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References for this Lecture:

The portable financial analyst (Second Edition). Mark P. Kritz-
man, Wiley (2003).

An Overview of Value at Risk. D Duffie, J Pan, Journal of
Derivatives (1997)
[Available at: http://www.mit.edu/∼junpan/]
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Main Purposes of Lectures 10 and 11:

• Introduce the notion of Value at Risk (VaR)

•Notice the relevance of this risk measurement notion, in partic-
ular in relation to the Basel Second Accord (Basel II)

•Review the analytical and historical computation of VaR with
emphasis on its tail behaviour dependence

•Discuss the difference between long and short positions in VaR
(Lecture 11).

• Present the Monte Carlo approach to VaR (Lecture 11).

• Comment on VaR and derivatives (nonlinearity) (Lecture 11)
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Plan of Lecture 11

(11a) VaR for portfolios with short positions

(11b) Monte Carlo Approach to VaR

(11c) Monte Carlo VaR for AR(1) log-returns

(11d) Multivariate Monte Carlo Approach to VaR

(11e) Comments on Derivatives and VaR
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11a. VaR for portfolios with short positions.

Up to now we have assumed that the porfolio value can be ob-
tained from price quotations, i.e. we assumed that the portfolio
in question is itself a liquid asset (i.e. an asset that can easily and
cheaply turned into cash).

In general we can not assume this, as financial institutions held
portfolios constituted by different type of assets.

In consequence it is necessary to compute the VaR when only
prices (or returns) of the individual components of the portfolio
are available.

Furthermore, when computing the VaR for long positions we focus
on the left tail of the return distribution. If instead we held a short
position in this asset, we should focus on the right tail as we suffer
a loss for a rose in the asset value.
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In general, for a porfolio π with d assets containing

π = (π1, . . . , πd)

units of different assets A1, . . . , Ad, with prices

(S1(t), . . . , Sd(t)),

then the value of your portfolio at time t will be

Vπ(t) = π1S1(t) + · · · + πdSd(t).

Assets held in long positions have πi > 0, short positions πi < 0.

Assuming that the distribution of each individual asset is log-
normal, althogh not exact, it is reasonable (to simplify computa-
tions) that the value of the portfolio Vπ is also lognormal (we drop
the t for notational ease), with expectation

EVπ = π1 ES1 + · · · + πd ESd,

5



and variance

varVπ =

d∑
k=1

π2
k varSk + 2

∑
1≤j<k≤d

πjπk cov(Sj, Sk).

If we compute these values from historical data, (as we assume that
they are liquid assets), we can perform the lognormal computation
of the VaR.

But, as reported in the literature1 this approximation does not
hold when the porfolio includes short positions.

The situation is that we dont know the distribution of the PL
random variable, we do not have records of its evolution. Then it
is necessary to use the Monte Carlo (or Simulation) approach.

1Chow, G. and Kritzman, M.P., Value at Risk with Portfolios with Short Positions, Journal of Portfolio
Management, summer (2001)
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11b. Monte Carlo Approach to VaR

An alternative approach to the historical var, is the simulation
or Monte Carlo approach. The main problem that we face when
trying to compute var is that we do not know the exact PL
distribution, and, furthermore, the VaR is a property that depends
on the tail behavior.

The Monte Carlo Approach consists in

STEP 1. Simulate the returns with the prescribed mean and vari-
ance covariance structure,

STEP 2. Compute the corresponding PL value for the simulated
returns,

STEP 3. Order the obtained PL values,

STEP 4. Compute −VaR from the simulated sample, as the em-
pirical 0.05 quantile.
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How to carry out the simulations of STEP 1 depends on assump-
tions that we make about our returns (i.e. the model that we
choose).

In what follows we review two different models:

•We assume that the log-returns of our portfolio follow an AR(1)
model with high-kurtosis strict white noise,

•We asssume that the vector of log-returns of our portfolio is
normally distributed with a given variance-covariance matrix.
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11c. Monte Carlo VaR for AR(1) log-returns

Assume the log-returns X(t) of portfolio Vπ(t) satisfies an AR(1)
model of the form

X(t) =
1

4
X(t− 1) + ε(t),

where, triyng to obtain the kurtosis property of financial data2,
we assume that the sequence ε has a mixed normal distribution,
with density

fε(x) =
1

4
ϕ
( x√

2

)
+

3

4
ϕ
( x√

2/3

)
where

ϕ(x) =
1√
2π

e−x2/2

is the density of a standar normal random variable.

2Taken from: An Overview of Value at Risk. D Duffie, J Pan, Journal of Derivatives (1997)
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The noise ε(t) is centered, has unit variance, i.e var ε(t) = 1, but

κε = E ε(t)4 − 3 = 1.

As we don’t know the distribution of X(t), we simulate the obser-
vations.

Simulation of ε(t)

In order to simulate a mixed normal r.v. ε with the given density
we perform:

STEP 1. Simulate a uniform random variable U in [0, 1].

STEP 2. Simulate a standard normal random variable Z ∼ N (0, 1)

STEP 3. If U < 1/4 then ε =
√

2Z.

STEP 4. If U > 3/4 then ε =
√

2/3Z
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In order to obtain one value of our portfolio Vπ we run our time
series from t = 0 to t = 100, to obtain X(100):

STEP 1. Set x(0) = 0, set k = 1.

STEP 2. Simulate ε(k), and set x(k) = (1/4)x(k − 1) + ε(k),
k = k + 1.

STEP 3. If k = 101 then X(100) = x(k) and we are done. If
not, we repeat STEP 2.

When we finish, we set V = V (0) exp[X(100)].

Repeat this last algorithm 1000 times, we obtain a sample of 1000
values of the portfolio. We then choose the VaR such that the 50
least values of the 1000 obtained are smaller that −VaR.
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11d. Multivariate Monte Carlo Approach to VaR

The objective is to estimate the risk of a portfolio, with 1 year
horizon, that comprises two assets:

•A bond A with µA = 0.08 expected annual log-return, and
σA = 0.10 standard deviation,

•A stock B with µB = 0.10 expected annual log-return, and
σB = 0.20 standard deviation,

•A positive correlation of ρ = ρAB = 0.30 between this two
log-returns.

We assume that we hold π1 units of A and π2 units of be, including
the possiblility of π1 < 0 or π2 < 2, i.e. being short in one of the
two assets.

12



The value of the portfolio at time t = 1 will be

Vπ(1) = π1SA(0)eXA + π2SB(0)eXB.

As we do not know the probability distribution of Vπ(1) we simu-
late it, simulating X = (XA, XB)′ i.e. a gaussian vector with

XA ∼ N (0.08, (0.10)2),

XB ∼ N (0.10, (0.20)2),

ρ(XA, XB) = 0.30.

Departing from uniform independent r.v. on [0, 1], to simulate
(XA, XB) we perform:

STEP 1. Simulate U1, U2, a pair of independent uniformly dis-
tributed r.v. on [0, 1].
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STEP 2. Compute

Y1 =
√
−2 log U1 cos(2πU2)

Y2 =
√
−2 log U1 sin(2πU2)

It can be proved that (Y1, Y2) ∼ N (0, I2).

STEP 3. Compute

XA = µA + σA

√
1− ρ2Y1 + σA ρ Y2

XB = µB + σBY2

It can be checked that the random vector (XA, XB) has the
desired properties.
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For each simulation we compute the value of our portfolio as

Vπ(1) = π1SA(0)eXA + π2SB(0)eXB.

Repeat the simulation, for instance, 10,000 times, the VaR will be
such that the 500 least values of Vπ(1) are smaller that −VaR,
and the others 9, 500 are bigger that −VaR.
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11e. Comments on Derivatives and var.

Up to now we have computed the VaR assuming that the port-
folio was conformed by primary financial instruments (as stocks,
indices, or bonds).

A characteristic of this financial instruments is that their prices
depends linearly on the observed market prices.

A further step in VaR is to include in the analysis the situation
when the portfolio includes also derivative assets, for instance, call
options.

The variation of the prices of call options depends in a nonlinear
way on the stock.
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Assuming Black-Scholes formula to compute option prices, if the
underlying stock has return

S = S0 exp(Z),

with Z ∼ N (µ, σ2), then the price of the option C(S) depends in
a nonlinear way of the undelying S.

An first order approximation for the price in terms of the under-
lying is

C(S) ∼ C(S0) + C ′(S0)(S − S0).

The derivative C ′(S0) is called the delta of the option.
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A more reliable approach is provided by the second order approx-
imation, given by

C(S) ∼ C(S0) + C ′(S0)(S − S0) +
1

2
C ′′(S0)(S − S0)

2.

The second derivative C ′′(S0) is the gamma and the substitution
of the option for this approximation in a portfolio in order to
compute the VaR is known as the delta-gamma approach.
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