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Main Purpose of Lectures 8 and 9:

Model the time evolution of a portfolio contanining d assets,
with returns

X(0),X(1), . . . ,X(n)

where

X(t) =

X1(t)
...

Xd(t)

 (t = 0, . . . , n)

through a multivariate linear time series model.
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Plan of Lecture 9

(9a) Plotting the Cross Correlogram of a multivariate time series

(9b) Introduce stationary multivariate time series and white noises.

(9c) Vectorial ARMA processes (VARMA), in particular VAR(1).

(9d) Testing multivariate white noise.

(9e) Comments on Co-integration
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9a. Plotting the Empirical Cross-correlogram

The cross correlogram of our vectorial time series is a 2 × 2
matrix of correlograms.

Correlogram of series 1 Cross-correlogram of series 1,2
Cross-correlogram of series 2,1 Correlogram of series 2

In order to construct the cross-correlogram, we perform:

STEP 1. We compute the sample mean X̄ = (X̄A, X̄B) of
both series:

X̄A =
1

n

n∑
t=1

XA(t), X̄B =
1

n

n∑
t=1

XB(t).
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STEP 2. We compute the sample covariance matrix, for h =
0, . . . , n0, as

Γ̄(h) =
1

n

n−h∑
t=1

(X(t + h) − X̄)(X(t) − X̄)′

Here each term is is a 2 × 2 matrix:

(X(t + h) − X̄)(X(t) − X̄)′

=

[
(XA(t + h) − X̄A)(XA(t) − X̄A) (XA(t + h) − X̄A)(XB(t) − X̄B)
(XB(t + h) − X̄B)(XA(t) − X̄A) (XB(t + h) − X̄B)(XB(t) − X̄B)

]
In particular for h = 0 the diagonal of the matrix gives

σ̄2
A = Γ̄AA(0), σ̄2

B = Γ̄BB(0).
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STEP 3. We compute the correlation matrix for h = 0, 1, . . . , n0
as

R(h) =

Γ̄AA(h)

σ̄2
A

Γ̄AB(h)
σ̄Aσ̄B

Γ̄BA(h)
σ̄Aσ̄B

Γ̄BB(h)

σ̄2
B


STEP 4. We plot four graphics (h = 0, 1, . . . , n0):(

h, Γ̄AA(h)
) (

h, Γ̄AB(h)
)(

h, Γ̄BA(h)
) (

h, Γ̄BB(h)
)
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In this cross-correlograms:

• The diagonal gives information about the individual behav-
iour of each asset,

• the upper right correlogram shows the correlation of future
values of A against present values of B.

• the lower left correlogram shows the correlation of future
values of B against present values of A.

• Past values of A against present values of B are the same
as future of B against present of A (ΓAB(−h) = ΓBA(h)),
it is not necessary to plot them, and

• Past values of B against present values of A are the same
as future of A against present of A (ΓBA(−h) = ΓAB(h)).
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9b. Stationary Multivariate time series

Definition A multivariate series {X(t)} is

(a) a weak white noise: weakly stationary, EX(t) = 0 for all
t and

Γ(h) =

{
Σε when h = 0

0 when h 6= 0

(b) a strict white noise: i.i.d. random vectors, with EX(t) = 0
and covariance matrix Σε.

(c) a gaussian or normal white noise: strict white noise with
distributions N (0, Σε)

Remark In all cases Σε is a covariance matrix. The values
of {X(t)} can have concurrent correlation (same time), but
not cross-correlations (different times)
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9c. Vectorial ARMA process (VARMA)

Definition {X(t)} is a vectorial ARMA(p,q) process if it is
centered weakly stationary and

X(t) − Φ1X(t− 1) − · · ·ΦpX(t− p)

= ε(t) − Θ1ε(t− 1) − · · · − Θqε(t− q)

where {ε(t)} is a weak white noise with covariance Σε. Here
Φi and Θi are d× d matrices.

Example VAR(1) process satisfies

X(t) = ΦX(t− 1) + ε(t),

with {ε(t)} weak white noise. In order to check stationarity,
one should have (instead of |φ| < 1 for d = 1) that all the
eigenvalues of the matrix Φ are strictly greater than one in
absolute value.
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In order to estimate the matrix φ we must solve a matrix
equation (i.e. d× d linear equations) of the form

Γ̄(1) = Φ1Γ̄(0),

that can be solved computing the inverse of the matrix Γ̄(0),
and post-multiplying both sides of the equation by this inverse
matrix we obtain

Φ̄(1) = Γ̄(1)Γ̄(0)−1.

Let us examine two particular cases: d = 1 and d = 2.
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Case d = 1

In this case matrices are numbers. As our process is centered

Γ̄(0) = σ̄2
X =

1

n

n∑
k=1

X(t)2

Γ̄(1) = cov(1) =
1

n

n∑
k=1

X(t)X(t− 1)

giving the estimate

φ̄ = Γ̄(1)Γ̄(0)−1 =

∑n
k=1 X(t)X(t− 1)∑n

k=1 X(t)2

from the previous lecture.
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Case d = 2

Assume then that we have two financial time series A and B.

X(t) =

[
XA(t)
XB(t)

]
, Φ =

[
φAA φAB
φBA φBB

]
, ε(t) =

[
εA(t)
εB(t)

]
The model matrix model is:

X(t) = ΦX(t− 1) + ε(t).

In coordinates one has:

XA(t) = φAAXA(t− 1) + φABXB(t− 1) + εA(t)

XB(t) = φBAXA(t− 1) + φBBXB(t− 1) + εB(t)

In order to estimate Φ we perform:
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STEP 1. Compute the (symmetric) sample (contemporane-
ous) variance-covariance matrix

Γ̄(0) =
1

n

n∑
t=1

[
XA(t)2 XA(t)XB(t)

XB(t)XA(t) XB(t)2

]
STEP 2. Compute the (non symmetric) sample cross-covariance

matrix with lag h = 1

Γ̄(1) =
1

n

n∑
t=1

[
XA(t)XA(t− 1) XA(t)XB(t− 1)
XB(t)XA(t− 1) XB(t)XB(t− 1)

]
STEP 3. Invert the matrix Γ̄(0) to obtain

φ̄ = Γ̄(1)Γ̄(0)−1

STEP 4. Estimate the variance-covariance Σ̄ε matrix:

Σ̄ε = Γ̄(0) − φ̄Γ̄(1).
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9d. Testing Multivariate White Noise.

Complementing the visual analysis of the cross-correlogram of
a bivariate time series X(t) = (XA(t), XB(t))′ we have a Mul-
tivariate Portmanteau Test, proposed by Hosking (1980) that
extendes the Ljung and Box test of Lecture 6. The statistical
test is

H0 : Γ(1) = · · · = Γ(n0) = 0, (X is WN)

Ha : Γ(h) 6= 0 for some h = 1, . . . , n0 (X is not WN).

To compute the test statistic, for each lag h = 1, . . . , n0, we
compute

q(h) = tr[Γ̄(h)′Γ̄(0)−1Γ̄(h)Γ̄(0)−1],

(where tr is the trace of the product of four matrices)
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The statistic is

Q(h) = n2
n0∑
i=1

1

n− i
q(h) ∼ χ2

4n0
,

If X is WN, Q(h) is Chi-Squared distribution with 4n0 degrees
of freedom.

For n0 = 10, big values of Q(h) indicate rejection of H0:

If Q(10) > t40,0.95 = 55.7585 reject H0.

Comments

• The 4 = d2. If d = 3 we have 9n0 degrees of freedom

•When d2n0 is large, we can use the normal approximation

Q(h) ∼ N (h, 2h)

that, for confidence 0.95 and h = 40 gives

th,0.95 ∼ h + 1.645
√

2h = 40 + 1.645
√

80 = 54.7133.
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9e. Comments on Co-integration

In univariate time series, nonstationarity phenomena is avoided
through differentiation.

In case of differentiating once, we say that the process is inte-
grated of order one. If it is necessay to differentiate again the
process is integrated of order two, and so on.

In the multivariate case, when considering time series

X(t) = (X1(t), X2(t), . . . , Xd(t))
′

the same situation can arise, differentiating simultaneouly all
the coordinate of the time series, and saying that the multi-
variate process is integrated of order 1, 2, etc.

But a new situation arises, as it is possible to take linear com-
binations α′X(t) of the concurrent univariate components, in
order to fit stationarity.
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Consider for instance two highly correlated and nonstationary
assets in a portfolio, say, with returns X1 and X2. Assuming
that the difference X2(t)−X1(t) is stationary, we consider the
new time series

Y(t) = (X1(t) −X2(t), X2(t), . . . , Xd(t))

whose first component is stationary.

Observe that Y(t) = α′X(t) with α = (1,−1, 0, . . . , 0).

The general definiton of cointegration is the following:

If a multivariate time series X is integrated of order d, and
exists α such that the univariate time series α′X is integrated
of order d′ < d, we have co-integration.

Although not simple to model and to test, the cointegration
phenomena is important in financial modelling due to the fact
that frequently assets are highly correlated
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