# Adaptive Weak Approximation 

## of Diffusions with Jumps

Ernesto Mordecki ${ }^{1}$

Joint work with: A. Szepessy, R. Tempone, G. Zouraris.
${ }^{1}$ Universidad de la República, Montevideo, Uruguay

FoCM ${ }^{1}$, Hong Kong, 2008

## Contents

1. General description: discuss the title of the talk
2. Stochastic differential equations with jumps
3. A posteriori error expansion (in Euler Maruyama algorithm) in computable form (main result)
4. Our adaptive algorithtm (AA) has two steps: automatic mesh construction + sampling
5. Example (A): many jumps and time dependence
6. Example (B): $d=2$
7. Discussion

## 1. Adaptive

- Task: Estimate an unknown parameter $\theta$.
- By adaptive we mean an algorithm that
automatically produces an approximation $\widehat{\theta}$ such that

$$
|\theta-\widehat{\theta}| \leq T O L
$$

- TOL is a maximum tolerance given in advance.


## Adaptive weak approximation

By weak approximation we mean that

$$
\theta=\mathbf{E}[g(X(1))]
$$

where

- $\{X(t): 0 \leq t \leq 1\}$ is a stochastic process in $\mathbb{R}^{d}$
- $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a regular function


## Adaptive weak approximation of diffusion with jumps

$\{X(t): 0 \leq t \leq 1\}$ is the solution of a stochastic differential equation with jumps (SDEJ) i.e.
$d X(t)=a(t, X(t)) d t+b(t, X(t)) d W(t)+\int_{\mathbf{Z}} c\left(t, X\left(t^{-}\right), z\right) p(d t, d z)$
driven by

- $\{W(t): 0 \leq t \leq 1\}$ : standard brownian motion in $\mathbb{R}^{\ell_{0}}$
- $p(d t, d z)$ : Poisson random measure on the (auxiliary) mark space $\mathbf{Z}$
- Initial condition is $X(0)=x_{0}$ constant (for simplicity)


## Sources of randomness: Brownian motion



## Sources of randomness: Marked Poisson Process

Arrival times and Marks


- Interarrival exponential times, with expectation 10.
- Normal marks: $N(-0.1,0.5)$
- Brownian motion and Marked process are independent


## 2. SDEJ in detail

$$
\begin{align*}
X(t)=x_{0} & +\int_{0}^{t} a(s, X(s)) d s  \tag{L}\\
& +\int_{0}^{t} b(s, X(s)) d W(s)  \tag{I}\\
& +\int_{0}^{t} \int_{\mathbf{Z}} c\left(s, X\left(s^{-}\right), z\right) p(d s, d z) \tag{RM}
\end{align*}
$$

- (L) is an usual Lebesgue integral
- (I) is an Itô integral
- (RM) is an integral against a random measure, the simplest integral:

$$
\int_{0}^{t} \int_{\mathbf{Z}} c(s, X(s-), z) p(d s, d z)=\sum_{k=1}^{\nu(t)} c\left(\tau_{k}, X\left(\tau_{k}^{-}\right), Z_{k}\right)
$$

Here:

- $\nu(t)$ is the number of arrivals up to $t$ (Poisson process)
- $\tau_{k}$ are the arrival times (sums of exponentials)
- $X\left(\tau_{k}^{-}\right)$value of the process just before the $k$-th jump
- $Z_{k}$ are the marks (normal variables in the picture)


## One possible motivation: Finance

Compute the price of a call option written on a basket of $d$ assets $\left(S_{1}, S_{2}, \ldots, S_{d}\right)$

- Each asset follow a diffusion with jumps (i.e. affine processes)
- Usually they display correlations (modelled by $b(t, x)$ )
- $g(x)=(x-K)^{+}$
- A prescribed precision is required.

Problem: Compute $E[g(X(T)]$ where

$$
X(T)=\pi_{1} S_{1}(T)+\cdots+\pi_{d} S_{d}(T) .
$$

## Our framework and technical assumptions

- $a:[0,1] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$,
- b: $[0,1] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d \times \ell_{0}}$, and
- $c:[0,1] \times \mathbb{R}^{d} \times \mathbf{Z} \rightarrow \mathbb{R}^{d}$
- All derivatives up to order 8 bounded
- $q(d t, d z)=\lambda(t) \mu(t, d z) d t$ is the compensator (time dependent)
- $g(x)$ derivatives up to 8 with polynomial growth
- Curse of dimensinality ${ }^{2}$ : Monte Carlo methods are efficient for high dimensions.

[^0]
## 3. Main result. Basic algorithm: Jump-augmented

## Euler

- Give a deterministic partition $0=\hat{t}_{0}<\hat{t}_{1}<\ldots<\hat{t}_{N}=1$
- Sample $\nu$ jumps $\tau_{k}$ and marks $Z_{k}$,
- Construct jump-augmented partition $\left\{t_{k}\right\}_{k=0}^{N+\nu}=\left\{\hat{t}_{k}\right\} \cup\left\{\tau_{k}\right\}$
- Set $\bar{X}(0)=x_{0}$
- For $n=1$ to $N+\nu$

$$
\begin{aligned}
& \bar{X}_{n+1}^{-}=\bar{X}_{n}+a\left(t_{n}, \bar{X}_{n}\right) \Delta t_{n}+b\left(t_{n}, \bar{X}_{n}\right) \Delta W \\
& \bar{X}_{n+1}=\bar{X}_{n+1}^{-}+c\left(t_{n+1}, \bar{X}_{n+1}^{-}, Z_{n+1}\right) 1_{\left\{t_{n+1} \text { is a jump time }\right\}}
\end{aligned}
$$

- In this way we construct our approximation $\bar{X}$.


## Adaptive algorithm: Error Splitting

Our estimation is

$$
\widehat{\theta}=\frac{1}{M} \sum_{j=1}^{M} g\left(\bar{X}\left(T ; \omega_{j}\right)\right)
$$

and we split the error:

$$
\mathcal{E}=E[g(X(T))]-\frac{1}{M} \sum_{j=1}^{M} g\left(\bar{X}\left(T ; \omega_{j}\right)\right)=\mathcal{E}_{T}+\mathcal{E}_{S}
$$

where

$$
\begin{aligned}
& \mathcal{E}_{T}=E[g(X(T))]-E[g(\bar{X}(T))] \\
& \mathcal{E}_{s}=E[g(\bar{X}(T))]-\frac{1}{M} \sum_{j=1}^{M} g\left(\bar{X}\left(T ; \omega_{j}\right)\right)
\end{aligned}
$$

## Main Result

Theorem: Error expansion in computable a posteriori form.

$$
\begin{aligned}
\mathcal{E}_{T} & =E\left[\sum_{n=0}^{N+\nu-1} \tilde{\rho}\left(t_{n}, \bar{X}\right)\left(\Delta t_{n}\right)^{2}\right]+\mathcal{O}\left(\left(\Delta t_{\max }\right)^{2}\right) \\
\tilde{\rho}\left(t_{n}, \bar{X}\right) \equiv & \frac{1}{2}\left(\left(\frac{\partial}{\partial t} a_{k}+\partial_{j} a_{k} a_{j}+\partial_{i j} a_{k} d_{i j}\right) \varphi_{k}\left(t_{n+1}\right)\right. \\
& +\left(\frac{\partial}{\partial t} d_{k m}+\partial_{j} d_{k m} a_{j}+\partial_{i j} d_{k m} d_{i j}+2 \partial_{j} a_{k} d_{j m}\right) \varphi_{k m}^{\prime}\left(t_{n+1-}\right) \\
& \left.+\left(2 \partial_{j} d_{k m} d_{j r}\right) \varphi_{k m r}^{\prime \prime}\left(t_{n+1-}\right)\right),
\end{aligned}
$$

Here

- We use Einstein conventio for summation
- $\partial_{\alpha} a \equiv \partial_{\alpha} a\left(t_{n}, \bar{X}\left(t_{n}\right)\right)$,
- $\varphi, \varphi^{\prime}, \varphi^{\prime \prime}$ are the duals, constructed in a $d+d^{2}+d^{3}+d^{4}$ dimensional backwards auxiliary algorithm (expensive).


## Main References

KP P. E. Kloeden und E. Platen. The Numerical Solution of Stochastic Differential Equations, Springer (1992)

TT D. Talay and L. Tubaro (Stoc. An. Appl. 1990), provide a priori error estimate:

$$
E\left[g\left(X_{T}\right)-g\left(\bar{X}_{T}\right)\right] \simeq \int_{0}^{T} E\left[\Delta t(s) \psi\left(X_{s}, s\right)\right] d s=\mathcal{O}\left(\Delta t_{\max }\right)
$$

LL X. Q. Liu and C. W. Li (SINUM, 2000) analyze the weak order of several different schemes

STZ A. Szepessy, R. Tempone and G. Zouraris (Comm. Pure Appl. Math., 2001) provide a posteriori error estimate for diffusions

MSTZ Adaptive weak approximation of diffusions with jumps SINUM (2008)

## 4. Adaptive Algorithm: Tolerance splitting

Our total work is $N \times M$. The precision achieved is

- By the Euler method: $\mathcal{E}_{T} \sim 1 / N$
- By the CLT: $\mathcal{E}_{s} \sim 1 / \sqrt{M}$

Then we solve

$$
\text { Minimize: } \quad N \times M
$$

subject to : $\quad 1 / N+1 / \sqrt{M}=T O L$
obtaining

$$
T O L_{T}=\frac{1}{3} T O L, \quad T O L_{s}=\frac{2}{3} T O L
$$

## Algorithm

Our algorithm has the following structure:

1. First: $M_{T}$ runs to determine the mesh according to $T O L_{T}$
2. Second: $M$ runs to construct $\hat{\theta}$ according to $T O L_{s}$

Observe:

- First runs are in dimension $d+d^{2}+d^{3}+d^{4}, M_{T}$ "small"
- Second runs is $d$-dimensional, allows larger $M$


## First step of AA: construct the mesh

1. Input $M_{T}$ (realizations to construct the mesh)
2. Input $N$ (to construct initial uniform mesh)
3. Sample $\nu$ jumps and insert them in the deterministic mesh
4. For $n=1$ to $N+\nu$ estimate the local error

$$
r_{n}=\frac{1}{M_{T}} \sum_{j=1}^{M_{T}} \tilde{\rho}\left(t_{n}, \bar{X}\left(\omega_{j}\right)\right)\left(\Delta t_{n}\right)^{2}
$$

- If $r_{n}>T O L_{T} /(N+\nu)$ divide $\Delta t$ into two equal subintervals
- Else continue


## 5. End For

6. If global statistical error of $\left\{r_{n}\right\}$ is large, enlarge $M_{T}$ and go to 4, Else End

## Second step of AA: Estimation and Statistical error control

We have the mesh and proceed to estimation. By the CLT:

$$
\mathbf{E}_{S}=\frac{1.65 \bar{\sigma}}{\sqrt{M}}
$$

where $\bar{\sigma}^{2}$ is the empirical variance

1. Input $M$ (realizations to estimate $\theta$ )
2. Input the deterministic non-uniform mesh and
3. Produce $M$ trajectories with the basic algorithm
4. If the statistical error $\mathbf{E}_{S}<T O L_{s}$, End
5. Else enlarge $M$ and go to 3

Obs: $M_{T} \ll M$ (as the error estimation is more expensive)

## 5. Example A: Time variation and many jumps

- Test function: $g(x)=x$, initial value: $x_{0}=1$.
- Drift: $a(t, x)=a(t) x$ where the time-varying drift is

$$
a(t)= \begin{cases}0, & \text { if } t<1 / 3 \\ \frac{1}{2 \sqrt{t-1 / 3+\text { TOL }^{4}}}, & \text { if } 1 / 3 \leq t \leq 1\end{cases}
$$

- Diffusion $b(t, x)=x / \sqrt{2}$
- Jump measure compensator:

$$
q(d t, d z)=\lambda(t) \mu(d z) d t
$$

Where:

- $\mu(d z)$ is Uniform distribution in $[-\sqrt{3}, \sqrt{3}]$,
- Jump intensity exhibits two different regimes

$$
\lambda(t)= \begin{cases}0, & \text { if } 0 \leq t \leq 2 / 3 \\ 3 N_{J}, & \text { if } 2 / 3<t \leq 1\end{cases}
$$

with (in the mean) $N_{J}=1024$ jumps per realization.

## Simulated trajectories of our example



Mesh construction of our example (jumps not included)


## Numerical results

- We have an exact solution:

$$
E[g(X(1))]=\exp \left(\sqrt{2 / 3+T O L^{4}}-T O L^{2}\right)
$$

|  | step 1 | grid | step 2 | error | uniform |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TOL | $M_{T}$ | $N$ | $M$ | $\mathcal{E}$ | $N_{U}$ |
| 0.025 | $1.7 \times 10^{3}$ | 220 | $2.0 \times 10^{5}$ | $2.0 \times 10^{-2}$ | $2 \times 10^{4}$ |
| 0.01 | $1.7 \times 10^{3}$ | 450 | $1.45 \times 10^{6}$ | $-1.4 \times 10^{-2}$ | $6 \times 10^{4}$ |

Table: Adaptive choice of $M$ and $\Delta t$

## 6. Example B: Dimension $d=2$

Consider $X=\left(X_{1}, X_{2}\right), \ell_{0}=1$ (i.e. $\left.W=W_{1}\right)$, and coefficients

- $a(t, x)=\left(-x_{2}, x_{1}+\frac{1}{2} \lambda(t) x_{2}\right)$
- $b(t, x)=\left(\sqrt{\frac{\lambda(t)}{1+t}} \sin x_{1}, 0\right)$
- $c(t, x, z)=\left(0, z \frac{\cos x_{1}}{\sqrt{1+t}}-x_{2},\right)$
- $\lambda(t)=(1+t)^{-1}$ is also the jumps intensity.
- Marks are time dependent: Take $U_{k}$ i.i.d $U[-1 / 2,1 / 2]$ and

$$
Z\left(\tau_{k}\right)=\cos \left(2 \pi \tau_{k}\right)+2 \sqrt{3} \sin \left(2 \pi \tau_{k}\right) U_{k} .
$$

- $g\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}=\|x\|^{2}$
- $x(0)=0$.
- The example has a closed solution:

$$
E\|X(1)\|^{2}=\|X(0)\|^{2}+\int_{0}^{1} \frac{\lambda(t)}{1+t} d t=\frac{1}{2}
$$

This example is adapted from [LL] where the intensity $\lambda$ is constant, and the jumps are also constant (i.e. we have a Poisson process), and originated in [TT], where is presented without jumps.

## Numerical results for Example B

| Iter. | $N$ | $M$ | $\mathcal{E}$ | $\mathbf{E}_{S}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 5 | 100 | $-2.66 \times 10^{-2}$ | $1.44 \times 10^{-1}$ |
| 2 | 10 | 100 | $-9.19 \times 10^{-3}$ | $1.35 \times 10^{-1}$ |
| 3 | 20 | 100 | $9.16 \times 10^{-2}$ | $1.30 \times 10^{-1}$ |
| 4 | 20 | 1000 | $-1.78 \times 10^{-2}$ | $4.54 \times 10^{-2}$ |
| 5 | 20 | 10000 | $-1.77 \times 10^{-2}$ | $1.50 \times 10^{-2}$ |
| 6 | 20 | 14088 | $-1.29 \times 10^{-2}$ | $1.23 \times 10^{-2}$ |

- $T O L=0.02$, then $T O L_{s}=1.33 \times 10^{-2}$
- Start with $N=5$ and $M=100$
- Overkilling runs where performed to estimate the accuracy of $\mathcal{E}_{T}$.


## 7. Discussion

- Trajectory dependent mesh division (useful for irregularity in space). Dividing criteria: If

$$
\tilde{\rho}\left(t_{n}, \bar{X}\left(\omega_{j}\right)\right)\left(\Delta t_{n}\right)^{2}>T O L_{T} / N
$$

then divide the interval for this trajectory.

- Use Large deviations theory instead of the Central Limit Theorem

$$
P\left(\left|\mathcal{E}_{s}\right| \geq c\right) \leq 2 \exp (-H(c) M)
$$

- Other jump models:
- state dependent intensity $\lambda=\lambda(t, X)$ (default risk problems)
- infinite activity models (Lévy processes)


[^0]:    ${ }^{2}$ coined by Richard Bellman

