
An Abstraction for the Analysis of Secure
Policy Interoperability

Javier Baliosian
November 4, 2016
Seminario de Probabilidad y Estadística 2016, CMAT

Instituto de Computación,
Facultad de Ingeniería, UdelaR,
Montevideo, Uruguay.
Email: baliosian@fing.edu.uy

Policy-based Management Basics

Policy-based (Management) Systems

Policies are sets of rules governing the behaviour of a system. They
are often used as a means of implementing flexible and adaptive
systems for the management of Internet services, distributed
systems, and security systems.

∙ Permissions
permission(p1,subject,action,object,context)

∙ Prohibitions
prohibition(p2,subject,action,object,context)

∙ Obligations
obligation(p1,subject,action,object,activation_context,violation_context)

2

Policy-based Admission Control (RFC 2753)

“________________ ____________________
Network Node	Policy Server	Network Node								
_____	_____	_____ _____								
	PEP	<-----	---->	PDP			PEP	<-->	PDP	
	_____			_____			_____		_____	
^										
	_____		____________________							
\-->										
	LPDP									

Figure 2: Two other possible configurations of policy control
architecture components. The configuration on the left shows a local
decision point at a network node and the configuration on the right
shows PEP and PDP co-located at the same node.

” 3

Policy Conflicts

Rule 1: All users are forbidden to reboot virtual
servers.

Rule 2: System administrators are authorised to
manage any virtual device.

Figure 1: Overlapping Subjects, Objects and Actions (source [5]).

4

Policy Conflicts II

“Policy conflict: Occurs when the actions of two rules (that are both
satisfied simultaneously) contradict each other. The entity
implementing the policy would not be able to determine which action
to perform. The implementers of policy systems must provide conflict
detection and avoidance or resolution mechanisms to prevent this
situation. ’Policy conflict’ is contrasted with ’policy error’.”

[RFC 3198]

5

How Policy Based Systems Manage Conflicts?

Negative policies always have priority. A forbidden action will never
be permitted.

Assigning explicit priorities. An administrator assigns explicit
priority-values to policies in order to define a
precedence ordering.

Distance between a policy and the managed objects. Priority is
given to the policy applying to the closest class in the
inheritance hierarchy when evaluating access to an
object referenced in a query.

6

FSTs for Policy Modelling

FSTs for Policy Modelling

Rule 3: Every time a client asks for a virtualized
web-server, he or she has to provide a domain
name registration.

Figure 2: Two possible correspondences between Rule 3’s constituents and
FST elements.

8

FSTs for Policy Modelling

Rule 4: When a health professional examines a
patient, she/he must write notes in the
patient’s medical record.

Rule 5: When a mental health professional examines a
patient, notes must be recorded in a place
other than the patient’s medical record.

Figure 3: The Union of FSTs modelling rules 6 and 7.

9

A Little Background on Finite
State Transducers

Semirings I

A semiring (K,⊕,⊗, 0, 1) is a ring that may have no additive inverse.
Thus for any a, b, c ∈ K:

a⊕ b = b⊕ a
a⊕ (b⊕ c) = (a⊕ b)⊕ c

a⊕ 0 = a
a⊗ (b⊗ c) = (a⊗ b)⊗ c

a⊗ 0 = 0⊗ a = 0
a⊗ 1 = 1⊗ a = a

a⊗ (b⊕ c) = a⊗ b⊕ a⊗ c
(a⊕ b)⊗ c = a⊗ c⊕ b⊗ c

11

Semirings II

Closed semirings which are semirings with an additional operation
called closure (∗) which satisfies:

a∗ = 1⊕ a⊗ a∗ = 1⊕ a∗ ⊗ a

If we have an affine map x 7→ ax+ b in some closed semiring, then
x = a∗b is a fixpoint, since a∗b = (aa∗ + 1)b = a(a∗b) + b.

The regular languages form a closed semiring where ⊗ is
concatenation, ⊕ is union, and * is the Kleene star. Here the infinite
geometric series interpretation of * is the most natural: a∗ is the
union of an for all n.

12

Semirings III

Other semirings:

Semiring Set ⊕ ⊗ 0 1
Boolean {0, 1} ∨ ∧ 0 1
Probability R+ + × 0 1
Tropical R+ ∪ {−∞,+∞} min + +∞ 0
String

∑∗ ∪{∞} ∧ · ∞ ϵ

For strings, ∧ is longest common prefix.

13

Matrix Semirings

(S,⊕,⊗, 0, 1) : a semiring

(Mn,⊕,⊗, J, I) : the semiring of n × n-matrices over S

(A⊕ B)(i, j) = A(i, j)⊕ B(i, j)

(A⊗ B)(i, j) =
⊕

1≤q≤n
A(i,q)⊗ B(q, j)

J(i, j) = 0

I(i, j) =
{
1(ifi = j)
0(otherwise)

14

Weighted Automata

Figure 4: A FST with weights (source [6]).

Probability semiring (R+,+,×, 0, 1) Tropical semiring (R+ ∪ {−∞,+∞},min,+,+∞, 0)JAK(ab) = 14 JAK(ab) = 4
(1 × 1 × 2 + 2 × 3 × 2 = 14) (min(1 + 1 + 2, 3 + 2 + 2) = 4)

15

Weighted Transducers

Figure 5: A FST with weights (source [6]).

Probability semiring (R+,+,×, 0, 1) Tropical semiring (R+ ∪ {−∞,+∞},min,+,+∞, 0)JTK(ab, r) = 16 JTK(ab, r) = 5
(1 × 2 × 2 + 3 × 2 × 2 = 16) (min(1 + 2 + 2, 3 + 2 + 2) = 5)

16

Definitions and Notation

Alphabets: input Σ, output ∆. States: Q, initial states I, final states F.
Transitions: E ⊆ Q× (Σ∪ {Q})× (∆∪ {Q})×K×Q. Weight functions:
initial weight function λ : I → K final weight function ρ : F → K

Automaton A = (Σ,Q, I, F, E, λ, ρ) with for all x ∈ Σ∗ :

JAK(x) = ⊕
π∈P(I,x,F)

λ(p[π])⊗ ω[π]⊗ ρ(n[π])

Transducer T = (Σ,∆,Q, I, F, E, λ, ρ) with for all x ∈ Σ∗, y ∈ ∆ :

JTK(x, y) = ⊕
π∈P(I,x,y,F)

λ(p[π])⊗ ω[π]⊗ ρ(n[π])

17

Transducers as Weighted Automata

A transducer T is deterministic (or functional) iff for each x there
exists at most one y such that JTK(x, y) = 0

∙ An unweighted functional transducer can be seen as a weighted
automata over the string semiring (

∑∗ ∪{∞},∧, · ,∞, ϵ).
∙ A weighted functional transducer over the semiring K can be seen
as a weighted automata over the cartesian product of the string
semiring and K.

Figure 6: JTK(ab, r) = 5, JAK(ab) = (r, 5) on a Tropical semiring
(R+ ∪ {−∞,+∞},min,+,+∞, 0) (source [6]).

18

Operations: Sum (Union)

JT1 ⊕ T2K(x, y) = JT1K(x, y)⊕ JT2K(x, y)

Figure 7: A Union of Weighted FSTs (source [6]).
19

Operations: Closure

JTK(x, y) = ∞⊕
n=0

JTnK(x, y)

Figure 8: T and T∗ (source [6]).

20

Operations: Composition

JT1 ◦ T2K(x, y) = ⊕
z

JT1K(x, z)⊗ JT2K(z, y)

Figure 9: T1, T2, and T1 ◦ T2 (source [6]).

Actually it is a matrix multiplication!. 21

Operations: (Acceptor’s) Intersection

JA1 ∩ A2K(x) = JA1K(x)⊗ JA2K(x)

Figure 10: A1, A2, and A1 ∩ A2 (source [6]).

22

Determinization of Weighted Transducers

An acceptor is deterministic iff for each state q there is at most one
transition labeled with a given label. A transducer can be input
deterministic (or subsequential) or output deterministic.

23

Single-Source Shortest-Distance Algorithms

If M(i, j) is the adjacency matrix of a graph, then

Mk(i, j) is the length of the shortest path with k edges from node i to
node j, and

M∗ is the sum (which in the tropical semiring means “minimum”) of
Mk for any k. Thus,

M∗(i, j) is the length of the shortest path with any number of edges
from node i to node j.

24

Writing Rules as FSTs

Finite State Transducers for Policies

A FST T over a semiring (K,⊕,⊗, 0, 1) is a tuple (Q, E,P,Π, S, F, λ, ρ)
where:

Q is a finite set of states,
E is a set of symbols,
P is a set of predicates over E.
Π is a finite set of transitions
Q× (P ∪ {ϵ})×K× (P ∪ {ϵ} ×K)× Q× {−1, 0, 1}. 1 S ⊆ Q is a set of
start states, F ⊆ Q is a set of final states, λ is an initial weight and ρ a
final weight function. For all transitions (p,d,u, r,w,q, 1) it must be
the case that d = r ̸= ϵ.

Π̂ ⊆ Q× E∗ × E∗ × Q is the relation defined by T.

1The final component of a transition is a sort of “ identity flag” used to indicate when
an incoming event must be replicated in the output.

26

Permissions

In the context of a system in which everything is prohibited by
default, the OrBAC rule

permission(p1,r,a,v,true)
is modelled as the following FST:

TP+ =
(
id (RP)

∗
ε
(
E∗RPE∗

)∗)∗

where RP is the FSR that consumes exactly the event string rav, id(X)
is the identity FST, ε(X) is a transducer that consumes language X
and produces ϵ always, ∗ is the Kleene closure, and E∗ is the
language of all possible strings of events.

27

Permissions

Figure 11: An FST modeling a permission (weights are not included because
they have no role at this stage).

28

Prohibitions

In the context of a system that permits everything by default, the FST
that models the rule

prohibition(p1,r,a,v,TRUE)
is the following:

TP− =
(
ε (RP)

∗ id
(
E∗RPE∗

)∗)∗

29

Prohibitions (cont’d)

Figure 12: An FST Modeling a Prohibition.

30

Obligations

Figure 13: The obligation obligation(p1, r, a, v, ac, vc).

31

Policy Conflict Resolution I

Rule 6: When a health professional examines a
patient, she/he must write notes in the
patient’s medical record.

Rule 7: When a mental health professional examines a
patient, notes must be recorded in a place
other than the patient’s medical record.

32

Policy Conflict Resolution II

A transducer is sequential when, standing in any state and
consuming any possible input symbol, there is only one edge with a
matching input label. A transducer is determinist when it produces
at most one output string for each possible input string.

Figure 14: The Union of FSTs modelling rules 6 and 7.

This transducer is neither sequential, nor deterministic.

33

Policy Conflict Resolution III

Figure 15: Previous FST determinized.

34

“Shortest”-Path for Conflict Resolution

∙ Once we have a policy transducer T, it is possible to compute the
shortest path on the Cartesian product of the semiring
{0, 1} × R+ × {0, 1} × R+

computing the closure T∗.
∙ Submodules can be used to model action contradictions and
remove them from the valid paths.

35

Interoperability Analysis

Interoperability for Policy-based Management

Interoperability: “The capability to communicate, execute programs,
or transfer data among various functional units in a manner that
requires the user to have little or no knowledge of the unique
characteristics of those units” [3]

What we do analyze when we analyze Interoperability?

1. what is permitted if we apply the security rules of two
organizations at the same time?

2. are the obligated actions consistent between them and with the
prohibitions of both organizations?

3. is the emerging policy in line with their cooperation objectives?

37

Interoperability Analysis I

∙ subjects, objects and actions at different organizations may have
different names, classifications, and meanings.

∙ we need to draw a correspondence map between entities and
procedures.

∙ this means to translate the entity names and,

∙ to translate their interaction manners.

38

FST Composition for Policy Mapping

Lets consider two hospitals with two similar rules:

Rule 8: Physicians can manage any medical record.

Rule 9: Health Professionals can manage any medical
record.

managing a medical record includes actions such as reading,
writing, and signing one of its entries.

for H’ signing and writing a medical record are things completely
different and for H” to sign a medical record is a particular case of
writing it.

39

FST Composition for Policy Mapping

Figure 16: General interoperability analysis process.

40

FST Composition for Policy Mapping

Figure 17: FST TRule8 modelling Rule 8. The label phy represents the set of
physicians, man represents the class of actions management and rec the
class of objects medical records.

Figure 18: FST TRule9 modelling Rule 9. The label hp represents the set of
subjects health professionals, man represents the class of actions
management and rec the class of objects medical records.

41

FST Composition for Policy Mapping

Physicians maps to Health Professionals, but not when writting a
health record.

Figure 19: FST Tmap which defines a map between the entities of two simple
permissions.

42

FST Composition for Policy Mapping

Figure 20: The FST TR8_map = TRule 8 ◦ Tmap. This models “Physicians can
manage any medical record.” with its output actions written in terms of the
entities of H” policy.

This computation is based on the presumption that read → man,
man → ¬rec, man → ¬phy, and rec → ¬phy.

43

FST Composition for Policy Mapping

Figure 21: The FST Tmap_R9 = Tmap ◦ TRule 9. This models “Health Professionals
can manage any medicalrecord.” with its input events written in terms of the
entities of H’ policy.

This computation is based on the presumption that read → man,
man → ¬rec, man → ¬phy, man → ¬hp, rec → ¬hp, rec → ¬phy,
hp → ¬phy.

44

FST Composition for Policy Mapping

Figure 22: The τ-FST TP+int = TR8_map ∩ Tmap_R9. Tint is the transducer
representing what a subject of H’ can do on H” objects when the policies of
both organization are applied at the same time.

45

FST Composition for Policy Mapping

The procedure to find out what are the actions that a subject of a
provider O’ can do on the objects of another provider O”, follows the
steps below:

1. to model the policies of organization O’ as the transducer TO′ ,
2. to model the policies of organization O” as the transducer TO′′ ,
3. to model the entity map between O’ and O” as the transducer Tmap,
4. to compute TO′_map = TO′ ◦ Tmap,
5. to compute Tmap_O′′ = Tmap ◦ TO′′ , and,
6. to compute Tint = TO′_map ∩ Tmap_O′′

Tint is the transducer which models the set of interoperability
policy-rules between O’ and O”.

46

Conclusion

∙ We used the extensive FST and Semirings theory to operate with
policies from different organizations and study their interrelations,

∙ we are able to compute the security policy that emerges from the
combination of all the organization-level policies and,

∙ the higher-level interoperability policy when two organizations
cooperate.

∙ This work was partially described in the paper:
J. Baliosian and A. Cavalli, “An Abstraction for the Interoperability
Analysis of Security Policies”, in proceedings of NSS 2015, 9th
International Conference on Network and System Security,
November 3-5, 2015,New York City, USA.

47

Further and Future Work

Further work:

∙ Writing rules back from FSTs, (made but too many slides)
∙ integration with Orbac policy manger and MotOrBac policy editor,
(started)

∙ objective-oriented conflict resolution, (to be made)
∙ Self-Management (control loops for network management
systems), (lots made on opportunistic networks, etc.)

∙ Human-walk modelling. This is starting just now.

48

“Frequently Asked Questions”

∙ Why using FSTs instead of FSRs?
∙ Why using FST instead of a logic programming approach?
∙ How weights are selected?
∙ How do I know that they are right?
∙ What is new? (your first work with FSTs is from 2004)
∙ How do I know that the model is complete?
∙ How do I know that the model is right?

49

Real Questions?

50

Writing Policies Back from FSTs I

The answer to the third question

is the emerging policy in line with their cooperation objectives?

worth a complete research work on itself, but, at least

we can write policy rules back from its FST model.

51

Writing Policies Back from FSTs II

Writing back a set of policies Pint in a high-level specification
language such as OrBAC from Tint, is analogous to find

Π̂P+int
⊆ Π̂Pint

which corresponds to the permissions P+
int and

Π̂Po
int
⊆ Π̂Pint

for the obligations Po
int.

(Re-writing the set of prohibitions does not have a meaning in a
context where everything that is not permitted is prohibited)

52

Writing Policies Back from FSTs III

Π̂P+int
is the subset of the relation that maps strings from the

language of events LP+ , where each string has the form “context, role,
activity, view”, with exactly the same string.

TP+int = id(RP+) ∩ TPint

where RP+ is the FSR that accepts LP+ .

53

Writing Policies Back from FSTs IV

Π̂Po
int
is the subset of the relation that maps activation context

starting events (start_ac) to strings of the form “role, activity, view,
fulfilled”, or strings with an activation context starting event and a
violation context starting event (start_vc) to strings of the form “role,
action, view, fulfilled, violated”.

Π̂Po
int
is defined by the FST

TPo
int
= TPo ∩ TPint

54

Writing Policies Back from FSTs V

Figure 23: The transducer TPo used to compute TPoint

All the FST must be determinised and in its minimal representation.

55

Writing Policies Back from FSTs VI

Each valid path in TP+int corresponds to a permission in P+
int, and,

each valid path in TPo
int
corresponds to an obligation in Po

int.

For example, if the path in Figure 51 bellongs to TP+int the policy

permission(p,doctor,write,medical_record,context_1)
is in the set P+

int.

56

Writing Policies Back from FSTs VII

bellongs to TP+int , then, the policy
permission(p,doctor,write,medical_record,context_1)
is in the set P+

int.

57

Writing Policies Back from FSTs VIII

1. compute Tint (as seen before),
2. compute TP+int = id(RP+) ∩ TPint ,
3. compute TPo

int
= TPo ∩ TPint ,

4. find each valid path in TP+int ,
5. write a permission for each path using the context, role, activity,

and view in the path,
6. find each valid path in TPo

int
, and,

7. write an obligation for each path using the activation context,
violation context, role, activity, and view in the path.

58

Further Reading I

J. Baliosian and D. Wonsever, “Finite State Transducers,” in Handbook of Finite State Based
Models and Applications, Chapman and Hall/CRC, 2012, pp. 45–68.

Elrakaiby, Y., Cuppens, F., Cuppens-Boulahia, N.: Formal enforcement and management of
obligation policies. Data & Knowledge Engineering 71(1), 127–147 (Jan 2012),
http://linkinghub.elsevier.com/retrieve/pii/S0169023X11001248
ISO: ISO\slash IEC 2382-1:1993 Information technology — Vocabulary — Part 1: Fundamental
terms. International Organization for Standardization, Geneva, Switzerland (1993),
http://www.iso.ch/cate/d7229.html
Kalam, A., Baida, R., Balbiani, P., Benferhat, S., Cuppens, F., Deswarte, Y., Miege, A., Saurel, C.,
Trouessin, G.: Organization based access control. In: Proceedings POLICY 2003. IEEE 4th
International Workshop on Policies for Distributed Systems and Networks. pp. 120–131. IEEE
Comput. Soc (2003), http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1206966
Lupu, E.C., Sloman, M.: Conflicts in Policy-based Distributed Systems Management . IEEE
Transactions on Software Engineering 25(6), 852–869 (1999)

Mohri, M.: Weighted automata algorithms. In: Handbook of weighted automata, pp. 213–254
(2009), http://www.springerlink.com/index/P872G5Q565H44544.pdf

59

http://linkinghub.elsevier.com/retrieve/pii/S0169023X11001248
http://www.iso.ch/cate/d7229.html
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1206966
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1206966
http://www.springerlink.com/index/P872G5Q565H44544.pdf

Further Reading II

van Noord, G., Gerdemann, D.: Finite State Transducers with Predicates and Identities .
Grammars 4(3), 263–286 (Dec 2001)

Roche, E., Schabes, Y.: Finite-State Language Processing . Tech. rep., MIT Press, Cambridge,
Massachusetts. (1997)

Sloman, M.: Policy Driven Management for Distributed Systems . Journal of Network and
Systems Management 2, 333 (1994)

Veanes, M., Hooimeijer, P., Livshits, B., Molnar, D., Bjorner, N.: Symbolic finite state
transducers. ACM SIGPLAN Notices 47(1), 137 (Jan 2012),
http://dl.acm.org/citation.cfm?doid=2103621.2103674

60

http://dl.acm.org/citation.cfm?doid=2103621.2103674

More Questions?

61

	Policy-based Management Basics
	FSTs for Policy Modelling
	A Little Background on Finite State Transducers
	Writing Rules as FSTs
	Obligations
	Policy Conflict Resolution

	Interoperability Analysis
	FST Composition for Policy Mapping
	Writing Policies Back from FSTs

