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20a. Jumps in financial data

An alternative to BS models is to consider that, from time
to time, the financial instrument being modelled has signi-
ficative larger movements that the ones observed usually.

This larger movements, that can be produced by some un-
expected information, are called jumps in the evolution of
the asset.

3



The interest in modelling with jumps is based on the fact
that

• Jumps are observed in financial time series

• The presence of jumps produces some of the stylized
facts observed in time series as asymmetry (skewness)
or heavy tails (kurtosis)

• But, mainly, because adding a few parameters the mod-
els can produce derivative pricing with smiles similar to
the observed in option prices.
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20b. When jumps occur: the exponential dis-

tribution

In order to model the occurence of jumps we introduce the
exponential distribution.

The idea is that the first jump in our model will occur at
an uncertain moment τ .

A random variable τ has exponential distribution with pa-
rameter λ if it has a density

p(t) = λe−λt, for t ≥ 0.

(τ takes only positive values.) From this we can compute
probabilities:

P(τ ≤ t) = 1 − e−λt.

Sometimes it is easier to check, that

P(τ ≥ t) = e−λt.
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More important, we obtain that

P(τ ≥ t + h | τ ≥ t) = P(τ ≥ h).

This property says that, if we know that the jump has not
occured at time t (i.e. conditional on τ ≥ t) the probability
of τ arriving h unit of time later that t (i.e. at τ ≥ t+h) is
the same as in the principle, i.e. the probability of τ ≥ h.

In other words, if we know that the first jump has not
occured at time t, the situation is (in what respects the
jump) the same as in the begining t = 0.

This property, the memoryless property of the exponential
distribution means that, knowing that the jump has not
arrived, we do not have any information to know when it
will occur1.

1It can be proved that the exponential distribution is the only one distribution with this
property
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As we want to model more jumps, we denote by τ1 the first
moment of jump.

In fact we assume that once the first jump has arrived, the
situation starts anew, with a second (independent) expo-
nential random variable τ2, and so on.

In conclussion, given a sequence of independent random
variables τ1, τ2, . . . , with exponential distribution with pa-
rameter λ, modelling with jumps consist in assuming that
the asset will suffer a large movement at time T1 = τ1,
a second large movement at time T2 = τ1 + τ2, and, in
general, a n-th large movement at time Tn = τ1 + · · ·+ τn.

7



20c. Simulating moments of jumps

Assume that U is an uniform random variable on [0, 1],
and define

τ = (−1/λ) log U.

We have

P(τ ≥ t) = P
(

(−1/λ) log U ≥ t
)

= P(U ≤ e−λt) = e−λt.

In conclusion, τ is an exponential random variable with
parameter λ.

From this fact, we can simulate the jumps T1, . . . , Tn of a
jump diffusion on an interval [0, T ]:
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Step 1 Sample and uniform random variable U1.

Step 2 Compute T1 = τ1 = (−1/λ) log U1.

Step 3 If T1 > T , then we have no jumps on [0, T ] and we have
finished.

Step 4 Otherwise we sample a second uniform r.v. U2 and com-
pute τ2 = (−1/λ) log U2.

Step 5 If T2 = T1 + τ2 > T we have one wump T1.

Step 6 Otherwise we continue with τ3 = (−1/λ) log U3, com-
pute T3 = T2 + τ3, and check T3 > T . If this happens,
we have jumps T1, T2.

Step 7 We continue until the first n such that Tn > T . In this
case, the jumps in the interval are T1, . . . , Tn−1.
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20d. The Poisson Process

An important (random) quantity is the number of jumps
that occured up to time t, denoted by N (t). Formally

N (t) = max{i : Ti < t}.
It can be proved that

P(N (t) = n) = e−λt(λt)n

n!
, n = 0, 1, . . . ,

and it is said that N (t) has a Poisson distribution with
parameter λt, and also that {N (t)} is a Poisson process
with intensity λ.
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We can now compute the number of expected jumps over
[0, t], as

EN (t) =

∞
∑

n=0

nP(N (t) = n) =

∞
∑

n=0

ne−λt(λt)n

n!

= (λt)e−λteλt = λt.

We have obtained that the expected number of jumps is
proportional to the length of the time interval, being λ, the
intensity, the proportionality constant.

In practice the values of λ (measured in annualized terms)
may range from 1 to 5,

λ ∼ 1 to λ ∼ 5.

In other words, in one year t = 1 we expect λ extraordinary
price movements.
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20e. Merton Jump Diffusion model

In order to specify our model with jumps we assume:

• Jumps are observed at times T1, T2, . . . constructed as
above.

• The magnitudes of each log-stock jump is normally dis-
tributed, with paramters (ν, δ2).

• Between jumps we assume a Black-Scholes dynamics

• The time of jumps, the magnitude of the jumps, and the
Wiener process of the BS dynamics are independent.

In formulas, we denote by Y1, Y2, . . . a sequence of inde-
pendent random variables with identical N (ν, δ2).
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The asset price is:

• Before the first jump, t < T1:

S(t)

S(0)
= exp[(α − σ2/2)t + σW (t)],

• At the first jump, t = T1:

S(t)

S(0)
= exp[(α − σ2/2)T1 + σW (T1) + Y1],

• Between the first and second jumps, T1 ≤ t < T2:

S(t)

S(0)
= exp[(α − σ2/2)t + σW (t) + Y1],

• At the second jump, t = T2:

S(t)

S(0)
= exp[(α − σ2/2)T2 + σW (T2) + Y1 + Y2],

• . . .
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In the general case, up to time t we have accumulated N (t)
of jumps, and the asset price is

S(t)

S(0)
= exp

[

(α − σ2/2)t + σW (t) +

N(t)
∑

i=1

Yi

]

Remark The difference with the BS model is the the
sum of accumulated jumps in the log asset evolution.
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20f. Risk Neutral condition

In order to check the kisk neutral condition of the model2

we use use the technique of conditioning.

The idea is to divide the probability space according to the
occurence of n = 0 jumps, n = 1 jump, n = 2 jumps and
so on.

In other terms, we consider the events

•N (t) = 0, i.e. no jump occured up to time t,

•N (t) = 1, i.e. one jump occured up to time t,

• · · · · · · and so on.

Let us see how this principle works to determine the risk
neutral condition the parameters should satisfy.

2In fact, we are assuming that the price process follows the Merton model under Q, the risk
neutral probability.
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The risk neutral condition reduces to

EQ S(t) = S(0)ert

where r is the risk free interest rate. According to Merton’s
model

S(t) = S(0) exp
[

(α − σ2/2)t + σW (t) +

N(t)
∑

i=1

Yi

]

= S(0)e(α−σ2/2)t × eσW (t) × e
∑N(t)

i=1 Yi.

As we have independence of the three factors

EQ S(t) = S(0)EQ e(α−σ2/2)t EQ eσW (t) EQ e
∑N(t)

i=1 Yi

The first factor is deterministic:

EQ e(α−σ2/2)t = e(α−σ2/2)t.
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The second factor is the expectation of a log-normal ran-
dom variable, as in BS model:

EQ eσW (t) = e(σ2/2)t.

In the third term we use conditioning:

EQ exp
[

N(t)
∑

i=1

Yi

]

=

∞
∑

n=0

EQ

[

1{N(t)=n} e
∑n

i=1 Yi
]

=

∞
∑

n=0

Q(N (t) = n) EQ

[

e
∑n

i=1 Yi
]

(1)

Now we compute each summand separately:

EQ e(Y1+···+Yn) = EQ

(

eY1 · · · eYn
)

= EQ eY1 · · · EQ eYn.

But Y1, . . . , Yn are normal random variables with parame-
ters (ν, δ2), so eY1, . . . , eYn are lognormal with the same
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parameters, and

EQ eY1 = eν+δ2/2.

This gives

EQ e
∑n

i=1 Yi = e(ν+δ2/2)n,

and returning to our initial computation (1), taking into
account that

Q(N (t) = n) = e−λt(λt)n/n!,

we conclude that

EQ e
∑N(t)

i=1 Yi =

∞
∑

n=0

e(ν+δ2/2)ne−λt(λt)n

n!

= e−λt
∞
∑

n=0

[

e(ν+δ2/2)(λt)

n!

]n

= exp
[

t
(

−λ+λe(ν+δ2/2))] = exp
[

t
(

λ(eν+δ2/2−1)
)]

.
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With all this computations, the risk neutral condition is

exp(rt) = exp
[

t
(

α − σ2/2) + σ2/t + λ(eν+δ2/2 − 1)
)]

that, after taking logarithms, dividing by t, and denoting

κ = eν+δ2/2 − 1, gives

α = r − λκ.

Observe, that if λ = 0, meaning that we have no jumps,
we recover the BS risk neutral condition r = α.
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21a. Option Prices for MJD model

Merton Jump Diffusion model for option prices, under the
risk neutral measure, is

S(t) = S(0) exp
[

(r − λκ − σ2/2)t + σW (t) +

N(t)
∑

i=1

Yi

]

• r is the risk free interest rate,

• λ is the mean number of jumps in one year,

• σ is the standard deviation of the gaussian component

•W (t) is a Wiener process

•N (t) is a Poisson process with parameter λ,

• Yi is the jump of the log-stock price, assumed to be
lognormal with parameters (ν, δ),

• κ = eν+δ2/2 − 1.
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With the technique of conditioning, Merton obtained the
price of a call option under the jump diffusion model.

Suppose that we want to price an European Call Option
with expiry T and strike K. Remember the BS price of
such an option by

BS(S,K, T, r, σ) = SΦ(d1) − Ke−rTΦ(d2),

where Φ(x) = (2π)−1/2
∫ x
−∞ e−t2/2dt is the standard nor-

mal distribution, and

d1 =
log(S/K) + (r + σ2/2)T

σ
√

T
, d2 = d1 − σ

√
T .

We consider the stock according to the number of jumps
in [0, T ]
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If we have n jump in [0, T ], under the risk neutral condition
(i.e. with α = r − λκ) the stock is

Sn(T )

S(0)
= exp

[

(r−λκ−σ2/2)T +σW (T )+Y1+· · ·+Yn
]

As W (T ) and the jumps Yi are independent, we have

σW (T ) + Y1 + · · · + Yn ∼ N (nν, σ2T + nδ2).

So, computing the option price as the expected reward un-
der Q, the price of the option is

CJ = e−rT EQ

(

S(T ) − K
)+

=

∞
∑

n=0

e−(λ+r)T (λT )n

n!
EQ(Sn(T ) − K)+.
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Merton’s proposal is the relate this price to the BS model,
so he defines

σ2
n = σ2 +

n

T
δ2,

rn = r − λκ +
n

T

(

ν +
δ2

2

)

and, after some transformations, obtains that

CJ =

∞
∑

n=0

e−λ′T (λ′T )n

n!
BS(S,K, T, rn, σn)

where rn and σn are given above, and

λ′ = λ(1 + κ) = λeν+δ2
.
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Remarks

• The price of a call option in the jump diffusion model is a
mixture of BS prices of call options, each with different
rate and volatility, and the n-th mixture coefficient is
related to the probability of having n jumps.

• Althogh formally we have an infinite series, in practice
it is enough to sum the first 5 to 10 terms3.

3More recent developements on option pricing with Jumps suggest the use of the Fourier

Transform to compute the call option price.
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21b. Numerical Experiments with BS

We perform the calibration procedure under the BS as-
sumption, with:

• Quoted prices of July options (see SCMP, June 30)

• Computed with BS

The known parameters are:
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• Spot Price S(0) = 15865.22 (closing price of the HSI on
June 29).

• T = 21/247, as we have 21 pricing days in the interval
June 30, July 28 (the maturity of July options), and 247
trading days in 2006.

• Risk free interest rate (the futures quotation F (T ) =
15881):

r =
1

T
log

[F (T )

S(0)

]

=
247

21
log

[ 15881

15865.22

]

= 0.012.
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Let us first compare the prices given by BS, with a mean
volatilty of 0.20, with the quoted prices:

14000 15000 16000 17000

500

1000

1500

2000

BS

Quoted

In order to see the difference of prices, we plot it:
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In the plot we see maximum difference between Quoted
Prices and BS prices of about 40 points.

The point where the prices coincies, a strike of about 15750,
is such that the implied volatility is exactly v = 0.20, the
volatility used in BS formula.
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In order to prove our calibration method, let us find σ that
minimizes

20
∑

i=0

(

C(13600 + 200i
)

− BS(σ, 13600 + 200i)
)2

.

Here BS(σ,K) is the BS price with volatility σ and strike
K, where we do not include the other parameters that are
fixed in the optimization.

After some numerical calculations we arrive to a minimun
at the point

σ = 0.197

(very near to our initial σ = 0.20).
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21c. Calibration of MJD for the S&P 500

The general procedure to calibrate parametric models, i.e.
models where we have a fixed number of parameters is done
similarly.

For instance, in MJD model we have to calibrate four pa-
rameters:

θ = (σ, λ, ν, δ).

Here

• σ is the standard deviation of the BS part of the model,

• λ is the rate of jumps, i.e. the mean number of jumps
in a year,

• ν is the mean value of the jumps,

• δ is the standard deviation of the jumps.
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The parameter α is determined by the risk neutral condi-
tion.

The direct calibration numerical procedure has problems.
The search methods like the Newton-Raphson gives solu-
tions that depende too much on the initial values (it is and
ill-posed problems).

In order to circumvent this difficulty, one adds a regulariz-
ing term, minimizing

∑

k,j

(

C(θ,K, T ) − QP (K,T )
)2

+ R(θ).

We now review some calibration results from the litera-
ture4.

4L. Andersen and J. Andreasen, “Jump-Diffusion Processes: Volatility Smile Fitting and
Numerican Methods for OPtion Pricing”, Review of Derivatives Research,4, (2000). It must be
said that nowadays the models choosen to calibrate stock option prices are more sophisticated

than the ones we examined, for instance, the combinate a one factor model with jumps, i.e.
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The authors take prices from S&P 500 index on April 1999.
They cover a wide range of strikes, and combine maturities
from T = 0.08 (one month), T = 0.25 (quarter),. . . up to
T = 10 (ten years).

The obtained result is:
σ λ ν δ

0.176 0.089 -0.88 0.45

Some comments are in order

• Usually σ in MJD is smaller that the implied volatility
in BS for the same option prices. This is due to the fact
that in MJD we have two sources of risk:

– diffusion risk

– jumps risk,
assume that the volatility is a function σ(t, S(t)) of the time and the spot price, where the
evolution of the one factor model is interrupted from time to time (with exponential intervals)

by a jump.
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and the idea is that the superposition of both should
equate the only source of risk in BS, the volatility.

• As we said, the intensity of jumps λ is in the order from
one to five per year. A larger λ can be interpreted as
model missespecification

• The value of ν is usually negative. This is related to the
fact that the smile is not symmetric, giving larger values
to out of the money options. I.e. in the risk-neutral
world, jumps have negative expectation.
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21d. Calibration for different maturities

We now review more recent results of calibration for the
MJD, also for the S&P 500, with the additional property
of different maturities5.

Data consists of daily call option prices on the S&P500
futures from March 24, 2004 to March 16, 2005, with a
total of 248 trading days.

The results are presented in the following table:

5K. Matsuda. Parametric Regularized Calibration of Merton Jump-Diffusion Model with

Relative Entropy: What Difference Does It Make?, http://www.maxmatsuda.com/
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Risk neutral parameters for the S&P500 index in MJD.

T = days/248 σ λ ν δ

10/248 0.086 1.001 -0.054 0.043
40/248 0.092 1.296 -0.070 0.056
80/248 0.094 0.663 -0.107 0.081
120/248 0.095 0.732 -0.144 0.0082
180/248 0.094 0.486 -0.198 0.112
245/248 0.109 0.307 -0.267 0.140

• Typical values of σ are 10%, half of the typical implied
volatility in Black Scholes of 20%.

• The mean number of jumps λ is larger for shorter matu-
rities. For longer maturities the effect of jumps “passes”
to the standard deviation of the BS part.

• As we said, expected values of jumps are negative.

• Jumps are more appropiate for short maturities.
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