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Main Purpose of Lectures 8 and 9:

Model the time evolution of a portfolio contanining d assets,
with returns

where

X(t) = : (t=0,...,n)

through a multivariate linear time series model.



Plan of Lecture 9

(9a) Plotting the Cross Correlogram of a multivariate time series
(

9b) Introduce stationary multivariate time series and white noises.

)
)
(9¢) Vectorial ARMA processes (VARMA ), in particular VAR(1).
(9d) Testing multivariate white noise.

)

(9e) Comments on Co-integration



9a. Plotting the Empirical Cross-correlogram

The cross correlogram of our vectorial time series is a 2 X 2
matrix of correlograms.

Correlogram of series 1 Cross-correlogram of series 1,2

Cross-correlogram of series 2,1 Correlogram of series 2

In order to construct the cross-correlogram, we perform:

STEP 1. We compute the sample mean X = (X4, Xg) of
both series:

) | ) |
Xa=- > Xalt), Xp= - > Xp(t).




STEP 2. We compute the sample covariance matrix, for h =

0,...,nq, as
n—h
L(h) =~ > (X(t+h) = X)(X(t) - X)
t=1

Here each term is 1s a 2 X 2 matrix:

(X(t+h) = X)(X(t) = X)’
[(XA@ +h) = Xa)(Xa(t) = Xa) (Xa(t+h) = X)(Xp(t) = Xp)

(Xp(t+h) — Xp)(Xa(t) — Xa) (Xp(t+h) — Xp)(Xp(t) — Xp)

In particular for A = 0 the diagonal of the matrix gives

03 =T4400), 05 ="Tpp(0).



STEP 3. We compute the correlation matrixfor h = 0,1, ..., ng

as - _ _
Faath) Tap(h)
04 0A0B
I'palh) I'pp(h)
| 0AOB 5% |
STEP 4. We plot four graphics (h =0,1,...,nq):

(h,Laa(h)) | (h,Tap(h))
(h,Tpa(h)) (h,I'pp(h))

R(h) =




In this cross-correlograms:

e The diagonal gives information about the individual behav-
jour of each asset,

e the upper right correlogram shows the correlation of future
values of A against present values of B.

e the lower left correlogram shows the correlation of future
values of B against present values of A.

e Past values of A against present values of B are the same
as future of B against present of A (I'yp(—h) =Tpga(h)),
it 18 not necessary to plot them, and

e Past values of B against present values of A are the same
as future of A against present of A (I'pa(—h) =T 45(h)).



9b. Stationary Multivariate time series

Definition A multivariate series {X(¢)} is
(a) a weak white noise: weakly stationary, E X(t) = 0 for all

t and
0  when h #0

(b) a strict white noise: i.i.d. random vectors, with E X () = 0
and covariance matrix ...

(¢c) a gaussian or normal white noise: strict white noise with

distributions N (0, ;)

Remark In all cases >- is a covariance matrix. The values
of {X(¢)} can have concurrent correlation (same time), but
not cross-correlations (different times)



9c. Vectorial ARMA process (VARMA)

Definition {X(t)} is a vectorial ARMA(p,q) process if it is
centered weakly stationary and

X(t) — o X(t—1)—--- PpX(t — p)
=e(t) —O1e(t —1) — -+ — Oge(t — q)

where {e(t)} is a weak white noise with covariance ».. Here
®, and ©; are d x d matrices.

Example VAR(1) process satisfies
X(t) = OX(t — 1) + £(t),

with {e(?)} weak white noise. In order to check stationarity,
one should have (instead of |¢| < 1 for d = 1) that all the
eigenvalues of the matrix ® are strictly greater than one in
absolute value.



In order to estimate the matrix ¢ we must solve a matrix
equation (i.e. d x d linear equations) of the form

['(1) = 11(0),

that can be solved computing the inverse of the matrix I'(0),
and post-multiplying both sides of the equation by this inverse
matrix we obtain

O(1) = D(DL(0) .

Let us examine two particular cases: d =1 and d = 2.
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Case d =1
In this case matrices are numbers. As our process is centered

L) = 0% =~ 3 X (1)
" k=1
[(1) = cov(l) = % SO X(H)X(t— 1)
k=1

oiving the estimate

— a1 Do X(H)X(E - 1)
R T

from the previous lecture.
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Case d =2
Assume then that we have two financial time series A and B.

xo=[xaa] o= loim] 0=

The model matrix model is:
X(t) =0dX(t —1)+&(t).
In coordinates one has:

Xp(t) = oaaX4t — 1)+ oapXp(t — 1) +e4(l)
Xp(t) =opaXalt—1)+¢ppXp(t —1)+ep(t)

In order to estimate ® we perform:
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STEP 1. Compute the (symmetric) sample (contemporane-
ous) variance-covariance matrix

Xa(t)  Xat)Xp(t)
Xp(t)Xa(t) Xp(t)’

1 n
L0)==>»"
n
t=1
STEP 2. Compute the (non symmetric) sample cross-covariance
matrix with lag h = 1

_ 1
L) ==)
STEP 3. Invert the matrix I'(0) to obtain
¢ =T(1)T(0)~
STEP 4. Estimate the variance-covariance > matrix:
Ye =T(0) — oI'(1).
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9d. Testing Multivariate White Noise.

Complementing the visual analysis of the cross-correlogram ot
a bivariate time series X(t) = (X 4(t), X g(t))" we have a Mul-
tivariate Portmanteau Test, proposed by Hosking (1980) that
extendes the Ljung and Box test of Lecture 6. The statistical

test 18
Hy: F(l) — ... = F(ng) =0, (X 1S WN)

Hy: T'(h) #0 for some h =1,...,ng (X is not WN).

To compute the test statistic, for each lag h = 1,...,ng, we
compute

a(h) = tr[T(h)T(0) ™ T(A)T(0) 7,

(where tr is the trace of the product of four matrices)
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The statistic is

ny
Q) = n2S " ——q(h) ~ X,
1=1

n—1

If X is WN, Q(h) is Chi-Squared distribution with 4ng degrees

of freedom.

For ng = 10, big values of Q(h) indicate rejection of Hy:
If Q(10) > t40,0.95 = 55.7585 reject Hy.

Comments

e The 4 = d2. If d = 3 we have 9ng degrees of freedom

e When d?ng is large, we can use the normal approximation

Q(h) ~ N(h,2h)
that, for confidence 0.95 and h = 40 gives
th.o.05 ~ h+ 1.645V2h = 40 + 1.645v/80 = 54.7133.
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9e. Comments on Co-integration

In univariate time series, nonstationarity phenomena is avoided
through differentiation.

In case of differentiating once, we say that the process is inte-
orated of order one. If it is necessay to differentiate again the
process is integrated of order two, and so on.

In the multivariate case, when considering time series
X(t) = (X1(t), Xo(t), ..., Xq(t))

the same situation can arise, differentiating simultaneouly all
the coordinate of the time series, and saying that the multi-
variate process is integrated of order 1,2, etc.

But a new situation arises, as it is possible to take linear com-
binations /X (t) of the concurrent univariate components, in
order to fit stationarity:.
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Consider for instance two highly correlated and nonstationary
assets in a portfolio, say, with returns X and X5. Assuming
that the difference Xo(t) — X () is stationary, we consider the

new time series

Y (1) = (X1(t) = Xo(t), Xat), ..., X(t)
whose first component is stationary.
Observe that Y (t) = o/X(t) with a = (1, —-1,0,...,0).
The general definiton of cointegration is the following:

If a multivariate time series X is integrated of order d, and
exists o such that the univariate time series o/ X is integrated
of order d’ < d, we have co-integration.

Although not simple to model and to test, the cointegration
phenomena is important in financial modelling due to the fact
that frequently assets are highly correlated
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