.00 | 64 -14.50 | 94 39.00 | 100 101.50
25 15.75 | 64 -20.75 | 94 3.25 | 100 68.00
26 6.00 | 67 46.25 | 94 60.00 | 100 44.75
27 10.50 | 68 39.50 | 95 113.25 | 100 86.75
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Figure 7.5. The cholostyramine data. 164 men were supposed to take
6 packets per day of the cholesterol-lowering drug cholostyramine; hori-
zontal axis measures Compliance, in percentage of assigned dose actually
taken; veriical ams measures Improvement, wn terms of blood cholesterol
decrease over the course of the experyment. We see that better compliers
tended to have grealer unprovemcnt.

z=0%,1%,2%, - -,100%, the regression would be the conditional
expectation (7.17),

r(z) =

In other words, r(z) is the expectation of ¥ for the subpopulation
of men having Z = 2.

Of course we do notl have available thie entire population X'. We
have the sample x = (xy,Xa,"-,X164), Where x, = (2;,¥;), as
shown in Figure 7.5 and Table 7.4. How can we estimate r(z)? The

sum of Y, values for men in & with 7, = z
number of men m X with Z; = z

(7.18)
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Figure 7.6. Lstunated regression curves of y = Improvement on z =
Complionce. The dashed curve 15 Tquad(2), the ordinary leasi-squares
quadratic regression of y on z; the solid curve 15 floess(z), a computer-
based local linear regression. We are particularly interested in estimating

the true regression r(z) at z = 60%, the average Compliance, and at
z = 100%, full Compliance. :

obvious plug-in estimate 1s
7(z) =

One can imagine drawing vertical strips of width 1% over Fig-
ure 7.5, and averaging the y; values within each strip to get 7(z).
The results are shown in Figure 7.7.

This is our first example where the plug-in principle doesn’t work
very well. The estimated regression #(z) is much rougher than we
expect the population regression r(z) to be. The problem is that

sum of y; values for men in x with z; = 2
number of men in x with z; = z

(7.19)
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Figure 7.7. Solid curve 1s plug-in estimate #(z) for Lhe regression of
mprovement on compliance; averages of y: for strips of wrdth 1% on
the z ams, as in (7.19). Some strips z are not represented because none
of the 164 men had z; = z. The function #(z) 1s much rougher than we
expect the population regression curve r(z) to be. The dashed curve s
fquad(z).

there aren’t enough points in each strip of width 1% to estimate
7(%) very well. In some strips, like that for = = 5%, there are
no points at all. We could make the strip width larger, say 10%
instead of 1%, but this lcaves us with only a few points to plot,
and, perhaps, with problems of variability still remaining. A more
- elegant and efficient solution is available, based on the method of
least-squares.

The method begins by assuming that the population regression
function, whatever it may be, belongs to a family R of smooth func-
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tions indexed by a vector parameter 8 = (o, 81, -, Bp)T. For the
cholostyramine example we will consider the family of quadratic
functions of z, say Rquad,

Raquad  7p(2) = Bo+ 1z + f22°, (7.20)

s0 3 = (Bo, B1,02)T - Later we will discuss the choice of the quadratic
family Rquad, but for now we will just accept it as given.

The reader can imagine choosing a trial value of 3, say 8 =
(0,.75,.005)", and plotting r3(z) on Figure 7.5. We would like
the curve r5(z) to be near the data points (z;,y;) in some overall
sense. It 18 particularly convenient for mathematical calculations
to measure the closeness of the curve to the data points in terms
of the residual sqyuured error,

n

RSB(3) = D lus — a0 (721)

3—1
The residual squared error is obtained by dropping a vertical line
from each point (z;,y:) to the curve r(z), and summing the

squared lengths of the verticals.
The method of least-squares, originated by Legendre and Gauss
in the early 1800’s, chooses among the curves in R by minlmizing
the residual squared error. The best fitting curve in R is declared

to be r5(z), where B minimizes RSE(3),

RSE(B) = mﬂin RSE(B). (7.22)

The curve 7quad(#) in Figure 7.6 is r5(z) = Bo + Brz + B222, the
hest-fitting quadratic curve for the cholostyramine data.

Legendre and Gauss discovered a wonderful mathematical for-
mula for the least squares solution ,@ Let C be the 164 X 3 matrix
whose ith row is

¢, = (1,2;,22), (7.23)

and let y be the vector of 164 y; values. Then, in standard matrix
notation,

B=(CTC)"'CTy. (7.24)

We will examine this formula more closely in Chapter 9. For our
bootstrap purposes here all we need to know is that a data set of n
pairs X = (X1,Xz,* -,Xp) produces a quadratic least-squares curve
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74(2) via the mapping x — r;(z) that happens to be described by
(7.23), (7.24) and (7.20).

One can think of 7;(z) as a smoothed version of the plug-in esti-
mate 7(z). Suppose that we increased the family R of smooth func-
tions under consideration, say to Rcupe the class of cubic polyno-
mials in z. Then the least-squares solution r5(z) would come closer
to the data points, but would be bumpier than the quadratic least-
squares curve. As we considered higher and higher degree polyno-
mials, rﬁ(z) would more and more resemble the plug-in estimate
#(z). Our choice of a quadratic regression function is implicitly a
choice of how smooth we believe the true regression 7(z) to be.
Looking at Figure 7.7, we can see directly that 7yaq(2) 18 much
smoother than 7#(z), but generally follows 7(z) as a function of z.

It is easy to believe that the true regression r(z) is a smooth
function of z. It is harder to believe that it is a quadratic function
of z across the entire range of z values. The smoothing function
“loess”, pronounced “Low S”, attempts to compromise between a
global assumption of form, like quadraticity, and the purely local
averaging of 7#(z).

A user of loess 1s asked to provide a number “a” that will be
the proportion of the n data points used at each point of the con-
struction. The curve floems(2) in Figure 7.6 used a = .30. For each
value of z, the value of Flpess(2) 15 obtained as follows:

(1) The n points x, = (zi,¥;) are ranked according to |z; —
z|, and the a - n nearest points, those with |z; — z| smallest, are
identified. Call this neighborhood of « - n points “N(z).” [With
a = .30, n = 164, the algorithm puts 49 points into N (z).]

(2) A weighted least-squares linear regression
#2(2) = Bro + B2 (7.25)

is fit to the a - n points in N(2). [That is, the coefficients ,éz,o. ,(?2‘1
are selected to minimize Zz, eN(z) Vel — (Bo + B12,))?, where
the wewghts w, ; are positive numbers which depend on |z, — z|.
Letting

|Z] — 2|
=17 -1 7.26
a maxn(zy |2k — 2|’ ( )

the weights w; equal (1 — u3)]
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Figure 7.8. How the Loess smoother works. The shaded region indicates
the window of values around the target value (arrow). A weighted linear
regression (broken line) 1s computed, using weights gwen by the “ir-
cube” function (dotted curve). Repeating this process for all target values
groes the solid curve.

(3) Finally, fipess(2) I8 set equal to the value of 7,(Z) at Z = z,
'Floess(z) = ;'z(Z = Z)- (727)

The components of the loess smoother are shown in Figure 7.8.
Table 7.5 compares 7quaa(z) With loess(2) at the two values of
particular nterest, z = 60% and z = 100%. Bootstrap standard
errors are given for each value. These were obtained from B = 50
bootstrap replications of the algorithm shown in Figure 6.1.

In this case [ is the distribution putting probability 1/164 on
each of the 164 points x, = (2, %). A bootstrap data set is x* =
(x}.X%5,- -, X]e4), where each x] equals any one of the 164 mem-
bers of x with equal probability. Having obtained x*, we calculated
F;‘[uad(z) and Pigess(2), the quadratic and loess regression curves
based on x*. Finally, we read off the values 7,,,(60), 7} _.(60),
Fruaa(100), and 7. (100). The B = 50 values of g ,4(60) had
sample standard error 3.03, ete., as reported in Table 7.5.

Table 7.5 shows that 7lgess(2) is substantially less accurate than
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Figure 7.9. The first 25 bootstrap replications of fquad(2), left panel, and
Tloess (2), Tight panel; the wncreased variability of fioess (2) 15 evident.

Tquad (2). This is not surprising since fiqess(z) is based on less data
than 7quaa(z), only @ as much. Sce Problem 7.10. The overall
greater variability of floess(2) is evident in Figure 7.9.

It is useful to plot the bootstrap curves to see if interesting fea-
tures of the original curve maintain themselves under bootstrap
sampling. For example, Figure 7.6 shows fieess increasing much
more rapidly from 2 = 80% to z = 100% than from z = 60% to
z = 80%. The difference in the average slopes is

9‘ — rnloess(loo) - floess(so) _ floess(go) - f‘loess(60)
20 20
72.78 — 37.50  32.50 — 34.03
20 - 20

= 1.84.
(7.28)

The corresponding number for #quad 18 only 0.17. Most of the
- bootstrap loess curves 71, .. (#) showed a similar sharp upward bend
. at about z = 80%. None of the 50 bootstrap values 6* were less
. than 0, the minimum being .23, with most of the values > 1, see
- Figure 7.10.

At this point we may legitimately worry that fquada(z) 18 too
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Table 7.5. Values of Tquad(2) and 7ieess(z) at z = 60% and z = 100%,
also bootstrap standard errors based on B = 50 bootstrap replications.
":quad (60) 7Qloess(ﬁo) TA‘quad(loo) 7‘10555(100)

value: 27.72 34.03 59.67 72.78

smooth an estimate of the true regression r(z). If the value of the
true slope difference

_ 7(100) — r(80)  r(80) — r(60)
g = s - - (7.29)

is anywhere near 6 = 1.59, then r(z) will look more like 7ipess(z)
than 7quad(z) for z between 60 and 100. Estimates based on 7gess( )
tend to be highly variable, as in Table 7.5, but they also tend to
have small bias. Both of these properties come from the local nature
of the loess algorithm, which estimates r(z) using only data points
with z, near z.

The estimate & = 1.59 based on floess has considerable variabil-
ity, 8&sp = .61, but Figure 7.10 strongly suggests that the true
6, whatever it may be, 1s greater than the value € = .17 based
on Fquada. We will examine this type of argument more closely in
Chapters 12-14 on bootstrap confidence intervals.

Table 7.5 suggests that we should also worry about the esti-
males fauad(60) and Fquaa{100), which may be substantially too
low. Omne option is to cousider lugher polynomial models such as
cubic, quartic, etc. Elaborale theories of model building have been
put forth, in an effort to say when to go on to a bigger model
and when to stop. We will consider tregression models further in
Chapter 9, where the cholesterol data will be looked at again. The
simple bootstrap estimates of variability discussed in this chapter
are often a useful step toward understanding regression models,
particularly nontraditional ones like Fjpess(2)-
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7.4 An example of bootstrap failure

1 Suppose we have data X, Xs,... X, from a uniform distribu-
tion on (0,8). The maximum likelihood estimate 6 is the largest
sample value X(n). We generated a sample of 50 uniform num-

bers in the range (0,1), and computed § = 0.988. The left panel
of Figure 7.11 shows a histogram of 2000 bootstrap replications
of 6* obtained by sampling with replacement from the data. The
right panel shows 2000 parametric bootstrap replications obtained
by sampling from the uniform distribution on (0,8). 1t is evident
that the left histogram is a poor approximation to the right his-
togram. In particular, the left histogram has a large probability
mass at §: 62% of the values 6* equaled 6. In general, it is easy
to show that Prob(§* = ) =1~ (1—1/n)" —» 1 — e~} ~ 632
as n — co. However in the parametric setting of the right panel,
- Prob(8* = 6) =

What goes wrong with the nonparametric bootstrap? The difli-
culty occurs because the empirical distribution function F is not
a good estimate of the true distribution F' in the extreme tail. Ei-
ther parametric knowledge of F' or some smoothing of F' is needed
to rectify matters. Details and references on this problem may be
found in Beran and Ducharme (1991, page 23). The nonparamet-
ric bootstrap can fail in other examples in which 8 depends on the
smootAhn%s of F. For example, if # is the number of atoms of I,
then # = n is a poor estimate of 4.

7.5 Bibliographic notes

Principal components analysis is described in most books on mul-
tivariate analysis, for example Anderson (1958), Mardia, Kent and
Bibby (1979), or Morrison (1976). Advanced statistical aspects
of the bootstrap analysis of a covariance matrix may be found
in Beran and Srivastava (1985). Curve-fitting 18 described in I5u-
bank (1988), Llirdle (1990), and llastic and Tibshiram (1990).
The loess method is due to Cleveland (1979), and is described in
Chambers and Hastie (1991). Hérdle (1990) and Hall (1992) dis-
cuss methods for bootstrapping curve estimates, and give a num-
ber of further references. Efron and Feldman (1991) discuss the
cholostyramine data and the use of compliance as an explanatory

1 This section contains more advanced material and may be skipped at first
reading
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Slope difference

7.10. Fifty bootstrap replications of the slope difference statistic
All of the values were positive, and most were greater than 1.

The bootstrap standard error estimate 1s 5eso(8) = .61. The vertical line
s drawn at 6 = 1.63.

variable. Leger, Politis and Romano (1992) give a number of ex-,

amples illustrating the use of the bootstrap.

7.6 Problems

7.1

The sample covariance matrix of multivariate data
X1,X2," -,Xpn, when each x, is a p-dimensional vector, is
often defined to be the p X p matrix ¥ having j, kth element

) 1 n B B
o= —3 Y (@ - 8@k —5) 2 k=12,
=1

where z, = Y. ; @,j/n for y = 1,2, -+, p. This differs from
the empirical covariance matrix G, (7.4), in dividing by n—1
rather than n.

(a)  What s the lirst row of ¥ for the score data?

PR
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of
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0.965 0.975 0.985 094 095 096 097 098 099

Parametnc Nonparametric

Figure 7.11. The left panel shows a histogram of 2000 bootstrap replica-
tions of 0 = X,y oblawned by sampling unth replacement from a sample
of 50 uniform nuwmbers. The mght pancl shows 2000 paramnelrc boolstrap
replicalions oblwancd by sampling from. the uniform distribuiron on (0, (})

(b) The following fact is proved in linear algebra: the
eigenvalues of matrix ¢cM equal ¢ times the eigenvalues
of M for any constant ¢. (The eigenvectors of ¢cM equal
those of M..) What are the eigenvalues of $ for the score
data? What is 0, (7.8)?

7.2 (a) What is the sample correlation coefficient between the
mechanics and vectors test scores? Between vectors and
algebra?

(b) What is the sample correlation coeflicient between the
algebra. test score and the sum of the mechanics and vec-
tors test scores? (Hint: E[(z +y)z] = E(z2) + E(yz) and
Ef(z +y)?| = E(z?) + 2E(ay) + E(y°).)

7.3 Calculate the probability that any particular row of the 88 x
5 data matrix X appears exactly k times in a bootstrap
matrix X, for £ =0,1,2,3.

7 4 A random variable « is said to have the Poisson distribution
with expcclation parameter A

x ~ Po(X), (7.30)
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if the sample space of z 13 the non-negative integers, and
—Ay\k
k!

A useful approximation for a binomial distribution Bi(n, p)
is the Poisson distribution with A = np,

[4

Prob{z =k} = for k=0,1,2,--- . (7.31)

Bi(n, p) = Po(np). (7.32)

The approximation in (7.32) becomes more accurate as n
gets large and p gets small.

(a) Suppose x* = (x},x5,---,x}) is a bootstrap sample
obtained from x = (xq,X3, '-,%,). What is the Pois-
son approximation for the probability that any particular
member of x appears exactly k times in x*?

(b) Give a numerical comparison with your answer to
Problem 7.3.)

Notice that in the right panel of Figure 7.4, the main bundle
of bootstrap curves is notably narrower half way between “1”
and “2” on the horizontal axis. Suggest a reason why.

The sample correlation matriz corresponding to G, (7.4), 1s
the matrix C having jkth element

Cik = Gir/IGjs Gl 2 k=125 (7.33)

Principal component analyses are often done in terms of the
aeigenvalues and vectors of C rather than G. Carry out a
bootstrap analysis of the principal components based on C,
and produce the corresponding plots to Figures 7.3 and 7.4.
Discuss any differences between the two analyses.

A generalized version of (7.20), called the linear regression
model, assumes that y;, the «th observed value of the re-
sponse variable, depends on a covariate wector
¢ = (Gi,¢2,,cp) and a parameter vector
B = (B1,P2,-,Pp)T. The covariate c; is observable, but
B3 is not. The expectation of y; is assumed to be the linear
function

P
ciB=> cif;. (7.34)

=1
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[In (720)9 C, = (l,Zi,le), ﬂ = (ﬁU:ﬁl)ﬂZ)T7 alld p = 3]
Legendre and Gauss showed that 3 = (CTC)"'CTy muu-
mizes Y . (y; — ¢;3)?, that is B as given by (7.24), is the
least-squares cstimate of 3. Here C is the n x p matrix with
1th row c,, assumed to be of full rank, and y is the vector
of responses. Use this result to prove that i = § minimizes
>or (yi — p)?* among all choices of .

For convemient notation, let Ry equal Rquad, (7.20), R3
equal the family of cubic functions of z, R, equal the set
of quartic functions, etc. Define 8(j) as the least-squares es-

timate of B in the class R, so 3(]) is a 7 + 1 dimensional
vector, and let RSE;(8) = Y (yi — r(}(j)(zi))Q

(a) Why is RSE;(8) a non-mncreasing function of j?

(b) Suppose that all n of the z; values are distinct. What
is the limiting value of RSE;(3), and for whal value of j 13
it reached. [Hint: consider the polynomial iny, [, (y—
z).]

(c) T Suppose the z; are not distinct, as in Table 7.4. What
is the limiting value of RSE;(8)?

Problem 7.8a says that increasing the class of polynomials
decreases the residual error of the fit. Give an intuitive ar-
gument why ré(j)(z) might be a poor estimate of the true
regression function »(z) if we Lake 7 (o be very large.

The estimate Fioess(2) 1n Table 7.5 has greater standard er-
ror than fquad(z), but it only uses 30% of the available data.
Suppose we randomly selected 30% of the (2;,y;) pairs from
Table 7.4, fit a quadratic least-squares regression to this
data, and called the curve #3y%(#). Make a reasonable guess
as to what §eso would be for 7399 (2), z = 60 and 100.

i Indicates a difficult or more advanced problem.



CHAPTER 8

More complicated data
structures

8.1 Introduction

The bootstrap algorithm of Figure 6.1 1s based on the simplest
possible probability model for random data: the one-sample model,
wlhere a single unknown probability distribution F' produces the
data x by random sampling

F —x=(z1,22, - ,2n)- (8.1)

The individual data points z, in (8.1) can themselves be quite
complex, perhaps being numbers or vectors or maps or images or
anything at all, but the probability mechanism is simple. Many
data analysis problems involve more complicated data structures.
These structures have names like time series, analysis of variance,
regression models, multi- sample problems, censored data, stratified
sampling, and so on. The bootstrap algorithm can be adapted to
general data structures, as is discussed here and in Chapter 9.

8.2 One-sample problems

Figure 8.1 is a schematic diagram of the bootstrap method as
it applies to one-sample problems. On the left 15 the real world,
where an unknown distribution F' has given the observed data
x = (%1,T2,---,Tp) by random sampling. We have calculated a
statistic of interest from x, 6 = s(x), and wish to know something
about §'s statistical behavior, perhaps its standard error sep(6).
On the right side of the diagram is the bootstrap world, to use
David Freedman's evocative te;minology. In the bootstrap world,
the empirical distribution £ gives bootstrap samples
x* = (zi1,23,---,z)) by random sampling, from which we calcu-
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T
REAL WORLD BOOTSTRAP WORLD
Unknown
Probability Observgdnljeindom Emprical Bootstrap
Distribution ample Distnbution Sample

F —— X=Xy, X3, .- Xp) 2 F—» x'= (xq, Xg) e Xpy)

B=s(%) Bos(x')

Statistic of interest Bootstrap Replication

Figure 8.1. A schematic diagram of the bootstrap as it upplies Lo one-
sample problems. In the real world, the unknown probability distribution
F gquves the data x = (x1,x2,-- ,®a) by random sampling; from x we
calculate the stabistic of wterest 6 = s(X). In the bootstrap world, F
generates x* by random sampling, quing 6* = s(x*). There 1s only one
observed value of é, bul we can generale as many bootstrap replications
8" as affordable. The crucial step wn the bootstrap process 1s “—=7”, the
process by which we construct from x an estimate F of the unknown
population F

late bootstrap replications of the statistic of interest, 6* = s(x*).
The big advantage of the bootstrap world is that we can calculate
as many replications of 8* as we want, or at least as many as we
can afford. This allows us to do probabilistic calculations directly,
for example using the observed varability of the 6*’s to estimate
the unobservable quantity seg(6).

The double arrow in Figure 8.1 indicates the calculation of £
from F'. Conceptually, this is the crucial step in the bootstrap pro-
cess, even though it 18 computationally simple. Every other part of
the bootstrap picture is defined by analogy: F’ gives x by random
sampling, so ha gives x* by random sampling; 8 is obtained from x
via the function s(x), so 8* is obtained from x* in the same way.
Bootstrap calculations for more complex probability mechanisms
turn out to be straightforward, once we kuow how to carry out
the double arrow process — estimating the entire probability mech-
anism from the data. Fortunately this is easy to do for all of the
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common data structures.
To facilitate the study of more complicated data structures, we
will use the notation

P—-x (8.2)

to mdicate that an unknown probability model I’ has yiclded the
observed data set x.

8.3 Thec two-sample problem

To understand the notation of (8.2), consider the mouse data of
Table 2.1. The probability model P can be thought of as a pair
of probability distributions ' and G, the first for the Trealment
group and the second for the Control group,

P =(FG). (8.3)

Let z = (21,22,- ,Zm) indicate the Treatment observations, and
¥y = (y1,¥2," ", yn) indicate the Control observations with n = 7
and m = 9 (different notation than on page 10). Then the observed
data comprises z and y,

x = (z,y). (8.4)

We can think of x as a 16 dimensional vector, as long as we re-
member that the first seven coordinates come from F and the last
nine come from G. The mapping P — x is described by

F — z independently of G —y. (8.5)

In other words, z is a randow sample ol size 7 from I, y is a random
sample of size 9 from G, with z and y mutually independent of each
other. This setup is called a two-sample problem.

In this case it 1s easy to estimate the probability mechanism
P Let F and & be the empirical distributions based on z and y,
respectively. Then the natural estimate of P = (F,G) is

P=(FQ). (8.6)

Having obtained }5, the definition of a bootstrap sample x* is
obvious: the arrow in
P - x (8.7)

must mean the same thing as the arrow in P — x, (8.2). In the
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two-sample problem, (8.5), we have x* = (z*,y*) where
F — z* independently of G — y*. (8.8)

The sample sizes for z* and y* are the same as those for z and y
respectively.

Figure 8.2 shows the histogram of B = 1400 bootstrap replica-
tions of the statistic

g

frz — ,&y =Z-7
86.86 — 56.22 = 30.63, (8.9)

the difference of the means between the Treatment and Control
groups for the mouse data. This statistic estimates the parameter

6= s~ iy = Ep(z) — Baly). (8.10)

If 6 is really much greater than 0, as (8.9) seems to indicate, then
the Treatment is a big improvement over the Control. However the
bootstrap estimate of standard error for § = 30.63 is

1400

$81400 = {Z[e* ()]%/1399}/2 = 26.85, (8.11)

so 6 is only 1.14 standard errors above zero, 1.14 = 30.63/26.85.
This would nol usually be considered strong evidence that the true
value of 0 is greater than 0.

The bootstrap replications of §* were obtained by using a ran-
dom number generator to carry out (8.8). Each bootstrap sample
x* was computed as

= (Z*iy*) = (Ziuzizv TR Y Ygay 7yj(_v)? (812)
where (21,12, --,27) was a random sample of size 7 from the inte-
gers 1,2,---,7, and (1,72, :,Js) was an independently selected
random sample of size 9 from the integers 1,2, ---,9. For instance,
the first bootstrap sample had (¢1,22, - -,27) = (7,3,1,2,7,6,3)
and (71,72, -+, J9) = (7.8,2,9,6,7.8,4,2).

The standard error of @ can be written as sep(§) to indicate its
dependence on the unknown probability mechanism P = (F,G).
The bootstrap estimate of sep(f) is the plug-in estimate

sep(0%) = {varp(z* — 3*)}V/2 (8.13)
As in Chapter 6, we approximate the ideal bootstrap estimate
sep(6*) by §ép of equation (6.6), in this case with B = 1400. The
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m
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Figure 8.2. 1400 bootstrap replications of 0 = Z—7, the difference between
the Treatment and Control means for the mouse data of Table 2.1; boot-
strap estimated standard error was Seisoo = 26.85, s0 the observed value
6 = 30.63 (broken line) 15 only 1.14 standard errors above zero; 13.1%
of the 1400 6* walues were less than zero. This 15 not small enough to
be considered convincing evdence that the Treatment worked better than
the Control.

fact that 6* 1s computed from two samples, z* and y*, doesn’t affect
definition (6.6), namely sep = {32, [0*(b) — 6*(-))2/(B — 1)}*/2.

8.4 More general data structures

Figure 8.3 1s a version of Figure 8.1 that applies to general data
structures P — x. There is not much conceptual difference between
the two figures, except for the level of generality involved. In the
real world, an unknown probability mechanism P gives an observed
data set x, according to the rule of construction indicated by the
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( REAL WORLD BOOTSTRAP WORLD
Unknown
Probability Estimated Bootstrap
Model Observed Data Probability Sample
Model
P—p X=(X1,Xp, - Xp) > P— x= (X4, %0} - X
B=s(x) 05s(x)

Statistic of interest Bootstrap Replication

Figure 8.3. Schematic diagram of the bootstrap applied to problems with
a general data structure P — x. The crucial step “==" produces an
estimate P of the entire probability mechanism P from the observed data
x. The rest of the bootstrap picture 1s determined by the real world:
“P — x* 7 15 the same as “P — x"; the mapping from x* — 6%, s(x*),
15 the same as the mapping from x — 0, s(x).

arrow “—.” In specific applications we need to define the arrow
more carefully, as in (8.5) for the two-sample problem. The data
set x may no longer be a single vector. It has a form dependent
on the data structure, for example x = (z,y) in the two-sample
problem. Having observed x, we calculate a statistic of interest 6
from x according to the function s(-).

The bootstrap side of Fligure 8.3 1s defined by the analogous

quantities in the real world: the arrow in P — x* 1s defined to
mean the same thing as the arrow in P — x. And the function
mapping x* to 6* is the same function s(-) as from x to 6.

Two practical problems arise in actually carrying out a bootstrap
analysis based on Figure 8.3:

(1) We need to estimate the enlire probability mechanisin P
from the observed data x. This is the step indicated by the double
arrow, x = P. It is surprisingly easy to do for most familiar data
structures. No general prescription 1s possible, but quite natural ad
hoc solutions are available in each case, for example P = (F', G) for
the two-sample problem. More examples are given in this chapter
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Table 8.1. The lutenizing hormone data.

pertod level | period level | period level | period level
1 2.4 13- 2.2 25 2.3 37 1.5
2 2.4 14 1.8 26 2.0 38 1.4
3 2.4 15 3.2 27 2.0 39 2.1
4 2.2 16 3.2 28 2.9 10 3.3
5 2.1 17 2.7 29 2.9 41 3.5
6 1.5 18 2.2 30 2.7 42 3.5
7 2.3 19 2.2 | 31 2.7 43 3.1
8 2.3 20 1.9 32 2.3 44 2.6
9 2.5 21 1.9 33 2.6 45 2.1
10 2.0 22 1.8 34 2.4 46 34
11 1.9 23 2.7 35 1.8 47 3.0
12 1.7 24 3.0 36 1.7 48 2.9

and the next.

(2) We need to simulate bootstrap data from P according to
the relevant data structure. This is the step P — x* in Figure 8.3.
This step 1s conceptually straightforward, being the same as P —
X, but can require some care in the programming if computational
efficiency 1s necessary. (We will see an example in the lutenizing
hormone analysis below.) Usually the generation of the bootstrap
data P — x* requires less time, often much less time, than the
calculation of 6* = s(x*).

8.5 Example: lutenizing hormone

Figure 8.4 shows a set of levels y; of a lutenizing hormone for each
of 48 time perlods, taken from Diggle (1990); the data set is listed in
Table 8.1. These are hormone levels measured on a healthy woman
in 10 minute intervals over a period of 8 hours. The lutenizing
hormone is one of the hormones that orchestrate the menstrual
cycle and hence it is important to understand its daily variation.
It is clear that the hormone levels are not a random sample from
any distribution. There 1s much too much structure in Figure 8.4.
These data are an example of a time series: a data structure for
winch nearby values of the time paramecter 4 indicate closely related
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Figure 8.4. The lutenizing hormone data. Level of lutenizing hormones
ye plotted versus time period t, for t from 1 to /8. In this plot and other
plots the pownts are connected by lines to enhance wsibility. The average
value i = 2.4 15 indicated by a dashed line. Table 8.1 lists the dala.

values of the measured quantity y;. Many interesting probabilistic
models have been used to analyze time series. We will begin here
with the simplest model, a first order autoregressive scheme.

Let g be the expectation of y;, assumed to be the same for all
times t, and define the centered measurements

2t =Yt — M- (8.14)

All of the 2; have expectation 0. A first-order autoregressive scheme
is one in which each z; is a linear combination of the previous value
zt—1, and an independent disturbance term ¢,

2 =B2z-1+¢ for t=UU+1,U+2,--,V (8.15)

Here (8 is an unknown parameter, a real number belween —1 and

1.

The disturbances ¢, in (8.15) are assumed to be a random sample
from an unknown distribution F with expectation 0,

F — (evieut1, vy~ €v) [Ep(e) = 0]. (8.16)

The dates U and V' are the beginning and end of the time period
under analysis. Here we have

U=2 and V =48. (8.17)
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Notice that Lhe first equation in (8.15) is
2y =Paw-1 tev (8.18)

so we need the number zy_; to get the autoregressive process
started. In our case, zy_; = 21.

Suppose we believe that model (8.15), (8.16), the first-order au-
toregressive process, applies to the lutenizing hormone data. How
can we estimate the value of 3 from the data? One answer 1s based
on a least-squares approach. Ifirst, of all, we estimate the expec-
tation p in (8.14) by the observed average § (tlus is 2.4 for the
lutenizing hormone data), and set

nw=yt—y (8.19)
for all values of . We will ignore the difference between definitions
(8.14) and (8.19) in what follows, see Problem 8.4.

Suppose that b is any guess for the true value of 3 in (8.15).
Define the residual squared error for this guess to be

RSE(b) = Z(zt—bzt )% (8.20)

Using (8.15), and the fact that Ex(e) = 0, it is easy to show that
RSE(b) has expectation E(RSE(b)) = (b—B)?E(X 1y 22, )+(V —
U + 1)varp(e). This is minimized when b equals the true value 3.
We are led to believe that RSE(b) should achieve its minimum
somewhere near the true value of 3.

Given the time series data, we can calculate RSE(b) as a function
of b, and choose the minimizing value to be our estimate of 3, !

RSE(f) = min RSE(). (8.21)
The lutenizang hormone data has least-squares cstimate
3 = .586. (8.22)

How accurate is the estimate 3?7 We can use the general boot-
strap procedure of Figure 8.3 to answer this question. The prob-
ability mechanism P described in (8.15), (8.16) has two unknown
elements, B and F, say P = (8,F). (Here we are considering p in

L For simplicity of exposition we use least-squares rather than normal theory
maximuin likelihood estimation. The difference between the two estimators
1s usually small.
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(8.14) as known and equal to j.) The data x consist of the obser-
vations y; and their corresponding time periods ¢t. We know that
the rule of construction P — x is described by (8.15)-(8.16). The
statistic of interest 6 is J, so the mapping s(-) 18 given 1mplicitly
by (8.21).

One step remains before we can carry out the bootstrap algo-
rithm: the double-arrow step x => P, in which P = (B.F) is
estimated from the data. Now /3 has already been estimated by
B, (8.21), so we need only eslimate the distribution F of the dis-
turbances. If we knew £, then we could calculate ¢; = z; — Bz
for every t, and estimate F' by the empirical distribution of the
€’s. We don’t know 3, but we can use the estimated value of [5’ to
compute approzimate disturbances

g =2 — Bz for t=UU+1U+2 -,V (8.23)

Let T = V — U + 1, the number of terms in (8.23); T = 47 for
the choice (8.17). The obvious estimate of F' is F', the empirical
distribution of the approximate disturbances,

F probability 1/T on & for t=U,U+1,---,V. (8.24)

Figure 8.5 shows the histogram of the T' = 47 approximate dis-
turbances é = z; — 3z;_1 for the first-order autoregressive scheme
applied to the lutenizing data for years 2 to 48.

We see that the distribution F is not normal, having a long tail to
the right. The distribution has mean 0.006 and standard deviation
0.454. Tt is no accident that the mean of F' is near 0; see Problem
8.5. If il wasn’t, we could honor the defimition Ep(¢) = 0 i (8.16)
by centering I; that is by changing eacl probability point in (8.23)
from & Lo ¢ — &, where € = Z,‘j &)T.

Now we are ready to carry out a bootstrap accuracy analysis of
the estimate § = 0.586. A bootstrap data set P — x* is generated
by following through definitions (8.15)~(8.16), except with P =
(8, F) replacing P = (8, F). We begin with the initial value 2z, =
y1 — 7, which is considered to be a fixed constant (like the sample
size n in the one-sample problem). The bootstrap time series z; 1s
calculated recursively,
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Figure 8.5. Histogram of the 47 approzvmate disturbances é = z; —

ﬁzhh for t = 2 through 48; [5‘ equals 0.586 the least-squares estimate
for the first-order autoregresswe scheme. The distribution 1s long-tailed
to the right. The disturbances averaged 0.006, with a siandard dewnation
of 0.454, and so are nearly centered at zero.

2; = [z 4
z = Bmte
zf = Bzte
zis = DPzi; + €- (8.25)

The bootstrap disturbance terms ¢} are a random sample from F,

F— (5,6, . €g). (8.26)

In other words, each €} equals any one of the T approximate dis-
turbances (8.23) with probability {/T.

The bootstrap process (8.25)—(8.26) was run B = 200 times,

giving 200 bootstrap time-series. Each of these gave a bootstrap
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replication 3* for the least-squares estimate 3, (8.21). Figure 8.6
shows the histogram of the 200 B* values. The bootstrap standard
error estimate for 3 is §€,g9 = 0.116. The histogram is fairly normal
in shape.

In a first-order autoregressive scheme, each z, depends on its
predecessors only through the value of z;—;. (This kind of depen-
dence 15 known as a first-order Markov process.) A sccond-order
autoregressive scheme extends the dependence back to z;_o,

z = Przi—1 + Pz + ¢
for t=UU+1,U+2, -,V (8.27)

Here 3 = (81, 62)7 is a two-dimensional unknown parameter vec-
tor. The ¢, are independent random disturbances as in (8.16). Cor-
responding to (8.18) are Initial equations

2y Brzu—1+ Bazu—2 + €u
zyp1 = Pz + Perru-1 + €Ut (8.28)
so we need the numbers zy_o and zy_j to get started. Now U =
3,3V =48, and T =V - U + 1 = 46.

The least-squares approach leads directly to an estimate of the °
vector 3. Let z be the T-dimensional vector (zi, zu41,° - 2v)%s
and let Z be the T'x 2 matrix with first column (zr7_1, 27, - -+, 2v—1)7
second column (zy—z, 21,20+ -+, 2v—2)" - Then the least-squares
estimate of 3 is

B=(272)"12"2. (8.29)

For the lutenizing hormone data, the second-order autoregressive
scheme had least-squares estimates

B = (0.771,-0.222)T. (8.30)

Figure 8.7 shows histograms of B = 200 bootstrap replications
of the two components of 3 = (31, 82)7. The bootstrap standard
errors are

Sea00(B1) = 0.147,  Seg00(B2) = 0.149. (8.31)

Both histograms are roughly normal in shape. Problem 8.7 asks
the reader to describe the steps leading to Figure 8.7.

A second-order autoregressive scheme with 8 = 0 1s a first-
order autoregressive scheme. In doing the accuracy analysis for the
second-order scheme, we check to see if ﬁg is less than 2 standard
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Figure 8.6. Histogram of B = 200 bootstrap replications of B, the first-
order autoregressive parameter estimate for the lutemizing hormone data;
from (8.25), (8.26); the bootstrap estimate of standard error 1s 500 =
0.116. The broken line s drawn at the observed value § = 0.586.

crrors away from 0, which would usually be interpreted as 3 being
not significantly different than zero. Here 35 is about 1.5 standard
errors away from 0, in which case we have no strong evidence that
a first-order autoregressive scheme does not give a reasonable rep-
resentation of the lutenizing hormone data.

Do we know for sure that the first-order scheme gives a good
representation of the lutenizing hormone series? We cannot defini-
tively answer this question without counsidering still more general
models such as higher-order autoregressive schemes. A rough an-
swer can be obtained by comparison of the bootstrap time series
with the actual series of Figure 8.4. Figure 8.8 shows the first four
bootstrap series from the first-order scheme, left panel, and four
realizations obtained by sampling with replacement from the orig-
inal time series, right panel. The original data of Figure 8.4 looks
quite a bit like the left panel realizations, and not at all like the
right panel realizations.

Further analysis shows that the AR(1) model provides a rea-
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Figure 8.7. B = 200 bootstrap replications of § = (0.771, —0.222), the
second-order autoregresswve parameter vector estimate for the lutemzing
hormone data. As in the other histograms, a broken line 1s drawn at the
parameter estumate. The hstograms are roughly normal in shape.

sonable fit to these data. However, we would need longer a time
series to discriminate effectively between different models for this
hormone.

In geweral, il pays Lo remember that mathematical models are
conveniently simplified representations of complicated real-world
phenomena, and are usually not perfectly correct. Often some com-
promuise is necessary between the complication of the model and the
scientific needs of the investigation. Bootstrap methods are partic-
ularly useful if complicated models seem necessary, since mathe-
matical complication is no impediment to a bootstrap analysis of
accuracy.

8.6 The moving blocks bootstrap

In this last section we briefly describe a different method for boot-
strapping time series. Rather than fitting a model and then sam-
pling from the residuals, this method takes an approach closer to
that used for one-sample problems. The idea is illustrated in Fig-
ure 8.9. The original time series is represented by the black circles.
To generate a bootstrap realization of the time series (white cir-
cles), we choose a block length (“3” in the diagram) and consider
all possible contiguous blocks of this length. We sample with re-
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Figure 8.8. Left panel: the first four bootstrap replications of the lut-
enwzng hormone data from the first-order autoregresswve scheme, y; =
zi +2.4, (8.25), (8.26). Right panel: four bootstrap replications obtained
by sampling urth replacement from the original time series. The values
from the first-order scheme look a lot more like the actual time series 1n
Figure 8.4.
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Figure 8.9. A schematic diagram of the moving blocks bootstrap for tumne
series. The black curcles are the original tume series. A bootstrap real-
wzation of the time seres (whate curcles) 1s generated by choosing a block
length (“8” wn the diagram) and sampling with replacement from all pos-
stble contiguous blocks of this length.

placement from these blocks and paste them together to form the
bootstrap time series. Just enough blocks are sampled to obtain a
series of roughly the same length as the original series. If the block
length 1s £, then we choose k blocks so that n = k - £.

To illustrate this, we carried it out for the lutenizing hormone
data. The statistic of interest was the AR(1) least-squares esti-
mate ﬁ We chose a block length of 3, and used the moving blocks
bootstrap to generate a bootstrap realization of the lutenizing hor-
mone data. A typical bootstrap realization 1s shown in Figure 8.10,
and it looks quite similar to the original time series. We then fit
the AR(1) model to this bootstrap time series, and estimated the
AR(1) coefficient 3*. This entire process was repeated B = 200
times. (Note that the AR(1) model is being used here to estimate
B, but is not being used in the generation of the bootstrap real-
izations of the time series.) The resulting bootstrap standard error
was Se300(3) = 0.120.% This is approximately the same as the value
0.116 obtained from AR(1) generated samples in the previous sec-
tion. Incrcasing the block size to 5 caused this value to decrease to
0.103.

What is the justification for the moving blocks bootstrap? As we
have seen earlier, we cannot simply resample from the individual

2 If n 1s not exactly divisible by £ we need to multiply the bootstrap standard
errors by 1/k€/n to adjust for the difference in lengths of the series. This
factor is 1.0 for £ = 3 and 0.97 for £ = 5 mn our example, and hence made
little difference.
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Figure 8.10. A bootstrap realization of the lutemizing hormone data, using
the momng blocks hoolstrap wath block lenglh equal to 3.

observations, as this would destroy the correlation that we're trying
to capture. {Using a block size of one corresponds to sampling with
replacement from the data, and gave 0.139 for the standard error
estimate.) With the moving blocks bootstrap, the idea 1s to choose
a block size £ large enough so that observations more than £ time
units apart will be nearly independent. By sampling the blocks of
length £, we retain the correlation present in observations less than
£ units apart.

The moving blocks bootstrap has the advantage of being less
“model dependent” than the bootstrapping of residuals approach
used earlier. As we have seen, the latter method is dependent on
the model that is fit to the original time series (for example an
AR(1) or AR(2) model). However the choice of block size £ can be
quite important, and effective methods for making this choice have
not yet been developed.

In the regression problem discussed in the next chapter, we en-
counter different methods for bootstrapping that are analogous to
the approaches for time series that we have discussed here.

8.7 Bibliographic notes

The analysis of time scrics 1s described in many books, mclud-
ing Box and Jenkins (1970), Chatfield (1980) and Diggle (1990).
Application of the bootstrap to time series 1s discussed in Efron
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and Tibshirani (1986); the moving blocks method and related tech-
niques can be found in Carlstein (1986), Kiinsch (1989), Liu and
Singh (1992) and Politis and Romano (1992).

8.8 Problems

8.1 If z and y are independent of each other, then var(z — ) —
var(Zz) + var().

(a) How could we use the one-sample bootstrap algorithm
of Chapter 6 to estimate se(f), for § = z — 7 as in (8.9)?
(b) The bootstrap data going into 5e1400 = 26.85, (8.11),
consisted of a 1400 x 16 matrix, each row of which was an
independent replication of (8.12). Say how your answer to

(a) would be implemented 1o terms of the matrix. Would
the answer still equal 26.857

8.2 Suppose the mouse experiment was actually conducted as
follows: a large population of candidate laboratory mice were
identified, say U = (U1, Us, - - -, Un); & random sample of size
16 was selected, say u = (ug,, Uk, , - ; Uk, ); finally, a fair coin
was independently flipped sixteen times, with u, assigned to
Treatment or Control as the £th flip was heads or tails. Dis-
cuss how well the two-sample model (8.5) fits this situation.

8.3 Assuming model (8.14)-(8.16), show that E(RSE(b)) = (b —
BPE(L] 280) + (V = U + 1)varp(e).

8.4 The bootstrap analysis (8.25) was carried out asif § = 2.4 was
the true valie of 1 = E(y;). Carefully state how to calculate

§&(3) if we take the more honest point of view that x 1s an
unknown parameter, estimated by .

8.5 Let gy equal }::/:U /T, Ju—1 cqual ZY:_Ulq y /T, and de-
fine 3 as in (8.19)-(8.21), except with z; =y — Ju—_1.

(a) Show that
V ~
Sy = 90) = Blyeor — Ju-1)} = 0. (8.32)

(b) Why mght we expect F', (8.26), to have expectation
near 07
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8.6 Many statistical languages like “S” are designed for vector
processing. That is, the command ¢ = a + b to add two long
vectors is carried out much more quickly than the loop

for (z=1ton){ci=a;+b}. (8.33)

This fact was used to speed the generation of the B = 200
bootstrap replications of the first-order autoregressive scheme
for the lutenizing hormone data. How?

8.7 Give a detailed description of the bootstrap algorithm for the
second-order autoregressive scheme.




CHAPTER 9

Regression models

9.1 Introduction

Regression models are among the most useful and most used of sta-
tistical methods. They allow relatively simple analyses of compli-
cated situations, where we are trying to sort out the effects of many
possible explanatory variables on a response variable. In Chapter 7
we use the one-sample bootstrap algorithiu to analyze the accuracy
of a regression analysis for the cholostyramine data of Table 7.4.
Here we look at the regression problem more critically. The general
bootstrap algorithm of Figure 8.3 1s followed through, leading to a
somewhat different bootstrap analysis for regression problenis.

9.2 The linear regression model

We begin with the classic linear regression model, or linear model,
going back lo Legendre and Gauss early in the 19th century. The
data set x for a linear regression model consists of n points
X1,X2,° *,Xy, Where each x, 1s itself a pair, say

X, = (€4, 9i)- (9.1)

Here ¢; is a 1 x p vector ¢, = (¢, ci2, - - 5 Cipy) called the covarate
vector or predictor, while y; 1s a real number called the response.

Let u; indicate the conditional expectation of tth respouse y;
given the predictor ¢,,

i = E(yi]c,) (:=1,2,--,n). (9.2)

The key assumption in the linear model is that y; is a linear com-
bination of the components of the predictor c,,

)
i =c;3 = Z cijBj- (9.3)

j=1
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The parameter vector, or regression parameter, 3 = (81, B2, -, BP)T
is unknown, the usual goal of the regression analysis being to infer
B from the observed data x = (x1,X2, --,Xy). In the quadratic
regression (7.20) for the cholostyramine data, the responsc y; is
the improvement for the ith man, the covariate c, is the vector
(1,2;,22), and B = (Bo, B1,02)T. Note: The “linear” in linear re-
gression refers to the linear form of the expectation (9.3). There
is no contradiction in the fact that the linear model (7.20) is a
quadratic function of z.

The probability structure of the linear model is usually expressed
as

h=¢cB+e for 1=1,2,--- n (9.4)

The error terms ¢, in (9.4) are assumed to be a random sample
from an unknown error distribution F' having expectation 0,

F—(€,63, ,€,)=¢€ [Er(e) = 0]. (9.5)
Notice that (9.4), (9.5) mply
E(yile;) = E(eiB + eile) = E(c;Ble,) + Eeiles)
= B, (9.6)

which is the linearity assumption (9.3). Here we have used the
fact that the conditional expectation E(¢;]|e,) is the same as the
unconditional expectation E(e;} = 0, since the €, are selected inde-
pendently of ¢;.

We want to estimate the regression parameter vector 3 from the
observed data (c1,y1),(e2,¥2), -, (€n, ¥n)- A trial value of 3, say
b, gives residual squared error

RSE(b) = i(yi —¢;b)%, (9.7)

as in equation (7.21). The least-squares estimate of 3 is the value

3 of b that minimizes RSE(b),

RSE(B) = mén[RSE(b)]. (9.8)

Let C be the n x p matrix with ith row ¢, (the design matriz),
and let y be the vector {y1,¥s, - -,¥n)T. Then the least-squares
estimate 13 the solution to the so-called normal equations

c'cp=cy (9.9)
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Table 9.1. The hormone data. Amount wn mmalligrams of anti-
mflammatory hormone remainang wn 27 devices, after a certain number
of hours of wear. The devices were sampled from & different manufac-
turing lots, called A, B, and C. Lot C looks like 1t had greater amounts
of remainang hormone, but it also was worn the least number of hours.
A regression analysis clarifies the situation.

lot hrgs amount | lot hrs  amount | lot hrs amount
A 99 258 B 376 163| C 119 28.8
A 152 205 | B 385 116( C 188 22.0
A 293 143 B 402 1181 C 115 29.7
A 155 23.2| B 29 325| C 88 28.9
A 196 206 B 76 32.0] C 58 32.8
A 53 31.1| B 296 180| C 49 32.5
A 184 209 | B 151 241 C 150 25.4
A 171 209| B 177 265 C 107 31.7
A 52 304 B 209 258 | C 125 28.5
mean: 150.6 23.1 233.4 22.] 111.0 28.9
and is given by the formula !
B=(CTC)™CTy. (9.10)

9.3 Example: the hormone data

Table 9.1 shows a small data set which is a good candidate for
regression analysis. A medical device for continuously delivering
an anti-inflammatory hormone has been tested on n = 27 subjects.
The response variable y; is the amount of hormone remaining in
the device after wearing,

y; = remaining amount of hormone in devices, :=1,2,- -,27.

! Formula (9.10) assumes that C 1s of full rank p, as will be the case in all
of our examples. We will not be using matrix-theoretic derivations in what
follows. A reader unfamiliar with matrix theory can think of (9.10) sunply
as a function wliuch inputs the responses y1,y2, - ,Yn and the predictors
cy,C2,+,Cp, and outputs the least-squares estimate B Simnilarly the boot-
strap methods 1n Scction 9.4 do not requure detailed understanding of the
matrix calculation e Seetion (9.3).
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There are two predictor variables,

z; = mumber of howrs the i device was worn,

and
L, = manufacturing lot of device :.

The devices tested were randomly selected from three different
manufacturing lots, called A, B, and C.

The left panel of Figure 9.1 is a scatterplot of the 27 points
(#i,9i) = (hours,, amount,), with the lot symbol L, used as the
plotting character. We see that longer hours of wear leads to smaller
amounts of remaining hormone, as might be expected. We can
quantify this observation by a regression analysis.

Consider the model where the expectation of y is a linear func-
tion of 2z,

pi =Eilz) = 8o+ Pz 1=1,2,-,27. (9.11)

This model ignores the lot L,: it is of form (9.3), with covariate
vectors of dimension p = 2,

¢, =(1,z). (9.12)

The unknown parameter vector (3 lias been labeled (g, 31) instead
of (81, 2) so that subscripts match powers of z as in (7.20). The
normal equations (9.10) give least-squares estimate

B = (34.17, —.0574)7" (9.13)
The estimated least-squares regression line
fri = i = fo+ Pz (9.14)

is plotted in the right panel of Figure 9.1. Among all possible lines
that could be drawu, this line minimizes the sum of 27 squared
vertical distances from the points to the line. )

How accurate is the estimated parameter vector 3? An extremely
useful formula, also dating back to Legendre and Gauss, provides
the answer. Let G be the p X p wnner product matriz,

G =CTc, (9.15)

the matrix with element g, = ZLl CinCyy in row h, column j. Let
0% be the variance of the error terms in model (9.4),

0% = varp(e). (9.16)
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Figure 9.1. Scatterplot of the hormone data pownts (z,,y:)) =
(hours;, amount;), labeled by lot. It s clear thal longer hours of wear
result wn lower amounts of remaining hormone. The right panel shows
the least-squares regression of y; on z; fu; = Bo + Brzi, where B =
(34.17, —.0574).

Then the standard error of the yth component of 3, the square
root of its variance, is

se(B;) = opV G (9.17)

when G77 1s the 7th diagonal clement of the inverse matrix G L.

The last formula is a generalization of formula (5.4) for the stan-
dard error of a sample mean, sep(Z) = or/\/n, see Problem 9.1.
In practice, op is estimated by a formula analogous to (5.11),

or = {3 (i - c:B)?/n}/? = {RSE(B)/m}Y*  (0.18)

or by a bias-corrected version of dp,
r = {RSE(B)/(n - p)}'/? (9.19)

The corresponding estimated standard errors far the components
of 3 are

$(8;) = 6rVGIT or T(;) = 0rVGii (9.20)

The relationship between §&(3;) and §8(3;) is the same as that
between formulae (5.12) and (2.2) for the mean.
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Table 9.2. Results of filting model (9.11) Lo the hormone data

Estimate ge e
Bo 34.17 83 .87
61 -0574 .0043 .0045

Table 9.3. Results of fitting model (9.21) to the hormone data.

Estimate se g6
Ba 32.13 .69 75
B 36.11 .89 97
Be 35.60 60 66
B -.0601 .0032 .0035

Most, packaged linear regression programs routinely print out
qp(ﬂj) along with the least-squares estimate B, Applying such a
program to model (9.11) for the hormone data gives the results in
Table 9.2.

Looking at the right pauel of Figure 9.1, most of the points for
lot A lie below Lhe fitted regression-line, while most of those for
lots B and C lic above the line. Tis suggests a deficiency in model
{9.11). If the model were accurate, we would expeet aboul halfl of
each lot to lie above and half below the fitted line. In the usual
terminology, it looks like there is a lot effect in the hormone data.

It is easy to incorporate a lot effect into our linear madel. We
assume that the conditional expectation of y given L and z is of
the form

E(y|L,2) = B + B12. (9.21)

Here B equals one of three possible values, 84, 85, B¢, depending
on which lot the device comes from. This is similar to model (9.11),
except that (9.21) allows a different intercept for each lot, rather
than the single intercept Gp of (9.11). A least-squares analysis of
model (9.21) gave the results in Table 9.3.

Notice that 34 is several standard errors less than Ap and Bos
indicating that the devices in lot A contained significantly less
hormone.
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9.4 Application of the bootstrap

None of the calculations so far require the bootstrap. However it
is useful to follow through a bootstrap analysis for the linear re-
gression model. It will turn out that the bootstrap standard error
estimates are the same as §6(3;), (9.20). Thus reassured that the
bootstrap is giving reasonable answers in a case we can analyze
mathematically, we can go on to apply the bootstrap to more gen-
eral regression models that have no mathematical solution: where
the regression function is non-linear in the parameters 3, and where
we use fitting methods other than least-squares.

The probability model P — x for linear regression, as described
by (9.4), (9.5), has two components,

P =(B,F), (9.22)

where 3 is the parameter vector of regression coefficients, and F'is
the probability distribution of the error terms. The general boot-
strap algorithm of Figure 8.3 requires us to estimate P We already
have available 3, the least-squares estimate of 3. How can we esti-
mate F? If @ were known we could calculate the errors ¢, = y; —c¢;3
for: =1,2,- -,n, and estimate F* by thewr empirical distribution.
We don’t know 3, but we can use B to calculate apprommate errors

&=y — B, for +=1,2,-- n. (9.23)

(The &, are also called residuats.) The obvious estimate of F' is the
empirical distribution of the é,,

F . probability 1/none, for 1=1,2,-- ,n. (9.24)

Usually I" will have expectation 0 as required in (9.5), see Problem
9.5.

With P = (3, F) in hand, we know how to calculate bootstrap
data sets for the linear regression model: P — x* must mean the
same thing as P — x, the probability mechanism (9.4), (9.5) giving
the actual data set x. To generate x*, we first select a random
sample of bootstrap error terms

Fo(eh e, L) =e" (9.25)

Each € equals any one of the n values é, with probability 1/n.
Then the bootstrap responses y} are generated according to (9.4),

Y =B+ ¢ for +=1,2,--,n. (9.26)
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The reader should convince himself or herself that (9.24), (9.25),
(9.26) is the same as (9.4), (9.5), except with P = (83, F') replacing
P = (B, F). Notice that 3 is a fixed quantity in (9.26), having the
same values for all .

The bootstrap data set x* equals (x},x3, ..,x}), where x} =
(ci,yf). It may seem strange that the covariate vectors c; are the
same for the bootstrap data as for the actual data. This happens
because we are treating the ¢, as fixed quantities, rather than ran-
dom. (The sample size n has been treated this same way in all of
our examples.) This point is further discussed below.

The bootstrap least-squares estimate [A‘]* is the minimizer of the
residual squared error for the bootstrap data,

n

Z( P — C,,B = mlnz —¢;b)? (9.27)

=1 1=1

The normal equations (9.10), applied to the bootstrap data, give
3" = (cTc)"1cTy*. (9.28)

In this case we don’t need Monte Carlo simulations to figure
out bootstrap standard errors for the components of ,B*: An easy
calculation gives a closed form expression for se F(,@;) = ééoo([ij),
the ideal bootstrap standard error estimate:

var(fa*) = %ICPvar yH)c(cTe)t
cfo), (9.29)

since var(y*) = &%I, where T is the identity matrix. Therefore
Foo(B) = 61V GII. (9.30)

In other words, the bootstrap estimate of standard crror for /;.i 18
the same as the usual estimate 2 §e(3;), (9.20).

2 This implies that 5es(3;) = {2-2}1/?56(8;), which 15 the same situation
we encountered for the mean Z, cf. (5.12) and (2.2). We could adjust the
bootstrap standard errors by factor {2 }1/ 2 to get the familiar estimates

uc(ﬁj), but this isn’t necessarily the nght thing to do in more complicated
regression situations. The point gets worrisome only if p 15 a large fraction
of n, say p/n > .25. In most situations the random variability in 56co i8
more mmportant than the buas caused by factors like {T’_‘—p}l/"?,
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9.5 Bootstrapping pairs vs bootstrapping residuals

The reader may have noticed an interesting fact: we now have two
different ways of bootstrapping a regression model. The method
discussed in Chapter 7 bootstrapped the pairs x, = (¢;,¥:), so
that a bootstrap data set x* was of the form

x* = {(Cop, Yi)s (Cop, in)s - (Can Wi ) 1 {9.31)

for 21,12, - 1, a random sawmple of the integers 1 through n., The
method discussed in this chapter, (9.24), (9.25), (9.26) can be called
“bootstrapping the residuals.” It produces bootstrap data sets of
the form

x' = {(Ch CIB + éu)« (021 CQB + étz)a : x(cna CnB + é‘n)}' (9'32)

Which bootstrap method 1s better? The answer depends on how
far we trust the linear regression model (9.4). This model says that
the error between y; and its mean p; = c;3 doesn’t depend on ¢;;
it has the same distribution “F” no matter what ¢, may be. This
is a strong assumption, which can fail even if the model for the
expectation p; — ¢;3 is correct. It docs fail for the cholostyramiue
data of Figure 7.4.

Figure 9.2 shows regression percentiles for the cholostyramine
data. For example the curve marked “75%” approximates the con-
ditional 75th percentile of improvement y as a function of the
compliance z. Near any given value of z, about 75% of the plottcd
points lie below the curve. Model (9.4), (9.5) predicts that these
curves will be the same distance apart for all values of z. Instead the
curves separate as z Increases, being twice as far apart at z = 100
as at z = 0. To put it ancther way, the errors ¢, in (9.4) tend to
be twice as big for z = 100 as for z = 0.

Bootstrapping pairs 1s less sensitive Lo assumptions than bool-
strapping residuals. 'I'he standard error estimate obtained by boot-
strapping pairs, (9.31), gives reasonable answers even if (9.4), (9.5)
is completely wrong. The only assumption behind (9.31) is that
the original pairs x, = (c,,y;) were randomly sampled from some
distribution F, where F' is a distribution on (p + 1)-dimensional
vectors (c,y). Even if (9.4), (9.5) 1s correct, it is no disaster to
bootstrap pairs as in (9.31); it can be shown that the answer given
by (9.31) approaches that given by (9.32) as the number of pairs
n grows large. The simple model for the hormone data (9.12) was
reanalyzed bootstrapping pairs. B = 800 bootstrap replications
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Figure 9.2. Regression percentiles for the cholostyramine data of Fig-
ure 71.5; for example the curve labeled “75%” apprommates the condi-
tional 75th percentile of the Improvement y gwen the Compliance z,
plotted as a function of z. The percentile curves are twice as far apart
at z =100 as at z = 0. The linear regression model (9.4), (9.5) can’t be
correct for this data set. (Regression percentiles calculated using asym-
metric mazrmum likelihood, Efron, 1991.)
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gave

Sogoo(fo) = 77, Sesoo(By1) = 0045, (9.33)

not much different than Table 9.2.

The reverse argument can also be made. Model (9.4), (9.5) doesn’t
have to hold perfectly in order for bootstrapping residuals as m
(9.32) to give reasonable results. Moreover, differences in the error
distributions, as in the cholostyramine data, can be incorporated
into model (9.4), (9.5), leading to a more appropriate version of
bootstrapping residuals; see model (9.42). Perhaps the most im-
portant point here is that bootstrapping is not a uniquely defined
concept. Figure 8.3 can be implemented in different ways for the
same problem, depending on how the probability model P — x 18
interpreted.

When we bootstrap residuals, the bootstrap data sets x* =
{(c1,y7),(c2,y%), - - (cn,ys)} have covanate vectors c1, ¢z, -, ¢y
exaclly the same as those for the actual data set x. This scems un-
natural for the hormone data, where ¢; mvolves z;, the hours worn,
which 1s just as much a random variable as is the response variable
¥;, amount remaining.

Even when covariates are generated randomly, there are reasons
to do the analysis as if they are fixed. Regression coefficients have
larger standard error when the covariates have smaller standard
deviation. By treating the covariates as fixed constants we obtain
a standard error that reflects the precision associated with the,
sample of covariates actually observed. However, as (9.33) shows,
the difference between c, fixed and ¢; random usually doesn’t affect
the standard error estimate very much.

9.6 Example: the cell survival data

- There are regression situations where the covariates are more nat-
. urally considered fixed rather than random. The cell survival data
in Table 9.4 show such a situation. A radiologist has run an ex-
periment involving 14 bacterial plates. The plates were exposed
to various doses of radiation, and the proportion of the surviving
cells measured. Greater doses lead to smaller survival proportions,
as would be expected. The question mark after the response for
plate 13 reflects some uncertanty in that result expressed by the
investigator.

The mvestigator was interested in a regression analysis, with
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Table 9.4. The Cell Survival data. Fourteen cell plates were exposed to
different levels of radiation. The observed response was the proportion
of cells whach survived the radiation exposure. The response wn plate 13
was considered somewhat uncertain by the wnvestigator.

plate dose survive log.sury
number (rads/100) prop. prop.
1 1.175 0.44000 -0.821

2 1.175 0.55000 -0.598

3 2.350 0.16000 -1.833

4 2.350 0.13000 -2.040

5 4.700 0.04000 -3.219

6 4.700 0.01960 -3.219

7 4.700 0.06120 -2.794

8 7.050 0.00500 -5.298

9 7.050 0.00320 -5.745
10 9.400 0.00110 -6.812
11 9.400 0.00015 -8.805
12 9.400 0.00019 -8.568
13 14.100 0.007007? -4.9627
14 14.100 0.00006 -9.721

predictor variable
dose; — z; i=1,2,---,14 (9.34)
and response variable

log(survival proportion;) = ; v=1,2,--,14.
(9.35)

Two different theoretical models of radiation damage were avail-
able, one of which predicted a lincar regression,

i = Byilz:) = Pz, (9.36)
and the other quadratic regression,
i = E(yilei) = frzi + B2z (9.37)

There is no intercept terms 8 in (9.36) or (9.37) because we know
that zero dose gives survival proportion 1, y = log(1) = 0.

Table 9.5 shows the least-squares estimates (3;, 3;) and their es-
timated standard errors 56(8;), (9.20). Two least-squares analysis
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are presented, one with the data from all 14 plates, the other ex-
cluding the questionable plate 13. In both analyses, the estimated
quadratic regression coefficient f; is positive. Is it significantly pos-
itive? In other words, can we reasonably conclude that 8 would
remain positive if a great many more plates were investigated?
The ratio 8,/5¢(832) helps answer this question. The ratio 1s 2.46
for the analysis based on all 14 plates, which would usually be cou-
sidered strong evidence that 3, is significantly greater than zcro. If
we believe this result, then the quadratic model (9.37) is strongly
preferred to the model (9.36), which has 8, = 0.

However removing the questionable plate 13 from the analysis
reduces [z /5¢(0;) to only 0.95, a non-significant result. The con-
clusion 1s not that (3 1s necessarily zero, but that it easily could
be zero: if B2 = 0, and if se(B2) = .0091 as on line 2 of Table 9.5,
then it wouldn’t be at all surprising to see a value of B, as large or
larger than the observed value .0086. We have no strong evidence
for rejecting the linear model in favor of the quadratic model.

Statistics is the science of collecting together small pieces of in-
formation in order to get a highly imformative composite result.
Statisticians get nervous when they see one data pomnt, especially
a suspect one, dominating the answer to an important question. A
valid criticism of least-squares regression is that one outlying point
like plate 13 can have too large an effect on the fitted regression
curve. This is illustrated in Figure 9.3, which plots the least-squares
regression curve both with and without the data from plate 13. The
powerful effect of the point “?” is evident. Even if the investigator
had not questioned the validity of plate 13, we would prefer our
fitted curves not to depend so much on individual data points.

9.7 Least median of squares

Least median of squares regression, abbreviated LMS, is a less
sensitive fitting technique than least-squares. The only difference
between least-squares and LMS is the choice of the fitting criterion.
To motivate the criterion, let’s divide the residual squared error
(9.7) by the sample size, giving the mean squared residual

% Z(yi ~ ¢;b)”. (9.38)
1=1
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Table 9.5. Estunated regression coefficients and standard errors for the
guadratic model (9.37) applied to the cell survwal data. Least squares
estinates (9.10) were obtained using all 14 plates (line 1), and also
excluding plate 13 (line 2). Estvmated standard errors for lines 1 and 2
are 5¢(B;), (9.20). The estimated standard errors for the least median of
squares regression (all 14 plates), line 3, were obtained from a bootstrap
analysis, B = 400. The quadratic coefficient looks significantly nonzero
wn line 1, but not wn lines 2 or 3. Line 4 gwves the stundard errors for
the least median of squares estimate, based on resampling residuals from
model (9.42).

I (88) B (se) B2 /5%
1. Least Squares, 14 plates -1.05 (.159) .0341 (.0143) 2.46
2. Least Squares, 13 plates  -0.86 (.094) .0086 (.0091)  0.95
3. Least Median of Squares -0.83 (.272) .0114 (.0362)  0.32
4. (Resampling residuals) (.141) (.0160)
14 plates 13 plates
g R
T ¢ -
5 | &
= ; r
g \\ =Y
g o | g =
- *
2 L SN 2 +
2 4 6 8 10 12 14 2 4 6 8 10 12 14
dose dase

Figure 9.3. Scatterplot of the cell survwal data; solid line 1s the quadratic
regression Bz + Pa2* obtamed by least-squares. Dashed line 1s quadratic
regression fit by method of least median of squares (LMS). Left panel: all
14 plates; Right panel: tharteen plates, excluding the questionable result
from plate 13. Plate 13, marked “?”in the left panel, has a large effect
on the fitted least-squares curve. The questionable point has no effect on
the LMS curve.
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Minimizing (9.38) is obviously the same as miniumizing (9.7). Sam-
ple means are sensitive to influential values, but medians are not,
Hence to make (9.38) less sensitive, we can replace the mean by a
median, giving the median squared residual

MSR(b) = median(y; — c;b)? (9.39)
The LMS estimate of 8 is the value 3 minimizing MSR(b),
MSR(B) = ugn{MSR(b)]. (9.40)

Notice that the difference between least-squares and LMS is
not in the choice of the model, which remains (9.3), but how we
measure discrepancies between the model and the observed data.
MSR(b) is less sensitive than RSE(b) to outllying data points. This
can be seen in Figure 9.3, where there appears to he very little dif-
ference hetween the quadratic LMS (it with or without pomt “?”.
In fact there 1s no difference. The estimated regression coeflicients
are (81, 2) = (—.81,.0088) in both cases.

It can be shown that the breakdown of the LMS estimator is
roughly 50%. The breakdown of an estimator is the smallest pro-
portion of the data that can have an arbitrarily large effect on its
value. In other words, an estimator has breakdown « if at least
m = a - n data points must be “bad” before it breaks down. High
breakdown is good, with 50% being the largest valuc that makes
sense (if & > 50%, it is not clear which are the good pomnts and
which are bad). For example, the mean of a sample has breakdown
1/n, since by changing just one data value we can force the sample
mean to have any value whatsoever. The sample median has break-
down 50%, reflecting the fact that it is less sensitive to individual
values. The least-squares regression estimator inherits the sensitiv-
ity of the mean, and has breakdown 1/n, while the least median of
squares estimator, like the median, has breakdown roughly 50%.
The precise definition of breakdown 1s given in Problem 9.9.

How accurate are the LMS estimates 31, 322 There is no neat for-
mula like (9.20) for LMS standard errors. (There 1s no neat formula
for the LMS estimates themselves. They are calculated using a sam-
pling algorithm: see Problem 9.8.) The standard errors in Table 9.5
were obtamed by bootsirap incthods. The standard crrors m line 3
are bascd on resamnpling pairs, as in Seclion 7.3. A boolstrap dala
set was created of the form x* = ((e*,y1), (c5,¥3),-- - (ch,¥n)). a8
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m (9.31), where ¢; = (z;,22). Having generated x*, the bootstrap

replication ,fi* for the LMS regression vector was obtained as the
minimizer of the median squared residual for the bootstrap data,
that is, the minimizer over b of

median(y; — c’b)? (9.41)

B = 400 bootstrap replications give the estimated standard errors
in line 3 of Table 9.5. Notice that Bg is not significantly greater
than zero.

The covariates in the cell survival data were fixed numbers, set by
the investigator: she chose the doses 1.175,1.175,2.35,---,14.100
i order to have a good experiment for discriminating between
the linear and quadratic radiation survival models. This makes
us more interested in bootstrapping the residuals, (9.32), rather
than bootstrapping pairs. Then the bootstrap data sets x* will
have the same covariate vectors €4,Ca,- -, €14 as the investigalor
deliberately used in the experiment.

Model (9.4), (9.5) isn't exactly right for the cell survival data.
Looking at Figure 9.3, we can sce that the response y; are more
dispersed for larger values of z. This is like the cholostyramine sit-
uation of Figure 9.2, except that we don’t have enough points to
draw good regression percentiles. As a roughly appropriate model,
we will assume that the errors from the linear model increase lin-
early with the dose z. This amounts to replacing (9.4) with

¥y = ;08 + zie, for +=1,2,--,14. (9.42)

We still assume that (€1, €2, -, €p) is a random sample from some
distribution F, (9.5). For the quadratic regression model, ¢, =
(21, 22).

The probability model for (9.42) is P = (3, F) as before; 3
was estimated by LMS, 3 = (.83, .0114). Then F was estimated
by F, the empirical distribution of the quantities (y; — ciﬁ) /=i,
1=1,2,-- ,14.

Line 4 of Table 9.5 reports bootstrap standard errors for the least
mcdian of squares estimates Bl and (s, obtained from B = 200
bootstrap replications, bootstrapping the residuals in model (9.42).
The standard errors are noticeably smaller than those obtained by
bootstrapping pairs. (But not small enough to make 3, signifi-
cantly non-zero.) The standard errors in line 4 have to be regarded
cautiously, since modecl (9.42) is only weakly suggested by the data.
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The main point in presenting this model was to illustrate how boot-
strapping residuals could be carried out in situations more compli-
cated than (9.4).

9.8 Bibliographic notes

Regression is discussed in most elementary statistics texts and
there are many books devoted to the topic, including Draper and
Smith (1981), and Weisberg (1980). Bootstrapping of regression
models is discussed at a deeper mathematical level in Freedman
(1981), Shorack (1982), Bickel and Freedman (1983), Weber (1984),
Wu (1986), and Shao (1988). Freedman and Peters (1984), Peters
and Freedman (1984a, 1984b) examined some practical aspects.
Rousseeuw (1984) introduces least median of squares estiinator.
Efron (1991) discusses the estimation of regression percentiles.

9.9 Problems

9.1 Show that formula (9.17) gives formula (5.4) for the standard
error of the mean .

9.2 (a) Show that the least-squares estimate of 8, m model
(9.12) is

n

Br=> (z—2)wi—9)/ E(z, ~z)2 (9.43)

1=1
[For a 2 x 2 matrix G, the inverse matrix is
1 N\
Gle=———— (9” _912) ] (9.44)
922011 — 12921 \ 921 911

(b) Show that 3; has standard error oy, /[Y 1, (2 —2)%]/2

(c) How might the allocation of doses in nTable 9.4 be
changed to decrease the standard error of 5,7

9.3 Describe the matrix C applying to the lincar model (9.21).

9.4 Often the covanate vectors ¢; all have first component 1, as in
(9.12). If this is the case, show that the empirical distribution
F of the approxituate errors ¢,, (9.24), has expectation 0.
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9.5 Suppose that Lhe empirical distribution £ of the approximate
errors, (9.18), has expectation 0. Derive (9.30) from (9.17).
9.6 It can be proved that expression (9.19), namely

Gp =Y &/(n—p), (9.45)

is an unbiased estimate of 0%, E(5%) = o%. If 3 was known,
we could unbiasedly estimate 0% with the mean square aver-
age of the true errors ¢, = y; — ¢;3,

> é/n. (9.46)

(a) Comparing (9.46) with (9.45), both of which have ex-
pectations cr%,, shows that the approximate errors €, tend
to be collectively smaller than the true errars e,. Why do
you think this is the case?

(b) The “adjusted errors”

€ =&

s (9.47)

are similar to the true crrors in the sense that B(Y .. | €2) =
E(30 €2). Suppose that at (9.25) we replace F by I, the
cplirical distribution of the adjusted errors. How would
this change result (9.30)7

9.7 How would you change (9.28) to express ,3 in the situation
(9.31) where we are bootstrapping pairs?

9.8 A popular method for (approximate) calculation of the least
median of squares estimate 1s to generate a set of trial values
for 3, and then choose the one that gives the smallest value
of MSR(b) defined 1n (9.39). An effective way of generating
the trial values is to choose p points from the data set with-
out replacement and then let G equal the coefficients of the
interpolating line or plane through the p points. Here p is the
number of regressors in the model, including the intercept;
there is a unique line or plane passing through p data points
in p-dimensional space, as long as the points are linearly in-
dependent. Carrying out this sampling a number of times
(say 100) produces a set of 100 trial values for 3. Note that
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9.9

while this sampling might seem similar to the bootstrap, its
purpose 1s quite different. It is intended Lo (approximately)
calculate the LMS estimate itself, rather than some aspect of
its distribution.

(a) Suggest why this sampling method might be an effective
way of producing a set of trial values, in the sense that the
minimizer among the trial values will be close to the true
minimizer of MSR(b).

(b) Write a program to compute the LMS estimator for the
cell survival data, fitting a linear model through the origin
(recall that a quadratic model was fit in the chapter).

(c) Write a program Lo estimale the standard error of the
LMS estimate in (b), both by resampling the data pairs
and by resampling residuals. Compare your results to those
in Table 9.5.

Suppose we have a data sample x = (21,22, .. &,), and let
x' = (z},2)....2},) be the sample obtained by replacing m
data points z,,, Z,,, - -. T,,, by arbitrary values y1,y2, .- ym-
Then the breakdown of an estimator s(x) 1s defined to be

1
breakdown(s(x)) = 7—min{m; maxy, .4, max|s(x’)| — oo}
)

In other words, the breakdown is m/n, where m is the small-
est number such that if we are allowed to change m data
values in any way, we can force the absolute value of s(-) for
the “perturbed” sample towards plus or minus infinity.

(a) Show that the sample mean has breakdown 1/n, bul the
sample median has breakdown (n +1)/2 if n is odd.

(b) Consider the least-squares estimator of the slope in a
simple linear regression. Show that it has breakdown 1/n.

(c) Investigate the breakdown of the least median of squares
estimator, in the simple linear regression setting, through
a numerical experiment.



CHAPTER 10

Estimates of bias

10.1 Introduction

We have concentrated on standard error as a measure of accuracy
for an estimator 6. There are other useful measures of statistical
accuracy (or statistical error), measuring different aspects of 6s
behavior. This chapter concerns bias, the difference between the
expectation of an estimator # and the quantity @ being estimated.
The bootstrap algorithm 1s easily adapted to give estimates of bias
as well as of standard error. The jackknife estimate of bias is also
introduced, though we postpone a full discussion of the jackknife
until Chapter 11. One can use an estimate of bias to bias-correct an
estimator. However this can be a dangerous practice, as discussed
near the end of the chapter.

10.2 The bootstrap estimate of bias

To begiu, let us assume {hat we are back in the nonparametric one-
sample situation, as in Chapter 6. An unknown probability distri-
bution I has given data x = (21,23, ", Zp) by random sampling,
F — x. We want to estimate a real-valued parameter § = {(F).
For now we will take the estimator to be any statistic 6 = s(x), as
in Figure 6.1. Later we will be particularly interested m the plug-in
estimate 6 = t(£).

The bas of § = s(x) as an estimate of 6 is defined to be the dif-
ference between the expectation of  and the value of the parameter
0’

biasy = biasp(d,0) = Ep[s(x)] — t(F). (10.1)

A large bias is usually an undesirable aspect of an estimator’s
performance. We are resigned to the fact that 6 is a variable estima-
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tor of 8, but usually we don’t want the variabilily to be overwhelmn-
ingly on the low side or on the lugh side. Unbiased cstimales, those
for which Ep(@) = @, play an mnportant role in statistical theory
and practice. They promote a nice feeling of scientific objectivity
in the estimation process. Plug-in estimates 6 = ¢(F) aren’t nec-
essarily unbiased, but they tend to have small biases compared to
the magnitude of their standard errors. This 1s onc of the good
features of the plug-in principle.

We can use the bootstrap to assess Lhe bias of any estimator § =
s(x). The bootstrap estimate of bias is defined to be the estimate
biasy we obtain by substituting F for F'n (10.1),

biasp = Ea[s(x*)] — t(F). (10.2)

Here t(F), the plug-in estimate of 8, may differ from 6 = s(x). In
other words, biasy is the plug-in estimate of biasy, whether or not
8 is the plug-in estimate of 6. Notice that F is used twice in going
from (10.1) to (10.2): it substitutes for F' in t(F'), and it substitutes
for F'in Ep[s(x)].

If s(x) is the mean and t{£") 1s the population mean, it is easy
to show that biasn=0 (Problem 10.7). This makes sense because
the mean is an unbiased estimate of the population mean, that is,
biasp=0. Typically a statistic has some bias, however, and bias
provides an estimate of this bias. A simple example 1s the sample
variance s(x) = 3 (=, — #)2/n whose bias is (—1/n) times the
population variance. In this case, it 1s easy to show that biasg =
(—1/n%) S0 (2, — 2)?.

For most statistics that arise in practice, the ideal bootstrap
estimate biasy must be approximated by Monte Carlo simulation.

We generate independent bootstrap samples x**, x*?, .-, x*F asin
Figure 6.1, evaluate the bootstrap replications 9*(b) = s(x*"), and
approxnnate the bootstrap expectation Fz[s(x*)] by the average
B
0*()=> 6"(b)/B = }: x*)/B. (10.3)
b=1

The bootstrap estimate of bias based on the B replications bias B,
. is (10.2) with 8*(-) substituted for Ez[s(x*)],

biasp = 0% () — t(F). (10.4)
. Notice that the algorithm of I'igure 6.1 applies exaclly to calcula-
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tion (10.4), except that at the last step we calculate 6*(-) — t(F)

rather than §&g. Of course we can calculate both ség and i;a\sB
from the same set of bootstrap replications.

10.3 Example: the patch data

Historically, statisticians have worried a lot about the possible bi-
ases in ratio estimators. The patch data in Table 10.1 provide a
convenient example. Eight subjects wore medical patches designed
to infuse a certain naturally-occurring hormone into the blood
stream. Each subject had his blood levels of the hormone measured
after wearing three different patches: a placebo patch, containing
no hormone, an “old” patch manufactured at an older plant, and a
“new” patch manufactured at a newly opened plant. The first three
columns of the table show the three blood-level measurements for
each subject.

The purpose of thie patell experiment was (o show broequivalence.
Patches manufactured at the old plant had already been approved
for sale by the Food and Drug Admunistration (FDA). Patches
from the new facility did not require a full new FDA investigation.
They would be approved for sale if it could be shown that they were
bioequivalent to those from the old facility. The FDA criterion for
bioequivalence is that the expected value of the new patches match
that of the old patches in the sense that

|E(new) — E(old)|
E(old) — E(placebo) = =

In other words, the FDA wants the new facility to match the old
facility within 20% of the amount of hormone the old drug adds to
placebo blood levels.
Let 8 be the parameter
E(new patch) — E(old patch)

o _ 10.
E(old patch) — E(placebo patch) (10.6)

(10.5)

Chapters 12-14 consider confidence intervals for 6, an approach
that leads to a full answer for the bioequivalence question “is |§] <
.207.”! Here we only consider the bias and standard error of the
plug-in estimate 8.

We are interested in two statistics, z; and y; obtained for each

L Chapter 25 has an extended biocquivalence anadysis for thus data set.

of

an

tio
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Table 10.1. The patch data. Eight subjects wore medical paiches de-
signed to wincrease the blood levels of a certamn natural hormone. Each
subject had his blood levels of the hormone measured after wearing
three different patches: a placebo patch, which had no medicine n i,
an “old” patch which was from a lot manufactured at an old plant,
and a “new” patch, which was from a lot manufactured at a newly
. opened plant. For each subject, z = oldpaich — placebo measurement,
and y = newpatch — oldpatch measurement. The purpose of the exper:-
ment was to show that the new plant was producing paiches equivalent
to those from the old plant. Chapter 25 has an extended analysis of this
data set.

placebo  oldpatch  newpatch  old-plac. new-old

subject z y
1 9243 17649 16449 8406 -1200

2 9671 12013 14614 2342 2001

3 11792 19979 17274 8187  -2705

4 13357 21816 23798 8459 1982

5 9055 13850 12560 4795 -1290

6 6290 9806 10157 3516 351

7 12412 17208 16570 4796 -638
8 18806 29044 26325 10238 2719
mean: 6342 -452.3

of the eight subjects,
z = oldpatch measurement — placebo measurement  (10.7)
and
y = newpatch measurement — oldpatch measurement. (10.8)

Assuming that the pairs z, = (z;,y;) are obtained by random

sampling from an unknown bivariate distribution F', FF — x =
(z1,%2,--,Ts), then 6 in (10.6) is the parameter

Er(y)
0 =t(F)= =——. 10.9)
(F) Er(z) (
In this case, 1(-) is a function that mputs a probability distribu-
tion ¥ on pairs = (z,y), and outputs the ratio of the expecta-
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tions. The plug-in estiuate of 8 is

_ 25:1 vi/8
218:1 31/8

which we will take to be our estimator § = s(x). Notice that noth-
g 1n these definitions assumes that z and y are independent of
each other. The last two colummns of Table 10.1 show z; and y; for
the cight subjects. The value of 6 1s

—452.3
6342

We see that |d] is considerably less than .20, so that there is some
hope of satisfying the FDA’s bioequivalency condition.

Figure 10.1 shows a histogram of B = 400 bootstrap repli-
cations of 8 obtained as in (6.1—6.2): bootstrap samples x* =
(zf,25, -, x8) = (22, Tapy -+ ,Trg) Bave bootstrap replications

8
- * _1Yi;/8
=Y = M— (10.12)
z E;:l zi; /8
The 400 replications had sample standard deviation $&400 = .105,
and sample mean §*(-) = —.0670. The bootstrap bias estimate is

6 =t(F)= (10.10)

8] I@l

é:

= —.0713. (10.11)

biasgo = —.0670 — (—.0713) = ,0043. (10.13)

This is based on formula (10.4), using the fact that § = t(ﬁ‘) in
this case. .

The ratio of estimated bias to standard error, biassoo/5€400 =
.041 1s small, indicating that in this case we don’t have to worry
about the bias of 0. As a rule of thumb, a bias of less than .25
standard ervors can be ignored, unless we are trying to do careful
confidence mterval calculations. The root mean square error of an
estimator 8 for 8, is \/Ep[(é — 0)2], a measure of accuracy that
takes 1nto account both bias and standard error. It can be shown
that the root mean square equals

VEFR[(8 —6)2] = seF(é)z +biasF(é 0)2
ser(d \/1 + b’aSF

sep
sep(0) - [1 + - (

Il

biasp

) ] . (10.14)

sep
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e
-
|
-
1 _

Ratio statistic

Figure 10.1. B = 400 bootstrap replications of the mtio statistic (10. 10)
6= §/Z, for the patch data of Table 10.1. The dushed line indicates 6 =
—.0713. The 400 replications had standard deviation sesgy = .105 and

mean é*(-) = —.0670, so the bootstrap bias estimate was @400 =.0043,

1f biasy = 0 then the root mean square equals its miniimum value
sep. If |blasp /sep| < .25, then the root inean square error is no
more than about 3.1% greater than sep.

We know that B = 400 bootstrap replications is usually more
than enough to obtain a good estimate of standard error. Is it
enough to obtain a good estimate of bias? The answer in this par-
ticular case is no. Remember that blasB, (10.4), replaces E (0*) by
0*(-) in the definition of the ideal bootstrap bias estimate biases =
‘biasz, (10.2). We can tell from the distribution of the bootstrap
replications how well 6*() estimates E . (0*) An application of
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(5.6) gives
seB

Prob;{|6*() —Ep{6"}| < \/—

= Probr{|b1asB — biase| < 2\/_} = .95,

(10.15)
where $ég 1s the bootstrap standard error estimate. For the boot-
strap data in Figure 10.1, with sép = .105 and B = 400, we obtain

Prob . {|biasay — biase| < .0105} = .95 , (10.16)

a large range of error compared to the estimated value @400 =
.0043.

The error bound .0105 in (10.16) is small enough to show that
bias isn’t much of a problem here: since Tga\s‘mo = .0043, we prob-
ably have |biase| < .0043 + .0105 = .0148, and so |bias|/se <
.0148/.106 = .14. This is comfortably less than the rule of thumb
limit .25. However we still might like to know b/i;sm, or a good
approximation to it, and (10.16) shows that l;{a\smo — .0043 can’t
be trusted. We could simply increase B, see Problem 10.5 , but
that isn’t necessary.

10.4 An improved estimate of bias

It turns out that there is a better method than (10.4) to approx-
imate t;;sm = bias; from B bootstrap replications. The better
method applies when 8 is the plug-in estimate t(F) of § = (F).
We describe the method here, and give an explanation for why it
works in Chapter 23.

We need to define the notion of a resampling vector. Let P

indicate the proportion of a bootstrap sample x* = (z7,z%, - -, %)
that equals the jth original data point,
=#{z} ==z,}/n, J=12,- n (10.17)
The resampling vector
P =(P Py, - P (10.18)

has non-negative components summing to one. As an example, the
third bootstrap sample for the patch data was
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x* = (1,6, Zs, &5, &7, L1, T3, Tg), and the corresponding resam-
pling vector is P* = (2/8,0,1/8,0,1/8,2/8,1/8,1/8).
A bootstrap replication 8* = s(x*} can be thought of as a func-

tion of the resampling vector P*. For example with § = § /Z as in
(10.10),

8 8
=y'/2" =D Pyl Y Lz (10.19)
7=1 =1

(Notice that the original data x is considered fixed in this defini-
tion; the only random quantities are the P;’s.) For 6 = ¢(F"), the
plug-in estimate of 8, we write

*=T(P") (10.20)
to indicate % as a function of the resampling vector. 2 Formula
{10.19) defines T'(-) for 6 = y/z.

Let P° indicate the vector of length n, all of whose entries are
1/n,

PY = (1/n,1/n, --,1/n). (10.21)

The value of T(P?) is the value of the 6*, when each P = 1/n,
i.e. when each origmal data point x; occurs exactly once in the
bootstrap sample x*. This means that x* = x, except maybe for
permutations of the order in which the elements 1, x2, - -, &, oc-
cur. But statistics of the form 6 = #(F") don’t change when the
elements of x = (z1,zs, -+, x,) are reordered, because F doesn’t
change. In other words,

T(P°) = § = t(F), (10.22)

the observed sample value of the statistic. (This is easy to verify
n (10.19).)

The B bootstrap samples x*!,x*2,.-. x*B give rise to corre-
sponding resampling vectors P*1, P*! ... P*B, each vector P*°
being of the form (10.18). Define P* to be the average of these

2 We denote a plug-in statistic in two ways, 6 = s(x) = t(I'). Similarly,
bootstrap replications are denoted 8* = s(x*) = T(P*). The three functions
3(+),t(-), and T'(-) represent the same statistic, but considered as a function
on three different spaces.




4

132 ESTIMATES OF BIAS

vectors

B
Pt = Z P*/B (10.23)

According to (10.22) we can write the bootstrap bias estimate
(10.4) as

biass = 0%() — T(P°). (10.24)
The better bootstrap as estimate, which we will denote by biasp,
1s
biasp = §*(-) — T(P*). (10.25)
The 400 resampling vectors for Figure 10.1 averaged to

P* = (.1178,.1187,.1313,.1259, .1219, .1275, .1306, .1213).

This gives

i 28: = —.0750 (10.26)
7=1 7=1

and

biasygo = —.0670 — (—.0750) = .0080, (10.27)

compared to 13/1;8400 =.0043.

Both l;i’\asB and biasp converge to gi;sco = biasg, the ideal
bootstrap estimate of bias, as B goes to infinity. "I'he convergence
1s much faster for biasp, which is why we have called it “better.”
The faster convergence is evident in Figure 10.2, which traces bras B
and biasp for E\equaling 25,50, 100, 200,400,8%1670, 3200. The
limiting value biasy, has been approxirnated by biasigggge = .0079,
shown as the dashed horizontal line. biasg approaches the dashed
line smoothly and quickly, while @b is still quite variable even
for B = 3200.

Chapter 23 discusses improved bootstrap computational meth-
ods. It will be shown there that biasz amounts to using b/i;s(;B

where C is a large constant, often 50 or greater. Problem 10.7
suggests oue reason for biasy’s superiority.
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Figure 10.2. The bootstrap bras estimate buasp broken line, and the better
bootstrap bias estimate biasp, solid line, for B = 25,50,100, - ,3200;
.0079. We see that biasp

log scale for B; dotted line s biasioo,000

converges much faster than b/z—asg to the limiting 1deal bootstrap estimate

018500 = brasg.

10.5 The jackknife estimate of bias

The jackknife was the original computer-based method for esti-
mating biases and standard errors. The jackknife estimate of bias,
which is discussed briefly here and more completely in Chapter
11, was proposed by Maurice Quenouille in the mid 1950’s. Given
a data set x = (1,22, -, ), the ith jackknife sample x;, is
defined to be x with the ‘il data point removed,
(10.28)

i »-'l:n,)»

Xy = (5,22, 5T 1, Tagegs
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Table 10.2. Jackknife values for the patch data

4o by by By b5y O b O
S0571 -.1285 -0215 -.1325 -.0507 -.0840 -.0649 -.0222

f = 1,2, -,n. The ith jackknife replication 0(1) of the statistic
( x) 1s s(:) evaluated for x;), say
é[i) = s(x(;y) for :=1,2,---,n. (10.29)
For plug-in statistics § = t(F'), é(i) equals t(ﬁ(,-)) where F(i) 18 the
cmpirical distribution of the 12— 1 pomts in x;y.
The jackknife estimate of buas is defined by
biasjack = (1 — 1)(6(y — 0) (10.30)
where

Oy = Zé(.,»)/n. (10.31)

This formula applies only to plug-in statistics 6 = t(F). The for-
mula breaks down if t(£) is an unsmooth statistic like the median,
but for smooth statistics like § = §/Z (those for which the function
T(P*) in (10.20) is twice differentiable) it gives a bias estimate
with only n recomputations of the function ¢(-). This compares
with B recomputations for the bootstrap estimates where B needs
to be at least 200 even for biasp. .

Lor the patch data ratio statistic 6 = z/y = —.0713, (10.10), the
jackknife replications are shown in Table 10.2. These give é(.) =
—.0702, and

biasjack = 7{—.0702 — (—.0713)} = .0080. (10.32)

It is no accident that L;;sjack agrees so closely with the ideal boot-
strap estimate b/iz;soo — bias. Chapter 20 shows that I;Esjmk is
a quadratic Taylor series approximation to the plug-in estimate
bias z.

The important point to remember is this: all three bias esti-
mates, E;sB,B;aEB, and l;iszij, are trying to approximate the
same ideal estimate, biasz. Chapter 20 discusses the imnfinitesimal
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jackknife, still another way to approximate biasg. We will also see
approximations other than sép for the ideal standard error esti-
mate sey (though here it is harder to improve upon the straight-
forward Monte Carlo approximation §¢5). In all of the numerical
approximation methods, there is only one estimation principle at
work, plugging in F' for F in whatever accuracy measure we want
to estimate. Executing this principle in a numerically eflicient way
is an lportant topic, but modern computers are so powerful that
even inefficient ways are usually good enough to give useful an-
SWers.

The ideal estimate biasy. is not perfect. By letting B — oo, the

variability in biasp due to Monte Carlo sampling is elimmated.
There remains, however, the variabilily 1o biase, = biasp due o
the randomness of F' as an cstimate of I In other words, we still
have tlic usual crrors connccted with estimating any paramcter
from a sample.

We could use the bootstrap to assess the variability in the ideal
bootstrap estimate biasg as in Figure 6.1, except for the practical
difficulty of computing the statistic s(x) = bias;. Instead, let us
consider the simpler statistic s(x) = l;a\Sjack, which for 8 = §/% is
usually close to bias ;. The statistic s(x) = biasjac is a complicated
function of x, requiring first the calculation of 6, then the é(i), and
finally (10.30), but we can still use the bootstrap to estimate the
standard error of s(x).

B = 200 bootstrap samples of size n = & were generated from
the patch data, and for each sample the jackknife estimate of bias
for the ratio statistic was calculated, say bias;,;. The left panel of

—k
Figure 10.3 is a histogram of the 200 bias;,, values.

It is clear that the statistic s(x) = Ea\sjack 1s highly variable.
The 200 replications s(x*) had standard deviation .0081, and mean
.0084, giving an estimated coefficient of variation

& (biasjaek) = -0081/.0084 = .96. (10.33)

Ten percent of the b/l\as;ack values were less than zero, and 16%
greater than 2 - l:;;shck = .0160.

There is nothing inhcrently wrong with biasjacx, or with biasy,,
here. The trouble is that n = 8 data points aren’t enough to ac-
curately determine the bias of the ratio statistic in this situation.
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Figure 10.3. Left panel: 200 bootstrap replications of the jackknife bias
estimate (10.30) for g = §/z, patch date; dashed line wndicates actual
estimate mjﬂck = .0080; estimated coefficient of varation for Z;a\s_iack
equals .96; ?na:sjack has low accuracy. Right panel: the corresponding 200
bootstrap replications of the jackknife standard error estimate for é,
(10.84); dashed line ndicates actual estimate sejack = .106; scale has
been chosen so that 0 and dashed lines match left panel; estimated co-
efficient of varmation 15 .83; 5€jack 15 about 3 times more accurate than

b1 Sjack -

Figure 10.3 makes that clear. The bias calculations weren’t a com-
plete waste of time. We are reasonably certain that the true bias
of § = §/Zz, whatever it may be, lies somewhere between -.005 and
.025. The bootstrap standard error of 6 was .105, so the ratio of ab-
solute bias to standard error is probably less than .25. Calculation
(10.14) suggests that bias is not much of a worry in this case.

This calculation suggests another worry. Mayhe the bootstrap
estimate of standard error Seygy = 105 18 undcpcudablc loo. In
theory we could boolstrap $e2gp to [ind out, but this is computa-
tionally diflicult. However, there 1s a jackknife estimate of standard
error, due to John Tukey in the late 1950’s, which requires less
computation than §éua9:

N n—1 N
Sjack = [ (B ~ 002)"12, (10.34)

=1

This formula, which applies to smoothly defined statistics like § =
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/%, is discussed in Chapter 11. It turns out to be an alternative
to §ép for numerically approximating the ideal bootstrap estimate
§eoo = se;(0*). For the patch data ratio statistics (10.2) gives

jack = 106, (10.35)

nearly the same as S€300. We will see that §€jack 15 not always a good
approximation to $&., but for § = 7/Z 1L 1s quite satisfactory.
The same 200 bootstrap samples used to provide the replications
of I:ﬁgsjack in Figure 10.3 also gave bootstrap replications of $&j,cx.
The histogram of the 200 bootstrap values of 8j,cx shown in the
right panel of Figure 10.3 indicates substantial variability, but not
nearly as much as for Eia\sjack. The histogram has mean .099 and
standard deviation .033, giving estimated coefficient of variation

G (Sjack) = -33, (10.36)

only a third of Gz(lgiagjack). In fact standard error i1s usually easier
to estimate than bias, as well as being a more important determi-
nant of the probabilistic performance of an estimator 6.

We have discussed cstimating biasg(6,8), equation (10.1). The
bootstrap bias estimation procedure, which amounts to plugging
in I’ for I in biasp, can be generalized: 1) we can consider general
probability mechanisms P — x, as in Figure 8.3. (Notice that here
“P” means something different than the resampling vector P*,
(10.18).) 2) We can consider general measures of bias, Biasp (6, 6),
for example the median bias

Biasp(6,0) = medianp(6(x)) — 6(P). (10.37)

Figure 10.4 shows a schematic. The ideal bootstrap estimate of
Biasp(0,0) is the plug-in estimate

Bias 5 (0%, 6(P)). (10.38)

Here P — x*, the bootstrap data; 0 = s(x*), the bootstrap repli-
cation of = s(x); and 6(P) is the value of the parameter of interest
6 = t(P) when P = P, the estimated probability mechanism. (We
cannot write 0(P) = 6 since ¢(-) might be a different function than
s(+), see Problem 10.10.) For the median bias (10.37),

Bias(8*,6(P)) = mediany (§(x*)) — 6(P). (10.39)

Usually Biasp would have to be approximated by Monte Carlo
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methods. Improved methods like biasp and f)iAa:sJ-ack are not usually
available for general bias measures like (10.37).

10.6 Bias correction

Why would we want {o cstimate the bias of 67 The usual rcason is
to correct 6 so that it becowmes less biased. 1f bias is an estimate of
biasg (@, #), then the obvious bias-corrected estimator is

= 6 — bias. (10.40)
Taking bias equal to biaspg = 6*() - 6 gives

6=20—-6"(). (10.41)
(There is a tendency, a wrong tendency, to think of 6*(-) itself as
the bias-corrected estimate. Notice that (10.41) says that if §*(.)
15 greater than 6, then the bias corrected estimate @ should be less
than é) Setting bias = .0080 for the patch data ratio statistic,

equal to both biassee and Ermjack, the bias-corrected estimate of
the ratio @ is

6 = —.0713 — .0080 = —.0793, (10.42)

Bias correction can be dangerous in practice. Even if 0 is less
biased than 8, it may have substantially greater standard error.
Once again, thls can be checked with the bootstrap. For the c patch
data ratio statistic, 200 bootstrap replications of d=6- blasjack
were compared with the corresponding replications of 6. The boot-
strap standard error estimates of # and 6 were nearly identical, so
in tlus case bias correction was not harmful.

To summarnize, bias estimation is usually interesting and worth-
while, but the exact use of a bias estimate is often problematic.
Biases are harder to estimale {han standard errors, as shown in
Figure 10.3. The straightforward bias correction (10.40) can be
dangerous to use in practice, due to high variability in bias. Cor-
recting the bias may cause a larger increase in the standard error,
which in turn results in a larger root mean squared error (equa-
tion 10.14). If bias is small compared to the estimated standard
error S, then it is safer to use § than 8. If bias is large compared
to §2, then it may be an indication that the statistic § = s(x) is
not an appropriate estimate of the parameter 6.
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REAL WORLD /BOOTSTRAF’ WORLD

Unknown
Probability Estimated Bootstrap
Model Observed Data Probability Sample
Model
P— X=(X{ Xg, ... X} = ﬁi’ P—m x'= 1, Xo, oo Xf)
Bootstrap
Parameter Estimate Estimated REP:'C?te
of interest A of 8 Parameter of 8

8=9(P) 9=s(x)

A

Biasp(6, &)

)

Figure 10.4. Diagram of booistrap buas estimation wn a general frame-
work, an extension of Figure 8.8. Bp(6*,09(P)) s a general bias meusure.
Usually Biasp(8*,6(P)) must be apprommated by Monte Cario methods.

Prediction error estimation is one important problem in which
bias correction is uséful. The bias of the obvious estimate is large
relative to its standard error, and it can be effectively reduced by
the addition of a correction term. Details are given in Chapter 17.

10.7 Bibliographic notes

The bootstrap estimate of bias is proposed in Efton (1979a). The
improved estimate is discussed in Efron (1990). References for the
Jjackknife are given in the bibliographic notes at the end of Chapter
11.

10.8 Problewns

10.1 Suppose F' — x = (x1,Z3, - ,xg) where z, = (2;,¥;) as for
the patch data, but we know that z and y are independent
random variables. Describe a method of bootstrapping § =
g/ Z different than that used in Figure 10.1.

10.2 We might define the data points x, for the patch data of
Table 10.1 as

z, = (ps,05m) =12, -8, (10.43)
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where p; = placebo, 0; = oldpatch, n; = newpatch mea-
surement. How would 8 and 8, (10.9), and (10.10), now be
defined?

Verify (10.14).
State exactly how (5.6) applies to result (10.15).
How big should B be taken 1n order that (10.16) becomes

Prob ;{|biasp — biase| < .001} = .95?  (10.44)

In Figure 10.2, how accurate 1s t?i;SlQQ‘O[)O = .0079 as an
estimate of biasy,?
We know that = 7 is an unbiased estimate of the expec-

tation parameter § = Ep(x). Hence biasg, the true bias, is
zero.

(a) Show that for b=z, biasz = 0, biasp = 0 but gi;s;;
does not necessarily equal zero.

(b) Show that biasjse, = 0.

A random sample x = (z1,Z2, -, %n) is observed from a
probability distribution of real numbers F', and it is de-
sired to estimate the variance § = varp(z). The plug-in
estimate is 6 = Y7 (2, — £)?/n. Show that the jackknife
bias-corrected estimate (10.40) is the usual unbiascd esti-
mate of variance,

0 =0 — biasjaec = ¥ (i — 7)*/(n~1).  (10.45)

=1

Give a careful description of how the bootstrap replications
ok

bias,,, and &, in Figure 10.3 were generated.

Suppose we use the sample median med(x) to estimate the

population expectation § = Ep(z). Describe b/i;sB.




CHAPTER 11

The jackknife

11.1 Introduction

In Chapter 10 we mention the jackknife, a technique for estimating
the bias and standard error of an estimate. The jackknife predates
the bootstrap and bears close similarities to it. In this chapter we
explore the jackknife method in detail. Some of the ideas presented
here arc pursued further in Chapters 20 and 21.

11.2 Definition of the jackknife

Suppose we have a sample x = (¢1,Z2,...z,) and an estimator
6 = s5(x). We wish to estimate the bias and standard error of 9.
The jackknife focuses on the samples that leave out one observation
at a time:

Xy = (i, To, Tty Bogiy - L) (11.1)

fori =1,2,...n, called jackknife samples. The 1th jackknife sample
consists of the data set with the ith observation removed. Let

by = s(x(5)) (11.2)

be the ith jackknife replication of .
The jackknife estimate of bias is defined by

biasjack = (n — 1)(f() — 6) (11.3)

where
R n
Oy=">_ 03 /n. (11.4)
=1
The jackknife estimate of standard error defined by

~ n—1 A N
Sejack = [ - D By — 61 (11.5)
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Where do these formulac come from? Let's starl with 88,0
Rather than looking at all (or some) of the data sets that can
be obtamed by sampling with replacement from xy, 25, .. 2, the
jackknife looks at the n fixed samples X(y),--.X(,) obtained by
deleting one observation at a time. Like the bootstrap estimate of
standard error, the formula for §é,c looks like the sample standard
deviation of these n values, except that the factor in front is {n —
1)/n instead of 1/(n—1) or 1 /7. Of course (n—1)/n 1s much larger
than 1/(n — 1) or 1/n. Intuitively, this “inflation factor” is needed
because the jackknife deviations

(Biy = 0»)? (11.6)
tend to be smaller than the bootstrap deviations
[6*(b) - 6" (-)]7, (11.7)

since the typical jackknife sample is more similar to the original
data x than is the typical bootstrap sainple.
The exact form of the factor (n — 1)/n is derived by considering
the special case § = Z. Then it is easy to show that
n

Sejace = {3 (2 = 2)°/{(n — n}}

1

1/2
,, (11.8)

(Problem 11.1). That 1s, the factor (n — L)/n 1s exactly what 1s
needed (o make §¢j,0 equal o the unbiased estimate of the stan-
dard orror of the mean. A factor of [(n — 1)/n]? would yicld the
plug-in estimate

n

{Z(az, - i)z/nz}ug, (11.9)

1

but this is not materially different from the unbiased estimate un-
less n 1s small. It 15 a somewhat arbitrary convention that §&j,x
uses the factor (n —1)/n.

Similarly, the jackknife estimate of bias (11.3) is a multiple of
the average of the jackknife deviations

by —0, 1=1,2,. .n. (11.10)

The quantities (11.10) are sometimes called the jackknife influence
values. Notice the multiplier (n — 1) in (11.3). This is an inflation

factor similar to the one that appears in the jackknife estimate of |
standard error. To derive it, we cannot appeal to the special case .

factc
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6 = Z, because I s unblased ad /}(.) — 0 is zero as 1t should be
(Problem 11.7). Since this case does not tell us what the leading
factor should be, we instead consider as our test case the sample
variance

n

6=" (z,~3)?/n. (11.11)

1
This has bias —1/n times the population variance, and the factor
(n — 1) in front of (é(,) — 0) makes Diasjaex equal to —1/n times
Yo (x. —2)?/(n — 1), the unbiased estimate of the population vari-
ance (Problem 11.8).

11.3 Example: test score data

Let’s apply the jackknife estimate of standard error to the data
set on test scores for 88 students given in Table 7.1. Recall that
the statistic of interest is the ratio of the largest eigenvalue of the
covariance matrix over the sum of the eigenvalues as given in (7.8)

)=/ (11.12)
1

To apply the jackknile, we delete each case (row) in Table 7.1 one
at a time, and compute § for cach data set of size 87- The top panel
of Figure 11.1 shows a histogramn ol Lhe 88 jackknife values 0;).

We also computed 88 bootstrap values of . Notice how the
spread of the jackknife histogram is much less than the spread
of the bootstrap histogram shown in the bottom panel (we have
forced the same horizontal scale to be used 1n all of the histograms).
This exemplifies the fact that the jackknife data sets are more sim-
ilar on the average to the original data set than are the bootstrap
data sets. The middle panel shows a histogram of the “inflated”
jackknife values

V87(hs) — 0) (11.13)

recentered at the jackknife mean é(.). With this inflation factor, the
i jackknife histogram looks similar to the bootstrap histogram shown
in the bollom panel. The quantity $€j,cc works out to be .049,
which is just slightly larger than the value .047 for the bootstrap
- estimate obtained in Chapter 7.
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Figure 11.1. Histogram of the 88 jackknife values for the score data of
Table 7.1 (top panel); jackknife values nflated by a factor of /87 from
thewr mean (1mddle panel); 88 bootstrap values for the same problem

(bottom panel).
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11.4 Pseudo-values

Another way to think about the jackknife is in terms of the pseudo-
values

b; = nf — (n — 1)) (11.14)

Notice that in the special case 9 = &, we have 0; = z,, the ith

data value. Furthermore, for any 0, the formulys for S€j, can be
expressed as

k

e = { 3200 — 072/ (n ~ 1}, (1L.15)

1

where § = 376;/n. This looks like an estimate of the standard
error of the mean for the “data” 8;, + = 1,2, .. n. The idea behind
(11.14) is that the pseudo-values are supposed to act as if they
were n independent data values.

What happeus if we try Lo carry this idea further aud use the
pseudo-values to construct a confidence interval? One reasonable
approach would be to form an interval

6+t %500, (11.16)

where £ is the (1 — a)th percentile to the ¢ distribution on

-1 degrees of freedom. It turns out that this interval does not
work very well: in particular, it is not significantly better than
cruder intervals based on normal theory. More refined approaches
are needed for confidence interval construction, as described in
Chapters 12-14. Although pseudo-values are intriguing, it is not
clear whether they are a uscful way of thinking about the jackknife.
We won’t pursue them further here.

11.5 Relationship betwecen the jackknife and bootstrap

Which is better, the bootstrap or jackknife? Since it requires com-
“putation of é only for the n jackknife data sets, the jackknife will
be easier to compute if n is less than say the 100 or 200 replicates
used by the bootstrap for standard error estimation. However by
looking only at the n jackknife samples, the jackknife uses only lim-
ited nformation about the statistic 8, and thus one might guess
that the jackknife is less cfficicnt, than the bootstrap. In fact 1t
turns out that the jackknifc can be viewed as an approxumation to
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the bootstrap. This is explamned in Problems 11.4 and 11.5, and
in Chapter 20. Here is the essence of the idea. Consider a linear
statistic, that 1s, a statistic that can be written in the form

R 1 n
=3 = — @,), 17
0=3s(x)=p+ - 20(1 ) (11.17)

where g 13 a constant and «(-) is a function. The mean 1s the simple
example of a linear statistic for which p = 0 and a(z,) = z,. Now
for such a statistic, it turns out that the jackknife and bootstrap
estimate of standard errors agree, except for a minor definitional
factor {(n — 1)/n}*/? used by the jackknife. This is exactly what
we found for 6 = Z: the jackknife gives the standard error estimate

1/2
{Z'IL(:C,, —2)*/{(n— 1)n}} while the bootstrap gives this value

multiplied by {(n — 1)/n}'/2. It is not surprising that for linear
statistics, there 1s no loss of information in using the jackknife since
knowledge of a linear statistic for the n jackknife data sets x(;

determines the value of 6 for any bootstrap data set x* (Problem
11.3)

For nonlinear statistics, there is a loss of information. The jack-
knife makes a linear approzimation to the bootstrap: that is, it
agrees with bootstrap (except for a factor of {(n — 1)/n}1/2) for
a certain linear statistic of the form (11.17) that approximates 9.
Details of this interesting relationship are given in Problems 11.5
and 11.6, and Chapter 20. Practically speaking, these results show
that accuracy of the jackknife estimate of standard error depends
on liow close § is Lo linearity. For highly nonlinear functions the
jackknife can be ineflicient, sometimes dangerously so.

Figure 11.2 shows the results of an investigation into this ineffi-
clency in a particular example. We generated 200 samples of size 10
fron1 a bivariate normal population with zero mean, unit variances,
and correlation .7. The boxplots on the left show the bootstrap
and jackknife estimates of standard error for & = & while those
on the right are for the correlation coefficient. The horizontal lines
indicate the true standard error of # in each case. Tn both cases,
the bootstrap and jackknife display little bias in estimating the
standard error. The variability of the jackknife estimate is slightly
larger than that of the bootstrap for the mean (o linear statistic)
but is significantly larger for the correlation coefficient (a nonlinear
statistic). For this reason, the bootstrap would be preferred in the
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Figure 11.2. Bootstrap and jackknife estimates of standard error for two
different statistics 0 for samples of size 10 from a bwariate normal
population with correlation 7. On the left 6= Z; on the right 6 s the
sample correlation. Bozxplots indicate the distribution of standard error
estimates over 100 simulated samples.

latter case. Problem 11.13 investigates the bootstrap and jackknife
for a different nonlinear statistic.

Similarly, the jackknife estimate of bias can be shown to be an
approximation to the bootstrap estimate of bias. The approxima-
tion is in terms of gquadratic (rather than linear) statistics, which
have the form

i 1
0=s(x)=p+= Z a(z,) + — Z B(z,,z;). (11.18)
n 1<i<n n 1<i<y<n
A simple example of a quadratic statistic is the sample variance
(11.11). By expanding it out, we find that it can be expressed in
the form of equation (11.18) (Problem 11.9). For such a statistic,
if we know the valuc of 0 for x as well as x(;), 1 — 1,2,.. n, we
can deduce the value of § for any bootstrap data set. As shown in
Problems 11.10 — 11.11, the jackknife and bootstrap estimates of
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bias essentially agree lfor quadratic siadistics.

11.6 Failure of the jackknife

To summarize so far, the jackknife often provides a simple and
good approximation to the bootstrap, for estimation of standard
errors and bias. However, as mentioned briefly in Chapter 10, the
Jackknife can fail miserably if the statistic 8 is not “smooth.” In-
tuitively, the 1dea of smoothness is that small changes in the data
set cause only small changes in the statistic. A simple example of a
non-smooth statistic 1s the median. To see why the median is not
smooth, consider the 9 ordered values from the control group of
the mouse data (Table 2.1):

10,27, 31, 40,46, 50,52, 104, 146. (11.19)

The median of these values 1s 46. Now suppose we start increas-
ing the value of the 4th largest value x = 40. The median doesn’t
change at all until the 2 becomes larger than 46, and then after
that the median is equal to x, until  exceeds 50. This implies that
the median is not a differentiable (or smooth) function of .

Tlus lack of smoothness causes the jackkuife estimate of standard
crror Lo be wnconsistent for the mediaan. Tor the mouse data, the
jackknife values for the median' are

48,48, 48,48, 45,43, 43,43, 43. (11.20)

Notice that there are only 3 distinct values, a consequence of the
lack of smoothness of the median and the fact that the jackknife
data sets differ from the original data set by only one data point.
The resulting estimate $&j,cx 15 6.68. For the mouse data, the boot-
strap estimate of standard error based on B = 100 bootstrap sam-
plesis 9.58, considerably larger than the jackknife value of 6.68. As
n — o0, it can be shown that §&j,¢ is inconsistent, that is, it fails
to converge to the true standard error. The bootstrap, on the other
hand, considers data sets that are less similar to the original data
set than are the jackknife data sets, and consequently, is consistent
for the median.

1 The median of an even number of data points 1s the average of the middle
two values.
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11.7 The delete-d jackknile

There 18 a way to fix up the inconsistency of the jackknife for non-
smooth statistics. Instead of leaving one observation out at a time,
we leave out d observations, where n = r d for some integer r. It
can be shown that if nl/z/d — 0 and n—d — oo, then the “delete-
d” jackknife is consistent for the median. Roughly speaking, one
has to leave out more than d — /n, but fewer than n obscrvations
to achieve consistency for the jackknife estimate of standard error.
Let 8,y denote 0 applied to the dala set with subset s removed.
The formula for the delete-d jackknife estimate of standard error
is

{(%) > (B - é(‘))z}m (11.21)
d

where é(.) = Zé(s)/(g) and the sum 1s over all subsets s of size
n — d chosen without replacement from x;, x5, . .z,,.

In our example with n = 9, we can choose d = 4 > /0 and the
computation of the delete-d jackknife involves finding the median

for the
9
1) = 126 (11.22)

samples corresponding Lo leaving 4 observations out at a time. ‘This
gives an cstimate ol standard crror of 7.16, wluch i1s somewhat
closer to the bootstrap value of 9.58 than the delete-one jackknife
value of 6.68.
. . . -~ n
Ifnislarge and v/n < d < n, the number of jackknife samples ( d)

can be very sizable. Instead of computing 6 for all of these subsets,
one can instead draw a random sample of subsets, which in turn,
makes the delete-d jackknife look more like the bootstrap. Current
work on the delete-d jackknife represents a revival of research on
the jackknife.

An S language function for jackknifing is described in the Ap-
pendix.

11.8 Bibliographic notes

Quenouille (1949) first proposed the 1dea of the jackknife for esti-
mation of bias. Tukey (1958) recognized the jackknife’s potential
for estimating standard errors, and gave 1t its name. Further devel-
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opment is given by Miller (1964, 1974), Gray and Schucany (1972),
Hinkley (1977), Reeds (1978), Parr (1983, 1985), Hinkley and Wei
(1984), Sen (1988), and Wu (1986) in the linear regression setting.
Shao and Wu (1989), and Shao (1991) present general theoretical
results on the delete-d jackknife.

11.9 Problems
11.1 Show thatif § = z, the jackknife estimate of standard error
is equal to the unbiased estimate (11.8).

11.2 In Problem 11.1, show that use of the factor [(n—1)/n]? in
place of (n —1)/n leads to the plug-in estimate of standard
CITOr.

11.3 Suppose 6 is a linear statistic of the form
1 n
b=p+— ). 2
A+ nzlja(l ) (11.23)

Suppose we know the value of 6 for each jackknife data set
X(;) that is s(x()) = bs, for v — 1,2, .. .. 1

(a) Let o = a(z,) and solve the set of n linear equations  § 1
b, = ,u—l—Zaj/(n— 1), 1=1,2,...n
bE]

for ay, g, ... ap.

(b) Hence deduce the value of 0 for an arbitrary bootstrap

" ok K *
data set z¥,z5, .z}

11.-

=

Relationship between the jackknife and bootstrap estimates
of standard error. Suppose that € 1s a linear statistic of
the form (11.23). Letting a; = a(x,), show that the (ideal)
bootstrap estimate of standard error is

{i(ai - &)Z/nz}l/z (11.24)

1

11

and the jackknife estimate of standard error is

I3 (@~ ay/tin—vm} " (11.25)
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11.5

11.6

11.7

11.8

119

11.10

Hence these two estimates only differ by the factor {(n —
1/2
/n} "

Relationshyp between the yackknife and boolstrap estirmales
of standard error- continued.

Suppose 0 is a nonlincar statistic, and we approximate it
by the lincar statistic

R 1 <
Otin = b+ ;{;a(%) (11.26)

that has the same value as 0 for the jackknife data sets x(;).
Find expressions for 4 and o; = afz,), + = 1,2,. .n, in
terms of é(i), 1=1,2,...n.

Apply the results of the previous problem to show that the
jackknile estimate of standard error for 6 agrees with the
(ideal) bootstrap estimate of standard error for Oins except
for a factor of {(n —1)/n}V/2.

Show that for § = z, é(.) — 6 = 0 and hence the jackknife
estimate of bias 1s zero.

Suppose z;, T3, ...Z, are independent and identically dis-
tributed with variance o2.

(a) Show that the plug-in estimate of variance § = 3 7 (z,~
%)% /n has bias equal to —o?/n as an estimate of 2.

(b) In this case, show that l;a\,sj-ack = —s2/n where s% =
Y (@ — %)/ (n - 1).

Show that the sample variance (11.11) is a quadratic statis-
tic of the form (11.18), with p = 0, a(x,) = —(n — 1)z, /n?
and B(z,,z;) = —2z,z,/n>.
Relationship between the jackknife and bootstrap estimates
of buas.
Suppose that 6 is a quadratic statistic of the form (11.18).
Derive the (ideal) bootstrap and jackknife estimates of bias
and show that they only differ by the factor (n — 1)/n.
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11.11

11.12

11.13

THE JACKKNIFE

Relationship between the juckknife and bootstrap estimates
of bas— continued.
Suppose that 6 is ot a quadratic statistic, and we approxi-
mate it by the quadratic statistic fgyaq of the form (11.18),
having the same valuc as 8 for the jackknifc data sets X(i),
as well as for the original dala sel x.
(1) Find expressions for ay = a(w,), ¢+ = 1,2,...n aud
Bij = B(z.,z;) in terms of § and é(i), 1=1,2,...n.
(b) Apply the results of the previous problem to show that
the jackknife and (ideal) bootstrap estimates of bias for
équad agree, except for a factor of (n —1)/n.

Calculate the jackknife estimates of standard error and bias
for the correlation coefficiert of the law school data. Com-
pare these to the bootstrap estimates of the same quanti-
ties.

Generate 100 samples X1, X5, ... X2 from a normal pop-
ulation N(6,1) with 8 = 1.

(a) Tor each sawple compute the bootstrap and jackknife
estimate of variance for § = X and compute the mean
and standard deviation of these variance estimates over
the 100 samples.

(b) Repeat (a) for the statistic § = X2, and compare the
results. Give an explanstion for your findings.




CHAPTER 12

Confidence intervals based on
bootstrap “tables”

12.1 Introduction

Most of our work so far has concerned the computation of boot-
strap standard errors. Standard errors are often used Lo assign ap-
proximate confidence intervals to a parameter § of interest. Giveu
an estimate € and an estimated standard error 3e, the usual 90%
confidence interval for 6 is

0 +1.645 - &. (12.1)

The number 1.645 comes from a standard normal table, as will
be reviewed briefly below. Statement (12.1) is called an nierval
estimate or confidence wnlerval for 0. An mterval estimate is often
more useful than just a point estimate 6. Taken togethier, the point
estimate and the interval estimate say what is the best guess for
#, and how far m error that guess might reasonably be.

In tlus chapter and the next two chapters we describe different
techniques for constructing confidence intervals using the boot-
strap. This arca has becn a major focus of theoretical work on
the bootstrap; an overview of this work 1s given later in the book
(Chapter 22).

Suppose that we are in the one-sample situation where the data
are obtained by random sampling from an unknown distribution
F,F —x=(%,%a,-,2y), as in Chapter 6. Let § = 1(F) be the
", plug-in estimate of a pardmeter of interest § = ¢(F), and let §¢ be
some reasonable estimate of standard error for 6, based perhaps on
bootstrap or jackknife computations. Under most circumstances 1t
turns out that as the sample size n grows large, the distribution of
" § becomes more and more normal, with mean near 6 and variance
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near &2, written 6 ~ N (6,58%) or equivalently
9-0
e

<~ N(0,1). (12.2)

The large-sample, or asymptotic, result (12.2) usually holds true
for general probability models P — x as the amount of data gets
large, and for statistics other than the plug-in estimate, but we
shall stay with the one-sample plug-in situation for most of this
chapter.

Let 2{®) indicate the 100 - ath percentile point of a N(0, 1) dis-
tribution, as given in a standard normal table, 2025 = —1.960,
2008) = _1.645, 2(.99) = 1.645, 20975) — 1,960, etc.

If we take approximation (12.2) to be exact, then

Probp{z(”) < ();7,(;0 < z““")} =1 -2, (12.3)
which can be written as

Probp{fe[6—21"% &, 0- 2% &} =1-2a. (12.4)

Interval (12.1) is obtained from (12.4), with o = .05, 1 — 2o — .90.
In general

[6— 207 . g8, §— 2(®) . g (12.5)

is called the standard confidence wmnterval with coverage probability*
equal 1 — 2a, or confidence level 100 - (1 — 2a)%. Or, more simply,
it is called a 1 — 2a confidence interval for 6. Since z(®) = —z(1-@)
we can write (12.5) in the more familiar form

ft12 g (12.6)

As an example, consider the n = 9 Control group mice of Ta-
ble 2.1. Suppose we want a confidence interval for the expectation
é of the Control group distribution. The plug-in estimate 1s the
mean § = 56.44, with estimated standard error ¢ = 13.33 as in
(5.12). The 90% standard confidence interval for 6, (12.1), is

56.22 + 1.645 - 13.33 = [34.29, 78.15). (12.7)

! 1t would be more precisc to call (12.5) an approxunate confidence iuterval
since the coverage probability will usually not exactly equal the desired
value 100(1 — 2a). The bootstrap intervals discussed in this chapter are also
approximate but in general are better approximations than the standard
intervals.
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The coverage property of this interval implies that 90% of the
time, a random interval constructed in this way will contain the
true value 8. Of course (12.2) is only an approximation in most
problems, and the standard interval is only an approximate confi-
dence interval, though a very useful one in an enormous variety of
situations. We will use the bootstrap to calculate better approxi-
mate confidence intervals. As n — co, the bootstrap and standard
intervals converge to each other, but in any given situation like
that of the mouse data the bootstrap may make substantial cor-
rections. These corrections can significantly improve the inferential
accuracy of the interval estimate.

12.2 Some background on confidence intervals

Before beginning the bootstrap exposition, we review the logic of
confidence intervals, and whal it means for a confidence interval
to be “accurate.” Suppose that we are in the situation where an
estimator 8 is normally distributed with unknown expectation 6,

f ~ N(8,s¢?), (12.8)
with the standard error “se” known. (There is no dot over the
“~” sign because we are assuming that (12.8) holds exactly.) Then
an exact version of (12.2) is true: the random quantity equaling
(6 — 8)/se has a standard normal distribution,

66
s€

Z = ~ N(0,1). (12.9)

The equality Prob{|Z| < z2(1=®} = 1 - 2« is algebraically equiva-
lent to

Probe{f € [§ — 217 .5e,6 — 2(®) .se]} =1 — 2. (12.10)

The notation “Probg{ }” emphasizes that probability calculation
(12.10) is done with the true mean equaling 6, so 6 ~ N(8, se?).
For convenience we will denote confidence intervals by [é;o, éup],
$0 B1p = 6—2(17) .se and O, = O —2(™)-ge for the interval in (12.10).
In this case we can see that the interval [§ — 2172 .se, § — 2(@) . se]
has probabilily exactly 1 — 2« of containing the true value of 8.
More preciscly, the probability that 6 lies below the lower limit is
exactly «, as is the probability that 8 exceeds the upper limit,

Probe{f < b0} = a, Probp{d > fyp} = a. (12.11)
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The fact that (12.11) holds for every possible value of § is what
we mean when we say that a (1 — 2a) confidence interval (é]o, éup)
is accurate. It 15 important to remember that ¢ is a constant
probability statements (12.11), the random variables being 6, and
0Ll[)~

A 1 — 2 confidence mberval (f)|(,‘(5|,l,) with property (12.11) is
called equal-tailed. This vefers Lo the act thal the coverage error
215 divided up evenly between the lower and upper ends ol the
interval. Confidence intervals are almost always constructed to be
equal-tailed and we will restrict attention to equal-tailed intervals
n our discussion. Notice also that property (12.11) implies prop-
erty (12.10), but not vice-versa. That is, (12.11) requires that the
one-sided miscoverage of the interval be a on each side, rather that
Just an overall coverage of 1 —2«. This forces the interval to be the
right shape, that is, to extend the correct distance above and below
6. We shall aim for correct one-sided coverage in our construction
of approximate confidence intervals.

12.3 Relation between confidence intervals and
hypothesis tests

There is another way to interpret the statement that (élo,éup) is
a 1 — 2a confidence interval for 6. Suppose that the true § were
equal to 8, say

§* ~ N(0y,,s€). (12.12)

Here we have used 6* to denote the random variable, to avoid
confusion with the observed estimate 6. The quantity (?k, 18 consid-
cred Lo be fixed w (12.12), ouly 0 being random. It is casy Lo sce
that the probability that 6* exceeds the actual estimate 8 15 a,

Probélo{é* >0} =a. (12.13)
Then for any value of 6 less than 61 we have
Proby {6* > 8} < [for any 8 < 61,). (12.14)

The probability calculation in (12.14) has § fixed at its observed
value, and 6* random, 6* ~ N(8,se?), see Problem 12.2. Likewise,
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Figure 12.1. 90% confidence wierval for the expeciation of a normul
distribution. We observe § ~ N(0, s¢®) and want a confidence wnterval
for the unknown parameter 0; the standard error se 15 assumed known.
The confidence wnierval 1s gwen by (B, 0u,) = 0 = L.645se. Notice
that 0 1s the 95th percentile of the distribution N(é,o,sez), so regqion
¢ has probability .05 for N(élo,se2). Likewrse 6 15 the 5th perceniile of
N(éup, se?), so region b has probability .05 for N{Ouy, s€%). In ths figure,
6 = 56.22, se = 13.33 as wn (12.7).

for any value of 6 greater than the upper limit éup,

Prubg{é* < é} <o [for any 0 > OAUI,]. (12.15)

The logic of the confidence mterval (él(,,é..,,) can be stated in
terms of (12.14)—(12.15). We clhoose & stall probability o which
is our “threshold of plausibility.” We decide that values of the pa-
rameter # less than 6, are implausible, because they give probabil-
ity less than o of observing an estimate as large as the one actually
seen, (12.14). We decide that values of 8 greater than 0., are im-
plausible because they give probability less than a of observing an
estimate as small as the one actually seen, (12.15). To summarize:

The 1 — 2o confidence wnterval (910,9.”,) s the set of plausible
values of 6 having observed 9, those values not ruled out by either
of the plausibility tests (12.14) or (12.15).



158 BOOTSTRAP TABLES

The situation 1s illustrated i Figure 12.1. We assume that 6 ~
N(0,se?) as in (12.8), and take @ = .05, 1 — 2o = .90. Having
observed 6, the 90% confidence interval (12.10) has endpoints

bio =6 —1.645 se, By =6+ 1645 se. (12.16)

The dashed curve having its highest point at fio indicates part of
the probability density of the normal distribution N(8),,se?). The
95th percentile of the distribution N(fj,,se?) occurs at 8. Another
way to say this is that the region under the N (élo, se?) density curve
to the right of 8, labeled “c”, has arca .05. Likewise the dashed
curve that has its highest poiut at 0y, indicates the probability
density of N(éup,s@); 6 1s the 5th percentile of the distribution;
and region “b” has area .05.

The plausibility tests (12.14) and (12.15) are also the signifi-
cance levels for the related hypothesis test. The value in (12.14) is
the significance level for the one-sided alternative hypothesis that
the true parameter is greater than 6, and (12.15) is the significance
level for the one-sided alternative hypothesis that the true param-
eter 1s less than 6. In many situations a hypothesis test can be
carried out by constructing a confidence interval and then check-
ing whether the null value is in the interval. Hypothesis testing is
the subject of Chapters 15 and 16.

12.4 Student’s t interval

With this background, let’s see how we can improve upon the stan-
dard confidence interval [0 — z(17%) - 88,6 — 2(*) - &¢]. As we have
seen, this interval is derived from the assumption that

6—0
Se

7 =

~ N(0,1). (12.17)

This is valid as n — oo, but is only an approximation for finite
samples. Back 1 1908, for the case § = Z, Gosset derived the
better approximation

6-6

sé

Z= Koty (12.18)
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Table 12.1. Percentiles of the t distribution with 5, 8, 20, 50 and 100
degrees of freedom, the N(0,1) distribution and the bootstrap distribution
of Z*(b) (for the control group of the mouse data).

Percentile 5% 10% 16% 50% 84% 90% 95%
ts -2.01 -148 -1.73 0.00 1.73 148 2.01

is -1.86 -1.40 -1.10 0.00 1.10 1.40 1.86

tao -1.73 -1.33 -1.06 0.00 1.06 133 1.73

ts0 -1.68 -1.30 -1.02 0.00 1.02 130 1.68

t100 -1.66 -1.29 -1.00 0.00 1.00 1.29 1.66
Normal -1.65 -1.28 -0.99 0.00 099 1.28 1.65
Bootstrap-t -4.53 -201 -1.32 -.025 086 1.19 1.53

where t,,_; represents the Student’s ¢ distribution on n — 1 degrees
of freedom. Using this approximation, our interval is

6—t3™ g, 6 - £, . &), (12.19)
with tif‘_)l denoting the ath percentile of the ¢ distribution on n—1
degrees of freedom. That is to say, we look up the appropriate
percentile in a t,_; table rather than a norwal table.

Table 12.1 shows the percentiles of the t,_; and N(0,1) distri-
bution for various degrees of freedom. (The values 1n the last line
of the table are the “bootstrap-t” percentiles” discussed below.)
When § = I, this approximation is exact if the observations are
normally distributed, and has the effect of widening the interval to
adjust for the fact that the standard error 1s unknown. But notice
that if n > 20, the percentiles of ¢,, distribution don’t differ much
from those of N(0,1). In our example with n = 9, use of the 5%
and 95% percentiles from the t table with 8 degrees of freedom
leads to the interval

56.22 4 1.86 13.33 = (31.22,81.01),
which is a little wider than the normal mterval (34.29, 78.15).
The use of the t distribution doesn’t adjust the confidence inter-
val to account for skewness in the underlying population or other
errors that can result when 8 is not the sample mean. The next

section describes the bootstrap-£ interval, a procedure which does
adjust for these errors.
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12.5 The bootstrap-t interval

Through the use of the bootstrap we can obtain accurate intervals
without having to make normal theory assumptions like (12.17).
In this section we describe one way to get such intervals, namely
the “bootstrap-t” approach. This procedure estimates the distri-
bution of Z directly from the data; in essence, it builds a table
like Table 12.1 that 1s appropriate for the data set at hand. ! 'L'his
table 1s then used to construct a confidence mterval in exactly the
same way that the normal and t tables are used in (12.17) and
(12.18). The bootstrap table is built by generating B bootstrap
samples, and then computing the bootstrap version of Z for each.
The bootstrap table consists of the percentiles of these B values.
Here 1s the bootstrap-t method in more detail. Using the nota-
tion of Figure 8.3 we generate B bootstrap samples x*!, x*?,. - x*8
and for each we compute
- 6*(b) - 6 Y
zZ*(b) = w0 (12.20)

where 6*(b) = s(x*?) is the value of § for the bootstrap sample x*°
and se*(b) is the estimated standard error of §* for the bootstrap

sample x*®. The ath percentile of Z*(b) is estimated by the value
(@) such that

#{2*(b) < {9}/B =a. (12.21)

For example, if B = 1000, the estimate of the 5% point is the 50th
largest value of the Z*(b)s and the estimate of the 95% point is
the 950th largest value of the Z*(b)s. Finally, the “bootstrap-t”
coufidence interval is

(0 — 1079 5, 0 — i@ ). (12.22)

This is suggested by the same logic that gave (12.19) from (12.18).

If B « is not an integer, the following procedure can be used.
Assuming o < .5, let k = [(B+1)a], the largest integer < (B+1)a.
Then we define the empirical @ and 1 — o quantiles by the kth

The idea behind the bootstrap-t method i1s easier to describe than the
percentile-based bootstrap ntervals of the next two chapters, which is
why we discuss the bootstrap-t procedure first. In practice, however, the
bootstrap-t can give somewhat crratic results, and can be heavily influ-
cnced by a few outlyig data pomis. The percentile based methods of the
next two chaptlors ace nore reliable.




THE BOOTSTRAP-T INTERVAL 161

largest and (B + 1 — k)th largest values of Z*(b), respectively.

The last line of Table 12.1 shows the percentiles of Z*(b) for 4
equal to the mean of the control group of the mouse data, computed
using 1000 bootstrap samples. It is important to note that B =
100 or 200 is not adequate for confidence interval construction,
see Chapter 19. Notice that the bootstrap-t points greatly differ
from the normal and ¢ percentiles! The resulting 80% bootstrap-t
confidence interval for the mean is

[56.22 — 1.53 - 13.33,56.22 + 4.53 - 13.33| = [35.82, 116.74]

The lower endpoint is close to the standard interval, but the upper
endpoint is much greater. This reflects the two very large data
values 104 and 146.

The quantity Z = (§ — 6)/$ is called an apprommate prot:
this means that its distribution is approximately the same for each
value of 8. In fact, this property 1s what allows us to construct the
interval (12.22) lrom Lhe boolstrap distribution of Z*(b), using the
same argument that gave (12.5) [rom (12.3).

Some elaborate theory (Chapter 22) shows that in large samples
the coverage of the bootstrap-t interval tends to be closer to the
desired level (here 90%) than the coverage of the standard inter-
val or the interval based on the t tahle. Tt 15 interesting that like
the t approximation, the gain in accuracy is at the price of gen-
erality. The standard normal table applies to all samples, and all
satple sizes; Lhe ¢ table applies all samples of a fixed size n; the
bootstrap-t table applies only to the giwen sample. However with
the availability of fast computers, it is not impractical to derive a
“bootstrap table”’ for each new problem that we encounter.

Notice also that the normal and ¢ percentage points in Table 12.1
are symmetric about zero, and as a consequence the resulting -
tervals are symmetric about the point estimate 6. In contrast, the
bootstrap-t percentiles can by asymmetric about 0, leading to in
tervals which are longer on the left or right. This asymmetry rep-
resents an important part of the improvement in coverage that it
enjoys.

The bootstrap-t procedure is a useful and mteresting generaliza-
tion of the usual Student’s ¢ method. It is particularly applicable to
location statistics like the sample mean. A location statistic is one
for which increasing each data value z, by a constant ¢ increases
the statistic itsell by ¢. Other location stalistics arc the median,
the trimmed mean, or a sample percentile.
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The bootstrap-t method, at least in its simple form, cannot be
trusted for more general problems, like setting a confidence inter-
val for a correlation coefficient. We will present more dependable
hootstrap confidence interval methods in the next two chapters. In
the next section we describe the use of transformations to improve
the bootstrap-¢ approach.

12.6 Transformations and the bootstrap-t

1 There are both computational and interpretive problems with
the bootstrap-f confidence procedure. In the denominator of the
statistic Z*(b) we require $6*(b), the standard deviation of §* for
the bootstrap sample x*?. For the mouse data example, where § is
the mean, we used the plug-in estimate

& (b) = {Xn:(m:‘b —wopm), (12.23)
1

23, 23 ...z} being a bootstrap sample.

The difficulty ariscs when 6 is a more complicated statistic, for
which there 18 no simple standard error forinula. As we have seen
in Chapter 5, standard error formulae exist for very few statis-
tics, and thus we would need to compme a bootstrap estimate of
standard error for each bootstrap sample. This implies two nested
levels of bootstrap sampling. Now for the estimation of standard
error, B = 25 might be sufficient, while B = 1000 is needed for the
computation of percentiles. Hence the overall number of bootstrap
samples needed 1s perhaps 25-1000 = 25, 000, a formidable number
if @ is costly to compute.

A second difficulty with the bootstrap-t interval is that it may
perform erratically in small-sample, nonparametric settings. This
trouble can be alleviated. Consider for example the law school data
of Table 3.1, for which 0 is the sample correlation coefficient. In
constructing a bootstrap-t interval, we used for §¢*(b) the bootstrap
estimate of standard error with B = 25 bootstrap samples. As
mentioned above, the overall procedure involves two nested levels
of bootstrap sampling. A total of 1000 values of 6* were generated,
so that a total 25,000 bootstrap samples were used. The resulting
90% bootstrap-t confidence was [—.026,.90]. For the correlation

1 This section contains more advanced material and may be skipped at first
reading.
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coefficient, it is well known (cf. page 54) that if we construct a
confidence interval for the transformed parameter

- 1+46
$= .olog(l_e) (12.24)
and then transform the endpoints back with the inverse transfor-
mation (e2¢ —1)/(e** 4 1), we obtain a better interval. For the law
school data, if we compute a 90% bootstrap-t confidence interval
for ¢ and then transform it back, we obtain the interval [.45, .93]
for 6, which is much shorter than the interval obtained without
transformation. In addition, if we look at more extreme confidence
points, for example a 98% interval, the endpoints are [—.66,1.03]
for the interval that doesn't use a transformation and [.17,.95] for
the one that does. Notice that the first interval falls outside of the
allowable range for a correlation coefficient! In general, use of the
(untransformed) bootstrap-¢ procedure for this and other problems
can lead to intervals which are often too wide and fall outside of
the allowable range for a parameter.

To put it another way, the bootstrap-t interval 1s not
transformation-respecting. It makes a difference which scale is used
to construct the interval, and some scales are better than others.
In the correlation coefficient example, the transformation (12.24) 1s
known to be the appropriate one if the data are bivariate normal,
and works well in general for this problem. For most problems,
however, we don’t know what transformation to apply, and this is
a major stumbling block to the general use of the bootstrap-t for
confidence interval construction.

One way out of this dilemma is to use the bootstrap to estimate
the appropriate transformation from the data itself, and then use
this transformation for the construction of a bootstrap ¢ interval.
Let’s see how this can be done. With 6 equal to the correlation
coefficient, define ¢ = .5 - log[(1 4+ 8)/(1 — 8)], ¢ = .5 - log[(1 +
6)/(1 — 8)]. Then

n . 1
1) ¢~N(0,n_3). (12.25)
This transformation approximately normalizes and variance stabe-
lizes the estimate 6. We would like to have an automatic method
for finding such transformations. It turns out, however, that it is
not usually possible to both normalize and variance stabilize an
estimate. It seems that for bootstrap-t intervals, it is the second
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property that 1s important: bootstrap-t wntervals work better for
variance stabilized parameters. Now if X is a random variable with
mean § and standard deviation s(6) that varies as a function of
0, then a Taylor series argument (Problem 12.4) shows thal Lhe
transformation g(z) with derivative
o(n) = - (12.26)
s(@)
has the property that the variance of g(X) is approximately con-
stant. Equivalently,

|
g(x) —/ S(yu)du. (12.27)
In the present problem, X is 6 and for each u, we need to know
s(u), the standard error of § when 0 = u, in order to apply (12.27).
We will write s(u) = se(8|8 = u). Of course, se(#|0 = u) is usually
unknown; however we can use the bootstrap to estimate it. We
then compute a bootstrap-t interval for the parameter ¢ = g(6),
and transform il back via the mapping ¢~* to obtain the interval for
0. The details of this process are shown in Algorithm 12.1. Further
details of the implementation may be found in Tibshiram (1988).

The ieft panel of Pigure 12.2 shows an example for the law school
data. By = 100 bootstrap samples were generated, and f{or each one
the correlation coefficient and its bootstrap estimate of standard
error were computed using By = 25 second-level bootstrap sam-
ples; this entails a nested bootstrap with a total of 100 - 25 = 2500
bootstrap samples (empirical evidence suggests that 100 first level
samples are adequate). Notice the strong dependence of se(0*) on
6*. We drew a smooth curve through this plot to obtain an estimate
of s(u) = se(8|0 = u), and applied formula (12.27) to obtain the
estimated transformnation g(é) indicated by the solid curve in the
middle panel. The broken curve in the middle panel is the trans-
formation (12.24). The curves are roughly similar but different; we
would expect them to coincide if the bootstrap sampling was car-
ried out from a bivariate normal population. The right panel is the
same as the left panel, for ¢* = g(8*) instead of §*. Notice how the
dependence has heen reduced.

Using Bz = 1000 bootstrap samples, the resulting 90% and 98%:
confidence intervals for the correlation coefficient turn out to be:
[-33,.92] and [.07,.95]. Both intervals are shorter than those ob-
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Algorithmn 12.1

Computation of the variance-stabilized bootstrap-i interval

1. Generate B; bootstrap samples, and for each sample x**
compute the bootstrap replication §*(b). Take B, boot-
strap samples from x*® and estitnate the standard error
se(6*(b)).

2. Fit a curve to the points [8*(b),52(6%(b))] to produce a
smooth estimate of the function s(u) = se(8|8 = u).

3. Istimate the variance stabilizing transformation g(6)
from formula (12.27), using some sort of numerical inte-
gration.

4. Using B3 new bootstrap samples, compute a bootstrap-
t interval for ¢ = g(0). Since the standard crror of g(8)
1s roughly constant as a function of #, we don’t need to
estimate the denominator in the quantity (g(8*)—g(8))/5e*
and can set it equal to one.

5. Map the endpoints of the interval back to the 8 scale via

the transformation g—1.

tained without transformation, and lie within the set of permis-
sible values [—1, 1] for a correlation coefficient. The total number
of bootstrap samples was 2500 4+ 1000 = 3500, far less than the
25,000 figure for the usual bootstrap-t procedure.

An important by-product of the transformation ¢ = g() is that
it allows us to ignore the denominator of the ¢ statistic in step 4.
This is because the standard error of ¢ 1s approximately constant,
and thus can be assumed to be 1. As a consequence, once the
transformation ¢ = g(#) has been obtained, the construction of the
bootstrap-t interval based on qAS does not require nested bootstrap
sampling.

The other approach to remedying the problems with the
bootstrap-t interval is quite different. Instead of focusing on a
statistic of the form % = (§ — #)/8, we work directly with the
bootstrap distribution of 6 and derive a transformation-respecting
confidence procedure from them. This approach is described 1n the
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Figure 12.2. Law school data: left panel shows a plot of se(é*) versus 6”
and a smooth curve se(8*) drawn through it. The middle panel shows the
estimated varance stabilizing transformaiion g(é) (solid curve) derived
from se(0%) and formula (12.27). The broken curve is the (standardized)
transformation (12.24) that would be appropriate if the data came from
a bwarate normal distribution. The right panel 13 the same as the left
panel, with g(ﬁ*) taking the place of 0*. Notice how the transformation
g(*) has stabilized the standard deviation.

next two chapters, culminating in the “BC,” procedure of Chapter
14. Like the bootstrap-t method, the BC, interval produces more
accurate mtervals than the standard normal or ¢ intervals.

An S language function for ccmputing bootstrap-t confidence
intervals is described in the Appendix. It includes an option for
automatic variance stabilization.

12.7 Bibliographic notcs
Background references on bootstrap confidence wtervals are given
m the bibliographic notes at the end of Chapter 22.

12.8 Problems

12.1 Derive the second relation in (12.3) from the first, and then
prove (12.4).
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12.2 Let Z indicate a N(0,1) random variable. It is then true
that

a+bZ ~ N{a,b?) (12.28)
for any constants a and b.

(a) Derive (12.13) from (12.12).
(b) Derive (12.14) and (12.15).

12.3 Derive (12.22) from (12.20) and (12.21).

12.4 Suppose X is a random variable with mean ¢ and standard
deviation s(6), and we consider applyng a transformation
g(z) to X.

{a) Expand g(X) in a Taylor series to show that
var(9(X)) = ¢'(8)*var(X). (12.29)
{b) Hence show that the transformation given in (12.27)
has the property var(g(X)) = constant.
(c) If X, /6 are independently and identically distributed as
x% for1=1,2,...n and # = X, show that the approxi-
mate variance stabilizing transformation for 6 is

9(6) = (n/2)*?logé. (12.30)

12.5 Suppose X, /6 are independently and identically distributed
as x% for 2 = 1,2, ...20. Carry out a small simulation study
to compare the following intervals for 8 based on X, assum-
ing that the true value of 6 is one:

(a) the exact interval based on 20 - 6/6 ~ x2,

(b) the standard interval based on (6 — 6)/& ~ N(0,1)
where $e is the plug-in estimate of the standard error of
the mean

(¢) the bootstrap-t interval based on (6 — 6)/&e.

(d) the bootstrap-¢ interval based the asymptotic variance
stabilizing transformation ¢ = log f (from part (c¢) of the
previous problem).

Use at least 1000 samples in your simulation, and for each
interval compute the miscoverage in each tail and the overall
miscoverage, as well as the mean and standard deviation of

the interval length. Discuss the results. Relate this problem
to that of inference for the variance of a normal distribution.



CHAPTER 13

Confidence intervals based on
bootstrap percentiles

13.1 Introduction

In this chapter and the next, we describe another approach to boot-
strap confidence intervals based on percentiles of the bootstrap
distribution of a statistic. I'or motivation we take a somewhadt il-
ferent view of the standard normal-theory mterval, and tlis leads
to a generalization based on the bootstrap, the “percentile” inter-
val. This interval is improved upon in Chapter 14, and the result
is a bootstrap confidence interval with good theoretical coverage
properties as well as reasonable stability in practice.

13.2 Standard normal intervals

Let 6 be the usual plug-in estimate of a parameter # and & be its
estimated standard error. Consider the standard normal confidence
interval [§—z(17%).¢, f—2(®).5¢]. The endpoints of this interval can
be described in a way that 1s particularly convenient for bootstrap
calculations. Let 0* indicate a random variable drawn from the
distribution N (6,5e?),

0* ~ N(6,5%). (13.1)
Then 6, = 6 — 212 . 5 and 9\1], = 6§ — 2(® . 8 are the 100ath
and 100(1 — a)th percentiles of 8*. In other words,

fo = Q*(q) = 100 - o' percentile of §*’s distribution
by = 6= =100 (1 - )" percentile of §*'s distribution.
(13.2)

Consider for example the treated imce of Table 2.1 and tot § =
86.85, the mean of the 7 treated wmice. The bootlstrap slandard
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Figure 13.1. Histogram of 1000 bootstrap replications of 0, the mean
of the 7 treated mace i Table 2.1. The solid line 15 drawn at 6. The
dotted vertical lines show standard normal 90% wnterval [86.85 — 1.615
25.23,86.85 + 1.645 - 25.23] = [45.3,128.4]. The dashed vertical lines are
drawn at 49.7 and 126.7, the 5% and 95% percentiles of the mstogram.
Since the histogram 1s roughly normal-shaped, the broken and doticn
lines almost cowncrde, wn accordance with equation (13.2)

error of § is 25.23, so if we choose say o = .05, then the standard
90% normal confidence interval for the true mean 0 1s [86.85 —
1.645 - 25.23,86.85 4+ 1.645 - 25.23] = [45.3,128.4].

_ Figure 13.1 shows a histogram of 1000 bootstrap replications
0. This histogram looks roughly normal in shape, so according
to equation (13.2) above, the 5% and 95% percentiles of this his-
togramm should be roughly 45.3 and 128.4, respectively. This isn’t
a bad approxunation: as shown in Table 13.5, the 5% and 95%
percentiles are actually 49.7 and 126.7.
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Table 13.1. Percentiles of 6* based on 1000 bootstrap replications, where
6 equals the mean of the treated mice of Table 2.1.

25% 5% 10% 16% 50% 84% 90% 95% 97.5%
459 49.7 56.4 62.7 86.9 1123 118.7 126.7 135.4

13.3 The percentile interval

! The previous discussion suggests how we might use the percentiles
of the bootstrap histogram to define confidence limits. This is ex-
actly how the percentile interval works. Suppose we are in the gen-
eral situation of Figure 8.3. A bootstrap dala sel x* is generated
according to P — x*, and bootstrap replications §* = s(x*) are
computed. Let G be the cumulative distribution function of §*. The
1 — 2« percentile interval 1s defined by the a and 1 — « percentiles
of G.

[é%,lmé%,up] = [é“l(a)’é’_l(l - CY)] (13'3)

Since by definition G~ 1(a) = 6*(®)| the 100 - ath percentile of
the bootstrap distribution, we can also write the percentile interval
as

[é%,loaé%,up] = [é*(a)v é*(l—u)]‘ (13~4)

Expressions (13.3) and (13.4) refer to the ideal bootstrap situation
1 which the nuinber of bootstrap replications is infinite. In practice
we must use some finite number B of replications. To proceed, we
generate B independent bootstrap data sets x*1,x*2,- - x*F and
compute the bootstrap replications *(b) = = s(x*°),
b= 1,2,. I3 Let (;73(") be the 100 ot empirical percentile of
the *(b) values, Lhat is, the B - ath value in the ordered list of
the B replications of §*. So if B = 2000 and a = .05, é}(a) is the
100th ordered value of the replications. (If B - « is not an integer,
we may use the convention given after equation (12.22) of Chapter

12.) Likewise let é*B(l—a) be the 100 - (1 — «)th empirical percentile.

1 The BC, mterval of Chapter 14 is more difficult to explam (han the per-
centile interval, but not much more difficult to calculate. It gives more ac-
curate confidence limits than the percentile method and is preferable in
practice.
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Table 13.2. Percentiles of 6" based on 1000 bootstrap replications, where
8 equals exp(Z) for a normal sample of size 10.
25% 5% 10% 16% 50% 84% 90% 95% 97.5%
0.75 0.82 090 098 1.25 161 1.75 1.93 2.07

The approxunate | — 2« percentile interval 1s
(B9 10, O wp) = [0, 6354, (13.5)

If the bootstrap distribution of 6* is roughly normal, then the
standard normal and pecrcentile intervals will nearly agree (as in
Figure 13.1). The central limit theorem tells us that as n — oo,
the bootstrap histogram will become normal shaped, but for small
samples it may look very non-normal. Then the standard normal
and percentile intervals will differ. Which one should we use?

Let’s examine this question in an artificial example where we
know what the correct confidence interval should be. We gener-
ated a sample X3, X, ... X10 from a standard normal distribu
tion. The parameter of interest 6 was chosen to be e, where u 1s
the populationA mean. The true value of 8 was e® = 1, while the
sample value ¢ = e equaled 1.25. The left panel of Figure 13.2
shows the bootstrap histogram of §* based on 1000 replications
(Although the population is Gaussian in this example, we didn’t
presuppose knowledge of this and therefore used nonparametric
bootstrap sampling.)

The distribution 1s quite asymmetric, having a long tail to the
left. Empirical percentiles of the 1000 6* replications are shown in
Table 13.2.

The .95 percentile interval for 0 s
(894105 B up] = [0.75,2.07]. (13.6)

This should be compared with the .95 standard interval based on
§é1000 = 0.34,

1.25 + 1.96 - 0.34 = [0.59,1.92)]. (13.7)

Notice the large discrepancy between the standard normal and
percentile intervals. There is a good reason to prefer the percentile
interval (13.6) to the standard interval (13.7). First note that there
is an obvious objection to (13.7). The left paiel of Figure 13.2
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.

S

Figure 13.2. Left panel: B = 1000 bootstrap replications of 6 = exp(),
from a standard normal sample of size 10. The vertical dotted lines
show the standard normal wmierval 1.25+ 1.96 0.34 = [.59, 1.92], while
the dashed lines are dvawmn al the 2.5% and 97.5% perveentdes (.75 and
2.07. These percentiles quue the .99 pereentile confidence imterval, namely
[0.75,2.07]. Right panel: Same as left panel, except that ¢ = log0 and

# = log § replace 6 and 6 respectively.

shows that the normal approximation 6~ N (0, §&*) which underlies
the standard intervals just 1sn’t very accurate in this case. Clearly
the logarithmic transformation makes the distribution of § normal.
The right panel of Figure 13.2 shows the bootstrap histogram of
1000 values of ¢* = log(§*), along with the standard normal and
percentile intervals for ¢. Notice that the histogram is much more
nmmal in shape than that for §*. This isn’t surprising since qS*

. The standard normal interval for ¢ = .log(0) is [—0.28,0.73]
while the percentile interval 1s [~0.29,0.73]. Because of the normal
shape of the histogram, these intervals agree more closely than
they do in the left panel. Since the histogram in the right panel of
Figure 13.2 appears much more normal than that in the left panel,
it seems reasonable to base the standard interval on ¢, and then
map the endpoints back to the 0 scale, rather than to base them
directly on 0.

The inverse mapping of the logarithm is the exponential func-
tion. Using the exponential function to map the standard inter-
val back Lo the 8 scale gives [0.76,2.08]. Tlus mterval is closer
to the pereentile mtorval [0.75,2.07] than is the standard interval
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[0.59,1.92] constructed using § directly.

We see that the percentile interval for 6 agrees well with a stan-

dard normal interval constructed on an appropriate transformation

of 6 and then mapped to the 6 scale. The difficulty in improving

the standard method in this way 1s that we need to know a dif-

ferent transformation like the logarithm for each parameter 0 of

interest. The percentile method can be thought of as an algorithm

for automatically incorporating such transformations.

The following result formalizes the fact that the percentile method
always “knows” the correct transformation:

Percentile interval lemma. Suppose the transformation ¢ = m(6)
perfectly normalizes the distribution of 6:

¢~ N(p,c?) (13.8)

for some standard deviation e. Then the percentile interval based
on 0 cquals = (d — 200 ™) ) m7 (o — 2]

In the setup of Figure 8.3 in Chapter 8, where the probability
mechanism P assoclated with parameter § gives the data x. we
are assuming that ¢ = m(f) and ¢ = m(@) satisfy (13.8) for ev-
ery choice of P. Under this assumption, the lemma is little more
than a statement that the percentile method transforms endpoints
correctly. See Problems 13.1 and 13.2.

The reader can think of the percentile method as a computa-
tional algorithm for extending the range of effectiveness of the stan—
dard intervals. In situations like that of Figure 13.1, 8 ~ N(6, 8¢ ),
where the standard intervals are nearly correct, the percentile m-
tervals agree with them. In situations like that of the left panel
of Figure 13.2, where the standard intervals would be correct if
we transformed parameters from 8 to ¢, the percentile method
automatically makes this transformation. The advantage of the
perceulile method is that we don’t need to know the correct trans-
formation. All we assume is that such a transformation exists.

In the early 1920’s Sir Ronald Fisher developed maximum like-
lihood theory, which automatically gives efficient estimates 6 and
standard errors §é in a wide variety of situations. (Chapter 21 dis-
cusses the close connection between maximum likelihood theory
and the bootstrap.) Iisher’s theory greatly wuicreased the use of
the standard intervals, by making them casier to caleulate and boet-

ter justified. Since then, statisticians have developed many f(ricks
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for improviug the practical perforinance of the standard inlervals.
Among these is a catalogue of transformations that make certain
types of problems better fit the ideal situation § ~ N(6,§%). The
percentile interval extends the usefulness of the standard normal
mterval without requiring explicit knowledge of this catalogue of
transformations.

13.4 Is the percentile interval backwards?

The percentile interval uses G—1(a) as the left endpoint of the con-
fidence interval for 6 and @_1(1 — «) as the right endpoint. The
bootstrap-t approach of the previous chapter uses the bootstrap
to estimate the distribution of a studentized (approximate) pivot,
and then inverts the pivot to obtain a confidence interval. To com-
pare this with the percentile interval, consider what happens if we
simplify the bootstrap-t and base the interval on § — 0. That is,
we set the denominator of the pivot equal to 1. It 1s easy to show
(Problem 13.5) that the resulting interval is

[26 — G711 - a).20 — G (a))]. (13.9)

Notice that if G has a long rght tail then this mterval 1s long on
the (eft, opposite mn behavior to the percentile interval.

Which 1s correct? Nerther of these micrvals works well i geu-
eral: n the latter case we should start with (§ — 0)/se rather than
0—0 (see Section 22.3), while the percentile lulerval may need fur-
ther refinements as described in the next chapter. However in some
simple examples we can see that the percentile interval is more ap-
propriate. For the correlation coefficient discussed in Chapter 12
(in the normal model), the quantity ¢ — ¢, where—¢ is Fisher’s
transform (12.24), is well approximated by a normal distribution
and hence the percentile interval is accurate. In contrast, the quan-
tity  — 8 1s far from pivotal so that the interval (13.9) is not very
accurate. Another example concerns inference for the median. The
percentile interval matches closely the order statistic-based inter-
val, while (13.9) is backwards. Details are in Efron (1979a).

13.5 Coverage performance

The arguments in favor of the percentile interval should translate :
into better coverage performance. Table 13.3 investigates this in
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Table 13.3. Results of 300 confidence wnterval realizations for § = exp (1)
from a standard normal sample of size 10. The table shows the percentage
of trials that the indicated wnterval massed the true value 1.0 on the left
or rght sude. For example, “Miss left” means that the left endpownt was
> 1.0. The destred coverage 1s 35%, so the ideal values of Miss left and
Miss right are both 2.5%.

Method % Miss left % Miss right
Standard normal 6 = 1.965@ 1.2 8.8
Percentile (Nonparametric) 4.8 5.2

the context of the normal example of Figure 13.2.

It shows the percentage of times that the standard and percentile
intervals missed the true value on the left and right sides, m 500
simulated samples. The target miscoverage 1s 2.5% on each side.
The standard interval overcovers on the left and undercovers on the
right. The percentile interval achieves better balance i the left and
right sides, but like the standard interval it still undercovers overall.
This is a consequence of non-parametric mference: the perceuntile
mterval has no knowledge of the underlying normal distribution
and uses the empirical distribution in 1ts place. In this case, it
underestimates the tails of the distribution of 6*. More advanced
bootstrap intervals like those discussed in Chapters 14 and 22 can
partially correct this undercoverage.

13.6 The transformation-respecting property

Let’s look back again at the right panel of Figure 13.2. The 95%
percentile interval for ¢ turns out to be [—0.29,0.73]. What would
we get if we transformed this back to the @ scale via the inverse
transformation (exp ¢)? The transformed interval is [—0.75, 2.07],
which is exactly the percentile interval for 6. In other words, the
percentile interval is fransformation-respecting: the percentile in-
terval for any (monotone) parameter transformation ¢ = m(#) 1s
simply the percentile interval for # mapped by m(6):

[‘i%.lm Jj%,up] = [m‘(é%,lu)a Tn'(é%.up)]‘ (13'10)

The same property holds for the empirical percentiles based on B
bootstrap samples (Problem 13.3).
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As we have seen in the correlation coefficient example above, the
standard normal interval is not transformation-respecting. This
property is an important practical advantage of the percentile
method.

13.7 The range-preserving property

For some parameters, there is a restriction on the values that the
parameter can take. For example, the values ol the correlation co-
efficient lie in the interval [—1,1]. Clearly it would be desirable if
a confidence procedure always produced intervals that fall within
the allowable range: such an interval is called range-preserving.
The pereentile interval 1s range-preserving, since a) the plug-in cs-
timate 0 obeys the sane range restriction as 0, and b) 1ls endpoints
arc values of the bootstrap statistic (?*,, which again obey the saine
range restriction as 6. In contrast, the standard mterval need not be
range-preserving. Confidence procedures that are range-preserving
tend to be more accurate and reliable.

13.8 Discussion

The percentile method is not the last word in bootstrap confi-
dence intervals. There are other ways the standard intervals can
fail, besides noun-norality. For example 0 might be a biased normal
estimate,

6 ~ N(6 + bias, §e°), (13.11)

in which case no transformation ¢ = m(6) can fix thingsup. Chap-
ter 14 discusses an extension of the percentile method that auto-
matically handles hoth bias and transformations. A further exten-
sion allows the standard error in (13.11) to vary with 6, rather than
being forced to stay constant. This final extension will turn out to
have an important theoretical advantage.

13.9 Bibliographic notes

Background references on bootstrap confidence intervals are given
in the bibliograplhic notes at the end of Chapter 22.
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13.10 Problems

13.1

13.2

13.3

134

13.5

Prove the transformation-respecting property of the per-
centile interval (13.10). Use this to verify the percentile -
terval lemma.

(a) Suppose we are in the one-sample nonparametric set-
ting of Chapter 6, where F' — x, 8 = t(¥). Why can
relation (13.8) not hold exactly in this case?

(b) Give an example of a parametric situation P—xm
which (13.8) holds exactly.

Prove that the approximate percentile mterval (13.4) is
transformation-respecting, as defined in (13.10).

Carry oul a sunulation study like that in Table 13.3 for the
following probleny: x,,my, . a9y arce cach independent with
an exponential distribution having mean 0. (An exponential
variate with mean 8 may be defined as —@logU where U
is a standard uniform variate on [0,1].) The parameter of
interest is @ = 1. Compute the coverage of the standard and
percentile intervals, and give an explanation for your results.

Suppose that we estimate the distribution of 6 — 0 by the
bootstrap distribution of 6* — 6. Denote the a-percentile of
6* — 8 by H1(a). Show that the interval for # that results
from verting the relation

B Y a)<b-6<H'(1-0) (13.12)

is given by expression (13.9).



CHAPTER 14

Better bootstrap confidence
intervals

14.1 Introduction

Omne of the principal goals of bootstrap theory is to produce good
confidence intervals automatically. “Good” means that the boot-
strap intervals should closely match exact confidence intervals in
those special situations where statistical theory yields an exact an-
swer, and should give dependably accurate coverage probabilities
in all situations. Neither the bootstrap-t method of Chapter 12
nor the percentile method of Chapter 13 passes these criteria. The
bootstrap-t mtervals have good theoretical coverage probabilities,
bul tend to be erratic i actual practice. The percentile intervals
are less erratic, but have less satisfactory coverage properties.

This chapter discusses an improved version of the percentile
method called BC,, the abbreviation standing for bias-corrected
and accelerated. The BC, intervals are a substantial improvement
over the percentile method in both theory and practice. They come
close to the criteria of gooduess given above, though their coverage
accuracy can still be erratic for small sample sizes. (Improvements
are possible, as shown in Chapter 25.) A simple computer algo-
nthm called becanon, listed in the Appendix, produces the BC,
mtervals on a routine basis, with little more effort required than
for the percentile intervals. We also discuss a method called ABC,
standing for approzimate bootstrap confidence intervals, which re-
duces by a large factor the amount of computation required for
the BC, intervals. The chapter ends with an application of these
methods to a real data analysis problem.
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14.2 Example: the spatial test data

Our next example, the spatial test data, demonstrates the need for
improvements on the percentile and bootstrap-t methods. Twenty-
six neurologically impaired children have each taken two tests of
spatial perception, called “A” and “B.” The data are listed in Ta-
ble 14.1 and displayed in Figure 14.1. Suppose that we wish to find
a 90% central confidence interval for 8 = var(A), the variance of a
random A score.
The plug-in estimate of @ based on the n = 26 data pairs z, =
(A;, B;) in Table 14.1 is
n n
0=3 (A~ Ay /n=1715 (A= Ain). (141)
=1 1
Notice that this 1s slightly smaller than the usual unbiased estimate
of 9,

n

6=" (A= A)P/(n—1)=1784. (14.2)

The plug-m estimate 8 15 biased downwatd. The BC, method au-
tomatically corrects for bias in the plug-in estimate, which 1s one
of 1ts advantages over the percentile method. *

A histogram of 2000 bootstrap replications 6* appears in the
left panel of Figure 14.2. The replications are obtained as i Fig-
ure 6.1: if x = (21,23, -, Tag) represents the original data set of
Table 14.1, where z, = (A,, B;) for ¢+ = 1,2,---,26, then a boot-
strap data set x* = (x},23, - ,23¢) 1s a random sample of size
26 drawn with replacement from {zy, 2, -, %26}: the bootstrap
replication % is the variance of the A components of x*, with
z; = (AL.BY).

6= (47 — A*)*/n (A" =) Ai/n).  (143)

B = 2000 bootstrap samples x* gave the 2000 bootstrap repli-
cations 6* in Figure 14.2. 2 These are nonparametric bootstrap

1 The discussion in thig chapter, and the algorithms beanon and abcnon in
the Appendix, assume that the statistic is of the plug-in form 6 = t(F').

2 We don’t need the second components of the x} for thus particular calcula-
tion, see Problem 14.2.
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Table 14.1. Spatial Test Data; n = 26 children have each taken two tests
of spatial ability, called A and B.

1 2 3 4 5 6 7 8 9 10 11 12 13

A 48 36 20 29 42 42 20 42 22 41 45 14
B 42 33 16 39 38 36 15 33 20 43 34 22 7

14 15 16 17 18 19 20 21 22 23 24 25 26

A 0 33 28 34 4 32 24 47 41 24 26 30 4l
B 15 34 29 41 13 38 25 27 41 28 14 28 40

replications, the kind we have discussed in the previous chapters.
Later we also discuss parametric bootstrap replications, referring
in this chapter to a Normal, or Gaussian model for the data. In
the notation of Chapter 6, a nonpa.r;}\mct.ric bootstrap sample is
generated by random sampling [row 17,

Fox'= (9”1‘»3337 T (14.4)

where F is the empirical distribution, putting probability 1/n on
each x,.

The top panel of Table 14.2 shows five different approximate 90%
nonparametric confidence intervals for 6: the standard interval 6+
1.6457, where @ = 41.0, the bootstrap estimate of standard error;
the percentile interval (6*(:95) §*(-95)) based on the left histogram
in Figure 14.2; the BC, and ABC intervals, discussed in the next
two sections; and the bootstrap-t intervals of Chapter 12. Fach
interval (ao,gup) is described by its length and shape,

. 9. —
length = 6y — 6o, shape = ﬁ (14.5)

lo

“Shape” measures the asymmetry of the interval about the point
estimate 0. Shape > 1.00 indicates greater distance from §up to 0
than from 8 to 6’?\10. The standard intervals are symmetrical about
5., having shape = 1.00 by definition. Exact intervals, when they
exist, are often quite asymmetrical. The most serious errors made
by standard mtervals arc due to their enforced symumnetry.

In the spatial test probleimn the standard and percentile intervals
arc almost wdentical. They are both quite different than the BC,
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Figure 14.1. The spatial test data of Table 14.1.

and ABC intervals, which are longer and asymmetric to the right
of 8. A general result quoted in Section 13.2 strongly suggests the
superiority of the BC, and ABC intervals, but there is no gold
standard by which we can make a definitive comparison.

We can obtain a gold standard by considering the problem of
estimating var(A) in a normal, ® or Gaussian, parametric frame-
work. To do so, we assume that the data points z, = (A;, B;) are a
: random sample from a two-dimensional normal distribution Foyy,,

Fuorm = x = (-TlafEZa"‘«xn)- (146)
In the normal-theory framework we can construct an exact con-

3 In fact the normal distribution gives a poor fit to the spatial test data. This
does not affect the comparisons below, which compare how well the various
methods would approximate the exact interval if the normal assumption
were valid. However if we compare the normal and nonparametnec mtervals,
the latter arc preferable for this data sct,
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| |
50 100 200 300 100 200 300 400
Nonparametric Normal theory

Figure 14 2. Left panel: 2000 nonparametric bootstrap replications of the
varance 6 (14. 2) Right panel: 2000 normal-theory pammetnc bootsirap

replications 0f9 A solid vertical line 1s drawn at 6 wn each histogram.
The parametric bootstrap histogram s long-tailed to the right. These his-
tograms are used to form the percentile and BC, wntervals in Table 14.2.

fidence interval for 8 = var(A4). See Problem 14.4. This interval,
called “exact” in Table 14.2, is a gold standard for judging the
various approximate intervals, in the parametric setting.

Normal-theory parametric bootstrap samples are obtained by
sampling from the bivariate normal distribution Fhor, that best
lits the data x, instead of from the empirical distribution F,

F_‘nm'm —x" = (.’I?t,:l?;, o ,.’l?:;’). (147)
See Problem 14.3. Having obtaiied x*, the bootstrap replication

6" equals 3.7 (A} — A*)?/n as in (14.3). The right panel of Fig-
ure 14.2 18 the histogram of 2000 normal-theory bootstrap repli-

cations. Compared to the nonparametric case, this histogram is -

longer-tailed to the right, and wider, having & = 17.1 compared to
the nonparametric standard error of 41.0.

Looking at the bottom of Table 14.2, we see that the BC, and
ABC intervals * do a much better job than the standard or per-
centile methods of matching the exact gold standard. This 1s not
an accident or a special case. As a matter of fact bootstrap the-

ory, described briefly in Section 14.3, says that we should expect :

4 Parametric BC, and ABC methods are discussed in Chapter 22, with algo- ‘7

rithms given in the Appendix.
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Table 14.2. Top: five different approzwmate 90% nonparametric confi-
dence intervals for 0 = var(A); n this case the standard and percentile
wntervals are nearly the same; the BC, and ABC ntervais are longer,
and asymmetric around the pownd cstunate 0 = 171.5. Boitomn: pare-
metric normal-theory antervals. In the normal case there 1s an ezact
confidence wterval for 0. Notice how much better the exact wterval 1s
approzimated by the BC, and ABC ntervals. Bottom line: the bootstrap-
t wntervals are nearly exact in the parametric case, but gwe too large an
upper limit nonparametrically.

Nonparametric
method 0.05 0.95 length  shape
standard 98.8  233.6 134.8 1.00
percentile 100.8  233.9 133.1 0.88
BC, 115.8 259.6 143.8 1.58
ABC 116.7 260.9 144.2 1.63

bootstrap-t 112.3  314.8 202.5 2.42

Parametric (Normal-Theory)

method 0.05 0.95 length  shape
standard 91.9  251.2 159.3 1.00
pereentile 95.0 248.6 153.6 1.01
BC, 114.6 294.7 180.1 217
ABC 119.3 303.4 184.1 2.52
exact 118.4 3056.2 186.8 2.52
bootstrap-t 119.4  303.6 184.2 2.54

superior performance from the BC,/ABC intervals.

Bootstrap-t intervals for 6 appear in the bottom lines of Table
14.2. These were based on 1000 bootstrap replications of the t-
like statistic (4 — 0)/de, with a denominator suggested by standard
statistical theory,

26
e = [[]42;6[]22]1/2 (Un = (A A)"/26).  (14.8)

1=1
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Figure 14.3. A comparison of various approzimate confidence ntervals
for 8 = var(A), spatral test data; interval endpoint 5[01] s plotted ver-
sus 7 a) = 2(* Left panet: nonparametric indervals. Right panel:
normal-theory parametric miervals, In the puramelne case we can see
that the BC, and ABC endpowmls are close to the exact answer.

The resulting intervals, (12.19), are almost exactly right in the
normal-theory situations. However the upper limit of the nonpara-
metric interval appears to be much too large, though it is difficult
to be certain m the absence of a nonparametric gold standard. At
the present level of development the bootstrap-t cannot be recom-
nmended for general nonparametric problems.

14.3 The BC, method

This section describes the construction of the BC, intervals. These
are more complicated to define than the percentile intervals, but
almost as easy to use. The algorithm bcanon given 1n the Appendix
produces the nonparametric BC, intervals on a routine antomatic
basis.

Let 8*(®) indicate the 100 - ath percentile of B bootstrap repli-
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cations 0*(1),0%(2),- -~ ,0*(13), as in (13.5). The percentile mierval
(610, 6up) of intended coverage 1 — 2c, is obtained directly from
these percentiles,

percentile method: (@]U,gup) = (5*(“),5*(1_"‘))

For example, if B = 2000 and o = .05, then the percentile interval
(5*(‘05),5*(‘95)) 15 the interval extending the 100th to the 1900th
ordered values of the 2000 numbers 6*(b).

The BC, interval endpoints are also given by percentiles of the
bootstrap distribution, but not necessarily the same ones as in
(14.8). The percentiles used depend on two numbers & and Zo,
called the acceleration and has-correction. (BC, stands for bias-
corrected and accelerated.) Later we will describe how a and 2,
are obtained, but first we give the definition of the BC, wterval
endpoints.

The BC, wnterval of intended coverage 1 — 2, 18 given by

BCo ¢ (Blos Oup) = (8°),6(*), (14.9)
where
. %y + 2%
= 11(/: -
ay D 2o + 17&,(3()‘}‘2((!)))
S (L—cv)
O . e ) (14.10)

1~ a(Zo + (1=

Here ®(-) 1s the standard normal cumulative distribution function
and z(®) is the 100ath percentile point of a standard normal dis-
tribution. For example (%) = 1.645 and ®(1.645) = .95.

Formula {14.10) looks complicated, but it 1s easy to compute.
Notice that if @ and 2y equal zero, then

=8z =a and a;=0G" VN =1-a, (14.11)

so that the BC, interval (14.9) 1s the same as the percentile mterval
(13.4). Non-zero values of & or Zy change the percentiles used for
the BC, endpoints. ''hese changes correct certain deficiencies of
“the standard and percentile methods, as explained in Chapter 22.
The nonparametric BC, intervals in Table 14.2 are based on the
values

(&, 20) = (.061, .146), (14.12)
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giving
(al,ag) = (.110, .985) (14.13)
according to (14.10). Tn this case the 90% BC, interval is
(6*(110) g(985))y (e mterval exlending from the 220th to the
1970th ordered value of the 2000 numbers 6*(b).
How arc @ and 2o computed? The value of the bias-correction Zg
is obtained directly from the proportion of bootstrap replications

less than the original estimate 6,

\

. e (B < 8}
3= (TJ (14.14)

®~1(-} indicating the inverse function of a standard normal cu-
mulative distribution function, e.g., ®~!(.95) = 1.645. The left
histogram of Figure 14.2 has 1116 of the 2000 6* values less than
0= 171.5, 50 9 = ®~1(.558) = .146. Roughly speaking, 2y mea-
sures the median bias of 6*, that is, the discrepancy between the
median of 6* and 6, in normal units. We obtain 2y = 0 if exactly
half of the §*(b) values are less than or cqual to 4.

There are varlous ways to compute the acceleration a. The easi-
est to explain 1s given in terms of the jackknife values of a statistic
6 = s(x). Let x(;) be the origmal sample with the z2th point z,
deleted, let §(i) = 5(x(;y), and define §(_) =3, §(i)/n, as dis-
cussed at the beginning of Chapter 11. A simiple expression for the
acceleration is

P 00y — 8y)®
6{3 202, (60 — 6(iy)2 32
The statistic s(x) = >, ;(A; = A)?/n, (14.2), has @ = .061 for the
spatial test data. Both @ and 2, are computed automatically by the
nonparametric BC, algorithm bcanon. The quantity d is called the
acceleration because it refers to the rate of change of the standard
error of 6 with respect to the true parameter value . The standard
normal approximation § ~ N(0,se?) assumes that the standard

error of 6 is the same for all 8. However, this is often unrealistic
and the acceleration constant @ corrects for this. For instance, in

a=

(14.15)

the present example where 6 is the variance, it is clear in the normal -

theory case that se(§) ~ 6 (Problem 14.4). In actual fact, & refers
to the rate of change of the standard error of § with respect to the

[~ o+ -1

o~

ot el o R = B E~ Y

.

T

-— o~ et N
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true parameter value 6, measured on a normalized scale. It is not
all obvious why the formula (14.15) should provide an estimate of
the acceleration of the standard error: some discussion of this may
be found in Efron (1987).

The BC, method can be shown to have two important theoret-
ical advantages. [irst of all, il is transformation respecting, ® as i
(13.10). This mcans that the BC, endpoints transform correctly
it we change the parameter of interest from 6 to some function of
8. For example, the BC, confidence intervals for y/var(A) = V@
are obtained by taking the square roots of the BC, endpoints in
Table 14.2. The transformation-respecting property saves us from
concerns like those in Section 12.6, where we worried about the
proper choice of scale for the bootstrap-t intervals. A transformation-
respecting method like BC,, in effect automatically chooses its own
best scale.

The second advantage of the BC, method concerns its accuracy.
A central 1 — 2o confidence interval (élo,éup) 18 supposed to have
probability « of not covering the true value of 6 from above or
below,

Prob{f < 6.} =a and Prob{f >0} =a.  (14.16)

Approximate confidence intervals can be graded on how accurately
they match (14.16). The BC, intervals can be shown to be second-
order accurate. This means that its errors in matching (14.16) go
to zero at rate 1/n in terms of the sample size n,

-~ B Cy -~ - up
Prob{# < 61} = o+ Ao and Prob{f > Bup} = o+ Sup
n n
(14.17)
for two constants cjo and cyp. The standard and percentile methods
are only firsi-order accurate, meaning that the errors in matching
(14.16) are an order of magnitude larger,

-~ . io -~ . Cu
Prob{6 < 6jo} = a + -\C/l—ﬁ and Prob{d > 6,p} =+ \/—%,
(14.18)

5 This statement 1s strictly true if we modify definition (14.15) of & to use
derivatives instead of finite differences, as in Chapter 22. In practice, this
modification makes littie difference.
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the constants cj, and ¢, being possibly different from those above.
The difference between first and second order accuracy is not just a
theoretical nicety. It leads to much better approximations of exact
endpoints when exact endpoints exist, as seen on the right side of
Table 14.2.

"T'he bootstrap-t method 1s second-order accurate, but not trans-
[ormalion respecting. The pereentile method 1s transformation re-
specting but not second-order accurate. The standard method is
neither, while the BC, method is both. At the present level of |
development, the BC, intervals are recommended for general use,
especially for nonparametric problems. This is not to say that they
are perfect or cannot be made better: in the case study of Chapter
25, Section 25.6 uses a second layer of bootstrap computations to
improve upon the BC,/ABC intervals. Problem 14.13 describes a
difficulty that can occur with the BC, interval in extreme situa-
tions.

A typical call to the S language function bcanon has the form

bcanon(x,nboot, theta), (14.19)

where x is the data, nboot is the number of bootstrap replications,
and theta computes the statistic of interest §. More details may
be found in the Appendix.

14.4 The ABC method

The main disadvantage of the BC, method is the large number
of bootstrap replications required. The discussion in Chapter 19
shows that at least B = 1000 replications are needed in order to
sulliciently reduce the Monte Carlo sanmipling error. ABC, standing
for approxmate bootstrap confidence intervals, is a mcthod of ap-
proximating the BC, interval endpoints analytically, without using
any Monte Carlo replications at all. The approximation is usually
quite good, as seen in Table 14.2. (The differences between the
BC, and ABC endpoints in Table 14.2 are due largely to Monte
Carlo fluctuations in the BC, endpoints. Increasing B to 10,000
parametric replications gave a BC, interval (118.4,303.8), nearly
identical to the ABC interval.)

The ABC method is explained in Chapter 22. It works by ap-
proximating the bootstrap random sampling results by Taylor se-
ries expansions. These require that the statistic 8 = s(x) be defined
smoothly in x. An example of an unsmooth statistic is the sample
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median. For most commonly occurring statistics the ABC approxi-
mation is quite satisfactory. (A counterexample appears i Section
14.5.) The ABC endpoints are both transformation respecting and
second-order accurate, like their BC, counterparts. In 'l'able 14.2,
the ABC eudpoiuts required only 3% of the computational effort
for the BC, intervals,

The nonparametric ABC endpoints in Table 14.2 were obtained
from the algorithm abcnon given in the Appendix. In order to
nse.this algorithm, the statistic 8 = s(x) must be represented
resampling form. The resampling form plays a key role in advanced
explanations of the bootstrap, as seen in Chapter 20. We defined
the resampling form in Section 10.4. With the original sample x =
(z1,22, * ,y) considered to be fixed, we write the bootstrap value
f* = 8(x*) as a function of the resampling vector P*, say

0* = T(P*). (14.20)
The vector P* = (P}, Py,---, Py) consists of the proportions
#{z; > .}

P'=N/n= (e=1,2,- ,n). (14.21)

n
The statistic 0* = Yo (Ar = A*)%/n, (14.3), can be expressed
in form (14.20) as

0 = PlAi-A) where A*= PrA. (1422
=1 1=1

The function T(P*) in (14.20) is the resampling form of the
statistic used in the ABC algorithm abcnon. Recall that the special
resampling veclor

P’ =(1/n,1/n, -, 1/n) (14.23)

has T(P°) = 53 the original value of the statistic, since P° corre-
sponds to choosing each z, once in the bootstrap sample: x* = x.
The algorithm abcnon requires 7(P*) to be smoothly defined for
P* near P° This happens naturally, as in (14.22), for plug-mn statis-
tics 0 = L(ﬁ ).
A typical call to the S language function abcnon has the form
abcnon(x, tt) (14.24)

where x is the data and tt is the resampling version of the statistic
of interest 8*. More details may be found in the Appendix.



190 BIST'TEER BOOUSTRAP CONFIDENCIS INTERVALS

To swnmarize tlus section, the ABC wmtervals are transforma-
tion respecting, second-order accurate, and good approximations
to the BC, intervals for most reasonably smooth statistics 8* =
s(x*). The nonparametric ABC algorithm abconon requires that
the statistic be expressed in the resampling form §* = T(P*), but
aside from this it is as easy and automatic to use as the BC,
algorithin bcanon, and requires only a few percent as much com-
putation.

14.5 Example: the tooth data

6 We conclude this chapter with a more complicated example that
shows both the power and limitations of nonparametric BC,/ABC
confidence intervals.

Table 14.3 displays the tooth data. Thirteen accident victims
each lost from 1 to 4 healthy teeth. The strength of these teeth
was measured by a destructive testing method that could not be
used under ordinary circumstances. “Strength”, the last column of
Table 14.3, records the average measured strength (on a logarith-
mic scale) for each patient’s teeth.

The mvestigators wanted to predict tooth strength using vari-
ables that could be obtained on a routine basis. Four such variables
arc shown m Table 14.3, labeled Dy, Dy, Iy, I55. The pair of vari-
ables (Dy, D) arc difficult and expensive Lo obtain, while the pair
(E©, E;) are easy and cheap. The investigators wished to answer
the following question: how well do the Easy variables (E;, E2)
predict strength, compared to the Difficult variables (Dq, D3)?

We can phrase this question in a crisp way by using linear mod-
els, as in Chapters 7 and 9. Each row z, of the data matrix in
Table 14.3 consists of five numbers, the two D measurements, the
two E measurements, and the strength measurement, say

T, = (di]_,dig,eil,eﬂ,yi) (l = 1,2,"',13). (1425)

Let D be the matrix we would use for ordinary linear regression
of y; on just the D variables, including an intercept term, so D is
he 13 x 3 matrix with ith row

(1,di1, diy). (14.26)

% Some of the material m this section 18 more advanced. It may be skipped
at first reading.

vy s e g
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Table 14.3. The tooth data. Thirteen accident victims have had the
strength of thewr teeth measured, rght column. It ws deswred to predict
tooth strength from mensurements not requiring desiructive testing. Four
such varwables have been measured for each subject: the pawr labeled
(D1, D), are difficult to obtawn, the pawr labeled (Fy, E2) are easy to
obtain. Do the Easy variables predict strength as well as the Difficult
ones?

patient D, D, F, B, strength
1 -5.288 10.091 1230 13.08 36.09
2 -5.944 10.001 11.41 1298 35.51
3 -5.607 10.184 11.76 13.19 35.35
4 -5.413  10.131  12.09 12.75 35.95
5 -5.198 8.835 10.72 11.73 34.64
6 -5.598  9.837 11.74 12.80 33.99
7 -6.120 10.052 11.10 12.87 34.60
8 -5.572 9.900 11.85 12.72 34.62
9 -6.056  9.966 11.78 13.06 35.05
10 -5.010 10.449 12.91 13.15 35.85
11 -6.090 10.294 11.63 12.97 35.53
12 -5.900 10.262 11.91 13.15 31.86
13 -5.620 9.316 10.89  12.25 34.75

The least-squares predictor of y; 1n terms of the D variables 1s

(D) = Bo(D) + f1(D)dir + B2(D)dy (14.27)
where E(D) = (EO(D), El(D),ﬁg(D)) is the least-squares solution
(9.28),

A(D) = (D'D)"'DTy, (14.28)

y being the vector (yi,y2,: -,¥13). The residual squared error
RSE(D) is the total squared difference between the predictions
7:(D) and the observations y; for the n = 13 patients,
n
RSE(D) = ) _(y: — 5:(D))*. (14.29)

n=1
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Small values of RSE(D) indicate good prediction, the best possible
value RSE(D) = 0 corresponding to a perfect prediction for every
patient.

In a similar way we can predict the y; from just the E measure-
ments, and compute

RSE(E) =Y (vi — 5i(E))* (14.30)

The investigalor’s question, how do the D and J variables compare
as predictors of strength, can be phrased as a comparison between

RSE(D) and RSE(E). A handy comparison statistic is
~ 1
9 = ~[RSE(F) - RSE(D)] (14.31)

A positive value of 9 would indicate that the E variables are not
as good as the D vanables for predicting strength. (If the number
of E and D measures were not the same,  should be modified: see
Problem 14.12).

The actual RSE values were RSE(D) = 2.761 and RSE(E) =
3.130, giving

6 = .0285. (14.32)

This suggests that the D variables are better predictors, since 0
is greater than 0, but we can’t decide if this 1s really true until
we understand the statistical variability of 9. We will use the BC,
and ABC methods for this purpose. Figure 14.4 suggests that it
will be a close call, since the predicted valucs (D) and %;(E) are
quite similar on a case-by-case basis. Notice also that the differ-
ence between RSE(E) and RSE(D) is only about 10% as big as
the RSIE values themscelves, so even if the difference 1s statistically
significant, 16 may not be of great practical importance. Conlidence
itervals are a good way to auswer both the significance and -
portance questions.

The left panel of Figure 14.5 is a histogram of 2000 nonpara-
metric bootstrap replications of the RSE difference statistics 9,
(14.31). Let x = (z, @2, --,%13) indicate the tooth data matrix in
Table 14.3, xz, being the ith row of the matrix, (14.25). A nonpara-
metric bootstrap sample x* = (z},z3, -, z}3) has each row z}
randomly drawn with replacement from {z1,z2,  ,x13}. Equiva-
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Figure 14.4. The least-squares predictions y(D), horizonial axis, versus

Ui(E), vertical ams, for the 13 patients wn Table 14.3. The 45° line 1s
shown for reference. The two sets of predictions appear quite sumalar.

lently,
F—x*=(a},25, ,2}y), (14.33)

where F' 1s the empirical distribution, putting probability 1/13 on
each x,.
By following delinitions (14.25)-(14.30) the bootsirap matrix x*
gives y*,D*sﬁ(D)*,?]i(D)* and then
13

RSE(D)* =Y (y; — 5:(D)"), (14.34)

=1

and likewise RSE(E)* = 312 (4 — 5:(E)*)?. The bootstrap repli-

1
cation of 4 s

o = il—S—[RSE(E)* —~ RSE(D)*]. (14.35)
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Figure 14.5. Left panel: 2000 nonparametric bootstrap replications of the
RSE difference statistic ? (14.81); bootstrap standard error estimate 15
S82000 = .0311; 1237 of the 2000 & wvalues are less than § = .0285,
so zo = .302. Right panel: quantile-quantile plot of the 6* values. Thewr
distribution has much heawter tails than a normal distribution.

As always, B* is computed by the same program that gives the
original estimator 8. All that changes is the data matrix, from x
to x*.

The bootstrap histogram contains the information we need to
answer questions about the significance and importance of 8. Before
going on (o construct coufidence intervals, we cau say quite a bit
just Ly inspection. The bootstrap standard error estimate (6.6) is

§2000 = -0311. (14.36)

This means that & = .0285 is less than one standard error above
zero, so we shouldn’t expect a conclusive significance level against
the hypothesis that the true value of 8 equals 0. On the other
hand, the estimate is biased downward, 62% of the §* values being
less than 8. This implies that the significance level will be more
conclusive than the value .18 = 1 — $(.0285/.0311) suggested hy
the normal approximation o~ N(9,.03112).

The bootstrap histogram makss it seem likely that 0 1s no greater
than .0.10. How important is this difference? We need to say ex-
actly what the parameter ¢ measures in order to answer this ques-
tion. If F' indicates the true five-dimensional distribution of the
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vector (dy,dy, €1, ¢q,y), then

p = I?in Erly — (Bp, + Bp,d1 + Bp,d2))* and
D
Op = mmBrly — (B, + A, e+ Brea))® (14.37)

are the true squared prediction errors using the D or E variables,
respectively. The parameter § corresponding to the plug-in esti-
male 6, (14.31), is

0="0p—0p. (14.38)

The plug-in estimate of 8 is 6 = RSE(D)/13 = .212. Our belief
that 8 < .10 gives
fr —0p 6 — 0p .10
= — < =
fp o5 212

A7 (14.39)

To summarize, the F variables arc probably no better than the D
variables for the prediction of strength, and are probably no more
than roughly 50% worse.

The first column of Table 14.4 shows the BC, confidence limits
for ¢ based on the 2000 nonparametric bootstrap replications.

Confidence limits 8a] are given for eight values of the signifi-
cance level o, @ = .025,.05, - - -,.975. Confidence intervals are ob-
tained using pairs of these limits, for example (8].05],6].95]) for a
90% interval. (So .05 corresponds to @ and .95 corresponds to 1 —a
in (14.10).) Formulas (14.14) and (14.15) give a small acceleration
and a large bas-correction in this case, @ = .040 and 2, = .302.

Notice that the .05 nonparametric limit is positive, 8].05] = .004.
As mentioned earlier, this has a lot to do with the large bias-
correction. If the BC, method were exact, we could claim that
the null hypothesis § = 0 was rejected at the .05 level, one-sided.
The method is not exact, and it pays to be cautious about such
claims. Nonparamctric BC, intervals are often a little too short,
especially when the sample size is small, as it 15 here. If the hy-
pothesis test were of crucial importance it would pay to improve
the BC, significance level with calibration, as in Section 25.6.

As a check on the nonparametric intervals, another 2000 boot-
strap samples were drawn, this time according to a multivariate
normal model: assume that the rows z, of the tooth data matrix
were obtained by sampling from a five-dimensional normal distri-
bution Fiorm; fit the best such distribution F‘nom, to the data (see
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~

Table 14.4. Bootstrap confidence limits for 6, (14.31); limits 0[a] gqwen
for szgniﬁiance levels @ = .025,.05,--+,.975, so central 90% wnterval
1s (6].05),6[.95]). Left panel: nonparametric bootstrap (14.33); Center
panel: normal theory bootstrap (14.7); Right panel: linear model boot-
strap, (9.25), (9.26). BC, limits based on 2000 bootstrap replications
for each of the three models; ABC limats obtawned from the programs
abcnon and abepar n the Appendiz (assumang normal errors for the
linear model case); values of & and 3y vary depending on the details of
the program used. The ABC limats are much too short wn the nonpara-
metric case because of the very heavy tails of the bootsirap distribution
shown . Figure 14.5. Notwce that wn the nonparametric case the boot-
strap cstimate of standard error s nearly tunce as big as the estimate
used wn the ABC caleulations.

nonparanletric normal theory linear model
e BC, ABC BC, ABC BC.. ABC
0.025 -0.002 0.004 -0.010 -0.010 -.031 -0.019
0.05 0.004 0.008 -0.004 -0.004 -.020 -0.012
0.1 0.010  0.012 0.004 0.003  -.008 -0.004
0.16 0.015 0.016 0.010 0.010 .000 0.003
0.84 0.073  0.053 0.099 0.092 .070 0.067
0.9 0.095  0.061 0.113 0.111 .083 0.079
0.95 0.155  0.072 0.145 0.139 .098 0.094
0.975 0.199 0.085 0.192 0.167 118 0.108
se .0311 .0170 .0349 .0336 .0366 .0316
a .040 .056 .062 .062 0 0
2 .302 .203 353 372 .059 .011

Problem 14.3); and sample x* {rom Flom s in (14.7). Then o*
18 obtamed as before, (14.34). The histogram of the 2000 normal-
theory 0%, left panel of Figure 14.6, looks much like the histogram
in Figure 14.5, except that the tails are less heavy.

The BC, intervals are computed as before, using (14.9), (14.10).
The bias-correction formula (14.14) is also unchanged. The acceler-
ation constant @ is calculated from a parametric version of (14.15)
appearing in the parametric ABC program abcpar. In this case
the normal-theory BC, limits, center panel of Table 14.4, are not

ys!

an
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Figure 14.6. Bootstrap replications gwng the normal theory and linear
model BC, confidence limits an Table 14.4. Left panel: normal theory;
Right panel: linear model. A broken line s drawn at the parameler esti-
mate.

much different than the nonparametric BC, limits. The difference
is large enough, though, so that the hypothesis § = 0 is no longer
rejected at the .05 one-sided level.

There is nothing particularly normal-looking about the tooth
data. The main reason for computing the normal-theory bootstraps
is the small sample size, n = 13. In very small samples, even a badly
fitting parametric analysis may outperform a nonparametric anal-
ysis, by providing less variable results at the expense of a tolerable
amount of bias. That 1sn’t the case here, where the two analyses
agree.

Chapter 9 discusses linear regression models. We can use the
linear regression model to develop a different bootstrap analysis of
the RSE differencc statistic 8. Using the notalion m (14.25), let ¢,
be the vector

c; = (Lidy,, do, ey €20), (14.40)

and consider the linear model (9.4), (9.5),
yi=c;G+e (z=1,2,-+-,13). (14.41)
Bootstrap samples y* = (yi,y5, -, ¥73) are constructed by resam-

pling residuals as mn (9.25, 9.26). The bootstrap replication 7" is
still given by (14.35). Notice though that the calculation of 7;(D)*
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and 7;(E)* 1s somewhat different.

The right panel of Figure 14.6 shows the bootstrap distribution
based on 2000 replications of §*. The tails of the histogram are
much lighter than those in Figure 14.5. This is reflected in nar-
rower bootstrap confidence intervals, as shown in the right panel
of Table 14.4. Even though the intervals are narrower, the hypoth-
esis 8 = 0 1s rejected less strongly than before, at only the a = .16
level. This happens because now 8 does not appear to be biased
strongly downward, ¢ equaling only .059 compared to .302 for the
nonparametric case.

Confidence ntervals and hypothesis tests are delicate tools of
statistical inference. As such, they are more affected by model
choice than are simple standard errors. This is particularly true
in small samples. Exploring the relationship of five variables based
on 13 observations is definitely a small sample problem. Even if the
BC, intervals were perfectly accurate, which they aren’t, different
model choices would still lead to diflerent confidence intervals, as
seen in Table 14.4.

Table 14.4 shows ABC limits for all three model choices. These
were obtained using the programs abcnon and abepar in the Ap-
pendix. The nonparametric ABC limits are much too short in
this case. This happens because of the unusually heavy tails on
the nonparametric bootstrap distribution. In traditional stalistical
language the ABC method can correct for skewness in the boot-
strap distribution, but not for kurtosis. This 1s all it needs to do to
achieve second order accuracy, (14.17). However the asymptotic ac-
curacy of the ABC intervals doesn’t guarantee good small-sample
behavior.

Standard errors for 8 are given for each of the six columns in Ta-
ble 14.4. The BC, entries are the usual bootstrap standard errors.
ABC standard errors are given by the delta method, Chapter 21,
a close relative of the jackknife standard error, (11.5). The BC,
standard error is nearly double that for the ABC in the nonpara-
metric case, strongly suggesting that the ABC intervals will be too
short. (The greater BC, standard error became obvious after the
first 100 bootstrap replications.) Usually the ABC approximations
work fine as in Table 14.2, but it is reassuring to check the standard
errors with 100 or so bootstrap replications.

BIB
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14.6 Bibliographic notes

Background references on bootstrap confidence intervals are given
in the bibliographic notes at the end of Chapter 22.

14.7 Problems
14.1 Verify that (14.1) is the plug-in estimate for @ = var(A).

14.2 The estimate 5, (14.1), only involves the A; components of
the x, pairs. In this case we might throw away the B; com-
ponents, and consider the data to be A = (A;, Az, - -, A4,.).

(a) Describe how this would change the nonparamctric
bootstrap sample (14.4).

(b) Show that the nonparametric bootstrap intervals for
0 would stay the same.

14.3 I?'norm in (14.7) 1s the bivariate normal distribution with
mean veclor (A, B) and covariance matrix

1 ( (A — A V(A - A)(B; B))
26 \ Y(4; — A)(B; - B) S (B - B)?

What would ﬁ,m[-,“ be if we reduced the data to A as mn
problem 14.27

14.41 In the normal-theory case it can be shown that 6 1s dis-
tributed according to a constant multiple of the chi-square
distribution with n — 1 degrees of freedom,

Xa-1
o
(a) Show that [var(8)]}/? 6.

(b) Use (14.42) to calculate the exact interval endpoints
in Table 14.2.

f~0

(14.42)

14.5 For the normal-theory bootstrap of the spatial test data,
(&, 20) = (.092,.189). What were the values of a; and oy
in (14.10)?

14.6 Explain why it makes sense that having 1118 out of 2000

9* values less than 8 leads to a positive bias-correction at
(14.14).
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14.7

14.8

14.9

14.10

14.11

14.12

BETTER BOOTSTRAP CONFIDENCE INTERVALS

A plug-n statistic 6 = t(F) does not depend on the order

of the points », in x = (&, v, - ,w,). Rearranging the

order of the points does not change the value 8. Why is

this important for the resampling representation (14.20)?7

Suppose we take o equal to the sample correlation coeffi-

cient for the spatial data,

- T _ n n

6= (A~ A)Bi ~ B/[Y_(A: = A*) (B: - B’]'/?
1 1

1
What is the resampling form (14.20) in this case?

Explain why 6 as given by (14.38) is the parameter corre-
sponding to 6, (14.31). Why is the factor 1/n included n
definition (14.31)7

We substituted 6p for 0p in the denominator of (14.39).
What is a better way to get an approxunate upper limit
for (6E - BD)/GE?

Explain how 7;(D)* is calculated in (14.34), as opposed to
its calculation in finding 6* in model (14.41).

Suppose there were pr E measures and pp D measures.
Shiow Lhial an appropriate definition for 6 1s
RSE(E) RSE(D)

H*])Ig—l II,—])[)-—]

§ =

(14.43)

14.131 Non-monotomcity of the BC, powmnt.

Consider the BC, confidence point for a parameter 8, as
defined 1n equation (14.9). Define

20 + Z(a)

AL R TG )

(14.44)

For simplicity assume # = 0 and 2o = 0.

(a) Set the acceleration constant & = 0 and plot 2[o]
against « for 100 equally spaced « values between .001
and .999. Observe that z[a] is monotone increasing in
a, so that the BC, confidence point is also monotone
increasing in o.

(b) Repeat part (a) for & = +£0.1,40.2, ..£0.5. For what

values of @ and a does z[a] fail to be monotone?

PRC

14.

14.
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(c) To get some idea of how large a value of & one mighl
expect m practice, generate a standard normal sample
Ty, T3, - .23 Compule the acceleration a for 6 = z.
Create a more skewed sample by defining y; = exp(z,),
and compute the acceleration & for § = §. Repeat this
for z; = exp(y;). How large a value of & seems likely to
occur in practice?

14.14 For the tooth data, compute the percentile and BC, confi-
dence intervals {or the parameter § = E(D; — Ds).

14.15 For the spatial test data, compute BC, confidence intervals
for 8, = log E(A/B) and 62 = Elog(A/B). Are intervals

the same? Explain.

1 Indicates a difficult or more advanced problem.



CHAPTER 15

Permutation tests

15.1 Introduction

Permutation tests are a computer-intensive statistical technique
that predates computers. The idea was introduced by R.A. Fisher
in the 1930’s, more as a theoretical argument supporting Student’s
t-test than as a useful statistical method in its own right. Modern
computational power makes permutation tests practical to use on
a routine basis. The basic 1dea is attractively simple and free of
mathematical assumptions. There is a close connection with the
bootstrap, which 1s discussed later in the chapter.

15.2 The two-sample problem

The main application of permutation tests, and the only one that
we discuss here, is to the two-sample problem (8.3)-(8.5): We ob-
serve two independent random samples z = (21,22, -+, 2,) and
y = (y1,Y2," ,Ym) drawn from possibly different probability dis-
tributions F' and G,

F — z = (21,22, -,%,) independeutly of
G- y=Lyz  Ym)
(15.1)

Having observed z and y; we wish to test the null hypothesis Hg ol
no difference between F' and G,

Hy: F=G. (15.2)

The equality F' = G means that F and G assign equal probabilities
to all sets, Probp{A} = Probg{A} for A any subset of the common
sample space of the 2’s and y’s. If Hp is true, then there is no
difference between the probabilistic behavior of a random z or a
random y.

), A N O
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Hypollesis testing is a useful tool for situations like that of the
mouse data, Table 2.1. We have observed a smiall amount of data,
n = 7 Treatment measurements and m = 9 Controls. The differ-
ence of the means,

§=z—7=23063, (15.3)

encourages us to believe that the Trealment distribution F' gives
longer survival times than does the Countrol distribution G. As a
matter of fact the experiment was designed to demonstrate exactly
this result.

In thus situation the null hypothesis (15.2), that ' = G, plays the
role of a devil’s advocate. If we cannot decisively reject the possi-
bility that Hp is true (as will turn out to be the case for the mouse
data), then we have not successfully demonstrated the superiority
of Treatment over Control. An hypothesis test, of which a permu-
tation test 1s an example, 1s a formal way of deciding whether or
not the data decisively reject Ilp.

An hypothess test begins with a test statistic 6 such as the mean
difference (15.3). For convenience we will assume here that if the
null hypothesis Hy is not true, we expect to observe larger values of
6 than if Hy is true. If the Treatment works better than the Control
in the mouse experiment, as intended, then we expect 6§ = 2 — 7 to
be large. We don’t have to quantify what “large” means in order
to run the hypothesis test. All we say is that the larger the value of
f we observe, the stronger is the evidence against Hy. Of course in
other situations we might choose smaller instead of larger values to
represent stronger evidence. More complicated choices are possible
too; see (15.26).

Having observed 6, the achieved significance level of the test,
abbreviated ASL, is defined to be the probability of observing at
least that large a valuc when the null hypothesis is true,

ASL = Proby, {6* > 6}. (15.4)

The smaller the value of ASL, the stronger the evidence against Ho,
as detailed below. The quantity 8 in (15.4) is fixed at its observed
value; the random variable * has the null hypothesis distribution,
the distribution of 6 if Hj is true. As beforg, the star notation
differentiates between the actual observation # and a hypothetical
6 generated according to Hy.

The hypothesis test of Hy consists of computing ASL, and see-
ing if it is too small according to certain conventional thresholds.
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Formally, we choose a small probability a, like .05 or .01, and reject
Hy if ASL is less than a. If ASL is greater than «, then we accept
Hy, which amounts to saying that the experimental data does not
decsively reject the null hypothesis (15.2) of ahsolutely no differ-
ence between F' and G. Less formally, we observe ASL and rate the
evidence against Hy according to the following rough conventions:

ASL < .10 borderline evidence agaunst 1l
ASL < .05  reasonably strong evidence agast Hy
ASL < .025 strong evidence against Hy
ASL < .01  very strong evidence against Hy
(15.5)

A traditional hypothesis test for the mouse data might begin
with the assumption that F' and G are normal distributions with
possibly different means

F = N(pr,0?), G = N(uc,0?). {(15.6)

The null hypothesis 1s Ho - pr = pc. Under Hy, 6=z- 7 has a
normal distribution with mean 0 and variance ¢%{1/n + 1/m],

Hy : 9~N(0,02(%+%)); (15.7)

see Problem 3.4. Having observed 6, the ASL is the probability
that a random variable 6* distributed as in (15.7) exceeds 8,

ASL = Prob{Z>—é—}

o1l/n+1/m
9
11— ————),
)(a\/l/n + l/m)

where ® is the cumulative distribution function of the standard _
normal variate Z.
We don’t know o. A standard estimate based on (15.6) is

|

F={D (-2 +D (y; —)/In+m—-2}/%,  (15.9) .
=1 =1

which equals 54.21 for the mouse data. Substituting & in (15.8)
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and remembering that 0 =30.63 gives
30.63 )
54.21\/1/9 +1/7

This calculation treats & as if it were a fixed constant. Student’s
t-test, which takes mto account the randomness in @, gives

ASL =1 - &( = 131 (15.10)

30.63
ASL = l’roh{I.M > ' } =

54.21/1/9 + 1/7
t14 indicating a ¢ variate with 14 degrees of freedom. Student’s
test is based on the test statistic 8/[5+/1/n + 1/m]'/2, instead of

6. This statistic has a tn+m—2 distribution under the null hypoth-
esis. In this case neither (15.10) nor (15.11) allows us to reject the
null hypothesis Hy according to (15.5), not even by the weakest
standards of evidence.

The main practical difficulty with hypothesis tests comes i cal-
culating the ASL, (15.4). We have written Proby, {#* > 6} as if
the null hypothesis Ho specifies a single distribution, from which
we can calculate the probability of §* exceeding f. In most prob-
lems the null hypothesis (15.2), F' = G, leave us with a family of
possible null hypothesis distributions, rather than just one. In the
normal case (15.6) for instance, the null hypothesis family (15.7)
includes all normal distributions with expectation 0. In order to
~ actually calculate the ASL, we had to either approximate the null
hypothesis variance as in (15.10), or use Student’s method (15.11).
Student’s method nicely solves the problem, but it only applies to
the normal situation (15.6).

Fisher’s permutation test is a clever way of calculating an ASL
for the general null hypothesis F' = G. Here 1s a simple description
of it before we get into details. If the null hypothesis 1s correct,
any of the survival times for any of the mice could have come
qually well from either of the treatments. So we coinbine all the
m -+ n observations from both groups together, then take a sample
of size m without replacement to represent the first group; the
remaining n observations constitute the second group. We compute
the difference between group means and then repeat this process
a large number of times. If the original difference in sample means
falls outside the middle 95% of the distribution of differences, the
two-sided permutation test rejects the null hypothesis at a 5% level.
" Permutation tests are based on the order statistic representation
of the data x = (z,y) from a two-sample problem. Table 15.1 shows

i1, (15.11)
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Table 15.1. Order statistic representation for the mouse data of To-
ble 2.1. All 16 data points have been combined and ordered from smallest

W, 9

to largest. The group code s “z” for Treatment and “y” for Control. For

example, the 5th smallest of all 16 data pownts equals 31, and occurs po:
the Control group. ing
dey
group: 'y %2 7% Yy y 2 y y
ranki 1 2 3 4 5 6 7 8 Pey
value: 10 16 23 27 31 38 40 46 bil
In
group: Yy y z z ¥ 2 y 2 F -
rank: 9 10 11 12 13 14 15 16 say
value - 50 52 94 99 104 41 146 197
For
the order statistic representation for the mouse data of Table 2.1.
All 16 survival times have been combined and ranked from smallest
to largest. The bottom line gives the ranked values, ranging from
the smallest value 10 to the largest value 197. Which group each wh
data pomt belongs to, “2" for Treatment or “y” for Control, is 1,2
shown on the top line. The ranks 1 through 16 are shown on the I
second line. We see for instance that the 11th smallest value in the
combined data set occurred in the Treatment group, and equaled e
94. Table 15.1 contamns the same information as Table 2.1, but :
arranged in a way that makes 1t easy to compare the relative sizes ' The
of the Treatment and Control values.

Let N equal the combined sample size n + m, and let v put
(v1,vs,---,vN) be the combined and ordered vector of values; N tior.
16 and v = (10,16,23, --,197) for the mouse data. Also let g = be t
(g1:92," - ,9n) be the vector that indicates which group each or-
dered observation belongs to, the top line in Table 15.1. ! Together
v and g convey the same information as x = (z,y).

The
L Tt is convenient but not necessary to have v be the ordered elements of (z, y) the

Any other rule for listing the elements of (z,y) will do, as long as it doesn’t
involve the group 1dentities. Suppose that the elements of (z,y) are vectors
m R? for exainple. The v could be formed by ordering the members of (z,y)
according to their first components and then breaking ties according to the
order of their second components. If there are identical elements in (z,
then the rule for forming » must mclude randomization, for instance “pai
of identical elements are ordered by the flip of a fair coin.”
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The veclor g consists of n 2’s and m y’s. There are
N N
= (15.12)
n nlm!
possible g vectors, corresponding to all possible ways of partition-
ing N elements into two subsets of size n and m. Permutation tests
depend on the following important result:
Permutation Lemma. Under Hy : F = G, the vector g has proba-
bility 1/(N) of equaling any one of its possible values.
In other words, all permutations of 2’s and y’s are equally likely if
F = G. We can think of a test statistic § as a function of g and v,
say
0= S(g,v). (15.13)

For instance, 8 = Z — § can be expresscd as

- 1 1
0= ; Z‘Ui—% Zvi, (1514)
gi==z 1=y
where 3 _ v; indicates the sum of the v; over values of 1 =
1,2,--+, N having g; = 2.

Let g* indicate any one of the (1:) possible vectors of n z's and
m y’s, and define the permutation replication of 8,

i = 0(g") = S(g*,v). (15.15)
There are () permutation replications §*. The distribution that

puts probability 1/ (17\{ ) on each one of these is called the permuta-

_tion distribution of é, or of 6*. The permutation ASL is defined to
-be the permutation probability that 6* exceeds 6,

ASLperm = Probpem{8* > 6}
#10" > é}/_(i:). (15.16)

The two definitions of ASL;,ery, 10 (15.16) are 1dentical because of
the Permutation Lemma.

In practice ASLyern 18 usually approximated by Monte Carlo
~methods, according to Algorithm 15.1.
The permutation algorithm is quite similar to the bootstrap algo-
ithm of Figure 6.1. The main difference is that sampling is carried
ut without replacement rather than with replacement.

fl
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Algorithm 15.1

Computation of the two-sample permutation test statistic

1. Choosc B mdependent vectors g*(1), g*(2), --,g*(B),
cach consisting of n 2’s and m s and each being randomly
sclected from the set ol all ("\:) possible such vectors. [I3
will usually be at lcast 1000; sce Table (15.3).]

2. TGvaluate the permutation replications of 8 corresponding
to each permutation vector,

6*(b) = S(g*(b),v), b=1,2,- B (15.17)
3. Approximate ASLycrm by
ASLperm = #{6%(b) > 6}/B. (15.18)

The top left panel of Figure 15.1 shows the histogram of B =
1000 permutation replications of the mean difference 0=%-3,
(15.3); 132 of the 1000 6* replications exceeded 6 = 30.63, so this
reinforces our previous conclusion that the data in Table 2.1 does
not warrant rejection of the null hypothesis F' = G:

ASLperm = 132/1000 = .132. (15.19)

The permutation ASL 1s close to the i-test ASL, (15.11), even
though there are no normality assumptions underlining ASLpeym.
This is no accident, though the very small difference between (15.19)
and (15.11) 1s partly fortuitous. Fisher demoustrated a close the-
oretical connection between the permutation test based on z — §
and Student’s test. See Problem 15.9. His main point in introduc
ng permutation tests was to support the use of Student’s test in
non-normal applications.

How many permutation replications are required? For convenient
notation let A = ASLperm and A = ASLyerm. Then B - A equals:
the number of §*(b) values exceeding the observed value 6, and s
has a binomial distribution as in Problem 3.6,

ARy T O D

1-4)

B A ~Bi(B,A4); E(A) = A, var(A) = Al 5 (15.20
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M !
] 11
1
i
- E - B 1l
1 i | i
—————— —_—
-50 0 50 -50 0 50
Mean: ASL=.132 10% trimmed mean: ASL=.138

-

.

-50 0 50 -50 0 50

25% trimmed mean: ASL=.152 Median: ASL=.172

Figure 15.1. Permutation distributions for four different test statistics
0/,_\mouse data, Table 2.1; dashed line wndicates observed value of é:
ASLyerm leads to non-rejectron of the null hypothesis for all four statis-
tics. Top left: 6=z— 7, difference of means, Treatment-Control groups.
Top rght: 6 equals the difference of 15% trummed means. Bottom lefi:
difference of 25% irimmed means. Bottom right: difference of medians.

(Remember that 6 is a fixed quantity in (15.18), only §* beng
random.) The coefficient of variation of A 15

cvp(d) = [%]1/2 (15.21)

The quantity [(1—A)/A]'/? gets bigger as A gets smaller, as shown
in Table 15.2.
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Table 15.2. [(1 — A)/A}"/? as a function of A.

A 5 .25 A1 .05 025
[(1— A)/AIY?: 100 1.73 3.00 4.36 6.24

Suppose we require ch(A) to be .10, meaning that we don’t
want Monte Carlo error to affect our estimate of ASLyerm by more
than 10%. Table 15.3 gives the number of permutation replications
B required.

The reader may have been bothered by a peculiar feature of
permutation testing: the permutation replications 6 = S(g*,v)
change part of the original data but leave another part fixed. Why
should we resample g but not v? Some good theoretical reasons
have been given in Lhe stalistics lterature, but the maim reason
18 practical. “Conditiomng on v”, 1e. keeping v lixed m the per-
mutation resampling process, reduces the two-sample situation to
a single distribution, under the null hypothesis F' = G. This 1s
the essence of the Permutation Lemma. The quantity ASLpern —
Probpenn{#* > 6} is well-defined, though perhaps difficult to calcu-
late, because Probperm refers to a unique probability distribution.
The quantity ASL = Probg, {§* > 6} is not well defined because
there is no single distribution Probg,.

The greatest virtue of permutation testing is its accuracy. If
Hy - F = G 1s true, there is almost exactly a 5% chance that
ASLperm will be less than .05. In general,

Proby,{ASLperm < 2} = o (15.22)
for any value of a between 0 and 1, except for small discrepan-
cies caused by the discretencss of the permutation distribution.

See Problem 15.6. This is important because the interpretive scale
(15.5) is taken very literally in many fields of application.

15.3 Other test statistics

The permutation test’s accuracy applies to any test stalistic é.
The top right panel of Figure 15.L refers to the dillerence of the
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Table 15.3. Number of permutations required to make cv(ZSI) < .10, as
a function of the achieved significance level.

ASLpeem: 5 25 .1 .05 .025
B: 100 299 900 1901 3894

.15 trimmed means, ?
é = 5.15 - 9_154 (1523)

The bottom left panel refers to the difference of the .25 trimmed
means, and the bottom right panel to the difference of medians.
The same B = 1000 permutation vectors g* were used in all four
panels, only the statistic §* = S(g*,v) changing. The four val-
ues of ASLyeem, -132,.138,.152, and .172, are all consistent with
acceptance of the null hypothesis 1" = G

The fact that every 6 leads to an accurate ASLpep does not
mean that all §’s are equally good test statistics. “Accuracy” means
these ASLperm won't tend to be misleadingly small when Hy 1s
true, as stated in (15.22). However if Hj is false, if Trealment
really is better than Control, then we want ASLyerm to be small.
This property of a statistical test is called power. The penalty for
choosing a poor test statistic 8 is low power — we don’t get much
probability of rejecting Hy when it is false. We will say a little more
about choosing 6 in the bootstrap discussion that concludes this
chapter.

Looking at Table 2.1, the two groups appear to differ more in
variance than in mean. The ratio of the estimated variances is
nearly 2.5,

62/67 =2.48. (15.24)

Is this difference genuine or just an artifact of the small sample
sizes?
We can answer this question with a permutation test. Figure 15.2

% The 100 a% trimmed mean “Z,” of n numbers x1,z2, -+, Ty 15 defiled as
follows: (i) order the numbers (1) < @(2y,**+; < ¥(n), (ii) remove the n — o
smallest and n - a largest numbers; (iii) then Z4 equals the average of the
remaiming n (1 — 2a) numbers. Interpolation is uecessary if n - a s not an
integer. In this notation, the mean 18 #o and the median 18 & 50; % .25 15 the
average of the middle 50% of the data.



i

212 PERMUTATION TESTS |

shows 1000 permutation replications of

§ = log(62/52). (15.25)
(The logarithm doesn’t affect the permutation results, see Problem
15.1). 152 of the 1000 §* values exceeded § = log(2.48) = .907, giv-
g A/S\LpGrm =.152. Once again there are no grounds for rejecting
the null hypothesis ' = G. Notice that we mught have rejected
Hy with this 6 even il we didu’t reject it with 6 = z — g. This é
measures deviations from Hp in a different way than do the 0’s of
Figure 15.1.

The statistic log(67/67) differs from Z — § in an important way.
The Treatment was designed to increase survival times, so we ex-
pect Z—g to be greater than zero if the Treatment works, i.e., if Hj
1s false. On the other hand, we have no a priori reason for believing
6 =1log(&2/62) will be greater than zero rather than less than zero
if Hg is false. To put it another way, we would have been just as
interested in the outcome 6 == —log(2.48) as in § = log(2.48).

In tlus situation, it 15 comumon to compute a two-sided ASL,
rather than the one- szded ASL {15.4). This is done by comparing
the absolute value of §* with the absolute value of 6,

ASLperm (two-sided) = #{|6*(b)| > |6]}/B. (15.26)

Equivalently, we count the cases where either 6* or ~6* exceed [é|
The two-sided ASL is always larger than the one-sided ASL, giving
less reason for rejecting Hp. The two-sided test is inherently more
conservative. For the mouse data, statistic (15.25) gave a two-sided
ASL of .338.

The idea of a significance test can be stated as follows: we rank
all possible data sets x according to how strongly they contradict
the null hypothesis Ho; then we reject Hy if x 1s among the 5% (or
10%, or 1% etc., as in (15.5)) of the data sets that most strongly
contradict. Ho. The definition of ASL in (15.4) amounts to mea-
suring contradiction according to the size of 6(x), large values of
] implying greater evidence against Ho. Sometimes, though, we
believe that large negative values of 8 are just as good as large
positive values for discrediting Hy. This was the case in (15.25). If
so, we need to take this into account when defining the 5% of the
data sets that most strongly contradict Hy. That is the point of
definition (15.26) for the two-sided ASL.

There are many other situations where we need to be careful
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S s

ASL=.152 (une-sided), .338 (two-sided)

Figure 15.2. B = 1000 permutation replications of the log variance ratio
8 = log(62/62) for the mouse data of Table 2.1; 152 of the 1000 replica-
tions gave 6* greater than the observed value 6 = .907, 338 of the 1000
replications gave either 8" or —9* greater than .907. The dashed lines
wndicate § and —6.

about ranking evidence against Hy. Suppose, for example, that we
run the four permutation tests of Figure 15.1, and decide to choose
the one with the smallest ASL, in this case ASL = .132. Then we
are really ranking the evidence in x against Hy according to the
statistic

P(x) = mkin{fﬁk}, (15.27)

where ASLy is the permutation ASL for the kth statistic 0 k =
1,2,3,4. Small valucs of ¢ morc strongly contradict Hy. It sn’i
true that having observed 6 = .132, the permutation ASL based
on ¢ equals .132. More than 13.2% ol the permutations will have
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RE

#* < .132 because of the minimization in definition (15.27).

Here 1s how to compute the correct permutation ASL for ¢, using
all 4000 permutation replications 85 (b) in Figure 15.1, k = 1,2, 3,4,
b=1,2,---,1000. For each value of k and b define

LB
A (b) = 1000 21{9;(1)215;(17)}7 (15.28)
=

where Iy 15 the indicator function. So A3 {b) is the proportion of
the OA}’( values excecding é,f(b) Then let

$*(b) = nun{ A5(5)}. (15.29)

Il 1s not obvious but it is true that the q@*(b) are genuine per-
mutation replications of ¢, {15.27), so the permutation ASL for ¢
18

ASLperm = #{$*(b) < $}/1000. (15.30)

Figure 15.3 shows the histogram of the 1000 ¢*(b) values. 167 of the
1000 values are less than ¢ = .132, giving permutation ASL = .167.

15.4 Relationship of hypothesis tests to confidence
iutervals and the bootstrap

There is an mtimate connection between hypothesis testing and (1

confidence intervals. Suppose 8, the observed value of the statistic lin

of interest, is greater than zero. Choose a so that élo, the lower A

end of the 1 — 2o confidence interval for 8, exactly equals 0. Then

Probg—o{6* > 6} = a according to (12.13). However if # = 0 1s

the null hypothesis, as in the mouse data example, then definition an

(15.4) gives ASL = o. For example, if the .94 confidence interval

[é]o,éup] has fi, = 0, then the ASL of the observed value § must

equal .03 (smce 94 =1-2 .03). th
In other words, we can use conlidence intervals Lo calculate ASLs. b1

With this 1 nund, Figure 15.4 gives the bootstrap distribution
of two statistics we can use to form confidence intervals for the;
difference between the Treatment and Control groups, the meal
difference 6y = z — §, left panel, and the .25 trimmed mean dif-
ference 5,25 = Zo5 — §.25, right panel. What value of o~ will mak
the lower end of the bootstrap confidence interval equal to zero
For the bootstrap percentile method applied to a statistic 6*, th

pe

T
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—l
f T 1 T T 1
0.0 0.2 0.4 0.6 0.8 1.0
ASL=.167

Figure 15.3. Permutation distribution for the mwmimum ASL statistic
(15.27); based on the 1000 permutations used wn Figure 15.1; dashed
line indicates q@ =.132; 167 of the 1000 43* values are less than .132, so
ASLperm = .167.

answer is

ao = #{0*(b) < 0}/B, (15.31)
the proportion of the bootstrap replications less than zero. (Then
Bi, = 0170} = 0 according to (13.5).) According to the previous

paragraph, the ASL of § equals ayg, say

ASLy, = #{6*(b) < 0}/B. (15.32)
The B = 1000 bootstrap replications shown in Figure 15.4 gave
ASLo(fg) = 132  and  ASLg(6.25) = .180.  (15.33)
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Notice how sumilar these results are to A/S\Lpem(éo) = .132,
ASLperm(8.25) = .152, Figure 15.1.

For the BC, confidence intervals of Chapter 14, the ASL calcu-
lation gives

A‘S?JBca = (I>_1(I+_12.(Ew_02+20) - zo), (15.34)
where
wo = &) (15.35)
and the bias correction constant 2o is approximated according to
fol-n}ula (14.14). This formula gave 2y = —.040 for 0y and 2, = .035
for 6 95.

The acceleration constant 4 1s given by a two-sample version of
(14.15). Let é, ) be the value of § when we leave out z;, and Gy @)
be the value of § when we leave out y;. Let 0 =20 8, i/,

By ) = X7 Oy /my Us = (0= D0y = b.), Uy = (m —
1)(9%(.) y(z)) Then
1 " n® + U, /m?
p= b D U/ b Ugalm]
6131 U z, 2. m?+ z::l il J
n and m being the lengths of z and y- Formula (15.36) gives 4 = .06
and ¢ = —.01 for 00 and 8 25, respectively. Then

ASLpe,(fo) =.147  and  ASLpg,(f25) = .167 (15.37)

according to (15.34).
Here are some points to keep in mind In comparing Figures 15.1
and 15.4:

e The permutation ASL is exact, while the bootstrap ASL is
approximate. In practice, though, the two methods often give
quite similar results, as is the case lere.

o The bootstrap histograms are centered near 6, while the per-
mutation histograms are centered near 0. In this sense; ASLperm
measures how far the observed estimate 6 1s from 0, while the
bootstrap ASL measures how far 0 is from 6. The adjustments
that the BC, method makes to the percentile method, (15.34)
compared to {(15.31), are intended to reconcile these two ways -
of measuring statistical “distance.”
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I ]
F]
|
Lk H
-50 0 50 100 o] 50 100
Mean 25% tnmmed mean

Figure 15.4. B = 1000 bootstrap replications of the mean difference 6 for
the mouse data, left panel, and the difference of the .25 trimmed means
9,25, right panel; dashed lines are the observed estvmates o = 30.23 and
é_zs = 33.66, 132 of the 1000 95 values were tess thun zero; 180 of the
1000 6% values were less than zero.

e The bootstrap ASL tests the null hypothesis § — 0 while the
permutation ASL tests F' = G. The latter 1s more special than
the former, and can sometimes seem unrealistic. For the mouse
data, we might wish to test the hypothesis that the means of
the two groups were equal, 6y = 0, without ever believing that
the two distributions had the same variance, for instance. This
is more of a theoretical objection than a practical one to per-
mutation tests, which usually perform reasonably well even if
F = @G is far from being a reasonable null hypothesis.

» The standard deviation of the permutation distribution is not a
dependable estimate of standard error for 8 (it is not mntended
to be), while the bootstrap standard deviation is. Table 15.4
shows the standard deviations of the mouse data permutatlon
and bootstrap (hstrll)utmus for 0y = 2 — 7, 0 15 = Z45 — J.in,
01 = Za5 — o5, and 0,— = Z5 — .5, The bootstrap numbers
show a faster increase mn standard error as the trimming pro-
portion increases from 0 to .5, and these are the numbers to be
believed.

e The combination of a point cstimate and a confidence interval
is usually more informative than just a hypothesis test by itself.

In the mouse experiment, the value 0.132 of E\L,,m,, tells us
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Table 15.4. Standard deviations of the mouse data permutation and boot-
strap_distributions for Go=2—79, 015 =515~ f1s, D05 = Z25 — §.2s,
and 8 5=Z25—175.

0o 015 02 05
permutation: 27.9 28.6 30.8 33.5

bootstrap: 27.0 299 33.4 40.8

only that we can’t rule out # = 0. The leflt panel of Figure 15.4
says that the true mean lies between -14.5 and 73.8 with confi-
dence .90, BC, method. In the authors’ experience, hypothesis
tests tend to be overused and confidence intervals underused in
statistical applications.

Permutation methods tend to apply to only a narrow range of
problems. However when they apply, as in testing /' = G in a
two-sample problem, they give gratifyingly exact answers without
parametric assumptions. The bootstrap distribution was originally
called the “combination distribution.” Tt was designed to exfend
the virtues of permutation testing to the great majority of statis-
tical problems where there 1s nothing to permute. When there 1s
something to permute, as 1n Figure 15.1, it is a good 1dea Lo do so,
even if other methods like the bootstrap are also brought to bear.
In the next chapter, we discuss problems for which the permuta-
tion method cannot be applied but a bootstrap hypothesis test can
still be used.

15.5 Bibliographic notes

Permutation tests are described in many books, A comprehensive
overview is given by Edgington (1987). Noreen (1989) gives an in-
troduction Lo permutation tests, and relates them to the bootstrap.

15.6 Problems

15.1 Suppose that ¢ = m(6), where m(-) is an increasing func- .
tion. Show that the permutation ASL based on & is the same "

as the permutation ASL based on 6,

ASLDerm(d)) = ASLperm(é)' (15-38) :

PRO]

15.:

15..

15.

15.!
15.4

15.
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15.2

15.3

15.4

15.5
15.6

15.7

Suppose that the N elements (z,y) are a random sample
from a probability distribution having a continuous distri-
bution on the real line. Prove the permutation lemma.

Suppose we take ASLyerm = .01 1n (15.3). What is the entry
for B?

(a) Assuming that (15.22) is exactly right, show that
ASLpeun has a uniform distribution on the interval [0, 1].
(b) Draw a schematic picture suggesting the probability
density of ASLyerm when Hy 1s true, overlaid with the
probability density of ASLperm when Hy is false.
Verify formula (15.34).
Formula (15.22) cannot be exactly true because of the dis-

creteness of the permutation distribution. Let M = (1;’ ).
Show that

k 1

PI‘ObHO{ASLperm = M} = M

for k=1,2,- - .M.
(15.39)

[You may make use of the permutation lemma, and assume
that there are no ties among the M values 6(g*,v).|

Define ¢ = A/S\Lpe,m(é), for some statistic . Show that the
ASL based on ¢ is the same as the ASL based on 8,

A‘s\l-'perm(d;) = A’S\Lperm(é) = (,ZL (1540)

15.81 Explain why (15.30) is true.
15,91 With 6 = z — § as in (15.3), and & defined as in (15.9) lel

¢ equal Student’s ¢ statistic §/[5+/1/n + 1/m|. Show that
A/\SLperm(QAﬁ) = lrSLpnrm(é)- (15-41)

int:  Use Problem 15.1.

t Indicates a difficult or more advanced problem.



CHAPTER 16

Hypothesis testing with the
bootstrap

16.1 Introduction

In Chapter 15 we describe the permutation test, a useful tool for
hypothesis testing. At the end of that chapter we relate hypothesis
tests to confidence intervals, and in particular showed how a boot-
strap confidence interval could be used to provide a significance
level for a hypothesis test. In this chapter we describe bootstrap
methods that are designed directly for hypothesis testing. We will
see that the bootstrap tests give similar results to permutation
tests when both are available. The bootstrap tests are more widely
applicable though less accurate.

16.2 The two-sample problem

We begin with the two-sample problem as described in the last
chapter. We have samples z and y from possibly different proba-
bility distributions F' and G, and we wish to test the null hypoth-
esis Hy : F' = G. A bootstrap hypothesis test, like a permutation
test, is based on a test statistic. In the previous chapter this was
denoted by 6. To emphasize that a test statistic need not be an
estimate of a parameter, we denote it here by t(x). In the mouse
data example, t(x) = Z — §, the difference of mcans with observed
value 30.63. We seek an achieved significance level

ASL = Proby, {t(x*) > t(x)} (16.1)

as in (15.4). The quantity #(x) is fixed at its observed value and -

the random variable x* has a distribution specified by the null hy-

pothesis Hg. Call this distribution Fy. Now the question is, what is
Fy? In the permutation test of the previous chapter, we fixed the -
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Algorithm 16.1

Computation of the bootstrap test statistic for testing F' = G

1. Draw B samples of size n + m with replacement from
x. Call the first n observations z* and the remaining m
observations y*.

2. Evaluate () on each sample,

t(x**)=2"~-§* b=1,2,-- B. (16.2)
3. Approximate ASLy,o by

RSLaoun = #{UX™) 2 tone}/ I, (16.3)

where t,ps = t(x) the observed value of the statistic.

order statistics v and defined Fy to be the distribution of possible
orderings of the ranks g. Bootstrap hypothesis testing, on the other
hand, uses a “plug-in” style estimate for Fy. Denote the combined
sample by x and let its empirical distribution be Fy, putting prob-
ability 1/(n + m) on each member of x. Under Hy, Fy provides a
nonparametric estimate of the common population that gave rise
to both z and y. Algorithm 16.1 shows how ASL is computed.

Notice that the only difference between this algorithm and the
permutation algorithm in equations (15.17) and (15.18) is that
samples are drawn with replacement rather than without replace-
ment. It is not surprising that it gives very similar results (left panel
of Figure 16.1). One thousand bootstrap samples were generated,
and 120 had t(x*) > 30.63. The value of ASLpet is 120/1000 =
.120 as compared to .152 from the permutation test.

More accurate testing can be obtained through the use of a stu-
dentized statistic. In the above test, instead ol {(x) = Z — § we
could use

Z-§
F/1/n+1/m’
+ where & = {[Y1_ (2 — 2)2 + 2=, (v — §)°)/[n +m —2]}*/? Thus

is the two-sample ¢ statistic described in Chapter 15. The observed
value of #(x) was 1.12. Repeating the above bootstrap algorithum,

t(x) = (16.4)
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150
1
T\

200
]
—

100 150

50

F=G Equality of means

Figure 16.1. Histograms of boolstrap replicalzons for the mouse data ex-
ample. The left pancl 1s a hastogram of bootstrap rveplications of Z—7 for
the test of Ho - F = G, while the right panel 1s a histogram of boolstrap
replications of the studentized statistic (16.5) for the test of equality of
means. The dotted lines are drawn at the observed values (30.63 on the
left, .416 on the rght). In the left panel, ASLvoot (the bootstrap estimate
of the achieved significance level) equals .120, the proportion of values
greater than 30.63. In the right panel, ASLypoor equals .152.

using t(x*) defined by (16.4), produced 134 values out of 1000
larger than 1.12 and hence XS\Lbootz.lséL In this calculation we
used exactly the same set of bootstrap samples that gave the value
.120 for Kngoot based on t(x) = Z — 7. Unlike in the permutation
test, where we showed in Problem 15.9 that studentization does not
affect the answer, studentization does produce a different value for
}/\§wat. However, in this particular approach to bootstrapping
the two-sample problem, the difference is typically quite small,
Algorithm 16.1 tests the null hypothesis that the two popula-
tions are identical, that is, F = G. What if we wanted to test only
whether their means were equal? One approach would be to use
the two-sample i statistic (16.4). Under the null hypothesis and
assuming normal populations with equal variances, this has a Stu-
dent’s t distribution with n+ m — 2 degrees of freedom. It uses the

pooled estimate of standard error &. If we are not willing to assume-

that the variances in the two populations are equal, we could base
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the test on
b)) = e, (16.5)
Vai/n+ 65 /m
where 57 = Y"1 (z;~2)%/(n—1), 32 = Y " (y: — §)%/(m—1). With
normal populations, the quantity (16.5) no longer has a Student’s ¢
distribution and a number of approximate solutions have therefore
been proposed. In the literature this 1s known as the Behrens-Fisher
problem.
The equal variance assumption is attractive for the t-test because
it simplifies the form of the resulting distribution. In considering a
bootstrap hypothesis test for comparing the two means, there is no
compelling reason to assume equal variances and hence we don’t
make that assumption. To proceed we need estimates of I oand
G that use only the assumption of a conunon mean. Letting Z be
the mean of the combined sample, we can translate both samples
so that they have mean Z, and then resample each population
separately. The procedure is shown in detail in Algorithm 16.2.
The results of this are shown 1n the right panel of Figure 16.1.

The value of ASLygo was 152/1000 = .152.

16.3 Relationship between the permutation test and the
bootstrap

The preceding example illustrates some important differences be-
tween the permutation test and the bootstrap hypothesis test. A
permutation test exploits special symmetry that exists under the
null hypothesis to create a permutation distribution of the test
statistic. T'or example, m the two-sample problem when testing
F = G, all permutations of the order statistic of the combined
sample are equally probable. As a result of this symmetry, the
ASL from a permutation test i1s exact: in the two-sample problem,
ASL,erm is the exact probability of obtaining a test statistic as
extreme as the one observed, having fixed the data values of the
combined sample.

In contrast, the bootstrap explicitly estimates the probability
mechanism under the null hypothesis, and then samples from 1t
to estimate the ASL. The estimate KS\LMN has no interpretation
as an exact probability, but like all bootstrap estimates 1s ounly

guaranteed to be accurate as the sample size goes to infinity. On
the other hand, the bootstrap hypothesis test does not, require the
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Algorithm 16.2

Computation of the bootstrap test statistic

for testiug equalily of means

1. Let F' put equal probability on the points Z; = z; — 5 +
z,1— 1,2, n,and G put egual probability on the points
Ji=vi—7§+%,1=12,...m, where 7 and § are the group
means and Z is the mean of the combined sample.

2. Form B bootstrap data sets (z*,y*) where z* is sampled
with replacement from 2, 22, - - 2, and y* 1s sampled with
replacement from g1, 92, . Jm-

3. Evaluate t(-) defined by (16.5) on each data set,
% _ ?-J-*
(Ux®)= ———? b =1,2,- -B. (166
(™ 73 In+ 6% /m (16.6)
4. Approximate ASLyo0t by
ASLioot = #{t(x"*) > taps}/ B, (16.7)

where 1,5 = t(x) is the observed value of the statistic.

special syminctry that 18 nceded for a permutation test, and so can
be applicd much more generally. For mstance m the two-sample
problem, a permutation test can ouly test the null hypothesis F' =
G, while the bootstrap can test equal means and equal variances,
or equal means with possibly unequal variances.

16.4 The one-sample problem

As our second example, cousider a one-sample problem involving
only the treated mice. Suppose that other mvestigators have run
experiments similar to ours but with many more mice, and they
observed a mean lifetime of 129.0 days for treated mice. We might
want to test whether the mean of the treatment group in Table 2.1
was 129.0 as well:

Ho . p, = 129.0. (16.8)
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A one sample version of the normal test could be used. Assuming
a normal population, under the null hypothesis

% ~ N(129.0,0%/n), (16.9)

where ¢ 1s the standard deviation of the treatment times. Having
observed z = 86.9, the ASL is the probability that a random van-
able z* distributed accordingly to (16.9) is less than the observed
value 86.9

86.9 — 129.0
o/

where ® 1s the cumulative distribution function of the standard
normal.
Since ¢ i1s unknown, we insert the estimate

ASL = &( ), (16.10)

6 ={) (n—2"/(n-1)}'/*> =668 (16.11)
1
into (16.10) giving
—42.1
ASL = ¢(————=) = 0.05. 16.12
(66'8/\/?) (16.12)

Student’s t-test gives a somewhat larger ASL

—42

— Dy X _ .
ASL = Prob{t; < vy 8/\/_} 0.07. (16.13)
So there is marginal evidence that the treated mice m our study
have a mean survival time of less than 129.0 days. The two-sided
ASLs are .10 and .14, respectively.
Notice that a two-sample permutation test cannot be used for
this problem. If we had available all of the times for the treated
mice (rather than just their mean of 129.0), we could carry oul a
two-sample permutation test of the equivalence of the two popula-
tions. However we do not have available all of the times but know
only their mean; we wish to test Hy : p, = 129.0.

In contrast, the bootstrap can be used. We base the bootstrap

hypothesis test on the distribution of the test statistic

Z—129.0
t(z):z 129

N (16.14)
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under the null hypothesis p, = 129.0. The observed value is
86.9 — 129.0
8091290 _ | ¢ (16.15)
66.8//7

But what 1s the appropriate null distribution? We need a distribu-
tion F' that estimates the population of treatment times under Hy.
Note first that the empirical distribution F' is not an appropriate
estimate for F' because it does not obey Hg. That is, the mean of F
is not equal to the null value of 129.0. Soinehow we need to obtain
an estimate of the population that has mean 129.0. A simple way is
to translate the empirical distribution £ so that it has the desired
mean. ! In other words, we use as our estimated null distribution
the empirical distribution on the vahies

Z; = 2z;—2+129.0
= z+421 (16.16)
for » = 1,2,- -7. We sample z{,...Zz7 with replacement from
Z1,... %7, and for each bootstrap sample compute the statistic
7' —129.0

s N
t(z") AN (16.17)
where &* is the standard deviation of the bootstrap sample. A total
of 100 out of 1000 samples had t(Z*) less than —1.67, and therefore
the achieved significance level is 100/1000 = .10, as compared to
05 and .07 for the normal and 1 tests, respectively.

Notice that out choice of null distribution assunes that the pos-
sible distributions for the treatment times, as the mean times vary,
are just translated versions of one another. Such a family of dis-
tributions is called a translation family. This assumption is also
present in the normal and ¢ tests; but in those tests we assume
further that the populations are normal. In either case, it might
be sensible to take logarithms of the survival times before carrying
out the analysis, because the logged lifetimes are more likely to
satisfy a translation or normal family assumption (Problem 16.1).

There 1s a different but equivalent way of bootstrapping the one-
sample problem. We draw with replacement from the (untrans-
ated) data values 21, z3,. .27 and compute the statistic

t(z*) =

-z
VT

U A different method 1s discussed tn Problem 16.5.

(16.18)
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*

where & is the standard deviation of the bootstrap sample. This
statistic is the same as (16.17) since

7 —1290=(z" —7+129.0) — 129.0 = z* — 2

and the standard deviations are equal as well. This also shows the
equivalence between the one-sample bootstrap hypothesis test and
the bootstrap-t confidence interval described in Chapter 12. That
interval is based on the percentiles of the statistic (16.18) under
bootstrap sampling from z3, z2,. .27, exactly as above. Therefore
the bootstrap-t confidence interval consists of those values pg that
are not rejected by the bootstrap hypothesis test described above.
This general connection between confidence intervals and hypoth-
esis tests is given in more detail in Secliou 12.3.

16.5 Testing multimodality of a population

Our second example 1s a much more exotic one. It is a case where
a simple normal theory test does not exist and a permutation test
cannot be used, but the bootstrap can be used effectively. The
data are the thicknesses in millimeters of 485 stamps, prinled in
1872. The stamp issue of that year was thought to be a “philatelic
mixture”, that is, printed on more than one type of paper. It is of
historical interest to determine how many different types of paper
were used.

A histogram of the data 18 shown in the top left panel of Fig-
ure 16.2. This sample is part of a large population of stamps {rom
1872, and we can imagine the distribution of thickness measure-
ments for this population. We pose the statistical question: how
many modes does this population have? A mode is defined to be a
local maximum or “bump” of the population density. The number
of modes is suggestive of the number of distinct types of paper
used in the printing.

From the histogram in Figure 16.2, it appears that the popula-
tion might have 2 or more modes. It is difficult to tell, however,
because the histogram is not smooth. To obtain a smoother esti-
mate, we can use a Gaussian kernel density estimate. Denoting the
data by 1, . -. ., a Gaussian kernel density estimate is defined by

f(t;h) = %gdt——hi) (16.19)
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Window size .003
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Figure 16.2. Top left panel shows histogram of thicknesses of 485 stamps.
Top rght and bottorn panels are Gaussian kernel density estimates for
the same sample, using window size .003 (top right), .008 (bottom left)
and .001 (bottom right).

where $(t) is the standard normal density (1/v/27)exp (—t2/2).
The parameter h is called the window size and determines the
amount of smoothing that is applied to the data. Larger values of
h produce a smoother density estimate.

We can think of {16.19) as adding up n little Gaussian density
curves centered at each point z,, each having standard deviation
h; Figure 16.3 illustrates this.

The top right panel of Figure 16.2 shows the resulting density
estimate using h = .003; there are 2 or 3 modes. However by vary-
ing h, we can produce a grcater or lesser number of modes. The
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" 7
- ; (XXX ~ "' “

thickness

Figure 16.3. Illustration of a Gaussian kernel density estimate. A small
Gaussian density s centered at cach data value (marked wilth an “z”)
and the density estimate (broken line) at each value 15 determined by
adding up the values of all the Gaussian densities at that pownt. For ihe
stamp data there are actually 485 little Gaussian densities used (one for
each pownt); for clarity we have shown only a few.

. bottom left and right show the cstimates obtained using i = .008
- and h = .001, respectively. The former has one mode, while the
latter has at least 7 modes! Clearly the inference that we draw
from our data depends strongly on the value of h that we choose.

If we approach the problem in terms of hypothesis testing, there
is a natural way to choose h. We will need the following important
result, which we state without proof: as h increases, the number
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Figure 16.4. Stamp data: number of modes in the Gausswun kernel densily
estimate as a function of the window size h.

of modes m a Gaussian kernel density estimate is non-increasing,.
Thus is illustrated for the stamp data in Figure 16.4.
Now consider testing

Hj : number of modes = 1 (16.20)

versus number of modes > 1. Since the number of modes decreases
as h increases, there is a smallest value of h such that f(¢; h) has
one mode. Call this /4. Looking at Figure 16.4, hy =~ .0068.

It seems reasonable to use f(f; hl) as the estimated null dis-
tribution for our test of Hp. In a sense, it is the density estimate
closest to our data that is consistent with Hy. By “closest”, we
mean that it uses the least amount of smoothing (smallest value of
h) among all estimates with one mode.
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There is one small adjustment that we make to f(-, h;). Formula
(16.19) artificially increases the variance of the estimate (Problem
16.2), so we rescale it to have variance equal to the sample variance.
Denote the rescaled estimate by §(-; ).

Finally, we need to select a test statistic. A natural choice is ki,
the smallest window size producing a density estimate with one
mode. A large value of le indicates that a great deal of smoothing
must be done to create an estimate with one mode and is therefore
evidence against Hy.

Putting all of this together, the bootstrap hypothesis test for
Hy : nurber of modes = 1 1s based on the achieved significance
level

ASLuooy = Prob,(, ;. {h > iu}. (16.21)

Here ixl is fixed at its observed value of .0068; the bootstrap
sample &}, 3. .. 27 is drawn from §( ; h;) and A% is the smallest
value of h producing a density estimate with one mode from the
bootstrap data z7,x3 ..},

To approximate ASLpeot we need to draw bootstrap samples
from the rescaled density estimate (; h;). That is, rather than
sampling with replacement from the data, we sample from a smooth
cstimate of the population. This is called the smooth bootstrap.
Because of the convenient form of the Gaussian kernel estimate,
drawing samples from j( ; hy) is easy. We sample yf, 43, - - .y with
replacement from i, zg, ... &, and set

=g 4+ A+ A2V ~ 5 4 he); 1 =1,2,...1n,
(16.22)

where 7* is the mean of y},y5,. -y%, 62 is the plug estimate of
variance of the data and ¢, are standard normal random variables.
The factor (14 h3/5%)~1/? scales the estimate so that its variance
is approximately 42 (Problem 16.3.) A summary of the steps is
shown in Algorithm 16.3. (Actually a computational shortcut is
possible for step 2; see Problem 16.3.)

We carried out this process with B = 500. Out of 500 bootstrap
samples, none had ﬁ’{ > 0068, s0 ASLy0t = 0. We repeated this
for Hy - number of modes = 2.3,..., and Table 16.1 shows the
resulting P-values. Interpreting these results in a sequential man-
ner, starting with number of modes = 1, we reject the unimodal
hypothesis but do not reject the hypothesis of 2 modes. Tlus is
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Algorithm 16.3

Computation of the bootstrap test statistic for multimodality

1. Draw B bootstrap samples of size n from §(-; hl) using
(16.22).

2. For cach bootstrap sample compute iL;‘ the smallest win-
dow width that produces a density estimate with one
mode. Denote the B values of A} by hj(1),...h(B).

3. Approximate ASLyeot by
AST-‘t)c»ot = #{h;(b) 2 i’*l}/B‘ (16‘23)

where the inference process would end in many instances. If we
were willing to entertain more exotic hypotheses, then {from Ta-
ble 16.1 there 1s also a suggestion that the population might have
7 modes.

16.6 Discussion

As the examples in this chapter illustrate, the two quantities that
we must choose when carrying out a bootstrap hypothesis test are:

(a) A test statistic ¢(x).
(b) A null distribution Fy for the data under Hy.

Given these, we generate B bootstrap values of t(x*) under Fy
and estimate the achieved significance level by

ASLpoo, = #{t(x**) > t(x)}/B. (16.24)

As the stamp example shows, sometimes the choice of ¢(x) and
Fy are not obvious. The difficulty in choosing Fy is that, in most
instances, Hy is a composite hypothesis. In the stamp example,
Hy refers to all possible densities with one mode. A good choice
for Fp is the distribution that obeys Hp and is most reasonable
for our data; this choice makes the icst conservative, that is, the
test is less likely to falsely reject the null hypothesis. In the stamp
example, we tested for unimodality by generating samples from
the unimodal distribution tliat 1s mostly nearly bimodal. In other
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Table 16.1. P-values for stamp example.

number of modes(m) hn  P-value
1 .0068 .00
2 0032 .29
3 0030 .06
1 .0029 .00
5 0027 .00
6 .0025 .00
7 0015 46
8 .0014 17
9 .0011 17

words, we used the smallest possible value for le and this makes
the probability in {16.21) as large as possible.

The choice of test statistic ¢(x) will determine the power of the
test, that is, the chance that we reject Hy when it is falsc. In the
stamp example, if the actual population density is bimodal but the
Gaussian kernel density does not approxunate it accurately, then
the test based on the window widih h; will not have high power.

Bootstrap tests are useful in situations where the alternative
hypothesis is not well-specified. In cases where there is a parametric
alternative hypothesis, likelihood or Bayesian methods might be
preferable.

16.7 Bibliographic notes

Monte Carlo tests, related to the tests in this chapter, are pro-
posed in Barnard (1963), Hope (1968), and Marriott (1979); sec
also Hall and Titterington (1989). Somc theory of bootstrap hy-
pothesis testing, and its relation to randomization tests, 1s given
by Romano (1988, 1989). A discussion of practical issues appears
in Hinkley (1988, 1989), Young (1988b), Noreen (1989), Fisher
and Hall (1990), and Hall and Wilson (1991). Sec also Tibshi-
rani (1992) for a comment on Hall and Wilson (1991). Young (1986)
describe simulation-based hypnthesis testing in the context ol gco-
metric statistics. Beran and Millar (1987) develop general asymp-
totic theory for stochastic minimum distance tests. In this work,
the test statistic is the distance to a composite null hypothesis
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and a stochastic search procedure is used to approximate it. Besag
and Clifford (1989) propose methods based on Markov chains for
significance testing with dependent data. The two-sample prob-
lem with unequal variance has a long history: see, for example,

Behrens (1929) and Welch (1947); Cox and Hinkley (1974) and

Robinson (1982) give a more modern account. The use of the boot-
strap for testing multimodality is proposed in Silverman (1981,

1983). It 1s applied to the stamp data in Izenman and Sommer (1988).

Density estimation is described in many books, including Silver-
man (1986) and Scott (1992). The smooth bootstrap is studied by

Silverman and Young (1987) and Hall, DiCiccio and Romano (1989).

16.8 Problems

16.1 Explamn why the logarithm of survival times are more likely
to be normally distributed than the times themselves.
16.2  (a) If y; 1s sampled with replacement fromy xq iy, - Ty, €
has a standard normal distribution and h; 1s considered
fixed, show that

Ty = y: + i"lez (1625)
is distributed according to f(; A1), the Gaussian kernei
density estimate defined by (16.19).

(b) Show that z¥ given by (16.22) has the same mean as
but has variance approximately equal to &2 rather than
&2 + A% (the vamance of r}).

16.3 Denote by hu, the smallest window width producing a density
estimate with k modes from cur original data, and let ft,’; be
the corresponding quantity for a bootstrap sample x*. Show
that event

(R > i) (16.26)
1s the same as the event

{f*(; hy) has more than k modes}, (16.27)

where f*(~; hk) is the Gaussian kernel density estimate
based on the bootstrap sample x*. Hence it is not neces-
sary to find A} for cach bootstrap sample; one need only
check whether f( lﬂ) has more than & modes.

P

1€
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16.4

16.5

In the second example of this chapter, we tested whether
the mean of the treatment group was equal to 129.0. We
argued that one should not use the empirical distribution
as the null distribution but rather should first translate it
to have mean 129.0. In this problem we carry out a small
simulation study to investigate this issue.

(a) Generate 100 samples z of size 7 from a normal pop-
ulation with mean 129.0 and standard deviation 66.8.
For each sample, perform a bootstrap hypothesis test of
pz = 129.0 using the test statistic 2 — 129.0 and using as
the estimated null distribution 1) the empirical distribu-
tion, and 2) the empirical distribution translated to have
mean 129.0.

Compute the average of ASL for each test, averaged over
the 100 simulations.

(b) Repeat (a), but simulate front a normal population wiih
a wean of 170. Discuss the results.

Suppose we have a sample 21, 22, . - - 2, and we want an esti-
mate of the underlying population I” restricled to have mean
1. One approach, used in Section 16.4, is to use the empir-
ical distribution on the translated data values z; — z + p.
A different approach is to leave the data values fixed, and
instead change the probability p; on each data value. Let
p = (p1,p2,-..pn) and let F, be the distribution putting
probability p; on z, for each z. Then 1t is reasonable to choose
p so that the mean of F, = ) p;z, = y, and Fy, is as close
as possible to the empirical distribution F. A convenient
measure of closeness is the Kullback-Leibler distance

dp, (Fp F) =) ps 10g(-r%). (16.28)
1 K3

(a) Using Lagrange multipliers, show that the probabilities
that minimize expression (16.28) subject to Y p;x, = p,
ST pi =1 are given by

exp (lz,)
Pi= e — (16.29)
PO exp (tx,)
where ¢ is chosen so that ) p;z, = p. This is sometimes

called an exponentially tilled version of 17
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(b) Use this approach to carry out a test of g = 129.0 in
the mouse data example of Section 16.4 and compare the
results to those in that section.




CHAPTER 17

Cross-validation and other
estimates of prediction error

17.1 Introduction

In our discussion so far we have focused on a number of measures
of statistical accuracy: standard errors, biases, and confidence in-
tervals. All of these are measures of accuracy for parameters of a
model. Prediction error is a different quantity that measures how
well a model predicts the response value of a future observation.
It 15 often used for model selection, since it is sensible to choose a
model that has the lowest prediction error among a set of candi-
dates.

Cross-validation is a standard tool for estimnating prediction er-
ror. It is an old idea (predating the bootstrap) that has enjoyed a
comeback in recent years with the increase in available computing
power and speed. In this chapter we discuss cross-validation, the
bootstrap and some other closely related techniques for estimation
of prediction error.

In regression models, prediction error refers to the expected
squared difference between a future response and its prediction
from the model:

PE =E(y — )2 (17.1)

The expectation refers to repeated sampling from the true pop-
ulation. Prediction error also arises in the classification problem,
. where the response falls into one of % unordered classes. For ex-
mple, the possible responses might be Republican, Deinocrat, or
- Independent in a political survey. In classification problems predic-
tion error is commonly defined as the probability of an incorrect
* classification

PE = Prob(g # y). (17.2)
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Tigure 17.1. Hormone data. Plot shows the amount of hormone remain-

wng for a dewvice versus the hours of wear. The symbol represents the lot
number.

also called the masclassification rate. The methods described in this
chaptler apply to both delinitions of prediction error, and also to
olhers. We begin with a mtuitive deseription of ihe techuiques, and
then give a more detailed account 1 Section 17.6.2.

17.2 Example: hormone data

Let’s look again at the hormone data example of chapter 9. Fig-‘

ure 17.1 redisplays the data for convenience. Recall that the re-
sponse variable y; is the amount of anti- inflammatory hormone

remaining after z; hours of wear, in 3 lots A, B, and C indicatedi
by the plotting symbol in the figure. In Chapter 9 we fit regres-.
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sion lines to the data m each lot, with different intercepts but a
common slope. The estimates are given in Table 9.3 on page 110.
Here we consider two questions: 1) “How well will the model pre-
dict the amount of hormone remaining for a new device?”, and 2)
“Does this model predict better (or worse) than a single regression
line?” To answer the frst question, we could look at the average
residual squared error for all n = 27 responses,
n
RSL/m = "(y: — §:)%/n = 2.20, (17.3)
1
- but this will tend to be too “optimistic”; that is to say, it will
probably underestimate the true prediction error. The reason is
that we are using the same data to assess the model as were used
. to fit it, using parameter estimates that are fine-tuned to our par-
¢ ticular data set. In other words the test sample is the same as the
. original sample, sometimes called the tramning sample. Bstimates
{  of prediction error obtained in this way are aptly called “apparent
" error” estimates.

A familiar method for improving on (17.3) 1s to divide by n — p
instead of n, where p 1s the number of predictor variables. This
gives the usual unbiased estimate of residual variance 5% = Y (y; —
§:)%/(n ~ p). We will see that bigger corrections are necessary for
the prediction problem.

17.3 Cross-validation

In order to get a more realistic estimate of prediction error, we
would like to have a test sample that is separate from our training
sample. ldeally this would come in the form of some new data
from the same population that produced our original sample. In
our example this would he hours of wear and hormone amount for
some additional devices, say m of them. If we had these new data,
Csay (22,99), . (25,,4Y,), we would work out the predicted valucs
92 from (9.3)

90 = B;+ Br<) (17.4)

" (where 3 = A, B, or C depending on the lot), and compute the
" average prediction sum of squares

> W —ud)/m. (17.5)
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Algorithm 17.1

K-fold cross-validation

1. Split the data into I roughly cqual-sized parts.

2. For the A&th pari, {it the model to the other I — L parts
of the data, and calculate the prediction error of the fitted
model when predicting the kth part of the data.

3. Do the above [or kK = 1,2, .. K and combine the K esti-
mates of prediction error.

.y

This quantity estimates how far, on the average, our prediction
differs from the actual value y?. _
Usually, additional data are not often available, for reasons of
logistics or cost. To get around this, cross-validation uses part of
the available data to fit the model, and a different part to test it.
With large amounts of data, a common practice is to split the data °
into two equal parts. With smaller data sets like the hormone data,
“K-fold” cross-validation makes more efficient use of the available ;
information. The procedure is shown in Algorithm 17.1.

Here is K-fold cross-validation in more detail. Suppose we split
the data into K parts. Let k(z) be the part containing observation

1. Denote by @i—k(i) the fitted valuc for observation :, computed ! 25
with the k(2)th part of the data removed. Then the cross-validation
estimate of prediction error is
Ly S—k(i))2
CV =~ i — s : .
=2 -9 (17.6)
=1 5 Yi

Often we choose k = n, resulting in “leave-one-out” cross-validation
For each observation i, we refit the model leaving that observa-
tion out of the data, and then compute the predicted value for

the #th observation, denoted by g;*. We do this for each observa- !
tion and then compute the average cross-validation sum of squares age
CV =3 (vi —4;")°/n He

the

We applied leave-one-out cross-validation to the hormone data:
the value of CV turned out to be 3.09. By comparison, the average
residual squared error (17.3) is 2.20 and so it underestimates the ple
prediction error by about 29%. Figure 17.2 shows the usual residual
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Figure 17.2. Plot of residuals (circles) and cross-validated residuals
(stars) for hormone data.

~—1

. ¥i — §i (circles) and the cross-validated residual y; — §;7* (stars).
Notice how the cross-validated residual is equal to or larger (in
¢ absolute value) than the usual residual for every case. (This turns
out to be true in some generality see Problems 17.1 and 18.1.)
We can look further at the breakdown of the CV by lot: the aver-
- age values are 2.09, 4.76 and 2.43 for lots A, B and C, respectively.
 Hence the amounts for devices in lot B are more difficult to predict
than those in lots A and C.
Cross-validation, as just described, requires refitting the com-
plete model n times. In general this is unavoidable, but for least-
squares fitting a handy shortcut 1s available (Problem 17.1).
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17.4 C, and other estimates of prediction error

There are other ways to estimate prediction error, and all are based
on adjustments to the residual squared error RSE. The last part
of this chapter describes a bootstrap approach. A simple analytic
measure is the adjusted residual squared error

RSE/(n — 2p) (17.7)

where p denotes the number of regressors in the model. This ad-
justs RSE/n upward to account for the fitting, the adjustment
bemng larger as p increases. Note that RSE/(n — 2p) 1s a more se-
vere adjustment to RSE than the uunbiased estimate of variance

RSE/(n — p).
Aunother estimate is (one form of) the “C,,” statistic
C, = RSE/n + 2p&?/n. (17.8)
Here 62 15 an estimate of the residual variance; a reasonable choice

for 6% i1s RSE/(n — p). (When computing the C, statistic for a
number of models, 62 is computed once from the value of RSE/(n~—
p) for some fixed large model.) The C, statistic is a special case of
Akaike’s informalion criterion (AIC) for general models. It adjusts
RSE/n so as to make it approximately unbiased for prediction
error: E(C,) ~ PE.

Implicitly these corrections account for the fact that the same
data 1s being used to fit the model and to assess it through the
residual squared error. The “p” in the denominator of the ad-
justed RSE and the second term of C, are penalties to account
for the amount of fitting. A simple argument shows that the ad-
justed residual squared error and C, statistic are equivalent to a
first order of approximation (Problem 17.4.)

Similar to C, is Schwartz’s criterion, or the BIC (Bayesian In-
formation Criterion)

BIC = RSE/n + logn - pé?/n (17.9)

BIC veplaces the “27 1 G, with logn and licnce applies a more
severe penalty than C,, as long as n > e?. As a result, when used
for model comparisons, BIC will tend to favor more parsimonious
models than C,. One can show that BIC is a consistent criterion
in the sense that it chooses the correct model as n — co. This is
not the case for the adjusted RSE or C,,.

In the hormone example, RSE = 59.27, 5% = 2.58 and p = 4 and
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hence RSE/{n — 2p) = 3.12, C, = 2.96, BIC = 3.45, as compared
to the value of 3.09 for CV.

Why bother with cross-validation when simpler alternatives are
available? The main reason is that for fitting problems more com-
plicated than least squares, the number of parameters “p” is not
known. The adjusted residual squared error, C, and BIC statis-
tics require knowledge of p, while cross-validation does not. Just
like the bootstrap, cross-validation tends to give similar answers as
standard methods in simple problems and its real power stems from
its applicability in more complex situations. An example involving
a classification tree 1s given below.

A second advantage of cross-validation is its robustness. The
C, and BIC statistics require a roughly correct working model to
obtain the estimate 42. Cross-validation does not require this and
will work well even if the models being assessed are far from correct.

Finally, let’s answer the second question raised above, regarding
a comparison of the common slope, separate intercept model to
a simpler model that specifies one common regression line for all
lots. In the same manner as described above, we can compute the
cross-validation sum of squares for the single regression line model.
This value is 5.89 which 1s quite a bit larger than the value 3.27
for the model that allows a different intercept for each lot. This is
not surprisiug given the statistically significant ditferences among
the intercepts in Table 9.3. But cross-validation is useful because
it gives a quantitative measure of the price the investigator would
pay if he does not adjust for the lot number of a device.

17.5 Example: classification trees

For an example that illustrates the real power of cross-validation,
let’s switch gears and discuss a modern statistical procedure called
“classification trees.” In an experiment designed to provide in-
formation about the causes of duodcnal ulcers (Giampaolo et al.
1988), a sample of 745 rats were cach administered one of 56 model
alkyl nucleophiles. Fach rat was later autopsied for the develop-
ment of duodenal ulcer and the outcome was classified as 1, 2 or
3 in increasing order of severity. There were 535 class 1, 90 class
2 and 120 class 3 outcomes. Sixty-seven characteristics of these
compounds were measured, and the objective of the analysis was
to ascertain which of the characteristics were associated with the
development of duodenal ulcers.
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Figure 17.3. CART tree. Classification tree from the CART analysis of
data on duodenal ulcers. At each node of the tree a quesiion s asked,
and data poinls for which the answer s “yes” are assigned to the left
branch and the others to the right branch. The shaded regions are the
terminal nodes, or leaves, of the tree. The numbers in square brackets
are the number of observations wn euch of the three classes present al
each node. The bold number indicates the predicted class for the node. In
this particular example, five penalty points are charged for misclassifying
observations mn true class 2 or 3, and one penalty pownt s charged for
masclassifying observations wn class 1. The predicted class 1s the one
resulting in the fewest number of penalty points.

r

The CART method (for Classification and Regression Trees)
of Breiman, Friedman, Olshen and Stone (1984) is a computer-
intensive approach to this problem that has become popular in
scientific circles. When applied to these data, CART produced the
classification tree shown in Figure 17.3. :

At each node of the tree a yes»no question is asked, and data
points for which the answer is “yes” are assigned to the left branch:
and the others to the right branch. The leaves of the tree shown:
in Figure 17.3 are called “terminal nodes.” Each observation isi
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assigned to one of the terminal nodes based on the answers to
the questions. For example a rat that received a compound with
Dipole moment < 3.56 and nielting point > 98.1 weuld go left then
right and end up in the terminal node marked “[13,7,41].” Triplels
of numbers such as “[13,7,41]” below each terminal node number
indicate the membership at that node, that is, there are 13 class
1, 7 class 2 and 41 class 3 observations at this terminal node.

Before discussing how the CART procedure buill this tree, let's
look at how it is used for classilication. lSach terminal node 18
assigned a class (1,2 or 3). The most obvious way Lo assign classes
" to the terminal nodes would be to use a majority rule and assign
the class that is most numerous in the node. Using a majority
rule, the node marked “[13,7,41]” would be assigned to class 3 and
all of the other terminal nodes would be assigned to class 1. In
~ this study, however, the investigators decided that it would be five
. times worse to misclassify an animal that actually had a severe
ulcer or moderate ulcer than one with a milder ulcer. Hence, five
penalty points were charged for misclassifying observations in true
class 2 or 3, and one penalty point was charged for misclassifying
observations in class 1. The predicted class is the one resulting in
the fewest number of penalty points. In Figure 17.3 the predicted
class is in boldface at each terminal node; for example, the node
at the bottom left marked “[10,0,5]” has the “5” in boldface and
hence is a class 3 node.

We can summarize the tree as follows. The top (“root”) node
was split on dipole moment. A high dipole moment indicates the
presence of electronegative groups. This split separates the class
1 and 2 compounds: the ratio of class 2 to class 1 in the right
split, 66/190, is more than 5 times as large as the ratio 24/355 n
the left split. However, the class 3 compounds are divided equally,
60 on cach side of the split. If in addition the sum of squared
atomic charges is low, then CART finds that all compounds arc
class 1. Hence, ionization is a major determinant of biologic action
in compounds with high dipole moments. Moving further down
he right side of the tree, the solubility in octanol then (partially)
eparates class 3 from class 2 compounds. High octanol solubility
- probably reflects the ability to cross membranes and to enter the
" central nervous system.

On the left side of the root node, compounds with low dipoie
moment and high melting point were found to be class 3 severe.
ompounds at this terminal node are related to cysteamine. Com-
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pounds with low melting points and high polarizability, all thiols
in this study, were classified as class 2 or 3 with the partition co-
efficient separating these two classes. Of those chemicals with low
polarizability, those of high density are class 1. These chemicals
have high molecular weight and volume, and this terminal node
contains the highest number of observations. The low density side
of the split are all short chain amines.

In the termunology mentioned earlier, the data set of 745 obser-
vations is called the training sample. It is easy to work out the
misclassification rate for each class when the tree of Figure 17.3
18 applied to the training sample. Looking at the terminal nodes

that predict classes 2 or 3, the number of errors for class 1 is °

13 + 89 + 50 + 10 + 25 + 25 = 212, so the apparent misclassifi-
cation rate for class 1 1s 212/535=39.6%. Similarly, the apparent
misclassification rates for classes 2 and 3 are 56.7% and 18.3%.
“Apparent” is an important qualifier here, since nisclassification
rates in the training sanmple can be badly ascd downward, lor the
same reason thal the residual squared error is overly optinistic in
regression.

How does CART build a tree like that in Figure 17.37 CART
is a fully automatic procedure thai chooses the splitting variables
and splitting points that best discriminate between the outcome
classes. For example, “Dipole moment< 3.56” 1s the split that was
deternuncd to best separate the data with respect to the outcome
classes. CART chose both the splitting variable “Dipole moment”
and the splitting value 3.56. Having found the first splitting rule,
new splitting rules are selected for each of the two resulting groups,
and this process 1s repeated.

Instead of stopping wheun the tree is some reasonable size, CART
uses a more effective approach: a large tree 1s constructed and then
pruned from the bottom. This latler approach 1s more effective in
discovering nteractions that involve several variables.

This brings up an unportant question: how large should the tree
be? If we were to build a very large tree with only one observation in

each terminal node, then the apparent misclassification rate would

be 0%. However, this trec would probably do a poor job predicting
the outcomes for a new sample. The reason 1s that the tree would be
geared to the training sample; statistically speaking it is “overfit.”

The best-sized tree would be the one that had the lowest mis-
classification rate for some new data. Thus if we had a sccond data
sel available (a Lest sample), we could apply trees of various sizes
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to it and then choose the one with lowest misclassification rate.

Of course in most situations we do not have extra data to work
with, and this is where cross-validation comes in handy. Leave-one-
out cross-validation doesn’t work well here, because the resulting
trees are not different enough from the original tree. Experience
shows that it is much better to divide the data up into 10 groups
of equal size, building a tree on 90% of the data, and then assessing
its misclassification rate on the remaining 10% of the data. This
1s done for each of the 10 groups in turn, and the total misclas-
sification rate is computed over the 10 runs. The best tree size
is determined to be that tree size giving lowest misclassification
rate. This is the size used in constructing the final tree from all of
the data. The crucial fealure of cross-validation 1s the separation
of data for building and assessing the trees: each one-tenth of the
data is acting as a test sample for the other 9 tenths. The precise
details of the tree selection process are given in Problem 17.9.

The process of cross-validation not ouly provides an estimate of
the best tree size, it also gives a rcalistic cstimate of the misclassi-
fication rate of the final trec. The apparent error rates computed
above are often unrcalistically low because the training sample 1s
used both for building and assessing the tree. For the tree of Fig-
ure 17.3, the cross-validated misclassification rates were about 10%
higher than the apparent error rates. It is the cross-validated rates
that provide an accurate assessment of how effective the tree will
be in classifying a new sample.

" 17.6 Bootstrap estimates of prediction error
17.6.1 Overview

In the next two sections we investigate how the bootstrap can be
used to estimate prediction error. A precise formulation will re-
quire some notation. Before jumping into that, we will convey the
main ideas. The simplest bootstrap approach generates B boot-
strap samples, estimates the model on each, and then applies each
fitted model to the original sample to give B estimmates of prediction
error. The overall estimate of prediction error is the average of these
B estimates. As an example, the left hand coluinn of Table 17.1
shows 10 estimates of prediction error (“err”) from 10 bootstrap
"~ samples, for the hormone data example described m Section 17.2.
Their average 15 2.52, as compared 1o the value of 2.20 for RS1S/n.
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Table 17.1. Bootstrap estimates of prediction error for hormone daia of
Chapter 9. In each row of the table a boolstrap sample was generated
by sampling with replacement from the hormone data, and the model
specified wn equation (9.21) was fit. The left column shows the result-
wng prediction error when this model 1s applied to the original data. The
average of the left column (=2.52) 1s the sumple bootstrap estimate of
prediction error. The center column s the prediction error that results
when the model 15 applied Lo the bootstrap sample, the so-called “appar-
ent error.” It 1s unrealistically low. The difference between the first and
second columns 13 the “opfimism” wn the apparent error, qwen wn the,
thard column. The more refined bootstrap estimate adds the average op-
timasm (=0.82) to the averuge residual squared error (=2.20), gunng an
estimate of 3.02.

err(x*, F) err(x*, F*) err(x*,F) - err(x*, F)

sample 1: 2.30 1.47 0.83
sample 2: 2.56 3.03 -0.47
sample 3: 2.30 1.65 0.65
sample 4: 243 1.76 0.67
sample 5: 2.44 2.00 0.44
sample 6: 2.67 1.17 1.50
sample 7: 2.68 1.23 1.45
sample 8: 2.39 1.55 0.84
sample 9: 2.86 176 1.10
sample 10: 2.54 1.37 1.17
AVERAGLE: 2.52 1.70 0.82

This simple bootstrap approach turns out not to work very well,
but fortunately, it is easy to umprove upon. Take a look at the
second column of Table 17.1: it shows the prediction error when
the model estimated from the bootstrap sample is applied to the
bootstrap sample itself. Not surprisingly, the values in the second
column are lower on the average than those in the first column. The
improved bootstrap estimate focuses on the difference between the
first and second columns, called appropriately the “optimism"; it
is the amount by which the average residual squared error (or “ap-
parent error rate”) underestimates the true prediction error. The
overall estimate of optimism is the average of the B differences be-
tween the first and second columns, a value of 0.82 in this example.
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Ouce an estimate of optimisi is oblamed, 16 18 added o the
apparent error rate 1o obtain an improved estimate of prediction
error. Here we obtain 2.204-0.82=3.02. Of course 10 bootstrap sain-
ples are too few; repeating with 200 samples gave a value of 2.77
for the simple bootstrap estimate, and an estimate of .80 for the
optimism leading to the value 2.204-0.80=3.00 for the improved
estimate of prediction error. Essentially, we have added a bias-
correction to the apparent error rate, in the same spirit as in Chap-
ter 10.

17.6.2 Some details

The more refined bootstrap approach improves on the siumpler ap-
proach by effectively removing the variability between the rows of
Table 17.1, much like removing block effects in a two way analysis
of variance. To understand further the justification for the boot-
strap procedures, we need to think in terms of probability models
for the data.

In Chapters 7 and 9, we describe two methods for bootstrapping
regression models. The second method, which will be our focus
here, treats the data x, = (¢,, %), ¢t = 1,2, .. n as an 1.1.d sample
from the multi-dimensional distribution F' Recall that ¢; might
be a vector: in the hormone data, ¢, would be the lot number and
hours worn for the oLl device. Call the entire sample x. A classifica-
tion problein can be expressed in the same way, with y, indicating
the class membership of the 2th observation. Our discussion be-
low is quite general, covering both the regression and classification
- problems.

Suppose we estimate a model from our data, producing a pre-
dicted value of y at ¢ = ¢¢ denoted by

7})((0()). (1710)
We assume that 7x(co) can be expressed as a plug-in statistic,
that is nx(cg) = n(co, F). for some function 1, where F' 1s the

empirical distribution function of the data. If our problem 1s a
regression problem as in the hormone example, then 9x(cy) = cof
. where J is the least squares estimate of the regression parameter.
. In a classification problem, nx(co) 1s the predicted class for an
observation with ¢ = cq.

Let Q[y,n] denote a measure of error between the response y and
the prediction 7. In regression we often choose Qy,n] = (y — 7)?%;
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n classification typically Qy,n] = I{yzy}, that is Q[y,n] = 1 if with F
y # 1 and 0 otherwise. tions 3
The prediction error for 7x(cg) is defined by
err(x, F') = Epp{Q[Yo,n1x(Co)]}. (17.11)
The notation Egr indicates expectation over a new observation
(Cyp, Yo) from the population F Note that Eor does not average ) Intu
over the data set x, which is considered fixed. The apparent error in the
rate is of the
of the
err(x, I:_') ()F{Q[)fov x CL) Z Q Yiy 7]X c’L (1712) t Exp
o an
. ber B
because “E,z” simply averages over the n observed cases (c,,y;). Thxces (€
In regression w1Lh Qly,nl = (y —n)?, we have err(x, ) = 37 [yi — bth be
71x(¢:)]?/n, while 1n classification with Qly,n] = I{y.y,;. it equals Ep[er
#{nx(c,) # yi}/n the misclassification rate over the original data
set.
The K-fold cross-validation estimate of Section 17.3 can also be
expressed in this framework. Let &(z) denote the part containing
observation ¢, and 7y k() (¢) be the predicted value at ¢, computed In reg

with the k(i )th part of the data removed. Then the cross-validation

are th
estimate of the true error rate is

averag
The

- Z Qlys, 'ﬂx Cz)] (17.13) err(x,
‘ by sul
To construct a bootstrap estimate of prediction error we apply g by
the plug-in principle to equation (17.11). Let x* = {(c}, v}), (c3,v3), |
..(ck,y)} be a bootstrap sample. Then the plug-in estimate of
err(x, F) 1s

N n This :

err(x”, I7) = Tll Z Qlyisx(c))) (17.14) and tl

1 Note |

In this expression 7x-(c;) is the predicted value at ¢ = c¢,, based : ra;r;,;e t

estim;

on the model estimated from the bootstrap data set x*. ‘

We could use err(x*, F) as our estimate, but it involves only a
single bootstrap sample and hence is too variable. Instead, we must
focus on the average prediction error

Erlerr(x, F)}, (17.15) Here
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with Ep indicating the expectation over data sets x with observa-
tions x, ~ F'. The bootstrap estiinate is

n

Eglerr(x*, F)] =Bz ) Qlys, 1x+(c1)]/n. (17.16)

Intuitively, the underlying idea is much the same as in Figure 8.3:
in the “bootstrap world”, the bootstrap sample is playing the role
of the original sample, while the original sample is playing the role
of the underlying population F’

Expression (17.16) is an ideal bootstrap estimate, corresponding
to an infinite number of bootstrap samples. With a finite num-
ber B of booutstrap samples, we approximate this as follows. Let
nx+s(ci) be the predicted value at c,, from the model estimated on
bth bootstrap sample, b = 1,2,... B. Then our approximation to
Eplerr(x*, F)] is

B =
E plerr(x*, F)] = —;‘ZZQ[yi»ﬂxw(ci)]/n. (17.17)

=1 1=1

In regression Y7 Q[yi, nx+s(€:)]/n = Yo [yi —nx=o(ci)]?/n; these
are the values in the left hand column of Table 17.1, and their
average (2.52) corresponds to the formula in equation (17.17).

The more refined bootstrap approach estimates the bias in
err(x, F) as an estimator of err(x, F'), and then corrects err(x, £)
by subtracting its estimated bias. We define the average optimisin
by

w(F) = Eplerr(x, F) — err(x, F)]. (17.18)

* This is the average difference between the true prediction error
and the apparent crror, over data sets x with observations x, ~ I¢
Note that w(') will tend to be positive because the apparent, crror
rate tends to underestimate the prediction error. The bootstrap
estimate of w(F") is obtained through the plug-in principle:

w(F) = Eglerr(x*, F) — err(x", F*)]. (17.19)

Here F* is the empirical distribution function of the bootstrap
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sample x*. T'he approxunation o tins wleal boolstrap quantity 18

@<F) - B H{ZZQyquw cl ZZQ yzb17lx*° )]}
b=1 1=1 b=1 21=1 (1720)

In the above equation, nx+ (c}) is the predicted value at ¢! from
the model estimated on the bth bootstrap sample, b = 1,2,... B,
and yj, 1s the response value of the ith observation for the bth
bootstrap sample. In Table 17.1, this is estimated by the average
difference between the second and third columns, namely 0.82. The
final estimate of prediction error is the apparent error plus the
downward hias in the apparent error given by (17.20),

err(x, F') + w(F) (17.21)

which is approximated by L 37 Q[y:, nx(c.)] + &(F). This equals
2.20+0.82=3.02 mn our example

Both w(F) and Elerr(x*, F)] do not fix x (as specified in defi-
nition 17.11), but instead measure averages over data sets drawn
from F. The refined estimate in (17.2}) is superior to the simple
estimate (17.17) because it uses the observed x in the first term
err(x, F'); averaging only enters into the correction term w(£").

17.7 The .632 bootstrap estimator

The simple bootstrap estimate in (17.17) can be written slightly
differently

n B
Bplerx, Pl = 33 Qe el/B. (17.22)

1=1 b=1

We can view equation (17.22) as estimating the prediction er-
ror for each data point (c,,y;) and then averaging the error over
1 =1,2,...n. Now for each data point (¢,,y;), we can divide the
bootstrap samples into those that contain (c;,y;) and those that
do not. The prediction error for the data point (c;, y;) will likely be
larger for a bootstrap sample not containing it, since such a boot-
strap sample is “farther away” from (¢, ;) in some sense. The 1dea,
behind the .632 bootstrap estimator 1s to use the prediction error
from just these cases to adjust the optimism in the apparent error
rate.
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Lel ¢g be the average error rate obtammed [rom bootstrap data
sets not containing the point being predicted (below we give details
on the estimation of ). As before, err(x, F) is the apparent error
rate. It seems reasonable to use some multiple of ¢y ~ err(x, F)
as an estimate of the optimism of err(x, £). The .632 bootstrap
estimate of optimism is defined as

o532 = 632[¢p — err(x, F)). (17.23)

Adding this estimate to err(x, F') gives the .632 estimate of predic-
tion error

a1 = err(x, F) +.632] — err(x, F)]
368 - err(x, F) + 632 - ¢o. (17.24)

The factor “.632” comes from a theoretical argument showing
that the bootstrap samples used in computing ¢ are farther away
on the average than a typical test sample, by roughly a factor
of 1/.632. The adjustment in (17.23) corrects [or this, and makes
632 roughly unbiased for the true error rate. We will not give
the theoretical argument here, but note that the value .632 arises
because it 1s approximately the probability that a given observation
appears in bootstrap sample of size n (Problem 17.7).

Given a set of 3 bootstrap samples, we estimale ¢ by

err’

fo= 3" 3 Qs (@))/ By (17.25)

1=1 bEC,

where C, is the set of indices of the bootstrap samples not con-
taining the sth data point, and B; is the number of such bootstrap
samples. Table 17.2 shows the observation numbers appearing in
each of the 10 bootstrap samples of Table 17.1. Observation #35,
for example, does not appear in bootstrap samples 3,48, and 9.
In the notation of equation (17.25), C, = (3,4,8,9). So we would
use only these four bootstrap samples in estimating the prediction
error for observation ¢ = 5 in equation (17.25).

Iu our example, €y equals 3.63. Not surprisingly, this is larger
than the apparent error 2.20, since it i1s the average prediction
error for data points not appearing in the bootstrap sample used for
their prediction. The .632 estimate of prediction error is therefore
.368 - 2.20 4 .632 3.63 = 3.10, close to the value of 3.00 obtained
from the more refined bootstrap approach earlier.
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Table 17.2. The observation numbers appearing wn each of the 10 boot-
strap samples of Table 17.1.

Bootstrap sample
2 3 4 5 6 7 8 9 10
I 6 25 i 4 15 04 23 6 5
5 5 4 7 10 24 7 17 20 9
28 16 12 12 212 1 15 10 3
il 24 16 7 8 18 6 9 9 3
11 11 14 14 13 15 11 6 27 26
24 14 27 25 5 23 21 22 10 4
15 17 24 1 1 9 22 9 23 25
10 26 7 22 7 8 5 22 7T 21
1
6

o] -

27 11 23 26 727 3 3 20
26 27 18 4 9 25 8 7 15
4 20 14 26 25 25 25 7 9 14
2 10 13 15 25 9 23 26 4 5
5 26 2 9 19 6 22 2 18 7
24 26 27 6 20 22 8§ 17 11 25
1 22 14 26 5 18 6 17 19 20
27 22 8 7 20 25 23 22 20 16
8 21 3 21 17 2 11 27 21 17
17 21 6 10 25 26 4 22 17 23
9 26 17 17 4 7022 8 3 12
4 16 27 14 11 21 17 15 11 8
14 14 11 13 21 14 25 24 2 26
14 20 26 18 12 15 7 16 12 19
13 14 8 22 16 24 16 3 8 15
22 23 26 25 24 4 3 19 22 3
8 13 19 24 9 14 27 27 8 9
2 13 26 7 9 27 18 23 1 15
3 16 25 1 18 5 8 3 14 23

As a matter of interest, the average prediction error for data
points that did appear in the bootstrap sample used for their pre-
diction was 3.08; this value, however, 1s not used in the construction
of the .632 estimator.

17.8 Discussion

All of the estimates of prediction error described in this chapter
are significant improvements over the apparent error rate. Which

BIBLIC

is best
are as;
small :
15 roug
strap x
ward;
still su
estima
eviden
S la
strap ¢

17.9

Key r
Allen

BIC 1s
AIC a
lent. ]
Cross-1y
and W
in the
rani (
strap

632 e
strap ¢
than (
selecti
for me
Spectc
sificat;
al. (1¢
these

examy

17.10
17.1



BIBLIOGRAPHIC NOTES 255

is best among these competing methods is not clear. The methods
are asymptotically the saine, but can behave quite diflerently m
small samples. Simulation experiments show that cross-validation
1s roughly unbiased bul can show large variability. The simple boot-
strap method has lower variability but can be severely biased down-
ward; the more refined bootstrap approach is an improvement hut
still suflers from downward bias. In the few studies to date, the .632
estimator performed the best among all methods, but, we need more
evidence before making any solid recommendations.

S language functions for calculating cross-validation and boot-
strap estimates of prediction error are described n the Appendix.

17.9 Bibliographic notes

Key references for cross-validation are Stone (1974, 1977) and

Allen (1974). The AIC is proposed by Akaike (1973), while the
BIC i1s introduced by Schwarz (1978). Stone (1977) shows that the
AIC and leave one out cross-validation are asymptotically equiva-
lent. The C, statistic is proposed in Mallows (1973). Generalized
cross-validation is deseribed by Golub, Heath and Wahba (1979)
and Wahba (1980); a further discussion of the topic may be found
in the monograph by Wahba (1990). See also Hastie and Tibshi-
rani (1990, chapter 3). Efron (1983) proposes a number of boot-
strap estimates of prediction error, including the optimusm and
632 estimates. Efron (1986) compares C,, CV, GCV and boot-
strap estimates of error rates, and argues that GCV is closer to C,,
than CV. Linhart and Zucchini (1986) provide a survey of model
selection techniques. The use of cross-validation and the bootstrap
for model sclection is studied by Breunan (19Y2), Breiman and
Spector (1992), Shao (1993) and Zhang (1992). The CART (Clas-
sification and Regression Tree) methodology is due to Breiman et
al. (1984). A study of cross-validation and bootstrap methods for
these models is carried out by Crawford (1989). The CART tree
example is taken from Giampaolo et.al. (1988).

17.10 Problems

17.1 (a) Let C be a regression design matrix as described on
page 106 of Chapter 9. The projection or “hat” matrix
that produces the fitis H = C(CTC)~1CT. If hy; denotes
the ¢ith element of H, show that the cross-validated resid-
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ual can be written as

o Yi— i
=y, = . 17.26
Yi Y; 1— h“ ( )
(Hint: see the Sherman-Morrison-Woodbury formula in
chapter 1 of Golub and Van Loan, 1983).

(b) Use thus result to show that y; — ;" > yi — fi-
Find the explicit form of h;; for the hormone data example.

Using the result of Problem 17.1 we can derive a simplified
version of cross-validation, by replacing each h;; by its av-
erage value h = Z? hi;/n. The resulting estimate is called
“generalized cross-validation”:

GCV = % ;(%)2 (17.27)

Use a Taylor series approximation to show the close rela-
tionship between GCV and the C,, statistic.

Use a Taylor series approximation to show that the adjusted
residual squared error (17.7) and the C,, statistic (17.8) are
equal to first order, if RSE/n 15 used as an estimate of 62 in
C,.

Carry out a linear discriminant analysis of some classifica-
tion data and use cross-validation to estimate the misclassifi-
cation rate of the fitted model. Analyze the same data using

the CART procedure and cross-validation, and compare the
results.

Make explicit the quantities err(x, F), err(x, F') and their
bootstrap counterparts, in a classification problem with pre-
diction error equal to misclassification rate.

Given a data sct of n distinct observations, show that the
probability that an observation appears in a bootstrap sam-
ple of size n is — (1 — e ') ~ .632 as n — oo.

(a) Carry out a bootstrap analysis for the hormone data,
like the one in Table 17.1, using B = 100 bootstrap sam-
ples. In addition, calculate the average prediction error
é for observations that do not appear in the bootstrap
sample used for their prediction. Hence compute the .632
estimator for these data.




PROBLEMS 257

(b) Calculate the average prediction error ¢, for observa-
tions that appear exactly j times in the bootstrap sam-
ple used for their prediction, for y = 0,1,2,.... Graph ¢,
against 7 and give an explanation for the results.

17.9 Tree selection in CART. Let T be a classification tree and
define the cost of a tree by

cost(T) = mr(T) + A|T, (17.28)

where mr(T') denotes the (apparent) misclassification rate
of T and |T| 1s the number of terminal nodes in T. The
parameter A > 0 trades off the classification performance
of the tree with its complexity. Denote by T, a fixed (large)
tree, and consider all subtrees T" of Tj, that 1s, all trees which
can be obtained by pruning branches of Tj.

Let T, be the subtree of Tp with smallest cost. One can show
that for cach valuc & > 0, a unique Ty, exists (when more
than one tree exists with the same cost, there 1s one tree
that 1s a subtree of the others, and we choose that tree).
Furthermore, if «; > ag, then T, is a subtree of T,,. The
CART procedure derives an estimate & of a by 10-fold cross-
validation, and then the final tree chosen is Tg.

Here 15 how cross-validation 1s used. Let T;* be the cost-
minirmzing tree for cost parameter o, when the kth part of
the data is withheld (k = 1,2,...10). Let mr, (75 %) be the
msclassification rate when T7% 1s used to predict the kth
part of the data.

For each fixed «, the misclassification rate is estimated by

10
% > g (T, F). (17.29)
k=1

Finally, the value & is chosen to minimize (17.29).

This procedure is an example of adaptive estimation, dis-
cussed in the next chapter. More details may be found n
Breiman et al. (1984).

Write a computer program that grows and prunes classifi-
cation trees. You may assume that the predictor variables
are binary, to simplify the splitting process. Build in 10-fold
cross-validation and try your program on a set of real data.




CHAPTER 18

Adaptive estimation and
calibration

18.1 Introduction

Consider a statistical estimator 6,(x) depending on an adjustable
parameter . For example, 6 A(x) might be a trimmed mean, with A
the trimming proportion. In order to apply the estimator to data,
we need to choose a value for A. In this chapter we use the bootstrap
and related methods to assess the performance of 8)(x) for each
fixed A. This idea is not much different from some of the ideas
that are discussed in Chapters 6 and 17. However, here we take
things further: based on this assessment, we choose the value A that
optimizes the performance of 8(x). Since the data themselves are
telling us what procedure to use, this is called adaptive estimation.
When tlus idea 1s applied to confidence interval procedures, 1t is
sometimes referred to as calibration. We discuss two exawmples of
adaptive estimation and calibration and then formalize the general
1dea.

18.2 Example: smoothing parameter selection for curve
fitting

Qur first example concerns choice of a smoothing parameter for
a curve fitting or nonparamelric regression estimator. Figure 18.1
shows a scatterplot of log C-peptide (a blood measurement) versus
age (in years) for 43 diabetic children. The data are listed in Ta-
ble 18.1. We are interested in predicting the log C-peptide values
from the age of the child.

A smooth curve has Leen drawu through the scatterplot using
a procedure called a cubic smoothing spline. Here's how it works.
Denoting the data points by (z;,y;) for ¢ = 1,2,.. n, we seek a
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Table 18.1. Blood measurements on 43 diabetic children.

obs # age logC-| obs# age logC-
peptide peptide
1 5.2 4.8 23 11.3 5.1
2 8.8 4.1 24 1.0 3.9
3 105 5.2 25 11.5 5.7
4 106 5.5 26 11.9 5.1
5 104 5.0 27 8.1 5.2
6 1.8 3.4 28 13.8 3.7
7 12.7 3.4 29 155 49
8 15.6 4.9 30 9.8 4.8
9 5.8 5.6 31 11.0 44
10 1.9 3.7 32 124 5.2
11 2.2 3.9 33 11.1 5.1
12 4.8 4.5 34 5.1 4.6
13 7.9 4.8 35 4.8 3.9
14 5.2 4.9 36 4.2 5.1
15 0.9 3.0 37 6.9 5.1
16 11.8 4.6 38 13.2 6.0
17 7.9 4.8 39 9.9 4.9
18 11.5 5.5 10 12.5 1.1
19 10.6 4.5 41 132 4.6
20 8.5 5.3 42 8.9 4.9
21 111 4.7 43 10.8 5.1
22 12.8 6.6

smooth function f(z) that is close to the y values. That is, we
require that f(z) be smooth and that f(z;) ~y; fori=1,2,. n.
To formalize this objective, we define our solution f(z) to he the
curve minimizing the criterion

I =Dl — FE) + /\/[f”(z)]2d:r. (18.1)
1

The first term in Jy(f) measures the closeness of f(z) to y, while
the second term adds a penalty for the curvature of f(z). (If

you are unfamiliar with calculus, you can think of f[f“(z)]:" as
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Figure 18.1. Scatterplot of log C-peptide versus age for 43 diabetic chil- '
dren. The solid curve 18 a cubic smoothing spline that has been fit to the :
data.

)\Z;_l[f(ziH) — 2f(2;) + f(zi_1)]%.) The penalty term will b
small if f(z) is smooth and large if f(z) varies quickly. The smooth
ing parameter X > 0 governs the tradeoff between the fit and .
smoothness of the curve. Small values of X favor jagged curves that
follow the data points closely: choosing A = 0 means that we don’t
care about smoothness at all. Large values of A\ favor smoother
curves that don’t adhere so closely to the data. For any fixed value
of A, the minimizer of JA\(f) can be shown to be a cubic spline: a
set of piecewise cubic polynomials joined at the distinct values of
zi, called the “knots.” Computer algorithms exist for computing
cubic spline, like the one shown in Figure 18.1.

What value of ) is best for our data? The left panel of Figure 18.

o 7 N e Y
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Figure 18.2. As wn Pigure 18.1, bul using a larger value of the smoothing
parameler (left panel) and a smaller value of the smoothing parameter |
(right panel).

shows the curve obtained for a larger value of A: 1t is smoother than
the curve in Figure 18.1 but doesn’t scem to fit the data as well. In
the right panel a smaller value of A was used. Notice how the curve
follows the data closely but is more jagged. Denote by f»(z) the
function estimale based on our data set and the value A. If we had
new data (2’,9'), 1t would be reasonable to choose A 1o minimmze
the expected prediction error

pse(\) = E[y’ — f)\(z’)]? (18.2)

The expectation is over a new pair (#/,y’) from the distribution
I that gave rise to our original sample. In lieu of new data, we
can generate a bootstrap sample (z7,y}), 1= 1,2,.. n, and com-
pute the curve estimate f %(z) based on this sample and a value A.
Then we find the error that f;(z) makes in predicting our original
sample:

pse’(\) = = >l Fi (P (18.3)

Averaging this quantity over B bootstrap samples provides an esti-
“male of the prediction error pse(A); denote thuis average by pse(\).
: Why is (18.3) the appropriate formula, and not say 3 7 (y; —

r(z:))?/n, or YWyt — fX(22))?/n? Formula (18.3) 1s obtained by
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applying the plug-in principle to the actual prediction error (18.2).
To see this, it might, be helpful to look back at Figure 8.3. The “real
world” quantity pse(\) involves f»(z'), a function of our original
data sample x = ((21,71), -(2n,¥n)), and the new observation
(2',y') which 15 distributed according to F, the true distribution of
z and y. In the bootstrap world, we plug in ff_‘ for F' and generate
bootstrap samples x* ~ F. We calculate fy(z) from x* in the
same way that we calculated f,\(zi) from x, while (z;, y;) plays the
role of the “new” data (2',y").

We calculated pse over a grid of X values with B = 100 bootstrap
samples, and obtained the pse()) estimate shown in the top left
panel of Figure 18.3. The minimum occurs near A = ,01; this is the
value of A that was used 1n Figure 18.1. (In Figure 18.2 the values
44 and .0002 were used 1n the left and right panels, respectively).
At the minimizing point we have drawn tse error bars to indicate
the vanability 1n the bootstrap estimate. The standard error is
the sample standard error of the B = 100 individual estimates of
pse(A). Since smoother curves are usually preferred for aesthetic
reasons, it is farly common practice to choose the largest value
X > A that produces not more than a one standard error increase
w1 pse. In this case A = .03; the resulting curve is very similar to
the one 1n Figure 18.1.

The reader will recognize this procedure as an application of pre- .
diction error estimation, described in Chapter 17. Consequently,
other techniques that are described in that chapter can be used
in this problem as well. The top right panel shows a more refined
bootstrap approach that focuses on the optimism of the apparent
error rate. The bottom left and right panels use cross-validation
and generalized cross-validation, respectively. Although the mini-
mum of each of these three curves is close to A = .01, the minimum’
is more clearly determined than in the top left panel.

A disadvantage of the bootstrap approaches is their computa- -
tional cost. In contrast, the cross-validation and generalized cross- :
validation estimates can be computed very quickly in this context
(Problem 18.1) and hence they are often the methods of choice for
stmoothing parameter selection of a cubic smoothing spline.
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Figure 18.3. Estimates of pse(\). Top left panel uses the sumple boot-
strap approach; wn top right, a more refined bootstrap approach 1s used,
focusing on the optimism of the apparent error rate; the bottom left and
right curves are obtained from cross-validation and generalized cross-
validation, respectwely. The minumum of each curve 1s indicated, with
*se error bars.

18.3 Example: calibration of a confidence point

As our second example, suppose 6[a] is an estimate of the lower
ath confidence point for a parameter §. That is, we intend to have

Prob{6 < 6[a]} = a. (18.4)



264 ADAPTIVE ESTIMATION AND CALIBRATION

The procedure §[a] might be, for example, the standard normal
pomnt § — z1-®)§ or the bootstrap percentile point described in
Chapter 13. As we have seen in previous chapters, the actual cover-
age of a confidence procedure is rarely equal to the desired (nomi-
nal) coverage, and often is substantially different. One way to think
about the coverage accuracy of a confidence procedure is in terms
of its calibration: that is, for each o if (18.4) doesn’t hold for 8[al,
perhaps it will hold for [A] where \ # a. For example, if we want
the probability o n (18.4) to be 5%, perhaps we can achieve this”
by using the 3% confidence point. If we knew the mapping o — A,
we could construct a confidence procedure with exactly the desired
coverage.

The bootstrap can be used to carry out the calibration. Here'’s
how we do it. For couvenient notation, denote the family of confi-
dence pomts by

Oy = 0| (18.5)
We seek a value \ such that )
p(A) = Prob{0 < §;} = a. (18.6).

Note that if the procedure is calibrated correctly, then (18.6) holds
exactly with A — a.

Let
p(\) = Prob, {6 < 6%},

the bootstrap estimate of p(A). In (18.7), ¢ is fixed and the “*
refers to bootstap sampling with replacement from the data. Tt
approximate p()\) we generate a number of bootstrap samples,
compute é} for each one, and record the proportion of times that:
6< é; This process is carried out simultaneously (using the sam
bootstrap samples) over a wide grid of X values that includes thy
nominal value a.

Denoting by A, the value of A satisfying p(A) = «, the calibrated,
confidence point 1s

5. (18.8),

Let’s spell out the calibration process m more detail. Starting
with a confidence limit €y, the steps m calibrating 65 are shown
Algorithm 18.1. .

In many cases, the calculation of #5(b) in step (la) above
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Algorithm 18.1

Confidence point calibration via the bootstrap

1. Generate B bootstrap samples x*!, ... x*? For each sani-
pleb=1,2,---B:

la. Compute a A-level confidence point 6%(b) for a grid
of values of A. For example these might be the normal
confidence points *(b) — 211~V ge* (b).
2. For each \ compute p(\) = #{6 < 6%(b)}/B.
3. Find the value of X satisfymg p(A\) = a.

quires bootstrap sampling itscll. This makes the overall ealibration
anested computation, sometimes called a “double bootstrap.” This
1s true if we use the normal confidence point for in step (1a) and
there is no closed form expression for §&* or if we use the percentile
limit defined in Chapter 13.

As an example of bootstrap calibration, let’s fix o = .05 and
consider a lower a confidence point for the correlation coefficient of
the law school data (Table 3.1). Let 8 be the bootstrap percentile
interval based on B = 200 bootstrap samples. Using the same
.number of bootstrap samples mm the calibration makes the total
number 200 - 200 = 40, 000. For reasonable accuracy the number
200 should probably be raised to at least 1000, but this would make
the total number of bootstrap samples equal to 1,000,000." The
‘estimate p(A\) is shown in the left panel of Figure 18.4. The 45°
line is included for reference. The value A = .01 gives p(}) = .05.

The right panel of Figure 18.4 shows the corresponding plot for the
" upper 95% confidence point. The value A = .93 gives p(\) =~ .95.

The calibrated percentile interval is constructed by selecting the
1% and 93% points (rather than the 5% and 95% points) of the
ootstrap distribution of §. This produces the interval

[.378,.938]. (18.9)
: The percentile interval for these data s [.524,.928] while the BC,
.

I The muore realistic calibration examples of Chapters 14 and 25 avoid most
_ of the computational effort by use of the ABC approximation.
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Pigure 18.4. Estitnales of p(A) for the lower and upper confidence pownts
(solid curves). The dotted line with the arrow wmdicales the calibration
of the 5% and 95% pownts. The broken line s the 45° line for reference.

interval from Chapter 14 1s [.410,.923]. The calibration has moved
the percentile point much closer to the BC, point on the lower end
and a little farther away from it on the upper end.

In fact, it 1s possible to carry out a nested ecalibration, that t
calibrate the calibration, and so on. Each calibration brings another
order of accuracy, but at a formidable computational cost.

18.4 Some general considerations

The common theme in these two examples can be expressed in the
following way. Given a statistical procedure 8)(x) depending on a

parameter \, we require the value A that minimizes some function
E[g(6,)] or that achieves a specified value of E[g(65)]. Let g*(@})
be g(f,), applied to a bootstrap data set. The bootstrap calibra-
tion procedure estimates E[g(6,)] by the bootstrap expectation of

g (03):

Elg(6,)] = L.[g*(63)].
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Then we simply use E[g(6,)] in place of E[g(6,)]: that is, find the
value A that minimizes E|g(6 )], or find the value of X that achieves

a specified value for £[g(8))].
The form of the function ¢(-) depends on the problem at hand.

In the scatterplot smoothing example 6y = () and
9(6x) = (v ~ Fr()? (18.11)

and we seek the value of A that minimizes pse()) = E(y’ — fx(2'))2.
Bootstrap calibration uses pse(\) the bootstrap expectation of
pse*(A), defined below (18.3), in place of pse(A) and then finds
A to minimize pse(A). For the confidence point application

g(6x) = I((ggéx} (18.12)
so that E[g(6x]) = Prob{(0 < y}. We scek the value X such that
Blg(6,)] = o. Nole that ¢*(03) — 1(05({(]? and E*[[WS();)} =

PProb, {(9 < éﬁ}. Therelore we find the value of A such that
Prob*{é < éi} = a.

The bootstrap and related methods are potentially useful tools
for adaptive estimation and calibration. However there are some
problems that need to be tackled. One difficulty is the amount of
' computation required. Tor example, we have seen that the cali-
brated percentile interval requires 1000 - 1000 = 1,000, 000 boot-
strap samples, unless a computational shortcut can be found. An-
other more subtle issue 18 the procedure that we choose to calibrate.
Let’s look back at the confidence point problem where this issue
is best understood. Rather than defining 6 as i (18.5) we could
use any one of the following definitions:

Ol + A, (18.13)
6+ A, (18.14)
0+ X se. (18.15)

The original definition (18.5) led to calibration of the nominal cov-
erage probability of the confidence procedure é[a], an approach
also known as pre-pwoting. Using (18.13), we adjust the confidence
point itself ratlier than the nominal coverage. That 1s, for cach e
we find the value of A such that

p(A) = Prob{@ < f[a] + A} = a. (18.16)
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In (18.14), we calibrale Lhe distance from the point estimate 0,
that is, we seek A so that

p(A) =Prob{8 <+ )} = . (18.17)

Finally, in (18.15) we calibrate this distance standardized by an
estimate of standard error se, that is, we seek the value of A so
that
p(A) = Prob{f <6+ ) &} = a. (18.18)
The differences i (18.5), (18.13)-(18.15) may scem subtle, but
they turn out to be important. As long as 6[c] is a first order ac-
curate confidence pomt as defined in Chapters 14 and 22 (such as
the standard normal or bootstrap percentile ponts), the calibra-
tion process, using either (18.5) or (18.13), produces a second order
accurate confidence point. (An example of this is given in Chapter
14). Hence the calibrated interval will enjoy the same accuracy as
the BC, procedure of Chapter 14.
Use of definition (18.15) also leads to second order accuracy.

Interestingly, it 1s the same as the bootstrap-t interval described in

Chapter 12 (Problem 18.4). However, definition (18.14) does not
work, in the sense that the resulting confidence points are only first
order accurate.

The question of how to choose the representation §, can arise
in other problems, but is less clearly understood. In Problems 18.2
and 18.3 we 1nvestigate this issue for the estimation of a cubic
smoothing spline.

18.5 Bibliographic notes

Curve fitting and smoothing parameter selection for curve fitting
are discussed in Rice (1984), Silverman (1985), Hall and Tittering-
ton (1987), Eubank (1988), Hirdle and Bowman (1988), Hardle,
Hall, and Marron (1988), Hardle (1990), Hastie and Tibshirani
(1990), and Wahba (1990). Hall (1992, chapler 4) gives an overview
of bootstrap methods f{or tlus area, currently a very active one. The
related problem of constriuction of confidence bands for curve esti-
mates is studied by Hall and Titterington (1988), Hastie and Tib-
shirani {1990, chapter 3), Hérdle (1990, chapter 4), and Hall (1992,
chapter 4). Calibration of Llie bootstrap was first discussed by
Hall (1986a, 1987), and Loh (1987, 1991). Hall and Martin (1988)
give a general theory for bootstrap iteration and calibration. Pre-

tal

18
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pivoting was suggested by Beran (1987, 1988). A summary of boot-
. strap iteration for confidence points is given in DiCiccio and Ro-
" mano (1988). Adaptive estimation of the window width in a kernel
density estimate is an interesting but difficult problem, and is stud-
led in Taylor (1989), Romano (1988), Leger and Romano (1990),
Faraway and Jhun (1990), and Hall (1990). The diabetes data are
taken from Hastie and Tibshirani (1990).

18.6 Problems

18.1 The cubic smoothing spline fitting mechanism is a linear
operation, that is, the vector of fitted values ¥ can be written
as ¥ = Sy, where y 18 the vector of response valucs and
S is an n % n matrix that depends on the z values and
the smoothing parameter A but not on y. Give a siple
argument to show that the deletion formula of Problem 17.1
Lolds for a cubic smoothing spline, with S replacing H.

18.2 {(a) In the diabetes data discussed in this chapter, suppose

the ages were measured in weeks rather than years. Apply
a cubic spline smoother with A = .01, the value used in
Figure 18.1. Does the curve estimate look the same? What
has happened?

(b) Suggest how your finding in part (a) might effect the
performance of the bootstrap and cross-validation for se-
lection of .

18.3 (a) Generate 10 data sets of size 25 from the model
y=f(z) +e¢ (18.19)

where f(z) = 2% and z is normally distributed with mean
0 and variance 3, and ¢ is normally distributed with mean
0 and variance 9. Apply a cubic smoothing spline to each
simulated data sef, choosing the smoothing parameter A
by the four methods described in the chapter. For cach
method, compute the average of mean squared crror
1 & .
= [f(z) - F=))° (18.20)
25
=1

over the 10 simulations.
(b) Using the same simulated samples as in (a), repeat

the exercise using B = A/sd in place of A, where sd is the
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standard deviation of the z values 1 the satnple. Compare
the results to those in part (a). Relate your findings to
the previous cxercise.

18.4 (a) Show that the confidence interval resulting from cali-
bration of the endpoints based on equation (18.15) is the
bootstrap-t interval described in Chapter 12.

(b) If the form (18.14) 1s used instead, show that the result-
ing interval corresponds to a bootstrap-t interval based on
on 0 — 6 rather than (4 — 8)/se.

(c) Give a reason why one might expect better behavior
from (18.15) than (18.14). Draw an analogy to the results
of Problems 18.2 and 18.3.

18.5 Suggest how to orgamze efficiently the computations in the
bootstrap calibration procedure.

18.6 Explain in detail why expression (18.3) is the bootstrap ana-
logue of the prediction error (18.2).



CHAPTER 19

Assessing the error in bootstrap
estimates

19.1 Introduction

So far in this book we have used the bootstrap and other methods
to assess statistical accuracy. For the most part, we have ignored
the fact that bootstrap estimates, like all statistics, are not exact
but have inherent error. Typically bootstrap estimates are nearly
unbiased, because of the way they are constructed (Problem 19.1);
but they can have substantial variance. This comes from two dis-
tinct sources: sanpling variability, due to the fact that we have
only a sample of size n rather than the entire population, and
bootstrap resampling variability, due to the [act that we take ouly
B bootstrap samples rather than an infinite number. In this chap-
ter we study these two components of variance, and also discuss
the jackknife-afler-bootstrap, a simple method for estimating the
variability from a set of bootstrap estimates.

Figure 19.1 shows our setup. It is basically the same as Fig-
-ure 6.1. We are in the one-sample situation with x = (7,22, .. z,,)
“gencrated from a population F. We have calculated from x our
“statistic of interest s(x). We create B bootstrap samples x*1,. . x*B
' each of size n, by sampling with replacement from x as in Fig-
re 6.1; for cach bootstrap sample x** we compute s(x**), the
ootstrap replication of the statistic. From the values s(x*?), we
onstruct a bootstrap estimate of some feature of the distribu-
ion of s(x), denoted by 4p. For example, 45 might be the 95th
ercentile of the values s(x*?), intended to estimate the samme per-
entile of the distribution of s(x). Our objective in this chapter 1s
o study how the variance of 45 depends on the sample sizc 2 and
he number of bootstrap samples B, and also how to estimate this
variance from the bootstrap samples themselves.
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Figure 19.1. Schematic showing the sampling and resampling components
of variance

19.2 Standard error estimation

Let’s first focus on the bootstrap estimate of standard error for
$(x), where 4p equals

fp={= Z — 522 (19.1)

o—1

For convenience we divide by B rather than B — L) as i Figure

6.1. Here 3= Zf s(x**)/ B 1s the mean of the boolstrap values

The quantity $&p, which measures the variability of the statisti

s(x), itself has a variance. It turns out that this variance has th
approximate form

A~ .G .

var(sep)=— + —, 19.2

(sez) n?  nB (

where ¢; and ¢, are constants depending on the underlying poj

ulation F, but not on n or B. The derivation of equation (19.2

and other results 1s given in Section 19.5. The factor ¢;/n? repr

sents sampling variation, and it approaches zero as the sample s
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n approaches infinity. The term cy/nB represents the resampling
variation, and it approaches 0 as B — oo with n fixed. In Section
19.4, we describe jackknife-after-bootstrap method for cstimating
var(§ég) from the data itself.

The variability of & can help i determining the necessary
number of hootstrap replications I3, and that 15 our focus here. As
n and B change, so does 15{Sep). L s better (o measure thie size
of §&p relative to E(stp), and hience we consider the coellicient of
variation of §ép.

N var(seg)t/?
= 3
cv(seB) E(s,éB) (19 )
In section 19.5 we show that this equals
N N E(A) +2y1/2
oy = d o 2 MR * 2 9.
cv(sep) { v(8eoo)” + 1B } (19.4)

where A is the kurtosis of the distribution of 8, and &, is the
. ideal bootstrap estimate of standard error. This 1s the same as
equation (6.9) of Chapter 6. Let’s consider thc case 6 — & with
&1, &g, - .. T, normally distributed. Then (19.4) siniplifies to

Je ! L1 19.5
o= (34 3] s
Figure 19.2 shows cv{(stp) as a function n and B (solid curves).
The figure caption gives the details. We see that that increasiug
B past 20 or 50 doesn’t bring a substantial reduction i variance.
The same conclusion was reached in Chapter 6.

19.3 Percentile estimation

Suppose now that our interest lies in a percentile. Let 4% = G‘Bl(a),

the estimated o~percentile of distribution of a statistic é, based on
B bootstrap samples. In other words

§% = {(a - B)th largest of the **} (19.6)

(if @ - B 1s not an integer, we can use the convention given in
Section 12.5, after equation (12.22) on page 160.

The variance of 4% again has the form (19.2), but with different
constants ¢; and cy. As we did for standard error estimation, let’s



274 ASSESSING THE ERROR IN BOOTSTRAP ESTIMATES

n=10 n=20
5 k 9 ]
c i <
o T 8 i
g o 8 o
= o 4 = o
g o g o (
k] k<] :
£ E w
g = 8 = !
o (=} g (=] o
% % ”
3 e 8 2 | 1
o < 1
1
20 200 500 20 200 500 ;
B B 1
1
:
n=50 n=100
]
0 re]
o o
c © c @ {
o K=
£ g g g :
g o g o t
k) k] \ l
€ n € w
e = A 5 -
5 e 5 © 1
3 g ]
g o | s 2 |
=] o €
20 200 500 20 200 500
B B

Figure 19.2. Coeffictent of variation of 5ep(Z) where z1,z2,...2, are
drawn from a standard normal population. The solid curves in each panel
show cu(seg) as a function of the sample size n and the number of
bootstrap samples B. The dotted line 15 drawn at cv(Sex).
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focus on the § = % in Uhe normal case. Then
1 [u(l -a),1

T(E + %)]1/2 (19.7)

{ed

cv(dE) ~ G

In this expression, G is the cumulative distribution function of 8
and g 1s its denivative, evaluated at G=}(a).

Figure 19.3 shows the analogue of Figure 19.2, for the upper
95% quantile of the distribution of a sample mean from a standard
normal population. Although the curves decrease with B at the
same rate as those in Figure 19.2, they are shifted upward. The
results suggest that B should be > 500 or 1000 in order to make
the variability of ¢% acceptably low. More bootstrap samples are
needed for estimating the 95th percentile than the standard error,
because the percentile depends on the tail of the distribution where
fewer samples occur. Generally speaking, bootstrap statistics 43
that depend on the extreme tails of the distribution of §* will
require a larger number of bootstrap samples to achieve acceplable
accuracy.

19.4 The jackkuife-after-bootstrap

Suppose we have drawn B bootstrap samples and calculated seg,
a bootstrap estimate of the standard error of s(x). We would like
to have a measure of the uncertainty in $eg. The jackknife-after-
bootstrap method provides a way of estimating var(§éz) using only
mformation in our B bootstrap samples. Here is how it works. Sup-
pose we had a large computer and set out to calculate the jackknife
estimate of variance of §ép. This would involve the following steps:

eFori=1,2,...n

Leave out data point ¢ and recompute sép. Call the result
€ p(i)-
e Define Vatjacc($ep) = [(n — 1)/n] 2.7 (Sep) — Sep(,))* where
Seny = Ly aei/n.

The difficulty with this endeavor is computation of §ep(;): this
requires a completely new set of bootstrap samples for each 2. For-
tunately there is a neat way to circumvent this problem. For each
data point 1, there are some bootstrap samples in which that data
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the number of bootstrap samples B. The dotted line s drawn at cv(GS,):
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point does not appear, and we can use those samples to estimate
§ep(i). In particular, we estimate sep(;) by the sample standard
deviation of s(x*’) over bootstrap samples x** that don’t contain
point 2. Formally, il we let €, denote the indices ol the bootstrap
samples that don’t contain data point 2, and there are B; such
samples, then

Sepgy = [ (s(x*) ~ 5.)°/Bi]'/”, {19.8)

bel,

where 5, = ), s(x*°)/B;.
The reason that this shortcut works is the following fact.

Jackknife-after-bootstrap sampling lemma: A bootstrap sam-
ple drawn with replacement from xy, o, ... T1—1,Tog1, -- Ty has the
same distribution as a bootstrap sample drawn from xi,xs,. .ay,
wn which none of the bootstrap values equals x,.

The proof of this lemma is straightforward.

As an example, consider the treatment times of the mouse data
of Table 2.1: (94,197, 16,38, 99, 141, 23). Table 19.1 shows 20 boot-
strap samples! along with the bootstrap means Z*°.

The bootstrap estimate of the standard error of the mean from
these 20 samples is seg = 23.4. Here are the steps involved in
computing varjac(S¢p). Consider the first data pomt 2 = 94. Tlis
point does not appear 1 bootstrap samples 1,3,5,6,7,9,12,13,15,18
and 19. Thus Sepqy s the sample standard deviation of
j*l1 0—3*3, {E*S,E*GY :—6*7,:5*9‘ 1—:*12‘ 5*13,.’5*15, 7*18 and 219 This works
out to be 28.6.

We carry out this calculation for data points 1,2,3, - 7 and
obtain the 7 values for §eg(;) - 28.6,23.3,16.9,17.9,24.5,15.4 and
24.0. Finally, we take the sample variance of these 7 values to
obtain arj,e(ep) = 23.6. Therefore s¢ja0(Sep) = 4.9, which is
about 20% of gep.

The jackknife-after-bootstrap can be applied to any bootstrap
statistic, not just the standard error as above. For example, the
bootstrap statistic might be the percentile ¢% discussed earlier.
Then Vatjac(¢%) 1s computed as above, except that we compute
4% over all samples not containing data point 1, rather that §ep.
Note that the jackknife-after-bootstrap runs into trouble if every

1 B = 20 1s used for this discussion but 1s really too small to provide needed
accuracy for varjack(ﬁg); B = 200 would be better as shown below.
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Table 19.1. 20 Bootstrap samples, and bootstrap replicates of the mean,
from the treatment group of the mouse data

Bootstrap
# Bootstrap sample mean
1. 16 23 38 16 141 99 197 75.71
2. 141 94 197 23 141 23 16 90.71
3. 197 38 16 23 23 197 197 98.71
4. 94 94 16 141 94 141 94 96.29
5. 99 23 99 141 38 99 23 T4.57
6. 141 38 23 197 16 16 16 63.86
7. 197 38 38 38 197 16 16 77.14
R. 141 94 94 38 197 23 16 86.14
9. 141 16 197 23 16 141 141 96.43
10. 141 197 16 197 94 16 141 114.57
11, 94 99 141 23 141 197 16 101.57
12. 141 16 197 197 197 99 99 135.14
13. 16 141 197 197 99 197 99 135.14
14. 141 16 94 99 94 141 99 97.71
15. 197 99 38 16 23 197 141 101.57
16. 197 197 16 197 141 94 38 125.71
17 9 38 94 99 16 99 94 76.28
18. 141 23 23 38 16 16 23 40.00
19. 99 197 99 38 23 141 99 99.43
20. 23 197 99 38 197 99 94 106.71

bootstrap sample contains a given point 2. However this event is
very rare if n > 10 and B > 20 (Problem 19.4).

How well does Varj,cc(§8p) estimate var(ep)? For convenience
we focus on the square roots of these quantities, $&jack(S€p) =
[¥atjack($25)]*/2 and se(sep) = [var(5ep)]'/?. To investigate, we
carried out a small simulation in the setting of Figure 19.2. Fig-
ure 19.4 shows se(Ség) (solid curve) along with the jackknife-after-
bootstrap estimate (circles). These are the average values of
§8jack (5€p) over 50 simulated samples. Ideally these points should
lie on the solid curves.

We see thal Sejaok(58p) overestimates se(§¢p) by a large margin
when B is as small as 20, but seems to improve as B gets up to
200.
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Figure 19.4. Standard error of sep (solid curve) and the jackknife-after-
bootstrap estimate sejacc(sep) (circles) averaged over 50 simulated sam-

ples. The dotted line shows the average of sep.
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The reason that the jackknife-after-bootstrap is an overestimate,
for small B, is somewhat subtle. It has to do with the fact that
the same set of I saples 1s bemg used (o estimate all of the n
Jackknife values, and hence the jackknife overestimates the resam-
pling component of the variance. These results suggest that the
jackknife-after-bootstrap method is only reliable when B is large.

19.5 Derivations

1 To begin, let’s see how (19.2) is obtained, and derive the form of
the constants ¢; and c;. Given the data x, the quantity sep will
have a certain expectation and variance when averaged over all pos-
sible bootstrap data sets for size B, say BE(Seg|x) and var(sep|x).
The overall variance of §ég 18 given by the formula

var(sep) = var|E(s¢;|x)] + E[var(sep|x)]. (19.9)

The outer variance and expectation in (19.9) refer to the random
choice of the data x. Let 17; be the ith moment of the bootstrap
distribution of s(x*) and A = rhy/mi — 3, the kurtosis of the
bootstrap distribution of s(x*). Both 7; and A are functions of
x. Using standard formulas for the mean and variance of a sample
standard deviation we obtain

var($ep) &= var(ﬁI.Z %+ E[ 2(A +2)]. (19.10)

4D
If we divide (19.10) by 7ty and take its square root, we obtain
expression (19.4) for the coefficient of variation of sép (since §&o, =
ra/?).

We can use (19.10) to derive (19.2) for most statistics s(x). A
particularly easy choice is the sample mean s(x) = Z. Let ¢ be the
variance of F', u4 be the fourth moment and & be the standardized
kurtosis. Then 1h = 62 /n, A re #/m and therefore

var(§8p) =~ var(f)+ [4B ( +2)]

Ba/ s — by a’ o’k

4n? 2nB  4an?B’

~
s
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F, py =30%, k =0 and so (19.11) simplifies further to
N o? "
var(sep) = W(l + ﬁ) (19.12)

Taking the square root of this expression and dividing by o/v/n
gives the coeflicient of variation (19.5). For the a-quantile, we have

var(dg) —  var(E(q}[x)) -+ B(var(q}[x))
~ var(E(d3[x)) + B(ppmsaymy)-  (19.13)

The approximation var(q%|x) = a(l —a)/B- §(G~1(a))® comes
from the standard textbook approximation for the variance of a
quantile. Then using E(¢%|x) = §¢°, var(g*) =~
a(l — a)/n(g(G~«)))? we obtain formula (19.7).

19.6 Bibliographic notes

Formula for the mean and standard error of sample quantities can
be found in Kendall and Stuart (1977, chapter 10). Efron (1987,
section 6) studies the number of bootstrap replications necessary
for achieving a given accuracy, and derived somc of the formulae
of this chapter. A different approach to this question is given by
Hall (1986b). The jackknife-after-boolstrap technique 1w proposed
in Efron (1992b).

19.7 Problems

19.1 Consider a statistic s(x) = #(F) based on an rid sam-
ple x1,73, - .. ,. Suppose we have a bootstrap cstimate of
some feature of the distribution of s(x), denoted by 45. Let
'y(ﬁ‘) = limp_,00 4. Show that 45 is approximately unbi-
ased for y(F). [Hiut: use the relation E(-) = Ex(E(-|x))}.]

19.2 Derive expression (19.10) for the variance of §&p from rela-
tion (19.9).

19.3 Prove the jackknife-after-bootstrap sampling lemma.

- 194 (a) Given n distinct data items, show that the probability
that a given data item does not appear in a bootstrap
sample is ¢,, = (1 — 1/n)™.
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(b) Show that e, — e~ ! = .368 as n — co.
(c) Hence show that the probability that each of B boot-

strap samples contains an item 1 is (1—e, )Z. Evaluate this
quantity for n = 10,20, 50, 100 and B = 10, 20, 50, 100.

19.5 Verify the jackknife-after-bootstrap calculation for Table 19.1,
leading to VaTja.(8¢p) = 23.6.




CHAPTER 20

A geometrical representation for
the bootstrap and jackknife

20.1 Introduction

! In this chapter we explore a different representation of a statisti-
cal estimator, for the purposc of studying the relationship among
the bootstrap, jackknife, infimtesimal jackknife and delta methods.
The representation is geometrical and as we will see, many of the
results in the chapter can be nicely summarized in pictures.

Suppose we are in the simple one-sample situation of Chapter
6, having observed a random sample x = (z1,z2,...2,) from a
population F'. Consider a functional statistic

6= t(F), (20.1)

where £ denotes the empirical distribution function putting mass
1/n on each of our data points z;,x3,...2,. We turn to the re-
sampling representation of t introduced in Section 10.4. Rather
than thinking of # as a function of the values z1,z3,. .x,, we fix
1,2, .. Ty and consider what happens when we vary the amount
of probability mass that we put on each z,. Let P* = (P}, ... PX)T
be a vector of probabilities satisfying 0 < P} <1land } [ P =1,
and let F* = F'(P*) be the distribution function putting mass ry
on z,,1=1,2,...n. We define #* as a function of P*, say T(P*),
by

8* = T(P*) = {(F™(P*)). (20.2)

Notice the shift in emphasis in (20.2) from ¢, a function of F* to
T, a function of P*.
Henceforth we will work with 7T'(P*). This defines our statistic

1 This chapter and the remaining chapters contain more advanced material,



284 A GEOMETRICAL REPRESENTATION

Py

Figure 20.1. The sumplex forn = 3

as a function whose domain is the set of vectors P* satisfying
0 < P* <1and 7P’ = 1. The set of such vectors is called ‘
an (n-dimensional) ssmples and is denoted by S,. For n = 3, the
simplex is an equilateral triangle (Figure 20.1). Geometrically, let’s
focus on this case and lie the equilateral triangle flat on the page
(Figure 20.2). ‘
If we define

PO = (20.3)

S =
3=
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(10,0

(2/3,0,1/3) L 23,173,0)

(172, 1/2,0)
(1/2,0, 1/2) > ~

(1/3,0,2/3) = ® <(1/3,2/3,0)

(1/3, 1/3, 1/3)

(0,0, 1) 7 A A =~
(0,1/3,2/3) (0, 1/2,1/2) (0,2/3,1/3)

0,1,0)

Figure 20.2. Simplex for n = 3, lawd flat on the page. The solid pownts
wndicate the support pownts of the bootstrap distribution while the open
arcles are the jackknife points.

then T(PO) is the observed value of the statistic, or in other words,
t evaluated at F' This is shown in the center of the simplex
Figure 20.2.

The jackknile values of the slatistic are

8 = T(Pgs)) (20.4)

where

;1 1 \T
P(i) = (n—:—l,,o,;li—l,m) (0 in sth place).(20.5)
* These are also indicated in Figure 20.2.

The statistic 7(P*) can be thought of as a surface over its do-
main S, as shown for n = 3 in Figure 20.3. Each point in the
* simplex at the bottom corresponds to a vector of probabilities P*,
the value of the surface at P* is T'(P*).

-~ 20.2 Bootstrap sampling

We can express bootstrap sampling in the framework described in
the previous section. Sampling with replacement from zy, 22, .z
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Figure 20.3. The statistic T(P*) newed as a surface over the sumplex.

is equivalent to sampling nP* from a multinomial distribution with
n draws and equal class probabilities. Equivalently we can write

P* ~ lMult(n,Po). (20.6)
n

The mean vector and covariance matrix of this distribution is

I POPOT])’

20.
- - (20.7).
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where I is the n X n identity matrix.

The probability distribution {20.6) puts all of its support on vec-
tors of the form M*/n, where M* is an n-vector of nonnegative
ntegers summing to n. The black dots mn Figure 20.2 are the sup-
port points for n = 3. Problem 20.1 asks the reader to compute
their associated probabilities under bootstrap sampling.

The correspondence between a bootstrap sample z7, ...z}, and
the 1th component of P* is

P =4{a] =@ }/n 1 =12, ..n, (20.8)

the proportion of the bootstrap sample equaling z;. As an example,
consider the bootstrap sample x4, z1, %1. This corresponds to P* =
(2/3,1/3,0)T and according to (20.6) has probability

(3 17111° 1 (209)
\210/3 33 9 ’

where (,2,) means a!/(b! - ¢! - d).

Note that the specific order 3, zy, 1 18 not important, and the
factor (2?0) = 3 adds up the probabilities for the 3 possible order-
il’lgS (IQ) JL‘lazll)’ (mla Z2, Il)a and (xla Ty $2)~

The bootstrap estimate of variance for a statistic 7'(P*) can be
written as

N var, T'(P*), (20.10)

where var, indicates variance under the distribution (20.6). For the
simple case n = 3, we could compute (20.10) exactly by adding up
the 10 possible bootstrap samples weighted by their probabilities
from (20.6) (see Problem 20.2). In this chapter we view the boot-
strap estimate of variance as the “gold standard” and show how the
jackknife and other estimators can be viewed as approximations to
it.

20.3 The jackknife as an approximation to the bootstrap
A linear statistic T(P*) has the form
T(P*) =co + (P* — PYYTU, (20.11)

where ¢ is a constant and U = (U3, ... U,)7 is a vector satisfying
ST U; = 0. When viewed as a surface, a linear statistic defines
a hyperplane over the simplex S,. The mean z* = 3 7 P’z; is a
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simple example of a linear statistic for which
Co =T Ui =z, —Z (2012)
(Problem 20.3).
The following result states that for any statistic, the jackknife

estimate of variance for T(P*) is almost the same as the bootstrap
estimate of variance for a certain linear approzimation to T(P*):

Result 20.1 The jackknife as an approzimation, to the bootstrap
estamate of standard error

Let TV™N be the umique hyperplane passing through the jackknife
pomts (P, T(P;)) for1=1,2,...n. Then

LIN _ -

. 1 -
var, 1 VaTjack, (20.13)

where var_iacké 15 the jackknife estimate of variance for é:
R n—1 n R R 5
UCLTjacko = T XI:(O(l) — 0()) (2014)

and 0‘(.) =37 é(i)/n, In other words, the jackknife estimate of
variance for § = t(F) equals n/(n—1) times the bootstrap estimate
of varance for TV,
Proof.
By solving the set of n linear equations
Oy = TY™(Pyy) (20.15)

for ¢g and Uy, Uy, ... U, we obtain

o= 8; Ui = (n—1)0g — b)) (20.16)
Using (20.7) and the fact that 37 U; = 0,

var, TM¥(P*) = UT(var,P*)U = LUTU

n=l{n=L 52 (ggy — 65)%10  (20.17)

The proof of this result can be approached differently: see Problem
11.6.

The “jackknife plane” TVIN is shown in Figure 20.4. From Result

20.1 we see that the accuracy of the jackknife, as an approximation

Lo the bootstrap, depends on how well TN approximates T(P*).

In section 20.6 we examine the quality of this approximation in an
example.
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— p(2)

— p(M)

Figure 20.4. The jackknife plane approzimation to T(P™), leading to the
jackknife estimate of variance.

20.4 Other jackknife approximations

The results of the previous section show that the bootstrap vari-
ance estimate arising from any approximation of the form (20.11)

is

> UL (20.18)
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'I'he jackknife uses the hyperplane passing through the jackknife
points, and the resulting values U; = (n — 1)(6;) — 8). Another
obvious choice would be the tangent plane approximation at T'(P?).
This has the form

TTAN(P*) = T(P°) + (P* - P)TU, (20.19)

where U = (Uh, - -.U,) is defined by
0 POy — 0
U, = lim T(P° + e{e; — PY)) — T'(PY)

«—0 €

, t=1,2,...n, (20.20)

and e; = (0,0,...0,1,0,...0)T is the ith coordinate vector. The
U; are the empirical influence values, discussed in more detail in
Chapter 21. Tlis gives Lhe varlance estinate

var’/f = % Y u? (20.21)
1

where U; is defined by (20.20). This is called the nfinitesimal jack-
knife estimate of variance, and is also discussed in Chapter 21. Fig-
ure 20.5 shows the tangenl plane approximation that leads to the
infinitesimal jackknife estimate of variance.

The positive jackknife, yet another version of the jackknife, is
based on

Ui = (n+1)(f - 6), (20.22)

where 8); denotes the value of 6 when z, is repeated 1 the data
set. It 1s discussed briefly in Section 21.3.

20.5 Estimates of bias

There is a similar relationship between the jackknife and bootstrap’
estimates of bias to that given for variances in Resull 20.1 (page
288). For a linear statistic, both the jackknife and bootstrap es-.
timates of bias are identically zero (Problem 20.4). We consider-
therefore an approximation involving quadratic statistics, defined
by

TQUAD(P*) =co+ (P* _ PO)TU + %(P* _ PO)TV(P* _ PO),‘ .
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PO

Figure 20.5. The tangent plane approzemation to T(P*), leading to the
mfinitestmal jackknife estimate of varance.

ge

a5 where U is an n-vector satisfying E? U;=0and Visann xn
ler- symmetric matrix satisfying )., V;; = ZJ Viy =0 for all ¢, 3.

ed

Result 20.2 The jackknife as an approzimation to the bootstrap
stimate of bias.
< Let TRUAD(P*) be a quadratic statistic passing through the jack-
nife pownts (Pgy, T(Py)) for e =1,2,...n, and the center pownt
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(P°, T(P®)). Then

B(TOUAD(p*y _ ) = "L (@), (20.24)

Here ETastk(é) 15 the jackknife estvmate of bias for 8-
brasjac(0) = (n — 1)(8(y — 9) (20.25)

and 9(i) =T(Pw), 0() =37 0(, /n. In other words, the jackknife
estimate of bias for 6 = (F) 1s nf(n — 1) times the bootstrap
estimate of bias for the quadratic approzimation TUAD

Proof:
Since TQUAD pagses through the points, (P(i),T(P(i)) for ¢ =
1,2,...n, as well as (P, T(P°)), ¢1, U, and V satisfy :
Cop = T(PD)
é(i) = ¢ (P POTU | Py PO)TV(P(») - P9
(20.26)

fors =1,2,...n. Using (20.26) and the fact that Y, Vi, = Z Vij =
0 for all ¢, 7, the jackknife estimate of bias is

n

(n—1@-6) = Y (Pe-P)TU+

1

1< .
5 2_(Pu = PTV(P — P)
1

1 &
Now for a general symmetric matrix A, and a random vector Y
with mean p and covariance matrix X
E(YTAY) =" Zp + tr A, (20.28)
Using this

i | opoT
EVTQUAD(P*) "‘TQUAD(PO) — 1t1‘( P P

n
ZVH/Zn O (20.29) "

In a similar fashion, suppose we approximate T'(P) by a two term
Taylor series around P having the formn (20.23). Then the boot
strap cstimate of bias for this approximation cquals 3 Vi;/2n2
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which 1s the same as the infinitesimal jackknife estimate of bias for

T

20.6 An example

" The bootstrap surface of Figure 20.3 1s difficult to view if n is
i larger than 3. It is possible to view “slices” of the surface and
they can be quite informative. Cousider for example the correlation
coefficient applied to the law school data (Table 3.1). Figure 20.6
shows how the value of the correlation coefficient changes as the
probability mass on each of the 15 data points is varied from 0
to 1 (solid curve). In each case, the remaining probability mass
is spread evenly over the other 14 points. Notice how there is a
large downward effect on the correlation coefficient as the amount
© of mass 18 increased on the 1st or 11th point. This make sense:
these data points are {576, 3.39) and (653, 3.12), in the northwest
and southeast part of the nght panel of Figure 3.1, respectively.
The broken lines arc the jackknife approximation to the surface.
t. The approximation is generally quite good. When the mass on some
data points is larger than .2, it starts to hreak down. However a
probability mass greater than .2 corresponds to a data point ap-
pearing more than 3 times in a bootstrap sample, and this only
vccurs with probability approximately 1.5%. Furthermore, only
about 20% of the samples will have at least one data value ap-
pearing more than 3 times. Therefore, the approximation 1s accu-
rate where the bootstrap distribution puts most of its mass, and
that is all that is needed for the jackknife to provide a reasonable
approximation to the bootstrap estimate of standard error. The
bootstrap and jackknife estimates of standard error are 0.127 and
0.142, respectively.

- Notice how many of the curves are steeper between abscissa val-
ues 0 and 1/15 than they are past 1/15. In other words, the eflect
of deleting a data point is greater than the effect of doubling its
probability. In this nstance, the jackknife, which is based on slope
estimates U; between the abscissa values 0 and 1/15, will tend
to give larger estitnates of standard crror than methods estimat-
ing the slope at 1/15 or beyond. The infinitesimal jackknife uses
the tangent approximation at the observed data point P?, which
corresponds to a tangent line to each curve through the dot at
probability mass 1/15. It gives an cstimate of standard error of
0.124, which is less than the jackkuile value of 0.142 and close to
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Figure 20.6. Correlation coeffictent for the law school data. Each plot
shows the value of the correlation coefficient (solid curve) as the prob-'j
ability mass on the gwen data pownt s vared from 0 to 1 along the
horizontal axis. The remarning probability ws spread evenly among the'
other n — 1 pownts. Each plot therefore represents a slice of the resam-
pling surface over the line runming from the mudpoint of a face of the:
sumplex to the opposite vertex. The dot on each curve s the point (1/15,
0.776) corresponding to the original data set. The broken lines are the;
jackknife approrimation. Note that the vertical scale s different on the
1st and 11th plots.
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the bootstrap value of 0.127. The positive jackknife uses the slope
between the values 1/15 and 2/15, and gives an answer of 0.129
here.

This discussion suggests that lor many statistics, the ordinary
jackknife will tend to give larger estimates of standard error than
the infinitesimal or positive jackknives. A result due to Efron and
Stein (1981) says that we can expect the jackknife to give vari-
ance estimates with an upward bias. In the authors’ experience,
however, the jackknife gives more dependable estimates than the
delta method or infinitesimal jackknife. It 1s the preferred variance
estimate if bootstrap calculations are not done.

20.7 Bibliographic notes

The geometry of the bootstrap, and its relationship to the jack-
knife and other estimates, appears in Efron (1979a, 1982). The
idea of slicing the bootstrap surface is proposed in the dissertation
of Therneau (1983).

20.8 Problems

20.1 Compute the probabilities of each of the support points of
the bootstrap distribution in Figure 20.2.

20.2 Suppose our data values are (1,5,4) and b is the sample
mreari.

(a) Work out the bootstrap estimate of variance by com-
puting the probabilities of each of the 10 possible samples
under the wultinomial (20.6) and adding up the terms.

(b) Verify that the answer in (a) agrees with the closed
form solution Y.} (2, — &)?/n? given 1o Chapter 5.

20.3 Show that the mean 1s a linear statistic of the form (20.11)
with coefficients given by (20.12).

20.4 Show that for linear statistics, the jackknife and bootstrap
estimates of bias are zero.

20.5 In this chapter we have discussed jackknife and other ap-
proximations to bootstrap bias and variance estimates. Sug-
gest how one could obtain closed-form, jackknife-based ap-
proximations to higher moments of the bootstrap distribu-
tion.



CHAPTER 21

An overview of nonparametric '
and parametric inference

21.1 Introduction

The objective of this chapter is to study the relationship of boot
strap and jackknife methodology to more traditional parametri
approaches to statistical inferenee, specifically maximum likelihoo
estimation. Variance (or standard error) estimation is the focus fo
the comparison, and Figure 21.1 gives a summary of the possi
bilities. Exact or approximate inference is possible, using either
nonparametric or parametric specification.for the population. W
explore the relationships between these approaches, making clear
the agsumptions made by each.

Likelihood inference, based on construction of a parametric li
lihood for a parameter, is discussed briefly in Section 21.4. We defe
discussion of nonparametric likelihood inference until Chapter

21.2 Distributions, densities and likelihood functions

Suppose we have a sample z;, 22, ...z, from a population. As

Chapter 3 we think of these values as independent realizations ol

a random variable X. The values of X may be real numbers

veetors of real numbers. A general way to describe the populat

that gives rise to X is through its cumulative distribution funct

F(z) = Prob(X < z). (2111

If the function ¥(z) 1s differentiable, one can also describ
distribution of X through its probability density function:

dF(z) .

Sy =22 (21

The probability that X lies in some set A can be obtained
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Exact Approximate
Jackknife
Nonparamelric | |nfinitesimal jackknife
Nonparamettic bootstrap

Nonparametric delta

Sandwich estimator

Parametric Pg(;?);g?;is Fisher information

Parametric delta

Figure 21.1. A summary of the methods for variance estimation studied
- tn this chapter.

ntegration of the density function
Prob{z € A} = / f(z)dz. (21.3)
A

Note that f(z) is not a probability and can have a value greater
than one. Assuming X is real-valued, for small A > 0,

f{z)A =Prob(X ¢ [z,z + A]). (21.4)

s an example, if X has a standard normal distribution then

* 1 1
F@) = [ =t

) = —e 27 . 21.5
@ = (215)
normal random variable takes on continuous values; recall that
me random variables take on discrete values. A simple example is
binomial random variable with success probability say 1/3. Then

f(:z:) = <Z>(1/3)T(1 —1/3)"™™ for x=0,1,2, --.n. (21.6)

In this discrete case f(z) is often called a probability mass function.
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Muawemum likelihood 1s a popular approach to wnlerence Lhal is
used when it can be assumed that X has a probability density (or
probability mass function) depending on a finite number of un-
known “parameters.” This 1s discussed in section 21.4 and is called
a parametric approach to inference. In the next section we focus
on functional statistics for nonparametric inference, corresponding
to the top half of Figure 21.1.

21.3 Functional statistics and influence functions
In Chapter 4 we discussed summary statistics of the form
0 = t(F) (21.7)

where F' is the empirical distribution function. Such a statistic is
the natural estimate of the population paramecter

0 = 1(J). (21.8)

For example, if § = E(X), then 6§ = Ez(X) = Y.V z,/n. Since
t(ﬁ‘) is a function of the distribution function £, it is called a plug-
in or functional statistic. Most estimates are functional statistics,
but there are some exceptions. Consider for example the unbiased
estimate of variance

1« _\2
s? = — ;(wi —T)%. (21.9)
Suppose we create a new data set of size 2n by duplicating each
data point. Then F' for the new data set puts mass 2/2n = 1/n on
each z, and hence is the same as it was for the original data set.
But s? for the new data set equals

%2: 3 (@ - 2)? (21.10)
1

{(Problem 21.1) which is not the same as (21.9). On the other hand,
the plug-in-estimate of variance

%Z(m, —7)? (21.11)
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is the same m both cases; it is a functional statistic since it is
obtained by substituting F for F in the formula for variance. ! The
difference between the unbiased and plug-in estimates of variance
usually tends to be unimportant and creates no real difficulty.

More mportantly, estimates which do not behave smoothly as
functions of the sample size n are not functional statistics and
cannot be studied in the manner described n this chapter. An
example is

6= median(zy, z2,...%,) forn odd ;
mean(zry, T2, ..xz,) for n even.

(21.12)

Such statistics seldom occur in real practice.
Suppose now that t(F') is a functional statistic and consider an

> expansion of the form

L{FY = 1) + %ZU(:;;.,F) +O,(n""). (21.13)
{

(The expression O,(n~!) reads “order n™! in probability.” A def-
inition may be found in section 2.3 of Barndorfl-Neilson and Cox,
1989.) Equation (21.13) is a kind of first order Taylor series ex-
pansion. As we will see, it is important to the understanding of
many nonparametric and parametric estimates of variance of £(£').
The quantity U(z,, F) is called an nfluence function or influence
component and 1s defined by

U, F) = lim t(1 — e)F +€b,] — t(F) A

e—0 €

(21.14)

The notation &, means a point mass of probability at z, and so
(1 — €)F + €b, represents F' with a small “contamination” at .
The function U(z, F') measures the rate of change of t(F) under

- this contamination; it is a kind of derivative. Two simple examples

are the mean t(F) = Ep(X) for which
Ule,F) =« - EpX, (21.15)
and the median t(F) = median{X) = F~*(1/2) for which

sign(z — median(X))
2o

1 Plug-in estunates § = t(F) arc always functional statistics, since F itself 1s
a functional.

Ulz,F) =

(21.16)
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medlan{X}
-6 -4 -2 0 2 4 6 6 -4 2 0 2 4 6
X X

Figure 21.2, Solid lines show the influence function for the mean (left -
panel) and the median (right panel), assuming both the mean and median -
are zero. Broken line 1s drawn at zero for reference.

Here fp is the density of X evaluated its median, and sign(z) de-
notes the sign of z: sign(z) = 1, —1, or 0 accordingly asz > 0,z < 0
or z = 0 (Problem 21.2). These are shown in Figure 21.2.

Notice that the effect of a contamination at z is proportional
to x — Ep(X) for the mean, but is bounded for the median. This
reflects the fact that the median is resistant to outlying dala values
while the mean is not. Moving the point z further and further out
on the z-axis has greater and greater effect on the mean, but not
on the median.

The influence curve was originally proposed to study the resis-
tance or robustness of a statistic. However, it is also useful for
computing the approximate variance of a statistic. In particular
(21.13) can be used to show that

var pt(F) = %Varb-U(x,F) = %E}«'UZ(CC, . (21.17)

The final expression follows because EpU(z,F) = 0 in general
(Problem 21.3). i

Formula (21.17) is the key to understanding many different vari-
ance estimates. By inserting an estimate of U(z, F') into formula
(21.17) we can derive the jackknife estimate of variance as well
as many other variance estimates. Suppose we set F = F and
rather than take the limit i the definition of U(zx, F), we set € to
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—1/(n — 1). Then we obtain the estimate

(n; 1)2i(% - 0)? (21.18)

where ;) 1s the ith jackknife value. This is very similar to, but not
exactly the same as, the jackknife estimate of variance @H(t(ﬁ) =
[(n—1)/n] 37 (8 — 0(.))2: given in (20.14).

If instead we take F' = F and go to the limit in the definition of
U(z, F), we obtain

—IJ

2
var' ¢ (F) = = ZU (z,, F (21.19)

which is called, appropriately, the infinitesimal jackknife estimate
of variance. The quantity U(z,,F) is called an empirical mflu-
ence component. Both the jackknife and infinitesimal jackknifc es-
timates of variance are nonparametric since they use the nonpara-
metric maximum likelihood estimate F. They differ in the choice
of €: the infinitesimal jackknife takes the limit as e — 0, while
the jackknife uses the small negative value —1/(n — 1). There arc
other possibilities: the positive jackknife uses e = 1/(n + 1), giving
Ui = (n+ 1)(8; — 6) and the variance estimate

(" + 1)2 i(é‘i, — 4y (21.20)
1

n

where 6j;) denotes the value of 6 when z, is repeated in the data
set. This not is usually a good estimate in small samples because
it stresses the importance of any inflated data points. It can be
badly biased downward, and is not commonly used.

Recall that the sample-based estimate of the left side of (21.17)

var pt(F*) (21.21)

is the bootstrap estimate of variance of t(ﬁ‘ ). Here F™* is the empir-
ical distribution corresponding to the bootstrap sample x* There-
fore the jackknife, positive jackknife and infinitesimal jackknife can
all be viewed as approximations to the bootstrap estimate of vari-
ance, the approximation based on the first two terws in (21.13).
This is why the bootstrap is labeled “exact” in Figure 21.1. If
there is no error in approximation (21.13), t(¥") can be exactly
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represented in the form

~

HE) = t(F) +

| =

f: Uz, F), (21.22)

n

known as a linear statistic. (It is easy to check that the dcfinition
of lincarity as defined (21.22) is the sawme as that given in cqua-
tion (20.11) of Chapter 20.) In this case it is not surprising that
the infinitesimal jackknife agrees with the bootstrap estimate of
variance. The simplest example 1s the mean, for which both give
the plug-in estimate of variance. Perhaps it 1s surprising that the
jackknife estimate of variance also agrees with the bootstrap (ex-
cept for the arbitrary factor (n —1)/n included in the jackknife for
historical reasons). The exact statements of these relationships are
as follows.

e v v e

RESULT 21.1. Relationship between the nonparametric boot-
strap, wnfinitesimal jackknife, and jackknife estimates of variance:
If t(F) 1s a linear statistic, then

. . —1
varpt(F*) = var' TH(F) = z aar S 1(F).

The proofs of these results are most easily expressed geometri-
cally, using the resampling representation. They are given in sce-
tions 20.3 and 20.4 of Chapter 20.

21.4 Parametric maximum likelihood inference

In this section we describe the approaches to inference that fall i
the bottom half of Figure 21.1. We begin by specifying a probabilit;
density or probability mass function for our observations

X ~ folz). (21.23

In this expression @ represents one or morc unknown paramete
that govern the distribution of X . This is called a parametric mod
for X. We denote the number of elements of by p. As an example;’
if X has a normal distribution with mean g and variance o2, then.

0 = (p,0?), (21.24
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p =2, and

) fole) = Zmge 4O (21.25)

Maximum likelihood is based on the likelthood function defined by
L(0;x) =[] fo(=.). (21.26)
1

The likelihood is defined only up to a positive multiplier, which we
" have taken to be one. We think of L(#;x) as a function of 6 with
our data x fixed. In the discrete case, L(f;x) is the probability
of observing our sample. In the continuous case L(#;x)A is ap-
proximately the probability of our sample lying in a small mnterval
[x,x + A], (21.4).

Denote the logarithm of L(8;x) by

n

(0ix) =Y 0(6;3,) (21.27)

1

~ which we will sometimes abbreviate as £(#). This expression is
: called the log-likelihood and each value £(6;2,) = log fo(z,) is
. called a log-likelihood component.

. The method of maximum likelihood chooses Lhe value 8 = 8 Lo
" maximize £(6;x). Consider for example the control group of the
© mouse data (Table 2.1, page 19). Let’s assume the model

T1,Za, ... Ty ~ N(8,0%). (21.28)
. We set o2 to the value of the plug-n estimate
' 6% = 1799.2 = 42.42°. (21.29)

The left panel of Figure 21.3 shows the log-likelihood function
£(9;x) for the 9 data values.

The maximum occurs at § = 56.22, which is also the sample
mean Z. The explicit form of £() in this example is

A 1o 252
—nlogédv2r — 521:(331 - 0)*/& (21.30)

The log-likelihood is only defined up to an additive constant; for
convenience, then, we have translated the curve mn Figure 21.2 so
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Normal model Exponential model
(=] o
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Figure 21.3. Log-likelihood functions for the mean of the mouse data. Left
panel 1s based on the normal model, while the right panel uses the ezpo-
nential model. Dotted line 13 drawn at the mazwmum likelihood esiimate
6 = 56.22.

that its maximum 1s at zero. The result is sometimes called the
relative log-likelihood function.

As an alternative to normality we might assume that the obser-
vations come from an exponential distribution having density

fo(z) = %e‘m/", x>0, (21.31)

The righl pauel of Figure 21.2 shows the log-likelihood for this
model, The maximum also occurs at & = 56.22, but the shape of
the likelihood is quite different.

A different way to view maximum likelihood is to think of

H fa(x) (21.32)

as the mazvmum likelihood summary ol the data. The maximum
likelihood sununarizer 1s a probability density, not a number or
vector, that summarizes the information in the data about our
parametric model. N

The likelihood function can be used to assess the precision of 6.
We need a few more definitions. The score function is defined by |

(0 x) = ié(em), (21.33)
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where €(6; ) = d€(0; z)/df. Assuming that the likelthood takes its
maximum in the interior of the parameter space, £(6;x) = 0. The
wnformation is

I6)=->" % (21.34)

When I(8) is evaluated at 8 — 8, it is often called the observed
wnformation. The Fisher information (or expected information) 1s

i(0) = Lo[1(0)]. (21.35)
Finally, let 8y denote the true value of 6.

A standard result says that the maximum likelihood estimator
has a limiting normal distribution

6 — N(8o,i(60)1). (21.36)

Here we are independently sampling from fg,(x) and the sample
size n — oo. This suggests that the sampling distribution of § may

be approximated by
N(@,i(6)™"). (21.37)

Alteruatively, (8 ) can be replaced by I(é) to yield the approxima-
tion

NG, 1(6)™). (21.38)
The corresponding estimates for the standard error of § arc
i(6)"Y/2 and I(6)"'/% (21.39)

Confidence points for 8 can be constructed using apploxnnatlom
(21.37) or (21. 38). The v confidence point has the form G-zt
(5(8))712 or 6 — 201" {I(0)} /2 respectavely, where 217 s
the 1 — v percentile of the standard normal distribution.

Alternatively, a confidence interval can derived from the likeli-
hood function, by using the approximation

2[6(0) ~ £(86)] ~ X (21.40)
The resulting 1 — 2« confidence interval is the set of all 8 such that

2[6(6) — €(8p)] < qu %) where XZ(l %) §s the 1 — 20 percentile
of the Chi-square dlStI‘lbuthll with one degree of freedom. It is also
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Figure 21.4. Parametric bootstrap histograms 1000 replicairons of the
mean 8* Left panel 1s based on the normal model, while the mght panel
uses the exponential model. Superunposed 13 the normal density curve
based on (21.36).

possible to carry out a nonparametric version of this, that is, to
construct confidence intervals from a nonparametric likelihood for
the parameter. Nonparametric likelihood is the subject of Chapter
24.

21.5 The parametric bootstrap

There 1s 2 more exact way of estimating the sampling distribution
and variance of @ in the parametric setting. We draw B samples
of size n from the density f;(z), and calculate the maximum like-
lihood estimate of @ for each one. 'I'he sample variance of these
B values estimates the variance of 6. This process is called the
parametric bootstrap method, and is described in Section 6.5 of
Chapter 6. The only difference from the nonparametric bootstrap
1s that the samples are drawn from a parametric estimate of the
population rather than the non-parametric estimate F'.

The left panel of Figure 21.4 shows a histogram of 500 parametric
bootstrap values of §. We drew 500 samples of size 9 from the
normal model V (Q,S’éz) and computed the mean for each.

Superimposed on the histogram is the density N(é,i(é)*l) sug-
gested by result (21.36). The agreement, 1s very good, which is not
at all surprising siee the population s assumed Lo be normal and
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Lience the agymptotic result (21.28) holds exactly for small sam-
ples. The parametric bootstrap estimate of variance is 183.7, while
1/i(6) = 177.7 In the normal model 1/:(f) is just the plug-in es-
timate of variance for the mean, so again this agreement is not
surprising.

The right panel shows the results if we assume instead that the
observations have an exponential distribution Now the large sam-
ple normal approximation is not very accurate. As the sample size
n approaches infinity, the central limit theorem tells us that the
histogram will start to look more and more like the normal den-
sity curve. In this instance, n = 9 1s not close enough to infinity!
However that the variance estimates are not very different: the
parametric bootstrap cstimate of variance based on 500 replicales
the is 359.5, while 1/i(6) = z2/n = 351.2.
el
Lrve

21.6 Relation of parametric maximum likelihood,

N bootstrap and jackknife approaches
to

for
ter In order to relate the parametric maximum likelihood approach
to the jackknife and other methods discussed earlier, we need to
outline its multiparameter version. Suppose now that we have a
vector of parameters 17 and we want to conduct inference for a
real valued function 8 = h(n). Let 7, be the true value of n. If
denotes the maximum likelihood estimate of 7, then the maximum

ion

5les likelihood estimate of 6 is

ike-

ese 6 = h(#). (21.41)
the

5 of

rap | Denote the parametric family of distribution functions of = by Fy,
the ° with true value F' = F, .

As in the previous section let the score vector be é(n;x), the
tric information matrix be 7(n) and the expected information matrix
the be i(17). These are the multiparameter analogues of the quantities

introduced in the one parameter case. £(n;x) is a vector of length
sug- p with ith element equal to 8¢/9n;, I(n) is a p x p matrix with zjth
not element —82£/9n;0n;, and i(n) is a p X p matrix with 27th element

and —E(82¢/0n;0n;). Denote by fi(n) the gradient vector of 0 = hi(n)
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with respect to n:

oh(n)/0m

i — | 20O | (21.42)

Oh(n)/on,

An application of the chain rule shows thal the inverse ol the Fisher
mformation for h{n) is given by

i(h(m)) ™" = h(m)Ti(n) " A(n). (21.43)

The sample estimate replaces i with 7 in the above equation.
Furthermore, it can be shown that

h(8) = N(h(6o), h(n)"i(116) " h(m0)) (21.44)
as n — oo, when sampling from fy, (-).
We can relate the Fisher information to the influence function
method for obtaining variances by computing the influence com-
ponent U(zx, F) for the maximum likelihood estimate 0:

Uz, F) =n h(m)Ti(n)""¢(n;z) (21.45)
(Problem 21.5). If we evaluate U(z, F) at F' = Fj, we see that
U(z, F;) is a multiple of the score component (#y; ). This simple
relationship between the score function and the mfluence function
arises 1n the theory of “M-estimation” in robust statistical infer-
ence. In particular, the influence function of an M-estimate is a
multiple of the “y” function that defines it.

Given result (21.45), the variance formula 2EpU?(z, F') from
(21.17) then leads to

varpd = .!Q]‘*jl,g?)),”'i(‘)))‘i[1}(11,);;1:)”(?];;1:),"]7‘,(7])74/},(1])
= b)) { Bl )€ )] i) ™ h(on)
h(n)"i(n) " h(n), (21.46)

which 1s exactly the same as the inverse of the Fisher information
(21.43) above. The last equation in (21.46) follows from the previ-
ous line by a basic identity relating the Fisher information to the
covariance of the score function (Problem 21.6)

n Ep{l(n;2)e(m;2)"} = Ep{f(n;x)0(n; x)7} = —i(n). (21.47)
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Heuce the usual Fisher information method for estimation of vari-
ance can be thought of as an influence function-based estimate,
using the model-based form of the influence function (21.45). We
summarize for reference:

RESULT 21.2. Relationship between the parametric bootsirap,
infinitessmal jackknife and Fisher information-based estimates of
varance:

For a statistic t(I7),

—~ IJ AN i AN—17 74

dar' t(Fy) = h(#)" i)~ h(R)
the right hand side being the wnverse Fisher information for h(n).
Furthermore if t(F3) s @ linear statistic t{(F) + 13T U(x,, F)
then the wnfinitesymal jackknife and wmverse Fisher information both
agree with the parametric bootstrap estimate of variance for t(I7y).

21.6.1 Ezample: wmfluence components for the mean

In the nonparametric functional approach, U (z,F) =z — % from
(21.15). Instead of operating nonparametrically, suppose we as-
sume an exponential model. Then {(#;z) = —1/Z + z /22, i(f) =
n/z? and so '

Uz, Fy) =z — i, (21.48)

which again agrees with U(z, I).

In geueral, the same value will be obtained for U(z, F') whether
we use formula (21.45), or treat i(#) as a functional statistic and
use the definition (21.14) directly. However, U(x, Fy) and U(z, F)
may differ. A simple example where this occurs is the trnmmed
mean in the normal family. Thus, there are two potential differences
between the parametric and nonparametric infinitesimal jackknife
estimates of variance: the value of the influence curve U and the
choice of distribution (£ or F) under which the expectation EpU?
is taken.

In this section we have assumed that the statistic 6 can be writ-
ten as a functional of the empirical distribution fimction

6 =t(F). (21.49)

This implics that ¢(F') and § are really estimating the same pa-
rameter, that is, t(¥),) = h(n). For example in the normal family,
if 0 is the mean, then t(F') would be the sample mean. We are not
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allowed to take t(F') cqual to the sample median, even though the
mean § of the normal distribution is also the median.

21.7 The empirical edf as a maximum likelihood estimate

Suppose that we allow 1 to have an arbitrarily large number of
components. Then the maximumn likelihood estimate of the under-
lyig population is the empirical distribution function F'. That is,
it can be shown that ' s the nonparametric mazimum likelihood
estimate of F. Here is the 1dea. We define the nonparametric like-
lihood function as

n

L(F) =[] Fdz.}), (21.50)

where F({z,}) is the probability of the set {z,} under F'. Then it 15
easy to show that the empirical distribution function F maximizes
L{F) (Problem 21.4). As a result, the functional statistic t(£) is
the nonparanietric maximun likelihood estimate of the parame-
ter ¢(F). In this sense, the nonparametric bootstrap carries out
nouparametric maximum likelihood mference, Different approaches

to nonparametric maxmum likelihood inference are discussed in
Chapter 24

21.8 The sandwich estimator
Note that the identity (21.47) holds only if the model is correct.

A “semi-parametric” alternative to Fisher information uses the
second expression on the right hand side of (21.46), estimating

the quantity Ep[f(n;2)€(n;z)T] with the empirical covariance of
the score function

1 . -
DB UENUCIENES (21.51)
The resulting estimate of var Fé is

AT (i) 1S i) ) Ti) T Ph@). (21.52)
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The quantity
n
OV CERUGTENRIC) (21.53)
1
is sometimes called the “sandwich estimator”, because the Fisher
information sandwiches the empirical covariance of the score vec-
tor. Like bootstrap and jackknife estimates, the sandwich estimator
is consistent for the true variance of § even if the parametric model
does not hold. This is not the case for the observed information.
The sandwich estimator arises naturally i M-estimation and
the theory of estimating equations. In the simple case § = Z in the
normal model, it is easy to show that the sandwich estimator equals
the maximum likelihood estimate of variance }.7 (z, — Z)?/n®.

21.8.1 Example: Mouse data

Let’s compare some of these methods for the mouse data of Chapter
2. Denote the timnes in the treatment group by X, and those m the
control group by Y,. The quantity of interest is the difference n
mears

6 =E(X) - E(Y). (21.54)

A nonparametric bootstrap approach to this problem allows differ-
ent distribution functions F' and G for the two groups, and resam-
ples each group separately. In a parametric approach, we might
specify a different normal distribution N(p;,02), 2 = 1,2 for each
group, and then define

n = (p1,0%, 12, 03) (21.55)

Alternatively, we might assume an exponential distribution for
each group with means g1 and p. Then

n = (1, p2) (21.57)

6="nh(n)=p — 2 (21.58)

Figure 21.5 shows a number of different sampling distributions of
the maximum likelihood eslimator 6. .

The estimates of the standard error of @ are shown i Table 21.1:
All of the estimates are similar except for those arising from the ex-
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Figure 21.5. Inference for the difference in means for the mouse data
shown n top left. Bootstrap hastograms of  are shown, from nonpara-
metric bootstrap (top right), parametric bootstrap based on the normal
distribution (bottom left) and the parametric bootsirap based on the ex-
ponential distribution (bottom right). Superimposed on each hstogram s
the normal density curve based on (21.36).

ponential model, which are larger. The fact that the

exponential-based standard errors are substantially larger than the
nonparametric standard errors sheds doubt on the appropriateness
of the exponential model for these data. Note that the sandwich
estimator, which is exactly equal to the nonparametric bootstrap
in this case, still performs well even under the exponential model

assumption. Problem 21.7 asks the reader to compute these esti-
mates.
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Table 21.1. Standard error estimates for the mousc data.

Method Formula Value
Nonparametric

bootstrap [var pt(£F)]1/2 28.1
Jackknife (2= 5" () — 6¢y)]H? 30.1
Infinitesimal jackknife (52 2y U (=i, Y72 28.9
Parametric bootstrap [varr, g*1v2

Normal 29.2

Exponential 37.7
Fisher information [ Ti(7) " a(a)]H?

Normal 28.9

Exponential 37.8
Sandwich T i(#H) = Vi)~ n(#)])?

where V = 5" (i) ) l(f; 2.) "
Normal 28.1
Exponential 28.1

21.9 The delta method

The delta method is a special technique for variance estimation
that is applicable to statistics that are functions of observed aver-
ages. Suppose that we can write

6(X1, X, ... Xn) = 7(Q1, Q2. Qa), (21.59)
where r(-,-,...-) is a known function and
_ 1 <
Dy = = o(X). 21.60
2= D 0ux) (21.60)

The simplest example is the mean, for which Q,(X,) = X,, for
the correlation we take

. S S Q4 — Q1Q2
r , = — = = —

(Q11Q25Q3 Q47Q5) [QB_Qg]l/Q[QS _Q%]]/Q
with X = (V,2),Q1(X) =Y, Q2(X) = Z,Q3(X) = Y“,Q4(X\) =
YZ,Qs(X) = 2*

The idea behind the delta method is the following. Suppose we
have a random variable U with mean g and vanance o2, and we
seek the variance of a one-to-one function of U, say g(U). By ex-
panding ¢g(t) in a one term Taylor series about ¢t = p we have

(21.61)
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9(t) = g(p) + (t ~ n)g'(n) (21.62)
and this gives
var(g(U) = [¢'(w)]*0”. (21.63)
Now if U itself 1s a sample mean so that estimates of its mean
1 and variance o? are readily available, we can use this formula to
obtain a simple estimate of var(g(U)).
The delta method uses a multivariate version of this argument.
Suppose (Q1(X), - Qa(X)) has mean vector gp. A multivariate
Taylor series has the form

A

or
T(Qlﬂz S (IA) ~ 7’(/—"17”27 . .“A) + Z(ql - /’l“u)aq |q¢=#n
1 T
(2[.(34)
or 1 convenlent vector notation
r(q) ~ () +vr’ (g — p). (21.65)
This gives
- Ty ;
var(r(Q)) m L HEEVIE (21.66)

n

wlere X' 18 the vanance-covariance matrix of a single observation
X ~ F. We have put the subscript F' on the quantities in (21.66)
to remnd ourselves that they depend on the unknown distribution
F_ The nonparametric delta method substitutes F for F in (21.66);
this simply entails estimation of the first and second moments of
X by their sample (plug-in) estimates:

- rE v
varVP (r(Q)) = M

The parametric delta method uses a parametric estimate Fj; for F:

(21.67)

PD(q)) = Y1 Y T

In both the nonparametric and parametyic versions, the fact that
the statistic 8 1s a function of sample means 1s the key aspect of
the delta method.

var

(21.68)

n
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21.9.1 Ezample: delta method for the mean
Here Q1(X) = X, r(q) = ¢, vrr = 1, ¥r = var(X). The non-

parametric delta method gives Xz = > (2, — Z)%/n, the plug-in
estimate of vartance and finally

n
var"P X = Z(z;z —Z)?/n?, (21.69)
1

which equals the bootstrap or plug-in estimate of variance of the
mean.

If we use a parametric estimate F; then parametric delta method
estimate is o?(F;)/n. For example, if we assume X has an ex-
ponential distribution (21.31), then 0 = z, o2(F) = 1/z* and
var’P(X) = 1/(nz?).

21.9.2 Example: della method for the correlation coefficrend

Application of the delta method to the correlation coellicient (21.61)
shows how quickly the calculations can get complicated. Here X =
(Y,2),Qu(X) = Y.QX) = Z,Q5(X) = Y2, Qu(X) = YZ,
Qs(X) = 72 Letting Bas = Ep[(Y — EpY)*(Z ~ ErZ)®], after
a long calculation, (21.68) gives
éi [@ Boa 2622 | 4P

4n LG5, ﬂgzl Brofoz P

4831 4P ]

BP0 Briifoz

varNDr(Q)

(21.70)

where each B, is a (plug-in) sample moment, for example Biy =
(i — §)(zi — 2)*/n. The parametric delta method would use
a (bivariate) parametric estimate F; and then ﬁab would be the
estimated moments from Fj.

21.10 Relationship between the delta method and
infinitesimal jackknife

The infinitesimal jackknife applies to general functional statistics
while the delta method works only for functions of means. Inter-
estingly, when the infinitesimal jackknife is applicd to a [unction
of mecaus, it gives the sane answer as the delta method:
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RESULT 21.3. Relationship between the nonparametric delta
method and the nfinitessmal jackknife estimates of variance:
If t(F) 1s a function of sample means, as wn (21.59), then

var' t(F) = varV Pi(F).

Using tlus, the relationship of the nonparametric delta method
to the nonparametric bootstrap can be inferred from Result 21.1.
An analogous result holds in the parametric case:

RESULT 21.4. Relationship between the parametric delta
method and the Fisher information:
If t(F;) 18 a function of sample means, as in (21.59), then
var”Py(Fy) = h(i)Ti(7) " h(#)
whach 1s the estimated wnverse Fisher wnformation from (21.43).
This wn turn equals the parametric wnfinitesimal jackknife estimate
of variance by Result 21.2.

The proofs of these results are given m the next section. The
underlying basis lies i1 the theory of exponential fainilies.

21.11 Exponential families

In an exponential family, the variance of the vector of sufficient
statistics equals the Fisher information for the natural parame-
ter. This fact leads to simple proofs of Results 21.3 and 21.4 for
exponential families, as we detail below.

A random variable X is said to have a density in the exponential
family if

gn(x) = ho()en” AR =¥ (21.71)

Here q(z) = (q1(%), g2(2), - - . ga(2))T is a vector of sufficient statis-
tics, ho(z) is a fixed density called the base measure and (n) is
a function that adjusts g,(x) so that it integrates to one for each
value of 7). We think of (21.71) as a family of distributions passing
through ho(x), with the parameter vector n indexing the family
members. 7 1s called the natural parameter of the family.

The first two derivatives of ¥(n) are related to the moments of

q{X):
Elq(X)] = +'(n)
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parametrnc

empirical
exponential family exponential family

Figure 21.6. Left panel: schematic of the exponenteal family for . Right
panel: empirical exponential family for q.

varlg(X)] = "(n). (21.72)

As an example, if X ~ N{p, 1), the reader is asked in Problem
21.8 to show that g,(x) can be written in the form (21.71) with

n= (21.73)
ho(z) = ! e 3% (21.74)
0 - \/ﬁ s .
qi(z) ==, (21.75)
and
1
Y(n) = Su’ (21.76)

If X1, Xa,... X, isasample from an exponential family, the den-
sity of the sufficient statistics also has an exponential family form.
Specifically, if Q = (CLa(X)/n Y a2 Xa)/n, -
57 74(X,)/n)T then the density of Q is

hy ()i A=) (2L.77)

where h1(q) is derived from hy(z) (Problem 21.9). This family is
depicted in the left panel of Figure 21.6.

The maximum likelihood estimate of 1 satisfies the set of equa-
tions

a=v(n) = Ex(Q). (21.78)
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In other words, the maximum likelihood estimate is the value of
n that makes § equal to its expectation under the model. The
solution to these equations has the form

i = (@), (21.79)

where k(-) is the inverse of ¥’(#). Furthermore, the Fisher infor-
mation for 7 is

i) =n-¢ (n) =n* var(Q). (21.80)

Usually, our interest 18 not in 1 but in the real-valued parameter
8 = h(n). The maximum likelihood estimate of 8 1s

0 = h(7) = h(k(q)). (21.81)

Finally, we get to the main point of this section. The inverse of
the estimated Fisher information for 6 is
T )] h
v @) "h (21.82)
n
The parametric delta method, on the other hand, begins with Q
having variance ¢ (n)/n, and applies the transformation h(k(-)).
Letting K be the matrix of derivatives of k, the parametric delta
method estimate of varance s equal Lo

RTKTy" (7)Kh

n

_ M) Wuiﬁ)}_lh, (21.83)

RTK T var(Q)Kh

Il

since K = [z[;“ ()]~ Hence the parametric delta method estimate
of variance equals the inverse of the Fisher information (Result
21.4).

In order to draw the same analogy in the nonparametric case, we
need to define a family of distributions whose Fisher information
for the sufficient statistics is the plug-in estimate. The appropriate
family is called the empirical exponential family:

91(@) = hy ()€ A7 (21.84)

defined with respect to the distribution £™, the product distri-
bution of n independent copies of the empirical distribution .
The parameter vector n corresponds to a distribution F), that
puts probability mass g,(q*)/n" on each of the n™ data sets x* =
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*

(x3. 2%, ..x3)T where each z} equals one of the original z; data
. % n *
points, @ = 3 q(z})/n and

dFy(x*) = M @ YD GEn (%), (21.85)

The value 1 = 0 corresponds to the empirical distribution ™. The
normalizing constant (n) is easily seen to equal
nlog(3 7 "9/ /n) and hence the Fisher information for n, eval-
uated at n =0 is

n-w'(0) = (ax — a)(ax — @)7/n’ (21.86)

{Problem 21.10). Since (21.86) is the plug-in estimate of variance
for the q;s, it is clear that the inverse Fisher information for a
parameter § = h(n) in this family, and the infinitesimal jackknife
estimate of variance both equal the nonparametric delta estimate
of variance. This proves result 21.3 in the exponential family case.
A proof for the general case appears in Efron (1982, chapter 6).

21.12 Bibliographic notes

Functional statistics are fundamental to the theory of robust statis-
tical inference, and are discussed in Huber (1981), Fernholz (1983),
and Hampel et al. (1986). The infinitesimal jacknife was intro-
duced by Jaeckel (1972), while the influence curve is proposed in
Hampel (1974). The sandwich estimator is described in White (1981,
1982), Kent (1982), Royall (1986), and given its name by Lin and
Wei (1989). A non-technical overview of maximum-likelihood in-
ference is given by Silvey (1975). Lehmann (1983) gives a more
mathematically sophisticated discussion. Cox and Hinkley (1974)
provide a broad overview of inference. The delta method is dis-
cussed in chapter 6 of Efron (1982), where most of the results
of this chapter are proven. Basic theory of exponential families
is outlined in Lehmann (1983); their use in the bootstrap con-
text may be found in Efron (1981, 1987). The justification of the
empirical distribution function as a nonparametric maximum like-
lihood estimate was studied by Kiefer and Wolfowitz (1956) and
Scholz (1980). The overview in this chapter was inspired by Stan-
ford class notes developed by Andreas Buja.
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Problems

Verify equation (21.10) and hence show that the unbiased
estimate of variance is not a statistical functional.

Derive equations (21.15) and (21.16) for the influence func-
tions of the mean and median.

Show that under appropriate regularity conditions
EpU{(z, F) - 0.

Prove that the empirical distribution function F maximizes
L(F) = TI} F({z,}) and therefore, in this sense, is the
nonparametric maximum likelihood estimate of F'.

Derive equation (21.45) for the model-based form of the
influence component.

Prove identity (21.47) relating the expected value of the
squared score and the Fisher information.

Derive explicit expressions for the estimators in Table 21.1,
and evaluate them for the mouse data. Verify the values in
Table 21.1.

Show that the normal distribution has an exponential fam-
ily form with components given by (21.76).

Show that the function hy(g§) in the exponential family
(21.77) is the sum of T[T ho(z;) over all (z1,72,  .zn)
for which >.7a(z)/n = q.2;@@)/n = g,
XV aa(@)/n=qga.

Derive the form of ¢(n) given above equation (21.86) and
derive equation (21.86) for the Fisher information in the
empirical exponential family.
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CHAPTER 22
1c-
: Further topics in bootstrap
confidence intcrvals
res
he
he 22.1 Introduction
he Chapters 12—-14 describe some methods for confidence interval con-
J struction using the bootstrap. In fact confidence intervals have re-
ceived the most theoretical study of any topic in the bootstrap area.
1» A full discussion of this theory would be beyond the scope and in-
m tent of this book. In this chapter we give the reader a heuristic
description of some of the theory of confidence intervals, describe
m- the underlying basis for the BC, mterval and discuss a computa-
tionally uscful approximation to the BC, interval called the “ABC”
method.
ily
)
G2, 22.2 Correctness and accuracy
Suppose we have a real-valued parameter of interest 8 for which
nd we would like a confidence interval. Rather than consider the two
the endpoints of the interval simultaneously, it is convenient to consider

a single endpoint é[a], with mtended one-sided coverage a:
Prob(6 < ) =~ a (22.1)

for all . First let’s review some standard terminology. An approx-
imate confidence point 8[«] is called first order accurate if

Prob(d < ffa]) = 0 + O(n~1?) (22.2)
d second order accurate if
Prob(6 < f[a]) = a+ O(n™1), (22.3)

re the probabilities apply to the true population or distribu-
Standard normal and Student’s ¢ intervals, described in Chap-

o
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ter 12, are first order accurate but not second order accurate unless
the true distribution is normal. Some bootstrap methods provide
second order accurate intervals no matter what the true distribu-
tion may be.

Distinct from interval accuracy is the notion of correctness. This
refers to how closely a candidate confidence point matches an ideal
or exact confidence point. Let Ooxact[e] be an exact confidence point
that satisfies Prob(8 < écxaet[a]) = . A confidence point 0[a] is
called first order correct if

6la] = Bexact|a] + Op(n™1) (22.4)
and second order correct if
6la] = bexaci[a] + Op(n=3/2). (22.5)

Equivalently, a confidence point 6[a] is called first order correct
if
6la) = Bexaci[a] + Op(n™4?) - & (22.6)
and second order correct if
0[a] = Oexact|a] + Op(n™") - & (22.7)

wlere & is any reasonable estimate of the standard error of 8. Since
& itself is usually of order n=1/2, (22.4) and (22.5) agree with (22.6)
and (22.7) respectively.

A fairly simple argument shows that correctness at a given order
implies accuracy at that order. In situations where exact endpoints
can be defined, standard normal and Student’s ¢ points are only
first order correct while some bootstrap methods produce second
order correct confidence points.

22.3 Confidence points based on approximate pivots

A convenient framework for studying bootstrap confidence points
is the “smooth function of means model.” We assume that our
data are n independent and identically distributed random vari-
ables X1, X2,... X,, ~ F They may be real or vector-valued. Let
E(X,) = p, and assume that our parameter of interest 4 is some
smooth function of g, that is, 6 = f(p). If X = 37 X,/n, then
our estimate of § is § = f(X). Letting var(f) = r2/n, we further
assume that 72 = g(u) for some smooth function g. The sample es-
timate of 72 1s 72 = g(X). This framework covers many commonly
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occurring problems, including inference for the mean, variance and
correlation, and exponential family models.

Our discussion will not be mathematically rigorous. Roughly
speaking, we require appropriate regularity conditions to ensure
that the central limit theorem can be applied to 6.

To begin, we consider four quantities:

P=1/n@-0); Q=+n(d-0)/%
P=vn(6*-6); Q=+n(9"~-0)/+ (22.8)

Here 6* and #* are § and + applied to a bootstrap sample. If F were
known, exact confidence points could be based on the distribution
of P or Q. Let H(z) and K(x) be the distribution functions of I
and Q respectively, when sampling from F, and let z(®) = H~(a)
and y(®) = K~!(a) be the a-level quantiles of H(z) and K(x).
Then the exact confidence points based on the pivoting argument
for P

H(z) = prob{nl/i'(é —9) < ac} = Prob{a >0 n-lfzm} (22.9)

(and similarly for Q) are
éuns[a] =6 —n2p1-e) (22.10)

—1/2

Ostuala) = § — n M2 5yltme). (22.11)

The first point is the “un-Studentized” point based on P, while
the second is the “bootstrap-t” or Studentized point based on Q.
Notice that a standard normal point has the form of 0s,4 with the
normal quantile 201~ replacing y{*=*), while the usual ¢ interval
uses the a-quantile of the Student’s ¢ distribution on n — 1 degrees
of freedom.

Of course F' is usually unknown. The bootstrap uses H and ](
the distributions of P and Q under the estimated population P,
to estimate I and K. If (" = [H~ Ya) and §(¢) = K~ (a), Lhe
estimated points are

funslal = 6 — n~1/230172) (22.12)

dstunla) = 8 — 12450, (22.13)
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GsTup |] is the bootstrap-t endpoint discussed in Chapter 12. Some
important results for these confidence points have been derived:

éUNS = éuns + Op(nvl); 1:1(1') = H(‘T) + Op(n71/2)7 (22'14)

bs1up = Bsiua + Op(n3/%); K(z) = K(z) + Op(n™"). (22.15)

In other words, the confidence point éSTUD based on Q is second
order accurate, and if we consider Os4uq to be the “correct” interval,
it 1s second order correct as well: it differs from fs¢uq by a term of
size O(n~3/?). The confidence point fyns based on P is only first
accurate. Interestingly, in order for the bootstrap to improve upon
the standard normal procedure it should be based on a studentized
quantity, at least when it is used in this simple way.

A fairly simple argumnent shows why studentization 1s important,.
Under the usual regularily conditions, the lirst, four ciunndants of
I are

or) = 2840,
var(P) = ?((90)) + O(n_l),
skew = 322 n3/2
kew () NG + O( )s
kurt(P) = O(n™Y) (22.186)

while those of @ are

5@ - 2 1o,
var(@Q) = L+0(nt),
skew(Q) = &\/?—1-0(71_3/2), ‘
kurt(Q) — O(n71). (22.17)

The functions f1(8), f2(6), f3(60), f4(6) and f5(8) depend on & but
not n. In the above, “skew” and “kurt” are the standardized skew-
ness and kurtosis F(py)/[E(u2)]¥? and BE(pg)/[BE(u2)]? - 3, respec-
tively, with w, the rth central moment. All other cumulants are
O(n~1) or smaller. Note that var(Q) does not involve any function
Ji(8). For delails, sce DiCiccio and Romano (1988) or Hall (1988a).

The use of IJ and A to estimate 11 and #5 is tantamount to
substitutling 0 for 0 in these funclions, and results in an crror of |
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Op(n=172), that is f1(6) = [1(6) + Op(n~"?), f2(0) — f2(0) +
Op(n~1/2), etc. When these are substituted into the (22.16), the
expectation, standardized skewness, and kurtosis of P are ouly
O(n~!) away from the corresponding cumulants of P, but

var(P) = var(P) + O(n~'/?). (22.18)

This causes the confidence point based on P to be only first order
accurate. On the other hand, var(Q) = 1 + O(n™?), var(Q) =
14 O(n~1) so we do not incur an O(n~'/2) error in estimating
it. As a result, the confidence point based on @ is second order
accurate.

22.4 The BC, interval

The a-level endpoint of the BC,, witerval, described in Chapier 14,
18 given by

'20 -+ Z(”)

fuc.lo] = 674 (2060 + T3~y

) (22.19)

where & is the cumulative distribution function of the bootstrap
replications 6*, “3,” and “4” are the bias and acceleration adjust-
ments, and P is the cumulative distribution function of the stan-
dard normal distribution. It can be shown that the BC, interval 1s

also second order accurate,
Prob(6 < fgc,[a]) = a + O(n™h). (22.20)

In addition, the bootstrap-t endpoint and BC, endpoint agree to
second order:

fsc, o] = bstupla) + 0p(n~%?), (22.21)

50 that by the definition of correctness adopted i the previous
" section, éBca is also second order correct. A proof of these facts
is based on Edgeworth expansions of H(z) and K(z), and may be
found in Hall (1988a).

Although the bootstrap-t and BC, procedures both produce sec-
ond order valid intervals, a major advantage of the BC, procedure
is its transformation-respecting property. The BC, interval for a
parameter ¢ = m(8), based on ¢ = m(6) (where m is a monotone
©increasing mapping) is equal to m(-) applied to the endpowts of
the BC, interval for € basced on 6. The bootstrap-t procedure is
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not transformatiou-respecting, and can work poorly it applied on
the wrong scale. Generally speaking, the bootstrap-t works well
for location parameters. The practical difficulty in applying it is to
identify the transformation h(-) that maps the problem to a lnca-
tion form. One approach to this problem is the automatic variance
stabilization technique described in chapter 12. The interval result-
ing from this technique 1s also second order correct and accurate.

22.5 The underlying basis for the BC, intcrval

Suppose that we have our estimate § and have obtained an esti-
mated standard error §¢ for §, perhaps from bootstrap calculations.
The BC, interval 1s based on the following model. We assume that
there is an increasing transformation such that ¢ = m(6), ¢ = m(6)
gives

o

-
)

seg = 54, - [1+ a6 - o). (2222)
Here ¢y is any convenient reference point on the scale of ¢ val-

ues. Notice that (22.22) 1s a geuneralization of the usual normal
approximadtion

-6
sc

~N(0,1). (22.23)

The generalization involves three components that capture devia-
tions from the ideal model (22.23): the transformation m(-), the
bias correction zo and the acceleration a.

As described in Chapter 13, the percentile method generalizes
the normal approxumation (22.23) by allowing a transformation
m(-) of # and §. The BC, method adds the further adjustments
2o and a, both of which are O,(n~%/?) in magnitude. The bias
correction zy accounts for possible bias in ¢ as an estimator of ¢,
while the acceleration constant a accounts for the possible change
in the standard deviation of qg as ¢ varies.

Why is model (22.22) a reasonable choice? It turns out that in a
large class of problems, (22.22) holds to second order; that is, the
error in the approximation (22.22) is typically Op(n~1). In con-
trast, the error in the normal approximation (22.23) is O,(n~1/2)
in general. This implies that confidence intervals constructed us-
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ing assumption (22.22) will typically be second order accurate and
correct. All three components in (22.22) are needed to reduce the
error to Op(n™1).

Now suppose that the model (22.22) holds exactly. Then an exact
upper 1 — a confidence point for ¢ can be shown to be

20 + 2()

1 - a(zg + 2()) (22.24)

¢lo] = ¢ + se;
Let G be the cumulative distribution function of §. Then if we map
the endpoint ¢[a] back to the @ scale via the inverse transformation
m~1(-), we obtain

fla] = G (@(zo +

(a0
Zotz ) : (22.25)

1—a(z+ z("‘)))

Thus is exactly the BC, endpoint defined in Chapter 14 and equa-
tion (22.19), except that it involves the theoretical quantities zy, a
and G rather than estimates.

The distribution G can be estimated by the bootstrap cumula-
tive distribution function ; depending on the situation, this would
be obtained from either parametric or nonparametric bootstrap
sampling. Letting Z be a standard normal variate, with cumula-
tive distribution function €, the cstimate of zp is obtained [rom

Proby {0 < 6} = Proby{¢ < ¢} = Prob{Z < z} = ®(z).
(22.26)

Substituting 8 = 6 gives
30 = ® Y(Proby{6* <6})
o (G(é)) . (22.27)

I

This is the formula used in Chapter 14; notice that 2, measures
the median bias of 6.

The acceleration constant “a” always has the meaning given in
(22.22): it measures the rate of change of the standard error on a
normalized scale. This sounds difficult to compute, but it is in fact
easier to get a good estimate for “a” than for zy. Here are some con-
venient formulas. In one-parameter models, a good approximation
for a is

a= éskewgzé(ég), (22.28)
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where £y is the score function. In one parameter models, it turns
out that & and 2, are equal to second order, & = %y + Op(n™1).

In multiparameter models, a is estimated by reducing to the
one-parameter least favorable family and then applying formula
(22.28). We won't give details here, although we discuss least
favorable families in Section 22.7. For the multinomial distribution,
which corresponds to the nonparametric bootstrap, the resulting
formula 1s

o UP
6{3 0= UZ}*?
where U; is the ith infinitesimal jackknife value (or empirical influ-
ence component) U(z,, £') defined in (21.3). Alternatively, we may
use the ith jackknife value, as in equation (14.15) of Chapter 14.
This avoids having to explicitly define 6 as a functional statistic,
and is done 1n the S function bcanon given in the Appendix. Note
that 2y and & do not agree to second order in multiparameter mod-
els, as zgp now includes a component that measures the curvature

of the level surfaces of §. Some more details on this point are given
in the next section.

d:

(22.29)

22.6 The ABC approximation

The computational burden for bootstrap intervals can be an ob-
stacle, especially if the interval is to computed repeatedly. We de- -
scribe next a useful approximation to the BC, interval which re-
places bootstrap sampling with numerical derivatives. It is called
the “ABC” procedure for approximate bootstrap confidence inter-
val or approximate BC, interval and is applicable in exponential
families and nonparametric problems using the multinomial distri-
bution. We will define the ABC interval in the nonparamectric case,
and then show how it can be viewed as an approximation to the
BC, mterval. S language programs for the ABC intervals appear
in the Appendix. J
Having observed x = (zy1, 23, T,), we assume a multinomial
distribution with support on the observed data. Formally, if we de-
note the resampling vector by P* we assume that nP* has a multi-
nomial distribution with success probabilities
PO = (1/n,1/n,---,1/n)T. Our statistic has the form

6 = T(P). (22.30)
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The delta method approximation for the standard error of 6 (dis-
cussed in Chapter 21) is

5= (Smm) ", (22.31)

v=1
where T is the empirical influence component

) F((1 _ PO N 0

71— piy TUL= P+ co) = T(PY)
c—0 €

and e; is the ith coordinate vector (0,0,---.,0,1,0,---,0)T. This s

the same definition as (20.20).

Let é[l —a] indicate the endpoint of an approximate 100(1 — )%
one-sided upper confidence interval for 8. Then (6[a],6[1 — a]) is
an approximate 100(1 — 2a)% two-sided interval.

The ABC confidence limit for ¢, denoted éABc[l — al, is con-
structed as follows:

(22.32)

w = 34 2117, A=w/(1— aw)?, 6=T(PY),
fascll — a] = T(P? + A\8/5). (22.33)

The direction & is called the least favorable direction and is dis-
cussed in section 22.7 below. The big advantage of the ABC pro-
cedure is that the constants Zp and @ can be computed 1n terms of
numerical second derivatives, and hence no resampling is needed.
The acceleration constant a is 1/6 times the standardized skewness
of the empirical influence components:

3
1 Yah
6 (= T
This is the same as formula (22.29). The cstimate of zy involves two

quantitics. The first is the bias b = E[é) — 0. A quadratic Taylor
series expansion of 0 = T'(P") gives approximate bias b,

a= (22.34)

b= i T,/(2n%), (22.35)

where T, is an element of the second order influence function,

. PO _ 9O _ PO — ce,
T. = lir% T((1 - gP° | ce,) — 2 g-’ )+ T((1 —¢) ce )
—

(22.36)
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The second quantity needed for zg 1s the quadratic coefficient ¢,

A PO + T /(n25)] 2T(PO) +T[(1 &)P® T/(n25)]
€0 e? '

(22.37)

This coefficient measures the nonlinearity of the function 6 = T'(P)

as we move m the least favorable direction. Let 8(A) = T(P+X5/6).
A quadratic Taylor series expansion gives

O(N)=0 + &\ + 6,\2); (22.38)

¢y measures the ratio of the quadratic ternn o the lincar terny in
{0(N) =0}/ The size of ¢, does not afleet Lhe standard intervals,
which treat cvery function T'(P) as if 1t were linear, but it has an
mnportant effect on more accurate confidence intervals. .

The bias correction constant zy is a function of &,b, and Cq-
These three constants are approximated by using a small value of
¢ 1 formulas (22.34), (22.36), and (22.37). Then we define

y=b/é — ¢y, (22.39)

and estimate zp by

2 B(a) B(-)}
= a-4. (22.40)

o
=
il

It can be shown that 4 is the total curvature of the level surface
{P _ T(P) — 6}: the greater the curvature, the more biased is 6.
In equation (22.27) we gave as the definition of 2,

30 = G 1H®(9)), (22.41)

where G is the cumulative distripution function of 4* Either form
of %o approximates z sufliciently well to preserve the second order
accuracy of the BC, formulas. The definition of z 15 more like a
median bias than a mean bias, which is why £, involves quantities
other than b.

A further approximation gives a computationally morc conve
nient form of the ABC endpoint. The quadratic ABC confidenc
limat for 6, denoted 4pg,[1— @], 1s constructed from (0,6, 4, zo,cq) ‘
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and z(®) — &=1(a) as follows:

w=z0+207 A=w/(l-aw)? =4 N,
Oasc,|l —a] =0+ 6¢ (22.42)

This definition follows from a quadratic Taylor series expansion for
T(P° + A\6/5) (Problem 22.2).

The ABC interval can be derived as an approximation Lo the
BC, interval. The 1 — o endpoint of the BC, mterval 1s defined
equation (22.19). A two-term Cornish Fisher expansion for G has
the form

CH1=p0) = 040480 4 (a+e) ()2 -1).
(22.43)

Applying approxunaiion (22.43) to the BC, nterval in the least
favorable family PC+76 gives endpoints P+ \6/6; (Problem 22.3);
transforming these by the function 7°(-) gives definition (22.33).

Here i3 a sumunary of the computational effort required for the
ABC intervals. The algorithm begins by numerically evaluating
T = T(P). This requires 2n recomputations of T(-), 2 for each
of the first derivatives 91'(P)/0P;|p_p={T(P + ce;) — T(P —
Xei)}/2¢, e; being the ¢th coordinate vector. The vector 1" gives
& = S{T?/n?}Y/? Then the n + 2 second derivatives in (22.35)
and (22.36) are calculated, each requiring 2 recomputations of 7'( ).
Altogether 4n -+ 4 recomputations of T'(-) are required to compute
the quadratic ABC limils (22.42), eompared with Lhe 2n recotpu-
tations necessary for numerically evaluating the standard norimal
~ interval 0 £ z(!~*é. In complicated situations the recomputations
of T(-) dominate calculational expense, so it is fair to say that the
. ABC, limits require less than three times as much numerical effort
as the standard limits.

Like the BC, inlerval, the ABC interval (22.33) 1s transformation-
respecting. This is not true for the ABC, limits, a disadvantage
that can sometimes limit their accuracy.

22.7 Least favorable families

- The least favorable family plays an important role in the ABC in-
terval, and is implicit in the construction of the BC, interval. In
this section we describe the least favorable family in more detail.
Denote the rescaled multinomial distribution with success proba-
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IFigure 22.1. Schemalic drawing of the least favorable family for the multi-
nomal distribution. The triangle depicts the ssimplex for n = 3. The solid
curves are the level curves of constant value of the statistic T(P). The
least favorable direction & passes through P° wn the direction T(P%
From this, the least favorable family 1s defined by equation (22.45).

bilities P by
gp(P7). (22.44)

In other words, gp(P*) is the probability mass function of X/n
where X = (X1, X5, .. X,) has a multinomial distribution with
success probabilities P. The least favorable family for a parameter
of interest 6 = T'(P) is defined as

he(P*) = gpo ,,4(P"), (22.45) -

where § = T'(P) evaluated at P = P°. Figure 22.1 shows a schemati
h. is a one-dimensional family through the full n-dimensional fam-
ily gp passing through P? and in the direction é = T(PY).

This family is called least favorable because, at least asymptot- .
ically, inference for 6 in h, 1s as difficult as it is in the full family:
gp. Notice that in Figure 22.1, 6 is orthogonal to the level curves
of T(P) at PY: in general, & 1s orthogonal to the level curves in the
metric of the Fisher information (Problem 22.1).
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The specific property of the least favorable family is the follow-
ing: the Fisher information for 7 in A, at 7 = 0 equals

L
O T mH, (22.46)
=1
which is also the Fisher information for 8 in gp. Furthermore, any
other one-dimensional subfamily has Fisher information at least as
great as this.

In this sense, reduction from gp to h, has not made the problem
of inference for 7 spuriously easier. Because of this, intervals for 0
constructed from intervals for 7 will have good coverage propertics.
_ Problem 22.1 gives the general definition of least favorable fainilics
and establishes the least favorable property. Problem 22.4 asks the
reader to view the ABC interval as an approximatc hootstrap-t
interval constructed for 7 and then mapped to the 8 scale.

22.8 The ABC,; method and transformations

The effect, of the ABCq procedure may be examined by mverting
the transformation given in (22.42):

<

0 — Y 2¢
& 71 1A 48]
22
(14 2aN) + (1 +4ax)1/2

I

£

il

(22.47)

The ABC method amouuts to taking w — Zp, the transformation
of the studentized pivot £ = (6 — 0)/&, as standard normal. In
fact,.it can be shown that w — % is standard normal to second
order, Figure 22.2 shows the estimated transformation w — 2 for
the variance problem analyzed in Section 14.2 of Chapter 14, It
appears logarithmic in shape, which seems reasonable since 0 is
the variance.

The ABCq procedure is therefore similar to the bootstrap-t pro-

cedure, which estimates the distribution of (8 — 6)/& directly by
bootstrap sampling. Although neither procedure is transformation-
respecting, empirical evidence suggests that this 1s a less serious
problem for the ABC, procadure. The original version, ABC, 1s
- transforiation-respecting.
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ligure 22,2, [stomated transformation from ABC, procedure, for the
e g 1 J
varwance crample of Section 4.2 of Chapler 14.

22.9 Discussion

As we have seen, there are a number of different techuniques that
produce second-order accurate and correct confidence intervals.
Through the use of bootstrap calibration (described in chapter 18),
higher order accuracy can be achrzved. By calibrating a second or-

der accurate interval, we obtain a third order accurate interval -

having errors of order O(n~3/2). A tlurd order accurate interval
can be calibrated, producing a fourth order accurate interval, and

so on. A remaimng challenge is to find computationally efficient "

methods for calibrating intervals. Calibration methods that start

with a transformation-respecting interval and retain that property

should also have better statistical behavior than procedures which

are not transformation-respecting. Calibration of the ABC proce- ;

dure 1s illustrated in the case history of Chapter 25.

dis
te
liz
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22.10 Bibliographic notes

There has been a great deal written on the subject of bootstrap
confidence intervals. Efron (1979a) proposes the percentile inter-
val; the bias-corrected percentile and bootstrap-t intervals are de-
scribed in Efron (1981). An early review of bootstrap confidence
intervals appears i Tibshirani (1985). Buckland (1983, 1984, 1985)
discusses algorithms for the percentile and bias-corrected percentile
techniques. Tibshiran: (1988) proposes automatic variance stabi-
lization of the bootstrap-t procedurc. The bias-corrected, acceler-
ated interval (BC,) is suggested in Efron (1987). See also Efron
(1985). DiCiccio and Efron (1992) discuss the ABC (approximate
bootstrap confidence) interval.

Singh (1981) was the first to establish second order accuracy of
a bootstrap confidence interval, applying Edgeworth theory to the
bootstrap-t interval. The theory of bootstrap confidence mtervals
is further developed in Swanepoel et al. (1983), Abramovitch and
Singh (1985), Hartigan (1986), Hall (1986a), Bickel (1987), DiCic-
cio and Tibshirani (1987), Hall (1988a, 1988Db), DiCiccio and Ro-
mano (1988, 1989, 1990) and Konishi (1991). Iteration for miprov-
ing the coverage of bootstrap confidence mtervals is described in
Hall (1986a), Beran (1987, 1988}, Loh (1987, 1991), Sheather (1987)
Hall and Martin (1988), and Martin (1990). The material m sce-
tion 22.3 1s taken {rom llall (1988a), Hartigan (1986) and DiCi-
ccio (personal comununication). A multiparametric version of the
bootstrap-t method is proposed in Hall (1987).

Discussions of some of the issues concerning bootstrap confidence
intervals appear in Schenker (1985), Robinson (1986, 1987), Peters
and Freedman (1987), Hinkley (1988), and in the psychology liter-
ature, Lunneborg (1985), Rasmussen (1987), and Efron (1988).

General asymptotic theory for the bootstrap is developed m
Bickel and Freedman (1981), Beran (1984), and Gine and Zinu
(1989, 1990).

The least favorable family is due to Stein (1956).

- 22.11 Problems

22.1 (a) Consider a parametric family with parameter vector #.
Denote the families of densities by g,, and let the maxi-
mum likelihood estimate of 17 be 77. Suppose our parame-
ter of interest is 6 = ¢(n). Let I(f}) = —d?log g,/dnm?|;,

N
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the observed mformation for n, evaluated at 5 = 9. The
least favorable direction 1s defined as

6= 1I(7)~'t(#), (22.48)

where £(f) = di(n)/dnl|,=s The least favorable family |
for € 1s defined (o be

h"’ = gf]-l—‘ré :

Show that the observed information for 7 in h, is
1/4(a)" 1(7) 7 i(R),

and show that this 1s also the observed information for 8
mn gy.
(b) Show that any other subfamily gs4rq (where d is &
vector) has observed information for 7 greater than or,
equal to (22.50).

(c) Verify that (22.45) is the least favorable family for T(P
in the multinomial distribution.

Derive expression (22.42) from a quadratic Taylor series e
pansion for T'(P® 4 2\é/5).

Show that the Cormsh-Fisher expansion (22.43), applied to,
the BC, interval in the least favorable family P® + 76 g
endpoints P + \é/6

The maximum likelihood estimate of the parameter 7 inde
ing the least favorable family 1s 0, with an estimated stans
dard error of §. Therelore an a-level bootstrap-t endpoint 7
has the form 0 + k(«)d [or some constant k(c). Show that
the ABC endpoint can be viewed as a bootstrap-¢ interval
constructed for 7, and then mapped to the # scale, and gi
the corresponding value for k(a).

Let 6 = t(F") be the sample correlation coefficient (4.6)
tween y and z, for the data set x = ((21,y1), (22,92)
. (Zm yn])-

(a) Show that

6= Ep(2y) — Bp(z) Bpy) K
[(Bp(=2) = Ex(2)%) (Ep(y?) = Ep(u))]/?

'PRO

22.6
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(b) Describe how one could compute the empirical influ-
ence component (22.32).

22.6 Show that under model (22.22), the exact confidence points
for ¢ are given by (22.24).



CHAPTER 23

Efficient bootstrap computations

23.1 Introduction

In this chapter we investigate computational techniques designed
to improve the accuracy and reduce the cost of bootstrap calcu-
lations. Consider for example an independent and identically dis-
tributed sample x = (x1,22, ..2,) from a population F and a
statistic of interest s(x). The ideal bootstrap estimate of the ex-
pectation of s(x) 1s

é=Eps(x*), (23.1)

where F' is the empirical distribution function. Unless s(x) is the
mean or some other sumple statistic, it is not easy to compute é
exactly, so we approximate the ideal estimate by

1 8
ép — 5 Z s(x*0, (23.2)

b=

where each x*° is a sample of size n drawn with replacement from
% 1
Formula (23.2) is an example of a Monte Carlo estimate of the:
expectation Ezs(x*). Monte Carlo estimates of expectations (or’:
integrals) are defined as follows. Suppose f(z) is a real-valued func
tion of a possibly vector-valued argument z and G(z) is the proba
bility measure of z. We wish to estimate the expectation Eg[f(z)
which can also be written as

e=/f(z)dG(z).

(23.3

! Expectations are a natural starting point for our discussion, since mos
bootstrap quantities of interest can be written as functions of them.
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A simple Monte Carlo estimate of e is

== f(a), (23.4)

where the z, are realizations drawn from G(z). Note that é — e
as B — oo according to the law of large numbers; furthermore
E(é) = e and var(é—e) = ¢/B so that the error (standard deviation
of & — e) goes to zero at the rate 1/VB.

The bootstrap estimate ép is a special case in which f(z) =
s(x) and G(z) 15 the product measure F' x F--- x F'. That 1s,
G(z) specifies that each of n random variables is independent and
identically distributed from F.

Simple Monte Carlo sampling is only one of many methods for
multidimensional numerical integration. A number of more so-
phisticated methods have been proposed that can, in some cases,
achieve swaller error for a given number of [unction evaluations B,
or equivalently, require a smaller value of B to achieve a specified
accuracy.

By viewing bootstrap sampling as a Monte Carlo integration
method, we can exploit these ideas to construct more efficient
methods for obtaining bootstrap estimates. The methods that we
describe in this chapter can be divided roughly wto two kinds:
purely post-sampling adjustments, and combined pre- and post-
sampling adjustments. The first type uses the usual bootstrap sam-
pling but makes post-sampling adjustments to the bootstrap esti-
mates. The post-sampling adjustments are variations on the “con-
trol function” method for integration. These are useful for bias and
variance estimation. The second type uses a sampling scheme other
than sampling with replacement and then makes post-sampling ad-
justments to account for the change. The two specific methods that
we discuss are balanced bootstrap sampling for bias and variance
estimation, and importance sampling for estimation of tail proba-
bilities.

In considering the use of any of these methods, one must weigh
the potential gains in efficiency with the ease of use. For example
suppose a variance reduction method provides a five-fold savings
but might require many hours to implement. Then it might be more
cost cffective for the statistictan to use simple bootstrap sampling
and let the computer run 5 times longer. The methods in this
chapter are likely to be useful in situations where high accuracy
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is required, or in problems where an estimate will be recomputed
many times rather than on a one-time basis.

23.2 Post-sampling adjustments

Control functions are a standard tool for numerical integration.
They form the basis for the methods deseribed m this section.
We begin with a general description of contbrol functions, and thien
illustrate how they can be used in the bootstrap coutext.

Our goal is to estimate the integral of a function with respect to

a measure G
e= / F(2)dG. (235)

Suppose that we have a function g(z) that approximates f(z), and
whose integral with respect to G is known. Then we can write

/ F(2)dG = [ 9(2)dG + / (f(2) — g(2))dG. (23.6)

The value of the first integral on the right side of this expression
is known. The idea is to use Monte Carlo sampling to estimate the
integral of f(2) — g(2) rather than f(z) itself. The function g(z)
18 called the control function for f(z). To proceed, we generate B
random samples from G and construct the estimate

&= f 2)dG + Z[f(zz) g(z). (23.7)

The variance of this estimate 1s

var(é) = %m[ 1(2) - g(=)]. (23.8)

where the variance is taken with respect to 2z ~ G. By companson,
the simple estimate

1 &
Eg = B Z f{z) (23.9)
b=1

has variance var[f(z)]/B. If g(z) is a good approximation to f(z), .
then var[f(z)—g(z)] < var[f(z)] and as a result the control function .
will produce an estimate with lower variance for the same numbe
of samples B.
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Figure 23.1. Linear approzvmation (dotted line) to the exponential func-
tion (solid line).

As a simple example, suppose we want to estimate by Monte
Carlo methods the integral of f(z) — exp(z) over the unit interval
with respect to the uniform distribution. As shown in Figure 23.1,
the function g(z) = 1.0 + 1.7z provides a good approximation to
exp(z), and the integral of 1.0 + 1.7z is 1.0z + .852%.

To estimate the integral of exp(z), we draw B random numbers
zy, and compute the quantity

B
X 1 .
e1=10+.85+ % S lexp(zs) — (1.0 + 1.72)).  (23.10)

=1

If we try to integrate exp(z) by the direct Monte Carlo method,
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.

our estimate 1s

B
. 1
b= 5 ;exp(z(,). (23.11)

P 7, T o T Y

In this simple case we can compute the reduction m variance
achieved by inportance sampling. A simple calculation shows that
var(f) = (—1/2)e? + 2e — 3/2, var(f — g) =~ (—=1/2)e? 4-3.7¢ — 6.36
and hence

var(é)  (=1/2)e* +2e—-3/2
var(ey)  (C1/2)e2 4 3.7c —6.36 (23.12)

For the same number of samples B, the control function estimate
has 1/78 times the variance of the simple estimate.

The integral (23.5) is an expectation Eg f(z). In the bootstrap
context expectations arise 1n the estimate of bias. Another quantity
of special interest for the bootstrap is the variance

w(f(:) = [ Pewe) = [0 @

One could apply possibly different control functions to each of the
two components separately, but 1 the bootstrap context it turns
out to be better to use a single control function applied to f(z).
For this purpose, we require a function ¢(z) with known variance,
such that f(z) = ¢g(2). Note that

var(f) = var(g(z)) +var(f(z) — g(2)) +2 cov(g(z), f(z) — g(2))
(23.14)

so that in general we need to estimate the covariance between g(2)
and f(z) — g(2) as well as var(f(z) — g(z)) by Monte Carlo sam-
pling. In section 23.4 we will see that it is possible to choose g(z)
orthogonal to f(2) in the bootstrap setting, so that the covariance
term vanishes.

23.3 Application to bootstrap bias estimation

Assume that we have an independent and identically distributed
sample x = (z1,23,...2,) from a population F and a statistic:
of interest s(x). Rather than working with s(x), it is convenient
to usc the resampling represculation described m Chapter 20. Let
P* = (IF,.. P be a vector of probabilities salisfying 0 < P* <

e el o e v
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land 33 P? = 1, and let F'* = E(P*) be the distribution function
putting mass P* on z,,1 = 1,2, . .n. Assuming 5(x) is a functional
statistic, if x* is a bootstrap sample we can express s(x*) as T(P*),
where each P is the proportion of the sample containing z;, for
1=1,2, - n. )

An effective and convenient form for the control function is a
linear function

ag + alP*, (23.15)

This is convenient because its mean and variance under multi-
nomial sampling

1
P* ~ =Mult(n, P°) (23.16)
n

have the simple forms ao + a7 P® and a’ Za respectively, where

P = (4/n, 1/ 1n)T (23.17)
and
popo”
p= L PPT (2.18)
n n

If we use ap+aT P* as a control function for estimating E.T(P*),
then our estimate has the form

B
~ * 1 *{ *
é1 = Ei(ao+aTP*)+ B ;(T(P %) — gg ~ aTP*®)
1 & _
= ao+alP®+ 5 DZ_:IT(P*") — (a0 +aTP*). (23.19)
where P* = % 25:1 P*® the mean of the B resampling vectors

P* b=1,2,...B.

Which values of ag and a should we use? As we will see for esti-
mation of variance, there 1s a number of good choices. For estima-
tion of the expectation, however, it turns out that variance reduc-
tion can be achieved without having to choose ay and a. Supposc
ao + aTP* is any lincar function agreeing with 7(P*) at P* = P9,
that is, a0 + a’P? = T(P"). Then if we replace ag + a’P* i
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(23.19) by T(P*), the new estimate is

B
~ 1 *0 0 *
b= Z T(P*°) + T(P°) — T(P*). (23.20)

Note that the new estimate &; adjusts the simple estimate
Yo, T(P*)/B by a term that accounts for difference between
P* and its theoretical expectation P°. It is not unreasonable to
replace ag +aTP* by T(P*) since both quantitics approach T'(P°)
as B — oco.

How does thus change the bootstrap estimate of bias? The usual
estimate 15

B
— 1
bias = = Y T(P**) - T(PY). 23.21
s = 5 3 T(B™) ~ T(P) (23.21)
The new estimale is

bias =

S| =
M

[T(P**) + T(P°) — T(P*)] - T(P°)

<
Il
-

i
| =
NE

T(P*°) — T(P*). (23.22)

0=1

il

This procedure is sometimes called re-centering.
There is another way to motivate bias. Suppose first that T'(P*)
is a linear statistic defined in Section 20.3:

TUN = ¢5 + (P* - P%)TU (23.23)

where U is an n-vector satisfying 1 U; = 0. Then it is easy to
show that bias = 0 (the true bias) but bias = (P* — P°)T U which
may not cqual zero (Problem 23.2).

Suppose mstead that T(P*) 15 a quadratic statistic as defined n
section 20.5:

TQUAD = ¢y (P* _ PO)TU + 2( PO)TV( PO)
(23.24) ~

where U 1s an n-vector satisfying ):;L Uy=0and Visann xn
symunetric matrix satisfying >, V;; = Zj Vij = 0 for all 4, 5. Then
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the true bias of 7'(P*) 1s easily shown to be
. 1
biase, = QtrVE, (23.25)

where ¥ 1s given by expression (23.18).
The usual and new estimates can be written as

R 1 _
bias = StrVE + (P* ~ POU + E(P* ~POYTV(P* - PY)

(23.26)
— ] .
bias = ELrVE (23.27)
where 2 is the maximum likelihood estimate
B
T 1 *b D* *b D*\T
E-—B—Z(P - PP - P9 (23.28)

1

Furthermore, for quadratic statistics it can be shown that as n —
oo and B = ¢n for some constant ¢ > 0,

bias — biasee = Op(n~3?)
bias — blase = On(n7"). (23.29)

This means that bias approaches the ideal variance more quickly
that does bias. Table 23.1 shows the results of a small simulation
study to compare estimates of bias. For each row of the table a
sample of size 10 was drawn from a uniform (0,1) distribution.
The statistic of interest is § = log Z. The leftmost column shows
biasigag, which is a good estimate of the ideal bias biase. In each
row, 25 separate bootstrap analyses with B = 20 were carried oul
and columns 2,3,4 show the average bias over the 25 replications.
Column 2 corresponds to the simple bias estimate biasyn, while col-
umn 3 shows the improved estimate |IZ;SQU. In column 4, the least-
squarcs control function, described m the next section, s used.
Column 5 correspouds to the “permutation bootstrap” l;lgspm.m
¢ described in Section 23.5. Columns 6, 7 and 8 show the ratio of
the variance of biasyo to that of l;rasm, l:’)I;smn and l;;s,,er,,,, re-
spectively. All are roughly unbiased; l;a\sm has approximately 57
times less variance (on the average) than the simple estimate. Since
the variance biasp goes to zero like 1/B, we deduce that biasay
has about the same variance as biasigos. The estimator biascon,
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Table 23.1. 10 sampling ezperuments to compare estimates of bias. De-
tails of column headings are gwen wn the text. The last line shows the
average over the 10 experiments.

- I Iy -~ - var(bag) var(bzg) var(bgo)
b1000 bao bao Ocon bp Var(hse) Var(he] var(bol

1 -0.019 -0.018 -0.016 -0.018 -0.019 29.8 16.6 0.6
2 -0.017 -0.015 -0.014 -0.012 -0.005 88.5 44.5 21
3 -0.030 -0.009 -0.019 -0.016 -0.022 67.2 24.2 1.1
4 -0.012 -0.026 -0.016 -0.014 -0.020 82.6 37.8 1.1
5 -0.019 -0.021 -0.020 -0.017 -0.035 24.8 32.8 0.7
6 -0.012 -0.012 -0.016 -0.015 -0.016 62.7 25.9 0.7
7 -0.039 -0.031 -0.045 -0.041 -0.048 12.2 7.3 1.0
8 -0.014 -0.014 -0.016 -0.016 -0.009 42.9 44.8 0.8
9 -0.020 -0.010 -0.008 -0.006 -0.002 103.0 72.7 1.2
10 -0.018 -0.018 -0.016 -0.004 -0.019 53.4 34.5 14
Ave -0.020 -0.017 -0.019 -0.017 -0.019 56.8 34.1 1.1

which uses a control function rather than making the approxima-
tion leading to biasgg, has approxiinately 34 times less variance (on
the average) than the simple estimate. Surprisingly, though, it is

outperformed by the apparently cruder estimator biasyg.

23.4 Application to bootstrap variance estimation

For estimation of variance, we consider again the use of a linear
control function and write

T(P*) = ag +aTP* + T(P*) — (ao + a’ P*). (23.30)
Then our estimate of variance is
AT =  aTfat kT (T(P*) o~ aTP*)?
+ 3 i i(ao +aTP)(T(P*) — ap — aTP*).

(23.31)

Reasonable choices for the control function would be the jack-
knife or infinitesimal jackknife planes described in Chapter 20. One
drawback of these is that they require the additional computation
of the n jackknife (or infinitesimal jackknife) derivatives of 7. An
alternative that avoids this is the least-squares fit of T(P*®) on
P* for b = 1,2, .. Denote the fitted least-squares plane by




APPLICATION TO BOOTSTRAP VARIANCE ESTIMATION 347

&y + aTP*. By a proper choice of constraints, the cross-product
term in (23.31) drops out and we obtain

B
. AT¢s , L A a
var(T(P*)) = aTEa+E E (T(P*?) — G — aTP*?)?
n . b:BI
— 2 il *ON _ ~ AT prb\2
= E_l a; +Bbi_1(T(P )—ag—a' Pt

(23.32)
Details are given in Problem 23.5.

Table 23.2 shows the results of a simulation study designed to
compare estimates of variance. Data y1, y2, - - - y10 were generated
from a uniform (0,1) distribution, and zj, 2, - - . 230 generated inde-
pendently from G2 /2, where G; denotes a standard negative expo-
nential distribution. The statistic of inlerest is 6 = z/g. For each of
10 samples, 30 bootstrap analyses were carried out with B = 100.
The left-hand column shows the average of the simple bootstrap
variance estimate with B = 1000; this is close to the value that
we would obtain as B — co. The next three columns show the av-
erage of the variance estimates for the simple bootstrap based on
100 replications (190), control functions (6c,,) and permutation
bootstrap (¥perm). The 5th and 6th columns show the ratio of the
variances of 0199 t0 Ucon and 0p. The table shows that the control
function estimate is roughly unbiased and on the average 1s about
5 times less variable than the simple bootstrap estimate based on
100 bootstrap replications. The control function estimate is less
variable than the usual estimate in all but the last sample, where
it is five times more variable! A closer examination reveals that
this is largely due to just one of the 30 analyses for that sample.
When that analysis is removed, the ratio becomes 1.25.

The last column gives a diagnostic to aid us in determining when
control functions are likely to be advantageous. It is the estimated
percentage of the variance explained by the linear approximation
to 1"

n .3

2 1%

= ST (23.33)

A linear control function will tend to be helpful when R?is high,
and we sce Lhat it is lowest (=.89) for the last sample. For the
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Table 23.2. 10 sampling expervments to compare estimates of variance.
Details of column headings are gwen in the text. The last line shows the
average over the 10 expervments,

_ _ N N var(o: var{v
f1000 D100 Peon p var(oigo) - VBL(B100)  ppean(R?)

Var(deon) Var(dp)
1 1.97 1.92 2.03 1.94 2.68 0.79 0.94
2 0.08 0.09 0.09 0.08 2.08 2.07 0.95
3 0.44 0.46 0.46 0.46 6.12 1.72 0.96
4 0.52 0.50 0.51 0.51 7.17 0.82 0.97
5 3.21 3.00 3.16 3.02 9.20 0.56 0.98
6 0.37 0.42 0.40 0.39 2.08 1.39 0.92
7 6.28 4.89 4.97 4.95 2.83 1.05 0.95
8 0.77 0.76 0.74 0.74 15.50 1.16 0.99
9 18.80 18.10 19.30 19.00 3.34 0.53 0.96
10 4.06 3.89 4.40 3.90 0.19 0.52 0.89
Ave 3.65 3.41 3.60 3.50 5.12 1.06 0.95

one analysis that led to the large varance ratio mentioned above,
R% = 69. While .69 is the lowest value of 22 that we observed
m this study, it is not clear in general what a “dangerously low”
value is. Further study is needed on this point. N

23.5 Pre- and post-sampling adjustments

The methods described in this section approach the problem of
efficient bootstrap computation by modification of the sampling
scheme. The first method is called the balanced bootstrap. Consider
for example the problem of estimating the bias of a linear function

T(P*) =cy | (P* — P°)TU where 3.7 U; — 0. As we have seen in -

Section 23.3 the simple estimate of bias can be written as
1B
biasp = = Y T(P*") - T(P%) = (P* - P°)TU.  (23.34)
B 1

The true bias is zero, but %B 1s non-zero due to the difference
between the average hootstrap resampling vector P* and its theo-
retical expectation P°.

One way to rectify this is to modify bootstrap sampling to en-
sure Lhal P* = PO This can be achieved by arranging so that
cach data item appears exactly B times w Lhe total collection of
n 13 resampled items. Rather than gamipling with replacement, we
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concatenate B copies of z1,z2,. .z, into astring L of length n- B,
and then take a random permutation of L into say L. Finally, we
define the first bootstrap sample to be elements 1,2,. .n of I:, the
second bootstrap sample to be elements n+ 1, . 2n of L, and so
on.

Since the resulting bootstrap samples are balanced with respect
to the occurrences of each individual data item, this procedure is
called the first order balanced bootstrap. Alternatively, since 1t can
be carried out by a simple permutation as desctibed above, it 18
also called the permutation bootstrap.

Of course estimation of the bias of a linear statistic 1s not of
interest. But for non-linear statistics with large linear commponents,
it 18 reasunable to hope that this procedure will reduce the variance
of our estimate. The first order balanced bootstrap was carried
out in the experiments of Tables 23.1 and 23.2. In both cases, it
mmproved upon the simple estimate for some samples, hut did worse
for other sawples. Overall, the average performance was about the
same as the sunple bootstrap estimate.

It 1s possible to achieve higher order balance in the set of boot-
strap samples, through the use of Latin squares. For example, sec-
ond order balance ensures that each data item, and each pair of
data items appears the same number of times. Higher order bal-
anced samples improve somewhat on the first order balanced boot-
strap, but limited evidence suggests that they are not as effective
as the other methods described 1n this chapter.

23.6 Importance sampling for tail probabilities

In this section we discuss a method than can provide many-fold re-
ductions in the number of bootstrap samples needed for estimating
a tail probability. We first describe the technique in general and
then apply it in the bootstrap context.

Suppose we are interested in estimating

e:] f(2)g(z)dz (23.35)

for some funciion f(z), where g(z) 1s a probability density function.
This quantity is the expectation of f with respect o g. The simple



350 EFFICIENT BOOTSTRADP COMPUTATIONS

Monte Carlo estimate of ¢ is

B
bo=3 3 Ia), (23.36)
b=1

where 21, 22,. - zp are random variates sampled from g. Now sup-
pose further that we have a probability density function h(z) that
is roughly proportional to f(z)g(z)

h(z) = f(2)g(2), (23.37)

and we have a convenient way of sampling from h(z). Then we can
write (23.35) as

_ [17(2)e(2)
; / FE )i (23.38)

To estimate e, we can now focus on f(z)g(z)/h(z) rather than
f(2). We draw 21,22, ...2p from h(z) and then compute

1 f(z)g(z)
b = Ez—z,,‘

3 zf fl, (23.39)

The second line 1 (23.39) 1s mformatlve, as it expresses the new
estimate as a simple Monte Carlo estimate for f with weights w, =
9(z)/h(2s), to account for the fact that samples were drawn from
h{z) rather than from g(z).

The quantity é; 1s called the importance sampling estimate of e.
The name derives from the fact that, by sampling from h(z), we
sample more often in the regions where f(z)g(z) is large. Clearly
€1 1s unbiased since

B(e,) = B, [/E0)920) (73()5(2”)] E,lf(z)]- (23.40)
The variance of é; is
var(é;) = %varh [szb()—z%(—)gb—)] (23.41) :

as compared to

var(ép) = —l—varg[ (zn)] (23.42)
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Figure 23.2. Indicator function I{.5)96} (solid line) and emportance
sampler I(,>1.9619(2)/¢1.06(2) (dotted line) for estimating an upper tail
probability. The two functions comcede for z < 1.96.

for the simple Monte Carlo estimate. Since we chose h(z) = f(2)g(z),
var(é,) should be less than var(ép).

As an example, suppose Z is a standard normal variate and we
want to estimate Prob{Z > 1.96}. We can write this as

Prob{Z > 1.96} = / Tios1.00)8(2)dz, (23.43)

where ¢(z) is the standard normal density function. The simple
Monte Carlo estimate of Prob{Z > 1.96} 1s 32 | I{,,>1.96)/B
where 23 are standard normal numbers.

A reasonable choice for the importance sampling function is
h(z) = ¢1.96(z), the density function of N(1.96,1). Figure 23.2
shows why. The solid line is the function I(.»1.96); the broken
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line is I1,51.06)¢(2)/d1.96(2) (the two lines coincide for z < 1.96).
The importance sampling integrand has much less variance than
I{z>1.96}, and hence is easier to integrate.

If Z ~ N(0,1), Y ~ N(1.96,1), then one can show that

Ity >1.06)8(Y)
¢1.96(Y)

IIence the importance sampling estimate achieves a roughly 17-fold
increase in efficiency over the simple Monte Carlo estimate.

As the above example shows, tail probabilities are ideal can-
didates for importance sampling estimates because the indicator
function 1z} 1s highly variable. Importance sampling works in
this case by shifting the sampling distribution so that the mean of
= is roughly ¢. This itplies Lthat approximately hall ol the saanmples
will have z > 1.96, as opposed to only 100 - % under the original
distribution.

Importance sampling can break down if some of the weights
9(z)/h(z) for a nonzero f(z) get very large and hence dominate
the sum (23.39). This occurs if a sample z, 1s obtained having
negligible probability h(z), but non-negligible probability g(zs),
and f(zp) # 0. For estimation of tail probabilities Prob{Z > c},
we need to ensure that h(z) > g(2) 1n the region z > ¢. This is the
case for the example given above.

var(I(z>1.96}) /var( ) ~ 16.8. (23.44)

23.7 Application to bootstrap tail probabilities

Let’s consider how importance sampling can be applied to the com-
putation of a bootstrap tail probability

Prob{8* > c}. (23.45)

where 6* = T(P*), a statistic in resampling form. Of course the a-
level bootstrap percentile is the value ¢ such that Prob{f* > ¢} =
1 — «, and hence can be derived from bootstrap tail probabilities.

The simple estimate of (23.45) is the proportion of bootstrap
values larger than ¢

B
— s 1 .
PI‘Ob{g > C} = E E I(T(pw)>c}. (23.46)
b=1

Denote by m (P) the probability mass function of the rescaled
multinomial distribution Mult(n, P)/n having mean P. An obvious
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choice for the importance sampler h(z) is a multinomial distribu-
tion with mean P # PY = (1/n,1/n - 1/n)T, that is, a sampling
scheme that gives unequal weights to the observations.

What weights should be used? The answer is clearest when T’ =
. &, the sample mean. Intuitively, we want to choose P so that the
event &* > ¢ has about a 50% chance of occurring under m (P*).
Suppose ¢ 1s an upper percentile of Z*. Then we can increase the
chance that Z* > ¢ by putting more mass on the larger values of
x.

A convement form for the weights P = (Py, Py, .- P,)1s

By = PR =2
(/\) yj:’ exp [)\(.13, - %)]

When A = 0, P =P for A > 0, Bi(\) > Pi(A) il @, > x,, and
conversely for A < 0. We choose A so that the mecan of z* under
m,;(P*) 1s approximately ¢. Thus we choose A, to be the solution
to the equation

(23.47)

1 @i exp Mz, — )]

1 exp Az, — )] (25.49)

For illustration, we generated a sample of size 100 from a N(0,1
distribution. Suppose that the tail probabilities to be estimated are
approximately 2.5% and 97.5%. Since the 2.5% and 97.5% points
of the standard normal distribution are -1.96 and 1.96, we solve
(23.48) for ¢ = —1.96 and 1.96 giving A_; g6 = —3.89, A{.g¢ = 2.37.
Figure 23.3 shows the weights P(0), P(—3.89), and P(2.37). The
largest and smallest x value are given a weight of about .5, which
1s 50 times as large as the usual bootstrap weight of 1/100.

In order to use importance sampling for statistics 17" other than
the mean, we need to know how to shift the probability mass on the
observations in order to make T(P*) large or small. For statistics
with a significant linear component, it is clear how to do this. If U;
denotes the #th influence component, we define a family of weights

by
exp (\U;)
ST exp (AU

The mean of T'(P*) under multinomial samphng with probability
vector P()) is approximately

By = 1=1,2,---n. (23.49)
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Figure 23.3. Observation wewghts for estimating lower (dotted line) and
upper (dashed line) tail probabilitics. Solid line shows equal weights

1/100.

s ST Usexp (ML)
0+ =5——7—. 23.50
i e (AU (25.:50)
To estimate Prob{T(P*) > ¢}, we solve for A, by setting this
expectation equal to ¢, and then usc resampling weights P(X.).

Our estimate is
B *b :
— . 1 . mp ) (P*?) -
PI‘Db{T(P ) > C} = —E E J{T(pnb)/\c} W)—. (2351)

b=1
If T is a location and scale equivariant functional, a careful anal-
ysis of the choice of A to minimize the variance of the estimate is
possible. Details are in Johns (1988). As Johns notes, however, the
performance of the importance sampler does not seemn to be very
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Table 23.3. 10 sampling experiments to compare estimates of an upper
(97.5%) tail probability. Details of column headings are gwen in the text.
The last line shows the average over the 10 exzperiments.

var [ Probiee

PrObmo P/1‘€b100

var(P/rEbm
1 0.021  0.018 12.6
2 0.025  0.029 8.5
3 0.031  0.026 5.6
4 0.026  0.026 8.1
5 0.024  0.025 0.3
6 0.026  0.020 7.5
7 0.035  0.031 6.3
8 0.022  0.025 8.7
9 0.021  0.025 7.3
10 0.033  0.030 6.1
Ave 0026  0.025 7.1

sensitive to the choice of A.

As an example, we consider again the problem of Section 23.3
and Table 23.2. Data y1, y2, .. - Y10 Were generated from a uniform
(0,1) distribution, and 2y, 23, . - - 210 from G%/2, where G denotes a
standard negative exponential distribution. The statistic of interest
is § = Z/§, and we wish to estimate Prob{6* > c}. For each of
10 samples, we used the simple bootstrap estimate (23.46) based
on B = 1000 bootstrap samples to find the value of ¢ such that
Prob{6* > ¢} = 0.025. For each of the 10 samples, 30 bootstrap
analyses were carried out, each with B = 100 bootstrap samples.
Column 1 gives the average of the simple estimates based on B =
100, while column 2 gives the average of the importance sampling
estimates based on B = 100. Both estimates are roughly unbiased.
Column 3 shows the ratio of the variances of the two estimates.
On the average the importance sampling estimate achieves a 7-
fold reduction in variance. We note that in the fifth experiment,
however, the importance sampling estimate had a variance roughly
three times greater than the simple estimate.

The performance of the importance sampling estumate in the pre-
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ceding example 1s encouraging. Remember however that the statis-
tic of interest has a large linear component (an 12 of at least 90%
according to Table 23.2) and hence the shifted distribution (23.49)
was successful in generating larger values of 6*. For statistics with-
out a large linear component, the shifted distribution will not work
nearly as well. Note also that the importance sampling method re-
quires a separate simulation for lower and upper tail probabilities,
whereas the simple bootstrap method uses a single simulation for
both points. Hence a 7-fold savings is actually a 3.5-fold savings if
both the lower and upper percentiles are required.

23.8 Bibliographic notes

Hammersley and Handscomb (1964) is a standard reference for
Monte Carlo variance reduction techniques. Thisted (1986) has
some  discussion relevant for  statistical applications.
Therneau (1983) studies a number of different Monte Carlo meth-
ods for bias and variance estimation in the bootstrap context,
including control functions, antithetic variables, conditioning and
stratification. He finds that control functions are a clear winner.
Oldford (1985) studies the benefit of approximations prior to boot-
strap sampling. Davison, Hinkley, and Schechtman (1986) propose
the permutation or first order balanced bootstrap. Gleason (1988),
Graham, Hinkley, John, and Shi (1990), and Hall (1990) investigate
balanced bootstrap sainpling in depth. Latin hypercube sampling
(McKay, Beckman, and Conover 1979, Stein 1987) is a closely re-
lated research arca. Johns (1988) studies imiportance sampling for
percentiles, with a particular emphasis on location-scale equivari-
ant functionals. Davison (1988) suggest similar ideas and Hinkley
and Shi (1989) propose importance sampling for nested bootstrap -
computations. Hesterberg (1988) gives some new variance reduc-
tion techniques, including a generalization of importance sampling; -
Hesterberg (1992) proposes some modifications of control vari
ates and importance sampling in the bootstrap context. Other ap
proaches are given in Hinkley and Shi (1989), and
Do and Hall (1991). Efron (1990) describes the estimate Dbias stud
ied in section 23.2 and the least-squares control function of section

23.4. He also applies the least-squares control function to percentile ..
estimation by a cumulant matching approach; this 1s related to sim
ilar ideas in the Davison et al. (1986) paper. Hall (1991) describes
balanced importance resampling, while Hall (1989b) investigates -
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antithetic variates for the bootstrap. Further details on computa-
tional mcthods may be found wm Hall (1989a) and Appeudix 11 of
Hall (1992).

23.9 Problems

23.1
23.2

23.3

23.4
23.5

23.6

Verify the variance reduction expression (23.12).

Show that if § = ¢ + (P* — POTU is a lincar statistic,
bias = biase = 0, but bias = (P* — P°)TU.

Verify equations (23.25) — (23.27) for the true and esti-
mated bias of a quadratic functional.

Establish relations (23.29). [Section 6 of Efron, 1990].
Control functions for variance estimation.

(a) In the notation of section 23.4, let R = (Ry,-- Rp)”
be the centered version of 1'(P**):

R, =T(P*")-T(P*); b=1,2,...B.  (23.52)
Let Q be the B xn centered matrix of resampling vectors:
Q=P -P,P?-P*,  PP_P9yT (2353)

Show that the least-squares regression coefficient a of R
on Q, constrained to satisfy 174 =0 is

a=(Q"Q+1"1)7'Q"R, (23.54)
where 1 1s a vector of ones.

(b) For the choice & given in part (a), derive the decompo-
sition (23.32).

Consider the problem of estimating the largest eigenvalue of
the covariance matrix of a set of multivariate normal data.
Take the sample size to be 40, and dimension to 4 and let the
eigenvalues of the true covariance matrix be 2.7,0.7,0.5, and
0.1. Carry out experiments like those of Tables 23.2 and 23.3
to estimate the variance and upper 95% point of the largest
eigenvalue. In the variance estimation experiment, compare
the simple bootstrap estimate, permutation bootstrap and
least-squares control function. In the tail probability esti-
mation experiment, compare the simple bootstrap estimate
and the importance sampling estimator. Discuss the results.



CHAPTER 24

Approximate likelihoods

24.1 Introduction

The likelihood plays a central role in model-based statistical in-
ference. Likelihoods are usually derived from parametric sampling
models for the data. It 1s natural to ask whether a likelihood can be
formulated in situations like those discussed in this book in which
a parametric sampling model is not specified. A number of propos-
als have been put forth to answer this question, and we describe
and illustrate some of them in this chapter.

Supposc that we have data x = (@1, @2, .- . ®p), independent and
identically distributed according to a distribution F. Our statistic
) = O(F) = s(x) estimates the parameter of interest 8 = §(F), and
we seek an approximate likelihood function for §. There are several
reasons why we might want a likelihood in addition to the point
estimate #, or confidence intervals for . First, the likelihood is a
natural device for combining information across experiments: in
particular, the likelihood for two independent experiments is just
the product of the individual experiment likelihoods. Second, prior
information for @ may be combined with the likelihood to produce
a Bayesian posterior distribution for inference.

To begin our discussion, suppose first that we have a parametric
sampling model for x given by the density function p(z|6). By def-
inition the likelihood is proportional to the density of the samnple,
thought of as a function of :

n

L(6) = c- [ ] p(=:l6). (24.1)

1

Here c is any positive constant. For convenience we will choose ¢
so that the maximum value of L(#) is equal to 1.
In most situations p(z|-) depends on additional “nuisance” pa-
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rameters A, besides the parameter of interest 8. The full likelihood
then has the form L(6, ). The main objective of the methods de-
scribed here is to get rid of the nuisance parameters in order to
have a likelihood for 8 alone.

One popular tool is the profile likelihood

Lpwo(8) = L(6, Ag). (24.2)

Herc Ag is the restricted maximum likelihood estimate for A when
# 1s fixed. Another approach is to find some function of the data,
say v = v(x) whose density function g, (v|#) involves only § not A.
Then the marginal likelihood for 6 1s defined to be

Lmar(e) = Qv(vla)- (24‘3)

A major difficulty in the nonparametric setting is that the form
of p(z|9, A) is not given. To overcome this, the empirical likelihood
focuses on the empirical distribution of the data x: it uses the
profile likelihood for the data-based multinomial distribution. Some
other methods discussed in this chapter instead focus directly on
6 and seek an approximate marginal likelihood for 8. The goal is
to estimate the sampling density

p(010). (24.4)

In other words for each  we need an estimate of the sampling
distribution of & when the true parameter is 6. The apprommate
pwot method assumes that some function of # and 6 is pivotal. That
is, it has a distribution not depending on any unknown parameters.
This allows estimalion of p(8|8) from Lhe boolsirap distribution of
0. The bootstrap partial likelihood approach does not assume the
existence of a pivol but estimates p(él&) directly from the data
using a nested bootstrap computation. The wmplied likelihood is a
somewhat different approach: it derives an approximate likelihood
from a set of nonparametric confidence intervals.

It is important to note that, in general, none of these methods
produces a true likelihood: a function that is proportional to the
probability of a fixed event in the sample space. The marginal like-
lihood is a likelihood in ideal cases. However in the nonparametric
problem treated here typically v(x) is not completely free of the
nuisance parameters and furthermore, the form of v(x) may be
estimated from the data.
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24.2 Empirical likelihood

—
Suppose once again that we have independent and identically dis-
tributed observations x = (1,2, - z,) from a distribution F,
and a parameter of interest § = ¢(F’). As in section 21.7, we may
define the (nonparametric) likelihood for F' by
n
oy = [ #())- (24.5)
{
where F({x,}) is the probability of the set {z,} under F. The
profile likelihood for 8 is
Lywo(8) = sup L(F). (24.6) o
F:t(F)=6
Computation of Lyo(6) requires, for each 6, maximization of L(F)
over all distributions satisfying ¢(F) = 0. This 1s a difficult task. Figur
An important simplification is obtained by restricting allention lihood
to distributions having support entirely on x1, 2, -.&,. Let w = Tg)lm;‘
(w1, w2, . wy)and define Fy, to be the discrete distribution putting o
probability mass w; on z;,2 = 1,2, -- n. The probability of obtain-
g our sample x under F,, 18 [} w;. Hence we define the empirical
likelihood by bi
inon
an ap
Lemp(0) = sup H w;. (24.7)
wit(Fy)=
The empirical likelihood is just the profile likelihood for the data-
based multinomial distribution having support on x1,z2,...Zy.
Note that there are n parameters in this distribution, with 7 — 1 where
of the dimensions representing nuisance parameters. Often it is this is
unwise to maximize a likelihood over a large naumber of nuisance : functi
paranicters, as this can lead Lo inconsistent or incflicient estimates cal lik
However, this does not seem to be a problem with the empirical 24'4);
likelihood. It is possible to show that in many suitably smooth metri
problems, the likelihood ratio statistic derived from the empirical Figury
likelihood, namely —21og{Lemp(8)/Lemp(8)}, has a x7 distribution t_he en
asymptotically just as in parametric problems. Empirical likelihood tiles.
has also been extended to regression problems and generalized lin- Fig

ear models. dom N
Consider the problem of estimating the pth quantile of F, defined vstatxs:t
by 6 = wf{a: F(x) > p}. The quantity s = #{z, < 9} has’e matriz
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Figure 24.1. Nonparametric likelihood (solid curve) and empirical like-
lihood (dotted curve) for estimaling the pth quantile from a siundard
normal sample of size 20. The panels show (from left to rght), p =
.01,.25,.5. Note the different ranges on the horizontal azes.

binomial distribution Bi(n,p) if 6 is the pth quantile of F'. Thus
an approximate nonparametric likelihood for 8 is

6) = (7)olor 1 - pie)= (248)

where p(6) satisfies 8 — inf{z; F'(z) > p(6)}. It is not clear whether
this is a likelihood in the strict sense, but it does seem a reasonable
function on which to base mference. It turns out that the emnpiri-
cal likelihood can be computed exactly for this problem (Problem
24.4). It has a similar form, but 1s not the same, as the nonpara-
metric likelihood (24.8). For a standard normal sample of size 20,
'Figure 24.1 shows the nonparametric likelihood (solid curve) and
.the empirical likelihood (dotted curve) for the p = .01,.25,.5 quan

- tiles. The two are very similar.

Figure 24.2 shows a more complex example. The data are a ran-
om sample of 22 of the 88 test scores given in Table 7.1. 'The
tatistic of interest 6 is the maximum eigenvalue of the covariance
atrix. The solid curve in Figure 24.2 is the empirical likelihood.
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The dotted curve is the standard normal approximate likelihood

(9—9)2}

25 (24.9)

Lnoe(8) = exp {—

based on the normal theory approximation § ~ N (6,6?%), where

¢ is the bootstrap estimate of the standard deviation of 4. By
definition both achieve their maximum at & = §; however, the
empirical likelihood is shifted to the right compared to normal
theory curve.

Comnputation of the empirical likelihood is quite difficult 1n gen-
eral. For statistics derived as the solution to a set of estimating
equations, the coustrammed optimzation problem may be recast
into an unconstrained problem via convex duality. Newton or other
multidimensional minimization procedures can then be applied. In
the maximum eigenvalue problem, we were unable to compute the
empirical likelihood exactly; the solid curve that appears in Fig-
ure 24.2 1s actually the likelihood evaluated over the least favorable
family in the parameter space. This can be viewed as a Taylor serles
approximation to the empirical likelihood.

Attractive properties of the empirical likelihood wnclude: a) it
transforms as a likelihood should [the empirical likelihood of g(8)
18 Lemp(g(8))], and b) it is defined only for permissible values of
8, (for example [—1, 1] for a correlation coefficient). A further ad-
vantage of empirical likeliliood is its simple extension to multiple
parameters of wnterest. This feature is not shared by most of the
other techniques described in this chapter.

24.3 Approximate pivot methods

Suppose we assume that f—0isa pivotal quantity; that is, if 8 is
the true value then

f—0~H (24.10)

with the distribution function H not mvolving 8. If this 1s the case,
we can estilnate H for the single value ¢ = 8 and then infer its value
for all 8. Let

6* — 6~ H; (24.11)

H is the cumulative distribution function of 6* — 6 under bootstrap
sampling. Usually H cannot be given in closed form, but rather is
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Figure 24.2. Emparical likelihood (solid curve) and standard normal like-
lihood (dotted curve) for the mazzmum eigenvalue problem.

estimated by generating B bootstrap samples x**,b = 1,2, .. B,
computing 8*(b) = s(x*®) for each sample, and defining

PPy =6*®)—6; b=1,2,. .B (24.12)

Our estimate H is the empirical distribution of the B values

p* (). Note, however, that the emnpirical distribution does not pos-
sess a density function, and for construction of an approximate
likelihood, a density function is required. T.et h{p) be a kernel den-

: ity estimate of the distribution of p = § — 0 based on the values

o

B *
h(p) = — Zk(p—:ﬂ—(b—)). (24.13)
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Here k(-) is any kernel function, for example, the standard normal
density function, with window width s (see Section 16.5 for details).
Using the pivot assumption (24.10), an estimate of the density
function of 6 when the true value is 6 is given by

p(6l9) = h(d *B)
= 1 =3k [(@0-0-d@)/s]  (2419)

1

This gives the approximate likelihood L(§) = h{f — ) thought
of as a function of #. The success of thus approach will depend
on how close § — 0 is to being pivotal. Alternatively, one mught
use the studentized approximate pivot (6 — 6)/& or the variance
stabilized approximate pivot 51(0) — ¢(0) discussed in Chapier 12.
Some care must be used, however, when defining a likelihood from
a pivot. For example, notice that if § ~ N(6,6), then Z = (8 ~0)/0
has a standard normal distribution but the likelihood of # is not
exp(—Z2/2). In general, to form a likelihood from the distribu-
tion of a pivot Z = g(@., 8), the Jacobian of the mapping 6 2z
should not involve 6. If it doesn’t, then the density function of b is
proportional to the density of Z.

Figure 24.3 shows an approximate likelihood for the maximum -
eigenvalue problem. The solid curve is the approximate likelihood
computed using (24.14) with B = 100 bootstrap samples and a
Gaussian kernel with a manually chosen window width. The dotted
curve is the standard normal theory likelihood (24.9). The pivot-
based curve is shifted to the right compared to normal curve, as
was the empirical likelihood.

24.4 Bootstrap partial likelihood

The bootstrap partial likelihood approach estimates the distribu-
tion p(0|6) using a nested bootstrap procedure. The method pro-
ceeds as follows. We generate B bootstrap samples x*!, ... x*B
giving bootstrap rephcatlons 6 : BB Then from each of the
bootstmp samples, x*°, we gencrate By sccond stage bootstrap
saples,! giving second stage bootstrap replicates 01;1 5- 0,’;}_‘3 We

1 A second stage bootstrap sample consists of n draws with replacement from
a bootstrap sample x*°
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Figure 24.3. Approzvmate likelihood based on 8 — 8 (solid curve) and
* standard normal likelthood (dotted curve) for the mammum eigenvalue
problem.

form the kernel density estimates

R Ba ot
p(tl0;) = B%szk(*ﬁ’—) (24.15)
J=1

8

for b = 1,2,---B;. As in the previous section k(-) is any kernel
function, for example the standard normal density function, with
window width s (see Section 16.5 for details). We then evaluate
B(1|6;) for t = 6. Since the values é,j‘]* were generated from a dis-

tribution governed by parameter value é;‘, ﬁ(él@;) provides an es-
timate of the likelihood of # for parameter value § = é*

- A smooth estimate of the likelihood is then obtained by applying
a scatterplot smoother to the pairs [9,,,p(6]0b)] b=12 . B.
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Figurc 24.4. Bootstrap partial likelihood (solid curve) and standard nor-
mal likelihood (dotied curve) for the mazvmum eigenvalue problem.

and

This construction is called bootstrap partial likelihood because it
estimates the likelihood based on 8 rather than the full data x.
Further details of the implementation may be found in Davison et
al. (1992).

Figure 24.4 shows the bootstrap partial likelihood and normal
theory likelihood for the maxunum cigenvalue problem. We used .
40 bootstrap replications at cach level, for a total of 1600 bootstrap
samples. The window sizes for the kernel density estimate and the
scatterplot smoother (a local least-squares fit) were chosen manu-
ally to make the final estimate look smooth. The bootstrap partial
likeliliood is similar to the previous empirical and pivot-based like-
lihoods.
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" 24.5 Implied likelihood

Suppose we have a set of a-level confidence points 0x () for a pa-
rameter & based on a data set x. The mplied likelihood approach
deduces a likelihood for ¢ from 0x(«). The idea is as follows. Let
ax(0) be the inverse of fx(a), that 13, the coverage level corre-
sponding to endpoint . Now define a density wy ©(8) by

TP(0) = dox()/do (24.16)

or ax(9) = .[9 mx T(0)d6. We think of 7y’ (#) as the implied pos-
tertor distribution whose a percentage points are given by ax(8);
7x T(8) is sometimes called the confidence distribution for §. The
implied likelihood for # s defined by

mp
Txx (0
Fanp(0) = 22O,
nx - (6)
where xx denotes the data set consisting of two independent, iden-
tical copies of x. The motivation for L,m,(6) is the following. Sup-
pose mx(0) is an actual posterior distribution corresponding to a

prior m(#) and a likelihood Lx(#). Then

(24.17)

mx (6) = my(8) L (0) (24.18)
7xx(8) = mo(0)L%(6) (24.19)
and therefore
mxx®) _ 1 o) (24.20)
7x(9)

so that the ratio mxx /mx recovers the likelihood Lx (). It 15 known
(Lindley, 1958) that the use of the confidence distribution 73" (8)
as a likelihood can lead to inconsistencies. The reason is that the
confidence distribution contains an implied prior distribution that
must be removed 1 order to obtamn a quantity with likelihood
properties. The definition (24.17) removes this prior in the correct
manner. We can also obtain an expression for the wmplied (nonin-

mp 2
imp (0) [ (9)]

24.21
ﬁ ; ) (24.21)
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The term “nonnformative” means that Bayesian intervals based|
on 7y (#) will have accurate frequentist coverage properties.

A simple example helps to illustrate this. Consider inference for
the success probability 6 in a binomial experiment with s successes.:
out of n trials. If 0x(«) is the exact a-level confidence point then !

mx " (0) = cf°(1 — 6)"® [% + g] (24.22)

while Ly;up(8) is the actual binomial likelihood ¢8%(1—8)"~* (Prob-’

lem 24.1). The confidence distribution contains an implied prior |
distribution, in square brackets, that must be removed in order f
to obtain the likelihood function. Suppose instead that we used.
negative binomial sampling, that is, we ran the experiment until
a fixed number s of successes. Then the confidence distribution -
changes but the implied likelihood still equals ¢f°(1 — 6)*~* as it
should (Problem 24.1).
Computation of the nnplied likelihood requires a set of confi-
dence Intervals for §. Supposc we assumc that 0 — 6 1s an approx-
unate prvolal quantity and l)asc the confidence tervals on the
hoolstrap distribution of 0* . Then a simple calculation shows
that Lya,(6) 1 equal to the approximate likelihood derived 1n sec-
tion 24.3 (Problem 24.2). More generally, one might base the im:
plied likelihood on the BC, intervals. However, the ABC intervals:
of Chapter 22 turn out to be more convenient computationally. Figur
Define the series of transformations likelil
for th
141 + 4¢,£]1/2
2\ In
- Y 2an + (1 + 4an? ‘ﬁ’i‘pl.
(24.23) el
‘ adju
where G and &, are the acceleration and curvature constants that the i
are defined in Section 22.6. Then the implied likelihood is simply Cox
exp{ %w(ﬂ)z}. (24.24)
Figure 24.5 shows the implied likelihood (solid curve) for the maxi
mum eigenvalue problem, obtained using (24.24). I{ shifts the nor: whe
mal theory likelihood (dotted curve) to the right, although the das
position of the maxima coimcides at § = §, sinee w(()) like
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Figure 24.5. Implied likelihood (solid curve), modified version of implied
likelihood (dashed curve), and standard normal likelihood (dotted curve)
for the mazvmum eigenvalue problem.

In cxponential family problems, 1t 18 possible to show that the
implied likelihood based on the ABC intervals agrees with the pro-
file likelihood up to second order. One can also make a more refined
adjustment that can move the position of the maximum and make
the implied likelihood close to the conditional profile likelihood of
Cox and Reid (1987). The modification has the form

exp{—%w(e)z}GXP{—(*,/&)G} (24.25)

where 4 is the total curvature of 0 as defined in Section 22.6. The
dashed curve in Figure 24.5 shows that the modification shifts the
likelihood a short distance to the right.
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Figure 24.6. Likelihoods for the mazimum eigenvalue problem.

24.6 Discussion

We have described a number of different methods for obtaining
approximate non-parametric likelihoods. Figure 24.6 summarizes
the results for the maximum eigenvalue problem. Some theoretical
results suggest that the bootstrap partial likelihood and the im-
plied likelihood will agree closely with the profile likelihood, and
the latter is the empirical likelihood in the nonparametric setting.
Figure 24.5 seems to confirm this for our example. Finally, it is
important to note that the techniques described here are relatively
new. More research and experience is needed to understand their

properties.

BII
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24.7 Bibliographic notes

Nonparametric likelihood is discussed by Kiefer and Wolfowitz
(1956), Scholz (1980}, and in the special case of quantiles by Jel-
freys (1961) and Wasserman (1990). Empirical likelihood is studied
by Owen (1988, 1990), Kolaczyk (1993), Qin and Lawless (1991),
and Hall and La Scala (1990). Theoretical adjustments to empirical
likelihood are given by DiCiccio, Hall and Romano (1989b). Boos
and Monahan (1986) and Hall (1987) discuss pivot methods for
approximate likelihoods. A related procedure for contrast parame-
ters is given by Ogbonmwan and Wynn (1988). Bootstrap partial
likelihood is described in Davison, Hinkley and Worton (1992).
Efron (1992c) proposes the implied likelihood. A brief overview of
approximate likelihoods appears in Hinkley (1988).

24.8 Problems

24.1 (a) Derive equation {24.22) for the confidence distribution
1n the binomial experiment.

(b) Show that the implied likelihood for the binowmial ex-
perunent equals ef%(1 — )" 7.

(¢) Under negative binomial sampling, show that the con-
fidence distribution changes but the implied likelihood 1s
still equal to e8%(1 — 6)" ¢

24.2 Show that if 6 — 0 is a pivotal quantity, then the implied
likelihood, based on the confidence intervals from the pivot,
is equal to the marginal likelihood.

24.3 Derive expression (24.24) for the implied likelihood based on
the ABC intervals.

24.4 Show that the empirical likelihood for the pth quantile 1s
given by

Lenp(0) = ep®(1 = p)**s*(n— s)"° (24.26)

wheres—#{xtSe}ifﬂ/\éis—npiYG—éands:
#{zx, < 0} if § > 0. Compare this to the nonparametric
likelihood (24.8) in a numerical example [Wasserman, 1990].
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Bootstrap bioequivalence and v
power calculations: a case history e
1

2.

3.

25.1 Introduction 4.
A small data set often requires proportionately greater amounts of 5.
statistical analysis. This chapter concerns a bioequivalence study 6.
involving only eight patients. The bioequivalence problem is a good ! 7.
one for understanding the advantages and limitations of bootstrap 8
m

confidence intervals. Power calculations give us a chance to see
bootstrap prediction methods in action. We begin by describing the
problem, and then give solutions based on the simplest bootstrap

ideas. An improved analysis based on more advanced bootstrap diff
methods completes the chapter. San
Ap

25.2 A bioequivalence problem

A drug company has separately applied each of three hormone sup- L

plement medicinal patches to eight patients who suffer from a hor-

mone deficiency. One of the three patches is “Approved”, meaning “and

that it has received approval from the Food and Drug Administra- ;

tion (FDA). Another of the three patches is a “Placebo”, which

contains no hormone. The third patch is “New”, meaning that it : T

is manufactured at a new facility but is otherwise intended to be fide

identical to “Approved.” The threc wearings occur in random or- | fide

der. Each patient’s blood level of the hormone 1s measured after : upp

each patch wearing, with the results shown in Table 25.1. Notice ;

that both the Approved and New patches raise the blood level ol

the hormone above that for the Placebo in all eight patients. her
The FDA requires proof of bioequivalence before it will approve

for sale a previously approved product manufactured at a new fa~

cility. Bioequivalence has a technical definition: let z indicate the In ¢
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Table 25.1. A small bioequivalence study; n = 8 patients each received
three patches; measurements are blood levels of a hormone that these pa-
tients are defictent in. “Approved” 1s the blood level after wearing hor-
mone supplement patch approved by the FDA, “New” patches come from
a new manufacturing facility, but otherwise are supposed to be 1dentical
to the approved patches; “Placebo” patches contain no active ingredients.
Are the new patches broequwvalent to the old according to the FDA’s def-
wnation?

Patient Placebo Approved New App-Pla New-App.

1. 9243 17649 16449 8406 -1200
2. 9671 12013 14614 2342 2601
3. 11792 19979 17274 8187 -2705
4. 13357 21816 23798 8459 1982
5. 9055 13850 12560 4795 -1290
6. 6290 9806 10157 3516 351
7. 12412 17208 16570 4796 -638
8. 18806 29044 26325 10238 -2719
mean 11328 17671 17218 6342 -452

difference between Approved and Placebo measurements on the
same patient, and let y indicate the difference between New and
Approved,

z = Approved — Placebo y = New — Approved.  (25.1)

Let p and v be the expectations of x and y,

p=E(=), v=E(), (25.2)
~and define p to be the ratio of v to u
p=v/p. (25.3)

The FDA bioequivalence requirement is that a .90 central con-
fidence interval for p lie within the range [—.2,.2]. If the .90 con-
fidence interval 1s expressed m terms of a lower .05 limit and an
upper .95 limit,

pe (pl.05), AL.95]), (25.4)
hen the requirement is that
~.2 < pl.05] and p[95] < .2. (25.5)

n other words, the FDA requires the New patches to have the
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same efficacy as lhe Approved patches, within an error tolerance
of 20%.

Table 25.1 shows the (x,,y;) pairs for the n = 8 patients. These
are the data that we analyze in this chapter,

data, = {(z:,2i),2 =1,2,---,n}. (25.6)
Figure 25.1 plots the data. The “+” symbol indicates the mean of
the vectors (z,, ¥i),
(z,7) — (6342, —-452) = (4, ©). (25.7)
This means Z and § estimate the expectations y and v in (25.2)
and provide a natural estimate of the ratio p,
p=v/p=7/T=-.071 (25.8)
The fact that p lies well inside the range (=.2,.2) does not neces-
sarily iply that the broequivalence criteria (25.5) arce satislied.
The drug company wishes to answer two related questions:

Question 1 Are the FDA bioequivalence criteria satisfied by the
data in Table 25.17

Question 2 If not, how many patients should be measured in a
future experiment so that the FDA requirements will have a good
chance of being satisfied?

The second question relates to what is usually called a power or’
sample size question.
Fi
25.3 Bootstrap confidence intervals
The left panel of Figure 25.2 shows the histogram of B = 4000
nonparametric bootstrap replications of p. The original data set |

can be thought of as a sample of size n = 8 from an unknown
bivariate probability distribution F' for the paus (x,y),

F— datan = {(xlyyl)v ($2ay2)v T (:I:S»ys)}‘ (25'9) :

A nonparametric bootstrap sample is a random sample of size n =
8 from the empirical distribution F', as in Chapter 6,

I — datal, = (@, 07), (@ ud), - -, (2, )} (25.10)

In this case F is the distribution putting probability 1/8 on each
original data point (v, %), @ = 1,2, -,8. In other words, dataj,

bac
the
cr
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Figure 25.1. A plot of the eight patch data pownts (x,,y:) from Table 25.1;
+ ndicates observed mean (Z,7) = (i, V), wedge wndicates the FDA
bioequivalence region for exzpectations (u,v). The observed mean s wn
the wedge, but does the confidence interval for p pass the bioequivalence
critera (25.5)7

is a random sample of size 8 drawn with replacement from data,,,
(25.6).
Each bootstrap sample data); gives a bootstrap replication of p,

8 8
=/ = (/9 /(3 w9, (25.11)

2=1 2=1

B = 4000 independent bootstrap samples gave 4000 bootstrap
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Figure 25.2. Left panel: 4000 nonparametric bootstrap replications of p =
§/Z. Right panel: 4000 normal theory bootstrap replications of p. The two
tustograms look symilar and have nearly the saume means and standard
dewniations. They giwe moderately different bootstrap confidence intervals
though, as seen wn Table 25.2.

replications
7)) for b=1,2--- B =4000. (25.12)
These had mean p*(-) = —.063 and standard deviation

B
Seaoo0 = {Y_[A*(8) = 6" (IP/(B — 1)}/2 = 103, (25.13)

b=1

this being the bootstrap estimate of standard error for p. The his-
togram 1s notably long-tailed toward the right. B = 4000 is twenty
times as big as necessary for a reasonable standard error estimate,
but it is only twice as big as necessary for computing bootstrap
confidence intervals.

The right panel of Figure 25.2 is the histogram of 4000 normal-
theory parametric bootstrap replications of 4. The only difference

shii
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from the nonparametric theory comes in the choice of ' in (25.9).
Instead of using the empirical distribution, we take F' equal to
the best-fitting bivariate normal distribution to the (z,y) data in
Table 25.1. “Best-fitting” refers to choosing the expectation vector
A and covariance matrix ¥ for the bivariate normal distribution
according to maximum likelihood theory,

. (z 1Y@~ 2 i —2)(yi )
A= K@) and 3: <L1(~[1 -z ~ 7) Z?(yi - 7?)2)
(25.14)

Instead of (25.9) we generate the bootstrap data according to

Fnorm - data; = {(z1,91). (=5, 33), - (g, 8) (25.15)

where Foyorm = Ng(;\, i‘) In other words, data;, 15 a random sanplc
of size 8 from F'nmm.

Figure 25.3 shows the ellipses of constant density for From.
Fm,m is much smoother than the empirical distribution F, but
that doesn’t seem to make much difference to the bootstrap re-
sults. The two histograms in Figure 25.2 have similar shapes, and
nearly the same means and standard deviations. Closcr inspection
reveals that the parametric histogram is shifted a little to the left of
the nonparametric histogram. This shift shows up 1n the bootstrap
confidence intervals.

Table 25.2 shows the BC, confidence intervals based on the per-
centiles of the histograms in Figure 25.2. The central .90 nonpara-
metric BC, interval 1s

€ (—.204, .146), (25.16)

which comes close to satisfying the FDA biocquivalence criteria
(25.5). The values of @ and %y required for the BC, ntervals were
(&, 20) = (.028,.021), calculated [rom (14.14) and (14.15). By fol-
lowing the BC, definitions (14.9) and (14.10), the reader can cal-
culate that —.204 and .146 are, respectively, the 6.25th and 96.14th
percentiles of the left-hand histogram 1n Figure 25.2.

The normal theory BC, .90 interval is

p e (—.221,.112), (25.17)

shifted downward from (25.16). The diffcrence isu’t large, but it




378 BOOTSTRAP BIOEQUIVALENCE B¢
Te
lej

[=] m
8 ter
w
th
g | o
g
o
8 | {
3 & .
g 1
% o 1
2 .8
2
g o .9
< g 9
8 9
g @
s |
N
- 25
[}
8 -
' T T T 1 T T T Th
0 2000 4000 6000 8000 10000 12000 tivi
ma
New-Approved
po
ter
L sar

Figure 25.3. The ellipses indicate curves of constant density for Fuorm, A

the best-fitting biwariate normal distribution to the ewght (z,y) pairs in " dis

Figure 25.1. Frorm 25 much smoother than the emperical distribution g

which 1s concentrated in the ewght starred points.

Th

act

we
moves the results further into violation of criteria (25.5). Later we -

will see that the bootstrap intervals are somewhat too short in this

case, for reasons having to do with the small sample size 8. anc

Table 25.2 also shows the ABC confidence interval endpoints

computed from the algorithm abcnon as described in the Ap

pendix. These are quite close to the BC, endpoints, and require The

only 1% as much computational effort. tha
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Table 25.2. Bootstrap approzwmate confidence wntervals for the ratio p;
left: nonparametric BC, and ABC intervals; right: normal theory para-
metric BC, and ABC wntervals. The nonparmametric BC, .90 central in-
terval (—.204, .146) nearly satisfies the broequivalence requirement (25.5)
the corresponding parametric nterval 25 {—.221, .112). The constants re-
quired for the intervals appear in the bottom row.

Nonparametric Parametric
o BC, ABC BC, ABC
.025 -.226 -.222 -.249 .239
.05 -.204 -.202 -.225 -.215
.10 -.178 =177 -.193 -.186
16 -.158 -.155 -.168 -.162
.84 041 .043 .031 .033
.90 .085 .082 .065 067
.95 .146 136 112 110
975 192 .188 150 152

(a1, %0,Cq): (-028,021,—) (.028,028,073) (0-.010—) (0,0,.073)

25.4 Bootstrap power calcnlations

The drug company decided to run a larger study m order to defim-
tively verify bioequivalence. Tlis meant answering Question 2: how
many patients should be enrolled 1t the new study to give 1t good
power, i.e., a good probability of satisfymng the bioequivalence cri-
teria? Bootstrap methods are well-suited to answering power and
sample size questions.

We can imagine drawing a future sample of size say N from the
distribution F that yielded the original data (25.9):

F - datay = {(X,,Y,), 7= 1,2, - . N}. (25.18)

The capital letters (X, Y;) are intended to avoid confusion with the
actual data set {(x,,%:),2 = 1,2,- -,n}. Having obtained datay,
we will use it to calculate a confidence interval for p, say

0 € (pl.05], pw[.95)), (25.19)
and hope that the bioequivalence criteria are satisfied,
~.2 < pn[.05] and py[.95] < .2. (25.20)

- The power, or sample size, calculation consists of choosing NV so
" that (25.20) is likely to occur. (Usually it is not allowed to use the
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original n points in the new study, which is why the sample size in
(25.19) is N rather than N + n.) Ta
Let 7 (lo) and 7y (up) be the probabilities of violating the lower ter
and upper bioequivalence criterion, :?
ny(o) = Probp{pn[.05] < —.2} and
an(up) = Probp{pn[95] > .2}.
(25.21)
We can estimate 7y (lo) and my(up) by the plug-in primcple of
Chapter 4,
in(lo) = Probp{pn[05]* < .2} and
#n(up) = Probp{pn[.95]* > .2}. we
(25.22)
The calculation of #n(lo) and #n(up) is done by the bootstrap.
Let datay be a bootstrap sample of size N,
It

boc
dey

F = data’y, = {(X*,Y*), 7=1,2,- -,N). 25.23) .
N 3775

Since £ still is the empirical distribution of the original data, datay :
is a random sample of IV pairs drawn with replacement from the
original n paws data, = {(z,,¥:i),t = 1,2,- -,n}. We calculate
the confidence limits for p based on data},, and check to see if the -
bioequivalence criteria are violated. The proportion of violations in |
a large number of bootstrap replications gives estimates of 7y (lo)
and 7y (up).

Table 25.3 gives estimates of 7y (lo) and #y(up) based on B =
100 bootstrap replications for N = 12,24,36. The endpoints °
(pn[-05]%, pn[-95]*) in (25.22) were obtained by applying the non-
parametric ABC algorithm for the ratio statistic p to the bootstrap
data sets data},. We see that N = 12 1s too small, giving large es-
Limated probabilitics of violaling the biocquivalence criteria, but !
N = 2413 much better, and NV = 36 is almost perfect.

The computation in Table 25.3 uses modern computer-intensive
bootstrap methodology, but it is identical in spirit to traditional
sample size calculations: a preliminary data set, datan, 1s used to The
estimate a probability distribution, in this case F'. Then the desired ‘
power or sample size calculations are carried out as if £ were the
true distribution. This is just another way of describing the plug-in
principle.

The last column in Table 25.3 shows 7y (lo) and 7y (up) going to
zero as N goes to mfinity. This has to be true given the definitions
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Table 25.3. Estumated probabilities of wiolating the bioequavalency cri-
terwa for future sample sizes N, (25.22); based on B = 100 bootstrap
replications for each sample size; confidence limits obtained from the
nonparametric ABC algorithm abcnon.

N: 12 24 36 oo
ay(lo): 43 15 .04 .00
wy(up): .16 .01 .00 .00

we have used. Let g} be the estimate of p based on data},, (25.23)
o N N

Py =Y"/X"= () Y] IN)/(D_X;/N). (25.24)
7=1 71=1

It is easy to see that if N is large then p%, must be close to
p = —.071, the original estimate of p, (25.8). In fact g}, will have
bootstrap expectation approximately p, and bootstrap standard
deviation approximately

1323:11 — 2/33:12 + 222]1/2_
Nz? '
this being the delta-method estimate of standard error for g},. Here

ZAZH,XAIH,, 3322 are the elements of i, (25.14). As N gets large, the
bootstrap coufidence limits (dn[.05]*, pn[.95]*) will approach the
standard limits

on =]

(25.25)

(p— 16456y, p+ 1.6455y). (25.26)

.Since o5 — 0 as N — oo, and p is well inside the range (-.2,.2),
this means that 7y (lo) and 7 (up) both go to zero.

5.5 A more careful power calculation

“The last column in Table 25.3 is worrisome. It implies that the
drug company would certainly satisfy the bioequivalency criteria if
he future sample size N got very large. But this can only be so if
n fact the true value of p lies in the range (—.2,.2). Otherwise we
will certainly disprove bioequivalency with a large N. The trouble
omes from the straightforward use of the plug-in principle. In as-
uming that F is F we are assunung that p equals p = —.071, that
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is, that bioequivalency is true. This kind of assumption is stan-
dard in power calculations, and usually acceptable for the rough
purposes and sample size planning, but it 1s possible to use the
plug-in principle more carefully.

To do so we will use a method like that of the bootstrap-t of
Chapter 12. Define

T = /)lr - /A’N['U*r’]
6—7)/ ’
where p, is the estimate based on data,, g, = p = —.071. The
denominator &, is the delta-method estimate of standard error for
pn, formula (25.25) with N = n; 6,, = .097 based on data,. The
statistic T measures how many standard error units it is from the
original point estimate p, to the confidence interval lower limit -
pn[.05] based on a future sample datay. The value —.2 is 1.33
such unts from p,, = .071,
by ~ (—.2
b= (=) gy (25.28)
On :
We see that the statement “py[.05] < —.2” is equivalent to the
statement “T" > 1.33”, given the observed values of p,, and 6,. We
can estimate my(lo), (25.21), by using the bootstrap to estimate
the probability that T exceeds 1.33, :

fl’N(lO) = PI‘ObI;‘{‘Iﬂ< > 133} (2529)
A bootstrap replication of 7' is of the form

g

(25.30) ?'k

Here p; and &), are the parameter estimate and standard error
estimate [or a bootstrap sample of size n = 8 as m (25.11), while
A [.05] 1s the lower confidence limit based on a separate bootstrap
sample of size N, as in (25.23).

The numbers in Table 25.4 are each based on B = 100 bootstrap .
replications of T*, using (25.29). These results are much less opti-
mistic than those in Table 25.3. This is because (25.30) takes into
account the variability in the original sample of size n = 8, as well
as 1n the future sample of size N, in estimating the probabilities
m,(lo) and m,(up). Table 25.4 which is more realistic than Table
25.3, suggests that the drug company might well consider enrolling
N = 48 patients in the new study. s |
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Table 25.4. Using the bootstrap-t method (25.29) to estumale the prob-
abilities of violating the bioequivalence criteria. This analysis gives less
optimastic results than those in Table 25.3.

N: 12 24 36 48 o

in(o): 38 33 .27 .18 .07
fin(up): .35 .16 U8 1L .07

It 1s possible to study more closely the relative merits of the
two power calculations. The obscrved value of p was -0.071. What
would have happened if we had observed p to be one standard de-
viation lower, that is, p = -.071 — .097 — —.1687 We perturbed
" our original data set by adding a value A to each y; and sub-
tracting the same A from each z,, choosing A so that p for the
~ perturbed data set was -0.168. Then we repeated each of the two
. power calculations. Then we found the value of A so that p was one
standard deviation larger than -0.071 (—0.071 + .097 = .26), and
again repeated the two power calculations. For brevity, we only
tried N = 24 and did computations for the lower endpoint. The
left panel of Figure 25.4 shows the 100 simulated values of j}[.05]
correspouding to data sets with p = —0.168, —0.071, and .26. The
right panel shows the boxplots for (5%, — p3[.05])/67 for the samne
three data sets. Notice how the distributions shift dramatically in
the left panel, but are quite stable in the right panel. The estimates
of Prob{pn[.05]} are .79, .15, and O frown the left panel, while the
estimates of Prob{(j, — pn[.05])/6, > 1.33} arc .34, .33, and .31.
from the right panel. This illustrates that thie power calculation
based on (g}, — piy[.05])/07 15 wore reliable.

Both Tables 25.3 and 25.4 are based on technically correct appli-
cations of the bootstrap. The bootstrap is not a single technique,
but rather a general method of solving statistical inference prob-
" lems. In complicated situations like the one here, alternate boot-
: strap methods may coexist, requiring sensible decisions from the
statistician. It ncver hurts to do more than one analysis.

The calculations in this section are related to the construction
of a prediction interval using the bootstrap: sce Problem 25.8.



384 BOOTSTRAP BIOEQUIVALENCE ,

e ] o I
|
| < o
I ===
o | ° | amT _: [
o : : | |
1 i
i N A | |
| . v
- 1 ¢ I
4 |
o o T
=g i ] | { { v
| ! | | ! 4
| [ — i i |
~ 1 B e D :
< j ! o . o
[ | ° a
[ — °©
I o
N B < ; “
e 1 -0 ° U
-168 -071 .026 -.168 -071 .026

Figure 25.4. The left figure shows bozplots of p3[.05] for data sets with:*
p = —0.071 — &y, —0.071, and —0.071 + &,, respectwely (from left i
rught). Each toxzplot corresponds to 100 sumulations; a horizontal line
18 drawn at -0.2. The right figure shows bozplots for the quantity (pr,
pn1.05])/6+7 for the same three cases. A horizontal line 15 drawn at the,
value 1.33. - t

25.6 Fieller’s intervals

Suppose we are willing to assume that the true probability distri
bution F giving the n = 8 data pairs (x,,y;) in (25.9) is bivariat
normal, ‘

F=MAL), A= (“) (25.31’)

14

In this case there exist exact confidence limits for p = v/p
called Fieller’s intervals. We will use the Fieller intervals as a gol
standard to check the parametric bootstrap confidence intervals i
Table 25.2. Some discrepancies will become apparent. due to th
small sample size of the data set. Finally, we will use a calibratiof
approach to mmprove the bootstrap results.

Fieller’s method begins by defining a function T'(p) dependiny
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on the statistics A and $ in (25.14),
T(p) — \/E[g B pi] (OF
(0% 11 = 2085 + Xp]1 /2

where in i the upper left-hand element of ¥, XAJU =30 (= -
T)?/n, etc. Given data,, we can calculate T(p) for all possible
values of p. From the true value of p, T(p) has a rescaled Student’s
't distribution with n — 1 degrees of [reedom,

T(p) ~ \/Il Loy (for p the true-valuc).  (25.33)
n—

The Fieller central .90 confidence mterval for p consists of all val-
ues of p that put T(p) between the 5th and 95th percentile of a
n/(n — 1) t,—, distribution. We can express this as

n .95 n 95 .
— (%) < T(p) < VT 6% (25.34)

There is a simple formula for the Fieller limits as asked for in
Problem 25.4.

The top row of Table 25.5 shows that the central .90 Ficller
mnterval for p is (p[.05], p[.95]) = (—.249,.170). Two descriptors of
the intervals are given,

5 . A.95] — p

Length = p[.95] — p[.05] and Asymmetry = —————.

g [.95] — 4[.05] p— 5.05]
(25.35)

Asymmetry describes how much further right than left the interval
extends from the point estunate p. The standard mtervals p £
1.645 6, always have Asymmetry = 1.00, compared to the gold
standard asymmetry 1.36 here. The length of the standard intervals
15 also cousiderably too small, .32 compared to 42.

The BC, and ABC intervals, taken fromn the parametric side of
Table 25.2, have almost the correct asymmetry, but only slightly
! better length than the standard interval. This is not an accident.
Theoretical results show that the bootstrap achieves the second or-
der accuracy described in Chapter 22 by correcting the 1.00 asyin-
metry of the standard intervals. This corrects the leading source
. of coverage crrors for the standard method.

The length deficiency seen in Table 25.5 1s a third order efect,
lying below the correction abilities of the BC, and ABC methods.
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Table 25.5. Parametric normal-theory confidence limits for p based on
the n = 8 data pawrs (x.,yi) mn Table 25.1. The exact Fieller limits, top
row, are compared with various approzimate wntervals; BC, and ABC
wntervals have about the correct asymmetry, but are no better than the
standard intervals in terms of length. Calibrating the ABC intervals gres
nearly cract results.

Limits Length Asymmetry
pL08]  plos]  ples] — plos]  Lloeld)

1. Fieller: -.249 170 42 1.36
2. Standard: -.232 .089 .32 1.00

p £ 1.6456,
3. BG,: -.212 115 33 1.32
4. ABC: -.215 111 .33 1.27
5. Fieller: -.217 119 .34 1.31

“Il”z m
6. ABC: -257 175 43 1.33

calibrated

Theoretically the third order effects become negligible, compared
to second order effects, as sample size gets large. In this case, how-
ever, the small sample size allows for a big third order effect on
length.

In this problem we can specifically isolate the third order effect.
It relates to the constant «/n/(n — 1) tiﬁ? = 2.08 in (25.34). As
the degrees of freedom n — 1 goes to infinity, this constant ap-
proaches 2(-95) = 1.645, the normal percentile point. Using 1.645
instead of 2.08 in calculating the Fieller limits (25.34) gives interval
(—.217,.119) for p, row 5 of Table 25.5. It is no coincidence that
this nearly matches the BC, and ABC intervals. )

Of coursc what we really want is a bootstrap method that gives
the actual Fieller limits of row 1. This requires improving the sec-
ond order BC, or ABC accuracy to third order. We conclude by
using calibration, as described in Chapter 18, to achieve this im-
provement.

A confidence limit pla] is supposed to have probability a of cov-
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ering (exceeding) the true value p,
Probr{p < pla]} = a. (25.36)

Thus p is supposed to be less than p[.95] 95% of the time, and
less than p[.05] 5% of the time, so Probp{p[.05] < p < p[.95]} =
.90. For an approximate confidence limit like ABC there 1s a {rue
probability 8 that p is less than pla], say

B(a) = Probp{p < pla]}. (26.37)

An exact confidence interval method is one that has 8(a) = « for
all a, but we are interested in inexact methods here.

If we knew the function 8(«) then we could calibrate, or adjust,
au approximate confidence interval to give exact coverage. Sup-
pose we know that 5(.03) = .05 and B(.96) = .95. Then instead
of (p[.05], p[.95]) we would use (5[.03], 5[.96]) to get a central .90
interval with correct coverage probabilities.

In practice we usually don’t know the calibration function g(a).
However we can use the bootstrap to estimate (). The bootstrap
estimate of B(«) is

Ba) = Prob{p < pla]*}. (25.38)

In this definition £ and p are fixed, nonrandom quantities, while
pla]* is the ath confidence limit based on a bootstrap data set
from F. (We are working in a parametric normal-theory mode in
this section, so £ is Fuorm, (25.15).) The estimate B(a) is obtained
by taking B bootstrap data sets, and seeing what proportion of
them have p < p[a]*. See Problem 25.6 for an efficient way to do
this calculation.

This calculation method was applied to the normal-theory ABC
limits for p based on the patch data of Table 25.1. B = 1000
normal-theory data sets were drawn as in (25.15), and for each one
the parametric ABC endpoint g[a]* based on data,, was evaluated
for o between 0 and 1. The value 3(c) is the proportion of the B

endpoints exceeding j = —.071. The curve () is shown in Figure
25.5.
The calibration tells us to widen the ABC limits. In particular
£5(.0137) = .05 and ((.9834) = .95. (25.39)

This suggests replacing the ABC interval
(p[.05], [.95]) = (—.215,.111) (25.40)
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Figure 25.5. Bootstrap calibration curve (a); based on B = 100 norma{;
theory bootstrap replications of the ABC endpownts. Important value
A(0137) = .05 and ((.9834) = 5.

with the calibrated ABC endpoints
(p[.0137], p[.9834]) = (—.257,.175). (25.41) |

Row 6 of Table 25.5 shows that (25.41) has nearly the gold standard
Length as well as Asymmctry.

This data set was chosen deliberately to be one in which third
order effects were large so that calibration gave substantial im:
provements. The calibration effects would have been noticeably
less dramatic if 7 equaled 16 instead of 8. Nevertheless, it is ni
to be able to check bootstrap results like those in Table 25.2, esp:
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cially since the calibration requires no new assumptions or data. It
does require a lot more computation, essentially a second level of
bootstrapping. The computational efficiency of the ABC method,
compared to BC, was important here, since it is the entire confi-
dence interval process that 1s bootstrapped in a calibration.

25.7 Bibliographic notes

References for bootstrap confidence intervals are given in the hibli-
ographic notes at the end of Chapter 22. The paper of Efron (1986)
looks specifically at confidence intervals for functions of a multi-
variate normal mean; the paramctric analysis in the right half of
Table 25.2 1s a special case. He also discusses Ficller’s interval of
section 25.6 (Fieller, 1954). Power calculations based on normal
theory are described in most applied statistics texts, for example
Snedecor and Cochran (1980). The more careful power calculation
of section 25.5 is an example of the use of bootstrap for prediction.
This topic is discussed in Stine (1985), Bai and Olshen (1988), and
Bai, Bickel, and Olshen {1990); see also Problem 25.8.

25.8 Problems

25.1 Give an explicit description of the calculation of fry(up) in
Table 25.4.

25.2 Draw a diagram like Figure 8.1 showing the logic of the
bootstrap method leading to Table 25.4.

25.3 How were the numbers corresponding to N = co calculated
in Table 25.47 Why aren’t they zero, as in Table 25.37

25.4 Derive a closed-form expression for the Fieller limits (25.33).

25.5 Suppose that 1n definition (25.32) of T'(p) we replaced the
EAJ,U with the usual unbiased estimates that divide by n — 1
instead of n, XA:“ = Z(x, —x)2/(n— 1), cte. llow wonld that
change (25.34)7

25.6 Figure 25.5 was actually calculated as follows: for each boot-
strap data set data],, the value &* such that j[a*]* = p was
calculated. (In other words, the ABC level &* limit for data;,

exactly equaled p = —.007.) Let &*(i) be the ith ordered
value of the 1000 &*’s. The plotted points in Figure 25.5 are

(6*(i), (» — .5)/1000). (25.42)
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Explain why this 1s almost the same as carrying out the cal-
ibration calculation described in Section 25.5, if we assume
that pla]* 1s always an increasing function of a.

Suppose we wished to calibrate the paramnetric BC, inter-
vals, rather than ABC intervals, in Table 25.2. Describe how
the calculations would be done.

Prediction wntervals from the bootstrap.

Suppose we are in the one-sample situation F' — x =
(z1,Z2,.-.T,) and require a 1 — 2a prediction interval for
a new observation Z ~ F. That is, we would like random
variables a(x) and b(x) so that

Probp{a(x) < Z < b(x)} =1 - 2a. (25.43)

It is iuportant to note that the probability in (25.43) refers
to the randommness m both w, ~ F, 1 =1,2,. nand Z ~ F.
1o proceed, we find a value £ so thal, ’

-7

Probg{ <i®} =q, (25.44)

s
where s = 57 (x, — )?/(n — 1. Our prediction interval is
then obtained by pivoting expression (25.44) giving

(£ — 125, - §Dy), (25.45)

If we assume that I" is standard normal with mean p and .

unknown variance 02, we obtain

o) = ¢ 11 /n, (25.46)
where t;"_)l 1s the a-percentile of the ¢ distribution withn—1 |

degrees of freedom. This differs from a confidence interval
for 4 = E(Y) in that the factor 4/1 + 1/n appears rather

than y/1/n. The extra “1” accounts for the variance of the |

new observation Z.

The bootstrap approach resamples F o x*and F— 2*
independently, and then estimates £*) by the empirical ath
quantile of the values
‘,E* — Z*
8%

where #* and 8* are the mean and sample standard deviation
of the bootsirap sample x*.

(25.47)

PRC
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This 1s closely related to the bootstrap-t method of con-
structing confidence intervals, but there is an interesting
difference. In the confidence interval setting, the bootstrap-t
method produce second-order correct and accurate intervals
(Chapter 22). It turns out that bootstrap-t prediction inter-
vals are “almost” second-order accurate but are only first
order correct. For details, see Bai and Olshen (1988) and
Bai, Bickel, and Olshen (1990).

(a) Explain carefully how the calculations of section 25.5
fit into the framework described above.

(b) For the control group times of the mouse data of Ta-
ble 2,1, compute prediction intervals for a new observa-
tion, using both normal theory and the bootstrap-t ap-
proach. Compare these to the corresponding confidence
wtervals for the mean.

(¢) We can write

Prob{% < i@y = E(Pmb{””—;i < {@}]x").
(25.48)

Use this to suggest a more computationally eflicient way
of approximating Prob{(z* — Z*)/s* < t}.
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26.1 Discussion tio
ns

Statisticians work at the interface between science, mathematics, ter
and philosophy. A statistical analysis of a data set, for example opt
the one in Chapter 25, 1s supposed to conclude what the data say, s
and how far these conclusions can be trusted. This is an ambitious pre
program, an attempt to quantify “learning from experience.” A the
correspondingly ambitious theory of statistical inference was de- abc
veloped to carry out this program, mainly in the first half of the ter
twentieth century. The work of Pearson, Fisher, Neyman, Wald and are
others coalesced statistical inference around a small set of power- bet
ful theoretical 1deas: likelihood, sufficiency, power, risk, confidence, "
cte. These 1deas have coutinued to donnate statistical thinking in aut
the post-war cra. vel
What has changed m the past forty ycars is how these idcas are tics
mplemented. Modern electrouic compulalion, ten million times infe
faster than the pre-war variety, has vastly increased the scope and tim
power of statistical reasoning. This is not just a matter of work- ing
ing faster or on bigger data sets. Computational power has freed Ch:
statisticians from the grip of mathematical tractability. We can like
now answer the questions scientists are really interested in, rather lihc
than choosing from a very small catalogue of mathematically solv- of ¢
able cases. As a result, powerful new statistical wethodologies are I
being developed to take advantage of electronic computation in the on.
practical business of statistical inference. int
The bootstrap i1s one such methodology. It aims to carry out ory
familiar statistical calculations, standard errors, biases, confidence Mo
mtervals, etc., in an unfamiliar way: by purely computational means, . ory
rather than through the use of mathematical formulas. In fact a rec]
lot of mathematical theory goes into the development of bootstrap C

methods, in order to make these methods fully compatible with
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traditional theones ol statistical mfercuce.

The biggest difference between pre- and post-war statistical prac-
tice is the degree of automation. The theory of the bootstrap is
“pre-loaded” into an algorithm and carried out entircly by the com-
puter for any particular application. This doesn’t free the statisti-
cian from thinking, of course, but it does allow the thinking to con-
cern inferential questions of direct interest to the scientist, rather
than a host of small mathematical difficulties.

One can describe the ideal computer-based statistical inference
machme of the future. The statistician enters the data, the ques-
tions of interest, and the class of allowable probability models (for
instance, the one-sample model of Chapter 4). Without further in-
tervention, the machine answers the questions, in a way Lhat is
optimal according to statistical theory.

This book concerns how closely current bootstrap theory ap-
proaches this ideal. For standard errors and confidence intervals,
the ideal 15 1 sight if not in hand. The programs bcanon and
abcnon compress a large fraction of nonparametric confidence in-
terval theory into a surprisingly short algorithm. The inferences
are not perfect yet, as we have scen, but they are subslantially
better than most of the traditional approximate methods.

The current era does not mark the first attempt at statistical
automation. Fisher’s theory of maximum likelihood estimation, de-
veloped in the 1920’s, was notably successful in automating statis-
tical estimation. In fact it fits our picture of the ideal statistical
inference machine, at least within the framework of parametric es-
timation. The bootstrap is closely related to Fisher's way of think-
ing. The plug-in principle, which leads directly to tlie bootstrap in
Chapter 6, could just as well be called nonparametric maximum
likelihood. Bootstrap methods can be thought of as maximum like-
lihood theory applied via the computer to a more complicated class
of estimation problems.

Fisher’s theory produces reasonably good statistical estimates
on a routine basis. Interestingly enough, this theory fell into disuse
in the post-war period, at least in the United States. Decision the-
ory, which aims for optimal solutions and not merely good ones,
monopolized theoretical interest from 1945 to 1965. Decision the-
ory remains with us in hypothesis testing, but Fisher’s ideas have
reclaimed the center stage in estimation.

One can at least conceive of a decision-theory bootstrap that
would automatically produce optimal inferences for arbitrarily com-
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plicated testing situations. The fact 1s that bootstrap ideas have
been least successful in hypothesis testing problems, the statistical
area where exact inferences are most highly prized. The calibration
calculations of Section 25.6 are an attempt to raise the accuracy of
bootstrap methods to an acceptable level for hypothesis testing.

Bootstrap methods, and other computationally intensive statis-
tical techniques, continue to develop at a robust pace. Areas not
much discussed in this Look, such as Bayesian methods, discrimi-
nant analysis, data-based selection of regression models, prediction
problems, etc., are in various stages of the automation process. The
twenty-first century may or may not use different theories of sta-
tistical inference, but it will certainly be a different, better world
for statistical practitioners.

The remainder of this chapter discusses some general questions
aboul, the bootstrap, and a brief list of related topies not covered
m this book.

26.2 Some questions about the bootstrap

In order to illuminate some general points concerning the hootstrap
and its role in statistical inference, we provide answers to some
specific questions.

1. What are the attractive features of the bootstrap?

The bootstrap allows the data analyst to assess the statistical
accuracy of complicated procedures, by exploiting the power of
the computer. The use of the bootstrap either relieves the analyst
from having to do complex mathematical derivatious, or in some
instances provides an answer where no analytical answer can be
obtained.

The bootstrap can be used either nonparametrically, or paramet-
rically. In nonparametric mode, it avoids restrictive and sometimes
dangerous parametric assumptions about the form of the underly-
ing populations. In parametric mode, it can provide more accurate
estimates of error than traditional Fisher information-based meth-
ods.

2. Isn’t the bootstrap just another form of symulation?

Yes, approximation of bootstrap quantitics usually involves some
type of simulation, either sampling with replacement froin the data
or sampling from a parametric model. But it is a special kind of
simulation, namely, a data-based semulation. That is, we simulate
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from a data-based estimate of the population. Hence the bootstrap
15 used not to learn about the general properties of a statistical
procedure, as 1n most statistical simulations, but rather to assess
its properties for the data ot hand. It is interesting to see how
far this simple idea of data-based simulation can be pushed, as
evidenced by the broad scope of the topics covered in this book.

3. When should lhe bootstrap be used, and when should other
methods be used instead?

'T'his question is difficult, with many different factors to consider.
The bootstrap is an approach to frequentist or Fisherian inference!.
Therefore, at one level, a discussion of the merits of the bootstrap
involves the question of Bayesian versus frequentist and Fisherian
inference. We do not intend to give a discussion of this i1ssue here,
but refer the reader Lo Efron (1986) and the accompanying comn-
mentary for some opposing points of view.

1t may be more productive to compare the nonparametric boot-
strap to parametric modeling for frequentist or Fisherian inference.
The bootstrap is a fairly crude form of inference, that can be used
when the data analyst is either unable or unwilling to carry out
more extensive modeling. Nonparametric bootstrap inferences are
asymptotically efficient. That is, for large samples they give ac-
curate answers no matter whal the underlying population. Unlike
methods such as permutation tests, they do not enjoy exact fi-
nite sample nonparametric properties. However the scope of their
application is much greater than the scope of permutation tests.

In place of the nonparametric bootstrap, there are situations
where one can mstead use flexible parametric modeling. One might
start with a tentative model for the data, draw inferences based on
the model, and then perturb the model in various ways and check
the sensitivity of the inferences. Some discussion of this approach
is given Cox and Snell (1981). We might try this approach, for
example, in the stamp problem of Chapter 16. We could start by
fitting normal mixtures to the data, and make inferences about the
number of subpopulations. Then we could try other models and see
how much our inference changes. This approach would be successful
if our inference was stable over our choice of models and we were
satisfied that the family of models considered was large enough
in some sense. It would also give a stronger inference than the

1 This isn’t strictly true, as there is a Bayesian form of the bootstrap. Refer-
ences on the “Bayesian bootstrap” are given in the next section.
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bootstrap approach because it would tell us about the number of
subpopulations (rather than just about the number of modes) and
1t would tell us an approximate form for the distribution of each
subpopulation. However, in the stamp problem and many other
situations, it may not be clear what constitutes a “large enough”
family of models.

There is no clear choice that can be made between these ditferent
approaches. Often it can be informative to carry out more than one
form of analysis. We hope that future research in statistics will shed
more light on these important issues.

4. How does the bootstrap deal with problems of dependence?

Independence between observational units is often an important
assumption in data analysis and is usually present in bootstrap-
based mferences. Lack of independence can.reduce the accuracy
of mferences: see Hampel et al. (1986, chapter 8) for a discus-
sion of this. There is no easy solution to problems of dependence:
one approach is to model the dependence in some way, and then
draw inferences from the model. The use of the bootstrap in the
auto-regressive time scrics model of Chapter 8 15 an example of
thus, although m that example the dependence is in fact the main
quantity of interest. The moving blocks bootstrap of Chapter 8 rep-
resents a more model-free approach to handling dependence and
looks to be a promising tool. However, problems of dependence do
not appear to be well understood and are an important area for
further research.

26.3 References on further topics

In recent years the bootstrap has been an active and broad topic
for research. We have not attempted to give a complete survey of
this research here, and as a resnlt, a number of important topics
have been omitted. In this chapter we provide some references on
a number of these topics.

The bootstrap (and jackknife) have potential for use in sur-
vey sampling, but cannot be simply applied without modification.
This is due to the fact that sampling without replacement is com-
monly used in surveys, and the sampling design is often stratified
in one more more stages. Kish and Frankel (1974) give a review
of inference problems in survey sampling. McCarthy (1969) de-
seribed half sampling and bajaneed repeated replications, a sys-
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tematic sampling method for providing unbiased estimates of vari-
ance in stratified designs. The topic i1s discussed in Efron (1982,
chapter 8). Sitter (1993) extends this concept to more complex
designs through the use of orthogonal arrays. The “witliout re-
placement bootstrap” 1s proposed 1 Gross (1980) and Bickel and
Frecdman (1984). Krewski and Rao (1981), and Rao and Wu (1985,
1988) propose linearization methods to adjust the jackknife and
bootstrap for complex designs. Linearization methods are applica-
ble only to statistics that are smooth functions of sample means.
Sitter (1992) gives an excellent overview of current research
bootstrap methods for sample surveys.

The connection of the bootstrap with Bayesian inference was
pointed out by Rubin (1981) and Efron (1982, chapter 10). Land
and Louis (1987) developed related ideas in the context of empirical
Bayes inference. Newton and Raftery (1992) propose the “weighted
likelihood bootstrap”. a method for simulating from the posterior
distribution in nonparametric Bayesian mfercuce.

Saddlepoint methods are a potentially useful tool for more ef-
ficient computation of bootstrap quantities, as shown by Davi-
son and Hinkley (1988), Feuerverger (1989) and Wang (1992). An
overview of the use of saddlepoint approximations in statistics was
given by Reid (1988). At the present time, these approximations
can only be derived easily for smooth functions of sammple means,
and this limits thewr applicability to bootstrap problems. DiCiccio,
Martin and Young (1992) discuss saddlepont methods for nonlin-
ear statistics.

Inference through estimating equations (Godambe 1960, Go-
dambe and Thompson, 1984) is an mcreasingly active research
area, as evidenced by the edited volume of Godambe (1991). Ap-
plication of the bootstrap to estimating equations was studied by
Lele (1991).

Bootstrap analysis of directional data was studied by Ducharme
et al. (1985) and Fisher and Hall (1989).



Appendix: software for
bootstrap computations

Introduction

As indicated in Chapter 6, simple bootstrapping of a statistic § =
s(x) consists of the following steps:
1. B samples are drawn with replacement from the original data
set x, with each sample the same size as the original data set.
Call these bootstrap samples x*!,x*? ... x*5.

2. The statistic of interest ¢ is computed for each bootstrap sam-
ple, that 15 6*(b) = s(x**) for b = 1,2, ... B. The mean, standard
deviation and percentiles of these B values form the basis for
the bootstrap approach 1o inlereuce, as described 1 Chapter 6.

TIinplementation of these steps in a computer language is not dif-
ficult. A necessary ingredient for any bootstrap program is a lugh
qualily uniform number generalor. Most packages have built-in
generators, but thewr quality can vary greatly. See Knuth (1969)
or Thisted (1988) for more details about uniform random number
generators.

Bootstrapping can be performed in most computer languages,
for example, Fortran, C, Pascal, APL, Gauss, Matlab, Lisp, or
XLISP-Stat. An elementary bootstrap program in Fortran is given
m Efron and Tibshirani, (1985). However, it is important to re-
member that the bootstrap (and associated methods) are not tools
that are used in isolation but rather are applied to other statistical
techniques. For this reason, they are most effectively used in an
integrated environment for data analysis. In such an environment,
a bootstrap procedure has the ability to call other procedures with
different sets of iuputs (data) and then collect them together and
analyze the results. The S, S-PLUS, XLISP-Stat, Gauss and Mat-
lab packages are examples of integrated environments. The ability :
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of a package or language to deal with complicated data structures
is also important. For example, S and S-PLUS have built-n facili-
ties for vectors, matrices, high-dimensional arrays, time series and
lists.

Some available software

- “Resampling stats.” This 18 an MS-DOS package for resampling
and randomization tests. Details can be obtained [rom Resam-
pling Stats, 612 N. Jackson St., Arlington, Va. 22201.

-SAS language. Tibshirani (1985) describes some programs for
bootstrapping in SAS. These programs are not particularly cf-
ficient and better approaches surely exist,

- S or §-PLUS. We describe a collection of functions for this lan-
guage below.

S language functions

The following function bootstrap performs bootslrap sampling of
an S function theta. It works for the one-sample problem but can
also be applied to more complicated data situations. The function
is defiued by

"bootstrap" < — function(x,nboot,theta,...){
data < — matrix(sample(x,s1ze=length(x)*nboot,
replace=T) ,nrow=nboot)
return(apply(data,l,theta,...))

The following pages contain documentation for a more power-
ful version of bootstrap that has an option for jackknife-after-
bootstrap computations, as well as a number of other S functions
for confidence interval construction, prediction error estimation,
the jackknife and cross-validation. In order to use these functions,
the S or S-PLUS statistical language is required. Becker, Chambers
and Wilks (1988) describe the S language. S is currently available
from AT&T Software Sales, P.O Pox 25000, Greensboro, North
Carolina 27420. S-PLUS is an enhancement of S, and is available
from StatSci, 1700 Westlake Ave. N., Suite 500, Seattle, Washing-
ton 98109.

The functions described here are available from the statistics
archive at Carnegie-Mellon University, by sending electronic mail
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to statlib@lib.stat.cmu.edu with the one-line mail message
send bootstrap.funs from S. Alternatively, you can retrieve the
software by ftp access to 1ib.stat.cmu.edu: login with the user-
name statlib and look for a shar file named bootstrap.funs in
the directory S. If neither of these options are available to you, you
can request a diskette from the second author.

abcnon Nonparametric ABC confidence limits abenon

abcnon(x, tt, epsilon=0.001,
alpha=c(0.026, 0.05, 0.1, 0.16,
0.84, 0.9, 0.95, 0.975))

ARGUMENTS
x the data. Must be either a vector, or a matrix whose rows
are the observations
tt function defiming the parameter in the resampling form
tt(p,x), where p is the vector of proportions and x is the
data
epsilon optional argument specifying step size for finite difference
calculations

alpha optional argument specifying confidence levels desired

VALUE list with following components

limits The estimated confidence points, from the ABC and stan-
dard normal methods

state list consisting of tO0=obscrved valuc of tt,
sighat=infinitesimal jackknife estimate of standard error
of L, bhat= estimaled bias
constants list consisting of a=acceleration constant, z0=bias ad-
justment, cq=curvature component

tt.inf (approximate) influence components of tt
pp matrix whose rows are the resampling points in the least
favourable family . The abc confidence points are the
function tt evaluated at these points
REFERENCES Efron, B, and DiCiccio, T (1992) More accurate

confidence intervals in exponential families. Biometrika
79, pages 231-245.
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EXAMPLE

# compute abc intervals for the mean

x <~ rnorm{10)

theta <- function(p,x) {sum(p*x)/sum(p)}
results <~ abcnon(x, theta)

# compute abc 1ntervals for the correlation
x <~ matrix(rnorm(20),ncol=2)

theta <- function(p, x)

{
xlm <- sum(p * x[, 11)/sum(p)
x2m <~ sum(p * x[. 2])/sum(p)
num <~ sum(p * (x[, 11 - xim) * (zx[, 21 - x2m))
den <- sqrt(sum(p * (z[, 2] - xim)"2) *
sum(p * (x[, 21 - x1m)"2))
return(num/den)
}

results <- abcnon(x, theta)

‘abcpar Parametric ABC confidence limits abcpar

abcpar(x, tt, S, etahat, mu, n=rep(1,length(x)),
lambda=0.001, alpha=c(0.026, 0.05, 0.1, 0.16))

ARGUMENTS
x vector of data

tt function of expectation parameter mu defining the pa-
rameter of mterest

s maximum likelihood estimatc of the covariance matrix of
X

etahat maximum likelihood estimate of the natural parameter
eta

mu function giving expectation of x in terms of eta

n optional argument containing denominators for binomal
(vector of length len(x))

lambda optional argument specifying step size for finite diflerence
calculation

alpha optional argument specifying confidence levels desired
VALUE list with the following components
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call the call to abcpar

limits The nominal confidence level, ABC point, quadratic ABC
point, and standard (normal) point.

stats list consisting of observed value of tt, estimated standard
error and estimated bias

constants list consisting of a=acceleration constant, z0=bias ad-
Justment, cq=curvature component

REFERENCES Efron, B, and DiCiccio, T. (1992) More accurate
confidence intervals in exponential families. Biometrika
79, pages 231-215.

EXAMPLE

# binomial random variables
# x 1s a p-vector of successes, u 15 a p-vector of
# number of trials

8 <~ matrix(0,nrow=p,ncol=p)
S[row(s8)==col(8)] <~ x*(1-x/n)

mu <- function(eta,n){n/(1+exp(eta))}
etahat <~ log(x/(n-x))

#suppose p=2 and we are interested in mu2-mul
tt <~ function(mu){mu[2]-mu[1]}

x <- ¢(2,4); n <- c(12,12)
a <- abcpar(x, tt, S, etahat,n)

bcanon Nonparametric BCa confidence limits - beanon

bcanon(x, nboot, theta, ...,
alpha=c(0.025, 0.05, 0.1, 0.16,
0.84, 0.9, 0.95, 0.975))

ARGUMENTS

x a vector contaimng the data. To bootstrap more complex
data structures (e.g bivariate data) sce the last example
below.

nboot number of bootstrap replications
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theta function defining the estimator used in constructing the
confidence points

additional arguments for theta
alpha optional argument specifying confidence levels desired
VALUE a list consisting of

confpoint estimated bca confidence limits
z0 estimated bias correction
acc estimated acceleration constant
u jackknife influence values

REFERENCES Efron, B. and Tibshirani, R. (1986). The Boot-
strap Method for standard errors, coulidence mtervals,
and other measures of statistical accuracy. Statistical Sci-
ence, Vol 1., No. 1, pp 1-35.

Efron, B. (1987). Better bootstrap confidence intervals
(with discussion). J. Amer. Stat. Assoc. vol 82, pg 171

EXAMPLE

# bca limits for the mean

# (this 1s for illustration;

# since "mean" 1s a built in functaion,
# bcanon(x,100,mean) would be simpler)

x <- rnorm(20)
theta <~ function(x){mean(x)}
results <- bcanon(x,100,theta)

To obtain bca limits for functions of more
complex data structures, write theta so that

1ts argument x is the set of observation numbers
and simply pass as data to bcanon the vector 1..n.
For example, find bca limits for the

correlation coefficient based on 15 data pairs:

L N

xdata <- matrix(rnorm(30),ncol=2)
n <- 15
theta <~ function(x,xdata)
{ cor(xdatalx,1].xdata[x,2]) }
results <- bcanon(1:n,100,theta,xdata)
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bootstrap . Non- pa.rametriq,bootstraplﬁing el b‘,‘optstrap

bootstrap(x,nboot,theta, ..., func=NULL)

ARGUMENTS
x a vector contammg the data. o bootstrap more complex
dala structures (e.g bivariate data) see the last example
below.
nboot The number of bootstrap samples desired.
theta function to be bootstrapped. Takes x as an argument,
and may take additional arguments (see below and last
example).
. any additional arguments to be passed to theta
func (optional) argumnent specifying the functional of the dis-
tribution of thetahat that i1s desired. If func is specified,
the jackknife-after-bootstrap estimate of its standard er-
ror is also returned. See example below.

VALUE list with the following components:

thetastar the nboot bootstrap values of theta

func.thetastar the functional func of the bootstrap distribution
of thetastar, if func was specified

jack.boot.val the jackknife-after-bootstrap values for func, if func
was specified

jack.boot.se the jackknife-after-bootstrap standard error estimate
of func, if func was specified

REFERENCES  Efron, B. and Tibshirani, R. (1986). The boot-
strap method for standard errors, confidence intervals,
and other measures of statistical accuracy. Statistical Sci-
ence, Vol 1., No. 1, pp 1-35.
Efron, B. (1992) Jackknife-after-bootstrap standard er-
rors and influence functions. J. Roy. Stat. Soc. B, vol 54,
pages 83-127
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EXAMPLE

# 100 bootstraps of the sample mean

# (this is for illustration: since "mean” 1s a
# built in function, bootstrap(x,100,mean)

# would be saimpler!)

x <~ rnorm{(20)
theta <- function(x){mean(x)}

results <~ bootstrap(x,100,theta)

# as above, but also estimate the 95th percentile
# of the bootstrap dist’n of the mean, and
# 1ts jackknife-after-bootstrap standard error

perc95 <- function(x){quantile(x, .95)}
results <- bootstrap(x,100,theta, func=perc95)

# To bootstrap functions of more complex data

# structures, wrile theta so that 1ts argument x
# 15 the set of observation numbers

# and simply pass as data to bootstrap

# the vector 1,2,..n.

# For example, to bootstrap the

# correlation coefficient based on 15 data pairs:

xdata <- matrix(rnorm(30),ncol=2)
n <~ 15
theta <- function(x,xdata)
{ cor(xdatalx,1],xdata[x,2]) }
results <- bootstrap(l:n,20,theta,xdata)

bootpred bootstrap estimates of prediction error bootpre(;‘

bootpred(x,y,nboot,theta.fit,theta.predict,
err.meas, . -:)

ARGUMENTS

x a matrix containing the predictor (regressor) values. Each
row corresponds to an observation.
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y a vector containing the response values
nboot the number of bootstrap replications

theta.fit function to be cross-validated. Takes x and y as an ar-
gument. See example below.

theta.predict function producing predicted values for theta.fit.
Arguments are a matrix x of predictors and fit object
produced by theta.fit. See example below.

err.meas function specifying error measure for a single response y
and prediction yhat. See examples below.

... any additional arguments to be passed to theta.fit
VALUE list with the following components

app.err the apparent error rate- that is, the imean value of err.aincas
wlien thetallit is applied to x and y, and then used to pre-
dict y.
optim the bootstrap estimate of optimism in app.err. A useful
estimate of prediction error is app.err-+optim

err.632 the “.632” bootstrap estimate of prediction error.

REFERENCES  Efron, B. (1983). Estimating the error rate of
a prediction rule: improvements on cross-validation. J.
Ammer. Stat. Assoc, vol 78. pages 316-31.

EXAMPLE

# bootstrap prediction error estimation in least
# squares regression

x <= rnorm(85)

y <~ 2+x +.5%xrnorm(85)

theta.fit <- function(x,y){lsfit(x,y)}

theta.predict <- function(fit,x){
cband (1, x)%*%fit$coef

sq.err_function(y,yhat) { (y-yhat)"2}
results <- bootpred(x,y,20,theta.fit,theta.predict,
err.meas=sq.err)

# for a classification problem, a standard choice
# for err.meas would samply count up the
# classafication errors:
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miss.clas <- function(y,yhat){ 1*(yhat!=y)}

# with this specification, bootpred estimates
# misclassification rate

boott

boott (x,theta, ..., s8dfun=MISSING,nbootsd=25,
nboott=200, VS=F,
v.nbootg=100,v.nbootsd=25,v.nboott=200,
perc=c(.001,.01,.025,.05,.10,.50,.90,.95,
.975,.99,.999))

ARGUMENTS

x a vector contamning the data. Nonparametric hootstrap
sampling 1s used. To bootstrap from more complex data
structures (e.g bivariate data) see the last example below.

theta function to be bootstrapped. Takes x as an argument,
and may take additional arguments (see below and last
example).

any additional arguments to be passed to theta

sdfun optional name of function for computing standard devi-
ation of theta based on data x. Should be ol the form:
sdmean < — function(x,nbootsd,theta,...) where nbootsd
is a dummy argument that is not used. If theta is the
mean, for example,

sdmean < — function(x,nbootsd,theta,...)
{sqrt(var(x)/length(x))}.

If sdfun 15 missing, then boott uses an inuer bootstrap
loop to estimate the standard deviation of theta(x)

nbootsd The number of bootstrap samples used to estimate the
standard deviation of theta(x)

nboott The number of bootstrap samples used to estimate the
distribution of the bootstrap T statistic. 200 is a bare
minimum and 1000 or more is needed for reliable alpha %
confidence points, alpha < .05 or > .95 say. Total number
of bootstrap samples is nboott*nbootsd.
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Vs If true, a variance stabilizing transformation is estimated,
and the 1nterval is constructed on the transformed scale,
and then is mapped back to the original theta scale. This
can improve both the statistical properties of the inter-
vals and speed up the computation. See the reference Tib-
shirani (1988) given below. If false, variance stabilization
is not performed.

v.nbootg The number of bootstrap samples used to estimate the
variance stabilizing transformation g. Only used if VS=T.

v.nbootsd The number of bootstrap samples used to estimate the
standard deviation of theta(x). Only used if VS=T.

v.nboott Number of bootstrap samples used in estitnalion of per-
centiles of g(thetahat)-g(theta) (final stage). Only used if
VS=T Total number of bootstrap samples is
v.nbootg*v.ubootsd + v.ubooll

perc Confidence points desired.

VALUE list with the following components:

confpoints Estimated confidence points
theta

g theta and g are only returned if VS=T was specified.

(thetali],g[i]), i=1,length(theta) represents the estimate

of the variance stabilizing transformation g at the points
thetali].

REFERENCES  Tibshirani, R. (1988) Variance stabilization and
the bootstrap. Biometrika , vol 75, pages 433-44.

Hall, P. (1988) Theoretical comparison of bootstrap con-
fidence intervals. Ann. Statist. 16, 1-50.

EXAMPLE

# estimated confidence points for the mean

X <- rchasq(20,1)
theta <- function(x){mean(x)}
results <- boott(x,theta)
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# using variance-stabilization bootstrap-T method

results <- Dboott(x,theta,VS=T)
results$confpoints # gives confidence points

# plot the estimated var stabilizing transformation
plot (results$theta,results$g)

# use standard formula for stand dev of mean
# rather than an inner bootstrap loop

sdmean <- function(x,nbootsd,theta)
{sqrt (var(x)/length(x))}

results <- boott(x,theta,sdfun=sdmean)

# To bootstrap functions of more complex data

# structures, write theta so that 1ts argument x
# 1s the set of observation numbers

# and simply pass as data to boot

# the vector 1,2,..n.

# For example, to bootstrap the

# correlation coefficient based on ib data pairs:

xdata <- matrix(rnorm(30),ncol=2)
n <- 15
theta <~ function(x, xdata)

{ cor(xdatalx,1],xdatalx,2]1) }
results <- boott(l:n,theta, xdata)

crossval K-fold cross-validation crossval

crossval(x,y,theta.fit, theta.predict, ..., ngroup=n)

ARGUMENTS
% amatrix containing the predictor (regressor) values. Each
row corresponds to an observation.
y & vector containing the response valucs

theta.fit {unction to be cross-validated. Takes x and y as an ar-
gument. See example below.
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theta.predict function producing predicted values for theta.fit.
Arguments are a mairx x of predictors and f{it object
produced by theta.fit. Sec example below.
any additional arguments to be passed to theta.fit

ngroup optional argument specifying the number of groups formed.
Default is ngroup=sample size, corresponding to leave-
one out cross-validation.

VALUE list with the following components

cv.fit The cross-validated fit for each observation. The numbers
1 to n (the sample size) are partitioned into ngroup mu-
tually disjoint groups of size “leave.out”. leave.out, the
number of observations in each group, is the integer part
of n/ngroup. The groups are chosen at random if ngroup
< n. (If n/leave.out 1s not an integer, the last group will
contain > leave.out observations). Then theta.fit is ap-
plied with the kth group of observations deleted, for k=1,
2, ngroup. Finally, the fitted value is computed for the
kth group using theta.predict.

ngroup The number of groups
leave.out The number of observations in each group

groups A list of length ugroup containing the mdices of the ob-
servations 1 cach group. Ouly returned if leave.out >
1.
REFERENCES Stone, M. (1974). Cross-validation choice and as-
sessment of statistical predictions. Journal of the Royal
Statistical Society, B-36, 111-147.

EXAMPLE

# cross-validation of least squares regression
# note that crossval is not very efficient, and
# Dbeing a general purpose function, it does not
# use the Sherman-Morrison identity
x <- rnorm(85); 1y <- 2*x +.5xrnorm(85)
theta.fit <- function(x,y){lsfit(x,y)}
theta.predict <- function(fit,xz){
cbind(1,x)%*%fit$coef

results <- crossval(x,y,theta.fit,theta.predict,
ngroup=6)
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jackknife

jackknife(x,theta, ..)

ARGUMENTS
x a vector containing the data. To jackknife more complex

data structures (e.g bivariate data) see the last example
below.

theta function to be jackknifed. Takes x as an argument, and
may take additional arguments (see below and last ex-
ample).
... any additional arguments to be passed to theta
VALUE list with the following components

jack.se The jackknife estimate of standard error of theta. The
leave-one out jackknifc is used.

jack.bias The jackknife estimate of bias of theta. The leave-one
out jackknife 1s used.

jack.values The n leave-onc-out values of theta, where n is the
number of observations. That is, theta applied to x with
the 1st obsgervation deleted, theta applied to x with the
2nd observation deleted, etc.

REFERENCES Efron, B. and Tibshirani, R. (1986). The Boot-
strap Method for standard errors, confidence mtlervals,
and other measures of statistical accuracy. Statistical Sci-
ence, Vol 1., No. 1, pp 1-35.

EXAMPLE

# jackknife values for the sample mean

# (this 1s for illustration; since '"mean" 1s a
# built in function, jJackknife(x,mean)

# would be simpler!)

X <~ rnorm(20)
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theta <~ function(x){mean(x)}

results <- jackknife(x,theta)

# To jackknife functions of more complex data

# structures, write theta so that 1ts argument x
# 1s the set of observation numbers

# and simply pass as data to jackknife

# the vector 1,2,..n.

# For example, to jackknife the

# correlation coefficient based on 15 data pairs:

xdata <- matraix(rnorm(30),ncol=2)
n <~ 15
theta <~ function(x,xdata)
{ cor(xdatalx,1],xdata[x,2]) }
resulls <- jackknife(l:n,theta,xdata)
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Spline,
cubic smoothing, 259-260
Standard deviation, 26
Standard error,
definition, 40
bootstrap eatimate of, 42-43
delta method, 313-315
Jackknife estimate of, 142
of the mean, 39-43
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robust estimate of, 57-58
sandwich estimate of, 310-311

Standard normal confidence
interval, 154, 168

Student’s t interval, 158-159

Student’s ¢ statistic, 158-159,
221-226

Studentized statistic, 158-159,
323

Summary statistic, 35

Survey sampling, 396-397

tr (trace of a matrix), 9
Test sample, 239
Test statistic, 203, 220, 232
Testing for multimodality,
227-236
Time series, 33
bootstrap methods for, 92-104
Training sample, 239
Transformation, 54-55, 173,
162-166, 175
Transformation-respecting,
162-166, 175
Translation family, 226
Trimmed mean, 59, 211

Two-sample problem, 88, 202, 220

Unbiased estimate, 125
Uniform distribution, 81

Varnability of a bootstrap
estimate, 271-282

Varance,
definition, 26
confidence interval for, 26
of the mean, 39-43
bootstrap estimate of, 42-43
Jackknife estimate of, 142
delta method, 313-315
sandwich estimate of, 310-311

Variance stabilizing
transformation, 163-164

SUBJECT INDEX

Variance reduction,
1n bootstrap computations
338-357

Weighted least squares, 77
Window size, 77-78, 228







