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Abstract

Consider a Lévy process with finite intensity positive jumps of the
phase-type and arbitrary negative jumps. Assume that the process either
is killed at a constant rate or drifts to —oco. We show that the distribution
of the overall maximum of this process is also of phase-type, and find the
distribution of this random variable. Previous results (hyperexponential
positive jumps) are obtained as a particular case.
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1 Introduction and main result

Consider a Lévy process X = {X;},>0 with finite intensity positive jumps of the
phase-type and arbitrary negative jumps. In order to describe the Lévy jump
measure of X consider a random variable U of phase-type, with distribution
B(y) and representation (m, T, d), where d is a positive integer, 7 = (71, ...,7q)
is the initial probability distribution, and the intensity matrix T, and asociated
exit rates vector t, are given by

ti1 o+ tig 51
, t= s, (1)
tqr - tdd tq

where t satisfies ¢; —I—ZZZI tix =0(j =1,...,d). For details and general results
on phase-type distributions we refer to Asmussen (2000), and Asmussen (1992).
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(In particular, we borrow the notation for the phase-type distributions from
Asmussen (1992).)
The Lévy measure of the considered Lévy process is

_Jy), y>0,

where b(y) = B'(y) = mexp(Ty)t is the density of the random variable U, the
constant A > 0 is the intensity of positive jumps, and K~ (dy) is an arbitrary
Lévy measure supported on the set (—oo,0). For general references on Lévy
process we refer to Bertoin (1996) and Sato (1999).

The purpose of this paper is, given 7 > 0, to compute the distribution of
the random variable

M= max X, (3)
0<t<T(v)

where T'(7y) is an exponential random variable with parameter v > 0, indepen-
dent of X, and we set T'(0) = co. We always assume that the random variable
M is proper, this always happens when v > 0, and follows form the fact (that
we assume) that the process drifts to —oo, i.e. P(lim;_ o, Xy = —00) = 1, when
v =0.

The characteristic exponent of X, defined by W(z) = logEe*Xt for the
complex values of z such that the last expectation is finite, is given, by the
Lévy-Khinchine formula, by

0
U(z) =az+ %(72;22 —|—/ (e —1—zh(y)) K (dy) + NEeV —1), (4

— 00

where the real constant « is the drift, fixed once the truncation function h(y) =
Y1l _1<y<oy is fixed, and o > 0 is the variance of the gaussian part of X.
The last summand in (4), that we denote U+(z2), is

UH(z) = ANEe® —1) = A(r(—2I-T) 't - 1), (5)

where T is the d x d identity matrix. Defining ¥~ (z) = ¥(z) — ¥ (2) we can
represent the process X as the sum of two independent Lévy processes, i.e. X; =
X, + X, (t > 0) where X = {X;"};>0 is a Lévy process with characteristic
exponent Ut (z); X~ = {X; }+>0 is a Lévy process with characteristic exponent
U~ (2).

In order to describe the distribution of M in (3) we must distinguish the
following two cases:

(A) The process X~ is not the negative of a subordinator. (This is the case,
for instance, when o > 0.)

(B) The process X ~ is the negative of a subordinator, including a deterministic
negative drift.



We begin by case (A). The idea is to show that M in (3) can be obtained
as the maximum of an associated random walk, with increments that are the
difference of two independent random variables, the first one of the phase-type
(—oo modified when v > 0), and to apply the clasical principles of Pollachek-
Khinchine renewal theory as presented in Chapter VI in Asmussen (2000).

Introduce the epoch of positive jumps of X by

Ty =0, Tn+1:inf{t>TnlAXt>O} (’I’LZO,I,...)7
and denote
TV =T, AT(v), T°=T, (n=1,2,...).

The random variables T,,+1 — T, (n =0,1,...) are independent and identically
distributed, with exponential distribution with parameter A.

Introduce

o= 0gieT) Xe = 0<ieTy X (6)

This random variable is the maximum of a Lévy process with no positive jumps
(the process X ) up to an independent random time 77, with exponential
distribution with parameter A + 7. In consequence, Uy has an exponential
distribution with parameter p, the positive root of ¥~ (z) = A+ (see Corollary
VIIL.1.2 in Bertoin (1996)).

Denote now the —oco modified (when ¢ > 0) magnitude of the positive jumps
of the process X by

U, — max{X; — Xpy_:t € [Tn, T,/ 1)}, if T, <T(v),
—00, it T(y) < Th,.

For n > 1, on the event {T,, < T'(v)} the random variable U, is of phase-type,
as
U, = XTn — X(Tn), =+ max (Xt — X(Tn)),
T <t<T)

is the sum of two independent phase-type distributed random variables, the first
with distribution B(y), and the second distributed as Uy in (6). In conclusion,
conditional to the event {T,,_1 < T(v)}, the random variable U,, is defective
with probability v/(\ + ), has initial distribution

- (2 0)

and representation (u,S,d 4 1), where the intensity matrix S, with the corre-
sponding exit rates vector s, are given by

t1n -t t 0

S — : : : : , s— | |, (7)
tqr -+ tgd g 0
0 ) O —p p



The absorbing state, for convinience, is A = —oc.
Introduce now the magnitude of negative increments by

Vn:X(Tn)—+Un_X(T,L+1)— (n:1,2,)

The random variables V,, are independent and identically distributed, with dis-
tribution A(y), and characteristic function

A(z)=Ee?"" =Ee "YW = Eexp(—z inf X;)
0<t<Ty
—2X _
—Ee % (Be )7
_ A+ Xp+z
Aty =T (=2) p

where we rely on fluctuation identities and Rogozin’s (1966) factorization iden-
tity. (See Bertoin (1996, chapter VI).)

Consider finally the sequence Uy, V1,U1, Vo, Us, ..., and set Vj = 0. Based on
the independence of increments of the Lévy process, we obtain the independence
of the vectors (Vp, Up), (V1,U1), (Va,Us), . ... On the other side, on each interval
of the form [T},,T+1), the path decomposition of the process (as described
in Theorem VI.2.5 of Bertoin (1996)) gives that each pair V,,, U, is formed
by independent random variables. In conclussion, the consiedered sequence is
formed by mutually independent random variables.

In view of our construction, we have

n n +
M=%é¥%wa=%g;%Wk—WJ=C%+(%g??Uw—%D

In order to find the ladder heigt distribution of the random walk Y~}'_ (Uy, —
Vi), we apply the Proposition VIII.4.3 in Assmussen (2000) (take conditional
probability on the event {V; = y} integrating with respect to A(dy)) to obtain
that the ladder heigth is of phase-type, with reprentation (u+,S,d + 1), where
u~+ is the solution of the nonlinear vectorial equation

pt = p /OOC exp ((S + sp+)y) A(dy) = pA(S + sp+). (8)

The maximum of the random walk (maxnzl ZZ=1(U1€ — Vk))Jr is the geo-
metric compound of the ladder heights (Gy)r>1, each of one has distribution of
the phase-type with representation (u+,S,d + 1), and in consequence, we have

M=Uy+Gi+-+Gy

where N is a geometric random variable, independent of the random walk, with
P(N =0) =1—|p+|. As the random variable Uy can be represented by
(ed+1,S,d + 1), where

€d+1 = (0,...,0, 1)7 (9)



we obtain that M is a geometric compound of random variables of phase-type,
with the same intensity matrix S, and the first has a different initial vector
e4+1. By example A5.10 in Asmussen (2000), we obtain that the maximum M
has representation (e44+1,S + su+,d + 1).

Consider now case (B). The situation is simpler, and in particular, we do not
have to rely on fluctuation results, reducing the problem to the computation
of the distribution of a random walk more directly. Following our previous
developement, we see that the differences are

e With the same definition, Uy = 0.

e With the same definition, for n > 1, we have U,, = X7, — X(1,)—, and
S = T. The corresponding initial distribution for U, is

e The random variables V,, are defined through the same formula, but

R A
A(z) =BVt = Aty ’Y_ )
Aty =19 (z)
being equivalent to the case p = oo in the corresponding formula for case

(A).

e The initial distribution of the ladder heights is 7+, defined as the solution
to the equation

A

+:
T A+

TA(S +su+). (10)

7r/0 exp ((T + t7r+)y)A(dy) =37 5

In conclusion, in this case
M=G + ---+Gxy

and the distribution of M has representation (7+, T + t7+,d).
We have then proved the following result.

Theorem 1. Consider a Lévy process X with characteristic exponent U(z) de-
fined in (4) and (5), a constant v > 0. Let T(y) be an exponential random
variable independent of X with parameter v > 0, let T(0) = 0, and define
M =max{X,: 0<t <T(vy)}. Then:

e In case (A), the random variable M is of phase-type, with a representation
(ed+1,S + su+,d + 1) defined, respectively in (9), (7), and (8).

e In case (B), the random variable M is of phase-type, whith a representa-
tion (m+, T + tn+,d) defined, respectively, in (1) and (10).



2 Hyperexponential positive jumps

Assume in this section that positive jumps in (2) are distributed according to
a mixture of exponential distributions, i.e. an hyperexponential distribution,
with a density

d
bly) = Y araxe ™,y >0,
k=1

where 0 < a1 < -+- < ag, the positive mixture coefficients aq,...,a; satisfy
a1+ -+ aq = 1; and K~ (dy) remains arbitrary. The characteristic exponent
in (4), in this particular case, is

0 d

U(z) =az+ %g2z2+/ (e —1 —zh(y))K‘(dy)—i—/\Zak
—oo k=1

z

(11)
aE — 2

In case (A), the equation ¥(z) = v has d + 1 positive roots py, that satisfy
O<pm <o <p2<--<ag<pg+1l.

This is clear in the case v > 0, and follows from the fact that ¥/(0+) > 0 (that
is equivalent to lim;_, Xy = —00 a.s.) in case v = 0 (see details in Mordecki
(1999)).
The characteristic function of the increment of the associated random walk,
is
- A A4y
F(z)=Eexp(U; —Vp) = eV

Ut (2) 4+ A
Ay =T (2)

In consequence, the equation F (z) = 1 has the same d+1 real and positive roots,
as the equation ¥(z) = v, and from Corollary VIIL.4.6 in Asmussen (2000) we
obtain that the matrix S 4+ su+ has —p1,..., —p4t1 as eigenvalues.

Let us now, with this information, compute the characteristic function of
M. Denoting the unknown vector u+ = (z1,...,2411), Q = S + su+, and q
the corresponding exit rates vector, we have

—ay - 0 a 0
Q= q=
0 e —y oy 0
rip - xqp  (Tgp1 — 1)p pler+ - +xge1 — 1)

According to (¢) in Theorem VIIL.1.5 in Asmussen (2000)

EeM = eqp1(—21 - Q) 'q. (12)



Taking into account the presence of zeros in e;41 and q, we must compute only
one element of the inverse matrix in (12). As we know the eigenvalues of Q we

have det(Q —z1) = [T42} (= px — 2), and det(—Q — 21) = (—1)41 det(Q + 21) =

Zﬂ(z — pk). Appliyng Cramer’s rule

2 [Ty (2 — o)
EesM = p|lu+ | — 1) x 2b=LE=20

k= 1(Z_Pk)

Evaluating this expresion an z = 0, we conclude that

EezM_Hk (2 — o) Hk 1 (=)
d+1 Z = Pk) Hk 1( k)

d+1

(

2
7Hk (1= z/ak): A, Pk 13
50— /) > A——— (13)

k
=2/ e E

where we find the coeficients Aj,..., Agy1 introduced in the last expression
through the simple fractional expansion Theorem, to obtain

d
11 =pj/a )
Ay = 1(1’61—1( pilax) (G=1,...,d+1).
Hk:l,k;éj(l = pj/Pr)

This is the result in Mordecki (1999).
Consider now case (B). As X~ is the negative of a subordinator, based on
Bertoin (1996, pp. 72-73), we obtain that

0
U~ (2) =az —|—/ (e*¥ — 1)K~ (dy),
where a < 0, and fi)oo (1 A \y|)K*(dy) < 00, i.e. the process X~ has finite
variation and negative drift. Furthermore, lim,_,o, ¥~ (z) = a (x real). Based
on this considerations, and on the fact that the function ¥~ (z) is convex, we
obtain that the equation

0

U(z) = 1)K (dy) + A = 14
() =zt [ (@ =DK@+ ’;akak_z v
has d real and positive roots p (kK =1,...,d) that satisfy

0<pr <o < - <pg<ag. (15)

This is again clear in the case v > 0, and follows from the fact that ¥'(0+) > 0
(that is equivalent to lim;—,o, X; = —00 a.s.) in case v = 0.

We now consider the e-perturbed Lévy process X© = { X };>0 with charac-
teristic exponent

0 d

1
Ue(2) = az + 552;52 +/ (e — 1)K~ (dy) + )\Z ay

- k=1

z

ap — 2



that satisfies the hypothesis of case (A) in this section, and has d + 1 roots
p5 (k=1,...,d+ 1), that satisfy the conditions

0<pi <oy <ps<---<ag<pgyr

As e — 0, we have pj, — p. (k=1,...,d) in (15), and p3,; — oo. As ¥%(2) —
U(z) in (14), we have weak convergence of processes, and in consequence,

M®= max X;—> M= max X (weakly).
0<t<T(v) 0<t<T ()

The characteristic function of M can then be obtained taking limit in (13), so
d
€ 1 -
E ¢ = lim B¢ = lim L=t = 2/0%)
=0 =0 [Tz (1= 2/00)
d d
1—
[lies (W =2/pr) = PR 2

where, in the last step, we again apply the simple fractional expansion Theorem,
to obtain

_ ooy (1= pj/o)
Ty s (L= pi/pn)

This concludes the proof of the following result.

; (G=1,....d).

Theorem 2. Let X be a Lévy process with finite intensity hyperexponential
positive jumps, and characteristic exponent given by (11). Consider v > 0 and
T(v) an exponential random variable independent of X with parameter v > 0;
set T(0) = 0, and define M = max{X;: 0 <t < T(v)}. Then:

e In case (A), the random variable M is also hyperexponential, with d + 1
components, and characteristic function given in (13).

e In case (B), the random variable M is also hyperezponential, now with d
components, and characteristic function given in (16).

3 Conclussions

In the presented paper we consider the problem of the determination of the
distribution of the overall maximum of a Lévy process X = {X;};>0, with
characteristic exponent W(z), either killed at a constant rate v > 0 or that
drifts to —oo. As follows from the corresponding results obtained for random
walks (see for instance Assmusen (1992) or Kemperman (1961)) it seems that
the most general framework to obtain closed explicit solutions in the posed
problem, is when one has arbitrary negative jumps for X, and a specification
on the structure of positive jumps.

In what respects to the methods available to solve this problem, we can
indicate at least three:



(1) The Wiener-Hopf factorization method, based in Rogozin (1966) factor-
ization identity, that states

.
7= ¥(z)

where M = max{X;: 0 <t < T(y)}, I = min{X;: 0 < ¢ < T(y)}, and
T(v) is an exponential time (with parameter v > 0) independent of X.
The uniqueness of the factors in (17) allows to identify the characteristic
functions of M and I, in different situations. For instance, Asmussen et
al. (2002) gave the distribution of M when positive and negative jumps
are of phase-type. This factorization seems to be aplicable when the Lévy
measure has a rational Laplace transform.

=EeMEe, (17)

(2) The martingale method. Once the form of the distribution is known, the
method consists in the application of Doob’s optional sampling theorem
(frecuently with the help of Ito’s formula) to verify that the given form
is efectively the distribution to find. This method was used in Mordecki
(1999) to obtain the distribution in case of a Lévy process with arbitrary
negative jumps and hyperexponential positive jumps; and in Asmussen
et. al (2002) an outline of the proof is given when considering the more
general situation, of positive jumps of phase-type and arbitrary negative
jumps.

(3) The Pollachek-Khinchine method, based on renewal arguments, as ex-
posed in Asmussen (2000) for random walks with phase-type positive
jumps, adapted in the presented article to the case of Lévy processes,
to consider the case when positive jumps are of phase-type and negative
jumps remain arbitrary.
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