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Abstract
The optimal stopping problem for a Hunt processes on R is consid-

ered via the representation theory of excessive functions. In particular,
we focus on in�nite horizon (or perpetual) problems with one-sided
structure, that is, there exists a point x∗ such that the stopping region
is of the form [x∗,+∞). Corresponding results for two-sided problems
are also indicated. The main result is a spectral representation of the
value function in terms of the Green kernel of the process. Specializing
in Lévy processes, we obtain, by applying the Wiener-Hopf factoriza-
tion, a general representation of the value function in terms of the
maximum of the Lévy process. To illustrate the results, an explicit
expression for the Green kernel of Brownian motion with exponential
jumps is computed and some optimal stopping problems for Poisson
process with positive exponential jumps and negative drift are solved.
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1 Introduction

Consider an optimal stopping problem for a real-valued Markov process X =
{Xt : t ≥ 0} with reward function g and discount rate r ≥ 0. Denote by V
the value function of the problem, and by τ ∗ the optimal stopping time. In
this paper we analyze this optimal stopping problem departing from three
main sources: (i) the characterization of the value function V as the least
excessive majorant of the reward function g, due to Snell [23] for discrete
martingales and to Dynkin [6] for continuous time Markov processes; (ii)
the representation of excessive functions as integrals of the Green kernel
of the process, as exposed in Kunita and Watanabe [11] and Dynkin [7],
and exploited by Salminen [20] in the framework of optimal stopping for
di�usions; and (iii) recent results expressing the solution of some optimal
stopping problems for Lévy processes and random walks in terms of the
maximum of the process, see Darling et. al.[5], Mordecki [15], Boyarchenko
and Levendorskij [3], Novikov and Shiryaev [18] and Kyprianou and Surya
[12]. For papers on optimal stopping of Lévy processes using other methods,
see, e.g., McKean [13], Gerber and Shiu [9], Chan [4] and Kou and Wang
[10].

We then try to understand the structure of the solution of the optimal
stopping problem in a regular enough framework of Markov processes, pre-
cisely the class of Hunt processes, concluding that �nding the solution of such
a problem is equivalent to �nding the representation of the value function in
terms of the Green kernel. The Radon measure that appears in this represen-
tation is called the spectral measure corresponding to the excessive function
V , and furthermore, it results that the support of this spectral measure is
the stopping region for the problem. This is our main result, presented in
section 3.

Let us specialize to Lévy processes. Firstly, observe that in the case r > 0
the Green kernel is proportional to the distribution of the process stopped at
an exponential time with parameter r, independent of the process. Secondly,
relying on the Wiener-Hopf factorization for the Lévy process, we express this
random variable in the distributational sense as the sum of two independent
random variables, the �rst one having the distribution of the supremum of the
process up to the exponential time and the second one with the distribution of
the in�mum of the process in the same random interval. Simple calculations
taking into account this fact, and the one-sided structure of the solution of
the optimal stopping problem, gives a representation of the solution of an
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optimal stopping problem in terms of the maximum of the Lévy process � a
result that has been obtained earlier in several particular cases. This analysis
is carried out in section 4.

The rest of the paper is as follows. In section 2 the framework of Hunt
processes in which we are working is described. Section 5 consists of two
subsections. In the �rst one we illustrate the made assumptions concerning
the Hunt processes and Lévy processes by studying Browian motion with
exponential jumps. In the second one an optimal stopping problem for a
compound Poisson process with negative drift and positive exponential jumps
and the reward functon g(x) = (x+)γ, γ ≥ 1, is analyzed. Our interest in
this particular reward function was arised by Alexander Novikov's talk in
the Symposium on Optimal Stopping with Applications held in Manchester
22.� 27.1.2006 [17] where the optimal stopping problem for the same reward
functions and general Lévy processes were considered.

2 Preliminaries on Hunt processes

Let X = {Xt} be a transient Hunt process taking values in R, where we
omit t ≥ 0 in the notation, as all the considered processes are indexed in the
same set. In particular, X is a strong Markov process, quasi left continuous
on [0,+∞) and the sample paths of X are right continuous with left limits
(see Kunita and Watanabe [11] and Blumenthal and Getoor [2] p. 45). The
notations Px and Ex are used for the probabilty measure and the expectation
operator, respectively, associated with X when X0 = x. The resolvent {Gr :
r ≥ 0} of X is de�ned via

Gr(x,A) :=

∫ ∞

0

e−rtPx(Xt ∈ A) dt, (2.1)

where x ∈ R and A is a Borel subset of R. We assume also that there exists a
dual resolvent {Ĝr : r ≥ 0} with respect to some σ-�nite (duality) measure
m, that is, for all f, g ∈ Bo and r ≥ 0 it holds∫

m(dx) f(x)Grg(x) =

∫
m(dx) Ĝrf(x) g(x),

where Bo denotes the set of measurable bounded functions with compact
support. Moreover, it is assumed that {Ĝr : r ≥ 0} is a resolvent of a
transient Hunt process X̂ taking values in R. Finally, we impose Hypothesis
(B) from [11] p. 498:
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(h1) Gr(x, dy) = Gr(x, y)m(dy),

(h2) supx∈AG0(x,B) <∞ for all compact A and B,

(h3) x 7→ Ĝrf(x), f ∈ Bo, is continuous and �nite.

The assumption that the dual process is a Hunt process implies that Ĝ is
regular (see [11] p. 494).

We remark that whenX is a Lévy process a dual resolvent always exists as
the resolvent of the dual process X̂ = {−Xt}. Hereby the Lebesgue measure
serves as the duality measure (see section II.1 in [1]).

Under these assumptions it can be proved that the function Gr given in
(h1) constitutes a potential kernel (often called a Green kernel) of exponent
r associated with the pair (X, X̂). This means that for each given r ≥ 0 the
function (x, y) 7→ Gr(x, y) is jointly measurable and has the properties

(p1) Ĝr(y, dx) = Gr(x, y)m(dx),

(p2) x 7→ Gr(x, y) is r-excessive for X for each y,

(p3) y 7→ Gr(x, y) is r-excessive for X̂ for each x.

Recall that a non-negative measurable function f : R 7→ [0,+∞] is called
r-excessive for X if for all x ∈ R

(e1) e−rtEx(f(Xt)) ≤ f(x) for all t ≥ 0,

(e2) e−rtEx(f(Xt)) → f(x) as t→ 0.

Notice that r-excessive functions of X are 0-excessive for the process Xo

obtained from X by exponential killing with rate r.
From the assumption (h1) that the resolvent kernel of X is absolutely

continuous it follows that r-excessive functions are lower semi-continuous.
The Riesz decomposition of excessive functions is of key importance in

our approach to optimal stopping. We state the decomposition relying on
[11] Theorem 2 p. 505 and Proposition 13.1 p. 523. Indeed, it holds, under
the made assumptions, that each r-excessive function u locally integrable
with respect to the duality measure m can be decomposed uniquely in the
form

u(x) =

∫
R

Gr(x, y)σu(dy) + hr(x), (2.2)
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where hr is an r-harmonic function and σu is a Radon measure on R. We
remark that the assumption that the dual process is a Hunt process implies
that also the spectral measure σu is unique (see [11] Proposition 7.11 p. 503).

Conversily (see [11] Proposition 7.6 p. 501), given a Radon measure σ on
(R,B) the function v de�ned via

v(x) :=

∫
R

Gr(x, y)σ(dy)

is an r-excessive function (in fact, a potential).
An r-excessive function u is said to r-harmonic on a Borel subset A of R

if for all open subsets Ac of A with compact closure

u(x) = Ex

(
e−rH(Ac) u(XH(Ac))

)
, (2.3)

where
H(Ac) := inf{t : Xt 6∈ Ac}.

In our case (see [11] Proposition 6.2 p. 499) it holds that for each �xed y ∈ R
the function x 7→ Gr(x, y) is r-harmonic on R \ {y}. From (2.2) it follows
that if there exists an open set A such that the representing measure does
not charge A, then the function u is r-harmonic on A i.e.,

σu(A) = 0 ⇒ u is r−harmonic on A. (2.4)

In fact, (2.4) is an equivalence under mild assumptions; for this see Dynkin
[7] Theorem 12.1.

3 Optimal stopping of Hunt processes

Let X be a Hunt process satisfying the assumptions made in Section 2. For
simplicity we consider non-negative continuous reward functions. Then the
reward function g has the smallest excessive majorant V and

V (x) = sup
τ∈M

Ex(e
−rτg(Xτ )), (3.1)

where M denotes the set of all stopping times τ with respect to the natural
�ltration generated by X. In case τ = +∞ we de�ne

e−rτg(Xτ ) := lim sup
t→∞

e−rtg(Xt).
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The result (3.1) can be found, for instance in Shiryayev [22] (Lemma 3 p.
118 and Theorem 1 p. 124) and holds for more general standard Markov pro-
cesses, and for almost-Borel and C0-lower semicontinuous reward functions.
We can express this result by saying that in an optimal stopping problem
the value function and the smallest excessive majorant of the reward function
coincide.

From (3.1) and the Riesz decomposition (2.2) we conclude that the prob-
lem of �nding the value function is equivalent to the problem of �nding the
representing measure of the smallest excessive majorant (up to harmonic
functions). Furthermore, based on (2.4), it is seen, roughly speaking, that
the continuation region, that is, the region where it is not optimal to stop, is
the �biggest� set not charged by the representing measure σV of V. In short,
the representing measure gives the value function via (2.2) and the stopping
region is by (2.4) the support of the representing measure. In the following
result we use the preceeding considerations in order to express the solution
of a particular type of optimal stopping problems

Theorem 3.1. Consider a Hunt process {Xt} satisfying the assumptions
made in Section 2, a non-negative continuous reward function g, and a dis-
count rate r ≥ 0 such that

Ex(sup
t≥0

e−rtg(Xt)) <∞. (3.2)

Assume that there exists a Radon measure σ with support on the set [x∗,∞)
such that the function

V (x) :=

∫
[x∗,∞)

Gr(x, y)σ(dy) (3.3)

satis�es the following conditions:

(a) V is continuous,

(b) V (x) → 0 when x→ −∞.

(c) V (x) = g(x) when x ≥ x∗,

(d) V (x) ≥ g(x) when x < x∗.
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Let
τ ∗ = inf{t ≥ 0: Xt ≥ x∗}. (3.4)

Then τ ∗ is an optimal stopping time and V is the value function of the optimal
stopping problem for {Xt} with the reward function g, in other words,

V (x) = sup
τ∈M

Ex

(
e−rτg(Xτ )

)
= Ex

(
e−rτ

∗
g(Xτ∗)

)
, x ∈ R.

Proof. Since V is an r-excessive function (see the discussion after the Riesz
decomposition (2.2)) and, from conditions (c) and (d), a majorant of g,
it follows by Dynkin's characterization of the value function as the least
excessive majorant, that

V (x) ≥ sup
τ∈M

Ex

(
e−rτg(Xτ )

)
(3.5)

In order to conclude the proof, we establish the equality in (3.5). Indeed,
consider for each n ≥ 1 the stopping time

τn = inf{t ≥ 0: Xt 6∈ (−n, x∗ − 1/n)}.

For ω ∈ {τ ∗ <∞} de�ne τ̄ = limn→∞ τn. We have

τ1 ≤ τ2 ≤ · · · ≤ τ̄ ≤ τ ∗.

For n large enough,Xτn ≥ x∗−1/n, and, as the process is quasi-left continous,
limn→∞Xτn = Xτ̄ , and, hence, Xτ̄ ≥ x∗. This give us that τ̄ = τ ∗ a.s.

As V is r-excessive, the sequence {e−rτnV (Xτn)} is a nonnegative super-
martingale, and, in consequence, it converges a.s. to a random variable.
Because Xτn → Xτ∗ a.s., and V is continuous, we identify the limit as
e−rτ

∗
V (Xτ∗). From assumptions (a) and (b) it follows that

CV := sup
x≤x∗

V (x) <∞,

Furthermore, as

e−rτnV (Xτn) = e−rτnV (Xτn)1{τn<τ∗} + e−rτ
∗
g(Xτ∗)1{τn=τ∗}

≤ CV + sup
t≥0

e−rtg(Xt)
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we obtain, in view of condition (3.2), using the Lebesgue dominated conver-
gence theorem

Ex

(
e−rτn V (Xτn)

)
↓ Ex

(
e−rτ

∗
V (Xτ∗)

)
as n→∞.

Furthermore, as the representing measure σ does not charge the open set
(−∞, x∗), the function V is harmonic on that set (cf. (2.4)), and, as τn are
exit times from the open sets (−n, x∗ − 1/n), we conclude that

V (x) = E
(
e−rτn V (Xτn)

)
↓ E

(
e−rτ

∗
g(Xτ∗)

)
,

and the proof is complete.

Under the additional assumption (3.6), valid in many particular cases,
we characterize now the optimal threshold x∗ as a solution, with a useful
uniqueness property, of an equation derived from (3.3). Remember that by
the de�nition of the support of a Radon measure, we have σ(A) > 0 for all
open subsets A of [x∗,∞) (see for instance page 215 in Folland [8]).

Corollary 3.2. Let {Xt}, g, V, σ, and x∗ be as in Theorem 3.1. Assume that

Gr(x,B) :=

∫ ∞

0

e−rtPx(Xt ∈ B)dt > 0 (3.6)

for all x and open subsets B of R. Then the equation

g(x) =

∫
[x,∞)

Gr(x, y)σ(dy) (3.7)

has no solution bigger than x∗.

Proof. Clearly, since g(x∗) = V (x∗) it is immediate from (3.3) that x∗ is a
solution of (3.7). Let now xo > x∗ be another solution of (3.7), i.e.,

g(xo) =

∫
[xo,∞)

Gr(xo, y)σ(dy).

From (3.3) we have

g(xo) = V (xo) =

∫
[x∗,∞)

Gr(xo, y)σ(dy).
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Consequently, ∫
[x∗,xo)

Gr(xo, y)σ(dy) = 0. (3.8)

But the function y 7→ Gr(xo, y) is lower semi-continuous, and, hence, the
set {y : Gr(xo, y) > 0} is open. From (3.8) it follows that Gr(xo, ·) ≡ 0 on
(x∗, xo), but this violates (3.6) and the claim is proved.

The presented method works similarly when the stopping region is not
a half line, i.e. when the problem is not a �one-sided� problem. The form
of the optimal stopping time (3.4) appears very often in several optimal
stopping problems, in particular in mathematical �nance, where this sort of
the problems are sometimes named call-like perpetual problems or options
(see e.g. [3]). Furthermore, as exposed in section 4, one sided problems in the
context of Lévy process admits a representation in terms of the maximum of
the Lévy process.

Minor modi�cations in the proof of Theorem 3.1 give the following result,
that can be considered as a �two-sided� optimal stopping problem.

Theorem 3.3. Consider a Hunt process {Xt} satisfying the assumptions
made in Section 2 and a non-negative continuous reward function g, and a
discount rate r ≥ 0, such that condition (3.2) hold. Assume that there exists
a positive Radon measure σ with support on the set S = (−∞, x∗] ∪ [x∗,∞)
such that the function

V (x) :=

∫
S

Gr(x, y)σ(dy) =

∫
(−∞,x∗]

Gr(x, y)σ(dy) +

∫
[x∗,∞)

Gr(x, y)σ(dy)

(3.9)
satis�es the following conditions:

(a) V is continuous,

(b) V (x) = g(x) when x ∈ S,

(c) V (x) ≥ g(x) when x /∈ S.
Let

τ ∗ = inf{t ≥ 0: Xt ∈ S}.
Then τ ∗ is an optimal stopping time and V is the value function of the optimal
stopping problem for {Xt} with the reward function g, in other words,

V (x) = sup
τ∈M

Ex

(
e−rτg(Xτ )

)
= Ex

(
e−rτ

∗
g(Xτ∗)

)
, x ∈ R.
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4 Optimal stopping and maxima for Lévy pro-

cesses

As we have mentioned, in several papers explicit solutions to optimal stop-
ping problems for general random walks or Lévy process, and some particular
reward functions can be expressed in terms of the maximum of the process,
killed at a constant rate r, the discount rate of the problem. The pioneer re-
sults in this direction are contained in the paper of Darling, Ligget and Taylor
[5], were solutions to optimal stopping problems for rewards g(x) = (ex−1)+

and g(x) = x+ are obtained in the whole class of random walks, in terms of
the maximum of the random walk. These results are generalized for Lévy
process by Mordecki in [15] and [16], where it is also observed that similar re-
sults hold for solutions of optimal stopping problems in terms of the in�mum
of the process for the payo� g(x) = (1 − ex)+. Based on the technique of
factorization of pseudo-di�erential operators, Boyarchenko and Levendorskij
(see [3] and the references therein) obtain similar results, in a subclass of
Lévy processes, called regular and of exponential type (RLPE), with the im-
portant feature that their results are not based on particular properties of
the reward function g, and, hence, hold true in a certain class of rewards
functions. Results in [3] suggest that any optimal stopping problem for a
Lévy process with an increasing payo� can be expressed in terms of the max-
imum of the process. More recently, Novikov and Shiryaev [18] obtained
the solution of the optimal stopping problem for a general random walk, in
terms of the maximum, when the reward is g(x) = (x+)n, (and also when
g(x) = 1−e−x

+). The respective generalization of this problem to the frame-
work of Lévy processes has been carried out by Kyprianou and Surya [12].

4.1 Lévy processes

Let X = {Xt} be a Hunt process with independent and stationary incre-
ments, i.e. a Lévy process. We denote E = E0 and P = P0.

If v ∈ R, Lévy-Khinchine formula states E(eivXt) = etψ(iv), where, for
complex z = iv the characteristic exponent of the process is

ψ(z) = az +
1

2
b2z2 +

∫
R

(
ezx − 1− zh(x)

)
Π(dx). (4.1)

Here the truncation function h(x) = x1{|x|≤1} is �xed, and the parameters
characterizing the law of the process are: the drift a, an arbitrary real num-
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ber; the standard deviation of the Gaussian part of the process b ≥ 0; and
the Lévy jump measure Π, a non negative measure, de�ned on R \ {0} such
that

∫
(1 ∧ x2)Π(dx) < +∞.

Denote by τ(r) an exponential random variable with parameter r > 0,
independent of the process X. A key role in this section is played by the
following random variables:

Mr = sup
0≤t<τ(r)

Xt and Ir = inf
0≤t<τ(r)

Xt (4.2)

called the supremum and the in�mum of the process, respectively, killed at
rate r.

A relevant instrument to study these random variables is the Wiener-
Hopf-Rogozin factorization, obtained by Rogozin [19], that states

r

r − ψ(iv)
= E(eivMr)E(eivIr) (4.3)

In our �rst result we give some simple su�cient conditions in order to
hypothesis (3.2) to hold.

Lemma 4.1. Assume that a non-negative function g satis�es

g(x) ≤ A0 + A1e
αx, (4.4)

for nonnegative constants A0, A1, α. Assume furthermore that

E
(
eαX1

)
< er. (4.5)

Then, condition (3.2) holds.

Proof. Let us �rst verify that, for r ≥ 0, the following three statements are
equivalent:

(a) E
(
eαX1

)
< er.

(b) E
(
eαMr

)
<∞.

(c) E
(
supt≥0

(
eαXt−rt

))
<∞.
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First, (a)⇔(b) is Lemma 1 in [15]. The equivalence (a)⇔(c) is a particular
case of (a)⇔(b), when considering the Lévy process {αXt − rt}, the �rst
constant equal to 1, and the second, the discount rate equal to 0. Now

Ex(sup
t≥0

e−rtg(Xt)) ≤ E

(
sup
t≥0

e−rt
(
A0 + A1e

α(x+Xt)
))

≤ A0 + A1e
αxE(sup

t≥0
e(αXt−rt)) <∞

as condition (a)⇒(c).

Remark 4.2. Condition (4.4) is relatively natural in our context. For in-
stance, if the function is increasing, and submultiplicative (as de�ned in
section 25 in [21]) it automatically satis�es our exponential growth condi-
tion (4.4). Nevertheless, the submultiplicative property does not seem to be
appropiate for optimal stopping problems, as g(x) = x+ is not submultiplica-
tive. Furthermore, condition (4.5) is optimal in the following sense: For the
reward function g(x) = (ex − 1)+, if E

(
eX1

)
= er, then condition (3.2) does

not hold, based on (a)⇔(c).

Our next result represents the value function of the optimal stopping
problem for a Lévy process in terms of the maximum of the process and is a
consequence of Theorem 3.1.

Proposition 4.3. Assume that the conditions of Theorem 3.1 hold, and,
furthermore, that {Xt} is in fact a Lévy process. Then, there exists a function
Q : [x∗,∞) → R such that the value function V in (3.3) satis�es

V (x) = Ex (Q(Mr) ; Mr ≥ x∗) , x ≤ x∗.

Proof. The key ingredient of the proof is formula (4.3), that can be also
written as

Xτ(r) = Mr + Ĩr (4.6)

where Mr and Ĩr = Xτ(r) −Mr are independent random variables, Mr given
in (4.2), and Ĩr with the same distribution as Ir in (4.2).

From the de�nition of the Green kernel (2.1), it is clear that

rGr(x, dy) = Px(Xτ(r) ∈ dy),
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and, in view of (4.6), assuming that Mr and Ir have respective densities fM
and fI (only for simplicity of exposition), we obtain that

rGr(x, y) =


∫ y−x
−∞ fI(t)fM(y − x− t)dt, if y − x < 0,

∫∞
y−x fM(t)fI(y − x− t)dt, if y − x > 0.

(4.7)

If we plugg in this formula for the Green kernel in (3.3), when x < x∗, and,
in consequence, with y > x, we obtain

V (x) =

∫ ∞

x∗
Gr(x, y)σ(dy)

= r−1

∫ ∞

x∗

[∫ ∞

y−x
fM(t)fI(y − x− t)dt

]
σ(dy)

= r−1

∫ ∞

x∗−x
fM(t)

[∫ x+t

x∗
fI(y − x− t)σ(dy)

]
dt

=

∫ ∞

x∗−x
fM(t)Q(x+ t)dt = Ex (Q(Mr) ; Mr ≥ x∗) ,

where, for z ≥ x∗, we denote

Q(z) = r−1

∫ z

x∗
fI(y − z)σ(dy). (4.8)

This concludes the proof.

The following results uses Theorem 3.3 to provide a representation of the
value function in terms of both the supremum and the in�mum of the Lévy
process.

Proposition 4.4. Assume that the conditions of Theorem 3.3 hold, and that
{Xt} is a Lévy process. Then, there exist two functions

Q∗ : (−∞, x∗] → R, Q∗ : [x∗,∞) → R

such that the value function V in (3.3) satis�es

V (x) = Ex (Q∗(Ir) ; Ir ≤ x∗) + Ex (Q∗(Mr) ; Mr ≥ x∗) , x∗ ≤ x ≤ x∗.
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Proof. The proof consist in rewriting each summand in (3.3) in terms of the
maximum and in�mum of the process, respectively. The second identity has
been obtained in Proposition 4.3, and states (with Q∗ instead of Q), that∫

[x∗,∞)

Gr(x, y)σ(dy) = Ex (Q∗(Mr) ; Mr ≥ x∗) ,

where Q∗ is de�ned in (4.8). The �rst one is obtained from this last equality
considering the dual Lévy process X̂, as follows:∫

(−∞,x∗]

Gr(x, y)σ(dy) =

∫
[−x∗,∞)

Ĝr(−x, y)σ(−dy)

= Ê−x

(
Q̂∗(M̂r) ; M̂r ≥ −x∗

)
= Ex (Q∗(Ir) ; Ir ≤ x∗) ,

where

Q∗(z) = Q̂∗(−z) = r−1

∫ −z

−x∗
fbI(y + z)σ(−dy) = r−1

∫ x∗

z

fM(y − z)σ(dy),

and the proof is complete.

5 A case study

5.1 Brownian motion with exponential jumps

Here we illustrate the assumptions made in Section 2 and, in particular, the
concept of Green kernel by taking X to be a Brownian motion with drift and
compounded with two-sided exponentially distributed jumps.

To introduce X, consider a standard Wiener process W = {Wt : t ≥ 0},
Nλ = {Nλ

t : t ≥ 0} and Nµ = {Nµ
t : t ≥ 0} two Poisson processes with

intensities λ and µ, respectively, Y α = {Y α
i : i = 1, 2, . . . } and Y β = {Y β

i :
i = 1, 2, . . . } two sequences of independent exponentially distributed random
variables with parameters α and β, respectively. Moreover, W,Nλ, Nµ, Y α

and Y β are assumed to be independent. The process X = {Xt} is now
de�ned via

Xt = at+ bWt +

Nλ
t∑

i=1

Y α
i −

Nµ
t∑

i=1

Y β
i , (5.1)
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where a and b ≥ 0 are real parameters. Clearly, X is a Lévy process and its
Lévy-Khintchine representation is given by

E (exp(z Xt)) = exp(t ψ(z)) (5.2)

with
ψ(z) = az +

1

2
b2z2 + λ

z

α− z
− µ

z

β + z
. (5.3)

It is enough for our purposes to take hereby z real, and then the representa-
tion in (5.2) holds for z ∈ (−β, α).

Next we compute the Green kernel of X when all the parameters in (5.3)
are positive. It is easily seen that for r ≥ 0 the equation ψ(z) = r has exactly
four solutions ρk, k = 1, 2, 3, 4. These satisfy

ρ1 < −β < ρ2 ≤ 0 < ρ3 < α < ρ4 (5.4)

and
ψ′(ρ1) < 0, ψ′(ρ2) < 0, ψ′(ρ3) > 0, ψ′(ρ4) > 0. (5.5)

Notice that ρ2 = 0 if and only if r = 0, in which case it is assumed ψ′(0) < 0
implying

lim
t→∞

Xt = −∞ a.s.

Using the general de�nition of the resolvent, see (2.1), we have for z ∈ (ρ2, ρ3)∫ ∞

−∞
ez xGr(0, dx) =

∫ ∞

0

dt e−rtE (exp(z Xt)) =
1

r − ψ(z)

=
ψ′(ρ1)

−1

ρ1 − z
+
ψ′(ρ2)

−1

ρ2 − z
+
ψ′(ρ3)

−1

ρ3 − z
+
ψ′(ρ4)

−1

ρ4 − z
.

Consequently, inverting the right hand side yields

Gr(0, dx) =

{
−ψ′(ρ1)

−1e−ρ1xdx− ψ′(ρ2)
−1e−ρ2xdx, x < 0,

ψ′(ρ3)
−1e−ρ3xdx+ ψ′(ρ4)

−1e−ρ4xdx, x > 0.
(5.6)

and, hence, the resolvent is absolutely continuous with respect to Lebesgue
measure. With slight abuse of notation, we let Gr(0, x) denote also the Green
kernel, i.e., the density of the resolvent Gr with respect to the Lebesgue
measure. From the spatial homogeniety of X it follows that Gr(x, 0) =
Gr(0,−x).
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The absolute continuity of the resolvent can alternatively be veri�ed by
checking that the condition (ii) in Theorem II.5.16 in Bertoin [1] holds . We
recall also the general result (see [1] p. 25) which says that the absolute
continuity of the resolvent is equivalent with the property that x 7→ Grf(x)
is continuous for all essentially bounded measurable functions f.

As we have noticed, the process X̂ = {−Xt} may be viewed as a dual
process associated with X. Let Ĝr denote the resolvent of X̂. Then the
duality relationship∫

dx f(x)Grg(x) =

∫
dx Ĝrf(x) g(x)

holds the duality measure being the Lebesgue measure. The Green kernel of
the dual process is given by

Ĝr(x, y) = Gr(y, x).

Notice that the value of x 7→ Gr(0, x) at 0 is chosen so that the resulting
function is lower semi-continuous (since the Green kernel when considered as
a function of the second argument should be excessive for the dual process).

To conclude the above discussion, we have veri�ed Hypothesis (B) in
[11], that is, (h1), (h2) and (h3) in Section 2 are full�lled. Consequently, also
(p1), (p2) and (p3) in Section 2 are valid and the Riesz decomposition (2.2)
holds. Moreover, it can be proved, e.g. using the Martin boundary theory,
as presented in [11], that the harmonic function hr appearing in (2.2) is of
the form

hr(x) = c1 e ρ2x + c2 e ρ3x,

where c1 and c2 are non-negative constants.
It is interesting to note that when multiplying both sides of (5.6) by z

and letting z →∞ we obtain, in case b > 0 (cf. (5.3)),
1

ψ′(ρ1)
+

1

ψ′(ρ2)
+

1

ψ′(ρ3)
+

1

ψ′(ρ4)
= 0,

which implies that the Green kernel is continuous at x = 0. But, when
b = 0, the Green kernel may be discontinuous. This happens, for instance,
when X is a compound Poisson process with negative drift and exponentially
distributed positive jumps. More precisely, taking b = µ = 0, and a < 0 in
(5.1) the characteristic exponent reduces to

ψ(z) = az + λ
z

α− z
.
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Now there are only two roots ρ1 and ρ2 and these satisfy

ρ1 ≤ 0 < ρ2.

Consequently,
1

r − ψ(z)
=
ψ′(ρ1)

−1

ρ1 − z
+
ψ′(ρ2)

−1

ρ2 − z
, (5.7)

and we have the Green kernel

Gr(0, x) =

{
−ψ′(ρ1)

−1 e−ρ1x, x < 0,

ψ′(ρ2)
−1e−ρ2x, x ≥ 0.

(5.8)

From (5.7) it is seen that

ψ′(ρ1)
−1 + ψ′(ρ2)

−1 =
1

a
,

and, hence, x 7→ Gr(0, x) is discontinuous at 0 (but lower semi-continuous
since a < 0 implies −ψ′(ρ1) < ψ′(ρ2)).

5.2 Optimal stopping of processes with two sided expo-

nential Green kernel

We consider here a subclass of processes introduced in Section 5.1 the aim be-
ing to apply results in Theorem 3.1 and 3.3. Indeed, let X be a Lévy process
having a Green kernel with the following simple exponential structure:

Gr(x) := Gr(0, x) =

{
−A1 e−ρ1 x, x < 0,

A2 e−ρ2 x, x ≥ 0,
(5.9)

where ρ1,2 are the roots of the equation ψ(z) = r such that ρ1 ≤ 0 < ρ2 and
A1,2 = 1/ψ′(ρ1,2). In the case r = 0 it is assumed that the process drifts to
−∞ and, hence, we have ρ1 = 0.

The Green kernel of form (5.9) appears in two basic cases which, using
the notation in (5.2) and (5.3), are:

• Wiener process with drift, i.e., b > 0, λ = µ = 0,

• compound Poisson process with negative drift and positive exponential
jumps, i.e., a < 0, b = 0, λ > 0 and µ = 0.
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The point we want to make here is that our approach to optimal stopping
treats these processes similarly. Recall that in the case of Wiener process
usually smooth pasting is valid when moving from the continuation region
to the stopping region but in the compound Poisson case there is �only� con-
tinuous pasting. In other words, our approach does not use smooth pasting
as a tool, but this property can, of course, be checked (when valid) from the
calculated explicit form of the value function.

Proposition 5.1. For a given x∗ ∈ R let σ be a measure on [x∗,+∞) with
a continuously di�erentiable density σ′ on (x∗,+∞). Then the function

V (x) :=

∫ ∞

x∗
Gr(y − x)σ(dy)

is two times continuously di�erentiable on D := {x ∈ R : x 6= x∗} and
satis�es on D the ordinary di�erential equation (ODE)

V ′′(x)− (ρ2 + ρ1)V
′(x) + ρ1ρ2V (x) (5.10)

= −(A2 + A1)σ
′′(x) + (ρ2A1 + ρ1A2)σ

′(x),

where σ′′(x) = σ′(x) = 0 for x ∈ (−∞, x∗).

Proof. From the de�nition of V , taking into account the form of the Green
kernel, we have for x > x∗

V (x) = −A1e
ρ1x

∫ x

x∗
e−ρ1yσ(dy) + A2e

ρ2x

∫ ∞

x

e−ρ2yσ(dy).

The right hand side of this equation can be di�erentiated twice proving that
V ′′ exist in D, and the claimed ODE is obtained after some straightforward
manipulations.

Corollary 5.2. Let X be a Wiener process with drift. Then the ODE in
(5.10) takes the form

b2

2
V ′′(x) + a V ′(x)− r V (x) = −(a2 + 2b2r)σ′(x). (5.11)

Proof. The quantities needed to derive (5.11) from (5.10) are

ρ1 = − 1

b2

(√
a2 + 2b2r + a

)
, ρ2 =

1

b2

(√
a2 + 2b2r − a

)
18



and
A1 = −

√
a2 + 2b2r, A2 =

√
a2 + 2b2r.

In particular, notice that A2 +A1 = 0 which re�ects the fact that the Green
kernel is continuous.

In Novikov and Shiryayev [18] the optimal stopping problem for a general
random walk with reward function max{0, xn}, n = 1, 2, . . . , is considered,
and the solution is characterized via the Appell polynomials associated with
the distribution of the maximum of the process. In the next example we
present explicit reults for a more general reward function, that is, max{0, xγ},
γ ≥ 1, but for a more particular Lévy process studied in the subsection.

Example 5.3. LetX denote a compound Poisson process with negative drift
and positive exponential jumps, i.e., take a < 0, b = 0 and µ = 0 in (5.1).
For simplicity, we consider optimal stopping problem without discounting:

sup
τ∈M

Ex (g(Xτ )) ,

where g(x) := max{0, xγ} with γ ≥ 1. For r = 0 the Green kernel of X is

G(x, 0) := G0(x, 0) =

{
A2 eρ x dx, x ≤ 0,

−A1, x > 0,
(5.12)

where
ρ := ρ2 = α+

λ

a
> 0 (5.13)

and
A1 =

α

λ+ aα
< 0, A2 =

λ

a(λ+ aα)
> 0.

Notice that ρ > 0 means that a.s. limt→∞Xt = −∞.
Our aim is to �nd a measure σ and a number x∗ such that the function

V de�ned via
V (x) =

∫
[x∗,+∞)

G(x, y)σ(dy) (5.14)

has properties (a), (b), (c) and (d) given in Theorem 3.1.
To begin with, consider equation (5.10) for x > x∗ and V (x) = xγ, that

is,
−σ′′(x) + ασ′(x) = aγ(γ − 1)xγ−2 − (aα+ λ) γxγ−1.
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Assuming limx→+∞ e−αx σ′(x) = 0 we obtain the solution

σ′(x) = −aγ xγ−1 − λeαx
∫ ∞

x

e−αyγ yγ−1 dy.

If γ = 1 then σ′(x) = −a − (λ/α) > 0. For γ > 1 it is easily seen that
σ′(0) < 0 and σ′(x) → +∞ as x→∞.

The claim is that the equation σ′(x) = 0, that is

xγ−1 =
λ

(−a)
eαx

∫ ∞

x

e−αz zγ−1 dz, (5.15)

has a unique solution for x > 0, which we denote by x∗γ−1. Equation (5.15)
is equivalent to

F (x, γ − 1) = 1, (5.16)

if we de�ne
F (x;u) :=

λ

(−a)

∫ ∞

0

e−αy
(
1 +

y

x

)u
dy. (5.17)

We revise some properties of the function just introduced.

Lemma 5.4. The function F (x, u) in (5.17) de�nes an implicit function
ϕ : [1,∞) → R such that F (ϕ(u), u) = 1 for each u ≥ 1. Furthermore, the
function ϕ is increasing, and satis�es the inequality

ϕ(1) < ϕ(u) <
u

ρ
. (5.18)

Proof. It is not di�cult to verify that, for �xed u > 0, the function F is
decreasing in x, and that

lim
x→0+

F (x, u) = ∞, lim
x→∞

F (x, u) =
λ

(−a)α
< 1.

This means that for any u ≥ 1 the equation F (x, u) = 1 has a unique solution
x := ϕ(u). Furthermore, it is also clear that, for �xed x > 0, the function
F (x, u) is increasing in u. This means, that ϕ is increasing, as

∂ϕ

∂u
= −∂F

∂x

(
∂F

∂u

)−1

> 0.
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Finally, multiplying the inequality(
1 + u

y

x

)
≤

(
1 +

y

x

)u
≤ euy/x

by e−αy and integrating we obtain that

F1(x, u) :=
λ

(−a)α

(
1 +

u

αx

)
< F (x, u) <

λ

(−a)
1

α− u/x
=: F2(x, u).

and (5.18) follows as the bounds are the respective roots of the equations
F1(x, u) = 1, F2(x, u) = 1, and, in particular, the root x1 of the �rst equation
is

x1 =
γλ

(−a)αρ
,

and x∗1 = −λ/aαρ. This last value can be computed from the equation
F (x, 1) = 1, and was found in [14]. This concludes the proof of the Lemma.

Observe now that for x > x∗γ−1 =: xoγ the function σ′ induces a positive
Radon measure on (xoγ,∞). However, since, for any constant c, the function
xγ + c induces the same measure as the function xγ it remains to �nd, the
support of σ of the form (x∗,∞) such that for all x > x∗

xγ =

∫
[x∗,+∞)

G(x, y)σ′(y) dy.

Therefore, consider∫ ∞

x

G(x, y)σ(dy) = A2 eρx
∫ ∞

x

e−ρy σ′(y) dy

= γ A2 eρx
∫ ∞

x

e−ρy
(
−a yγ−1 − λeαy

∫ ∞

y

e−αz zγ−1dz

)
dy.

Applying Fubini's theorem for the latter term yields∫ ∞

x

dy e(α−ρ)y
∫ ∞

y

dz e−αz zγ−1

=
1

α− ρ

(∫ ∞

x

e−ρz zγ−1 dz − e(α−ρ)x
∫ ∞

x

e−αz zγ−1 dz

)
.
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Observing that −a = λ/(α− ρ) we have∫ ∞

x

G(x, y)σ(dy) =
α− ρ

ρ
eαx

∫ ∞

x

e−αz γ zγ−1 dz

Consequently, after an integration by parts, the equation

xγ =
α− ρ

ρ
eαx

∫ ∞

x

e−αz γ zγ−1 dz

is seen to be equivalent with

xγ = (α− ρ) eαx
∫ ∞

x

e−αz zγ dz (5.19)

which coincides with equation (5.15) if therein γ − 1 is changed to γ. Hence,
equation (5.19) has a unique solution which is, using the notation introduced
above, x∗γ. As the function x = ϕ(u) is increasing, we know that xoγ = ϕ(γ −
1) < ϕ(γ) = x∗γ.

Next step is to verify that the value function obtained from (5.14) is
continuous and satis�es V (x) > xγ for x < x∗γ. Therefore consider for x < x∗γ

V (x) =

∫
[x∗γ ,+∞)

G(x, y)σ(dy) = eρ(x−x
∗
γ)(x∗γ)

γ. (5.20)

Consequently, V is continuous and

V (x) > xγ ⇔ e−ρx
∗
γ (x∗γ)

γ > e−ρxxγ. (5.21)

The right hand side of (5.21) holds if x 7→ G(x) := e−ρxxγ is increasing for
x < x∗γ. Clearly, G′ is positive if

−ρx+ γ > 0,

and this holds since x∗γ < γ/ρ by the second inequality in (5.18).
To conclude, the optimal stopping time τ ∗ is given by

τ ∗ := inf{t : Xt ≥ x∗γ},

and the value function V is for x < x∗γ as in (5.20). Since V ′(x∗γ−) = ρ(x∗γ)
γ

and g′(x∗γ) = γ(x∗γ)
γ−1 there is no smooth �t at x∗γ.
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We conclude by presenting the following table with some numerical re-
sults. The computations are done with Mathematica-package where one can
�nd a subroutine for incomplete gamma-function and programs for numerical
solutions of equations based on standard Newton-Raphson's method and the
secant method. A good starting value for Newton-Raphson's method seems
to be γ/ρ. It is interesting to notice from the table that if ρ << α then
x∗γ ' γ/ρ.
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α ρ −λ/a γ γ/ρ x∗γ xoγ

10 1 9 20 20 19.8896 18.8896

10 1 9 10 10 9.8902 8.8904

10 1 9 5 5 4.8915 3.8921

10 1 9 2.5 2.5 2.3939 1.3968

10 1 9 1 1 .9 −

10 9 1 20 2.2222 1.7613 1.6579

10 9 1 10 1.1111 .7511 .6547

10 9 1 5 .5555 .2881 .2045

10 9 1 2.5 .2789 .0917 .0319

10 9 1 1 .1111 .0111 −

1 .5 .5 20 40 38.1592 36.166

1 .5 .5 10 20 18.2726 16.2942

1 .5 .5 5 10 8.4369 6.5011

1 .5 .5 2.5 5 3.6529 1.8398

1 .5 .5 1 2 1 −
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