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Main Purpose of Lectures 8 and 9:

Model the time evolution of a portfolio contanining d assets, with returns

X(0),X(1), . . . ,X(n)

where

X(t) =





X1(t)
...

Xd(t)



 (t = 0, . . . , n)

through a multivariate linear time series model.
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Plan of Lecture 8

• Report stylized facts in multivariate financial time series in other words,
how these series look like, from a statistical point of view.

• Introduce some necessary facts from matrices and multivariate statis-
tics.

• Testing normality (key issue in finance)

• Testing multivariate normality, i.e. whether we can assume that a sam-
ple of multivariate data (vectorial data) can be assumed to be normaly
distributed.

• Introduce the concepts of Multivariate Time Series

3



8a. Stylized facts in multivariate financial time series

Empirical observations on daily returns of financial time series led to the
following 4 stylized facts, widely understood to be empirical truths, to
which theories must fit.

(M1) Multivariate Return series show little evidence of cross-correlation, ex-
cept for concurrent (i.e. contemporaneous) returns.

The cross-covariance, or covariance cov(X(s),X(t)′
)

for s 6= t, is
generally negligible, as in the one dimension case. When t = s and i 6=
j the (concurrent) covariances cov

(

Xi(t), Xj(t)
)

can be non negligible
due to factors afecting the whole market.
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(M2) Multivariate series of absolute returns show profound serial correlations
for different times (cross-correlation).

As in the one dimensional case, large movements in one stock tend to be
followed by large movements in this stocks, and also in other stocks of
the same market. As previously, financial time series are uncorrelated
but not independent.

(M3) The covariance structure of concurrent returns vary over time.

Consistenly with the same phenomena of volatility time variation in the
univariate case, and with the previous phenomena of clustering of large
returns, it seems that the covariance of X(t) vary with t. (This raises
the question of modelling this phenomena, for instance with mutivariate
GARCH processes).
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(M4) Extreme returns in one asset often conicide with extreme returns in
several other asset.

This fact asserts that in high volatility periods of the market, assets
seem to be more correlated, and has as limit statement that “correla-
tions go to one in times of market stress”.
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8b. Elements of multivariate statistics

Given a random vector

X =





X1
...

Xd





we denote its traspose by

X′ = (X1, . . . , Xd)

Given two vectors X and Y

• the product XY′ is a matrix:

XY′ =





X1
...

Xd



 (Y1, . . . , Yd) =





X1Y1 . . . X1Yd
... ... ...

XdY1 . . . XdYd




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• while X′Y is a number:

(X1, . . . , Xd)





X1
...

Xd



 = X1Y1 + · · · + XnYn.

The expectation of the random vector X is

EX = (EX1, . . . ,EXd)
′,

the variance-covariance matrix of X is

Σ = cov(X) = [cov(Xi, Xj)]i,j=1,...,d.

The correlation matrix is

ρ(X) =
[ cov(Xi, Xj)
√

var(Xi)var(Xj)

]

i,j=1,...,d
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Given a matrix A and a vector b we have:

E(AX + b) = AEX + b, cov(AX + b) = Acov(X)A′.

Definition The vector Z = (Z1, . . . , Zd)′ is a gaussian or normal stan-
dard vector when Z1, . . . , Zd are independent standard normal random
variables.

For a standard normal vector

•EZ = (0, . . . , 0)′,

• cov(Z) = Id, the d × d identity matrix.

A gaussian or normal vector Z with mean µ and covariance Σ is obtained
as

X = µ + AZ,

where the matrix A satisfies AA′ = Σ
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•A is called a square root of Σ,

• Given a covariance matrix Σ, its squared root A always exist (linear
algebra).

We denote
X ∼ Nd(µ, Σ).

Given X ∼ Nd(µ, Σ)

•EX = µ + AEZ = µ.

• For the variance-covariances matrix:

cov(X) = cov(AZ) = Acov(Z)A′ = AIdA
′ = AA′ = Σ.
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8c. Testing Univariate Normality.

Many results in statistics of time series are built on the hyphotesis of
gaussian returns (for instance, the Black-Scholes model).

It is then important to determine whether a sample of univariate returns
are gaussian

Quantile-Quantile Plot (QQ - Plot)

Is a visual test for univariate gaussianity.

Suppouse you want to know if the following sample of 9 values

0.22, 2.29, 2.06, 7.32, 7.05, 0.14, 7.51, 9.15, 4.21

can be considered sampled from a normal random variable.

In order to perform the QQ-Plot test

STEP 1. Order the sample in increasing order:

0.14, 0.22, 2.06, 2.29, 4.21, 7.05, 7.32, 7.51, 9.15
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STEP 2. Compute x(i) = Φ
(

(i − 1/2)/9
)−1

(i = 1, . . . , 9) from the
normal standard table and prepare the table:

x(i) -1.593 -0.967 -0.589 -0.282 0 0.282 0.589 0.967 1.593
y(i) 0.14 0.22 2.06 2.29 4.21 7.05 7.32 7.51 9.15

STEP 3. Plot the points (x(i), y(i)) for i = 1, . . . , 9:

-1.5 -1 -0.5 0 0.5 1 1.5
0

2

4

6

8

8Plot QQ<

If the ploted points fit approximately a straight line, the gaussian hypoth-
esis is not rejected.
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Skewness-Kurtosis Jarque-Bera test.

A second practical procedure is to simultaneously test whether the third
and fourth centered moments corresponds to that of a normal random
variable. Given a sample X(1), . . . , X(n)

STEP 1. Estimate the mean and the variance by

X̄ =
1

n

n
∑

k=1

X(k), σ̄2 =
1

n

n
∑

k=1

(

X(k) − X̄
)2

STEP 2. Compute the empirical skewness and kurtosis, by

γ̄ =
1
n

∑n
k=1

(

X(k) − X̄
)3

σ̄3
, κ̄ =

1
n

∑n
k=1

(

X(k) − X̄
)4

σ̄4
− 3
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STEP 3. Compute the Jarque-Bera statistic as

QJB = n
(1

6
γ̄2 +

1

24
κ̄2

)

∼ χ2
2,

that has, for big values of n, a Chi-square distribution with two degrees
of freedom

STEP 4. Big values of QJB indicate that the skewness and/or the kur-
tosis do not vanish (as should happen under normality).

Then (with a 95% confidence) if

QJB > 5.99 = t2,0.95,

reject the hyphotesis of normality

Remark This test is valid for big values of n. For small values we
prefer the QQ-plot.
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8d. Testing Multivariate Normality.

First remark: It is not enough to have normality for the coordinates of a
vector (univariate marginals) in order to have a normal vector.

Suppose we want to test whether a given a vectorial sample X(1), . . . ,X(n)
is normal.

QQ Chi Square Plot

Based on the fact that, given a vector X ∼ Nd(µ, Σ), the random variable

(X − µ)′Σ−1(X − µ) ∼ χ2
d,

we construct a new sample.

Compute the sample mean

X̄ =
1

n

n
∑

k=1

X(k),

15



and the sample covariance matrix

Σ̄ =
1

n

n
∑

k=1

(

X(k) − X̄
)′(

X(k) − X̄
)

.

Invert the matrix Σ̄, and construct a new univariate sample of the form

D2
k =

(

X(k) − X̄
)′

Σ̄−1
(

X(k) − X̄
)

, k = 1, . . . , n.

For big values of n behaves rhoghly like a sample of χ2
d independent

random variables.

Then, test this hypothesis with a QQ-plot.

The procedure is the same as in the univariate gaussian case, with the
diffence that

x(i) = Fχ2
2

(

(i − 1/2)/n)

where Fχ2
2

is the χ2
2 distribution (i.e. one should use the Chi square

distribution with 2 degrees of freedom instead of the normal table).
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Skewness-Kurtosis Multivariate Test

We can also test for multivariate skewness and kurtosis.

Compute

Djk =
(

X(j) − X̄
)′

Σ̄−1
(

X(k) − X̄
)

, j, k = 1, . . . , n,

The statistics

γd =
1

n2

n
∑

i,j=1

D3
ij, κd =

1

n

n
∑

i,j=1

D4
i − d(d + 2)

have, when the random vector sample is normal, asymptotics distributions

1

6
n γd ∼ χ2

d(d+1)(d+2)/6,
κd

√

8d(d + 2)/n
∼ N (0, 1).

We construct then two tests based on these facts.
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8e. Multivariate time series

Let X(0), . . . ,X(n) be the stochastic returns of a portfolio with d assets,

where X(t) =
(

X1(t), . . . , Xd(t)
)′

,

For simplicity of exposition we assume that we have two assets A and B,
and our returns are

X(t) =

[

XA(t)
XB(t)

]

.

The vector of expectations is

µ(t) =

[

µA(t)
µB(t)

]

=

[

EXA(t)
EXB(t)

]

,

and the covariance matrix

Γ(t + h, t) =

[

cov(XA(t + h), XA(t)) cov(XA(t + h), XB(t))
cov(XB(t + h), XA(t)) cov(XB(t + h), XB(t))

]
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Definition We say that the bivariate series is weakly stationary when
the expectations µ(t) ≡ µ does not depend on t, and also the the covari-
ance matrix Γ(t + h, t) = Γ(h) does not depend on t.

We have

Γ(h) =

[

ΓAA(h) ΓAB(h)
ΓBA(h) ΓBB(h)

]

=

[

cov(XA(h), XA(0)) cov(XA(h), XB(0))
cov(XB(h), XA(0)) cov(XB(h), XB(0))

]

.

Here

• The diagonal terms are the covariances of the univariate series {XA(t)}
and {XB(t)}.
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• New information appears in the off-diagonal elements, that are the
covariance between different assets.

• We call cov(XA(0), XB(0)) a concurrent covariance: same date for
different assets,

• We call cov(XA(0), XB(h)) a cross coviance: different dates and dif-
ferent assets.

Observe that in general:

• cov(XB(h), XA(0)) 6= cov(XA(h), XB(0)), so the matrix Γ(h) is not
symmetric.

• We have

cov(XA(h), XB(0)) = cov(XB(−h), XA(0)),

what simplifies the estimation.
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Defining

ρij(h) =
Γij(h)

√

Γii(0)Γjj(0)
, for i, j = A,B

we construct the correlation matrix as

R(h) =

[

ρAA(h) ρAB(h)
ρBA(h) ρBB(h)

]
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