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The problem: Ruin and Maxima
Mathematical model:

Xt Q2 — R (¢t > 0), is a stochastic process
defined (2, F,Pz).

Notation: Xg =, Pog=P.
Problem:

Compute the Ruin Probability

R(w) = Px(EIt >0: X3 < O) = Px(iﬂth < O)



Equivalent Problem:

Define the maximum
M :=sup{Y:: t > 0}
of the symmetric process Y, and find

1— Fy(x) =P(WM >z) = R(x).
Ruin for X = maximum for'Y
Generalized Problem:
Take

7(0) = 400

and consider now

{T(q) ~ exp(q) indep. of X

Mg :=sup{Y;: 0 <t <7(q)}
We want to find



L evy Processes: Definition

e [t starts at Xg =0,

e Independent Increments:
Ifo<t;s <---<tp, then

Xigy Xt — Xpqye ooy Xty — X, 4

are independent random variables

e Stationary Increments:

X¢4+p — Xy Same distribution as X,

Also called PIIS: Processes with independent
and stationary increments



L évy Processes: Characterization

Lévy-Kinchine Formula:

E 2 Xt — et@b(z)’
where

1
V() = az 4502224 [ (eW—1—zylyy1))N(dy)
e a € R is the drift
e 0 > 0 is the variance of the Gaussian part

e [1 is a positive measure on R\ {0}, with
[(1Ay2)MN(dy) < +o0, governing the jumps
of X: is the jump measure



Example: Brownian motion with drift

Let B = (B;) be a Brownian motion. Define

Xt = at + o By

We have
E 2 Xt — etlb(z),

where
1
V(z) =az + 502,22

Conclusion: In Levy-Khinchine formula:

e [1 = 0O indicates absence of jumps



Example: Compound Poisson Process

Taking T = (1) i.i.d.r.v. with distribution
exp(A), define

Ne=inf{k:T1 + 1o+ ... T <t}.
N = (N) is a Poisson process. Consider

Ny

Xi= > Y
k=1

where Y = (Y3) are i.i.d.r.v. with distribution
F(dy) (independent of T). Simple computa-
tions give:

V() = A [ (e = 1)F(dy),

In this case
e a—=0c=20

o M(dy) = AF(dy).



Example: Jump-diffusion processes

Ny

Xy =at+oB+ > Y
k=1

with B, N, Y independent, gives

V(z) = az+ 0222 + )\/ (e*¥ — 1) F(dy),
If Y7 has denS|ty

) = pae” XY when y > 0
(1—p)BefY when y< 0

for some positive o, 3 and p € (0,1), then
1
V(z) =az —i— o222

—I—Ap — (1 —-p)

z
a— z B4+ z




Denote
Mg = sup{t > 0} I, = inf{t > 0}

Theorem 1. If X is a jump-diffusion process,
the densities of My and 14 are:

fu,(x) = Ay exp(—p1z) + Acexp(—p2x), x>0
f1,(x) = Byexp(—riz) + Baexp(—r2z), <0
where equation q — 1y (z) = 0 has
e p1 and po positive roots

e r1 and ro negative roots

and coefficients are:

A, = TP1/@ A, — LT P2/@
1—p1/p2 1 —po/p1
1 1

B = +r1/0 B, = + ro/83

1—1rq1/r 1 —17o/rq



Proof: Consider the characteristic function of
Mg and Ig:

od (2) = Eexp(zMy)
¢q () = Eexp(zlg)

and use Rogozin's (1966) WH factorization:
q + _
= ¢4 (2)¢4 (2)
qg—p(z) 1 !
Uniqueness in WH and complex analysis argu-
ments give the result (roots of g — ¥(z) are
poles, use residue’s calculus)




LP with rational transform negative jumps

Let X be a LP with jump measure

N(dz) = (1)
7w (dx) = Ap(x)dx if x <O.

where 71 arbitrary on (0,4o00) (arbitrary pos-
itive jumps), and

n. Mg ()1
p(x) =} . ij(o‘k)]( 2 s z <0,

is the more general form of a r.v. with rational
Laplace transform.

P=mq1+4---4+ my is the Pole count.



Characteristic exponent

p(z) = /_O e*p(y)dy = Z Z ck]< . )j.

k=1j53= o — =
So

(z)—az—l—l 2,2

+ /Ooo(ezy — 1 - zh(y))7 " (dy)

+ A(p(z) — 1)



Theorem 2 (A. Lewis - EM).
(a) On the half space Rz > 0 the equation
g —¥(z) = 0 has roots

B1,...,8N

with multiplicities

ni,..., NN
and such thatni+---+ny=P+1 (60 >0)

(b) The characteristic function ¢, of the infi-
mum Iq is

o la— 2\ N o\
o i R )

k=1 X




Proof: (1) Study the roots of ¢ —1(2) = 0 on
Rz > 0 with Rouche’'s Theorem (we know the
poles).

(2) Consider Baxter-Donsker (1957) Formula:

¢ (1u) = E e %4
_ 1 e U q
— {2w [ty (g - zp(s)) dﬁ}

(3) Compute the integral over a convenient
contour in ¥z > 0, computing the residues at
the poles, and take limit.




Open Questions:

e Solve a two barrier problem for this class
of Processes: Probability of hitting level
a > 0 before than hitting level b < 0. (now
x1 should also be of rational type)

e Compute the Green Kernel for this class of
Processes
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