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Abstract

The aim of this work is to use a duality approach to study the
pricing of derivatives depending on two stocks driven by a bidimen-
sional Lévy process. The main idea is to apply Girsanov’s Theorem
for Lévy processes, in order to reduce the posed problem to the pricing
of a one Lévy driven stock in an auxiliary market, baptized as “dual
market”. In this way, we extend the results obtained by Gerber and
Shiu (1996) for two dimensional Brownian motion. Also we examine
an existing relation between prices of put and call options, of both the
European and the American type. This relation, based on a change
of numeraire corresponding to a change of the probability measure
through Girsanov’s Theorem, is called put–call duality. It includes as
a particular case, the relation known as put–call symmetry. Necessary
and sufficient conditions for put–call symmetry to hold are obtained,
in terms of the triplet of predictable characteristic of the Lévy process.
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1 Introduction

Since Margrabe’s (1978) paper, many important extensions have been
carrying on to study derivatives written on two stocks. Margrabe studied the
pricing of European options for the case of two non-dividend-paying stocks
driven by geometric Brownian motions, to be more exactly, the pricing of
the right to change one asset for another at the end of some fixed period of
time obtaining closed form formulas for this problem, extending in this way
the Black and Scholes pricing model.
The American option pricing problem leads to the solution of an optimal
stopping problem, that in general does not admit closed form solutions (see
Jacka (1991)). In the perpetual case, i.e. the option has no expiration date,
Gerber and Shiu (1996) obtain a closed form formula using the optional sam-
pling theorem, assuming that stock prices are driven by geometric Brownian
motions and stocks pay constant rate continuous dividends. They also study
the pricing of the Perpetual Maximum Option, it is an option whose payoff
is the maximum between two or more stocks and has no expiration date,
and finally they study American perpetual options with more general payoffs
which are homogeneous of degree one.
In the present paper we consider the problem of pricing European and Amer-
ican type derivatives written on a two dimensional stock driven by a two
dimensional Lévy processes (it can be said that the stock follows a two di-
mensional geometric Lévy process), with a payoff function homogeneous of
an arbitrary degree.
In the second part of the paper we study an existing relation between prices
of put and call options, of both the European and the American type. This
relation is called put–call duality. It includes as a particular case, the relation
known as put–call symmetry. We suppose that the underlying stock in the
market model is driven by a general Lévy processes, i.e. a stochastic process
with independent and homogeneous increments, possible with discontinuous
paths. In this market model, called a Lévy market, necessary and sufficient
conditions for put–call symmetry to hold are obtained, in terms of the drift,
the volatility, and the jump structure of the underlying log–stock price (i.e.
in terms of the triplet of predictable characteristic of the Lévy process).
As particular cases, we obtain the known conditions for symmetry in the
lognormal jump–diffusion model introduced by Merton (1976), and examine
other models of asset returns proposed in the literature. The corresponding
results for stochastic volatility models, and for diffusion with jumps were
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obtained in Schroder (1999).
The paper is organized as follows: in section 2 we describe the market model
and introduce the pricing problem, illustrating with several important exam-
ples of traded derivatives. In section 3 we describe the Dual Market Method,
a method which allows to reduce the two stock problem into a one stock
problem. In section 4 we derive some closed form formulas based on the pro-
posed method and known results for one-dimensional problems. In section
5 we study the put–call duality relation and finally we have the conclusions
and an appendix.

2 Market Model

2.1 Multidimensional Lévy processes

Let X = (X1, . . . , Xd) be a d-dimensional Lévy process defined on a
stochastic basis B = (Ω,F , {F}t≥0, P ). This means that X is a stochastically
continuous stochastic process with independent increments, such that the
distribution of Xt+s − Xs does not depend on s, with P (X0 = 0) = 1 and
trajectories continuous from the left with limits from the right. The basis B is
supposed to satisfy the usual assumptions, i.e. continuity from the right and
F0 is P complete. For z = (z1, . . . , zd) in Cd, when the integral is convergent
(and this is always the case if z = iλ with λ in IRd), Lévy-Khinchine formula
states, that EezXt = exp(tψ(z)) where the function ψ is the characteristic
exponent of the process, and is given by

ψ(z) = (a, z) +
1

2
(z,Σz) +

∫
IRd

(
e(z,y) − 1− (z, y)1{|y|≤1}

)
Π(dy), (1)

where a = (a1, . . . , ad) is a vector in IRd, Π is a positive measure defined on
IRd \{0} such that

∫
IRd

(|y|2∧1)Π(dy) is finite, and Σ = ((sij)) is a symmetric
nonnegative definite matrix, that can always be written as Σ = A′A (where
′ denotes transposition) for some matrix A.
The triplet (a,Σ,Π) completely determines the law of the process X. Partic-
ular interest has the case when α =

∫
IRd

Π(dy) is finite, i.e. X is a diffusion
with jumps. Introducing F by Π(dy) = αF (dy), Lévy-Khinchine formula is
(changing the value of a if necessary)

ψ(z) = (a, z) +
1

2
(z,Σz) +

∫
IRd

(
e(z,y) − 1

)
Π(dy), (2)
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and the process X = {Xt}t≥0 can be represented by

Xt = at+ AWt +
Nt∑
k=1

Yk,

where W is a standard d-dimensional Brownian motion, N = {Nt}t≥0 is a
Poisson process with parameter α, and {Yk}k≥1 is a sequence of independent
d-dimensional random vectors with identical distribution F (dy).
Another important case is when the coordinates of X are independent pro-
cesses. This happens if and only if Σ is a diagonal matrix (and A can
be chosen to be diagonal also) and the measure Π has support on the set
{x ∈ IRd :

∏d
k=1 xk = 0}, (i.e. it is concentrated on the union of the coor-

dinate axes, see E 12.10 in Sato (1999)). In this case ψ(z) =
∑d

k=1 ψk(zk),
where ψk is the characteristic exponent of the k-coordinate of X, given by

ψk(zk) = akzk +
1

2
skkz

2
k +

∫
IR

(
ezky − 1− zky1{|y|≤1}

)
Πk(dy),

where Πk(A) =
∫
{x∈IRd : xk∈A}

Π(dx).

2.2 Market and Problem

Consider a market model with three assets (S1, S2, S3) given by

S1
t = eX

1
t , S2

t = S2
0e
X2
t , S3

t = S3
0e
X3
t (3)

where (X1, X2, X3) is a three dimensional Lévy process, and for simplicity,
and without loss of generality we take S1

0 = 1. The first asset is the bond and
is usually deterministic. Randomness in the bond {S1

t }t≥0 allows to consider
more general situations, as for example the pricing problem of a derivative
written in a foreign currency, referred as Quanto option.
Consider a function:

f : (0,∞)× (0,∞)→ IR

homogeneous of an arbitrary degree α; i.e. for any λ > 0 and for all positive
x, y

f(λx, λy) = λαf(x, y).

In the above market a derivative contract with payoff given by

Φt = f(S2
t , S

3
t )
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is introduced.
Assuming that we are under a risk neutral martingale measure, thats to say,
Sk

S1 (k = 2, 3) are P -martingales, i.e. P is an equivalent martingale measure
(EMM)1, we want to price the derivative contract just introduced. In the
European case, the problem reduces to the computation of

ET = E(S2
0 , S

3
0 , T ) = E

[
e−X

1
T f(S2

0e
X2
T , S3

0e
X3
T )
]

(4)

In the American case, if MT denotes the class of stopping times up to time
T , i.e:

MT = {τ : 0 ≤ τ ≤ T, τ stopping time}
for the finite horizon case, putting T =∞ for the perpetual case, the problem
of pricing the American type derivative introduced consists in solving an
optimal stopping problem, more precisely, in finding the value function AT
and an optimal stopping time τ ∗ in MT such that

AT = A(S2
0 , S

3
0 , T ) = sup

τ∈MT

E
[
e−X

1
τ f(S2

0e
X2
τ , S3

0e
X3
τ3 )
]

= E
[
e−X

1
τ∗f(S2

0e
X2
τ∗ , S3

0e
X3
τ∗ )
]
.

2.3 Examples of Derivatives

In what follows we introduce some relevant derivatives as particular cases
of the problem described.

2.3.1 Option to Default. Consider the derivative which has the payoff

f(x, y) = min{x, y}

if X1 = rt, then the value of the Option to Default a promise S1
T backed by

a collateral guarantee S2
T , at the time T would be:

D = E
[
e−rT min{S1

T , S
2
T}
]

2.3.2 Margrabe’s Options. Consider the following cases:

a) f(x, y) = max{x, y}, called the Maximum Option,

1See appendix
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b) f(x, y) = |x− y|, the Symmetric Option,

c) f(x, y) = min{(x− y)+, ky}, the Option with Proportional Cap.

2.3.3 Swap Options. Consider

f(x, y) = (x− y)+,

obtaining the option to exchange one risky asset for another.

2.3.1Quanto Options. Consider

f(x, y) = (x− ky)+,

and take S2
t = 1, then

ET = EeX
1
T (S1

T − k)+

where eX
1
T is the spot exchange rate ( foreign units/domestic units) and S1

T

is the foreign stock in foreign currency. Then we have the price of an option
to exchange one foreign currency for another.

2.3.4 Equity-Linked Foreign Exchange Option (ELF-X Option). Take

S = S1 : foreign stock in foreign currency

and Q is the spot exchange rate. We use foreign market risk measure, then
an ELF-X is an investment that combines a currency option with an equity
forward. The owner has the option to buy St with domestic currency which
can be converted from foreign currency using a previously stipulated strike
exchange rate R (domestic currency/foreign currency). The payoff is:

Φt = St(1−RQt)
+

Then take S2
t = 0 and f(x, y) = (y −Rx)+.

2.3.5 Vanilla Options. Take
X1
t = rt,

then in the call case we have

f(x, y) = (x− ky)+

and
f(x, y) = (ky − x)+

in the put case, with S3
t = S3

0e
Xt and S2

t = 1.
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3 Dual Market method

The main idea to solve the posed problems is the following: make a change
of measure through Girsanov’s Theorem for Lévy processes, in order to reduce
the original problems to a pricing problems for an auxiliary derivative written
on one Lévy driven stock in an auxiliary market with deterministic interest
rate. This method was used in Shepp and Shiryaev (1994) and Kramkov and
Mordecki (1994) with the purpose of pricing American perpetual options with
path dependent payoffs. It was employed by Aloisio and De Deus (1997) to
consider the pricing of swaps, and is strongly related with the election of the
numéraire (see Geman et al. (1995)). This auxiliary market will be called
the Dual Market.
More precisely, observe that

e−X
1
t f(S2

0e
X2
t , S3

0e
X3
t ) = e−X

1
t +αX3

t f(S2
0e
X2
t−X3

t , S3
0),

let ρ = − log Ee−X
1
1 +αX3

1 , that we assume finite. The process

Zt = e−X
1
t +αX3

t +ρt (5)

is a density process (i.e. a positive martingale starting at Z0 = 1) that
allow us to introduce a new measure, the dual martingale measure, P̃ by its
restrictions to each Ft by the formula

dP̃t
dPt

= Zt.

Denote now by X̃t = X2
t −X3

t , and St = S2
0e
X̃t . Finally, let

F (x) = f(x, S3
0).

With the introduced notations, under the change of measure we obtain

ET = Ẽ
[
e−ρTF (ST )

]
AT = sup

τ∈MT

Ẽ
[
e−ρτF (Sτ )

]
The following step is to determine the law of the process X under the auxiliar
probability measure P̃ .
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Lemma 3.1. Let X be a Lévy process on IRd with characteristic exponent
given in (1). Let u and v be vectors in IRd. Assume that Ee(u,X1) is finite,
and denote ρ = − log Ee(u,X1) = −ψ(u). In this conditions, introduce the
probability measure P̃ by its restrictions P̃t to each Ft by

dP̃t
dPt

= exp[(u,Xt) + ρt].

Then
(a) the law of the unidimensional Lévy process {(v,Xt)}t≥0 under P̃ is given
by the triplet

ã = (a, v) + 1
2
[(v,Σu) + (u,Σv)] +

∫
IRd
e(u,y)(v, y)1{|(v,y)|≤1,|x|>1}Π(dx)

σ̃2 = (v,Σv)
π̃(A) =

∫
IRd

1{(v,y)∈A}e
(u,y)Π(dy).

(6)

(b) In the particular case when X is a diffusion with jumps which charac-
teristic exponent given in (2) the law of the unidimensional Lévy process
{(v,Xt)}t≥0 under P̃ is given by the triplet

ã = (a, v) + 1
2
[(v,Σu) + (u,Σv)]

σ̃2 = (v,Σv)
π̃(A) =

∫
IRd

1{(v,y)∈A}e
(u,y)Π(dy).

(7)

Furthermore, the intensity of the Poisson process under P̃ is given by

α̃ =

∫
IRd
e(u,y)Π(dy) = α

∫
IRd
e(u,y)F (dy)

(c) Assume (b), and let Π(dy) = αF (dy) where F is the common distribution
of the random variables {Yk}k≥1, and has characteristic function (under P )
given by

φ(z) =

∫
IRd
e(z,y)F (dy).

Then, the characteristic function of the same random variables under P̃ is
given by

φ̃(θ) =
φ(θv + u)

φ(u)
. (8)
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Remark: Consider a diffusion with gaussian jumps, in what can be consid-
ered as a multidimensional extension of the jump-diffusion model proposed
by Merton (1976). Then, the characteristic function corresponding to the
distribution of the jumps is given by

φ(z) = exp[(z, µ) +
1

2
(z,∆z)],

where the d-dimensional vector µ is the drift of the jumps, and the nonnega-
tive definite matrix ∆ is the covariance. According to (8), the characteristic
exponent of the jumps of the process {(v,Xt)}t≥0 under the probability mea-
sure P̃ in the Lemma 3.1 is given by

φ̃(θ) =
φ(θv + u)

φ(u)
= exp

{
θ((v, µ) +

1

2
[(v,∆u) + (u,∆v)]) +

1

2
θ2(v,∆v)

}
.

(9)

In conclusion, jumps under P̃ are also gaussian, with mean and variance
obtained in (9)

Proof. First compute the expectation under P̃ as an expectation under P .

Ẽeθ(v,Xt) = Ee(u+θv,Xt)+ρt = exp{t[ψ(u+ θv,Xt)− ψ(u)]}.

Now, compute the characteristic exponent of (v,X),

ψ(u+ θv)− ψ(u) = (a, u+ θv)− (a, u) +
1

2
[(u+ θv,Σu+ θv)− (u,Σu)

+

∫
IRd

(
e(u+θv,y) − 1− (u+ θv, y)1{|y|≤1}

)
Π(dy)

−
∫
IRd

(
e(u,y) − 1− (u, y)1{|y|≤1}

)
Π(dy)

= θ{(a, v) +
1

2
[(v,Σu) + (u,Σv)]}+

1

2
(v,Σv)

+

∫
IRd

(
e(u+θv,y) − e(u,y) − (θv, y)1{|y|≤1}

)
Π(dy)

= θ{(a, v) +
1

2
[(v,Σu) + (u,Σv)] +

∫
IRd
e(u,y)(v, y)1{|(v,y)|≤1,|x|>1}Π(dx)}

+
1

2
(v,Σv) +

∫
IRd

(
e(θv,y) − 1− (θv, y)1{|y|≤1}

)
e(u,y)Π(dy)
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giving (6).
In what concerns (7), similar calculations give the result.
Let us see (c). As the distribution of the jumps under P̃ is given by 1

α̃
π̃(dy),

φ̃(θ) =
1

α̃

∫
R

eθxπ̃(dx)

=
α

α̃

∫
IR

e(θv+u,y)F (dy) =
φ(θv + u)

φ(u)
.

4 Examples

European derivative

Let X1
t = rt and (X2

t , X
3
t ) be a bidimensional Lévy Process. We show how

to obtain a formula for the value of an option to exchange one risky asset for
another at the end of a determined period, as was considered by Margrabe
(1978). Let S2

T and S3
T be two risky assets, a contract with payoff (S2

T −S3
T )+

can be priced using The Dual Market Method:

D = E
[
e−rT (S2

T − S3
T )+
]
.

=

∫
A
e−rT (S2

0e
X2
T − S3

0e
X3
T )dP

Assuming for simplicity S2
0 = S3

0 = 1, Then A = {ω ∈ Ω : X2
T (ω) > X3

T (ω)},
we proceed to applied the method:

D =

∫
A
e−rT (eX

2
T − eX3

T )dP

=

∫
{ST>1}

e−rT eX
3
T (ST − 1)dP

where ST = eXT and X = X2 −X3. Now, to use the dual measure, observe
that ρ = − log Ee−r+X

3
1 = r − log EeX

3
1 , then:

dP̃ =
eX

3
T

EeX
3
T

dP
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With all this:

D = e−ρT
∫
{ST>1}

(ST − 1)dP̃

D = e−ρT
∫
{ST>1}

STdP̃ − e−ρT
∫
{ST>1}

dP̃

Now to reduce this expression we need to assume a distribution for X and
then apply the Lemma 3.1 to obtain the density of ST under P̃ . For example,
assume a multidimensional version of the model proposed by Merton (1976),
by part (c) of lemma 3.1 and taking u = (−1, 0, 1), v = (0, 1,−1),µ =
(µ1, µ2, µ3) and ∆ = [σij], we have that jumps under P̃ are also gaussian
with mean (µ2− µ3) + (σ13 + σ23− σ12− σ2

3) and variance σ2
2 + σ2

3 − 2σ23. In
this way an analogous formula to the one obtained by Merton (1976) can be
obtained.
It is worth noting that instead of assuming a distribution for X, we can make
the following change of measure :

dP̂ =
eX

2
T

EeX
2
T

dP

we obtain:

D = e−ρT
∫
{ST>1}

eX
2
T−X

3
T
eX

3
T

EeX
3
T

dP − e−ρT P̃ (ST > 1)

D = e−ρT
EeX

2
T

EeX
3
T

P̂ (ST > 1)− e−ρT P̃ (ST > 1)

which is analogous to the formula obtained by Gerber and Shiu (1994). The
original formula obtained by Margrabe (1978) was extended by Stulz (1982)
to contracts with payoffs:

(min{S2(T ), S3(T )} −K)+

And finally extended to the case of several assets by Johnson (1987). Un-
fortunately our method does not applied, since the payoffs are not longer
homogenous of any degree, unless K = 0.
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American derivative

Now consider an American perpetual swap, it is a derivative with the
payoff function at any time t given by

f(S2
t , S

3
t ) = (S2

t − S3
t )

+

then using the Dual market method, the pricing problem of this derivative
would be :

AT = sup
τ∈MT

Ẽ
[
e−ρτ (Sτ − S3

0)+
]

= Ẽ
[
e−ρτ

∗
(Sτ∗ − S3

0)+
]
,

and this problem can be solved using the following proposition

Proposition 4.1. Let M = supo≤t≤τ Xt with τ an independent exponential

random variable with parameter ρ, then ẼeM <∞ and

A(S2
0 , S

3
0) =

Ẽ
[
S2

0e
M − S3

0 Ẽ(eM)
]

Ẽ(eM)

the optimal stopping time is

τ ∗c = inf{t ≥ 0, St ≥ S3
0 Ẽ(eM)}

Proof. See Mordecki (2002).

5 Put-Call Duality and Symmetry

In this section we will obtain the put-call duality relationship as a particular
case of our Lema 3.1 and then we will derive the put-call symmetry.
Now consider a Lévy market where X1

t = rt, X2
t = 0 and X3

t = Xt. In other
words we have a riskless asset that we denote by B = {Bt}t≥0, with

Bt = ert, r ≥ 0,

where we take B0 = 1 for simplicity, and a risky asset that we denote by
S = {St}t≥0,

St = S0e
Xt , S0 = ex > 0. (10)
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In this section we assume that the stock pays dividends, with constant rate
δ ≥ 0, and as in section 2, we assume that the probability measure P is the
chosen equivalent martingale measure. In other words, prices are computed
as expectations with respect to P , and the discounted and reinvested process
{e−(r−δ)tSt} is a P–martingale.
In terms of the characteristic exponent of the process this means that

ψ(1) = r − δ, (11)

based on the fact, that Ee−(r−δ)t+Xt = e−t(r−δ+ψ(1)) = 1, and condition (11)
can also be formulated in terms of the characteristic triplet of the process X
as

a = r − δ − σ2/2−
∫
IR

(
ey − 1− y1{|y|≤1}

)
Π(dy). (12)

In the case, when

Xt = σWt + at (t ≥ 0), (13)

where W = {Wt}t≥0 is a Wiener process, we obtain the Black–Scholes–
Merton (1973) model (see [4],[20]).
In the market model considered we introduce some derivative assets. More
precisely, we consider call and put options, of both European and American
types.
Let us assume that τ is a stopping time with respect to the given filtration F ,
that is τ : Ω→ [0,∞] belongs to Ft for all t ≥ 0; and introduce the notation

C(S0, K, r, δ, τ, ψ) = Ee−rτ (Sτ −K)+ (14)

P(S0, K, r, δ, τ, ψ) = Ee−rτ (K − Sτ )+ (15)

If τ = T , where T is a fixed constant time, then formulas (14) and (15) give
the price of the European call and put options respectively.

5.1 Put–Call duality

The following proposition presents a relationship that we have called Put-Call
duality.
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Proposition 1. Consider a Lévy market with driving process X with char-
acteristic exponent ψ(z) given by

ψ(q) = iaq − 1

2
σ2q2 +

∫
IR

(
eiqy − 1− iqy1{|y|<1}

)
Π(dy), (16)

defined on the set

C0 =
{
z = p+ iq ∈ C :

∫
{|y|>1}

epyΠ(dy) <∞
}
. (17)

Then, for the expectations introduced in (14) and (15) we have

C(S0, K, r, δ, τ, ψ) = P(K,S0, δ, r, τ, ψ̃), (18)

where

ψ̃(z) = ãz +
1

2
σ̃2z2 +

∫
IR

(
ezy − 1− zy1{|y|≤1}

)
Π̃(dy) (19)

is the characteristic exponent (of a certain Lévy process) that satisfies

ψ̃(z) = ψ(1− z)− ψ(1), for 1− z ∈ C0,

and in consequence,
ã = δ − r − σ2/2−

∫
IR

(
ey − 1− y1{|y|≤1}

)
Π̃(dy),

σ̃ = σ,

Π̃(dy) = e−yΠ(−dy).

(20)

Proof. In this market the martingale Z = {Zt}t≥0 defined by (5) is given by

Zt = eXt−(r−δ)t (t ≥ 0). (21)

As we have done in the latter section we introduce the dual martingale mea-
sure P̃ given by its restrictions P̃t to Ft by

dP̃t
dPt

= Zt,

where Pt is the restriction of P to Ft. Now

C(S0, K, r, δ, τ, ψ) = Ee−rτ (S0e
Xτ −K)+ = EZτe

−δτ (S0 −Ke−Xτ )+

= Ẽe−δτ (S0 −KeX̃τ )+
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where Ẽ denotes expectation with respect to P̃ , and the process X̃ = {X̃t}t≥0

given by X̃t = −Xt (t ≥ 0) is the dual process (see [3]). In order to conclude
the proof, that is, in order to verify that

Ẽe−δτ (S0 −KeX̃τ )+ = P(K,S0, δ, r, τ, ψ̃),

we must verify the dual process X̃ is a Lévy process with characteristic
exponent defined by (19) and (20). To this end take u = (−1, 0, 1) and
v = (0, 0− 1) in Lemma 3.1 part (a). This concludes the proof.

Some remarks are in order. Our Proposition 1 is very similar to Proposition
1 in Schroder (1999). The main difference is that the particular structure
of the underlying process (Lévy process are a particular case of the model
considered in [25]) allows to completely characterize the distribution of the
dual process X̃ under the dual martingale measure P̃ , and to give a simpler
proof.
The proof of the proposition motivates us to introduce the following market
model. Given a Lévy market with driving process characterized by ψ in (16),
consider a market model with two assets, a deterministic savings account
B̃ = {B̃t}t≥0, given by

B̃t = eδt, r ≥ 0,

and a stock S̃ = {S̃t}t≥0, modelled by

S̃t = KeX̃t , S0 = ex > 0,

where X̃ = {X̃t}t≥0 is a Lévy process with characteristic exponent under
P̃ given by ψ̃ in (19). This market is the auxiliary market in Detemple
(2001), and we call it dual market ; accordingly, we call Put–Call duality the
relation (18). It must be noticed that Peskir and Shiryaev (2001) propose the
same denomination for a different relation in [23]. Finally observe, that in the
dual market (i.e. with respect to P̃ ), the process {e−(δ−r)tS̃t} is a martingale.
As a consequence, we obtain the Put–Call symmetry in the Black–Scholes–
Merton model: In this case Π = 0, we have no jumps, and the characteristic
exponents are

ψ(z) = (r − δ − σ2/2)z + σ2z2/2,

ψ̃(z) = (δ − r − σ2/2)z + σ2z2/2.
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and relation (18) is the result known as put–call symmetry.

5.2 Symmetric markets

It is interesting to note, that in a market with no jumps the distribution (or
laws) of the discounted (and reinvested) stocks in both the given and dual
Lévy markets coincide. It is then natural to define a market to be symmetric
when this relation hold, i.e. when

L
(
e−(r−δ)t+Xt | P

)
= L

(
e−(δ−r)t−Xt | P̃

)
, (22)

meaning equality in law. In view of (20), and to the fact that the characteris-
tic triplet determines the law of a Lévy processes, we obtain that a necessary
and sufficient condition for (22) to hold is

Π(dy) = e−yΠ(−dy). (23)

This ensures Π̃ = Π, and from this follows a− (r − δ) = ã− (δ − r), giving
(22), as we always have σ̃ = σ. Condition (23) answers a question raised by
Carr and Chesney (1996), see [5].

5.3 Examples and applications

In this section we consider that the Lévy measure of the process has the form

Π(dy) = eβyΠ0(dy),

where Π0(dy) is a symmetric measure, i.e. Π0(dy) = Π0(−dy). In many
cases, the Lévy measure has a Radon-Nikodym density, and we have

Π(dy) = eβyp(y)dy, (24)

where p(x) = p(−x), that is, the function p(x) is even.
In this way, we want to model the asymmetry of the market through the
parameter β. As a consequence of (23), we obtain that when β = −1/2 we
have a symmetric market. This proposal is similar, in certain sense, to the
skewness premium introduced by Bates (1997) in [2]. The idea is to describe
numerically the departure from the symmetry, the main difference with Bates
(1997) is that the parameter β is a property of the market, independent of the
derivative asset considered. It is also interesting to note, that practically all
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parametric models proposed in the literature, in what concerns Lévy markets,
including diffusions with jumps, can be reparametrized in the form (24) (with
the exception of Kou (2000), see anyhow Kou and Wang (2001)). Let us
consider some examples

5.3.1 Generalized Hyperbolic Model

This model has been proposed by Eberlein and Prause (1998) as they allow
for a more realistic description of asset returns (see [8]). This model has
σ = 0, and a Lévy measure given by (24), with

p(y) =
1

|y|

(∫ ∞
0

exp
(
−
√

2z + α2|y|
)

π2z
(
J2
|λ|(δ
√

2z) + Y 2
|λ|(δ
√

2z)
)dz + 1{λ≥0}λe

−α|y|
)
,

where α, β, λ, δ are real parameters that satisfy the conditions 0 ≤ |β| <
α, and δ > 0; and Jλ, Yλ are the Bessel functions of the first and second
kind (for details see [8]). Particular cases are the hyperbolic distribution,
obtained when λ = 1; and the normal inverse gaussian when λ = −1/2. The
statistical estimation β = −24.91 is given in [8] for the daily returns of the
DAX (German stock index) for the period 15/12/93 to 26/11/97 (The other
parameters are also estimated). This indicates the absence of symmetry.

5.3.2 The CGMY market model

This Lévy market model, proposed by Carr et al. (2002) in [6] is characterized
by σ = 0 and Lévy measure given by (24), where the function p(y) is given
by

p(y) =
C

|y|1+Y
e−α|y|.

The parameters satisfy C > 0, Y < 2, and G = α + β ≥ 0, M = α− β ≥ 0,
where C,G,M, Y are the parameters used in [6].
For studying the presence of a pure diffusion component in the model, con-
dition σ = 0 is relaxed, and risk neutral distribution are estimated in a five
parameters model. Values of β = (G −M)/2 are given for different assets,
and in the general situation, the parameter β is negative, and less than −1/2.
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5.3.3 Diffusions with jumps

Consider the jump–diffusion model proposed by Merton (1976) in [21]. The
driving Lévy process in this model has Lévy measure given by

Π(dy) = λ
1

δ
√

2π
e−(y−µ)2/(2δ2),

and is direct to verify that condition (23) holds if and only if 2µ + δ2 = 0.
This result was obtained by Bates (1997) in [2]. The Lévy measure also
corresponds to the form in (24), if we take β = µ/δ2, and

p(y) = λ
1

δ
√

2π
e

(
−(y2+µ2)/(2δ2)

)
.

A recent alternative jump distribution was proposed by Kou and Wang (2001)
in [17]. The Lévy measure has the form (24), where

p(y) = λe−α|y|.

It can be observed that this is a particular case of the CGMY model, when
Y = −1. In another model Eraker, Johansen and Polson (2000) introduce
compound Poisson jumps into stochastic volatility processes, the Lévy mea-
sure is :

Π(dy) =
λ

η
e−

y
η dy, y > 0

which is also a particular case of CGMY model.

6 Conclusions

In this paper we have extended the results obtained by Gerber and Shiu
(1996) for the bidimensional Geometric Brownian Motion to the case of bidi-
mensional Geometric Lévy motion. We have shown that using the Dual
market method it is possible to price many derivatives, with payoffs homoge-
nous of any degree, written in terms of two assets driven by geometric Lévy
motions, in the European case and for the American perpetual case. Another
important fact in this paper is the possibility of having a stochastic discount,
this allow us to consider derivatives as quanto derivatives.
Also we have derived a put-call relation that we call put-call duality, different
from the one obtained by Peskir and Shiryaev (2001), that allowed to obtain
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the put–call symmetry relation as a particular case. Then, we derive nec-
essary and sufficient conditions for this symmetry to hold and verify if the
symmetry is satisfied by some models used na literature. Many extensions
of the above results are of interest, in particular the extension to derivatives
on several assets.

7 Appendix

How to obtain an EMM

The procedure introduced in this section is in spirit of Gerber and Shiu
(1994). Take the original probability measure P and suppose that relative

prices {Sj
S1} are not martingales under P , then define the following probabil-

ity:
dP θ

dP
=

eθ·X
′

Eeθ·X′

Now we need that {S
j
t

S1
t
} be a martingale under P θ for some θ, as S1

0 = 1,

then is enough to prove that

Sj0 = Eθ(
Sjt
S1
t

) ∀j, ∀t

1 = Eθ(eX
j
t−X1

t )

Defining 1̄j = (−1, 0, . . . , 1︸︷︷︸
j−position

, . . . , 0), we have

1 = M(1̄j, 1; θ), (25)

where M(z, t; θ) = M(z+θ,t)
M(θ,t)

and M(θ, t) = E(eθ·X
′
t). From the solution of (25)

we have the EMM.
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