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ABSTRACT

On Simple Modules
for Certain Pointed Hopf Algebras. (December 2006)
Mariana Pereira, B.S., Universidad de la Republica, Uruguay;
M.S., University of Massachusetts

Chair of Advisory Committee: Dr. Sarah Witherspoon

In 2003, Radford introduced a new method to construct simple modules for
the Drinfel’d double of a graded Hopf algebra. Until then, simple modules for such
algebras were usually constructed by taking quotients of Verma modules by maximal
submodules. This new method gives a more explicit construction, in the sense that
the simple modules are given as subspaces of the Hopf algebra and one can easily
find spanning sets for them. I use this method to study the representations of two
types of pointed Hopf algebras: restricted two-parameter quantum groups, and the
Drinfel’d double of rank one pointed Hopf algebras of nilpotent type. The groups of
group-like elements of these Hopf algebras are abelian; hence, they fall among those
Hopf algebras classified by Andruskiewitsch and Schneider. I study, in particular,
under what conditions a simple module can be factored as the tensor product of
a one dimensional module with a module that is naturally a module for a special
quotient. For restricted two-parameter quantum groups, given # a primitive ¢th root
of unity, the factorization of simple ugy g (sl,,)-modules is possible, if and only if
ged((y — 2)n, £) = 1. 1 construct simple modules using the computer algebra system
SINGULAR::PLURAL and present computational results and conjectures about bases
and dimensions. For rank one pointed Hopf algebras, given the data D = (G, x, a),
the factorization of simple D(Hp)-modules is possible if and only if |y (a)| is odd and

Ix(a)| = |a| = |x|. Under this condition, the tensor product of two simple D(Hp)-



v

modules is completely reducible, if and only if the sum of their dimensions is less or

equal than |x(a)| + 1.



To my family



vi

ACKNOWLEDGMENTS

I would like to express my deep appreciation and gratitude to my advisor, Dr.
Sarah Witherspoon, for all her support, instruction, and encouragement throughout
my graduate studies. Her availability and comments during the last stages of the
writing of this dissertation are greatly appreciated. It has been a very gratifying
experience working with her.

I thank the other members of my advisory committee, Dr. Marcelo Aguiar,
Dr. Frank Sottile and Dr. Andreas Klappenecker, for their time, comments on my
research, and editorial advice. My special thanks to Dr. Frank Sottile for his constant
support, sharing of knowledge and advice since the beginning of my graduate studies.

I thank my fellow graduate students and friends both in Texas A&M and in the
University of Massachusetts, for making these last years very enjoyable. Living so
many years away from home would have been much harder without them. I also
thank my friends in Uruguay for helping me throughout these years with their love
and correspondence.

I thank the Department of Mathematics of Texas A&M and its staff, for their
help, support and hospitality.

I thank Dr. Walter R. Ferrer from the Centro the Matematica at the Universidad
de la Reptblica, Uruguay, for his advice that led me to pursue a Ph.D. in mathematics
and for his constant support ever since. My gratitude to the Centro de Matematica
and Facultad de Ciencias, of the Universidad de la Republica, for welcoming back at
the end of my graduate studies. My special thanks to Sandra Fleitas, who helped me
deal with the heavy paperwork involved in this return.

Finally, I would like to thank my parents and sisters for their love, patience and

support.



vil

TABLE OF CONTENTS

CHAPTER Page
I INTRODUCTION AND PRELIMINARIES . . ... ... ... 1

1. Hopfalgebras . . .. ... ... ... ... ... ..., . 2

2. Modules, comodules and Yetter-Drinfel’d modules . . . . . 8

3. Radford’s construction . . . . . . .. .. ... L. 13

4. Some general results . . . ... 15

IT TWO-PARAMETER QUANTUM GROUPS . . . ... ... .. 18

1. Definition of restricted quantum groups . . . . . . . . . .. 18

2. Factorization of simple u, 4(sl,,)-modules . . . . . ... .. 21

I11 COMPUTATIONAL RESULTS . . . .. ... ... ... .... 33

1. G-algebras . . . . .. . ... 33

2. Thecode . . . . . . . . . ... ... ... ... 36

3. Computational results and conjectures . . .. .. ... .. 44

v POINTED HOPF ALGEBRAS OF RANKONE . . . . ... .. 47

1. Pointed Hopf algebras of rank one of nilpotent type . . . . 47

2. Factorization of simple D(Hp)-modules . . . . . . ... .. 48

\Y% CONCLUSION . . . . e 60
REFERENCES . . . . . . . 61



CHAPTER I

INTRODUCTION AND PRELIMINARIES
I study the simple modules of two types of pointed Hopf algebras: restricted two-
parameter quantum groups and the Drinfel’d double of rank one pointed Hopf algebras
of nilpotent type. The main tool I use is a construction introduced by Radford [19]
where the simple modules for the Drinfel’d double of a Hopf algebra are parametrized
by group-like elements of the Drinfel’d double.

The dissertation is organized as follows. In this chapter I give the definitions
and notations that I will use and I present Radford’s construction for simple modules
for the Drinfel’d double of certain Hopf algebras. In Chapter II, I define the two-
parameter quantum groups and present a theorem on factorization of their simple
modules. In Chapter III, I show the code used to construct these modules using
the computer algebra system SINGULAR::PLURAL and I formulate conjectures about
their bases and dimensions based on the computational results. In Chapter IV, I
present the rank one pointed Hopf algebras of nilpotent type defined by Krop and
Radford in [15], and give a theorem about the reducibility of the tensor product of
two simple modules for their Drinfel’d doubles.

In what follows K is a field of characteristic 0. All vector spaces and tensor
products are over K. A map between vector spaces means a linear transformation.
For a map T : V. — W between vector spaces V and W, I will denote the dual
of T by T*; that is T* : W* — V* and T(f)(v) = f(T(v)) for all f € W* and
v € V. For vector spaces V and W, the twist map 7: V@ W — W ® V is given by

TR w)=w® .

The journal model is Journal of Algebra.



1. Hopf algebras

I give a brief introduction to Hopf algebras, summarizing the first chapter of [18].

Definition I.1. An algebra is a triple (A, m,u) where A is a vector space and
m:ARA— Aandu:K— A

are maps so that the following diagrams commute:

m®id

ARARA AR A AR A
N
A® A — A = =

These are the diagrams of associativity and unit respectively. The map m is called

multiplication and u is the unat.

Write m(a ® b) = ab and u(lg) = 14. With this notation, the commutativity of
the diagrams means (ab)c = a(bc) and aly = 14a = a, Ya,b,c € A. When there is no
place for confusion I will say the algebra A instead of (A, m,u).

Now I dualize the notions just defined to define coalgebras.

Definition I.2. A coalgebra is a triple (C, A, €) where C' is a vector space and
A:C—-C®Cande:C—K

are maps so that the following diagrams commute:



C Ced
A A®id K@C A O®K
CoC —— > CaCaC oy

These are the coassociativity and counit diagrams respectively. The map A is called

comultiplication and ¢ is the counit.

The following notation was introduced by Heyneman and Sweedler.
Notation. The sigma notation for A is given as follows: for any ¢ € C, write

= Z T(1) @ Z(2).

The subscripts (1) and (2) are symbolic and do not indicate particular elements of C.

With this notation the coassociativity diagram translates as

2T BTy @) = Y T0) @ Ty © Ty
This element is denoted by
Ay(z) = Z (1) ® T(2) @ T(3).

Iterating this process, applying coassociativity n — 1 times, gives

)= ) © - © T,

The counit diagram says that, for all ¢ € C

Z 5(0(1))6(2) =C= Z&(C(g))C(l).



Definition I.3. Let (C, A, ¢) be a coalgebra and I a subspace of C.

1. Iis a left coideal of C'it A(I) CC® 1.
2. I is a right coideal of C'it A(I) C I®C.

3. I'is a coideal of Cift A(I) CI®C+C®1I and ¢(I) = 0.

If I is a coideal of (C,A,¢), then C/I is a coalgebra with comultiplication and

counit induced from A and e respectively.

Example I.4. If (A,m,u) is a finite-dimensional algebra then its dual, A*, is a
coalgebra with A = m* and ¢ = v*. Explicitly, if f € A* then A(f)(a ® b) =
> fwy(a)f@(b) = f(ab) for all @ and b in A, and (f) = f(1a).

If (C,A,¢) is a coalgebra, then C* is an algebra with m = A* and v = *. That
is, for f and g in C*, (fg)(c) = > f(cay)g(c) for all c € C and 1o+ = e.

Definition 1.5. A bialgebra is a quintuple (B, m,u, A, &) where (B, m,u) is an al-
gebra, (B,A,¢) is a coalgebra, and the maps A and ¢ are algebra morphisms (or

equivalently, m and u are coalgebra morphisms).

Example 1.6. If (B, m,u,A,¢) is a bialgebra, then so are B°® = (B, m u, A, ¢)
and B = (B, m,u, A ¢), with m°® = mo7 and A°® =70 A. If m°® = m then

then B is commutative, and if A°? = A it is cocommutative.

Definition I.7. Let (A, m,u) be an algebra and (C, A, €) a coalgebra. Then Homg (C, A),

the set of linear maps from C' to A , is an algebra with the convolution product
frgi=mo(fog)ol
for all f,g € Homg(C, A); i.e

(f*9)(@) = flzw)g(ze). Yz e C.



The unit element in Homg (C, A) is ue.

From now on, when I say the algebra Homg (C, A), I mean (Homg (C, A), *,uo¢€).
In particular, if (B, m,u,A,¢) is a bialgebra, then Homg(B, B) is an algebra with
the structure just described. The map id p is invertible in Hom g (B, B) if and only if

there exists a map S : B — B such that Sxid g =idg xS = uoe. In other words,

ZS (1’(1)) 13(2) = Zx(l)S (I(Q)) =& (13) 1B; VreB.

Such a map S is called an antipode in B. If an antipode exists in (B, m,u, A, ¢), it is

unique.

Definition 1.8. A Hopf algebra is a sextuple (H, m,u, A, e, S) where (H,m,u, A, ¢)

is a bialgebra and S : H — H is an antipode in H.

A subspace I of H is a Hopf ideal of H, if it is both an ideal and a coideal and
S(I) C I. If I is a Hopf ideal of H, then H/I is a Hopf algebra with the structure

induced from H.

Example 1.9. If (G, -, e) is a group, let KG be the vector space with basis G. Then

KG is a Hopf algebra with the operations defined by
m(geg)=g-¢ andu(l)=e, Vg,4 € G,

Alg)=g®g,e(g) =1, and S(g) =g, Vg € G.
The algebra KG is called the group algebra of G.
For any coalgebra C, an element c € C' is called group-like if

A(c) =c®cand e(c) = 1.

Denote by G(C) the set of group-like elements of C'. Then KG(C) is a subcoalgebra
of C.



Example 1.10. Let g be a Lie algebra over K. The universal enveloping algebra
U(g) is the quotient of the tensor algebra T'(g) by the ideal generated by the relations
h®g—g®h—[h,g] for all h,g in g. Then U(g) is a Hopf algebra with:

A(h)=h®1+1®h, e(h) =0, and S(h) = —h, Vh € g.

Example 1.11. If H is a finite-dimensional Hopf algebra with antipode S, then H*

with the structures described in 1.4 is a Hopf algebra with antipode S*.

Example 1.12. In [21] Taft constructed a family of finite-dimensional non-commu-
tative, non-cocommutative Hopf algebras: let ¢ € Z-, and 6 a primitive ¢th root of
unity. The Taft algebra T} is generated as an algebra by elements z and a, subject
to the relations:

=0, a'=1, azx=0za.
The coalgebra structure and the antipode are determined by:
Ala)=a®a, ela)=1, S(a)=a'=da"",
Alz)=r®a+1®z. e(z)=0 Sx)=—za".
The set {a’z7 : 0 < 4,5 < ¢} is a linear basis for Tj.

The Hopf algebras that I will study are generalizations of the Taft algebras, and

they will all be graded Hopf algebras, as defined next.
Definition I.13. A Hopf algebra H is graded it H = &7 ,H,, and

1. H is a graded algebra, i.e. 1 € Hy and H,,H, C H,, .
2. H is a graded coalgebra, i.e. A(H,) C > "  H,_;®H,; and ¢(H,) =0, Vn > 0.

3. S(H,) C H,, ¥n > 0.



The Taft algebra Tj is a graded Hopf algebra with (Tp), = K{a'z" : 0 < i < (}
if n < ¢, and (7Ty),, = (0) for n > /.
Another property of the Taft algebras is that they are pointed Hopf algebras, as

defined next.

Definition 1.14. A coalgebra is called simple if it has no proper subcoalgebras. For
a coalgebra C', the coradical C(g) of C, is the sum of the simple subcoalgebras of C'.
If C o) = KG(C) (in other words, every simple subcoalgebra of C' is one-dimensional),

C' is pointed.

Now I give a definition that will be used in the following chapters. Given any

Hopf algebra H and L a subset of H, let
LT = LNnKere.

Note that if L is a subcoalgebra of H, then L™ is a coideal and hence H/L™ is a
coalgebra. Morover, let (LT) = HL"H be the two-sided ideal generated by LT,
then H/(L™) is a bialgebra. I will use this construction in the particular case where
L C Z(H), the center of H, in which case (L") = HL" and so H/HL™" is a bialgebra.
If in addition S(L*) C L*, then H/HL™" is a Hopf algebra. A simple calculation
shows that if L = KJ with J a subgroup of G(H), the group of group-like elements
of H, then
Lt=K{g—1: g€ J}.

Remark I.15. In [20] H.-J. Schneider strengthened the Nichols-Zoeller theorem and
showed that if H is a finite-dimensional Hopf algebra and L is a Hopf subalgebra of
H,then H ~ H/HL" ® L as right L-modules [20] . In particular

dim(H/HL*) = ‘illﬁ((]g .



Definition 1.16. For H a finite-dimensional Hopf algebra, let
Go(H)=G(H)NZ(H)
denote the group of central group-like elements of H and let
H=H/HKGc(H))".
Then H is a Hopf algebra, and by Remark 1.15
dim(H)

dim(H) = m

2. Modules, comodules and Yetter-Drinfel’d modules

Definition I.17. Let A be an algebra. A left A-module is a pair (M, p), where M is

a vector space and p : A® M — M is a map so that the following diagrams commute:

AQAQ M™% Ae M, Ko M- A9 M.
N W,
Ao M A M

P
A map p as above is called an action. Write p(a®@m) = a-m. With this notation

the diagrams become
a-(b-m)=(ab)-mand 14-m=m,Va,b € A, m € M.

There is an analogous definition of right modules; since all the modules I will consider
will be left modules, I will say module for left module.

If (M, pp) and (N, py) are A-modules, a map f : M — N is a morphism of
modules if f(a-m) =a- f(m), Vm € M,a € A.

Definition I1.18. Let (M, py) be an A-module and N a subspace of M; N is an



A-submodule of M if A- N C N. An A-module M is simple if its only submodules
are 0 and M. A modules is completely reducible if it is the direct sum of its simple

submodules.
Dualizing the previous definitions we get the analogous notions for coalgebras.

Definition 1.19. Let C be a coalgebra. A right C-comodule is a pair (M, ) where
M is a vector space and 6 : M — M ® C'is a map so that the following diagrams

commute:

M ' s MeC M—2MeC.
ai lid@A \ lid@s
M&C —s MeC®C M &K

0®id

The map ¢ is called coaction. Write

s(m) = me) @ may),
where m )y € M, m(y € C.

Remark 1.20. With this notation, the diagrams above translate as

Z m(0)(g)y ® M(0)(1y ® M) = Z m(o) ® M1)1y @ M(1)9) (1.1)

and
> mge(ma) =m,

for all m € M. The element of the equation (I.1) will be denoted ) m gy @ m ) @m2).

Definition 1.21. Given (M,¢) and (N, n) two C-comodules, a map f: M — N is a
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comodule morphism if the following diagram commutes:

M—I N .
5Ml lfszv
MC—NxC

f®id
That is, if Y f (m(o)) ®@may = > f(m)o) ® f(m)a), Ym € M.

There is an analogous definition of left comodule; since all the comodules will be

right comodules, I will say comodule for right comodule.

Definition 1.22. Let (M,0) be a C-comodule and N a subspace of M; N is a C-
subcomodule of M if § (N) C N ® C.

Remark 1.23. If (B, m,u, A ¢) is a bialgebra and M and N are B-modules, then

M ® N is also B-module with action given by
(m®n) Zb m®bg-n,Vbe B, me M,neN.
If M and N are B-comodules then M ® N is a B-comodule with coaction
d(m®n) = Zm ® ngy @ maynay, vm e M,n € N.

Definition 1.24. Let H be a finite-dimensional Hopf algebra over K with antipode
S. The Drinfel’d double of H, D(H), is

D(H) — (H*)coop ®H
as a coalgebra. The algebra structure is given by
(M) (f@k)=> g(ha = [+ S (hg)) @ hak,

for all g, f € H* and h,k € H; where (a — f)(b) = f(ba) and (f < a)(b) = f(ab),
for all a,b € H and f € H*.
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This construction is due to Drinfel’d [10] where he showed that if H is a finite-
dimensional Hopf algebra, then D(H) is a Hopf algebra. Furthermore, if M and N
are D(H)-modules, then

M®N~N®® M.

Explicitly, if {h;} is a basis for H and {h}} is the corresponding dual basis of H*, let
R=) (eg ®h;) ® (b} ® 1) € D(H) ® D(H).

Then M @ N ~ N ® M via m®@n +— R~'(n®m). Drinfel'd doubles are examples of
quasitriangular bialgebras, which are bialgebras B equipped with invertible elements
R € B ® B, satisfying certain conditions, and for which the symmetry of tensor
products of modules is realized via R~

If M is a D(H)-module, then it is both an H-module and an (H*)*°P-module.
The action of H* gives rise to an H-comodule structure on M such that if 6(m) =

> m) ® may then f-m =3 (f, ma)y)m) for all f e H*.

Definition 1.25. For any bialgebra H, a left-right Yetter-Drinfel’d module is a K-
vector space M which is both a left H-module and a right H-comodule, and satisfies

the compatibility condition

> hay - m) @ hgymay = > _(hey - m)o) @ (b - m)aha).

The category of left-right Yetter-Drinfel’d modules over a bialgebra H will be
denoted by yY DY

Proposition 1.26 (Majid [17]). Let H be a finite dimensional Hopf algebra. Then
D(H)-modules are left-right Yetter-Drinfel’d modules and conversely. Explicitly, if

M is a left-right Yetter-Drinfel’d module, then it is a D(H)-module with the same
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action of H and the action of H* given by

frm=) fma)mo). (12)
for all f in H* and m in M.

Remark 1.27. If M,N € p YD, by the last proposition M and N are D(H)-
modules. Since D(H) is a bialgebra, by Remark 1.23 M ® N is also a D(H)-module
and hence a Yetter-Drinfel’d module over H. The Yetter-Drinfel’d structure is given
by

(m®n) Z hay -m & heg) -n
and

d(m@n) =Y me) @ ne) @ nayma).

An alternative definition of the Drinfel’d double is D'(H) = H ® (H*)®°P as

coalgebras, and multiplication given by

(k® [)(h©g) =Y kfa)(S™ (hw))f e (he)he © @9,

where (A? @ id)AP(f) = > fa) ® f2) @ f3)- 1 will need both definitions of the
Drinfel’d double since two of the papers I will be using [6, 19] use these different

definitions. The following lemma gives the relationship between these two definitions

of the Drinfel’d double.

Lemma 1.28. D'(H) ~ D(H*)®°°? as Hopf algebras.

Proof. As H* ~ H, we have D(H*) = H° @ H*, with multiplication
ke f)heg) = Y k(fay—h+—(S)(fe)) @ fog

= Zk (foy(h@)ha) — (f50S5™) @ fayg
= Y Efay(he)(fe (ST (hay)he @ fog
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where (A @ id)AP(f) =" f3 @ fi2) ® f). So D'(H) ~ D(H*) as algebras. As
coalgebras D(H*) ~ H® @ H* = (H @ (H*)®°P)“°" = D’'(H)°P. =

3. Radford’s construction

In this section I describe results from [19]. Although Radford’s results are more
general, I will only write them for K an algebraically closed field of characteristic
0. This is the main tool I will use to study representations of Drinfel’d doubles. For
algebras A and B, the set of algebra maps from A to B will be denoted by Alg (A, B).
It is not hard to see that if H is a finite dimensional algebra, then Alg (H,K) = G(H*),

the set of group-like elements of H*.

Lemma I.29 (Radford [19]). Let H be a bialgebra over K and suppose HP is a Hopf
algebra with antipode S. If B € Alg (H,K), then Hg = (H,o5,A) € a YD where

huga =Y Blh)h@aS(ha), (13)
for all hya in H.

If 3: H— Kis an algebra map and N is a right coideal of H, then the H-
submodule of Hg generated by N, HegN, is a Yetter-Drinfel’d H-submodule of Hg.
If g € G(H), then Kg is a right coideal and HesKg = Hegg is a Yetter-Drinfel’d
submodule of Hg. For M a Yetter-Drinfel’d module over H, [M] will denote the the

isomorphism class of M.

Proposition 1.30 (Radford [19]). Let H = @, , H,, be a graded Hopf algebra over K.
Suppose that Hy = KG where G is a finite abelian group and H, = H,11 =--- = (0)

for some n > 0. Then

(8,9) — [Hegg]
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is a bijective correspondence between the Cartesian product of sets Alg (H,K) x G and

the set of isomorphism classes of simple Yetter-Drinfel’d H-modules.

Let H = @,., H, be a graded coalgebra and h = hg + --- + h,, a group-
like element of H with h; € H; and h, # 0. The coalgebra grading implies that
A(h)e > (O Hm—; ® H;), but since h is a group-like element A(h) = h®@h =
Do hi®@hy & 300 Q0 Hiny ® H;) unless n = 0. Hence G(H) = G(Hy). In
the case where Hy = KG we have G(H) = G(Hy) = G(KG) = G, the last equality
holding since distinct group-like elements are linearly independent. If H is as in the

last proposition is also finite dimentional, then Alg (H,K) x G = G(H*) x G(H).

Remark 1.31. Let H = @, ) H, be a graded Hopf algebra with H,, = H,+1 =

- = (0) for some m > 0 and Hy = KG(H) where G(H) = G is a finite group. If
B : H — K is an algebra map and i > 0, since H™ = (0) we have that By, = 0.
Then ( is determined by its restriction to Hy = KG. Since G is a finite group,
1 = B(g!“") = B(g)!! and so B(g) # 0 for all g € G. Let

G = Hom (G, K*), (L4)

the set of group homomorphisms from G to K* = K — {0}. Then, to give an algebra
map 3 : H — K, is equivalent to giving a map in @; when no confusion arises, the

corresponding map in G will also be called 0.

Example 1.32. Let H = Hy = KG with G a finite abelian group. If g € G and
g,h € G, then hegg = B(h)g and so Hezg = Kg. In this case D(H) = KG ® KG with
multiplication given by (o ® h)(8 @ g) = af @ hg. A pair (8,9) € G x G is then a
character of G x G via (8,9)((h,a)) = B(h)a(g), Vh € G and a € G. The simple

Yetter-Drinfel’d module Hegg is then a D(H)-module with action

(a®@h)-g=alg)B(h)g = (8,9)((h,a))g.



15

4. Some general results

I first start by presenting some general results on the tensor product of Yetter-
Drinfel’d modules. Throughout this section H = @, , H,, is a graded Hopf algebra
over an algebraically closed field K, Hy = KG where G is a finite abelian group and

H,, = Hp1 == (0) for some m > 0.

Proposition 1.33. Let 3, 3’ € Alg(H,K) and g, ¢ € G(H). If Hegg @ Hezg' is a

simple Yetter-Drinfel’d module, then
H‘ﬁg ® H’ﬁ’g, ~ H‘B*ﬁlgg,

Proof. Since Hezg @ Heg g’ is a simple Yetter-Drinfel’d module, by Proposition I1.30,

there exist unique 3" € Alg (H,K) and ¢” € G(H) such that
H’ﬁg ® H.ﬁ’g/ ~ H’ﬁ”g//

as Yetter-Drinfel’d modules. Let ® : Hegg® Hegg' — Hezrg” be such an isomorphism.

Since ® is a comodule map, we have

(P®id)od(g®yg) = d0P(gy) =

(P ®id) <Z 90) @ g 0) ® 9’(1)9(1)) = A(@(9®49)).

Then

P(g@g)®gg=AP(g®7)). (L5)
This implies that K®(g®¢’) is a (simple) right coideal of Hezrg”. In [19] it was shown
that if V is a simple right coideal of H, then the only coideal contained in HegN is

N. Therefore K®(g ® ¢') = Kg” and so ¢" = A\®(g ® ¢') for some 0 # X € K; we

may assume that A = 1. Applying ¢ ® id to both sides of Equation (I1.5), we get that
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P(geg)=c(P(g®d))gg. We then have:
g'=2(g®4)=c(@(g® 7))y

Since distinct group-like elements are linearly independent, this implies that ¢’ = ¢'g.
Since (H;)™ = (0) for all @ > 1 we have that g 5'(H;) = (0) = "(H;) for all

i > 1. To show that 3" = % ' it is then enough to show that they agree on G. Let

h € G, then
B"(h)gg = hegngg’ = hegn (®(g @ ¢) = @(h-(g®g')) =
= O(hegg @ hegg') = (B(h)B'(h)g @ g¢') = (B 0)(h)gg,
and so #”(h) = (6 * ') (h) for all A in G. O

If H is any Hopf algebra and v : H — K is an algebra map, then v has an inverse
in Hom (H,K) given by v~ !(h) = v(S(h)), since

(v (vo S)(h) = Y 1(ha)(S(he)) = Y 1(h@yS(he)) = y(e(W)1n) = e(h)1x.

Let N = Kn be a one-dimensional H-module. Then there is an algebra homo-
morphism v : H — K such that h-n = ~(h)n for all h € H. Let K, be K as a vector
space with the action given by h -1 =v(h), and so N ~ K, as H-modules.

If M is any H-module and v : H — K is an algebra morphism, then the natural
vector space isomorphism M ® K, ~ M endows M with a new module structure, -/,

given by h-"m =3 v(ho))ha) - m. I will denote this module by M,

Note that K, ® K,-1 ~ K. as H-modules, and therefore for any H-module M,

Remark 1.34. Let H be any Hopf algebra and v : H — K an algebra map. If
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M is an H-module and N is a submodule of M, then IV, is a submodule of M.,. In
particular, M is simple if and only if M, is simple.
Let Soc(M) denote the socle of M, that is, Soc(M) = &N, the sum over all

simple submodules of M. Then, by the last remark, we have that

Soc(M,) = (Soc(M)),, .

v
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CHAPTER II

TWO-PARAMETER QUANTUM GROUPS
In 1985 Drinfel’d and Jimbo independently introduced the algebra Uy(g), a one-
parameter deformation of the universal enveloping algebra of a semisimple Lie algebra
g [9, 13]. They were first used to construct solutions to the quantum Yang-Baxter
equations and have applications in various areas of mathematics and physics. For 6
a root of unity, Lusztig defined the restricted one-parameter quantum group uy(g), a
finite-dimensional quotient of Uy(g). In what follows, I give the definitions of the two-
parameter versions, U, ;(g) and u, 4(g) for g = sl,,, the Lie algebra of n x n matrices of
trace 0. These algebras are examples of the algebras constructed by Andruskiewitsch
and Schneider in their classification of pointed Hopf algebras with abelian groups
of group-like elements. In section 2, I give a theorem about factorization of simple

u, s(sl,,)-modules.

1. Definition of restricted quantum groups

Let K be an algebraically closed field of characteristic 0 and let {e,...,¢€,} denote
an orthonormal basis of an Euclidean space E = R"™ with an inner product ( , ). Let
aj =€ —¢€41 (J=1,...,n—1). Let r,s € K* be roots of unity with r # s and ¢
be the least common multiple of the orders of r and s. Let 8 be a primitive ¢th root
of unity and y and z be nonnegative integers such that » = #¥ and s = 6*. Takeuchi

defined the following Hopf algebra [22].

Definition II.1. The algebra U = U, 4(sl,,) is the unital associative K-algebra gen-

erated by {e;, f;, wjﬂ, (w})ﬂ, 1 < j < n}, subject to the following relations.

(R1) The w;™", (w})*! all commute with one another and w;w; ' = w)(w})™ =1,
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(RQ) Wiej — r<€i:aj>8<6i+lvaj>6jwi and wlf] — r7<5i’aj>87<6i+lvaj>fjwi,

(RB) w;e] — r<€i+1,aj>s(€i,aj>ejw; and w;f] — 7f-_<5i+1vaj>8_<eivaj>f]-w;)
5
(R4) [es, fi] = ——(wi — w)).

r—Ss

(R5) [67;,6]'] = [flaf]] =0 if |Z _j| > 17

(R6) e?eiJrl - (T + S)eieiﬂei + 7’8€¢+1€? = 0,

€€l — (r+ s)eir1€i€ip + rsei e, =0,
(R7) ffirr— (s fifinfi+r7ts™ fin f7 =0,
fifto — s fia fifim s AL fi = 0,
forall 1 <1,5 <n.

The following coproduct, counit, and antipode give U the structure of a Hopf

algebra:

Ale;)) = e @1+ w; ® ey, A(fi) =1 fi+ fi®w],
e(e;) =0, e(fi) =0,
5(61) = _wi_1€i7 S(fz) = _fi(w;)_:l?
and w;, w; are group-like, for all 1 < i < n.

Let U° be the group algebra generated by all w!, (w))** and let U+ (respectively,

U~) be the subalgebra of U generated by all e; (respectively, f;). Let
Ej,j =€ and gi,j = 61'51‘,17]' — 7’_181;1,]'61- (Z > j)’

Fij=/f and Fi; = fiFi;—sFicfi (0> 7).

The algebra U has a triangular decomposition U =2 U~ @ U° @ U™ (as vector spaces),

and the subalgebras U™, U~ respectively have monomial Poincaré-Birkhoff-Witt
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(PBW) bases [14, 4]
(C/' = {Sil,jlgig,jz . 'gip,jp ’ (il,jl) S (’ig,jg) S s S (’ip,jp) lexicographically}, (IIl)

F =AFi i Fisgs - Fipign | (11,51) < (i, J2) < -+ < (ip, Jp) lexicographically}.
(I1.2)

It is shown in [6] that all &

L Fiyywi—1 and (W) —1 (1 <j <i<n)are

4,70 i

central in U, (sl,,). The ideal I,, generated by these elements is a Hopf ideal [6, Thm.

2.17], and so the quotient
u=u,4(sl,) = U, s(sl,) /1 (I1.3)

is a Hopf algebra, called the restricted two-parameter quantum group. Examination of
the PBW-bases (I.1) and (II.2) shows that u is finite-dimensional and Benkart and

Witherspoon showed that u is pointed [6, Prop. 3.2].

Let & and F; denote the sets of monomials in £ and F respectively, in which
each & j or F;; appears as a factor at most £ — 1 times. Identifying cosets in u with
their representatives, we may assume &, and JF, are basis for the subalgebras of u
generated by the elements e; and f; respectively.

Let b be the Hopf subalgebra of u, s(sl,,) generated by {w;,e; : 1 <i < n}, and
b’ the subalgebra generated by {w], fi: 1 <i <n}.

Benkart and Witherspoon showed that, under some conditions on the parameters
r and s, b* ~ (b')°°P as Hopf algebras ([6, Lemma 4.1]). This implies that b ~

((6’)°°P)*: T present the lemma using the dual isomorphism of the original one.

Lemma I1.2. [6, Lemma 4.1] If ged(y" ™' — y" 22 + -+ (1) 1271 0) =1 and

rs~1 is a primitive (th root of unity, then b ~ ((b')°°°P)" as Hopf algebras. Such an
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isomorphism is given by

(wi, wh) = pleosal g0 and (w;, f;) =0, (I1.4)

and

(ei, fjg) = dij01a Vg€ G(b"). (IL.5)

Proposition I1.3. [6, Thm. 4.8] Assume r = 0¥ and s = 0%, where 0 is a primitive

(th root of unity, and
ged(y" =y P4+ (- ) = 1.
Then there is an isomorphism of Hopf algebras u, s(sl,) = D'(b) =2 D((b")%°°P)°P,

In the special case r = 6, a primitive ¢th root of unity, and s = 671, u = ug -1 (sl,,)
is isomorphic to D'((b")°°°P) when n and ¢ are relatively prime.

Under the assumption that ged(y™™' — y" 2z + -+ 4+ (=1)"" 12" () = 1, by
Proposition I1.3, u,(sl,) = (D((b')°°°P))*°°P and so u, s(sl,)-modules are Yetter-
Drinfel’d modules for (b')°°°? (only the algebra structure of u, ,(sl,) plays a role
when studying u, s(sl,)-modules, hence u, 4(sl,)-modules are D((b")*°°P)-modules).
For simplicity I will denote H = (b’)°°°?. Then G = G(H) = (w}: 1 <i<n)and H
is a graded Hopf algebra with w} € Hy and f; € Hy for all 1 <i <n and H; = (0) if
j > 2(. Therefore Proposition 1.30 applies to H and isomorphism classes of u,. (sl )-
modules (or simple Yetter-Drinfel’d H-modules) are in one to one correspondence

with Alg (H,K) x G(H).

2. Factorization of simple u, (s, )-modules

In this section I study under what conditions a simple u, 4(s[,,)-module can be factored

as the tensor product of a one-dimensional module and a simple module which is also
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a module for u, 4(sl,,) = u, 5(80,) /u, 5(50,) (KGe(uy5(s0,))) . Let £, n, y and 2 be fixed

and 0 be a primitive ¢th root of unity. Let A be the (n — 1) x (n — 1) matrix

Yy—z z 0 O 0

-y y—z 2z 0 0
A —

0 0 -y y—z2z =z

0 e e 00—y y—2z

The determinant of A is y" ' — " 22 + --- + (=1)""12""1. Throughout this
section, assume that ged(y" ™' — y" 22 + .-+ + (=1)""12""1 ¢) = 1, and so det(A)
is invertible in Z/¢Z. 1 start by describing the set of central group-like elements in

u, 5(sl,,). Clearly G(u,(sl,,)) = (wi, w) : 1 < i < n).

Proposition IL4. A group-like element g = w® - W' 'w®™ -+ W 1" is central in
u, s(sl,,) if and only if
bl aq
_ A—lAt
bnfl an—1

in (Z/0Z)"

Proof. The element ¢ is central in u, 4(sl,,) if and only if ge, = exg and gfy, = frg for
all k =1,--- ,n— 1. By the relations (R2) and (R3) of the definition of U, ,(sl,), for

all k=1,--- ,n — 1 we have that

n—1 n—1

ger = H (T’<€i’ak>s<5i+1uak>)ai

(T<Ej+1aak>s<6j’ak>) bi erLg and

—

.
I

1

gfr = H(r—<6i,ak>3—<5i+17ak))ai (r—<fj+1,ak>3—<6jv%>)bj frg.
=1

s =
I

N
Il
—

<
Il
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Then g is central if and only if

n—1 n—1

1 — H <T<€i’ak>8<ﬁi+1,ak>)ai H (r<€j+1,ak>5<€j7ak>>bj
i=1 j=1
_ Sak,lTaks—ak,r,—akﬂrbqu—bk Sbks—bkﬂ7 Vk = 1’ ceen — 1’

where ag = a,, = 0 = by = b,,. Since r = Y and s = 6%, the last equation holds if and

only if

zap—1 + (y — 2)ar — yarsr = (=ybe—1 + (y — 2)b + 2bgy1) modl, (IL.6)

forall k=1,--- ,n—1. The matrix of coefficients of the left hand side of this system

of equations is

y—z2 -y 0 0 0
z y—z —y 0 0
— At
0 e 0 2z y—2 —y
0 e e 0 2 y—2z
and the matrix of coefficients of the right hand side is
Y—z z 0 O 0
-y y—z 2z 0 0
= A
0 0 —y y—=z z
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We then have that g is central if and only if

in (Z/0Z)" " . O

Example I1.5. For ugy-1(sl,) (y = 1 and z = ¢ — 1), the matrix A is symmetric.

an—1 /b1 /bn—l

Therefore, a group-like element g = wi* -+ w,"'wi* - w, "7 is central if and only if

bj=a;foralli=1,--- ,n—1.

In general, u, 4(s0,)(KGc(u5(s0,)))" = ws(sl){g — 1 : g € Ge(ur(sl,))}. In

particular, by the last example, we have that ug g1 (KG¢(ugg-1(sl,,)))" is generated

/.
i

by {wi_l —wii=1...,n— 1}. This gives Ugp—1 =~ ug(sl,), the one parameter

quantum group.

1

Henceforth r and s are such that rs™ is also a primitive /th root of unity, that

is, ged(y — 2,0) = 1.

Remark I1.6. If 3 € G(H*) and g = w|" - - -w/"* € G(H), by Proposition 1.26, the
Yetter-Drinfel’d module Hegg is also a u, 4(sl,,)-module where the action of H* = b is
given by

feh=> (fhe)ha),

for all hin H = (b')° and f in H* = b. In particular,

n—1 n—1
Wi g = {wi,g)g = H <wi’w;>c]‘g — H (T<Ei,04j>s<€i+1,aj>>cj g
j=1 j=1

Proposition I1.7. Let 3 € G(H*) be defined by B(w}) = 0% and g = W ---wi"7".

n—1
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The simple u, s(sl,,)-module Hegg is naturally a u, 4(sl,)-module if and only if

= Al (IL7)
ﬁn—l Cn—1
in (Z/0Z)" 1.
Proof. Hegg is a u, 4(sl,)-module if and only if (h—1)-m = 0 for all  in G (u, 5(sl,))

and m in Hegg. If h € Geo(u,5(sly,)), h-m = m for all m in Hegg if and only if h-g = g.

Let h = wi - w7l - w1t € Go(us(sl,)); then by Proposition I1.4

n—1

bl a1
_ A—lAt
bnfl an—1
We have
by by —1 . /by b —1
Wyt Wy1 89 = Blwit - w,"1")g
9b1,61+~~+bn—1ﬁn—1g (11.8)
and
Wit wpt g = (Wt w T g)g

n—1

= H <wi7 g>aig
i=1
n—1n—1

= H H (T<€ivoéj>s(€i+17aj))aicj g
i=1 j=1
n—1

= H (r=e=t (rs1)" sci“)ai g
i=1

= 0% (IL.9)
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where ¢y = ¢, = 0 and 2 = 7' (—yci + (y — 2)¢; + 2¢i41) a;. From (I1.8) and
(I1.9) we get that
h-g=@etTin bibig

a, by aq
for all : , where : = A"TA! : . Now
Ap—1 bn—l Ap—1
n—1 n—1
Z (—yci1+ (y — 2)c; + z¢i1) a; + Z b;3; = 0 mod/
i=1 i=1

if and only if
a1 (&1 by B
A : = — : : in Z/VZ.

Ap—1 Cn—1 bn—l ﬁn—l

We then have that Hegg is a u, ¢(sl,)-module, if and only if

t t
aq c1 a1 B

al = | | Ay
Ap—1 Cn—1 Ap—1 Bn—1
for all (ay,--- ,an_1) in (Z/¢Z)""". This occurs if and only if
o B
= @' | @
Cn—1 Bn-1

[

Given g = (W) -+ (wl_1) € G(H), let (y,..., [, be defined as in Equation
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(IL.7). T will denote by 3, the algebra map given by 3,(w}) = 6.

For any Hopf algebra H, let Sy denote the denote the set of isomorphism classes
of simple H-modules. Then S can be identified as the subset of Sy consisting of
the H-modules that are naturally H-modules. Combining the last proposition with

Proposition 1.30, we get

Corollary I1.8. The correspondence G(H) — S—=— given by

ur s (sl)
g [Heg,9]
1S a bijection.

Example I1.9. In the ugy-1(sly) case, the matrix A is A = (2). Then, the simple

ug p-1(slz)-modules that are naturally uy(sly)-modules, are of the form Heg(w')® with

B(w') = 07%.

Example I1.10. Using the last Proposition in the case n = 3, we have that the
U, 5(sl3)-module Heg(w))® (wh) is a u, 4(sl3)-module if and only if, B(w}) = §E—v)etye
and B(wh) = ==+ (Ev)e In particular, for the ugg-1(sl3)-modules, the condition is

B(w]) = 6721F¢2 and B(wh) = g2,

For an algebra map x : u,4(sl,) — K, let K, be the 1-dimensional u, s(sl,)-
module given by h-1 = x(h)1. Since ef = 0 = f{ we have that x(e;) = x(fi) = 0, and
this together with (R4) of the Definition II.1 of U, 4(sl,), gives that x(w;) = x(w}).

For each i = 1,...,n — 1, since w! = 1, y(w;) = 6% for some 0 < y; < .

Proposition IL.11. For x : u,4(sl,) — K an algebra map, we have that K, =~

H‘x\ng where

_ 1dy tdpn—1 .
Oy = wp ' rwy ', with
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=A"! : in (Z.J07)" .
dn—1 Xn—-1
Proof. Since K, is a simple u, ¢(s[,,)-module, we have that K, ~ Hegg for some unique
f e G(H*)and g € G(H). Let ¢ : K, — Hegg be an isomorphism of Yetter-Drinfel’d

modules. We may assume that g = ¢(1); then
B(w))g = wissg = wies(#(1)) = ¢ (w; - 1) = d(x(wi)1) = x(wi)g-

Therefore f(w)) = x(w}) and since B(f;) =0 = x(f;) foralli =1,--- ;n— 1, we have

B= X
We have that

wi-g = (wi,9)9

= <ﬁ<wiawg>dj> g

J=1

n—1
(s

j=1
= pdia (r5*1>disdi+lg

. 9y(d¢7d¢71)+z(di+1*di)g. (IIlO)

On the other hand

wi g =w; d(1) = p(w; - 1) = (1) = 6%g. (IT.11)
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By (I1.10) and (II.11) we have that

—yd; 1+ (y — 2)d; + 2di;y = x;modl, Vi=1,--- n—1; and so

dq Xi
A : = : in (Z/ezZ)"!

]

For any Hopf algebra H, let Sf; = {[N] € Sy : dim(N) = 1}. Combining the

last proposition and Proposition [.30 we get

Corollary I1.12. The correspondence G(u, s(sl,)*) — 81 ) given by

X = [H'X\ng]

1S a bijection.

Theorem IL.13. The map ® : S5 % Sl (o1) — Suns(stn) given by

O([M],[N]) = [M @ N]
is a bigection if and only if ged((y — z)n, () = 1.

Proof. By the last corollary we have that 1-dimensional simple u, (s, )-modules are
of the form He, , g, with x € G(u,5(sl,)*). Also by Corollary I1.8, simple u, 4(sl,)-
modules are of the form Heg g for g € G(H). Furthermore by Proposition 1.33, we

have that Heg,g ® Hey g\ =~ Heg .\ ggy. Then @ is a bijection if and only if

U {(9,8) : 9 € GUH)} x{(gx: X) - X € Gurs(sln)*)} — G(H) x G(H)

given by U ((g,8y), (9x: X)) = (99x. By * X|,;) is a bijection. The latter holds if and

only if for all h = w{™ - WP and v given by ~v(w)) = 0%, there exist unique

n—1
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Iepn—1

g=w--w, 7" and x with x(w;) = x(w]) = 6%, so that h = gg, and v = 5, * x|,

If B,(w)) = 6% and g, = W™ -- W™t then

n—1 >

99y = Wi W ™ Wit and (8, x ) (W) = 07

Then WV is bijective if and only if the system of equations

cp+dy by
Cno1+ dp_1 b1
B+ x1 7
ﬁnfl + Xn—1 Yn—1
subject to
dy X1
— Al
dp_1 Xn—1
ﬁ1 C1
E—
ﬁn—l Cp—1

has a unique solution for all (by.--+ ,b,—1), (71, Vn_1). The last four vector equa-



tions are equivalent to

C1
+ A1
Cn—1
C1
S N
Cn—1
which can be written as
id At
Al id

X1

Xn—1

X1

Xn—1

C1

Cn—1

X1

Xn—1

31

TYn—1

by

Yn—1

This last system has a unique solution if and only if the matrix

is invertible in M(,—1)x(n—1) (Z/€Z), or equivalently, if ged(det(A/),¢) = 1. By row-

reducing M we have that
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id A1 A id
det = det
—Atid — At id
A+ AL 0
= det
— At id
= det(4+ AY).
Now
2y—2) z—y 0 0 0
z—y 2y—z z-—y 0 0
0 z— 200 —2) z— 0
Aoab y 20y -2 y
0 0 z—y 2y—z) z-—y
0 0 z—y 2y-—=2)

2 -1 0 0 0

-1 2 -1 0 0

o -1 2 -1 0

= (y—2)
0 o -1 2 -1
0 0 -1 2

Therefore det(A + A') = (y — z)"'n. We then have that ® is a bijection if and only

if ged ((y — 2)n, 0) = 1. O
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CHAPTER III

COMPUTATIONAL RESULTS
In this chapter I present how I used the computer algebra system SINGULAR::PLURAL
[12] to construct simple u, ¢(sl3)-modules. These computations were begun as part of
a joint project with G. Benkart and S. Witherspoon to understand the information
obtained by Radford’s method about uy(sl,)-modules [5]. To reduce computations, I
use Proposition I1.13 and construct only the u, ¢(sl3)-modules that are also modules
for the quotient m via the quotient map; that is, I only look at the cases when
ged((y — 2)3,¢) = 1. According to Example 11.10, we only need to construct the

modules Heg(w]) (wh)® where f(w]) = glz—vertver and B(wh) = f—=atEvez,

1. G-algebras

The system SINGULAR::PLURAL allows us to do computations on G-algebras, which
are algebras given by generators and re-writing relations where Grobner basis com-
putations can be done. I will give the precise definition of G-algebras and show that
H = (b')°°P is a quotient of a G-algebra. The notion of G-algebras was introduced
by Apel in [2] and later refined by Levandovskyy in [16], and is a generalization of
commutative polynomial rings.

Let T = K(xy,...z,), the associative algebra generated by x1,...x,. The

standard monomials in A, are elements from the set

Mong(A) = {z% =2{* a0 a = (aq,...,ap,) € N}

m

A relation <4 on Mong(A) is called a monomial ordering on Mong(A) if the following

relations hold:
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e <, is a total well-ordering.
o If 2% <, 2% and 27 € Mong(A), then 2977 <4 2747,

The degree of a monomial z® = x{* --- 2% € Mong(A) is deg(z®) = a1 + -+ + .
For an element 0 # f € KMong(A), the leading monomial of f with respect to
<4 will be denoted by lm(f). An example of a monomial ordering is the degree
lexicographic order, < which is defined by z® < 27 if deg(z*) < deg(+”) or if
deg(z®) = deg(x”) and the left-most nonzero entry of 3 — « is positive. With this

order we have z; > dlex T2 > Ton-

dlex 7 dlex

Definition III.1. Let K be a field and A be an algebra given in terms of generators

and relations:
A= K<l‘1, c 7$k:| X5 = CijfL'i.’L'j + Dij,V1 <i< ] < k’),

where the C;; € K* and D;; € KMong(A). A is a G-algebra if the following conditions
hold:

e There is a monomial well-ordering on Mong(A), <4, such that Im(D;;) <4 x;z;
forall1 <i<j<m.
o CiCjrDijay, — 2 Dij + Chrxj Dy — Cig Dy + Dy — CiCipi Dy = 0, V1 <

i < j < k <m (non-degeneracy conditions).

If Ais a G-algebra, then the set {z;z; — Cjjzx; — D, 1 < i < j < m}isa
Grobner basis for the ideal it generates in K(xy,...x,,) [16]. Also, if A is an algebra
with PBW basis, then the non-degeneracy conditions are automatically satisfied.

Let B’ be the subalgebra of U, s(sl3) generated by {fi, fa,wi,w)}. Adding the
element Fo; = fof1—sf1fo to the generating set, 15’ is generated by { f1, Fa1, fo, ], wh}

subject to the relations
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1. Forfi =rfiFe and foFo = rFor fo,

2. fofi =sfife + For,

3. Wi Fo = s Fyw) and whFa = rFewh,

4. the second type of relations (R3) from Definition II.1,

(a) wifr =rs! frw,

(b) wyfi = sfiwy,

() wifo=1""foul,

(d) whfy =rs! fowh, and
5. wiwh = whwy.

Therefore B’ is generated by {z1 = fi1, o = Fo1, v3 = fo, x4 = W, T5 = wh}, subject
to relations {x;x; = Cjjz;x; + D;j,1 < i < j < 5} where the coefficients C;; and poly-

nomials D;; are given by the relations above; that is D;; = 0 if (4, j) # (1,3) and
1. Cio=rand Cy3 =,
2. C13 = s and D3 = Foy,
3. Cyy =51 and Cy; =1,

4. (a) Ciyy = 7”8717
(b) CYl5 =S,
(c) Cyy =171,

(d) C35 =rs™!, and

D. 045 =1.
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Recall from Chapter II that { f{ Fo? f32 (w])* (wh)* } is a PBW basis for B’; hence the
non-degeneracy conditions are satisfied. If we take <z to be the degree lexicographic
order with f1 > Fo1 > fo > w] > wh, then Im(Dy3) = Fo1 < fi1f since deg(Fa1) =
1 < 2 = deg(fif2). Hence B’ is a G-algebra. Let I be the two-sided ideal of B’

generated by the set

{(wll)g - 17 (w;)é - 17 ff’ th fQZ} )

we have that H = (b’)°? = B'/1.

2. The code

I now present how I defined b’ in SINGULAR::PLURAL. The input and output are dis-
played in typewriter font and the output begins with the SINGULAR comment char-
acters (//). For simplicity I wrote W(i) for w] and Q for . The library linalg.1ib
contains the function mat_rk that calculates the rank of a matrix; from the library
matrix.1lib I use the command gauss_col which transforms a matrix into its column-
reduced Gauss normal form. The library ghmoduli.lib contains the functions Max

and Min which compute the maximum and minimum of a list of integers.
LIB "linalg.lib";
LIB "matrix.lib";

LIB "ghmoduli.lib";

For ¢, y and z positive integers with ged(y — z,¢) = 1, I define the ring B. I write the
code in terms of parameters 1, y and z; the values of these parameters can be fixed

in a preamble as will be shown in Example II1.3.

ring B = (0,Q), (F(1), F(21), F(2), W(1), W(2)), Dp;

minpoly = rootofUnity(l);
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The underlying coefficient field has characteristic 0 and it contains Q, which is a
primitive ¢th root of unity and is generated by the elements F(1), F(21), F(2),
L(1), L(2) (which correspond to fi, Fa1, fo,w) and w) respectively). The monomial
ordering Dp is the degree lexicographical order. I write the elements Cj; and D;; that
define the relations in B’; these are given with upper-triangular matrices C and D, and

only the non-zero elements need to be given.

matrix C[5] [5];

matrix D[5] [5];

c[1,2] = Q7y; C[1,3] = Q°z; C[1,4] = Q" (y-z); C[1,5] = Q°z;
C[2,3] = Q7y; C[2,4] = Q~(-2z); C[2,5] = Q7y;

C[3,4] = Q" (-y); CI[3,5] = Q" (y-2);

Cc[4,5] = 1;

D[1,3] = F(21);

The command ncalgebra(C,D) creates the G-algebra with the relations given by C

and D, and sets it as the base ring. I then give the generators of the ideal I.

ncalgebra(C,D);

option(redSB); option(redTail);

ideal I = F(1)"1, F(2)°1, w(1)"1 -1 , W(2)"1 - 1, (F(21))"1;

qring B = twostd(I);

The last command sets the base ring to be the quotient of the previous ring by the
ideal I (the ideal has to be given by a two-sided Grébmer basis, and so I applied
twostd to it). We now have b’ as the base ring. The option redSB forces SINGULAR
to work with reduced Grobner basis, and redTail forces the reduction of the tails of
polynomials during Grobner basis computations. Next I describe how I generate the

simple u, 4(sl3)-modules. Combining the definition of the 3 action (Equation (I1.3) in
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Lemma [.29), together with the coproduct formulas in H = (b")°°°? we have that for
all z € H and g € G(H),

fogr = =2 SP(f;) + Bw)) fix(w) ™ = —afilw) ™" + Blw)) fiw(w) ! (IL.1)

and
/

wiesg = B(wwig(w)) ™" = B(w))g.

The second equation shows that if g € G(H), then Hegg is generated by
{(fEF5 [ )esg - O <k, t, m < (}.

Recall from Chapter II that
Fo=A{f{Fnfi" 0< k. t,m < ()

and so

Hepgg = K{fesg - | € Fi}.
Using Equation (III.1) I define the procedures Betal and Beta2, so that Betal(a,h)
gives fiegh if B(f1) = 6° and Beta(b,h) gives fash if B(f2) = 6°. Since Fy =
fafi — sfife, I define the procedure Beta21 from the previous ones. For the results
to be linear combinations of monomials where each generator appears as a factor at

most ¢ times, I have to reduce the answer with respect to the ideal std(0).

proc Betal(int a, poly h)
{poly X;
X = reduce((-h)*F(1)*W(1)~(1-1) + Q a*xF(1)*h*W(1)~(1-1), std(0));

return(X);}

proc Beta2(int b, poly h)
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{poly X;
X = reduce((-h)*F(2)*W(2) " (1-1) + Q b*F(2)*h*W(2)~(1-1), std(0));

return(X);}

proc Beta21(int a, int b, poly h)

{return(Beta2(b, Betal(a,h)) - Q" (z) * Betal(a,Beta2(b,h)));}

Using compositions of these last procedures, I define the procedures PBetal, PBeta2
and PBeta21, so that if k € N, h € H and (3(f;) = 6* then PBetal(a,h, k) gives

fRegh, and similarly for fregh and Fiesh.

proc PBetal(int a, poly h, int k)
{ poly Y = h;
for(int n=1;n<=k;n++)
{ Y = Betal( a, Y);%}

return(Y); }

proc PBeta2(int b, poly h, int k)
{ poly Y = h;

for(int n=1;n<=k;n++)

{ Y = Beta2( b, Y);}

return(Y) ;}

proc PBeta21(int a, int b, poly h, int k)
{ poly Y = h;
for(int n=1;n<=k;n++)

{ Y =Beta21( a, b, Y);}
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return(Y);}

Combining these procedures I define the procedure Beta so that if 0 < k, t, m < ¢,
h € H and 3: H — K is an algebra map given by 8(f1) = 6% and ((f2) = 6°, then

Beta(a,b,k,t,m,h) gives (fFFL fi)esh.

proc Beta( int a , int b , int k, int t, int m, poly h)

{return( PBetal( a, PBeta21( a, b, PBeta2(b,g,m) , t), k)) ;}

Fix a group-like element g = (w})%(wh)? € H. In what follows I will construct a
basis and compute the dimensions for the module Hezg, where 3(w}) = §*~¥)+vd and
B(wh) = 0=+ The basic idea is to consider the linear map Tj : KF, — H given
by Ts(f) = fesg, and construct the matrix M representing T in the basis F;, and
{fh: feF,heGH)} of KF; and H respectively. Then dim(Hegg) = rank(M),
and the non-zero columns of the column-reduced Gauss normal form of M give the
coefficients for the elements of a basis of Hegg. The problem with this method is that
since dim(H) = ¢° and dim(KF;) = £3, the size of M is £> x 3. Computing the Gauss
normal form of these matrices is an expensive calculation even for small values of ¢
such as ¢ = 5. However, by some reordering of F, and of the PBW basis of H, M is
block diagonal. I proceed to show how this is done.

For a monomial h = f" F57 f5° (w])*® (wh)?¢ let deg, (h) = a1 + ay and degy(h) =
as + a3. Note that Equation (III.1) implies that hegx is a linear combination of

monomials m with deg;(m) = deg;(h) + deg;(z). For all 0 < u,v < 2/, let
Dy = {h € Fy: deg;(h) = u and degy(h) = v}

and

Reuw) = {f(@)"(@2) g : [ € D}
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Then for all h € D(y.), hesgg € KR(y.). The possible pairs (u,v) are such that
0 <wu,v <2(¢—1) and since |v—u] is the maximum power of F; that can be a factor
of a monomial in D, ), we must have [v—u| < £—1; thatisu—({—1) <v <u+l—1.

Another way of describing the sets D, ) and R, is as follows.

Duwy = {f{7Fofs\VieN: 0<u—iiv—i<l-1}

= {fiTFL Vi €N nyy <0 <Myt

where n,, = max(0,{ —1—u,{ —1—v) and m,, = min(¢ — 1,u,v). Since (w))~! =

(WL if g = (w))e(wh)? we also have
Ry = {f(w’l)(‘f_l)““(wé)(f—l)v+d L fe D(u,v)}-

Remark III.2. It is clear that F; = |J D(u), the union disjoint, and that Hegg =
®KR(y). Therefore a basis for Hegg is a disjoint union of the bases for KD, )39

for all possible pairs (u,v), and dim(Hezg) = >, ) dim(KD(y,v)059).

For ideals I; and Iy given by a list of their generators, the command coeffs ap-
plied to the pair (I3, [3) returns a matrix A such that [y A = I, where the ideals I; and
I, are thought of as one-row matrices whose entries are their generators. Therefore,
for given u and v, if M, is the result of applying coeffs to the pair (D(y.), Ruw)),
then rank(M,)) = dim(KD, ,)39), and if Ny, .y is the column-reduced Gauss nor-
mal form of M, ), the non-zero columns of D, )N form a basis of KD, ,yz9.

I define the procedure Submod, where the output of Submod(a,b,u,v) is a list L,
where the first component of the list is a basis for D, 39 and the second component

is dim(D(uﬂ))oBg).

proc Submod(int c, int d, int u, int v)

{ list L;
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ideal D;

ideal R;

list e = u-(1-1),v-(1-1),0; int n= Max(e);
list f = u,v, 1-1; int m= Min(f);

int a = (z-y)*c+ y*d; int b= -z*c+(z-y)*d;

for(int i= n; i<= m; i++)

{
D[i+1-n] = Beta(a, b , u-i, i, v-1i , W(1)"c * W(2)"d);
R[i+1-n] = F(1)"(u-i)* F(21) i* F(2)"(v-1)*
W(1) " (((1-1)*u+c) mod 1)* W(2)~(((1-1)*v+d) mod 1);}
matrix M = coeffs(D,R);
matrix N = gauss_col(M);

matrix K[1] [m-n+1] = R;

matrix S = Kx*N;

L[1] = compress(S);

L[2] mat_rk(N) ;

return(L) ;}

The command compress deletes the zero columns of a matrix. For g = (w})¢(w})? the
procedure Totalbasis(c,d) returns dim(Hegg) and a basis for Hegg, and is defined

using Remark II1.2.

proc Totalbasis(int ¢ , int d)
{ 1list T; matrix A; int t; t = 0;
for(int u = 0; u<=2%(1-1); u++)
{ list e = 0, u-(1-1);

list f

ut(1-1), 2x(1-1);
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for(int v = Max(e); v <= Min(f); v++)

{ list M = Submod(c,d, u,v);

A = compress(concat(A, M[1]));
t =1t + M[2];
}
}
T[1] = A; T[2] = t; return(T);

Example IIL.3. For { = 5, y = 1 and 2z = 4, for g = (w})*(w})?, T construct the
module Hegg as follows. To give SINGULAR:PLURAL the values of ¢, y and z, I write

at the beginning of the code

ring r0 = 0,x,dp;

int 1 = 1;
int y = 4;
int z = 1;

Then the command

Totalbasis(4,2);

returns

// [11:

/7 _[1,1]1=W(1) 4% (2) "2

/7 _[1,21=F(1)*W(1)~3*W(2) "2

/7 _[1,31=(-Q"3-Q"2-2*%Q-1) *F (1) *F (2) *W (1) “3*W (2) +F (21) *W (1) ~3*W(2)
// [2]:

// 3
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which tells us that dim(Heg ((w))*(wy)?)) = 3. In this case B(w]) = 63472 = §* and

B(wh) = 0~4+4432 = 1 A basis for Hesg is {legg, fiepg, Faresg} since

Beta(4,0,0,0,0,W(1)"4xW(2)"2);
Beta(4,0,1,0,0,W(1)"4xW(2)"2)/(-Q"3-Q"2-2*Q-1) ;

Beta(4,0,0,1,0,W(1)~4*W(2)"2)/(-Q"3-Q"2-2*Q-1) ;
returns

// W(1)~4%W(2) "2
// F(1)*W(1)"3%W(2) "2

// (-Q73-Q72-2%Q-1) *F (1) *F (2) *W (1) "3*W(2) +F (21) *W (1) "3*W(2)

3. Computational results and conjectures

For ¢ =5, y and z such that ged(3(y* — yz + 2%)(y — 2),£) = 1 and g = (w))*(wh)?
(0 < ¢,d < 5) the corresponding u, 4(sl3)-module Hezg has dimension dim(c, d), where

dim(c, d) is the entry in position (¢ + 1,d 4 1) of the symmetric matrix:

1 60 90 15 18
60 8 10 15 39
DIM=1] 90 10 19 35 3
15 15 35 63 6

18 39 3 6 125
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For ¢ = 7, the results are analogous to the case ¢ = 5, with matrix

1 105 162 210 24 42 33
105 8 10 273 21 36 75
162 10 27 35 28 63 114
DIM=| 210 273 35 37 71 3 6
24 21 28 71 117 154 15
42 36 63 3 154 215 15

33 7 114 6 15 15 343

By looking at these results, and the results obtained for other values of ¢, I formulate

the following conjecture:

Conjecture I11.4. Let y and z be integers such that ged(3(y? —yz+22)(y—2),¢) = 1
and set r = 0¥ and s = 0*. For integers 0 < ¢, d < { let g = (w})¢(wh)? € G(H) and
B : H — K be the algebra map given by B(f1) = 0FF and B(fy) = §==+Ev)d,

Let mq and ms be defined by
m1 = (2c—d+1)mod ¢, ms=(2d—c+1)mod ¢ and 0<m; <.

If mi +mo < { then
mlmg(ml + mg)

If my+mo >0, let = mq +mg — {, then

- —~ —2
dim(Hegg) = mlm?(”;l +mp)  (m1 —x)(me fl;)(“h + my x)

In the particular case when y = 1 and z = ¢ — 1, the formulas above for the
dimensions of the simple ug -1 (sl3)-modules appeared in a work by Dobrev [8], where

he calculated the dimensions of the simple modules for Uy(sl3), the infinite dimen-
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sional one-parameter quantum group. By analyzing the results of the calculations
in SINGULAR::PLURAL I formulate the following conjecture about simple ug g-1(s(3)-

modules.

Conjecture IIL.5. For g = (w})%(wh)? € G(H), let my = (2¢ — d + 1)mod { and
me = (2d —c+ 1)mod ¢, 0 < m; <. Let : H — K be the algebra map defined by
B(f1) = 072+ = 9=+l and B(fy) = 072 = 972+ 50 that Hegg is a ugg1(sls)-
module.

If my 4+ mq < (, then the set
{FiFd fhopg: 0<i<my, 0<j<l 0<k<myandi+j+k<my+my—2)}
is a basts for Hezg.

The conjecture was checked in PLURAL for ¢ = 5,7,11, and calculations show

that it holds when my = 1.
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CHAPTER IV

POINTED HOPF ALGEBRAS OF RANK ONE
Recently Andruskiewitsch and Schneider classified the pointed Hopf algebras with
abelian groups of group-like elements, over an algebraically closed field of character-
istic 0 [1]. Earlier, in 2005, Krop and Radford classified the pointed Hopf algebras of
rank one, where rank(H)+1 is the rank of H ) as an H )-module and H is generated
by H ) as an algebra, where H y) is the first term of the coradical filtration of H [15].
They also studied the representation theory of D(H) in a fundamental case. Using
Radford’s construction of simple modules, in Theorem IV.18, I give necessary and
sufficient conditions for the tensor product of two D(H)-modules to be completely

reducible.

1. Pointed Hopf algebras of rank one of nilpotent type

Let G be a finite abelian group, K an algebraically closed field of characteristic zero,
X : G — K a character and a € G; we call the triple D = (G, x,a) data. Let
¢:=|x(a)|, N :=|a| and M = |x|; note that ¢ divides both N and M. In [15] Krop
and Radford defined the following Hopf algebra.

Definition IV.1. Let D = (G, x, a) be data. The Hopf algebra Hp is generated by

G and z as a K-algebra, with relations:
1. z' =0.
2. g = x(g)gz, for all g € G.

The coalgebra structure is given by A(z) = r ® a+ 1 ® x and A(g) = g ® g for all

g€ qG.
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The Hopf algebra Hp is pointed of rank one. Let I' = Hom (G, K*), the set of

group homomorphisms from G to K* also written G.

Proposition IV.2 (Krop and Radford [15]). As a K-algebra, H} is generated by T’

and & subject to relations:
1. & =0.
2. &y =y(a)vE, for ally € T.

The coalgebra structure of Hy, is determined by A(§) = E@x+1®E€ and A(y) = 7R~

forall v €T

Proposition IV.3 (Krop and Radford [15]). The double D(Hp) is generated by

G, z, I', £ subject to the relations defining Hp and H}, and the following relations:

1. gy=ng forallg e G and y € T.

2. £g=x"Yg)g¢ forall g € G.
3. [z, &l =a—x.
4. v(a)xy =~x for ally € T.
Recall that the coalgebra structure of H3, in D(Hp) is the co-opposite to the one
in H*. Then in D(Hp), A(§) = x®{+E®1. Note that Hp satisfies the hypothesis of

Proposition 1.30, where elements in G have degree 0 and x has degree 1. Therefore,

simple D(Hp)-modules are of the form Hezg, for g € G and § € G(H*) =T.

2. Factorization of simple D(Hp)-modules

In this section I study under what conditions a simple D(Hp)-module can be factored

as the tensor product of a one-dimensional module with a simple module which is also

a module for D(Hp) = D(Hp)/D(Hp)(KGc(D(Hp)))". T also study, under certain
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conditions on the parameters, the reducibility of the tensor product of two simple
D(Hp)-modules.

I start by describing the central group-like elements of D(Hp). It is clear that
G(D(Hp)) = G xI'. An element (g,7) € G x I' will be denoted by g7. An element
g7y is central in D(Hp) if and only if (gv)x = z(g7) and (g7)§ = £(g7y). Using the

relations of D(Hp), we have that

gz = y(a)gzy = x (9)7(a)zgy,

and
97€ = v9€ = x(9)7¢9 = x(9)(a) &g

Hence, g7 is central if only if x~'(g)y(a) = 1. Let ev,-1, : G x I' — K* be the

character given by ev,-1,(g7) = x ' (g)7(a); we just showed the following lemma:
Lemma IV.4. Go(D(Hp)) = Ker (evy-1,).

For a : D(Hp) — K an algebra map, let K, be the one-dimensional module
defined by h -k = a(h)k for all h € D(Hp) and k € K. Note that o being an algebra
map implies that a(z) = a(n) = 0 (because 0 = 2* = &%) and a(a) = a(x) (by the
third relation in Proposition IV.3). Since a(zx) = a(n) = 0, we can think of « as a
group homomorphism « : G x I' — K*, that is, a € GXxT~TxG@. Let B, €' and
Ja € G so that a = [,94; that is a(g7v) = Ba(9)7(ga) for all gy in G xT'. If we extend
Ba to Hp by setting [,(x) = 0 and also call this extension 3, (as no confusion will

arise), we have 3, = q iy
Proposition IV.5. K, ~ Hpeg, g, as Yetter-Drinfel’d Hp-modules.

Proof. Since K, is a simple Yetter-Drinfel’d module, there exists an isomorphism of

Yetter-Drinfel’d modules ® : K, — Hpegg for some algebra map 3 : Hp — K and
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some g € G. We may assume that ®(1) = g. Let h € GG, we have

hesg = B(h)g.
Since ® is a module map,

hegg = hea®(1) = (h - 1) = (a(h))
= a(h)®(1) = fa(h)g.
We then have 5(h) = (,(h) for all h in G, and since B(x) = Bu(z) =0, § = fa.
If vy € ', then
1059 = 7(9)g-

On the other hand,

Yopg = 1op®(1) = ®(y - 1) = ®(a(7)1) = a(7)®(1) = 7(ga)g-
Then v(g) = v(ga) for all v € T', hence g = g,- O

For simplicity let K = Ker (evy-1,). If @ = 8,94 € I' X G, the condition a(a) =
a(x) is Bala) = x(9a) or X H(ga)Bala) = 1. Hence, @ in I' x G defines a one-
dimensional module if and only if .8, € Ker (ev,-1,) = K. This, together with the

previous proposition, shows

Corollary IV.6. The set SB(HD) of isomorphism classes of one dimensional D(Hp)-

modules is in one to one correspondence with K.

Recall that D(Hp) = D(Hp)/D(Hp)(KGe(D(Hp)))*. Since Ge(D(Hp)) = K,

D(Hp)(KGc(D(Hp)))" = D(H){gy—1: gy € K}.
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For a group A and a subgroup B C A, let
Bt={fecA: f(b)=1forall b€ B}.
Note that K+ c Gx T ~T x G.

Proposition IV.7. For f € G(Hp*) = I' and g € G, the simple D(Hp)-module

Hpesg is also a D(Hp)-module via the quotient map, if and only if fg € K=.

Proof. Hpegg is a D(Hp)-module, if and only if fv- (hegg) = hegg, for all fy € K and
h € Hp. Since K C Z(D(Hp)), if fy € K then fvy - (hegg) = (fyh) -9 = (hf7y)-g =
heg((f7v)-g). Thus, Hpesg is a D(Hp)-module, if and only if fy-¢g = g, for all fy € K.

Now fv-g= fesv(9)g = v(9)5(f)g. And so, Hpegg is a D(Hp)-module, if and only
if v(g)B(f) = 1 for all fy € K; that is, if and only if, 3g € K. O

Lemma IV.8. K+ = (ev,-1,).

Proof. Since K* ~ (€25, we have |K*| = [©XL| = [Im ev,-1,| = |ev,-1,]; the last
equality holding as Im ev,-1, is cyclic (since it is a finite subgroup of K*). By the

definitions of K and K=, ev,-1, € K+, hence K+ = (ev,-1,). O

It will be convenient to think of K+ as a subgroup of G x I via the identification

—

GxD~GxD~TxG~~G xT. Under this identification we have K+ = {ax™1).

Remark IV.9. We can restate Proposition IV.7 as follows: the simple D(Hp)-

modules that are also D(Hp)-modules are of the form Hps(,—cya®, forc =1,... lax™!|.

Recall that Sp(m,,) denotes the set of isomorphism classes of simple D(Hp)-
modules. Combining Proposition 1.33, Corollary IV.6 and Proposition IV.7, we get

that the map

D SD(HD) X SE(HD) — Sp(Hp)
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given by ®(U,V) = U ® V, is equivalent to the multiplication map
p: Kt x K —GxT,
under the identification of simple D(Hp)-modules with elements of G x I

Theorem IV.10. The map ® as above is a bijection if and only if ¢ is odd and
{=M=N.

Proof. By the last remark, ® is an bijection, if an only if G x I' = K+ x K, that

is G xT = K*K and KN K = {1}. Now |[K*| = |%L| = & and so |[KHK| =

K1) _GXTL \We then have that KLK = G x T if and only if Kt N K = {1}. If

|[K-NK| — |KLtnK|®

¢ =M = N, then |a| = |x| = £ and so |ax~!| = £. Since K* N K C K+ = {ax™1),

we have that K+ N K = ((ax™!)") for some r € {1,---,¢}. Since (ax!)" € K =
Ker (evy-1,), 1 = evy—1, ((ax™1)") = (x"Y(a))* and so €| 2r. If £ is odd, then ¢|r and
so (ax™1)" =1, giving Kt N K = {1}.

Conversely, if K+ N K = {1}, let n = |ax™!|. Then for all r € {1,--- ,n — 1},
(ax™ 1) & K. If either M # £ or N # ¢, then n > £ and so (ax™')* ¢ K, which is a
contradiction since ev,-1,((ax™")") = x ' (a)* = 1. Hence, { = M = N. If { is even,
then (axil)g ¢ K, which is again a contradiction since evxqa((axfl)%) =x Ya)' =

1. Hence ¢ is odd. O]

Next I describe the structure of D(Hp) under the hypothesis of the last Theorem.

Proposition IV.11. If { is odd and ¢ = N = M, then D(Hp) =~ uy(sly) as Hopf

_1
2.

algebras, where 0 = x(a)

Proof. Recall that ug(sly) = uge-1(sly)/{(w}) ' —w1). Since there is only one generator

of each kind, I will omit the subindex 1; we then have that uy(sls) is generated by e,
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f and w, with relations:

1
ef=0=f" w=1 we=0"ew, wf=0?%fw and [e,f]:mw—ufl.

In the proof of the previous proposition, we showed that if £ is odd and { = N = M,

then G x I' = (ax 1)K, and so (x"'a) is a complete set of representatives of the

classes in ©XL. Let ¢ : D(Hp) — ug(sly) be the algebra map such that
e Y(g7) =w > if gy € (ax')°K, Vgy € G x T,
e $(¢) = and
o vlx) = (0— 677,
For 1 to be defined, it must commute with the defining relations of D(Hp) (from

Definition IV.1 and Propositions IV.2 and IV.3 ). This is the case by the following

calculations:

L (z)v(g) = x(9)v(g)d(z), for all g € G:
Let g € G; if g € (ax 'K, then g = (ax™')°grx¢, with grx¢ € K. Hence

x(a)x gx) =1 and so x(g9x) = x(a) = ¢°. Therefore

x(9) = x(a°gx) = x(a®)x(9x) = ¢*.

W(E)(g) = B —0Y)fw > =0—-01)0"wf =x(g)w 20— 07" f

= x(9)¢(g)(x).

2. ((y) = v(a)b(y)(§), for all v € I

Let v € T', in a similar way as in the previous relation, it can be shown that if
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v € (ax 1)K, then v(a) = g*. We then have
P(E)Y(7) = ew™ = 0w e = y(a)p(N)Y(E).

3. [(x), (O] = ¥(a) — ¥ (x):

To prove this, we first need to know the images of a and y under . Since ¢ is
odd, let ¢ € Z be such that 2¢ = 1 modl. Then, a = (ax *)%(ax)¢, and since
ax € K, we have that

Yla) =w > =w . (IV.1)

Similarly, x = (ax™')"(ax)¢ and so ¥(x) = w. Now

(@), 0] = (0—0f =~ —0)e.f] =~
= W w = () — ().

Clearly ¥ (x)" = 0 = (&) and ¥(g)v(7) = ¥(7)¢(g) for all g € G and v € I'. The

other relations follow in a similar way as 1 and 2 above.
Next we need to show that v is a map of coalgebras. Group-like elements in

D(Hp) are mapped to group-like elements in uy(sly). Moreover,

vRU(AR) = veYEeatler)=0-0")(few ! +1 f)

= (0-07)A(f) = A(¥(2))

and

POYPAE) =Y 0YPp(x@E+ER]) = (w@etedl) = Ale) = A(Y(E)).

Therefore 1 is a map of Hopf algebras.
Recall that D(Hp)(KK)" = D(Hp){k—1 : k€ K}. Note that ¢(K) = {1}
and so ¥ ({k—1: k€ K})=0. Therefore D(Hp)(KK)" C Ker (¢/) and the map v
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induces a Hopf algebra map ¢ : D(Hp) — ug(sly). Since £ is odd, (w) = (w™?), and
so 1) is surjective.

By Remark I.15,

o dim(D(Hp)) |G x|
dim(D(Hp)) = dim(KK) B | K|

= dim(ug(sly)).

— K4 = [{ax e = ¢

Hence, v is an isomorphism.

]

Remark I'V.12. Let b’ be (as in Chapter II) the subalgebra of uy g-1(sl;) generated by
f and ' and H = (b')°°P. Via the isomorphism 1 defined in the proof of Proposition
IV.11, a simple D(Hp)-module of the form Hpe;—c)(a®) is also a ug(sly)-module.
Explicitly, for h € ug(sly) = upg-1(sly) and m € Hpey—cy(a®), h-m = E_l(h) - m.
Therefore, as ug(sly)-modules, Hpe,—)(a®) ~ Heg(w'?) with f(w’) = 672 for some
d € 7Z. By analyzing the action of w’ on both of this modules, it follows that d = —c.

Conversely, a simple uy(sly)-module Hes(w')? becomes a simple D(Hp)-module via

¥, and is isomorphic to Hps(yay(a™?) as D(Hp)-modules.

I finish this section by studying the reducibility of tensor products of simple
D(Hp)-modules when n = M = N is odd.

In [19], Radford used his construction to describe simple modules for the Drinfel’d
Double of the Taft algebra, which is isomorphic to ugg-1(sly) when ¢ is odd (¢ is the
order of #). Translating his result to our notation (H = (b")°°°P, generated by ' and

f and the corresponding relations) we have

Proposition IV.13 (Radford [19]). For g = (W) and § : H — K an algebra
morphism, let r > 0 be minimal such that B(w') = 6%~ . Then the simple ugg-1(sly)-

module Hezg is (r + 1)—dimensional with basis {g, fesg, ..., [reag} and frlezg = 0.
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In [7], H-X. Chen studied the reducibility of tensor products of these simple

modules:

Proposition IV.14 (Chen [7]). Given g = ('), ¢’ = () in G(H) and 3,3’ €
G(H*)} let T, r e {07 R ’f — 1} be such that 6(0)/) — 02(0—7’) and 6/((«0,) _ GQ(CI_T/)_
Then the ug g-1(sly)-module Hogg® Hegg' is completely reducible if and only if r+1' <

L. Moreover, let
9;=99'(W)7 and B;(w') =076 ();

if r+ 1" < { then

min(r,r’

)
H-59®H-5/g/2 @ H-/gjgj.
=0

Ifr+v" >0 lett=r+1r"—{0+1; then

Soc (Hegg ® Hegg') = Heg,g;.

Remark IV.15. By Example I1.9, if Heg(w')¢ is naturally a ug(sly)-module, then
B = By, ie. B(W) =072 = 622 Then the number r from Proposition IV.13 is

r = 2c¢ mod{, with 0 < r < £. I will denote such number by r..
We get the following corollary for simple uy(sly)-modules:

Corollary IV.16. Given g = ()¢ and ¢ = ()¢ in G(H). Ifr. +rs < { then

min(re,r )

H'ﬁgg & H.Bg/g/ ~ @ HOngj,

j=0
as ug(sly)-modules, where g; = gg' (')~ and B; = f,,.
Remark IV.17. This last corollary is a particular case of a more general formula

for simple modules for the non-restricted quantum group U, (sly), that appears as an

exercise in [3].
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We have an analogous result to Proposition IV.14 for D(Hp)-modules:

Theorem IV.18. If { = M = N is odd and gf3, ¢’/ € G x ' = G(D(Hp)), let ¢
and ¢ € Z such that (a='x)¢ and (a='x)¢ are representatives of the classes of g3 and
g' B in G xT'/K respectively. Then the D(Hp)-module Hpegg @ Hpeg g’ is completely

reducible if and only if r. +ro < £. Moreover, let
g9 =gg'a and B=x7'60"

if re +re < { then

min(re,r .

)
Hpesg ® Hpoprg' ~ €  Hrpes,g;.

§=0
Ifro+ros >, then

min(re,r )

Soc (Hpegg © Hosyrg) = €D Howg, g5,

=[]

wheret =r. + 1o — £+ 1.

Proof. Let giBx and gl By € K such that g8 = (a='x)°gxfx and ¢’ = (a~'x)¢ gt B
By Proposition IV.10, Hpegg ~ Heyca™ @ Hpeg, 9K, the first factor in SW, and

the second factor in Sll)( Hp): Similarly Hpeg g’ = HD'XC/(I—C/ ® Hpeg, gf- Then

HD‘BQ ® H’D'ﬂ’g/ ~ (HDOXca,_C ® HD./BKgK) ® (H'DOXC/(Z_C/ ® HD'ﬂ}{g/[()
~ (HD'XC(I—C ® HD-XC/G_C/> ® (HD’,GKQK ® HD'B}(QQ()
~ (HD‘XCG_C ® HD.XC/ CL_C'> ® HD.ﬁK*ﬂ;g gKg/K'7
the second isomorphism by symmetry of tensor products of modules for D(Hp), and

the third by combining Propositions 1.33 and 1.34. Let v, : H — K be the algebra

maps given by v(w') = 672¢ and 7/ (w') = 072, If r. +rs < £, we have the following
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isomorphisms of uy(sly)-modules:

mln T'T’

Homea™ @ Hpnyora™ 2 Ho ()" @ Hoos GB Has,g;,

where g; = ()" Jand v;(w') = 672+~ the first isomorphism following from
the Remark I'V.12 and the second from Corollary IV.16. Again by the Remark IV.12,
the j'* summand of the last module is isomorphic to Hpe -c;a% as D(Hp)-modules,

where ¢; = —(c+ ¢ — j). Then

min(r,r’) min(r,r")
HD'BQ ® HD‘ﬁ’Q/ ~ @ HD‘ —cj i ® HD.L'}K*ﬁ;chg}( ~ @ HDo,y],gj,
=0
where
9; = a%grgi = a ‘gra  gia’ = gg'a’
and

vi = X" BB = X Br X’ Bx = B3 x?

If ro.4+ry > £, we have

Hpegg @ Hpegg' ~ (Hpox—cac ® Hpe, acl) ,
ﬁKBK

and by Remark 1.34 we have
Soc (Hp'ﬁg ® HDoB/g/) ~ <SOC (HD-X—c(ZC & HD'Xfcf CLCI)> .
Br By

With a similar reasoning as before, we get that

min(re,r.)

Soc (Hpm-ca* @ Hpny-oa”) = @@ Hes,

j= t+1]



where ¢;

where g;

99

= —(c¢+ ¢ — j). Therefore
min(re,r )
Soc (Hpegg @ Hpegg') =~ H.X,Cj ai
i=[F] BBy
min(re,r.)
= H.X_Cj acj ® H.HK *B}( gKg}(
i=[5]
2
min(re,r.s)
~ Hogjgj,
=[]
= higrdi = a~ U grg = gg'a’ and f; = ; * i * B = B/ x .

[

In [11], the authors studied the representation theory of the Drinfel’d double of

a family

of Hopf algebras that generalize the Taft algebra. In their case, the order

of the generating group-like element need not be the same as the order of the root

of unity:.

They give a similar decomposition of tensor products as in Theorem IV.18.

Although the algebras Hp generalize their Hopf algebras, Theorem IV.18 does not

generalize their result since I require |a| = |¢|. However, since G need not be cyclic,

Theorem IV.18 generalizes Chen’s result for Taft algebras.
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CHAPTER V

CONCLUSION
In this dissertation I used Radford’s method to construct simple modules for the
Drinfel’d double of a graded Hopf algebra, to get information about the structure of
these modules. 1 worked with two different classes of Hopf algebras: the restricted
two-parameter quantum groups (of type A) defined by Benkart and Witherspoon in
[6], and the rank one pointed Hopf algebras of nilpotent type introduced by Krop and
Radford in [15].

For the two-parameter quantum groups, I presented necessary and sufficient con-
ditions on the parameters r and s, for a simple u, (s, )-module to be factored as the
tensor product of a one-dimensional module with a module that is naturally a module
for u,4(sl,), the quotient of u, 4(sl,) by group-like central elements (Theorem II.13).
In Chapter III, I introduced the code used in SINGULAR::PLURAL to construct simple
U, s(sl3)-modules, and presented conjectures about bases and dimensions based on the
computational results.

In Chapter IV, for Hp a rank one pointed Hopf algebra of nilpotent type, I gave
necessary and sufficient conditions on D for a simple D(Hp)-module to factor as the
tensor product of a one-dimensional module with a module that is naturally a module
for m (Theorem IV.10). Using this result, I studied the complete reducibility of
the tensor product of two simple D(Hp)-modules (Theorem IV.18). This result is a

generalization of the work of Chen on the Drinfel’d double of the Taft algebra [7].
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