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The problem: Ruin and Maxima

Mathematical model:

Xt : Ω → R (t ≥ 0), is a stochastic process

defined (Ω,F ,Px).

Notation: X0 = x, P0 = P.

Problem:

Compute the Ruin Probability

R(x) = Px(∃t ≥ 0: Xt ≤ 0) = Px(inf Xt ≤ 0)



Equivalent Problem:

Define the maximum

M := sup{Yt : t ≥ 0}

of the symmetric process Y , and find

1− FM(x) = P(M > x) = R(x).

Ruin for X = maximum for Y

Generalized Problem:

Take τ(q) ∼ exp(q) indep. of X

τ(0) = +∞

and consider now

Mq := sup{Yt : 0 ≤ t < τ(q)}

We want to find

FMq(x) = P(Mq ≤ x).



Lévy Processes: Definition

• It starts at X0 = 0,

• Independent Increments:

If 0 ≤ t1 ≤ · · · ≤ tn, then

Xt1, Xt2 −Xt1, . . . , Xtn −Xtn−1

are independent random variables

• Stationary Increments:

Xt+h −Xt same distribution as Xh

Also called PIIS: Processes with independent

and stationary increments



Lévy Processes: Characterization

Lévy-Kinchine Formula:

E ezXt = etψ(z),

where

ψ(z) = az+
1

2
σ2z2+

∫
R
(ezy−1−zy1{|y|<1})Π(dy)

• a ∈ R is the drift

• σ ≥ 0 is the variance of the Gaussian part

• Π is a positive measure on R \ {0}, with∫
(1∧y2)Π(dy) < +∞, governing the jumps

of X: is the jump measure



Example: Brownian motion with drift

Let B = (Bt) be a Brownian motion. Define

Xt = at+ σBt

We have

E ezXt = etψ(z),

where

ψ(z) = az +
1

2
σ2z2

Conclusion: In Levy-Khinchine formula:

• Π = 0 indicates absence of jumps



Example: Compound Poisson Process

Taking T = (Tk) i.i.d.r.v. with distribution

exp(λ), define

Nt = inf{k : T1 + T2 + . . . Tk ≤ t}.

N = (Nt) is a Poisson process. Consider

Xt =
Nt∑
k=1

Yk

where Y = (Yk) are i.i.d.r.v. with distribution

F (dy) (independent of T ). Simple computa-

tions give:

ψ(z) = λ
∫
R
(ezy − 1)F (dy),

In this case

• a = σ = 0

• Π(dy) = λF (dy).



Example: Jump-diffusion processes

Xt = at+ σBt +
Nt∑
k=1

Yk

with B, N , Y independent, gives

ψ(z) = az +
1

2
σ2z2 + λ

∫
R
(ezy − 1)F (dy),

If Y1 has density

f(x) =

pαe−αy when y > 0

(1− p)βeβy when y < 0

for some positive α, β and p ∈ (0,1), then

ψ(z) =az +
1

2
σ2z2

+ λp
z

α− z
− λ(1− p)

z

β + z



Denote

Mq = sup{t ≥ 0}̧ Iq = inf{t ≥ 0}̧
Theorem 1. If X is a jump-diffusion process,
the densities of Mq and Iq are:

fMq(x) = A1 exp(−p1x) +A2 exp(−p2x), x > 0

fIq(x) = B1 exp(−r1x) +B2 exp(−r2x), x < 0

where equation q − ψ(z) = 0 has

• p1 and p2 positive roots

• r1 and r2 negative roots

and coefficients are:

A1 =
1− p1/α

1− p1/p2
A2 =

1− p2/α

1− p2/p1

B1 =
1 + r1/β

1− r1/r2
B2 =

1 + r2/β

1− r2/r1



Proof: Consider the characteristic function of

Mq and Iq:

φ+
q (z) = E exp(zMq)

φ−q (z) = E exp(zIq)

and use Rogozin’s (1966) WH factorization:

q

q − ψ(z)
= φ+

q (z)φ−q (z)

Uniqueness in WH and complex analysis argu-

ments give the result (roots of q − ψ(z) are

poles, use residue’s calculus)



LP with rational transform negative jumps

Let X be a LP with jump measure

Π(dx) =


π+(dx) if x > 0,

π−(dx) = λp(x)dx if x < 0.
(1)

where π+ arbitrary on (0,+∞) (arbitrary pos-

itive jumps), and

p(x) =
n∑

k=1

mk∑
j=1

ckj
(
αk
)j(−x)j−1

(j − 1)!
eαkx, x < 0,

is the more general form of a r.v. with rational

Laplace transform.

P = m1 + · · ·+mn is the Pole count.



Characteristic exponent ψ

p̂(z) =
∫ 0

−∞
ezyp(y)dy =

n∑
k=1

mk∑
j=1

ckj

(
αk

αk − z

)j
.

So

ψ(z) = az +
1

2
σ2z2

+
∫ ∞
0

(ezy − 1− zh(y))π+(dy)

+ λ(p̂(z)− 1)



Theorem 2 (A. Lewis - EM).

(a) On the half space <z > 0 the equation

q − ψ(z) = 0 has roots

β1, . . . , βN

with multiplicities

n1, . . . , nN

and such that n1 + · · ·+ nN = P + 1 (σ > 0)

(b) The characteristic function φ−q of the infi-

mum Iq is

φ−q (z) =
n∏

k=1

(
αk − z

αk

)mk N∏
j=1

(
βj

βj − z

)nj
,



Proof: (1) Study the roots of q−ψ(z) = 0 on

<z > 0 with Rouche’s Theorem (we know the

poles).

(2) Consider Baxter-Donsker (1957) Formula:

φ−q (iu) = E e−uIq

= exp

{
1

2π

∫ ∞
−∞

u

ξ(ξ − iu)
log

(
q

q − ψ(ξ)

)
dξ

}

(3) Compute the integral over a convenient

contour in <z > 0, computing the residues at

the poles, and take limit.



Open Questions:

• Solve a two barrier problem for this class

of Processes: Probability of hitting level

a > 0 before than hitting level b < 0. (now

π+ should also be of rational type)

• Compute the Green Kernel for this class of

Processes
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