EXACT RUIN PROBABILITIES

FOR A CLASS OF LÉVY PROCESSES

Ernesto Mordecki

http://www.cmat.edu.uy/~mordecki

Montevideo, Uruguay visiting Åbo Akademi, Turku

Talk presented at the Finnish Mathematical Society

11 April 2005, Helsinki, Finland

Contents: Introduction

- 1. The problem: Ruin and Maxima
- 2. Lévy processes (LP)
- 3. Examples
 - Brownian motion with drift
 - Compound Poisson Processes
 - Jump-diffusion process (I)
 - Processes with positive jumps with rational transform (II)

Exact Ruin Probabilities

- 1. Jump-diffusion (I)
 - Proof: Wiener-Hopf factorization
- 2. Rational transform positive jumps (II)
 - Heuristics: Wiener-Hopf factorization
 - Proof: Baxter-Donsker (complex analysis)
- 3. Open questions
- 4. References

The problem: Ruin and Maxima

Mathematical model:

 $X_t: \Omega \to \mathbb{R}$ $(t \ge 0)$, is a *stochastic process* defined $(\Omega, \mathcal{F}, \mathbf{P}_x)$.

Notation: $X_0 = x$, $P_0 = P$.

Problem:

Compute the *Ruin Probability*

 $R(x) = \mathbf{P}_x(\exists t \ge 0 \colon X_t \le 0) = \mathbf{P}_x(\inf X_t \le 0)$

Equivalent Problem:

Define the maximum

 $M := \sup\{Y_t \colon t \ge 0\}$

of the symmetric process Y, and find

$$1 - F_M(x) = \mathbf{P}(M > x) = R(x).$$

Ruin for
$$X = maximum$$
 for Y

Generalized Problem:

Take

$$\begin{cases} \tau(q) \sim \exp(q) \text{ indep. of } X\\ \tau(0) = +\infty \end{cases}$$

and consider now

$$M_q := \sup\{Y_t \colon 0 \le t < \tau(q)\}$$

We want to find

$$F_{M_q}(x) = \mathbf{P}(M_q \le x).$$

Lévy Processes: Definition

- It starts at $X_0 = 0$,
- Independent Increments:

If $0 \leq t_1 \leq \cdots \leq t_n$, then

$$X_{t_1}, X_{t_2} - X_{t_1}, \dots, X_{t_n} - X_{t_{n-1}}$$

are independent random variables

• Stationary Increments:

 $X_{t+h} - X_t$ same distribution as X_h

Also called PIIS: Processes with independent and stationary increments

Lévy Processes: Characterization

Lévy-Kinchine Formula:

$$\mathbf{E}\,e^{zX_t} = e^{t\psi(z)},$$

where

$$\psi(z) = az + \frac{1}{2}\sigma^2 z^2 + \int_{\mathbb{R}} (e^{zy} - 1 - zy \mathbf{1}_{\{|y| < 1\}}) \Pi(dy)$$

- $a \in \mathbb{R}$ is the *drift*
- $\sigma \geq 0$ is the variance of the Gaussian part
- Π is a positive measure on $\mathbb{R} \setminus \{0\}$, with $\int (1 \wedge y^2) \Pi(dy) < +\infty$, governing the *jumps* of X: is the *jump measure*

Example: Brownian motion with drift

Let $B = (B_t)$ be a Brownian motion. Define

$$X_t = at + \sigma B_t$$

We have

$$\mathbf{E}\,e^{zX_t}=e^{t\psi(z)},$$

where

$$\psi(z) = az + \frac{1}{2}\sigma^2 z^2$$

Conclusion: In Levy-Khinchine formula:

• $\Pi = 0$ indicates absence of jumps

Example: Compound Poisson Process

Taking $T = (T_k)$ i.i.d.r.v. with distribution $\exp(\lambda)$, define

 $N_t = \inf\{k \colon T_1 + T_2 + \dots T_k \le t\}.$

 $N = (N_t)$ is a *Poisson process*. Consider

$$X_t = \sum_{k=1}^{N_t} Y_k$$

where $Y = (Y_k)$ are i.i.d.r.v. with distribution F(dy) (independent of T). Simple computations give:

$$\psi(z) = \lambda \int_{\mathbb{R}} (e^{zy} - 1) F(dy),$$

In this case

• $a = \sigma = 0$

•
$$\Pi(dy) = \lambda F(dy).$$

Example: Jump-diffusion processes

$$X_t = at + \sigma B_t + \sum_{k=1}^{N_t} Y_k$$

with B, N, Y independent, gives

$$\psi(z) = az + \frac{1}{2}\sigma^2 z^2 + \lambda \int_{\mathbb{R}} (e^{zy} - 1)F(dy),$$

If Y_1 has density

$$f(x) = \begin{cases} p\alpha e^{-\alpha y} & \text{when } y > 0\\ (1-p)\beta e^{\beta y} & \text{when } y < 0 \end{cases}$$

for some positive α, β and $p \in (0, 1)$, then

$$\psi(z) = az + \frac{1}{2}\sigma^2 z^2 + \lambda p \frac{z}{\alpha - z} - \lambda(1 - p) \frac{z}{\beta + z}$$

Denote

$$M_q = \sup\{t \ge 0\} \qquad I_q = \inf\{t \ge 0\}$$

Theorem 1. If X is a jump-diffusion process,
the densities of M_q and I_q are:
 $f_{M_q}(x) = A_1 \exp(-p_1 x) + A_2 \exp(-p_2 x), \quad x > 0$
 $f_{I_q}(x) = B_1 \exp(-r_1 x) + B_2 \exp(-r_2 x), \quad x < 0$

where equation $q - \psi(z) = 0$ has

- p_1 and p_2 positive roots
- r_1 and r_2 negative roots

and coefficients are:

$$A_{1} = \frac{1 - p_{1}/\alpha}{1 - p_{1}/p_{2}} \qquad A_{2} = \frac{1 - p_{2}/\alpha}{1 - p_{2}/p_{1}}$$
$$B_{1} = \frac{1 + r_{1}/\beta}{1 - r_{1}/r_{2}} \qquad B_{2} = \frac{1 + r_{2}/\beta}{1 - r_{2}/r_{1}}$$

Proof: Consider the characteristic function of M_q and I_q :

$$\phi_q^+(z) = \operatorname{E}\exp(zM_q)$$

$$\phi_q^-(z) = \operatorname{E}\exp(zI_q)$$

and use Rogozin's (1966) WH factorization:

$$\frac{q}{q-\psi(z)} = \phi_q^+(z)\phi_q^-(z)$$

Uniqueness in WH and complex analysis arguments give the result (roots of $q - \psi(z)$ are poles, use residue's calculus)

LP with rational transform negative jumps

Let X be a LP with jump measure

$$\Pi(dx) = \begin{cases} \pi^+(dx) & \text{if } x > 0, \\ \pi^-(dx) = \lambda p(x) dx & \text{if } x < 0. \end{cases}$$
(1)

where π^+ arbitrary on $(0, +\infty)$ (arbitrary positive jumps), and

$$p(x) = \sum_{k=1}^{n} \sum_{j=1}^{m_k} c_{kj} (\alpha_k)^j \frac{(-x)^{j-1}}{(j-1)!} e^{\alpha_k x}, \quad x < 0,$$

is the more general form of a r.v. with rational Laplace transform.

 $P = m_1 + \cdots + m_n$ is the Pole count.

Characteristic exponent ψ

$$\hat{p}(z) = \int_{-\infty}^{0} e^{zy} p(y) dy = \sum_{k=1}^{n} \sum_{j=1}^{m_k} c_{kj} \left(\frac{\alpha_k}{\alpha_k - z}\right)^j.$$

So

$$\psi(z) = az + \frac{1}{2}\sigma^2 z^2$$

$$+\int_0^\infty (e^{zy} - 1 - zh(y))\pi^+(dy)$$

 $+\lambda(\widehat{p}(z)-1)$

Theorem 2 (A. Lewis - EM). (a) On the half space $\Re z > 0$ the equation $q - \psi(z) = 0$ has roots

$$\beta_1,\ldots,\beta_N$$

with multiplicities

 n_1,\ldots,n_N

and such that $n_1 + \cdots + n_N = P + 1 \ (\sigma > 0)$

(b) The characteristic function ϕ_q^- of the infimum I_q is

$$\phi_q^{-}(z) = \prod_{k=1}^n \left(\frac{\alpha_k - z}{\alpha_k}\right)^{m_k} \prod_{j=1}^N \left(\frac{\beta_j}{\beta_j - z}\right)^{n_j},$$

Proof: (1) Study the roots of $q - \psi(z) = 0$ on $\Re z > 0$ with Rouche's Theorem (we know the poles).

(2) Consider Baxter-Donsker (1957) Formula:

$$\phi_q^-(iu) = \mathbf{E} e^{-uI_q}$$
$$= \exp\left\{\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{u}{\xi(\xi - iu)} \log\left(\frac{q}{q - \psi(\xi)}\right) d\xi\right\}$$

(3) Compute the integral over a convenient contour in $\Re z > 0$, computing the residues at the poles, and take limit.

Open Questions:

- Solve a two barrier problem for this class of Processes: Probability of hitting level a > 0 before than hitting level b < 0. (now π^+ should also be of rational type)
- Compute the Green Kernel for this class of Processes

References

- Baxter, G. and Donsker M.D. (1957), On the distribution of the supremum functional for processes with stationary independent increments, *Transactions of the American Mathematical Society* **85**, 73–87.
- Bertoin, J. (1996), *Lévy Processes* (Cambridge University Press, Cambridge).
- Lewis, A., Mordecki, E. Wiener-Hopf factorization for Lévy processes with negative jumps with rational transforms. Preprint (2005).
- Rogozin, B.A. (1966), On distributions of functionals related to boundary problems for processes with independent increments, *Theory of Probability and its Applications* **XI**, 580–591.
- Sato, Ken-iti. Lévy processes and infinitely divisible distributions. Cambridge Studies in Advanced Mathematics, 68. Cambridge University Press, Cambridge, 1999.