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ABSTRACT

On Simple Modules

for Certain Pointed Hopf Algebras. (December 2006)

Mariana Pereira, B.S., Universidad de la República, Uruguay;

M.S., University of Massachusetts

Chair of Advisory Committee: Dr. Sarah Witherspoon

In 2003, Radford introduced a new method to construct simple modules for

the Drinfel’d double of a graded Hopf algebra. Until then, simple modules for such

algebras were usually constructed by taking quotients of Verma modules by maximal

submodules. This new method gives a more explicit construction, in the sense that

the simple modules are given as subspaces of the Hopf algebra and one can easily

find spanning sets for them. I use this method to study the representations of two

types of pointed Hopf algebras: restricted two-parameter quantum groups, and the

Drinfel’d double of rank one pointed Hopf algebras of nilpotent type. The groups of

group-like elements of these Hopf algebras are abelian; hence, they fall among those

Hopf algebras classified by Andruskiewitsch and Schneider. I study, in particular,

under what conditions a simple module can be factored as the tensor product of

a one dimensional module with a module that is naturally a module for a special

quotient. For restricted two-parameter quantum groups, given θ a primitive ℓth root

of unity, the factorization of simple uθy ,θz(sln)-modules is possible, if and only if

gcd((y − z)n, ℓ) = 1. I construct simple modules using the computer algebra system

Singular::Plural and present computational results and conjectures about bases

and dimensions. For rank one pointed Hopf algebras, given the data D = (G,χ, a),

the factorization of simple D(HD)-modules is possible if and only if |χ(a)| is odd and

|χ(a)| = |a| = |χ|. Under this condition, the tensor product of two simple D(HD)-
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modules is completely reducible, if and only if the sum of their dimensions is less or

equal than |χ(a)| + 1.
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CHAPTER I

INTRODUCTION AND PRELIMINARIES

I study the simple modules of two types of pointed Hopf algebras: restricted two-

parameter quantum groups and the Drinfel’d double of rank one pointed Hopf algebras

of nilpotent type. The main tool I use is a construction introduced by Radford [19]

where the simple modules for the Drinfel’d double of a Hopf algebra are parametrized

by group-like elements of the Drinfel’d double.

The dissertation is organized as follows. In this chapter I give the definitions

and notations that I will use and I present Radford’s construction for simple modules

for the Drinfel’d double of certain Hopf algebras. In Chapter II, I define the two-

parameter quantum groups and present a theorem on factorization of their simple

modules. In Chapter III, I show the code used to construct these modules using

the computer algebra system Singular::Plural and I formulate conjectures about

their bases and dimensions based on the computational results. In Chapter IV, I

present the rank one pointed Hopf algebras of nilpotent type defined by Krop and

Radford in [15], and give a theorem about the reducibility of the tensor product of

two simple modules for their Drinfel’d doubles.

In what follows K is a field of characteristic 0. All vector spaces and tensor

products are over K. A map between vector spaces means a linear transformation.

For a map T : V → W between vector spaces V and W , I will denote the dual

of T by T ∗; that is T ∗ : W ∗ → V ∗ and T (f)(v) = f(T (v)) for all f ∈ W ∗ and

v ∈ V . For vector spaces V and W , the twist map τ : V ⊗W → W ⊗ V is given by

τ(v ⊗ w) = w ⊗ v.

The journal model is Journal of Algebra.
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1. Hopf algebras

I give a brief introduction to Hopf algebras, summarizing the first chapter of [18].

Definition I.1. An algebra is a triple (A,m, u) where A is a vector space and

m : A⊗ A→ A and u : K → A

are maps so that the following diagrams commute:

A⊗ A⊗ A
m⊗id //

id⊗m

��

A⊗ A

m

��
A⊗ A m

// A

A⊗ A

m

��

K ⊗ A

u⊗id
99ssssssssss

∼=
%%KKKKKKKKKKK

A⊗ K

id⊗u
eeKKKKKKKKKK

∼=
yysssssssssss

A

.

These are the diagrams of associativity and unit respectively. The map m is called

multiplication and u is the unit.

Write m(a⊗ b) = ab and u(1K) = 1A. With this notation, the commutativity of

the diagrams means (ab)c = a(bc) and a1A = 1Aa = a, ∀a, b, c ∈ A. When there is no

place for confusion I will say the algebra A instead of (A,m, u).

Now I dualize the notions just defined to define coalgebras.

Definition I.2. A coalgebra is a triple (C,∆, ε) where C is a vector space and

∆ : C → C ⊗ C and ε : C → K

are maps so that the following diagrams commute:
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C
∆ //

∆

��

C ⊗ C

∆⊗id

��
C ⊗ C

id⊗∆
// C ⊗ C ⊗ C

C

∆

��

∼=

yysssssssssss
∼=

%%KKKKKKKKKKK

K ⊗ C C ⊗ K

C ⊗ C
ε⊗id

eeKKKKKKKKKK id⊗ε

99ssssssssss

.

These are the coassociativity and counit diagrams respectively. The map ∆ is called

comultiplication and ε is the counit.

The following notation was introduced by Heyneman and Sweedler.

Notation. The sigma notation for ∆ is given as follows: for any c ∈ C, write

∆(x) =
∑

x(1) ⊗ x(2).

The subscripts (1) and (2) are symbolic and do not indicate particular elements of C.

With this notation the coassociativity diagram translates as

∑
x(1)(1) ⊗ x(1)(2) ⊗ x(2) =

∑
x(1) ⊗ x(2)(1) ⊗ x(2)(2) .

This element is denoted by

∆2(x) =
∑

x(1) ⊗ x(2) ⊗ x(3).

Iterating this process, applying coassociativity n− 1 times, gives

∆n−1(x) =
∑

x(1) ⊗ · · · ⊗ x(n).

The counit diagram says that, for all c ∈ C

∑
ε(c(1))c(2) = c =

∑
ε(c(2))c(1).
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Definition I.3. Let (C,∆, ε) be a coalgebra and I a subspace of C.

1. I is a left coideal of C if ∆(I) ⊂ C ⊗ I.

2. I is a right coideal of C if ∆(I) ⊂ I ⊗ C.

3. I is a coideal of C if ∆(I) ⊂ I ⊗ C + C ⊗ I and ε(I) = 0.

If I is a coideal of (C,∆, ε), then C/I is a coalgebra with comultiplication and

counit induced from ∆ and ε respectively.

Example I.4. If (A,m, u) is a finite-dimensional algebra then its dual, A∗, is a

coalgebra with ∆ = m∗ and ε = u∗. Explicitly, if f ∈ A∗, then ∆(f)(a ⊗ b) =
∑
f (1)(a)f (2)(b) = f(ab) for all a and b in A, and ε(f) = f(1A).

If (C,∆, ε) is a coalgebra, then C∗ is an algebra with m = ∆∗ and u = ε∗. That

is, for f and g in C∗, (fg)(c) =
∑
f(c(1))g(c(2)) for all c ∈ C and 1C∗ = ε.

Definition I.5. A bialgebra is a quintuple (B,m, u,∆, ε) where (B,m, u) is an al-

gebra, (B,∆, ε) is a coalgebra, and the maps ∆ and ε are algebra morphisms (or

equivalently, m and u are coalgebra morphisms).

Example I.6. If (B,m, u,∆, ε) is a bialgebra, then so are Bop = (B,mop, u,∆, ε)

and Bcoop = (B,m, u,∆op, ε), with mop = m ◦ τ and ∆op = τ ◦ ∆. If mop = m then

then B is commutative, and if ∆op = ∆ it is cocommutative.

Definition I.7. Let (A,m, u) be an algebra and (C,∆, ε) a coalgebra. Then HomK(C,A),

the set of linear maps from C to A , is an algebra with the convolution product

f ∗ g := m ◦ (f ⊗ g) ◦ ∆

for all f, g ∈ HomK(C,A); i.e.

(f ∗ g)(x) =
∑

f
(
x(1)

)
g
(
x(2)

)
, ∀x ∈ C.
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The unit element in HomK(C,A) is uε.

From now on, when I say the algebra HomK(C,A), I mean (HomK(C,A), ∗, u ◦ ε).

In particular, if (B,m, u,∆, ε) is a bialgebra, then Hom K(B,B) is an algebra with

the structure just described. The map id B is invertible in Hom K(B,B) if and only if

there exists a map S : B → B such that S ∗ id B = id B ∗ S = u ◦ ε. In other words,

∑
S
(
x(1)

)
x(2) =

∑
x(1)S

(
x(2)

)
= ε (x) 1B, ∀ x ∈ B.

Such a map S is called an antipode in B. If an antipode exists in (B,m, u,∆, ε), it is

unique.

Definition I.8. A Hopf algebra is a sextuple (H,m, u,∆, ε, S) where (H,m, u,∆, ε)

is a bialgebra and S : H → H is an antipode in H.

A subspace I of H is a Hopf ideal of H, if it is both an ideal and a coideal and

S(I) ⊆ I. If I is a Hopf ideal of H, then H/I is a Hopf algebra with the structure

induced from H.

Example I.9. If (G, ·, e) is a group, let KG be the vector space with basis G. Then

KG is a Hopf algebra with the operations defined by

m(g ⊗ g′) = g · g′ and u(1) = e, ∀ g, g′ ∈ G,

∆(g) = g ⊗ g, ε(g) = 1, and S(g) = g−1, ∀g ∈ G.

The algebra KG is called the group algebra of G.

For any coalgebra C, an element c ∈ C is called group-like if

∆(c) = c⊗ c and ε(c) = 1.

Denote by G(C) the set of group-like elements of C. Then KG(C) is a subcoalgebra

of C.
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Example I.10. Let g be a Lie algebra over K. The universal enveloping algebra

U(g) is the quotient of the tensor algebra T (g) by the ideal generated by the relations

h⊗ g − g ⊗ h− [h, g] for all h, g in g. Then U(g) is a Hopf algebra with:

∆(h) = h⊗ 1 + 1 ⊗ h, ε(h) = 0, and S(h) = −h, ∀h ∈ g.

Example I.11. If H is a finite-dimensional Hopf algebra with antipode S, then H∗

with the structures described in I.4 is a Hopf algebra with antipode S∗.

Example I.12. In [21] Taft constructed a family of finite-dimensional non-commu-

tative, non-cocommutative Hopf algebras: let ℓ ∈ Z>0, and θ a primitive ℓth root of

unity. The Taft algebra Tθ is generated as an algebra by elements x and a, subject

to the relations:

xℓ = 0, aℓ = 1, ax = θxa.

The coalgebra structure and the antipode are determined by:

∆(a) = a⊗ a, ǫ(a) = 1, S(a) = a−1 = aℓ−1,

∆(x) = x⊗ a+ 1 ⊗ x. ǫ(x) = 0, S(x) = −xa−1.

The set {aixj : 0 ≤ i, j < ℓ} is a linear basis for Tθ.

The Hopf algebras that I will study are generalizations of the Taft algebras, and

they will all be graded Hopf algebras, as defined next.

Definition I.13. A Hopf algebra H is graded if H = ⊕∞
n=0Hn and

1. H is a graded algebra, i.e. 1 ∈ H0 and HmHn ⊆ Hm+n.

2. H is a graded coalgebra, i.e. ∆(Hn) ⊆
∑n

i=0Hn−i ⊗Hi and ε(Hn) = 0, ∀n > 0.

3. S(Hn) ⊆ Hn, ∀n ≥ 0.
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The Taft algebra Tθ is a graded Hopf algebra with (Tθ)n = K{aixn : 0 ≤ i < ℓ}

if n < ℓ, and (Tθ)n = (0) for n ≥ ℓ.

Another property of the Taft algebras is that they are pointed Hopf algebras, as

defined next.

Definition I.14. A coalgebra is called simple if it has no proper subcoalgebras. For

a coalgebra C, the coradical C(0) of C, is the sum of the simple subcoalgebras of C.

If C(0) = KG(C) (in other words, every simple subcoalgebra of C is one-dimensional),

C is pointed.

Now I give a definition that will be used in the following chapters. Given any

Hopf algebra H and L a subset of H, let

L+ = L ∩ Ker ε.

Note that if L is a subcoalgebra of H, then L+ is a coideal and hence H/L+ is a

coalgebra. Morover, let 〈L+〉 = HL+H be the two-sided ideal generated by L+,

then H/〈L+〉 is a bialgebra. I will use this construction in the particular case where

L ⊂ Z(H), the center of H, in which case 〈L+〉 = HL+ and so H/HL+ is a bialgebra.

If in addition S(L+) ⊂ L+, then H/HL+ is a Hopf algebra. A simple calculation

shows that if L = KJ with J a subgroup of G(H), the group of group-like elements

of H, then

L+ = K {g − 1 : g ∈ J} .

Remark I.15. In [20] H.-J. Schneider strengthened the Nichols-Zoeller theorem and

showed that if H is a finite-dimensional Hopf algebra and L is a Hopf subalgebra of

H, then H ≃ H/HL+ ⊗ L as right L-modules [20] . In particular

dim(H/HL+) =
dim(H)

dim(L)
.
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Definition I.16. For H a finite-dimensional Hopf algebra, let

GC(H) = G(H) ∩ Z(H)

denote the group of central group-like elements of H and let

H = H/H(KGC(H))+.

Then H is a Hopf algebra, and by Remark I.15

dim(H) =
dim(H)

|GC(H)|
.

2. Modules, comodules and Yetter-Drinfel’d modules

Definition I.17. Let A be an algebra. A left A-module is a pair (M,ρ), where M is

a vector space and ρ : A⊗M →M is a map so that the following diagrams commute:

A⊗ A⊗M
m⊗id //

id⊗ρ

��

A⊗M

ρ

��
A⊗M ρ

// A

, K ⊗M
u⊗id//

∼=
&&LLLLLLLLLLL

A⊗M

ρ

��
M

.

A map ρ as above is called an action. Write ρ(a⊗m) = a ·m. With this notation

the diagrams become

a · (b ·m) = (ab) ·m and 1A ·m = m, ∀a, b ∈ A, m ∈M.

There is an analogous definition of right modules; since all the modules I will consider

will be left modules, I will say module for left module.

If (M,ρM) and (N, ρN) are A-modules, a map f : M → N is a morphism of

modules if f(a ·m) = a · f(m), ∀m ∈M,a ∈ A.

Definition I.18. Let (M,ρM) be an A-module and N a subspace of M ; N is an
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A-submodule of M if A · N ⊂ N . An A-module M is simple if its only submodules

are 0 and M . A modules is completely reducible if it is the direct sum of its simple

submodules.

Dualizing the previous definitions we get the analogous notions for coalgebras.

Definition I.19. Let C be a coalgebra. A right C-comodule is a pair (M, δ) where

M is a vector space and δ : M → M ⊗ C is a map so that the following diagrams

commute:

M
δ //

δ
��

M ⊗ C

id⊗∆
��

M ⊗ C
δ⊗id

// M ⊗ C ⊗ C

, M
δ //

∼= $$HHHHHHHHH
M ⊗ C

id⊗ε

��
M ⊗ K

.

The map δ is called coaction. Write

δ(m) =
∑

m(0) ⊗m(1),

where m(0) ∈M, m(1) ∈ C.

Remark I.20. With this notation, the diagrams above translate as

∑
m(0)(0) ⊗m(0)(1) ⊗m(1) =

∑
m(0) ⊗m(1)(1) ⊗m(1)(2) (I.1)

and
∑

m(0)ε(m(1)) = m,

for all m ∈M. The element of the equation (I.1) will be denoted
∑
m(0)⊗m(1)⊗m(2).

Definition I.21. Given (M, δ) and (N, η) two C-comodules, a map f : M → N is a
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comodule morphism if the following diagram commutes:

M
f //

δM

��

N

δN

��
M ⊗ C

f⊗id
// N ⊗ C

.

That is, if
∑
f
(
m(0)

)
⊗m(1) =

∑
f(m)(0) ⊗ f(m)(1),∀m ∈M.

There is an analogous definition of left comodule; since all the comodules will be

right comodules, I will say comodule for right comodule.

Definition I.22. Let (M, δ) be a C-comodule and N a subspace of M ; N is a C-

subcomodule of M if δ (N) ⊂ N ⊗ C.

Remark I.23. If (B,m, u,∆, ε) is a bialgebra and M and N are B-modules, then

M ⊗N is also B-module with action given by

b · (m⊗ n) =
∑

b(1) ·m⊗ b(2) · n, ∀ b ∈ B, m ∈M,n ∈ N.

If M and N are B-comodules then M ⊗N is a B-comodule with coaction

δ(m⊗ n) =
∑

m(0) ⊗ n(0) ⊗m(1)n(1), ∀ m ∈M,n ∈ N.

Definition I.24. Let H be a finite-dimensional Hopf algebra over K with antipode

S. The Drinfel’d double of H, D(H), is

D(H) = (H∗)coop ⊗H

as a coalgebra. The algebra structure is given by

(g ⊗ h)(f ⊗ k) =
∑

g
(
h(1) ⇀ f ↼ S−1(h(3))

)
⊗ h(2)k,

for all g, f ∈ H∗ and h, k ∈ H; where (a ⇀ f)(b) = f(ba) and (f ↼ a)(b) = f(ab),

for all a, b ∈ H and f ∈ H∗.
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This construction is due to Drinfel’d [10] where he showed that if H is a finite-

dimensional Hopf algebra, then D(H) is a Hopf algebra. Furthermore, if M and N

are D(H)-modules, then

M ⊗N ≃ N ⊗M.

Explicitly, if {hi} is a basis for H and {h∗i } is the corresponding dual basis of H∗, let

R =
∑

i

(εH ⊗ hi) ⊗ (h∗i ⊗ 1H) ∈ D(H) ⊗D(H).

Then M ⊗N ≃ N ⊗M via m⊗ n 7→ R−1(n⊗m). Drinfel’d doubles are examples of

quasitriangular bialgebras, which are bialgebras B equipped with invertible elements

R ∈ B ⊗ B, satisfying certain conditions, and for which the symmetry of tensor

products of modules is realized via R−1.

If M is a D(H)-module, then it is both an H-module and an (H∗)coop-module.

The action of H∗ gives rise to an H-comodule structure on M such that if δ(m) =
∑
m(0) ⊗m(1) then f ·m =

∑
〈f,m(1)〉m(0) for all f ∈ H∗.

Definition I.25. For any bialgebra H, a left-right Yetter-Drinfel’d module is a K-

vector space M which is both a left H-module and a right H-comodule, and satisfies

the compatibility condition

∑
h(1) ·m(0) ⊗ h(2)m(1) =

∑
(h(2) ·m)(0) ⊗ (h(2) ·m)(1)h(1).

The category of left-right Yetter-Drinfel’d modules over a bialgebra H will be

denoted by HYD
H .

Proposition I.26 (Majid [17]). Let H be a finite dimensional Hopf algebra. Then

D(H)-modules are left-right Yetter-Drinfel’d modules and conversely. Explicitly, if

M is a left-right Yetter-Drinfel’d module, then it is a D(H)-module with the same
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action of H and the action of H∗ given by

f ·m =
∑

f(m(1))m(0), (I.2)

for all f in H∗ and m in M .

Remark I.27. If M,N ∈ HYD
H , by the last proposition M and N are D(H)-

modules. Since D(H) is a bialgebra, by Remark I.23 M ⊗N is also a D(H)-module

and hence a Yetter-Drinfel’d module over H. The Yetter-Drinfel’d structure is given

by

h · (m⊗ n) =
∑

h(1) ·m⊗ h(2) · n

and

δ(m⊗ n) =
∑

m(0) ⊗ n(0) ⊗ n(1)m(1).

An alternative definition of the Drinfel’d double is D′(H) = H ⊗ (H∗)coop as

coalgebras, and multiplication given by

(k ⊗ f)(h⊗ g) =
∑

kf (1)(S
−1(h(1)))f (3)(h(3))h(2) ⊗ f (2)g,

where (∆op ⊗ id )∆op(f) =
∑
f (1) ⊗ f (2) ⊗ f (3). I will need both definitions of the

Drinfel’d double since two of the papers I will be using [6, 19] use these different

definitions. The following lemma gives the relationship between these two definitions

of the Drinfel’d double.

Lemma I.28. D′(H) ≃ D(H∗)coop as Hopf algebras.

Proof. As H∗∗ ≃ H, we have D(H∗) ∼= Hcoop ⊗H∗, with multiplication

(k ⊗ f)(h⊗ g) =
∑

k
(
f (1) ⇀ h ↼ (S∗)−1(f (3))

)
⊗ f (2)g

=
∑

k
(
f (1)(h(2))h(1) ↼ (f (3) ◦ S

−1)
)
⊗ f (2)g

=
∑

kf (1)(h(3))(f (3)(S
−1(h(1)))h(2) ⊗ f (2)g,
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where (∆op ⊗ id )∆op(f) =
∑
f (3) ⊗ f (2) ⊗ f (1). So D′(H) ≃ D(H∗) as algebras. As

coalgebras D(H∗) ≃ Hcoop ⊗H∗ = (H ⊗ (H∗)coop)coop = D′(H)coop.

3. Radford’s construction

In this section I describe results from [19]. Although Radford’s results are more

general, I will only write them for K an algebraically closed field of characteristic

0. This is the main tool I will use to study representations of Drinfel’d doubles. For

algebras A and B, the set of algebra maps from A to B will be denoted by Alg (A,B).

It is not hard to see that ifH is a finite dimensional algebra, then Alg (H,K) = G(H∗),

the set of group-like elements of H∗.

Lemma I.29 (Radford [19]). Let H be a bialgebra over K and suppose Hop is a Hopf

algebra with antipode S. If β ∈ Alg (H,K), then Hβ = (H, r

β,∆) ∈ HYD
H , where

h r

βa =
∑

β(h(3))h(2)aS(h(1)), (I.3)

for all h, a in H.

If β : H → K is an algebra map and N is a right coideal of H, then the H-

submodule of Hβ generated by N, H r

βN , is a Yetter-Drinfel’d H-submodule of Hβ.

If g ∈ G(H), then Kg is a right coideal and H r

βKg = H r

βg is a Yetter-Drinfel’d

submodule of Hβ. For M a Yetter-Drinfel’d module over H, [M ] will denote the the

isomorphism class of M .

Proposition I.30 (Radford [19]). Let H =
⊕∞

n=0Hn be a graded Hopf algebra over K.

Suppose that H0 = KG where G is a finite abelian group and Hn = Hn+1 = · · · = (0)

for some n > 0. Then

(β, g) 7→ [H r

βg]
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is a bijective correspondence between the Cartesian product of sets Alg (H,K)×G and

the set of isomorphism classes of simple Yetter-Drinfel’d H-modules.

Let H =
⊕∞

n=0Hn be a graded coalgebra and h = h0 + · · · + hn a group-

like element of H with hi ∈ Hi and hn 6= 0. The coalgebra grading implies that

∆(h) ∈
∑n

m=0 (
∑m

i=0Hm−i ⊗Hi), but since h is a group-like element ∆(h) = h⊗ h =
∑n

i,j=0 hi ⊗ hj 6∈
∑n

m=0 (
∑m

i=0Hm−i ⊗Hi) unless n = 0. Hence G(H) = G(H0). In

the case where H0 = KG we have G(H) = G(H0) = G(KG) = G, the last equality

holding since distinct group-like elements are linearly independent. If H is as in the

last proposition is also finite dimentional, then Alg (H,K) ×G = G(H∗) ×G(H).

Remark I.31. Let H =
⊕∞

n=0Hn be a graded Hopf algebra with Hm = Hm+1 =

· · · = (0) for some m > 0 and H0 = KG(H) where G(H) = G is a finite group. If

β : H → K is an algebra map and i > 0, since Hm
i = (0) we have that β|Hi

= 0.

Then β is determined by its restriction to H0 = KG. Since G is a finite group,

1 = β(g|G|) = β(g)|G| and so β(g) 6= 0 for all g ∈ G. Let

Ĝ = Hom (G,K×), (I.4)

the set of group homomorphisms from G to K× = K−{0}. Then, to give an algebra

map β : H → K, is equivalent to giving a map in Ĝ; when no confusion arises, the

corresponding map in Ĝ will also be called β.

Example I.32. Let H = H0 = KG with G a finite abelian group. If β ∈ Ĝ and

g, h ∈ G, then h r

βg = β(h)g and so H r

βg = Kg. In this case D(H) = KĜ⊗ KG with

multiplication given by (α ⊗ h)(β ⊗ g) = αβ ⊗ hg. A pair (β, g) ∈ Ĝ × G is then a

character of G × Ĝ via (β, g)((h, α)) = β(h)α(g), ∀h ∈ G and α ∈ Ĝ. The simple

Yetter-Drinfel’d module H r

βg is then a D(H)-module with action

(α⊗ h) · g = α(g)β(h)g = (β, g)((h, α))g.
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4. Some general results

I first start by presenting some general results on the tensor product of Yetter-

Drinfel’d modules. Throughout this section H =
⊕∞

n=0Hn is a graded Hopf algebra

over an algebraically closed field K, H0 = KG where G is a finite abelian group and

Hm = Hm+1 = · · · = (0) for some m > 0.

Proposition I.33. Let β, β′ ∈ Alg (H,K) and g, g′ ∈ G(H). If H r

βg ⊗ H r

β′g′ is a

simple Yetter-Drinfel’d module, then

H r

βg ⊗H r

β′g′ ≃ H r

β∗β′gg′

Proof. Since H r

βg ⊗H r

β′g′ is a simple Yetter-Drinfel’d module, by Proposition I.30,

there exist unique β′′ ∈ Alg (H,K) and g′′ ∈ G(H) such that

H r

βg ⊗H r

β′g′ ≃ H r

β′′g′′

as Yetter-Drinfel’d modules. Let Φ : H r

βg⊗H r

β′g′ → H r

β′′g′′ be such an isomorphism.

Since Φ is a comodule map, we have

(Φ ⊗ id ) ◦ δ(g ⊗ g′) = δ ◦ Φ(g ⊗ g′) ⇒

(Φ ⊗ id )
(∑

g(0) ⊗ g′(0) ⊗ g′(1)g(1)

)
= ∆(Φ(g ⊗ g′)).

Then

Φ(g ⊗ g′) ⊗ g′g = ∆(Φ(g ⊗ g′)). (I.5)

This implies that KΦ(g⊗g′) is a (simple) right coideal of H r

β′′g′′. In [19] it was shown

that if N is a simple right coideal of H, then the only coideal contained in H r

βN is

N . Therefore KΦ(g ⊗ g′) = Kg′′ and so g′′ = λΦ(g ⊗ g′) for some 0 6= λ ∈ K; we

may assume that λ = 1. Applying ε⊗ id to both sides of Equation (I.5), we get that
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Φ(g ⊗ g′) = ε(Φ(g ⊗ g′))g′g. We then have:

g′′ = Φ(g ⊗ g′) = ε(Φ(g ⊗ g′))g′g.

Since distinct group-like elements are linearly independent, this implies that g′′ = g′g.

Since (Hi)
m = (0) for all i ≥ 1 we have that β ∗ β′(Hi) = (0) = β′′(Hi) for all

i ≥ 1. To show that β′′ = β ∗ β′ it is then enough to show that they agree on G. Let

h ∈ G, then

β′′(h)gg′ = h r

β′′gg′ = h r

β′′(Φ(g ⊗ g′)) = Φ(h · (g ⊗ g′)) =

= Φ(h r

βg ⊗ h r

β′g′) = Φ(β(h)β′(h)g ⊗ g′) = (β ∗ β′)(h)gg′,

and so β′′(h) = (β ∗ β′)(h) for all h in G.

If H is any Hopf algebra and γ : H → K is an algebra map, then γ has an inverse

in Hom (H,K) given by γ−1(h) = γ(S(h)), since

(γ ∗ (γ ◦ S))(h) =
∑

γ(h(1))γ(S(h(2))) =
∑

γ(h(1)S(h(2))) = γ(ǫ(h)1H) = ε(h)1K.

Let N = Kn be a one-dimensional H-module. Then there is an algebra homo-

morphism γ : H → K such that h · n = γ(h)n for all h ∈ H. Let Kγ be K as a vector

space with the action given by h · 1 = γ(h), and so N ≃ Kγ as H-modules.

If M is any H-module and γ : H → K is an algebra morphism, then the natural

vector space isomorphism M ⊗ Kγ ≃ M endows M with a new module structure, ·′,

given by h ·′ m =
∑
γ(h(2))h(1) ·m. I will denote this module by Mγ.

Note that Kγ ⊗ Kγ−1 ≃ Kǫ as H-modules, and therefore for any H-module M ,

(Mγ)γ−1 = Mǫ = M.

Remark I.34. Let H be any Hopf algebra and γ : H → K an algebra map. If



17

M is an H-module and N is a submodule of M , then Nγ is a submodule of Mγ . In

particular, M is simple if and only if Mγ is simple.

Let Soc(M) denote the socle of M , that is, Soc(M) = ⊕N, the sum over all

simple submodules of M . Then, by the last remark, we have that

Soc(Mγ) = (Soc(M))γ .
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CHAPTER II

TWO-PARAMETER QUANTUM GROUPS

In 1985 Drinfel’d and Jimbo independently introduced the algebra Uθ(g), a one-

parameter deformation of the universal enveloping algebra of a semisimple Lie algebra

g [9, 13]. They were first used to construct solutions to the quantum Yang-Baxter

equations and have applications in various areas of mathematics and physics. For θ

a root of unity, Lusztig defined the restricted one-parameter quantum group uθ(g), a

finite-dimensional quotient of Uθ(g). In what follows, I give the definitions of the two-

parameter versions, Ur,s(g) and ur,s(g) for g = sln, the Lie algebra of n×n matrices of

trace 0. These algebras are examples of the algebras constructed by Andruskiewitsch

and Schneider in their classification of pointed Hopf algebras with abelian groups

of group-like elements. In section 2, I give a theorem about factorization of simple

ur,s(sln)-modules.

1. Definition of restricted quantum groups

Let K be an algebraically closed field of characteristic 0 and let {ǫ1, . . . , ǫn} denote

an orthonormal basis of an Euclidean space E = Rn with an inner product 〈 , 〉. Let

αj = ǫj − ǫj+1 (j = 1, . . . , n − 1). Let r, s ∈ K× be roots of unity with r 6= s and ℓ

be the least common multiple of the orders of r and s. Let θ be a primitive ℓth root

of unity and y and z be nonnegative integers such that r = θy and s = θz. Takeuchi

defined the following Hopf algebra [22].

Definition II.1. The algebra U = Ur,s(sln) is the unital associative K-algebra gen-

erated by {ej, fj, ω
±1
j , (ω′

j)
±1, 1 ≤ j < n}, subject to the following relations.

(R1) The ω±1
i , (ω′

j)
±1 all commute with one another and ωiω

−1
i = ω′

j(ω
′
j)

−1 = 1,
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(R2) ωiej = r〈ǫi,αj〉s〈ǫi+1,αj〉ejωi and ωifj = r−〈ǫi,αj〉s−〈ǫi+1,αj〉fjωi,

(R3) ω′
iej = r〈ǫi+1,αj〉s〈ǫi,αj〉ejω

′
i and ω′

ifj = r−〈ǫi+1,αj〉s−〈ǫi,αj〉fjω
′
i,

(R4) [ei, fj] =
δi,j
r − s

(ωi − ω′
i).

(R5) [ei, ej] = [fi, fj] = 0 if |i− j| > 1,

(R6) e2i ei+1 − (r + s)eiei+1ei + rsei+1e
2
i = 0,

eie
2
i+1 − (r + s)ei+1eiei+1 + rse2

i+1ei = 0,

(R7) f 2
i fi+1 − (r−1 + s−1)fifi+1fi + r−1s−1fi+1f

2
i = 0,

fif
2
i+1 − (r−1 + s−1)fi+1fifi+1 + r−1s−1f 2

i+1fi = 0,

for all 1 ≤ i, j < n.

The following coproduct, counit, and antipode give U the structure of a Hopf

algebra:

∆(ei) = ei ⊗ 1 + ωi ⊗ ei, ∆(fi) = 1 ⊗ fi + fi ⊗ ω′
i,

ǫ(ei) = 0, ǫ(fi) = 0,

S(ei) = −ω−1
i ei, S(fi) = −fi(ω

′
i)
−1,

and ωi, ω
′
i are group-like, for all 1 ≤ i < n.

Let U0 be the group algebra generated by all ω±1
i , (ω′

i)
±1 and let U+ (respectively,

U−) be the subalgebra of U generated by all ei (respectively, fi). Let

Ej,j = ej and Ei,j = eiEi−1,j − r−1Ei−1,jei (i > j),

Fj,j = fj and Fi,j = fiFi−1,j − sFi−1,jfi (i > j).

The algebra U has a triangular decomposition U ∼= U−⊗U0 ⊗U+ (as vector spaces),

and the subalgebras U+, U− respectively have monomial Poincaré-Birkhoff-Witt
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(PBW) bases [14, 4]

E := {Ei1,j1Ei2,j2 · · · Eip,jp
| (i1, j1) ≤ (i2, j2) ≤ · · · ≤ (ip, jp) lexicographically}, (II.1)

F := {Fi1,j1Fi2,j2 · · · Fip,jp
| (i1, j1) ≤ (i2, j2) ≤ · · · ≤ (ip, jp) lexicographically}.

(II.2)

It is shown in [6] that all E ℓ
i,j, F

ℓ
i,j, ω

ℓ
i − 1, and (ω′

i)
ℓ − 1 (1 ≤ j ≤ i < n) are

central in Ur,s(sln). The ideal In generated by these elements is a Hopf ideal [6, Thm.

2.17], and so the quotient

u = ur,s(sln) = Ur,s(sln)/In (II.3)

is a Hopf algebra, called the restricted two-parameter quantum group. Examination of

the PBW-bases (II.1) and (II.2) shows that u is finite-dimensional and Benkart and

Witherspoon showed that u is pointed [6, Prop. 3.2].

Let Eℓ and Fℓ denote the sets of monomials in E and F respectively, in which

each Ei,j or Fi,j appears as a factor at most ℓ− 1 times. Identifying cosets in u with

their representatives, we may assume Eℓ and Fℓ are basis for the subalgebras of u

generated by the elements ei and fi respectively.

Let b be the Hopf subalgebra of ur,s(sln) generated by {ωi, ei : 1 ≤ i < n}, and

b′ the subalgebra generated by {ω′
i, fi : 1 ≤ i < n}.

Benkart and Witherspoon showed that, under some conditions on the parameters

r and s, b∗ ≃ (b′)coop as Hopf algebras ([6, Lemma 4.1]). This implies that b ≃

((b′)coop)∗; I present the lemma using the dual isomorphism of the original one.

Lemma II.2. [6, Lemma 4.1] If gcd(yn−1 − yn−2z + · · · + (−1)n−1zn−1, ℓ) = 1 and

rs−1 is a primitive ℓth root of unity, then b ≃ ((b′)coop)∗ as Hopf algebras. Such an
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isomorphism is given by

〈ωi, ω
′
j〉 = r〈ǫi,αj〉s〈ǫi+1,αj〉 and 〈ωi, fj〉 = 0, (II.4)

and

〈ei, f
a
j g〉 = δi,jδ1,a ∀ g ∈ G(b′). (II.5)

Proposition II.3. [6, Thm. 4.8] Assume r = θy and s = θz, where θ is a primitive

ℓth root of unity, and

gcd(yn−1 − yn−2z + · · · + (−1)n−1zn−1, ℓ) = 1.

Then there is an isomorphism of Hopf algebras ur,s(sln) ∼= D′(b) ∼= D((b′)coop)coop.

In the special case r = θ, a primitive ℓth root of unity, and s = θ−1, u = uθ,θ−1(sln)

is isomorphic to D′((b′)coop) when n and ℓ are relatively prime.

Under the assumption that gcd(yn−1 − yn−2z + · · · + (−1)n−1zn−1, ℓ) = 1, by

Proposition II.3, ur,s(sln) = (D((b′)coop))coop and so ur,s(sln)-modules are Yetter-

Drinfel’d modules for (b′)coop (only the algebra structure of ur,s(sln) plays a role

when studying ur,s(sln)-modules, hence ur,s(sln)-modules are D((b′)coop)-modules).

For simplicity I will denote H = (b′)coop. Then G = G(H) = 〈ω′
i : 1 ≤ i < n〉 and H

is a graded Hopf algebra with ω′
i ∈ H0 and fi ∈ H1 for all 1 ≤ i < n and Hj = (0) if

j ≥ 2ℓ. Therefore Proposition I.30 applies to H and isomorphism classes of ur,s(sln)-

modules (or simple Yetter-Drinfel’d H-modules) are in one to one correspondence

with Alg (H,K) ×G(H).

2. Factorization of simple ur,s(sln)-modules

In this section I study under what conditions a simple ur,s(sln)-module can be factored

as the tensor product of a one-dimensional module and a simple module which is also
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a module for ur,s(sln) = ur,s(sln)/ur,s(sln)(KGC(ur,s(sln)))+. Let ℓ, n, y and z be fixed

and θ be a primitive ℓth root of unity. Let A be the (n− 1) × (n− 1) matrix

A =





y − z z 0 0 · · · 0

−y y − z z 0 · · · 0

...
...

0 · · · 0 −y y − z z

0 · · · · · · 0 −y y − z





The determinant of A is yn−1 − yn−2z + · · · + (−1)n−1zn−1. Throughout this

section, assume that gcd(yn−1 − yn−2z + · · · + (−1)n−1zn−1, ℓ) = 1, and so det(A)

is invertible in Z/ℓZ. I start by describing the set of central group-like elements in

ur,s(sln). Clearly G(ur,s(sln)) = 〈ωi, ω
′
i : 1 ≤ i < n〉.

Proposition II.4. A group-like element g = ωa1

1 · · ·ω
an−1

n−1 ω
′b1
1 · · ·ω

′bn−1

n−1 is central in

ur,s(sln) if and only if 



b1
...

bn−1




= A−1At





a1

...

an−1





in (Z/ℓZ)n−1
.

Proof. The element g is central in ur,s(sln) if and only if gek = ekg and gfk = fkg for

all k = 1, · · · , n− 1. By the relations (R2) and (R3) of the definition of Ur,s(sln), for

all k = 1, · · · , n− 1 we have that

gek =
n−1∏

i=1

(
r〈ǫi,αk〉s〈ǫi+1,αk〉

)ai

n−1∏

j=1

(
r〈ǫj+1,αk〉s〈ǫj ,αk〉

)bj
ekg and

gfk =
n−1∏

i=1

(
r−〈ǫi,αk〉s−〈ǫi+1,αk〉

)ai

n−1∏

j=1

(
r−〈ǫj+1,αk〉s−〈ǫj ,αk〉

)bj
fkg.
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Then g is central if and only if

1 =
n−1∏

i=1

(
r〈ǫi,αk〉s〈ǫi+1,αk〉

)ai

n−1∏

j=1

(
r〈ǫj+1,αk〉s〈ǫj ,αk〉

)bj

= sak−1raks−akr−ak+1rbk−1r−bksbks−bk+1 , ∀k = 1, · · · , n− 1,

where a0 = an = 0 = b0 = bn. Since r = θy and s = θz, the last equation holds if and

only if

zak−1 + (y − z)ak − yak+1 = (−ybk−1 + (y − z)bk + zbk+1) modℓ, (II.6)

for all k = 1, · · · , n− 1. The matrix of coefficients of the left hand side of this system

of equations is





y − z −y 0 0 · · · 0

z y − z −y 0 · · · 0

...
...

0 · · · 0 z y − z −y

0 · · · · · · 0 z y − z





= At

and the matrix of coefficients of the right hand side is





y − z z 0 0 · · · 0

−y y − z z 0 · · · 0

...
...

0 · · · 0 −y y − z z

0 · · · · · · 0 −y y − z





= A.



24

We then have that g is central if and only if

At





a1

...

an−1




= A





b1
...

bn−1





in (Z/ℓZ)n−1 .

Example II.5. For uθ,θ−1(sln) (y = 1 and z = ℓ − 1), the matrix A is symmetric.

Therefore, a group-like element g = ωa1

1 · · ·ω
an−1

n−1 ω
′b1
1 · · ·ω

′bn−1

n−1 is central if and only if

bi = ai for all i = 1, · · · , n− 1.

In general, ur,s(sln)(KGC(ur,s(sln)))+ = ur,s(sln){g − 1 : g ∈ GC(ur,s(sln))}. In

particular, by the last example, we have that uθ,θ−1(KGC(uθ,θ−1(sln)))+ is generated

by
{
ω−1

i − ω′
i : i = 1, . . . , n− 1

}
. This gives uθ,θ−1 ≃ uθ(sln), the one parameter

quantum group.

Henceforth r and s are such that rs−1 is also a primitive ℓth root of unity, that

is, gcd(y − z, ℓ) = 1.

Remark II.6. If β ∈ G(H∗) and g = ω′c1
1 · · ·ω

′cn−1

n−1 ∈ G(H), by Proposition I.26, the

Yetter-Drinfel’d module H r

βg is also a ur,s(sln)-module where the action of H∗ = b is

given by

f · h =
∑

〈f, h(2)〉h(1),

for all h in H = (b′)coop and f in H∗ = b. In particular,

ωi · g = 〈ωi, g〉g =
n−1∏

j=1

〈ωi, ω
′
j〉

cjg =
n−1∏

j=1

(
r〈ǫi,αj〉s〈ǫi+1,αj〉

)cj
g.

Proposition II.7. Let β ∈ G(H∗) be defined by β(ω′
i) = θβi and g = ω′c1

1 · · ·ω
′cn−1

n−1 .
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The simple ur,s(sln)-module H r

βg is naturally a ur,s(sln)-module if and only if





β1

...

βn−1




= −At





c1
...

cn−1




(II.7)

in (Z/ℓZ)n−1.

Proof. H r

βg is a ur,s(sln)-module if and only if (h−1) ·m = 0 for all h in GC(ur,s(sln))

and m in H r

βg. If h ∈ GC(ur,s(sln)), h·m = m for all m in H r

βg if and only if h·g = g.

Let h = ωa1

1 · · ·ω
an−1

n−1 ω
′b1
1 · · ·ω

′bn−1

n−1 ∈ GC(ur,s(sln)); then by Proposition II.4





b1
...

bn−1




= A−1At





a1

...

an−1




.

We have

ω′b1
1 · · ·ω

′bn−1

n−1
r

βg = β(ω′b1
1 · · ·ω

′bn−1

n−1 )g

= θb1β1+···+bn−1βn−1g (II.8)

and

ωa1

1 · · ·ω
an−1

n−1 · g = 〈ωa1

1 · · ·ω
an−1

n−1 , g〉g

=
n−1∏

i=1

〈ωi, g〉
aig

=
n−1∏

i=1

n−1∏

j=1

(
r〈ǫi,αj〉s〈ǫi+1,αj〉

)aicj
g

=
n−1∏

i=1

(
r−ci−1

(
rs−1

)ci sci+1
)ai

g

= θxg (II.9)
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where c0 = cn = 0 and x =
∑n−1

i=1 (−yci−1 + (y − z)ci + zci+1) ai. From (II.8) and

(II.9) we get that

h · g = θx+
Pn−1

i=1
biβig

for all





a1

...

an−1




, where





b1
...

bn−1




= A−1At





a1

...

an−1




. Now

n−1∑

i=1

(−yci−1 + (y − z)ci + zci+1) ai +
n−1∑

i=1

biβi = 0 modℓ

if and only if





a1

...

an−1





t

A





c1
...

cn−1




= −





b1
...

bn−1





t



β1

...

βn−1




in Z/ℓZ.

We then have that H r

βg is a ur,s(sln)-module, if and only if





a1

...

an−1





t

A





c1
...

cn−1




= −





a1

...

an−1





t

A
(
A−1

)t





β1

...

βn−1




,

for all (a1, · · · , an−1) in (Z/ℓZ)n−1. This occurs if and only if





c1
...

cn−1




= −

(
A−1

)t





β1

...

βn−1




in (Z/ℓZ)n−1.

Given g = (ω′
1)

c1 · · · (ω′
n−1)

cn−1 ∈ G(H), let β1, . . . , βn be defined as in Equation
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(II.7). I will denote by βg the algebra map given by βg(ω
′
i) = θβi .

For any Hopf algebra H, let SH denote the denote the set of isomorphism classes

of simple H-modules. Then SH can be identified as the subset of SH consisting of

the H-modules that are naturally H-modules. Combining the last proposition with

Proposition I.30, we get

Corollary II.8. The correspondence G(H) → S
ur,s(sln) given by

g 7→ [H r

βg
g]

is a bijection.

Example II.9. In the uθ,θ−1(sl2) case, the matrix A is A = (2). Then, the simple

uθ,θ−1(sl2)-modules that are naturally uθ(sl2)-modules, are of the form H r

β(ω′)c with

β(ω′) = θ−2c.

Example II.10. Using the last Proposition in the case n = 3, we have that the

ur,s(sl3)-moduleH r

β(ω′
1)

c1(ω′
2)

c2 is a ur,s(sl3)-module if and only if, β(ω′
1) = θ(z−y)c1+yc2

and β(ω′
2) = θ−zc1+(z−y)c2 . In particular, for the uθ,θ−1(sl3)-modules, the condition is

β(ω′
1) = θ−2c1+c2 and β(ω′

2) = θc1−2c2 .

For an algebra map χ : ur,s(sln) → K, let Kχ be the 1-dimensional ur,s(sln)-

module given by h ·1 = χ(h)1. Since eℓ
i = 0 = f ℓ

i we have that χ(ei) = χ(fi) = 0, and

this together with (R4) of the Definition II.1 of Ur,s(sln), gives that χ(ωi) = χ(ω′
i).

For each i = 1, . . . , n− 1, since ωℓ
i = 1, χ(ωi) = θχi for some 0 ≤ χi < ℓ.

Proposition II.11. For χ : ur,s(sln) → K an algebra map, we have that Kχ ≃

H r

χ|H
gχ, where

gχ = ω′d1

1 · · ·ω
′dn−1

n−1 , with
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



d1

...

dn−1




= A−1





χ1

...

χn−1




in (Z/ℓZ)n−1.

Proof. Since Kχ is a simple ur,s(sln)-module, we have that Kχ ≃ H r

βg for some unique

β ∈ G(H∗) and g ∈ G(H). Let φ : Kχ → H r

βg be an isomorphism of Yetter-Drinfel’d

modules. We may assume that g = φ(1); then

β(ω′
i)g = ω′

i
r

βg = ω′
i
r

β(φ(1)) = φ (ω′
i · 1) = φ(χ(ω′

i)1) = χ(ω′
i)g.

Therefore β(ω′
i) = χ(ω′

i) and since β(fi) = 0 = χ(fi) for all i = 1, · · · , n− 1, we have

β = χ|H .

We have that

ωi · g = 〈ωi, g〉g

=

(
n−1∏

j=1

〈ωi, ω
′
i〉

dj

)
g

=

(
n−1∏

j=1

(
r〈ǫi,αj〉s〈ǫi+1,αj〉

)dj

)
g

= r−di−1(rs−1)disdi+1g

= θy(di−di−1)+z(di+1−di)g. (II.10)

On the other hand

ωi · g = ωi · φ(1) = φ(ωi · 1) = φ(θχi1) = θχig. (II.11)
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By (II.10) and (II.11) we have that

−ydi−1 + (y − z)di + zdi+1 = χi modℓ, ∀i = 1, · · · , n− 1; and so

A





d1

...

dn−1




=





χi

...

χn−1




in (Z/ℓZ)n−1.

For any Hopf algebra H, let S1
H = {[N ] ∈ SH : dim(N) = 1}. Combining the

last proposition and Proposition I.30 we get

Corollary II.12. The correspondence G(ur,s(sln)∗) → S1
ur,s(sln) given by

χ 7→ [H r

χ|H
gχ]

is a bijection.

Theorem II.13. The map Φ : S
ur,s(sln) × S1

ur,s(sln) → Sur,s(sln) given by

Φ([M ], [N ]) = [M ⊗N ]

is a bijection if and only if gcd((y − z)n, ℓ) = 1.

Proof. By the last corollary we have that 1-dimensional simple ur,s(sln)-modules are

of the form H r

χ|H
gχ with χ ∈ G(ur,s(sln)∗). Also by Corollary II.8, simple ur,s(sln)-

modules are of the form H r

βg
g for g ∈ G(H). Furthermore by Proposition I.33, we

have that H r

βg
g ⊗H r

χ|H
gχ ≃ H r

βg∗χggχ. Then Φ is a bijection if and only if

Ψ : {(g, βg) : g ∈ G(H)} × {(gχ, χ) : χ ∈ G(ur,s(sln)∗)} → G(H) ×G(H∗)

given by Ψ ((g, βg), (gχ, χ)) = (ggχ, βg ∗ χ|H ) is a bijection. The latter holds if and

only if for all h = ω′b1
1 · · ·ω

′bn−1

n−1 and γ given by γ(ω′
i) = θγi , there exist unique
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g = ω′c1
1 · · ·ω

′cn−1

n−1 and χ with χ(wi) = χ(ω′
i) = θχi , so that h = ggχ and γ = βg ∗ χ|H .

If βg(ω
′
i) = θβi and gχ = ω′d1

1 · · ·ω
′dn−1

n−1 , then

ggχ = ω′c1
1 · · ·ω

′cn−1

n−1 ω
′d1

1 · · ·ω
′dn−1

n−1 and (βg ∗ χ|H )(ω′
i) = θβi+χi .

Then Ψ is bijective if and only if the system of equations





c1 + d1

...

cn−1 + dn−1




=





b1
...

bn−1









β1 + χ1

...

βn−1 + χn−1




=





γ1

...

γn−1





subject to





d1

...

dn−1




= A−1





χ1

...

χn−1









β1

...

βn−1




= −At





c1
...

cn−1





has a unique solution for all (b1. · · · , bn−1), (γ1, · · · γn−1). The last four vector equa-
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tions are equivalent to





c1
...

cn−1




+ A−1





χ1

...

χn−1




=





b1
...

bn−1





−At





c1
...

cn−1




+





χ1

...

χn−1




=





γ1

...

γn−1





which can be written as




id A−1

−At
id









c1
...

cn−1

χ1

...

χn−1





=





b1
...

bn−1

γ1

...

γn−1





.

This last system has a unique solution if and only if the matrix

M =




id A−1

−At
id





is invertible in M(n−1)×(n−1) (Z/ℓZ), or equivalently, if gcd(det(M), ℓ) = 1. By row-

reducing M we have that
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det




id A−1

−At
id



 = det




A id

−At
id





= det




A+ At 0

−At
id





= det(A+ At).

Now

A+ At =





2(y − z) z − y 0 0 · · · 0

z − y 2(y − z) z − y 0 · · · 0

0 z − y 2(y − z) z − y · · · 0

...
...

0 · · · 0 z − y 2(y − z) z − y

0 · · · · · · 0 z − y 2(y − z)





= (y − z)





2 −1 0 0 · · · 0

−1 2 −1 0 · · · 0

0 −1 2 −1 . . . 0

...
...

0 · · · 0 −1 2 −1

0 · · · · · · 0 −1 2





.

Therefore det(A+At) = (y− z)n−1n. We then have that Φ is a bijection if and only

if gcd ((y − z)n, ℓ) = 1.
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CHAPTER III

COMPUTATIONAL RESULTS

In this chapter I present how I used the computer algebra system Singular::Plural

[12] to construct simple ur,s(sl3)-modules. These computations were begun as part of

a joint project with G. Benkart and S. Witherspoon to understand the information

obtained by Radford’s method about uθ(sln)-modules [5]. To reduce computations, I

use Proposition II.13 and construct only the ur,s(sl3)-modules that are also modules

for the quotient ur,s(sl3) via the quotient map; that is, I only look at the cases when

gcd((y − z)3, ℓ) = 1. According to Example II.10, we only need to construct the

modules H r

β(ω′
1)

c1(ω′
2)

c2 where β(ω′
1) = θ(z−y)c1+yc2 and β(ω′

2) = θ−zc1+(z−y)c2 .

1. G-algebras

The system Singular::Plural allows us to do computations on G-algebras, which

are algebras given by generators and re-writing relations where Gröbner basis com-

putations can be done. I will give the precise definition of G-algebras and show that

H = (b′)coop is a quotient of a G-algebra. The notion of G-algebras was introduced

by Apel in [2] and later refined by Levandovskyy in [16], and is a generalization of

commutative polynomial rings.

Let T = K〈x1, . . . xm〉, the associative algebra generated by x1, . . . xm. The

standard monomials in A, are elements from the set

Mons(A) = {xα = xα1

1 · · ·xαm

m : α = (α1, . . . , αm) ∈ N
m} .

A relation <A on Mons(A) is called a monomial ordering on Mons(A) if the following

relations hold:
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• <A is a total well-ordering.

• If xα <A x
β and xγ ∈ Mons(A), then xα+γ <A x

β+γ.

The degree of a monomial xα = xα1

1 · · ·xαm
m ∈ Mons(A) is deg(xα) = α1 + · · · + αm.

For an element 0 6= f ∈ KMons(A), the leading monomial of f with respect to

<A will be denoted by lm(f). An example of a monomial ordering is the degree

lexicographic order, <
dlex

which is defined by xα <
dlex

xβ if deg(xα) < deg(xβ) or if

deg(xα) = deg(xβ) and the left-most nonzero entry of β − α is positive. With this

order we have x1 >dlex
x2 >dlex

· · · >
dlex

xm.

Definition III.1. Let K be a field and A be an algebra given in terms of generators

and relations:

A = K〈x1, . . . , xk|xjxi = Cijxixj +Dij,∀ 1 ≤ i < j ≤ k〉,

where the Cij ∈ K× and Dij ∈ KMons(A). A is a G-algebra if the following conditions

hold:

• There is a monomial well-ordering on Mons(A), <A, such that lm(Dij) <A xixj

for all 1 ≤ i < j ≤ m.

• CikCjkDijxk − xkDij + CjkxjDik − CijDikxj +Djkxi − CijCikxiDjk = 0, ∀ 1 ≤

i < j < k ≤ m (non-degeneracy conditions).

If A is a G-algebra, then the set {xjxi − Cijxixj − Dij, 1 ≤ i < j ≤ m} is a

Gröbner basis for the ideal it generates in K〈x1, . . . xm〉 [16]. Also, if A is an algebra

with PBW basis, then the non-degeneracy conditions are automatically satisfied.

Let B′ be the subalgebra of Ur,s(sl3) generated by {f1, f2, ω
′
1, ω

′
2}. Adding the

element F21 = f2f1−sf1f2 to the generating set, B′ is generated by {f1,F21, f2, ω
′
1, ω

′
2}

subject to the relations
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1. F21f1 = rf1F21 and f2F21 = rF21f2,

2. f2f1 = sf1f2 + F21,

3. ω′
1F21 = s−1F21ω

′
1 and ω′

2F21 = rF21ω
′
2,

4. the second type of relations (R3) from Definition II.1,

(a) ω′
1f1 = rs−1f1ω

′
1,

(b) ω′
2f1 = sf1ω

′
2,

(c) ω′
1f2 = r−1f2ω

′
1,

(d) ω′
2f2 = rs−1f2ω

′
2, and

5. ω′
1ω

′
2 = w′

2ω
′
1.

Therefore B′ is generated by {x1 = f1, x2 = F21, x3 = f2, x4 = ω′
1, x5 = ω′

2}, subject

to relations {xjxi = Cijxixj +Dij, 1 ≤ i < j ≤ 5} where the coefficients Cij and poly-

nomials Dij are given by the relations above; that is Dij = 0 if (i, j) 6= (1, 3) and

1. C12 = r and C23 = r,

2. C13 = s and D13 = F21,

3. C24 = s−1 and C25 = r,

4. (a) C14 = rs−1,

(b) C15 = s,

(c) C34 = r−1,

(d) C35 = rs−1, and

5. C45 = 1.
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Recall from Chapter II that {fα1

1 Fα2

21 f
α3

2 (ω′
1)

α4(ω′
2)

α5} is a PBW basis for B′; hence the

non-degeneracy conditions are satisfied. If we take <B′ to be the degree lexicographic

order with f1 > F21 > f2 > ω′
1 > ω′

2, then lm(D13) = F21 < f1f2 since deg(F21) =

1 < 2 = deg(f1f2). Hence B′ is a G-algebra. Let I be the two-sided ideal of B′

generated by the set

{
(ω′

1)
ℓ − 1, (ω′

2)
ℓ − 1, f ℓ

1 , F
ℓ
21, f

ℓ
2

}
,

we have that H = (b′)coop = B′/I.

2. The code

I now present how I defined b′ in Singular::Plural. The input and output are dis-

played in typewriter font and the output begins with the Singular comment char-

acters (//). For simplicity I wrote W(i) for ω′
i and Q for θ. The library linalg.lib

contains the function mat_rk that calculates the rank of a matrix; from the library

matrix.lib I use the command gauss_col which transforms a matrix into its column-

reduced Gauss normal form. The library qhmoduli.lib contains the functions Max

and Min which compute the maximum and minimum of a list of integers.

LIB "linalg.lib";

LIB "matrix.lib";

LIB "qhmoduli.lib";

For ℓ, y and z positive integers with gcd(y− z, ℓ) = 1, I define the ring B. I write the

code in terms of parameters l, y and z; the values of these parameters can be fixed

in a preamble as will be shown in Example III.3.

ring B = (0,Q), (F(1), F(21), F(2), W(1), W(2)), Dp;

minpoly = rootofUnity(l);
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The underlying coefficient field has characteristic 0 and it contains Q, which is a

primitive ℓth root of unity and is generated by the elements F(1), F(21), F(2),

L(1), L(2) (which correspond to f1,F21, f2, ω
′
1 and ω′

2 respectively). The monomial

ordering Dp is the degree lexicographical order. I write the elements Cij and Dij that

define the relations in B′; these are given with upper-triangular matrices C and D, and

only the non-zero elements need to be given.

matrix C[5][5];

matrix D[5][5];

C[1,2] = Q^y; C[1,3] = Q^z; C[1,4] = Q^(y-z); C[1,5] = Q^z;

C[2,3] = Q^y; C[2,4] = Q^(-z); C[2,5] = Q^y;

C[3,4] = Q^(-y); C[3,5] = Q^(y-z);

C[4,5] = 1;

D[1,3] = F(21);

The command ncalgebra(C,D) creates the G-algebra with the relations given by C

and D, and sets it as the base ring. I then give the generators of the ideal I.

ncalgebra(C,D);

option(redSB); option(redTail);

ideal I = F(1)^l, F(2)^l, W(1)^l - 1 , W(2)^l - 1, (F(21))^l;

qring B = twostd(I);

The last command sets the base ring to be the quotient of the previous ring by the

ideal I (the ideal has to be given by a two-sided Gröbner basis, and so I applied

twostd to it). We now have b′ as the base ring. The option redSB forces Singular

to work with reduced Gröbner basis, and redTail forces the reduction of the tails of

polynomials during Gröbner basis computations. Next I describe how I generate the

simple ur,s(sl3)-modules. Combining the definition of the r

β action (Equation (I.3) in
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Lemma I.29), together with the coproduct formulas in H = (b′)coop we have that for

all x ∈ H and g ∈ G(H),

fi
r

βx = −xSop(fi) + β(ω′
i)fix(ω

′
i)
−1 = −xfi(ω

′
i)
−1 + β(ω′

i)fix(ω
′
i)
−1 (III.1)

and

ω′
i
r

βg = β(ω′
i)w

′
ig(ω

′
i)
−1 = β(ω′

i)g.

The second equation shows that if g ∈ G(H), then H r

βg is generated by

{
(fk

1F
t
21f

m
2 ) r

βg : 0 ≤ k, t, m < ℓ
}
.

Recall from Chapter II that

Fℓ = {fk
1F

t
21f

m
2 : 0 ≤ k, t, m < ℓ}

and so

H r

βg = K{f r

βg : f ∈ Fℓ}.

Using Equation (III.1) I define the procedures Beta1 and Beta2, so that Beta1(a,h)

gives f1
r

βh if β(f1) = θa and Beta(b,h) gives f2
r

βh if β(f2) = θb. Since F21 =

f2f1 − sf1f2, I define the procedure Beta21 from the previous ones. For the results

to be linear combinations of monomials where each generator appears as a factor at

most ℓ times, I have to reduce the answer with respect to the ideal std(0).

proc Beta1(int a, poly h)

{poly X;

X = reduce((-h)*F(1)*W(1)^(l-1) + Q^a*F(1)*h*W(1)^(l-1), std(0));

return(X);}

proc Beta2(int b, poly h)
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{poly X;

X = reduce((-h)*F(2)*W(2)^(l-1) + Q^b*F(2)*h*W(2)^(l-1), std(0));

return(X);}

proc Beta21(int a, int b, poly h)

{return(Beta2(b, Beta1(a,h)) - Q^(z) * Beta1(a,Beta2(b,h)));}

Using compositions of these last procedures, I define the procedures PBeta1, PBeta2

and PBeta21, so that if k ∈ N, h ∈ H and β(f1) = θa then PBeta1(a,h, k) gives

fk
1

r

βh, and similarly for fk
2

r

βh and Fk
21

r

βh.

proc PBeta1(int a, poly h, int k)

{ poly Y = h;

for(int n=1;n<=k;n++)

{ Y = Beta1( a, Y);}

return(Y); }

proc PBeta2(int b, poly h, int k)

{ poly Y = h;

for(int n=1;n<=k;n++)

{ Y = Beta2( b, Y);}

return(Y);}

proc PBeta21(int a, int b, poly h, int k)

{ poly Y = h;

for(int n=1;n<=k;n++)

{ Y = Beta21( a, b, Y);}



40

return(Y);}

Combining these procedures I define the procedure Beta so that if 0 ≤ k, t, m < ℓ,

h ∈ H and β : H → K is an algebra map given by β(f1) = θa and β(f2) = θb, then

Beta(a,b,k,t,m,h) gives (fk
1F

t
21f

m
2 ) r

βh.

proc Beta( int a , int b , int k, int t, int m, poly h)

{return( PBeta1( a, PBeta21( a, b, PBeta2(b,g,m) , t), k)) ;}

Fix a group-like element g = (ω′
1)

c(ω′
2)

d ∈ H. In what follows I will construct a

basis and compute the dimensions for the module H r

βg, where β(ω′
1) = θ(z−y)c+yd and

β(ω′
2) = θ−zc+(z−y)d. The basic idea is to consider the linear map Tβ : KFℓ → H given

by Tβ(f) = f r

βg, and construct the matrix M representing Tβ in the basis Fℓ and

{fh : f ∈ Fℓ, h ∈ G(H)} of KFℓ and H respectively. Then dim(H r

βg) = rank(M),

and the non-zero columns of the column-reduced Gauss normal form of M give the

coefficients for the elements of a basis of H r

βg. The problem with this method is that

since dim(H) = ℓ5 and dim(KFℓ) = ℓ3, the size of M is ℓ5×ℓ3. Computing the Gauss

normal form of these matrices is an expensive calculation even for small values of ℓ

such as ℓ = 5. However, by some reordering of Fℓ and of the PBW basis of H, M is

block diagonal. I proceed to show how this is done.

For a monomial h = fα1

1 Fα2

21 f
α3

2 (ω′
1)

α5(ω′
2)

α6 let deg1(h) = α1 +α2 and deg2(h) =

α2 + α3. Note that Equation (III.1) implies that h r

βx is a linear combination of

monomials m with degi(m) = degi(h) + degi(x). For all 0 ≤ u, v < 2ℓ, let

D(u,v) = {h ∈ Fℓ : deg1(h) = u and deg2(h) = v}

and

R(u,v) = {f(ω′
1)

−u(ω′
2)

−vg : f ∈ D(u,v)}.
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Then for all h ∈ D(u,v), h r

βg ∈ KR(u,v). The possible pairs (u, v) are such that

0 ≤ u, v ≤ 2(ℓ−1) and since |v−u| is the maximum power of F21 that can be a factor

of a monomial in D(u,v), we must have |v−u| ≤ ℓ−1; that is u−(ℓ−1) ≤ v ≤ u+ℓ−1.

Another way of describing the sets D(u,v) and R(u,v) is as follows.

D(u,v) = {fu−i
1 F i

21f
v−i
2 , ∀i ∈ N : 0 ≤ u− i, i, v − i ≤ ℓ− 1}

= {fu−i
1 F i

21f
v−i
2 , ∀i ∈ N : nu,v ≤ i ≤ mu,v}

where nu,v = max(0, ℓ− 1 − u, ℓ− 1 − v) and mu,v = min(ℓ− 1, u, v). Since (ω′
i)
−1 =

(ω′
i)

ℓ−1, if g = (ω′
1)

c(ω′
2)

d we also have

R(u,v) = {f(ω′
1)

(ℓ−1)u+c(ω′
2)

(ℓ−1)v+d : f ∈ D(u,v)}.

Remark III.2. It is clear that Fℓ =
⋃
D(u,v), the union disjoint, and that H r

βg =

⊕KR(u,v). Therefore a basis for H r

βg is a disjoint union of the bases for KD(u,v)
r

βg

for all possible pairs (u, v), and dim(H r

βg) =
∑

(u,v) dim(KD(u,v)
r

βg).

For ideals I1 and I2 given by a list of their generators, the command coeffs ap-

plied to the pair (I1, I2) returns a matrix A such that I2A = I1, where the ideals I1 and

I2 are thought of as one-row matrices whose entries are their generators. Therefore,

for given u and v, if Mu,v is the result of applying coeffs to the pair (D(u,v), R(u,v)),

then rank(M(u,v)) = dim(KD(u,v)
r

βg), and if N(u,v) is the column-reduced Gauss nor-

mal form of M(u,v), the non-zero columns of D(u,v)N(u,v) form a basis of KD(u,v)
r

βg.

I define the procedure Submod, where the output of Submod(a,b,u,v) is a list L,

where the first component of the list is a basis for D(u,v)
r

βg and the second component

is dim(D(u,v)
r

βg).

proc Submod(int c, int d, int u, int v)

{ list L;
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ideal D;

ideal R;

list e = u-(l-1),v-(l-1),0; int n= Max(e);

list f = u,v, l-1; int m= Min(f);

int a = (z-y)*c+ y*d; int b= -z*c+(z-y)*d;

for(int i= n; i<= m; i++)

{

D[i+1-n] = Beta(a, b , u-i, i, v-i , W(1)^c * W(2)^d);

R[i+1-n] = F(1)^(u-i)* F(21)^i* F(2)^(v-i)*

W(1)^(((l-1)*u+c) mod l)* W(2)^(((l-1)*v+d) mod l);}

matrix M = coeffs(D,R);

matrix N = gauss_col(M);

matrix K[1][m-n+1] = R;

matrix S = K*N;

L[1] = compress(S);

L[2] = mat_rk(N);

return(L);}

The command compress deletes the zero columns of a matrix. For g = (ω′
1)

c(ω′
2)

d the

procedure Totalbasis(c,d) returns dim(H r

βg) and a basis for H r

βg, and is defined

using Remark III.2.

proc Totalbasis(int c , int d)

{ list T; matrix A; int t; t = 0;

for(int u = 0; u<=2*(l-1); u++)

{ list e = 0, u-(l-1);

list f = u+(l-1), 2*(l-1);
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for(int v = Max(e); v <= Min(f); v++)

{ list M = Submod(c,d, u,v);

A = compress(concat(A, M[1]));

t = t + M[2];

}

}

T[1] = A; T[2] = t; return(T);

}

Example III.3. For ℓ = 5, y = 1 and z = 4, for g = (ω′
1)

4(ω′
2)

2, I construct the

module H r

βg as follows. To give Singular:Plural the values of ℓ, y and z, I write

at the beginning of the code

ring r0 = 0,x,dp;

int l = 1;

int y = 4;

int z = 1;

Then the command

Totalbasis(4,2);

returns

// [1]:

// _[1,1]=W(1)^4*W(2)^2

// _[1,2]=F(1)*W(1)^3*W(2)^2

// _[1,3]=(-Q^3-Q^2-2*Q-1)*F(1)*F(2)*W(1)^3*W(2)+F(21)*W(1)^3*W(2)

// [2]:

// 3
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which tells us that dim(H r

β ((ω′
1)

4(ω′
2)

2)) = 3. In this case β(ω′
i) = θ3.4+2 = θ4 and

β(ω′
2) = θ−4.4+3.2 = 1. A basis for H r

βg is {1 r

βg, f1
r

βg,F21
r

βg} since

Beta(4,0,0,0,0,W(1)^4*W(2)^2);

Beta(4,0,1,0,0,W(1)^4*W(2)^2)/(-Q^3-Q^2-2*Q-1);

Beta(4,0,0,1,0,W(1)^4*W(2)^2)/(-Q^3-Q^2-2*Q-1);

returns

// W(1)^4*W(2)^2

// F(1)*W(1)^3*W(2)^2

// (-Q^3-Q^2-2*Q-1)*F(1)*F(2)*W(1)^3*W(2)+F(21)*W(1)^3*W(2)

3. Computational results and conjectures

For ℓ = 5, y and z such that gcd(3(y2 − yz + z2)(y − z), ℓ) = 1 and g = (ω′
1)

c(ω′
2)

d

(0 ≤ c, d < 5) the corresponding ur,s(sl3)-module H r

βg has dimension dim(c, d), where

dim(c, d) is the entry in position (c+ 1, d+ 1) of the symmetric matrix:

DIM =





1 60 90 15 18

60 8 10 15 39

90 10 19 35 3

15 15 35 63 6

18 39 3 6 125





.
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For ℓ = 7, the results are analogous to the case ℓ = 5, with matrix

DIM =





1 105 162 210 24 42 33

105 8 10 273 21 36 75

162 10 27 35 28 63 114

210 273 35 37 71 3 6

24 21 28 71 117 154 15

42 36 63 3 154 215 15

33 75 114 6 15 15 343





.

By looking at these results, and the results obtained for other values of ℓ, I formulate

the following conjecture:

Conjecture III.4. Let y and z be integers such that gcd(3(y2−yz+z2)(y−z), ℓ) = 1

and set r = θy and s = θz. For integers 0 ≤ c, d < ℓ let g = (ω′
1)

c(ω′
2)

d ∈ G(H) and

β : H → K be the algebra map given by β(f1) = θ(z−y)c+d and β(f2) = θ−zc+(z−y)d.

Let m1 and m2 be defined by

m1 ≡ (2c− d+ 1)mod ℓ, m2 ≡ (2d− c+ 1)mod ℓ and 0 < mi ≤ ℓ.

If m1 +m2 ≤ ℓ then

dim(H r

βg) =
m1m2(m1 +m2)

2
.

If m1 +m2 > ℓ, let x = m1 +m2 − ℓ, then

dim(H r

βg) =
m1m2(m1 +m2)

2
−

(m1 − x)(m2 − x)(m1 +m2 − 2x)

2
.

In the particular case when y = 1 and z = ℓ − 1, the formulas above for the

dimensions of the simple uθ,θ−1(sl3)-modules appeared in a work by Dobrev [8], where

he calculated the dimensions of the simple modules for Uθ(sl3), the infinite dimen-
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sional one-parameter quantum group. By analyzing the results of the calculations

in Singular::Plural I formulate the following conjecture about simple uθ,θ−1(sl3)-

modules.

Conjecture III.5. For g = (ω′
1)

c(ω′
2)

d ∈ G(H), let m1 ≡ (2c − d + 1)mod ℓ and

m2 ≡ (2d − c + 1)mod ℓ, 0 < mi ≤ ℓ. Let β : H → K be the algebra map defined by

β(f1) = θ−2c+d = θ−m1+1 and β(f2) = θ−c+2d = θ−m2+1 so that H r

βg is a uθ,θ−1(sl3)-

module.

If m1 +m2 ≤ ℓ, then the set

{
f i

1F
j
21f

k
2

r

βg : 0 ≤ i < m1, 0 ≤ j < ℓ, 0 ≤ k < m2 and i+ j + k ≤ m1 +m2 − 2
}

is a basis for H r

βg.

The conjecture was checked in PLURAL for ℓ = 5, 7, 11, and calculations show

that it holds when m2 = 1.
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CHAPTER IV

POINTED HOPF ALGEBRAS OF RANK ONE

Recently Andruskiewitsch and Schneider classified the pointed Hopf algebras with

abelian groups of group-like elements, over an algebraically closed field of character-

istic 0 [1]. Earlier, in 2005, Krop and Radford classified the pointed Hopf algebras of

rank one, where rank(H)+1 is the rank of H(1) as an H(0)-module and H is generated

by H(1) as an algebra, where H(1) is the first term of the coradical filtration of H [15].

They also studied the representation theory of D(H) in a fundamental case. Using

Radford’s construction of simple modules, in Theorem IV.18, I give necessary and

sufficient conditions for the tensor product of two D(H)-modules to be completely

reducible.

1. Pointed Hopf algebras of rank one of nilpotent type

Let G be a finite abelian group, K an algebraically closed field of characteristic zero,

χ : G → K a character and a ∈ G; we call the triple D = (G,χ, a) data. Let

ℓ := |χ(a)|, N := |a| and M = |χ|; note that ℓ divides both N and M . In [15] Krop

and Radford defined the following Hopf algebra.

Definition IV.1. Let D = (G,χ, a) be data. The Hopf algebra HD is generated by

G and x as a K-algebra, with relations:

1. xℓ = 0.

2. xg = χ(g)gx, for all g ∈ G.

The coalgebra structure is given by ∆(x) = x ⊗ a + 1 ⊗ x and ∆(g) = g ⊗ g for all

g ∈ G.
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The Hopf algebra HD is pointed of rank one. Let Γ = Hom (G,K×), the set of

group homomorphisms from G to K× also written Ĝ.

Proposition IV.2 (Krop and Radford [15]). As a K-algebra, H∗
D is generated by Γ

and ξ subject to relations:

1. ξℓ = 0.

2. ξγ = γ(a)γξ, for all γ ∈ Γ.

The coalgebra structure of H∗
D is determined by ∆(ξ) = ξ⊗χ+1⊗ξ and ∆(γ) = γ⊗γ

for all γ ∈ Γ.

Proposition IV.3 (Krop and Radford [15]). The double D(HD) is generated by

G, x, Γ, ξ subject to the relations defining HD and H∗
D and the following relations:

1. gγ = γg for all g ∈ G and γ ∈ Γ.

2. ξg = χ−1(g)gξ for all g ∈ G.

3. [x, ξ] = a− χ.

4. γ(a)xγ = γx for all γ ∈ Γ.

Recall that the coalgebra structure of H∗
D in D(HD) is the co-opposite to the one

in H∗. Then in D(HD), ∆(ξ) = χ⊗ξ+ξ⊗1. Note that HD satisfies the hypothesis of

Proposition I.30, where elements in G have degree 0 and x has degree 1. Therefore,

simple D(HD)-modules are of the form H r

βg, for g ∈ G and β ∈ G(H∗) = Γ.

2. Factorization of simple D(HD)-modules

In this section I study under what conditions a simple D(HD)-module can be factored

as the tensor product of a one-dimensional module with a simple module which is also

a module for D(HD) = D(HD)/D(HD)(KGC(D(HD)))+. I also study, under certain
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conditions on the parameters, the reducibility of the tensor product of two simple

D(HD)-modules.

I start by describing the central group-like elements of D(HD). It is clear that

G(D(HD)) = G × Γ. An element (g, γ) ∈ G × Γ will be denoted by gγ. An element

gγ is central in D(HD) if and only if (gγ)x = x(gγ) and (gγ)ξ = ξ(gγ). Using the

relations of D(HD), we have that

gγx = γ(a)gxγ = χ−1(g)γ(a)xgγ,

and

gγξ = γgξ = χ(g)γξg = χ(g)γ(a)−1ξγg.

Hence, gγ is central if only if χ−1(g)γ(a) = 1. Let evχ−1a : G × Γ → K× be the

character given by evχ−1a(gγ) = χ−1(g)γ(a); we just showed the following lemma:

Lemma IV.4. GC(D(HD)) = Ker (evχ−1a).

For α : D(HD) → K an algebra map, let Kα be the one-dimensional module

defined by h · k = α(h)k for all h ∈ D(HD) and k ∈ K. Note that α being an algebra

map implies that α(x) = α(η) = 0 (because 0 = xℓ = ξℓ) and α(a) = α(χ) (by the

third relation in Proposition IV.3). Since α(x) = α(η) = 0, we can think of α as a

group homomorphism α : G× Γ → K×, that is, α ∈ Ĝ× Γ ≃ Γ×G. Let βα ∈ Γ and

gα ∈ G so that α = βαgα; that is α(gγ) = βα(g)γ(gα) for all gγ in G×Γ. If we extend

βα to HD by setting βα(x) = 0 and also call this extension βα (as no confusion will

arise), we have βα = α|HD
.

Proposition IV.5. Kα ≃ HD
r

βα
gα as Yetter-Drinfel’d HD-modules.

Proof. Since Kα is a simple Yetter-Drinfel’d module, there exists an isomorphism of

Yetter-Drinfel’d modules Φ : Kα → HD
r

βg for some algebra map β : HD → K and
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some g ∈ G. We may assume that Φ(1) = g. Let h ∈ G, we have

h r

βg = β(h)g.

Since Φ is a module map,

h r

βg = h r

βΦ(1) = Φ(h · 1) = Φ(α(h))

= α(h)Φ(1) = βα(h)g.

We then have β(h) = βα(h) for all h in G, and since β(x) = βα(x) = 0, β = βα.

If γ ∈ Γ, then

γ r

βg = γ(g)g.

On the other hand,

γ r

βg = γ r

βΦ(1) = Φ(γ · 1) = Φ(α(γ)1) = α(γ)Φ(1) = γ(gα)g.

Then γ(g) = γ(gα) for all γ ∈ Γ, hence g = gα.

For simplicity let K = Ker (evχ−1a). If α = βαgα ∈ Γ ×G, the condition α(a) =

α(χ) is βα(a) = χ(gα) or χ−1(gα)βα(a) = 1. Hence, α in Γ × G defines a one-

dimensional module if and only if gαβα ∈ Ker (evχ−1a) = K. This, together with the

previous proposition, shows

Corollary IV.6. The set S1
D(HD) of isomorphism classes of one dimensional D(HD)-

modules is in one to one correspondence with K.

Recall that D(HD) = D(HD)/D(HD)(KGC(D(HD)))+. Since GC(D(HD)) = K,

D(HD)(KGC(D(HD)))+ = D(H){gγ − 1 : gγ ∈ K}.
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For a group A and a subgroup B ⊂ A, let

B⊥ = {f ∈ Â : f(b) = 1 for all b ∈ B}.

Note that K⊥ ⊂ Ĝ× Γ ≃ Γ ×G.

Proposition IV.7. For β ∈ G(HD
∗) = Γ and g ∈ G, the simple D(HD)-module

HD
r

βg is also a D(HD)-module via the quotient map, if and only if βg ∈ K⊥.

Proof. HD
r

βg is a D(HD)-module, if and only if fγ · (h r

βg) = h r

βg, for all fγ ∈ K and

h ∈ HD. Since K ⊂ Z(D(HD)), if fγ ∈ K then fγ · (h r

βg) = (fγh) · g = (hfγ) · g =

h r

β((fγ) ·g). Thus, HD
r

βg is a D(HD)-module, if and only if fγ ·g = g, for all fγ ∈ K.

Now fγ · g = f r

βγ(g)g = γ(g)β(f)g. And so, HD
r

βg is a D(HD)-module, if and only

if γ(g)β(f) = 1 for all fγ ∈ K; that is, if and only if, βg ∈ K⊥.

Lemma IV.8. K⊥ = 〈evχ−1a〉.

Proof. Since K⊥ ≃
(̂

G×Γ
K

)
, we have |K⊥| = |G×Γ

K
| = | Im evχ−1a| = |evχ−1a|; the last

equality holding as Im evχ−1a is cyclic (since it is a finite subgroup of K×). By the

definitions of K and K⊥, evχ−1a ∈ K⊥, hence K⊥ = 〈evχ−1a〉.

It will be convenient to think of K⊥ as a subgroup of G×Γ via the identification

Ĝ× Γ ≃ Ĝ× Γ̂ ≃ Γ ×G ≃ G× Γ. Under this identification we have K⊥ = 〈aχ−1〉.

Remark IV.9. We can restate Proposition IV.7 as follows: the simple D(HD)-

modules that are alsoD(HD)-modules are of the formHD
r

(χ−c)a
c, for c = 1, . . . , |aχ−1|.

Recall that SD(HD) denotes the set of isomorphism classes of simple D(HD)-

modules. Combining Proposition I.33, Corollary IV.6 and Proposition IV.7, we get

that the map

Φ : SD(HD) × S1
D(HD) → SD(HD)
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given by Φ(U, V ) = U ⊗ V , is equivalent to the multiplication map

µ : K⊥ ×K → G× Γ,

under the identification of simple D(HD)-modules with elements of G× Γ.

Theorem IV.10. The map Φ as above is a bijection if and only if ℓ is odd and

ℓ = M = N .

Proof. By the last remark, Φ is an bijection, if an only if G × Γ = K⊥ × K, that

is G × Γ = K⊥K and K ∩K = {1}. Now |K⊥| = |G×Γ
K

| = |G×Γ|
|K|

, and so |K⊥K| =

|K⊥||K|
|K⊥∩K|

= |G×Γ|
|K⊥∩K|

. We then have that K⊥K = G× Γ if and only if K⊥ ∩K = {1}. If

ℓ = M = N , then |a| = |χ| = ℓ and so |aχ−1| = ℓ. Since K⊥ ∩K ⊂ K⊥ = 〈aχ−1〉,

we have that K⊥ ∩ K = 〈(aχ−1)r〉 for some r ∈ {1, · · · , ℓ}. Since (aχ−1)r ∈ K =

Ker (evχ−1a), 1 = evχ−1a ((aχ−1)r) = (χ−1(a))
2r

and so ℓ| 2r. If ℓ is odd, then ℓ| r and

so (aχ−1)r = 1, giving K⊥ ∩K = {1}.

Conversely, if K⊥ ∩ K = {1}, let n = |aχ−1|. Then for all r ∈ {1, · · · , n − 1},

(aχ−1)r 6∈ K. If either M 6= ℓ or N 6= ℓ, then n > ℓ and so (aχ−1)ℓ 6∈ K, which is a

contradiction since evχ−1a((aχ
−1)ℓ) = χ−1(a)2ℓ = 1. Hence, ℓ = M = N . If ℓ is even,

then (aχ−1)
ℓ
2 6∈ K, which is again a contradiction since evχ−1a((aχ

−1)
ℓ
2 ) = χ−1(a)ℓ =

1. Hence ℓ is odd.

Next I describe the structure of D(HD) under the hypothesis of the last Theorem.

Proposition IV.11. If ℓ is odd and ℓ = N = M , then D(HD) ≃ uθ(sl2) as Hopf

algebras, where θ = χ(a)−
1

2 .

Proof. Recall that uθ(sl2) = uθ,θ−1(sl2)/〈(ω
′
1)

−1−ω1〉. Since there is only one generator

of each kind, I will omit the subindex 1; we then have that uθ(sl2) is generated by e,
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f and ω, with relations:

eℓ = 0 = f ℓ, ωℓ = 1, ωe = θ2eω, ωf = θ−2fω and [e, f ] =
1

θ − θ−1
ω − ω−1.

In the proof of the previous proposition, we showed that if ℓ is odd and ℓ = N = M ,

then G × Γ = 〈aχ−1〉K, and so 〈χ−1a〉 is a complete set of representatives of the

classes in G×Γ
K

. Let ψ : D(HD) → uθ(sl2) be the algebra map such that

• ψ(gγ) = ω−2c if gγ ∈ (aχ−1)cK, ∀gγ ∈ G× Γ,

• ψ(ξ) = e and

• ψ(x) = (θ − θ−1)f .

For ψ to be defined, it must commute with the defining relations of D(HD) (from

Definition IV.1 and Propositions IV.2 and IV.3 ). This is the case by the following

calculations:

1. ψ(x)ψ(g) = χ(g)ψ(g)ψ(x), for all g ∈ G:

Let g ∈ G; if g ∈ (aχ−1)cK, then g = (aχ−1)cgKχ
c, with gKχ

c ∈ K. Hence

χc(a)χ−1(gK) = 1 and so χ(gK) = χc(a) = qc. Therefore

χ(g) = χ(acgK) = χ(ac)χ(gK) = q2c.

Then,

ψ(x)ψ(g) = (θ − θ−1)fω−2c = (θ − θ−1)θ−4cω−2cf = χ(g)ω−2c(θ − θ−1)f

= χ(g)ψ(g)ψ(x).

2. ψ(ξ)ψ(γ) = γ(a)ψ(γ)ψ(ξ), for all γ ∈ Γ:

Let γ ∈ Γ, in a similar way as in the previous relation, it can be shown that if
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γ ∈ (aχ−1)cK, then γ(a) = q−2c. We then have

ψ(ξ)ψ(γ) = eω−2c = θ4cω−2ce = γ(a)ψ(γ)ψ(ξ).

3. [ψ(x), ψ(ξ)] = ψ(a) − ψ(χ):

To prove this, we first need to know the images of a and χ under ψ. Since ℓ is

odd, let c ∈ Z be such that 2c = 1 modℓ. Then, a = (aχ−1)c(aχ)c, and since

aχ ∈ K, we have that

ψ(a) = ω−2c = ω−1. (IV.1)

Similarly, χ = (aχ−1)−c(aχ)c and so ψ(χ) = ω. Now

[ψ(x), ψ(ξ)] = (θ − θ−1)[f, e] = −(θ − θ−1)[e, f ] = −
θ − θ−1

θ − θ−1
(ω − ω−1)

= ω−1 − ω = ψ(a) − ψ(χ).

Clearly ψ(x)ℓ = 0 = ψ(ξ)ℓ and ψ(g)ψ(γ) = ψ(γ)ψ(g) for all g ∈ G and γ ∈ Γ. The

other relations follow in a similar way as 1 and 2 above.

Next we need to show that ψ is a map of coalgebras. Group-like elements in

D(HD) are mapped to group-like elements in uθ(sl2). Moreover,

ψ ⊗ ψ(∆(x)) = ψ ⊗ ψ(x⊗ a+ 1 ⊗ x) = (θ − θ−1)
(
f ⊗ ω−1 + 1 ⊗ f

)

= (θ − θ−1)∆(f) = ∆(ψ(x))

and

ψ ⊗ ψ(∆(ξ)) = ψ ⊗ ψ(χ⊗ ξ + ξ ⊗ 1) = (ω ⊗ e+ e⊗ 1) = ∆(e) = ∆(ψ(ξ)).

Therefore ψ is a map of Hopf algebras.

Recall that D(HD)(KK)+ = D(HD) {k − 1 : k ∈ K}. Note that ψ(K) = {1}

and so ψ ({k − 1 : k ∈ K}) = 0. Therefore D(HD)(KK)+ ⊂ Ker (ψ) and the map ψ



55

induces a Hopf algebra map ψ : D(HD) → uθ(sl2). Since ℓ is odd, 〈ω〉 = 〈ω−2〉, and

so ψ is surjective.

By Remark I.15,

dim(D(HD)) =
dim(D(HD))

dim(KK)
=

|G× Γ|ℓ2

|K|
= |K⊥|ℓ2 = |〈aχ−1〉|ℓ2 = ℓ3

= dim(uθ(sl2)).

Hence, ψ is an isomorphism.

Remark IV.12. Let b′ be (as in Chapter II) the subalgebra of uθ,θ−1(sl2) generated by

f and ω′ and H = (b′)coop. Via the isomorphism ψ defined in the proof of Proposition

IV.11, a simple D(HD)-module of the form HD
r

(χ−c)(a
c) is also a uθ(sl2)-module.

Explicitly, for h ∈ uθ(sl2) = uθ,θ−1(sl2) and m ∈ HD
r

(χ−c)(a
c), h · m = ψ

−1
(h) · m.

Therefore, as uθ(sl2)-modules, HD
r

(χ−c)(a
c) ≃ H r

β(ω′d) with β(ω′) = θ−2d for some

d ∈ Z. By analyzing the action of ω′ on both of this modules, it follows that d = −c.

Conversely, a simple uθ(sl2)-module H r

β(w′)d becomes a simple D(HD)-module via

ψ, and is isomorphic to HD
r

(χd)(a
−d) as D(HD)-modules.

I finish this section by studying the reducibility of tensor products of simple

D(HD)-modules when n = M = N is odd.

In [19], Radford used his construction to describe simple modules for the Drinfel’d

Double of the Taft algebra, which is isomorphic to uθ,θ−1(sl2) when ℓ is odd (ℓ is the

order of θ). Translating his result to our notation (H = (b′)coop, generated by ω′ and

f and the corresponding relations) we have

Proposition IV.13 (Radford [19]). For g = (ω′)c and β : H → K an algebra

morphism, let r ≥ 0 be minimal such that β(ω′) = θ2(c−r). Then the simple uθ,θ−1(sl2)-

module H r

βg is (r + 1)−dimensional with basis {g, f r

βg, . . . , f
r
c

r

βg} and f r+1
r

βg = 0.
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In [7], H-X. Chen studied the reducibility of tensor products of these simple

modules:

Proposition IV.14 (Chen [7]). Given g = (ω′)c, g′ = (ω′)c′ in G(H) and β, β′ ∈

G(H∗), let r, r′ ∈ {0, . . . , ℓ− 1} be such that β(ω′) = θ2(c−r) and β′(ω′) = θ2(c′−r′).

Then the uθ,θ−1(sl2)-module H r

βg⊗H r

β′g′ is completely reducible if and only if r+r′ <

ℓ. Moreover, let

gj = gg′(ω′)−j and βj(ω
′) = θ2jβ(ω′)β′(ω′);

if r + r′ < ℓ then

H r

βg ⊗H r

β′g′ ≃

min(r,r′)⊕

j=0

H r

βj
gj.

If r + r′ ≥ ℓ, let t = r + r′ − ℓ+ 1; then

Soc (H r

βg ⊗H r

β′g′) ≃

min(r,r′)⊕

j=[ t+1

2 ]

H r

βj
gj.

Remark IV.15. By Example II.9, if H r

β(ω′)c is naturally a uθ(sl2)-module, then

β = βg, i.e. β(ω′) = θ−2c = θ2(c−2c). Then the number r from Proposition IV.13 is

r = 2c modℓ, with 0 ≤ r < ℓ. I will denote such number by rc.

We get the following corollary for simple uθ(sl2)-modules:

Corollary IV.16. Given g = (ω′)c and g′ = (ω′)c′ in G(H). If rc + rc′ < ℓ then

H r

βg
g ⊗H r

βg′
g′ ≃

min(rc,rc′ )⊕

j=0

H r

βj
gj,

as uθ(sl2)-modules, where gj = gg′(ω′)−j and βj = βgj
.

Remark IV.17. This last corollary is a particular case of a more general formula

for simple modules for the non-restricted quantum group Uq(sl2), that appears as an

exercise in [3].
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We have an analogous result to Proposition IV.14 for D(HD)-modules:

Theorem IV.18. If ℓ = M = N is odd and gβ, g′β′ ∈ G × Γ = G(D(HD)), let c

and c′ ∈ Z such that (a−1χ)c and (a−1χ)c′ are representatives of the classes of gβ and

g′β′ in G×Γ/K respectively. Then the D(HD)-module HD
r

βg⊗HD
r

β′g′ is completely

reducible if and only if rc + rc′ < ℓ. Moreover, let

gj = gg′aj and β = χ−jββ′;

if rc + rc′ < ℓ then

HD
r

βg ⊗HD
r

β′g′ ≃

min(rc,rc′ )⊕

j=0

HD
r

βj
gj.

If rc + rc′ ≥ ℓ, then

Soc (HD
r

βg ⊗HD
r

β′g′) ≃

min(rc,rc′ )⊕

j=[ t+1

2 ]

HD
r

βj
gj,

where t = rc + rc′ − ℓ+ 1.

Proof. Let gKβK and g′Kβ
′
K ∈ K such that gβ = (a−1χ)cgKβK and g′β′ = (a−1χ)c′g′Kβ

′
K .

By Proposition IV.10, HD
r

βg ≃ H r

χca−c ⊗ HD
r

βK
gK , the first factor in SD(HD), and

the second factor in S1
D(HD). Similarly HD

r

β′g′ = HD
r

χc′a−c′ ⊗HD
r

β′
K
g′K . Then

HD
r

βg ⊗HD
r

β′g′ ≃
(
HD

r

χca−c ⊗HD
r

βK
gK

)
⊗
(
HD

r

χc′a−c′ ⊗HD
r

β′
K
g′K

)

≃
(
HD

r

χca−c ⊗HD
r

χc′a−c′
)
⊗
(
HD

r

βK
gK ⊗HD

r

β′
K
g′K
)

≃
(
HD

r

χca−c ⊗HD
r

χc′a−c′
)
⊗HD

r

βK∗β′
k

gKg
′
K ;

the second isomorphism by symmetry of tensor products of modules for D(HD), and

the third by combining Propositions I.33 and I.34. Let γ, γ′ : H → K be the algebra

maps given by γ(ω′) = θ−2c and γ′(ω′) = θ−2c′ . If rc + rc′ < ℓ, we have the following
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isomorphisms of uθ(sl2)-modules:

HD
r

χca−c ⊗HD
r

χc′a−c′ ≃ H r

γ(ω
′)c ⊗H r

γ′(ω′)c′ ≃

min(r,r′)⊕

j=0

H r

βj
gj,

where gj = (ω′)c+c′−jand γj(ω
′) = θ−2(c+c′−j), the first isomorphism following from

the Remark IV.12 and the second from Corollary IV.16. Again by the Remark IV.12,

the jth summand of the last module is isomorphic to HD
r

χ
−cjacj as D(HD)-modules,

where cj = −(c+ c′ − j). Then

HD
r

βg ⊗HD
r

β′g′ ≃




min(r,r′)⊕

j=0

HD
r

χ
−cj a

cj



⊗HD
r

βK∗β′
k

gKg
′
K ≃

min(r,r′)⊕

j=0

HD
r

γj
gj,

where

gj = acjgKg
′
K = a−cgKa

−c′g′Ka
j = gg′aj

and

γj = χ−cjβKβ
′
K = χcβKχ

c′β′
Kχ

−j = ββ′χ−j.

If rc + rc′ ≥ ℓ, we have

HD
r

βg ⊗HD
r

β′g′ ≃
(
HD

r

χ−cac ⊗HD
r

χ−c′ac′
)

βKβ′
K

and by Remark I.34 we have

Soc (HD
r

βg ⊗HD
r

β′g′) ≃
(
Soc

(
HD

r

χ−cac ⊗HD
r

χ−c′ac′
))

βKβ′
K

.

With a similar reasoning as before, we get that

Soc
(
HD

r

χ−cac ⊗HD
r

χ−c′ac′
)
≃

min(rc,rc′ )⊕

j=[ t+1

2 ]

H r

χ
−cja

cj ,
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where cj = −(c+ c′ − j). Therefore

Soc (HD
r

βg ⊗HD
r

β′g′) ≃




min(rc,rc′ )⊕

j=[ t+1

2 ]

H r

χ
−cj a

cj





βKβ′
K

≃




min(rc,rc′ )⊕

j=[ t+1

2 ]

H r

χ
−cj a

cj



⊗H r

βK∗β′
K

gKg
′
K

≃

min(rc,rc′ )⊕

j=[ t+1

2 ]

H r

βj
gj,

where gj = hjgKg
′
K = a−c−c′+jgKg

′
K = gg′aj and βj = γj ∗ βK ∗ β′

K = ββ′χ−j.

In [11], the authors studied the representation theory of the Drinfel’d double of

a family of Hopf algebras that generalize the Taft algebra. In their case, the order

of the generating group-like element need not be the same as the order of the root

of unity. They give a similar decomposition of tensor products as in Theorem IV.18.

Although the algebras HD generalize their Hopf algebras, Theorem IV.18 does not

generalize their result since I require |a| = |q|. However, since G need not be cyclic,

Theorem IV.18 generalizes Chen’s result for Taft algebras.
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CHAPTER V

CONCLUSION

In this dissertation I used Radford’s method to construct simple modules for the

Drinfel’d double of a graded Hopf algebra, to get information about the structure of

these modules. I worked with two different classes of Hopf algebras: the restricted

two-parameter quantum groups (of type A) defined by Benkart and Witherspoon in

[6], and the rank one pointed Hopf algebras of nilpotent type introduced by Krop and

Radford in [15].

For the two-parameter quantum groups, I presented necessary and sufficient con-

ditions on the parameters r and s, for a simple ur,s(sln)-module to be factored as the

tensor product of a one-dimensional module with a module that is naturally a module

for ur,s(sln), the quotient of ur,s(sln) by group-like central elements (Theorem II.13).

In Chapter III, I introduced the code used in Singular::Plural to construct simple

ur,s(sl3)-modules, and presented conjectures about bases and dimensions based on the

computational results.

In Chapter IV, for HD a rank one pointed Hopf algebra of nilpotent type, I gave

necessary and sufficient conditions on D for a simple D(HD)-module to factor as the

tensor product of a one-dimensional module with a module that is naturally a module

for D(HD) (Theorem IV.10). Using this result, I studied the complete reducibility of

the tensor product of two simple D(HD)-modules (Theorem IV.18). This result is a

generalization of the work of Chen on the Drinfel’d double of the Taft algebra [7].
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