Universidad de la República Facultad de Ciencias Centro de Matemática

Cálculo Diferencial e Integral I-Curso 2004

EXAMEN

16 de agosto de 2004

1. Sea $f: \mathbb{R} \to \mathbb{R}$ una función integrable según Riemann en todo intervalo $[a,b] \subseteq \mathbb{R}$. Supóngase que existe $g: \mathbb{R} \to \mathbb{R}$ tal que

$$f(x) = g(x) + \int_0^x \frac{tf(t)}{1+t^2} dt, \ \forall x \in \mathbb{R}.$$

- a) Probar que g es integrable en todo intervalo cerrado y acotado.
- b) Probar que si g es continua entonces f es continua, y que si g es derivable, f también lo es.
- c) Sabiendo que $g(x) = \frac{3}{4}x^4$, calcular f(0) y hallar la función f.
- 2. Supóngase que $f:[0,+\infty)\to\mathbb{R}$ es una función continua y decreciente, y tal que $\lim_{x\to+\infty}f(x)=0.$
 - a) Sea $a_n := \int_n^{n+1} f(x) |\sin \pi x| dx$, $\forall n \in \mathbb{N}$. Probar que $(a_n)_{n \in \mathbb{N}}$ es decreciente y tiende a cero (Sugerencia: notar que $|\sin \pi x| = |\sin \pi (x-1)|$, $\forall x \in \mathbb{R}$).
 - b) Mostrar que existe y es finito $\lim_{n} \int_{0}^{n} f(x) \sin \pi x dx$.
 - c) Deducir que $\int_0^{+\infty} f(x) \sin \pi x dx$ converge.
 - d) Clasificar $\int_0^{+\infty} x^2 \sin \pi e^x dx$
- 3. Sea $(\alpha_n)_{n\geq 1}\subseteq (0,\infty)$. Para cada $n\geq 1$ se considera $f_n:\mathbb{R}\to\mathbb{R}$ tal que $f_n(x)=e^{-\alpha_n x}$.
 - a) Demostrar que para cada n existe un único $\beta_n \in (0,1)$ tal que $f_n(\beta_n) = \beta_n$.
 - b) Demostrar que $\sum \alpha_n$ converge si y sólo si $\sum (1 \beta_n)$ converge, donde β_n es como en la parte anterior (Sugerencia: aplicar el teorema del valor medio a $f_n id$).
 - c) Sea $[a, b] \subseteq [0, \infty)$. Probar que:
 - 1) Si $\lim_{n\to\infty} \alpha_n = 0$, entonces (f_n) converge uniformemente en [a, b].
 - 2) Si $\sum_{n=0}^{\infty} \alpha_n$ converge, entonces $\sum_{n=0}^{\infty} (1-f_n)$ converge uniformemente en [a,b]

SOLUCIONES

- 1. a) Sea [a, b] un intervalo. Como f y \(\frac{x}{1+x^2}\) son integrables en [a, b] (la primera por hipótesis y la segunda porque es continua), entonces su producto también es una función integrable en [a, b]. Luego, si \(h(x) := \int_0^x \frac{tf(t)}{1+t^2} \) dt, se tiene que \(h\) es continua y en consecuencia integrable en [a, b]. Finalmente, como las combinaciones lineales de funciones integrables son integrables y \(a = f h\), se concluye que \(a \) es integrable en [a, b].
 - b) Sea h como en (a); ya fue observado que h es continua. Si g es continua entonces g+h=f también debe ser continua. Si g es derivable, es en particular continua, de donde f es continua, y entonces h es derivable por el teorema fundamental del cálculo; pero entonces g+h=f es derivable.
 - c) Notar que f(0) = g(0). Si $g(x) = \frac{3}{4}x^4$, entonces f(0) = 0. Por (b) se sabe que f es derivable. Por el teorema fundamental del cálculo se tiene que $f'(x) = 3x^3 + \frac{xf(x)}{1+x^2}$. Por lo tanto

$$f'(x) - \frac{x}{1 + x^2} f(x) = 3x^3 \tag{1}$$

Notar que una primitiva de $-\frac{x}{1+x^2}$ es $-\frac{1}{2}\ln(1+x^2) = \ln\frac{1}{\sqrt{1+x^2}}$. Multiplicando cada miembro de la ecuación (1) por el factor integrante $\frac{1}{\sqrt{1+x^2}}$ se obtiene $(f\frac{1}{\sqrt{1+x^2}})' = 3x^3\frac{1}{\sqrt{1+x^2}}$. De manera que, como f(0) = 0, se tiene $f(x)\frac{1}{\sqrt{1+x^2}} = \int_0^x \left(f(t)\frac{1}{\sqrt{1+t^2}}\right)' dt$, y por lo tanto

$$f(x)\frac{1}{\sqrt{1+x^2}} = \int_0^x 3t^3 \frac{1}{\sqrt{1+t^2}} dt \tag{2}$$

Para obtener f sólo hace falta entonces evaluar $\int_0^x 3t^3 \frac{1}{\sqrt{1+t^2}} dt$. Esto se puede llevar a cabo por ejemplo realizando el cambio de variable $\xi=t^2$ y luego integrando por partes, o también directamente. En el primer caso, luego del cambio $\xi=t^2$ la integral queda igual a $\frac{3}{2} \int_0^x \frac{2}{\sqrt{1+\xi}} d\xi$, e integrando por partes:

$$\frac{3}{2} \int_{0}^{x^{2}} \frac{\xi}{\sqrt{1+\xi}} d\xi = 3\xi(1+\xi)^{\frac{1}{2}} \Big|_{0}^{x^{2}} - 3 \int_{0}^{x^{2}} (1+\xi)^{\frac{1}{2}} d\xi = 3x^{2}(1+x^{2})^{\frac{1}{2}} - 2(1+\xi)^{\frac{3}{2}} \Big|_{0}^{x^{2}} = 3x^{2}(1+x^{2})^{\frac{1}{2}} - 2(1+x^{2})^{\frac{3}{2}} + 2.$$

Teniendo esto en cuenta, y despejando f en la ecuación (2), se obtiene: $f(x) = 3x^2(1+x^2) - 2(1+x^2)^2 + 2\sqrt{1+x^2}$, es decir:

$$f(x) = x^4 - x^2 - 2 + 2\sqrt{1 + x^2}$$

Como fue comentado anteriormente, la integral se puede calcular directamente, por ejemplo de la manera siguiente:

$$\int_0^x 3t^3 \frac{1}{\sqrt{1+t^2}} dt = \int_0^x \frac{3t(1+t^2)-3t}{\sqrt{1+t^2}} dt = \int_0^x 3t(1+t^2)^{\frac{1}{2}} dt - \int_0^x 3t(1+t^2)^{-\frac{1}{2}} dt = (1+t^2)^{\frac{3}{2}} \big|_0^x - 3(1+x^2)^{\frac{1}{2}} \big|_0^x - 3(1+x^2)^{\frac{1}{2}} dt = (1+t^2)^{\frac{3}{2}} \int_0^x (1+t^2)^{\frac{3}{2}} dt = (1+t^2)^{\frac{3}{2}} dt = (1+t^2)^{\frac{3}{2}} \int_0^x ($$

2. a) Usando la sugerencia: $a_{n+1} = \int_{n+1}^{n+2} f(x) | \operatorname{sen} \pi(x-1) | dx$. Haciendo el cambio de variable v = x-1 en la integral que define a_{n+1} queda $a_{n+1} = \int_{n}^{n+1} f(v+1) | \operatorname{sen} \pi v | dv$. Como f es decreciente se tiene que $f(z+1) \leq f(z)$, $\forall z$, de donde $\int_{n}^{n+1} f(v+1) | \operatorname{sen} \pi v | dv \leq \int_{n}^{n+1} f(v) | \operatorname{sen} \pi v | dv = a_n$, y por lo tanto $a_{n+1} \leq a_n$. Para ver que $a_n \to 0$, notar que:

$$0 \le a_n = \int_n^{n+1} f(x) |\sin \pi x| dx \le \int_n^{n+1} f(x) dx \le f(n) (n+1-n) = f(n) \to 0$$

- b) Obsérvese que $\int_0^n f(x) \sin \pi x dx = \sum_{k=0}^{n-1} \int_k^{k+1} f(x) \sin \pi x dx = \sum_{k=0}^{n-1} \int_k^{k+1} f(x) (-1^k) |\sin \pi x| dx = \sum_{k=0}^{n-1} (-1)^k a_k$. Como (a_n) es una sucesión decreciente a cero, el criterio de Leibniz implica que existe $\lim_n \sum_{k=0}^{n-1} (-1)^k a_k$, y por lo tanto existe $\lim_n \int_0^n f(x) \sin \pi x dx$.
- c) Sea $L:=\lim_n \int_0^n f(x) \sec \pi x dx$. Dado $\epsilon>0$ sea $n_\epsilon\in\mathbb{N}$ tal que si $x\geq n_\epsilon$ y $n\geq n_\epsilon$ se tiene que $f(x)<\frac{\epsilon}{2}$ y $|L-\int_0^n f(x) \sec \pi x dx|<\frac{\epsilon}{2}$. Sea [x] la parte entera de x, es decir, $[x]:=\max\{k\in\mathbb{N}:k\leq x\}$. Entonces si $x\geq n_\epsilon$ se tiene que $[x]\geq n_\epsilon$, y $0\leq x-[x]\leq 1$, de donde:

$$|L - \int_0^x f(t) \sin \pi t dt| \le |L - \int_0^{[x]} f(t) \sin \pi t dt| + |\int_{[x]}^x f(t) \sin \pi t dt| \le \frac{\epsilon}{2} + (x - [x]) f([x]) < \epsilon.$$

En consecuencia $\lim_{x\to\infty} \int_0^x f(t) \sin \pi t dt = L$

d) Haciendo el cambio de variable $\varsigma = e^t$ en la integral $\int_0^x t^2 \sin \pi e^t dt$, ésta queda igual a $\int_1^{e^x} \frac{(\ln \varsigma)^2}{\varsigma} \sin \pi \varsigma d\varsigma$. La derivada de la función $\frac{(\ln \varsigma)^2}{\varsigma}$ es $\frac{\ln \varsigma}{\varsigma^2}(2 - \ln \varsigma)$, que es negativa si $\varsigma > e^2$. Luego $\frac{(\ln \varsigma)^2}{\varsigma}$ es decreciente a partir de $\varsigma = e^2$. Como además $\lim_{\varsigma \to +\infty} \frac{(\ln \varsigma)^2}{\varsigma} = 0$, se concluye usando la parte anterior que la integral $\int_1^{+\infty} \frac{(\ln \varsigma)^2}{\varsigma} \sin \pi \varsigma d\varsigma$ converge. Consecuentemente $\int_0^{+\infty} t^2 \sin \pi e^t dt$ es convergente.

- 3. a) El teorema de Bolzano implica que la función f_n-id debe anularse en $(0,+\infty)$, puesto que $(f_n-id)(0)=1$ y $\lim_{x\to+\infty}(f_n(x)-x)=-\infty$. Por otro lado, la derivada de f_n-id es negativa en cada $x\in[0,\infty)$, así que f_n-id es estrictamente decreciente en $[0,\infty)$, lo que implica que sólo se anulará una vez. Dicho de otra forma, existe un único $\beta_n\in(0,+\infty)$ tal que $f_n(\beta_n)=\beta_n$. Como $f_n(0,+\infty)=(0,1)$, debe ser $\beta_n\in(0,1)$.
 - b) Usando el teorema del valor medio en el intervalo $[\beta_n,1]$ para la función f_n-id , se tiene que existe $\theta_n\in(\beta_n,1)$ tal que $(f_n-id)(1)-(f_n-id)(\beta_n)=(f'_n-1)(\theta_n)(1-\beta_n)$. Teniendo en cuenta que $(f_n-id)(\beta_n)=0$, se deduce que $1-e^{-\alpha_n}=(1+\alpha_ne^{-\alpha_n\theta_n})(1-\beta_n)$, de manera que $1-e^{-\alpha_n}=(1-\beta_n)+\alpha_ne^{-\alpha_n\theta_n}(1-\beta_n)$. De la igualdad anterior se concluye que $\lim_n \alpha_n=0 \iff \lim_n \beta_n=1$, y también que $(1-\beta_n)<1-e^{-\alpha_n}<(1+\alpha_n)(1-\beta_n)$.
 - Si $\sum a_n$ converge, entonces $\sum (1-e^{-\alpha n})$ también converge, ya que $\lim_{n\to+\infty}\frac{1-e^{-\alpha n}}{\alpha_n}=1$; como $1-e^{-\alpha n}>1-\beta_n$, entonces $\sum (1-\beta_n)$ también debe converger.
 - Recíprocamente, supongamos ahora que $\sum (1-\beta_n)$ es convergente. Entonces $\alpha_n \to 0$, y por lo tanto $\sum (1+\alpha_n)(1-\beta_n)$ también es convergente; como $0 < 1 e^{-\alpha_n} < (1+\alpha_n)(1-\beta_n)$, entonces $\sum (1-e^{-\alpha_n})$, y en consecuencia $\sum \alpha_n$, son convergentes.
 - c) Sea $x \in [a,b]$. Entonces $0 \le 1 f_n(x) \le 1 f_n(b) = 1 e^{-\alpha_n b} < \alpha_n b$, ya que la función $x \mapsto x 1 + e^{-x}$ es creciente en $[0,+\infty)$ y se anula en x=0. Si $\alpha_n \to 0$, dado $\epsilon > 0$, existe $n_\epsilon \in \mathbb{N}$ tal que si $n \ge n_\epsilon$ entonces $\alpha_n b < \epsilon$; luego $|1-f_n(x)| < \epsilon$, $\forall x \in [a,b]$ y $\forall n \ge n_\epsilon$, de donde (f_n) converge uniformemente a 1 en [a,b]. Finalmente, si $\sum \alpha_n$ converge, también converge $\sum \alpha_n b$, y entonces $\sum (1-f_n)$ converge uniformemente en [a,b] por el criterio de la mayorante