Examen de Introducción a la Probabilidad y Estadística

Ejercicio 1. Se eligen al azar y en forma independiente n dígitos del 0 al 9. Sea S_n la suma de los dígitos sorteados.

- (a) Calcular el valor esperado y la varianza de la suma S_n de los dígitos elegidos.
- (b) Si n = 100 determinar un intervalo I de posibles valores de la suma tal $P(S_n \in I) \ge 0, 9$.
- (c) Calcular el mínimo n tal que la probabilidad de que aparezca por lo menos un 9 entre las n cifras sea mayor que 0,99.
- (d) Para el valor de n hallado en (c) calcular la probabilidad de que haya por lo menos tres nueves en la enúpla.

Ejercicio 2. Se considera una sucesión de variables aleatorias independientes $\{X_n\}$ cada una de las cuales tiene distribución uniforme en $[0, n^{1/4}]$.

- (a) Calcular el valor esperado y la varianza de X_n .
- (b) Verificar que es aplicable la ley débil de los grandes números a esta sucesión, es decir, existen constantes b_n tales que

$$\frac{X_1 + \dots + X_n}{n} - b_n \stackrel{\mathbf{P}}{\to} 0.$$

(c) Verificar que es aplicable el Teorema Central del Límite.

Ejercicio 3. Se considera una cadena de Markov homogénea en el tiempo con 4 estados E_1, E_2, E_3, E_4 cuya matriz de transición P viene dada por

$$\mathsf{P} = \left[\begin{array}{cccc} 0 & 1/2 & 1/2 & 0 \\ 0 & 0 & 1/2 & 1/2 \\ 1/2 & 0 & 0 & 1/2 \\ b & 1-b & 0 & 0 \end{array} \right]$$

donde 0 < b < 1.

- (a) Clasificar los estados.
- (b) Calcular $\lim_{n\to\infty} \mathsf{P}^n$.
- (c) Supongamos que el estado inicial es E_1 . Sea T_1 el primer instante de retorno a E_1 . Calcular $E(T_1)$.