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I. Introduction.

What is the most important theorem of probability? The following statement
could be a reasonable candidate

(1.1)  In a long sequence of tossing a fair coin, it is likely that head will

come up nearly half of the time.

This rather imprecise statement could serve as an introduction to the study
of laws of large numbers. These are limit theorems. A commonly heard piece
of conventional wisdom (that certainly should not be hastily dismissed) asserts
however that the “Age of Computing” coming upon us will shift much of the focus
of mathematics from the infinite to the discrete. A precise discrete statement of
(1.1) is as follows:

Consider an independent sequence of Bernoulli random variables (¢;);<n (i.e.
P(e; =1) = P(e; = —1) = 1/2). Then for all £ > 0 we have the following (that will
be proved in (4.7) below)

(1.2) P el > ) < 2exp <—;—N)

i<N

To relate (1.2) to (1.1), we simply observe that if By is the number of ones in

the sequence (€;)i<n, then > € = 2By — N, so that (1.2) is equivalent to
i<N

N —2t?
(1.3) P<|BN—5|zt>s2exp( 2 )

Inequality (1.2) is possibly the simplest occurrence of the concentration of mea-
sure phenomenon that will be explored in the present paper. Upon evoking gener-
alisations of (1.2), the words “exponential inequalities,” and the names of Chernoff,
Bennett, Prokhorov, Hoeffding (and more) come to mind. The generalisations of
(1.2) we have in mind however require a change of perspective. It is simply to think

to the random variable X = Y ¢; as a function of the individual variables ¢; and
i<N
to state (1.2) (or rather (1.1)) as

(1.4) X is essentially constant (= 0)

This statement seems pretty offensive, since the fluctuations of X are of order
v N, which is hardly zero. This impression is misleading, and is simply created by
the fact we do not look at X on the proper scale. As X can take values as large as
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N, this should be the scale at which one should measure X, in which case (1.4) is
indeed true (i.e. X/N is essentially zero!)

In words, the form of the concentration of measure phenomenon we will study
could be stated as follows

(1.5) A random variable that depends (in a “smooth” way) on the influence
of many independent variables (but not too much on any of them)

is essentially constant.

This statement will of course be quantified by inequalities such as (1.2). Most
of these inequalities will be of exponential type, so another (shameless ...) way to
advertise the results of the present paper is by the following

(1.6) A random variable that smoothly depends on the influence of many

independent random variables satisfies Chernoff-type bounds.

It should be self-evident why a statement such as (1.6) is of importance. Of
special interest is the case where the random variable is defined in an indirect or
a complicated way, and where explicit computations are all but impossible. A
typical situation is when the random variable is the solution of a (stochastic) op-
timization problem, in which case it is sometimes rather hard to say anything at
all about it. The body of inequalities underlying the imprecise statement (1.6) has
by now been applied to a variety of such optimization problems, and have in each
occurence improved and streamlined previous results. These problems include in
particular stochastic versions of famous questions such as Bin Packing, the Trav-
eling Salesman problem, and not surprizingly, models for randomness in physics,
such as percolation theory and models for disordered matter in statistical mechan-
ics. (Many aplications have also been given to more classical areas of probability
such as Probability in Banach Spaces [L-T] and empirical processes theory [T5].)
While going through a large number of applications would have been a fair attempt
at impressing upon the reader the importance of the present material, I have re-
sisted the temptation. The main reason is that the abstract inequalities that form
the core of the paper (and in particular the one presented in Section 6) are suffi-
ciently powerful that, once the basic mechanism of their application is understood,
this application becomes mostly a routine matter. The two examples presented
in Section 6 should be a sufficient illustration. Numerous other applications are
presented in [T6], and T hope that the reader, having been interested enough by
the present essay to ask for more will be immediately at ease while plunging into
this considerably more detailed work.

While the topic of giving a meaning to (1.6) has now become almost a theory in
itself, it is a rather pleasant fact that the proof of the main results is very simple.
But how can such simply obtained results have such drastic consequences? The
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answer lies of course in using a good point of view. This requires several layers
of abstraction. While the key ideas are again very simple once understood, this
is not necessarily the case beforehand. Therefore, these ideas will be explained in
considerable detail, and I must apologize should I insist too much on trivialities;
triviality is apparently in the eye of the beholder [Th|. The true motivation for
insisting upon the abstract ideas is that it is while pursuing abstract principles
that the main discoveries have been made, and thereby this appears as the best
way of fostering further advances.

The idea of concentration of measure (that was discovered by V. Milman) is
arguably one of the great ideas of Analysis in our times. While its impact on
Probability is only a small part of the whole picture, this impact already should
not be ignored. The present paper represents my best attempt to explain in the
simplest way I could achieve what this is all about, without ever doing anything
technical. Due to this exacting requirement of simplicity (and even more to space
limitation), the present work is very far from being a complete account of what
is known. (We refer for this to [T6], [T7], [T8]). I hope however that it will be
informative for the casual reader, and will even possibly induce him to learn more
about this ever fascinating topic.

2 - The Gromov-Milman formulation.

The Gromov-Milman [G-M], [M-S] formulation is rather simple, and very effec-
tive. It is also our first step toward increased abstraction, and the opportunity to
stress a number of key features.

First of all, to examine (1.5) it will be convenient, in contrast with a long standing
tradition, to specify the underlying probability space. The probabilistic notion of
independence is intimately related to the notion of product measure, and product
measures will be the focus of our interest.

Consider a probability space (Q,X, 1), and a power (Y, P) where P = u®~.
One could consider different factors, but it would not truly increase the generality.
The coordinate functions are probabilistically independent, and any sequence of
probabilistically independent functions can be realized as above. Thus to study
(1.5) we will study functions defined on a product of probability spaces provided
with a product measure.

How should we define the fact that a function depends smoothly of the argument?
A reasonable answer seems that a small variation of the argument produces a small
change in the value of the function. The most natural way to define a small variation
of the argument is to assume that the underlying space is provided with a distance.
Fortunately, a product space Q is provided with a natural distance, the Hamming
distance given by

(2.1) d(z,y) = card{i < N;z; # y; }

where © = (z;)i<n,y = (yi)i<n. This initial success should not hide a basic
limitation: Unless the factor €2 is provided with some kind of structure, it seems
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difficult to define a genuinely different distance than (2.1). Much of sections 6, 7,
8 will be devoted to showing how to bypass this limitation.

The basic object in the Gromov-Milman formulation of the concentration of
measure phenomenon is a (Polish) metric space (X,d) provided with a (Borel)
probability P. It is not required here that X be a product space, so that this
formulation is considerably more general than the special case of product spaces.
Quite naturally in view of the preceding discussion, the class of well behaved func-
tions will be the class of 1-Lipschitz functions, that is functions f from X to R that
satisfy

(2.2) Vo,y € X, |f(z) = f(y)] < d(z,y)

and the object is to find situations where the Lipschitz functions are essentially
constant. How to identify the value of the constant? It turns out that the most
convenient choice is through a median My of f, that is a number such that

P(f < My)> 3 P(f 2 My) >

N —

The statement that f is essentially constant is then quantified by a bound for

P(|f = Mg| > 1)
for ¢ > 0.
Consider the set A = {f < M;}. Thus P(A) > 5. Consider the set
(2.3) Ay ={z € Xsinf{d(z,y);y € A} <t} = {z;d(z, A) < t}.

It follows from (2.2) that

rxeA = flx) <t+ My

so that

P(f>M;+1) <1— P(A)

This simple observation has accomplished a key fact: it has reduced the study of
functions f to the study of sets, that are genuinely simpler objects, and the central
concern now is to show that when P(A) > %, the “enlargement” of A defined
by (2.3) has probability close to one. This question, (in the setting of product
spaces) will be the central objective of the paper. To quantify this phenomenon
in their setting, Gromov and Milman introduce the concentration function a(P,t)

(depending also on X, d) as the smallest number such that
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P(A) > % 1 - P(A) < a(P,1)

The above discussion should then make clear that for any 1-Lipschitz function

f7

(2.4) P(|f — My| > t) < 2a(P, 1)

If we define the Lipschitz constant || f||;;p of any function f on X as the smallest
number such that

Vo, y € X, [f(x) — f(y)| < || fllupd(z, y),
homogeneity and (2.4) imply

(2.5) P(|f — My| > t) < 2a (P,W).
lip

The point of these definitions is that, in a variety of situations, the function
a(P,t) decreases very fast as t increases. We will summarise this in a somewhat
unprecise manner by the statement that concentration of measure hold in that
case. The origin of this terminology is that, whenever one considers a set A with
P(A) > 1/2, most of the points of X are close to A; thus P “concentrates” around
each such set A.

In Section 5, we will prove somewhat more than the following.

Proposition 2.1. If X is the product of N probability spaces, P is a product
measure and X is provided with the Hamming distance d, the concentration function
satisfies

(2.6) a(P,t) < 2exp (_%)

In order to compare this with (1.2), on the space X = {—1,1}¥, we consider
the function f that is the sum of the coordinates and we observe that (when X is
provided with the Hamming distance given by (2.1)) || f||iip = 2. Since My = 0 by
symmetry, combining (2.4) and (2.6) yield

t2
2. P >t <4 - .
2.7 S ealzt] < exp( 4N)

i<N
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This is not quite as good as (1.2), but still captures its main features.

A prime example of a space where concentration of measure holds is the sphere
Sy of RN+ equipped with its geodesic distance d and normalized Haar measure
@n. In that case, P. Lévy proved in 1919 that for any (regular) set A of Sy, we
have

(2.8) Qn(A:) > Qn(Cy)

where C'is a cap of the same measure as A. (This is a true isoperimetric inequality. )
It follows in particular through a simple computation that

a(Py,t) < (%)”2 exp (—%ﬂ)

Keeping in mind that in (2.6), the diameter of X is N, while in (2.8) it is 1,
one sees a great similarity between these inequalities. Around 1970, V. Milman
understood that (2.8) is the key to the famous theorem of Dvoretzky on almost
Euclidean sections of convex bodies [Mi]. Subsequently, Milman most vigorously
promoted the concept of concentration of measure and his ideas had a considerable
influence. This concept now plays an important role in the local theory of Banach
spaces, and the dominant role in Probability in Banach space. (This author is in
particular pleased to acknowledge that his contributions in this direction have their
ultimate source in Milman’s philosophy.)

More in line with the topic of the present paper is the case where X = R¥ is
provided with the Euclidean distance and where P = ~ is the canonical Gaussian
measure. Thus vy is a product measure when each factor is provided with the
canonical Gaussian measure y; on R, of density (27)~'/2 exp(—t2/2). The impor-
tance of this situation stems from the fact that all Gaussian measures (such as
Wiener measure) can be suitably approximated by vy and that inequalities proved
for vy can rather trivially be transferred to them.

The Gaussian measure on RY can be seen as the limit of the projection of the
dilatation of Qs by a factor vM on RN as M — oo, a fact known as Poincaré’s
lemma. It can then be deducted from (2.8) that

< 1 2 2
2.9 alyn,t) < ey < eV /2

a fact of considerable importance [L2], [L-T].
3. Classical isoperimetry and rearrangements.

Inequalities such as (2.6) will be called concentration inequalities, and it is in-
structive to discuss the relationship of such an inequality with classical isoperimetry.
The most recognized isoperimetric inequality is likely to be the following statement.



A NEW LOOK AT INDEPENDENCE 9

(3.1) Of the bodies of a given volume in RY, the Euclidean

ball is the one with the smallest surface area.

This formulation needs the notion of surface area, which in the present case can
be defined (when 0A is smooth enough) as

(3.2) Volny_1(0A) = 1%in(l) VOZN(ft ~4)

where A; is the set of points within Euclidean distance ¢ of A.

As it turns out, (3.1) is equivalent to a lesser-known formulation, that does not
require the notion of surface area.

(3.3) Among the bodies A of a given volume in RY, the ones for

which A; has minimum volume are the Euclidean balls.

It should be clear through (3.2) that (3.3) implies (3.1) as ¢ — 0. Conversely,
bounding below dVoly(A;)/dt through (3.1), (3.2) and integrating yield (3.3). The
topic of Section 2 connects with (3.3) for the large values of ¢. This is uninteresting
when N = 3, but it would be disastrous to stop there because our intuition does
not function beyond the case N < 3.

In the Gaussian case, the statement corresponding to (3.3) is

(3.4) Among the sets A of given measure (for yy)

the ones for which yx(A;) are minimal are the half spaces.

(Cf. [L2], [L-T], and the references therein.)

Using this when the half space is orthogonal to a basic vector yields

(3.5) v (A) = m((—00,a]) = v (Ae) = 11 ((—00,a+1])

from which (2.9) follows in the case a = 0.

An inequality such as (3.5) is extremely satisfactory. It is optimal, and points
to the so-called extremal sets on which equality occurs (here the half-spaces). It
apparently is impossible to obtain a very simple proof of (3.5), or indeed of any
inequality with the same quality of precision. The only known approach is based
on rearrangements. Starting with A, one constructs a set T'(A) which is somewhat
more regular than A, such that yy(A4) = yn(T(A)) while yn (T(A):) < v (Ar).
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One then iterates the construction in such a way that the iterates “converge” to
an extremal set. (See [E] for a proof of (3.5) in this spirit). This is somewhat
delicate. More importantly, it seems that the method is bounded to failure unless
the extremal sets have a reasonably simple structure. This does not appear to be
the case in a number of situations of crucial interest. Thereby, it is of primary
importance to find other methods.

To finish this section, we will describe a result which, while not in the main line
of the paper, is connected by several key features. This result is of the same nature
as (3.1), but in a setting where it was not obvious how to define “surface area.”
The space is Q = {—1,1}V provided with the uniform measure Py.

Given x € €2, and ¢ < N, we define the point T;x obtained by changing the sign
of the i-th component of x. Given a subset A of 2 and x € A we define
ha(z) =card{i < N; T;(x) ¢ A}

Thus ha(z) counts “the number of directions along which one can leave A from
x.” The following was motivated by a result of Margulis [Marg].

Theorem 3.1. [T3] For some universal constant K, and all subsets A of Q we
have

1 1
(3.6) /A Vha(@)dPy (@) = 2= Py(A) (1 - PN(A>)\/10g Py (A)(1— Py (A))

The philosophy of the result is that the left-hand side is a measure of the “surface
area” of A.

Thus, (3.6) provides a lower bound for the surface area of A, given the “volume”
Pn(A) of A. To understand better the nature of this lower bound, we first state
the Gaussian version of (3.1), which follows from (3.5) the way (3.1) follows from
(3.3). We have

(3.7) T (A) = 71 ((=00,a]) = sn_1(A) > ¢12—7T/

where the “Gaussian surface area” sy_1(A) is defined as

sn-1(4) = lim t v (A\A)

—a?/2

If we remember that (for a < —1), v1([—00,a]) is of order ﬁe , we see that

(3.7) implies

1
YN (A) (1 —yn(A))

(38)  svoa(4)> L (A)(1 - 7N<A>)\/log
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The similarity between (3.6) and (3.8) is no accident. It arises from the fact
that (RN, ~y) is essentially a “quotient” of ({—1,1}"", Py/) when N’ >> N (so
that isoperimetry in the latter cannot be better than in the former). To see this,
we simply observe that when M is large, 71 is close to the image of Py; under the
map (z;)i<yp — M~1/2 > x; by the central limit theorem so that ~yy is close to

i<M
an image of Pyjs. Thus, (3.6) can be seen as extending some aspects of (3.7).

One important feature of (3.6) (proved by induction over IN) is that, while it
provides a bound of the correct order, it avoids the considerably more difficult
“extremal” problem of determining the infimum of the left-hand side given Py (A).
As already mentioned, this feature is shared by many of the inequalities we will
present.

As should be expected from the discussion relating (3.6) and (3.8), and as is easy
to see, both sides of (3.6) are of the same order when A is a set of the type

Ap e = {(zs)i<n; sz < k}.

i<n

An important feature of (3.6) is that it is “dimension independent”, i.e., does
not depend on N (a feature already present in the original result of Margulis).
Combinatoralists have considered the problem of finding which subsets of {—1, 1}¥
have the smallest boundary 0A (defined e.g. as the set of points of A for which
ha(xz) > 0) but their measure of the size of A is simply Py (0A). This formulation
however is not dimension independent. In particular the sets A, o for n < N, play
essentially the same role with respect to (3.6), and for each of them both sides of
(3.6) are of the same order. But the size of their boundaries, when measured with
the “dimension dependent” quantity Py(0A) are very different, and only Ay ¢ has
a boundary of the smallest possible order among all sets of measure about 1/2.
This matter of independence of dimension will be a crucial feature of the result of
Section 5, where it will be discussed again.

4 - Martingales

The martingale method has been important in exploring concentration of mea-
sure in cases that are not accessible to the rearrangement methods described in
the previous section. It is elegant, robust, and simple. Even when rearrangement
could be used, the martingale method sometimes give comparable results in a much
simpler fashion.

In contrast with the approach of the previous sections, which concentrate on
“enlargements” of large sets, the martingale method deals directly with functions.
The basic idea is that if (3;);<, is an increasing sequence of o algebras, such that
Y is trivial, and if f is 3,, measurable, then

(4.1) J—Ef= Z d;

1<i<n
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where d; = E(f|3;) — E(f|Xi—1). Thus (d;) is a martingale difference sequence,
that is d; is 3;-measurable, and F(d;|¥;_1) = 0. The next step is to get bounds on

(4.2) P(|) di > t).

i<n
This could be the time to observe that the martingale will give bounds for

P(f-Ef[=1)

in contrast with (2.4) that involves My. In practice, it is easier to deal with Ef
rather than M. However, it must be pointed out that under (2.4)

My~ EfI<EIf =My 22 [ a(Pudu
0

so that (2.4) implies

P(|f—Ef|Zt+2/oooz(P,u)du) < 2a(P,t)
0

and the occurence of My in (2.4) is only a secondary nuisance when «a((P,t) is very
small.

While there is an extensive and deep theory of martingale inequalities, the in-
equalities required to bound (4.2) are simple martingale adaptations of classical
exponential inequalities for sums of independent random variables. Namely, one

bounds E exp(A Y d;) in order to use Chebyshev’s exponential inequality
i<n

(4.3) P(Z>t) < irif(exp(—)\t)E exp AZ).

To do this, we observe that

(4.4) E exp)\Zdi =F | (expA Z d;)E(expd,|Xn-1)

i<n 1<n—1

< E(expA Y di)||Eexpdn|Sn-1ll,

i<n—1

so that, by iteration

(4.5) EexpAY di < J[ IEexpAdi|Siillo-

i<n 1<i<n
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The key of the success of this method lies in an efficient control of d;. Probably
the most important case is when one controls ||d;||o. In that case, it is a simple
matter to show that

A
1B exp dif 21 [loo < exp FlIds 1%
which, when combined with (4.3) and (4.5) yields

2t?
(4.6) P di| >t <2exp——7"5
2 2 lldill%

< ;
1<n i<n

a result usually referred to as Azuma’s inequality. In the case where d; = a;e;
((€i)i<n independent Bernoulli random variables), (4.6) specializes as the so-called
subgaussian inequality

t2
(4.7) P |;ai€i| >t §2eXp(_22a§)
= i<n

a very important fact that contains (1.2) as a special case.

The use of martingales in the spirit above was apparently first done by Yurin-
skii [Y] in the case f = || > Y;||, where Y; are independent Banach space valued

i<n
r.v. In this case, taking for 3; the o-algebra generated by Y7,...,Y;, and the key
observation is that d; is estimated by

di < )Yil[ + E (I Yall[Xi-1) -

An important step was performed by Maurey [Mau] who discovered how to use
(4.5) in a situation where neither the choice of ¥; nor the control of d; is obvi-
ous. The generality of the method was understood by G. Schechtman [S]. It yields
concentration of measure in several situations of importance (cf. Chapter 1 of the

beautiful book [M-S]).

In more applied fields, (4.6) was used independently by Shamir and Spencer [S-S]
in studying the chromatic number of random graphs, Rhee and Talagrand [R-T] in
studying stochastic bin packing and the stochastic traveling salesman problem and
later by Pastur and Shcherkina [P-S] in statistical mechanics. Since then, it has
literally swept the world (see e.g. [McD]).

For all its qualities, the martingale method has a great drawback: it does not
seem to yield results of optimal order in several key situations. In particular it seems
unable to obtain even a weak version of concentration of measure phenomenon in
Gauss space as described in Section 3, and does not either allow to obtain the
main inequalities of the present paper. For this reason a new method needed to be
invented. It will be explained and demonstrated in the rest of the paper.
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5 - Approximation by one point.

In this section we will prove (2.6). The reason for the title of the section is that
(2.6) means that, when P(A) > 1/2, most points of Q¥ belong to A; for ¢ not too
large, which in turn means they can be well approximated by at least a point of A.

Inequality (2.6) can (essentially) be obtained using (4.6). A special case, with
identical proof, is obtained in [M-S]. In fact, given a set A with P(A) > 1/2, it
suffices to apply (4.6) to the function f(x) = d(x, A), where d denotes the Hamming
distance, and where X; is generated by the first ¢ coordinates. Then one can show
that |d;| < 2, so that by (4.6)

t2

an )

Now, when t = E f, the left-hand side is at least 1/2, since P(f < 0) = P(A) > 1/2
and we get t = Ef < (2N log4)/? so that

P(|f—Ef|>t) <2exp(—

2

t
P (f > t+(2N10g4)1/2) <2exp(— ﬁ)’

a weak form of (2.6) that is of comparable strength.

Somewhat weaker statements than (2.6) were also discovered independently
through a completely different approach in information theory: see e.g. [Martl].
The reason for which we choose (2.6) to explain our basic approach is simply that,
as the meaning of what we try to prove is easy to understand, the reader should be
better able to concentrate on the mechanism of the proof.

The most natural way to prove (2.6) seems to be by induction over N. Thus,
starting with A C Q one should try to define sets in Q! to which the induction
hypothesis can be applied. These sets will not necessarily be of measure > 1/2, so
that it is necessary to use as induction hypothesis a statement valid whatever P(A).
In view of what is done for martingales, it is natural to try to bound E exptd(z, A),
where d(x, A) is the Hamming distance of x and A (One might object that d(x, A)
need not be measurable; but measurability questions are irrelevant here and will
be ignored.) It is remarkable that about the simplest bound one can expect for
Eexptd(z, A) turns out to be suitable.

Proposition 5.1.

1 t*N
. . <
(5.1) Eexptd(-,A) < PA) exp —
In particular
(5.2) Pd(A) > k) < = exp(—5)
T T P(A) N

We observe that (5.2) follows from (5.1) by Chebyshev exponential inequality,
and that (5.2) implies (2.6).
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The first key feature of the method of proof (that we will simply call “the in-
duction method”) is that it will reduce the proof of a statement such as (5.1)
concerning 2V to the proof of a statement concerning only functions on Q. Most
of the time the proof of this statement is easy; sometimes it is a bit harder; but its
very elementary nature ensures success with sufficient effort.

The second key feature is that (as of today) the method of proof has turned out
to be almost miraculously sharp in every situation. The reasons for this success are
not entirely clear at present.

In the present case, the induction method reduces the proof of Proposition 5.1
to the following.

Lemma 5.2. Consider a measurable function g on 2. Then we have

2

in(e’ L w w w ex t—
53 | minte!,—)aute) [ ow)ue) < exp

Proof. We observe that

; ti et (1 — g(w
mln(e,g(w))ﬁl-l- (1-g(w))

so that the left hand side of (5.3) is at most
a(l+e'(1—a))

where a = [ gdp. The maximum over a is

et/Q +e—t/2 2
(=)

2 . . .
Now (e + e %)/2 < e“ /2, as is clear on power series expansion.

4

The proof of Proposition 5.1 goes by induction over N. The case N = 1 follows
from the application of (5.3) to g = 14.

Suppose now that the result has been proved for N, and let us prove it for N +1.
Consider A c QN+ = QN x Q. For w € Q, we set

(5.4) Aw) = {z € QY; (2,w) € A}.

and

B={zcQV;3wecQ,(z,w) e A}.
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With obvious notations, we have

d((z,w),A) < d(z, Aw)).

Indeed, if y € A(w), then (y,w) € A, and the number of coordinates where (y,w)
and (z,w) differ is the number of coordinates where x and y differ. Thus, by
induction hypothesis, we have

2
ot N/4

(5.5) /QN exp (td((x,w),A))dP(:v) < W

We also observe that

d((z,w), A) < d(z, B) + 1.

Indeed, if y € B, then for some w’ € €2, we have (y,w’) € A, and the numbers of
coordinates at which (z,w) and (y,w’) differ is at most one more than the number
of coordinates at which x and y differ. Thus, by induction hypothesis, we have

2
ot?N/4

/QN exp (td((z,w), A)) dP(z) < P(B)’

and combining with (5.5) we get

ex T,w T et2N/4 min ¢ L .
[, e ) apto) < it

Integrating in w, we have

ex T,w T w et2N/4 min e 1 w).
e Ry e (e A L

To complete the induction, it suffices to show, by Fubini’s theorem, that

. et 1 et'/4 _ e/4
/len (P(B)’ P(A(w))) dp(w) < Pou(4d) [ P(AWw))du(w)’

But this follows from Lemma 5.2 applied to the function g(w) = P(A(w))/P(B).
0J

One way to express the fundamental difference between the induction method
of Proposition 5.1 and the martingale method is that the martingale method looks
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“forward” while the induction method conditions with respect to the last coordinate
and looks “backward”, taking full advantage of the fact that the measures obtained
after conditioning are identical product measures.

An interesting extension of (5.2) is obtained by allowing a term P(A)“ (o > 1)
rather than P(A) in (5.2), i.e.

(5.6) P(d(-, A) = k) < p<,14>a exp (‘% 1 i a)

The proof is similar to that of (5.2), but requires more calculus. The point of (5.6)
is that as @ — oo we obtain almost the best possible exponent —2k? /N. (The claim
that this is the best possible follows from the analysis of the situation of (1.2) that
will be done in the next section.)

6 - Approximation by many points.

In order to evaluate the result of Section 5, let us analyse a situation equivalent
to that of (1.2). We take OV = {0,1}", provided with the uniform measure, and

N
A= {.CC = (.CCZ')Z'SN; E r; < E
i<N

and we assume for simplicity that IV is even.
Consider x € {0,1}, m = m(z) = 3 x;, and assume that m > N/2. We claim
i<N
that d(x, A) = m — N/2. To prove that d(z, A) > m — N/2, we observe that the

function y — > y; is 1-Lipschitz. On the other hand if y € A is such that for all
i<N

i, y; < x; (that we summarise by the statement y < x) we have d(x,y) = m — N/2.

Thus, if £ > 0,

{d(z, A) >k} ={z; Y x> k+ g}.

i<N

The central limit theorem shows that for & = %\/N

t2 2k?
P(d(y, A) > k) ~ Y ((t, oo)) ~ eXp — o~ eXp ——
(neglecting polynomial terms in front of the exponential) so that (5.2) is sharp
(except for the factor 2 in the exponent). The previous discussion could seem
redundant since the derivation of (2.7) from (2.6) already shows that (2.6) (except
for the numerical factor in the exponent) is sharp. There is however a detail of
crucial importance. The definition of Ay only means that if © € Ay, there is one y
in A for which d(z,y) < k. However, in the preceeding example every y in A with
y < x satisfies d(z,y) = k.
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Given x € {0,1}", y € A, it is rather natural to measure the “failure” in
approximating = by y by the set {i < N,xz; # y;}, or, equivalently, by the element
h(z,y) of RN such that

(6.1) h(z,y), =0if z; = y;
h(z,y); =1if z; # y;

To take in account the fact that the elements y of A that approximate x well
do not “miss” the same coordinates of z, it is natural to investigate how small an
average of points h(z,y) can be. In the present case it is natural to average over
all y < x, with equal weight. This average is clearly equal to

We now observe that the Euclidean norm ||h(z)||2 of h(z) satisfies

()]l = (m _ %) o (m . g) 2

since m(z) ~ N/2 (with overwhelming probability). Now, (1.2) implies that

N
P(jm = 7| > ) < 2exp(-2t7),

so we get that (essentially)

P(|lh(2)ll2 = t) < exp(—t?)

Quite remarkably, the dimension N has disappeared from this formula. Well, maybe
there is some kind of coincidence there, so let us now investigate a more general
example, where Q% is provided with the probability P such that the law of the
coordinates are independent and have expectation p (0 < p < 1). In jargon,

P = ((1-p)do +p51)®N

Assume again for simplicity that p/N is an integer, and that p < 1/2, and define

A={z=(zi)i<n; Y <pN}.

i<N

For x € {0,1}", m = Y z;, we again have d(y, A) = m — pN. We should
i<N
observe that (1.2) is now very inaccurate. Indeed, by the classical bounds on the
tails of the binomial law [Hoef] we have something like
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t2
9 Pim—pN >t) < -
(6.2) (m —pN >1) < exp ( 2p(1 — p)N + smaller term )

(for t < 2pN) which is much better than (5.2) as p — 0.
On the other hand, proceeding as in the case p = 1/2, we get

so that

[h(@)l2 = (m — Np)y/m ~ <m—Np>\f

and combining with (1.2) yield

2|

t2

i =0 (5),

Quite remarkably, not only IV, but also p has vanished from this inequality: it can
no longer be an accident, but only a special case of a general fact.

(6.3) P(Ih(x)]l> > 1) < exp(~

Consider now a probability space Q. For z,y € QV, we define h(z,y) € RY by
h(z,y); =1if x; # yi
hzx,y); =0if x; = y;

For a subset A of OV, we define

Ui(z) = {h(z,y); y € A} CRY

Define V (z) as the convex hull of Uy (x), and f(A, z) as the Euclidean distance of
zero to V) (x). Thus f(A,z) measures “how far z is to A.”

Consider a product measure P on QY.

Theorem 6.1. We have

(6.4) / exp i F2(A, 2)dP(z) < ﬁ

In particular

(6.5) P(f(A,)>1t) < ;e—t2/4
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Compared with (6.3) we observe a loss of a factor 2 in the exponent. This loss
can however be almost recovered when one replaces in (6.4) the term P(A4)~! by
P(A)~“ (as in (5.6)).

Theorem 6.1 shares several important features with Theorem 3.1. (Somehow I
feel that when QY = {0,1}", provided with the uniform probability, Theorem 6.1
is to Theorem 3.1 what (3.3) is to (3.1), although I do not know how to make this
idea precise.) The most important feature is that it is dimension independent so
that (in contrast with Proposition 5.1) it is useful to study (e.g.) infinite series.

The key to the proof of Theorem 6.1 is the following lemma. The proof is
elementary calculus and need not be reproduced here.

Lemma 6.2. Consider 0 <r <1. Then

1— 2
(6.6) inf r~*exp a=A"

<2-—r
0<A<1 4

Before we start the proof of Theorem 6.1 we need an equivalent way to define
f(A, x). This way is less transparent, but technically more convenient. We set

Ua(z) ={(s:)i<ny € {0,1}N;TFy € A,8, =0 = 2, = y;}
= {(s:)i<n € {0,1};3y € A, Vi < N, s; > h(x,y):}.

For convenience, if s; > h(z,y); for each i < N, we say that y witnesses that
s € Ua(z). Thus, viewing Ua(x) as a subset of RY | we have Ua(z) D U/y(z). We
denote by V4 (x) the convex hull of U4 (z); it should be clear that

Vz e Va(z),32" € Vi(z),Vi < N,z > 2!

so that f(A,z) is also the distance from 0 to V4 (x).

We now prove Theorem 6.1 by induction upon N. We leave to the reader the
easy case N = 1. For the induction step from N to N + 1, consider a subset A of
QN+ and its projection B on QY. For w € ), we set as usual

A(w) = {z € QY; (z,w) € A}
Consider x € OV, w € Q, 2 = (z,w). The basic observation is that

(s,0) € Ua(z)
(t,1) € Ua(x).

s € UA(L/J) x)

() =
teUp (ac) =

For the first claim, if y € A(w) witnesses that s € Uy, (), then (y,w) €
A and witnesses that (s,0) € Ua(z). For the second claim, if y € B witnesses
that t € Ug(x), then for some w’ we have (y,w’) € A, and this point witnesses
that (t,1) € Ua(z). Thus, for s € Vy(,)(2),t € Vp(x),0 < A < 1, we have

(As+ (1 = A)t,1 — X) € Va(z). The convexity of the function v — u? shows that
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(6.7) F2(A2) < (1= N2+ A2 (Aw),z) + (1 = \) (B, 2).

The main trick of the proof is to resist the temptation to optimize now over A. By
Holder’s inequality and induction hypothesis, we have

/exp %fg (A, (z, w))dP(m)

<o - ([ ewirae) x)dP<x>)A ([ exogrm @dp@))l”

A -\
1 , 1 1
sepg= (P(A«u))) (7))

This inequality holds for all 0 < A < 1. Using (6.6) with r = P(A(w))/P(B) <1

we get
P(A(w
/QN expifQ(A, (z,w))dP(z) < % (2 _ %) .

Integrating with respect to w and using Fubini’s theorem yields

e (P®u)§%<2—]g§<7‘g)m)

1
P® p(A)’

since (2 —z) <1 for all x real. O

IN

While Theorem 6.1 turns out to be a principle of considerable power, it takes
some effort to realize this. One efficient way to use Theorem 6.1 is through the
following observation.

Lemma 6.3. Consider x € Q. Then given any sequence («;)i<n we can find y
in A such that

(6.8) Z{au% #yi} < f(A, 2) /Za

Proof. The linear functional @ : s — ) «y;s; on RY provided with the Euclidean
i<N

norm, has anorm /Y 2. Since V}(x) contains a point at distance f(A4,z) to the
i<N
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origin, the infimum of @ on V}(z) is at most f(A4,z) /> a?. But, since V() is
\/ i<
the convex hull of U/, (), the infimum of @ on U’y () is also at most f(A,z) | > o2,
i<N

which is the statement of the lemma. ]

Theorem 6.1 has proved efficient in stochastic combinatorial optimisation, so we
describe a typical such application. Consider a sequence X7, ..., Xy of independent
r.v., uniformly distributed over [0,1]. We are interested in Ly = Ly(X1,..., Xn)
where Ly (X7q,..., Xy) denotes the longest increasing subsequence of the sequence
X1,..., XN of numbers. To reduce to the setting of sets in product spaces, we
consider = [0,1] and for z = (x;)i<ny € QY we set L(x) = Ly (X1,..., Xn).

For a > 0, we set

Aa) = {z € QV; Ly(z) < a}.
The basic observation is as follows.

Lemma 6.4. For all z € QY , we have
(6.9) a> Ly(z) - f(A(a),z)v/Ln(z).
In particular,

v
a—+v

(6.10) Ly(z) > a+v= f(Ala),z) >

;

Proof. For simplicity, we write b = Ly (z). By definition, we can find a subset I
of {1,..., N} of cardinality b such that if ¢,j € 1,7 < j, then x; < x;. By Lemma
6.3 (taking a; = 1 if i € I and «; = 0 otherwise), there exists y € A(a) such that
cardJ < f(A(a), ) Vb, where J = {i € I;y; # 2;}. Thus (7i)ier\s is an increasing
subsequence of y; since y € A(a), we have card(I\J) < a, which prove (6.9).

To prove (6.10), we observe that by (6.9) we have

L _
F(Ala),) > 22
Ly(x)
and that the function u — (u — a)//u increases for u > a. O

We denote by M (= My) a median of Ly.

Theorem 6.5. For all u > 0 we have

u2

A1 P(Ly > M <2 -
(6.11) (LN > M +u) < 2exp 100 <)
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(6.12) P(Ly < M — ) ngxp—fW

Proof. To prove (6.11), we combine (6.12) with M = a and (6.5). To prove (6.12),
we use (6.10) with a = M — u,v = u to see that

Ly(x)> M= f(AM —u),z) >

=k

so that

N | —

(6.13) P (f(A(M—u),m) > LM) >

On the other hand, by (6.5),

1 2
< e 4

7)< =)

Comparing (6.13), (6.14) gives the required bound on P(A(M — u)).

<

S

(6.14) P (f(A(M — u),x) >

U

It is known (and very easy to see) that My is of order VN, so that Theorem 6.4
proves that the fluctuations of Ly are not larger than N'/%. Simulation [O] suggests
however that the correct order of magnitude is smaller. Such a phenomenon cannot
occur from a deficiency of Theorem 6.1, but rather from the specifics of the situation.
We would like to suggest a plausible explanation of what happens.

We conjecture that (in most situations) a random sequence (X1, ..., Xy) has
many subsequences of (nearly) maximal length. To see the relevance of this, let us
go back to the proof of (6.9). Consider b < Ly (z). Consider the family J of subsets
I of {1,...,N} of cardinality b such that i,j € I,7 < j implies 2; < x;. Consider
the family H of functions on {1,..., N} that consists of the indicators of sets of

J. Consider an element (a;);<y in the convex hull of H, and let o = ( 3. a?)/2.
i<N

When the family J is “rich,” we can expect that there is an averaging out effect,

and that the sequence (;);<n can be chosen such that o << b. Using Lemma 6.3

we can find y in A with

Z{O!i;xi # 1y} <of(Ala),z)

i<N

Thus, we can find I in J such that

card{i € I z; # y;} < o f(A(a), z)
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As in the proof of (6.9), this shows that b — o f(A(a),z) > a. Thus, if b is close
to L(z) and 02 << b, this allows us to improve upon (6.9). Deciding whether
the phenomenon described above occurs or not is unrelated to the methods of the
present paper, and would certainly require a better understanding of the specifics
of random sequences.

The reader must have observed that in Lemma 6.4 we do not use the full power
of Lemma 6.3; rather, instead of using (6.8) for all sequences of numbers («;) we
used it only for sequences of zeroes and ones. It seems reasonable to assert that
Theorem 6.4 uses Theorem 6.1 at the very limit of its area of competence. This can
also be seen by the fact that martingale methods can prove an inequality almost
as good as (6.11) (6.12) [B-B|. By contrast martingale methods seem powerless to
approach the applications where Theorem 6.1 is used at full power, such as in the
following.

Theorem 6.6. Consider a real valued function f defined on [—1,1]. We assume
that, for each real number a,

(6.15) the set {f < a} is convex.

Consider a conver set B C [—1,1]V, consider o > 0, and assume that the restriction
of f to B has a Lipschitz constant at most o, that s,

(6.16) Vr,y € B, [f(x) = f(y)| < ollz —yll

where ||z|| denotes the Fuclidean norm of x.

Consider independent random variables (X;)i<n valued in [—1,1], and consider
the random variable

h=f(X1,...,Xy).

Then, if M s a median of h, we have, for all t > 0 that

4 t?
1 P(lh—M|>t) <4b+ —— -
(6.17) (1h— M| > 1) < 4b+ - exp(— 1)
where we assume
b=P((Xi,....Xn) & B) <1/2.
Certainly the reader should first consider the special case B = [—1,1]Y, where

b =0 and where (6.17) reads
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2

1602

(6.18) P(lh— M| >t) < dexp(——r).

To understand better this inequality, we will compare it with the Gaussian case.
Let us now assume that f is defined on all RY, and has Lipshitz constant o. Set
' = f(Y1,...,Yn), where the sequence Y7,..., Yy is independent standard normal.
Combining (2.5), (2.9) we have

t2

(6.19) P(H = M| > 1) < exp(— ),

202

where M’ is of course a median of h’. Thus, what (6.18) does is to prove an
inequality similar to (6.19) for random variables that need no longer be Gaussian
(but rather are bounded) and this under only the pretty mild restriction (6.15).

Proof of Theorem 6.6. Let us fix a € R, and consider the set A(a) = {f <a} N B.
The key observation is that, for any = in [—1,1]" we have

(6.20) d(z, Aa)) < 2f(A(a), ).

Indeed, if y € A(a), we have

Vi < N, |z; —vyi| < 2h(z,y);

(where h(z,y); is defined in (6.1)) because the left-hand side is at most 2, and is
zero when the right-hand side is not 2. Thus, for any points (y*)r<as of A(a), and
convex coefficients (ay)r<nr, we have, for each i < N that

s = >yl <2 aph(z, yb);
k k

so that, since A(a) is convex,

1/2

d(w, A@) < llz =Y ey <2 [ 3 (D anhla,yh):)’
k k

i<N

from which (6.20) follows by definition of V}.
Now, if x € B, it follows from (6.16) that

f(@) <a+od(z,Al)) < a+20f(Aa), ).
Thus, if we denote by P the law (X1,..., Xy) on QY = [-1,1]¥, (6.5) implies
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P(f>a+t)<b+ mexp(—%;)
Taking a = M, we get P(A(a)) > 1 — b, so that
12
P(f>M+t)<b+ %_bexp(—1602).
Taking a +t = M we get
1 1 t?
2 =F pranr—n) " 162

so that

P(AM — ) = P(f < M — t) < 2b+ 2exp(——

16027

Comments. 1. Certainly the reader has observed the similarity of this proof with

the proof of Theorem 6.5.

2. We have not been very cautious with the coefficients of b. This is not needed

because in applications b is extremely small.

Here is an important corollary.

Theorem 6.7. Consider independent (real) random variables (X;)i<n valued in

[—1,1], and vectors (v;)i<n in a Banach space Y. Define

o® =sup{ " (@)%Y €V, Iyl < 1}
i<N

where Y* is the dual of Y. Then, if M denotes a median of || > X;v;||, we have

t2

(6.21) P( || Z XzUzH -M Z t) S 4exp ( - 160’2

i<N

Remark. The most important case is where the r.v. X; are Bernoulli, that is

P(X;=1)=P(X; = —1) = 1/2.

Proof. We observe that || 3> X,v;]| = f(X1,..., Xn) where, for z = (z;);<n in RV

i<N
we set
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f@) =11zl

i<N

By the Hahn-Banach theorem,

I Z ;|| = Sup{y*(z i)yt € Y5 lyt]| < 1}

i<N i<N

Now, by Cauchy-Schwarz,

1/2 1/2

v D m | =) wayt () < D ad >yt (w)? < ofz.

i<N i<N i<N i<N

Thus by the triangle inequality

[f(@) = f)] < flz —y) < ollz -y
and thus (6.21) is a specialization of (6.18).

0

We now give another application of Theorem 6.6, to the Hopfield model of as-
sociative memory [Hopf]. Consider two integers M, N. For x = (x;x)i<nNr<m €
RMN “and for € = (€;)i<n € {—1,1}, we set

H(z,e) = % Z (Z xiykei)Q

k<M i<N
(the factor 1/2N is customary but unimportant).
Given a subset A of {—1,1}", we set

f(z) = fn(x) = 1 log (Z exp SH (x, e))

6 ecA

The quantity of interest is the random variable hy = fn(n), when n = (9, k)i<N k<M
and when (7, x)i<n k<m are independent Bernoulli r.v. (P(m’k =1 = 1/2
= P(nir, = —1)). In the case A = {—1,1}" hy is the free energy of the Hop-
field model (at temperature 7' = 1/43), and its study is extremely difficult. Yet one
has the following general result.

Theorem 6.8. Denoting by my a median of hy, for some universal constant K
and all t < (N + M) we have

t2

P(lhn — > 1) <12 -
(Jhy —mn| >t) < 12exp RN
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Proof. Tt relies on Theorem 6.6, applied to the function f on [—1,1]VM . It is not
clear whether f is convex; but certainly exp ff is convex, and this implies (6.15).
Consider a parameter L, and set

B={zxec[-1,1"M:Vec A, H(z,¢) < L}

so that B is convex. Consider now x and y in B; we try to prove (6.16). We observe
that, given € € A,

AN (H(xz,0) = H(y, ) = Y | D (@in—vin)ei | | D minei + Y vinei

k<M \i<N i<N i<N

Thus, by Cauchy-Schwarz

1
|H(CE7 E) - H(y7 E>| < ﬁUva

where

U? = Z Z(%k — Yik)€i

k<M \i<N

Vi= Z Z T k€ + Z Yi k€i

k<M \i<N i<N

Using the inequality (a + b)? < 2(a? + b?), we see that
V? <4N(H(z,€e) + H(y,¢)) <8NL.

Using Cauchy-Schwarz, we see that

UP<N > (zin—vin)’ = Nz —y|

E<M,i<N

so that, finally, for each € in A we have

[H(z,¢) = H(y, )| < [|lz — y| V2L

It is then very simple to see that this implies

f(z) = fy)| < V2Llz -y

Thus, by (6.17) we have
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t2

o P

where b = P(n ¢ B). To choose L, we note that by (4.7) we have, for each k

1
Eexp W(Z nik€i)’ < Ki
i<N

where K is a universal constant, so that, by independence,

1
Eexp §H(77, €) < K{VI

and, by Chebyshev inequality,

P(H(n,e) > L) < KMe=L/2,

Thus, if L = 4N + 2M (1 + log K1), we have

P(H(n,e) > L) <e?N-M
so that

P(3ee {-1,1}V;H(n,e) > L) < e~ NH+M),
Thus b= P(n ¢ B) < e~ WN+M)_ Since b < 1/4, we get from (6.22) that

t2

P(lhy —my| > 1) < dem M) 4 8exp (- M)

where K is a universal constant; the result follows. U
7 - Approximation by very many points.

Let us go back to the discussion at the beginning of Section 6. Given z € {0, 1},
what we have used is that the functions h(x,y) (y € A) have a small average

h(z) = (1 — N/2m)z, where m = ) x;. The existence of this average however
i<N

does not fully reflect the multitude of points of A that approximate z. Indeed,

to obtain such an average it would essentially suffice to have about m/(m — N/2)

elements y < z in A such that the sets {i; x; # y;} are disjoint.

The result we will present in this section is a considerable strengthening of The-
orem 6.1. It however requires a further leap into abstraction.

The basic idea is identical to that of Theorem 6.1. Given z,y in Q¥ we associate
an object v, ,, and we express that x is close to A if there is a convex combination
of the objects v, ,,y € A that is “small.” In Section 6, the object v, , was the
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indicator of the set {i;x; # y;}. In the present section, we use a higher dimensional
object so that it is harder to make averages of objects v, , “small,” and that, in
turn, the existence of such small averages yields stronger information.

Consider a number 0 < 6 < 1 and the probability measure

v=((1-0)5 +06)%"

on {0,1}". Thus v is the law of an independent sequence (7;)i<y with En; =
0,n; € {0,1}. Given z,y in 2V, we consider the measure Vg,y on {0, 1} such that
Vg, is the image of v by the map T of {0,1}" that “flips the coordinates” i for
which z; # vy, i.e.

In other words, v, , is the law of an independent sequence 7; € {0,1} such that
En;=0ifz; =y; and En; = 1—-0 if x; # y;. Thus, if 0 # 1/2, the more coordinates
of z and y are different, the more different v, , is from v.

To measure how far a probability p on {0, 1}" is from v, we will use the quantity

du 2
— | d
/ (du) g
where the integral is over {0,1}?. We observe that since S %du = 1, by Cauchy-
Schwarz, we have [(2£)2dy > 1.

For a subset A of OV, we set

2
m(A, z) = inf {/ <Z—5) dvip € conv {vg;y € A}}

Theorem 7.1 [T7]. Assume that f =10 —1/2| < 1/6, and define a by

o 323
1 —36432
Then for all subsets A of QN we have
(71) | mA)aPa) < 5
: m(A,x x) < :
QN P(A)~

Certainly the condition |6 — 1/2| < 1/6 looks strange. The previous result is
however a good illustration of the wonders of the induction method. Analysis of
the canonical example presented at the beginning of Section 6 allows one to show
that the left-hand side of (7.1) can stay bounded when P(A) > 1/2 independently
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of 2, A, N only when |# —1/2| < 1/6. We have no intuitive explanation to offer as
for the reason of this “phase transition.”

As will be demonstrated later, Theorem 7.1 is by many respects a considerable
strengthening of Theorem 6.1. However, it would have been hard to discover The-
orem 7.1 this way, and the motivation came from the convolution problem of [T2],
that we recall now. Consider, on the group Gy = {—1,1}¥, the Haar measure A
and the measure

v={(1—0)5_1 + 05,V

Consider the convolution operator T : f — f x v from L'(\) to L'(\). The conjec-
ture means that T' displays some regularization properties, as follows.

Conjecture 7.2. Consider f € L'(G),f > 0, [ fd\ = 1. Then, for all ¢t > 0, we

have
(7.2) T > < — B
T ty/log(e+t)

where K is a universal constant.

The logarithmic factor in (7.2) is apparently related to the logarithmic factor in
(3.6).

The idea of Theorem 7.1 was simply that T'f(z) = v,(f), where the probability
v, is the translation of v by x. Thus, if A = {x;v,(f) > t}, it should help to know
that for many y we have v, close to set {v,,z € A}. (A fact whose formulation led
to Theorem 7.1.) We have however been unable to carry out the idea.

The progress that Theorem 7.1 represents over Theorem 6.1 is exemplified by
the following result, where we set

Ik:{i:(il,...,ik>;1§i1<i2<"'<ik§N}

Proposition 7.3. Let us fiz 0 with |0 —1/2| < 1/6. Assume that m(A,z) < e'.
Then for each k > 1, and each family (o )ier, there existsy in A such that if

then

1/2
S0 < O (Z )

iGJk iGIk

where C' does depend on 6 only.

To understand this result better, let us specialize to the case £k = 1. Thus, given
numbers («;)i<n, we can find y € A such that
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1/2

(7.3) > Hosai # i} < CVlogm(A,z) | Y of

i<N i<N

To compare (7.3) with (6.8), we have to compare the set where Cy/logm(A,-) is
large with the set where f(A,-) is large. We note that, from (7.1) we have

(7.4 P (CVIogm(A) 2 u) < S e (-g—) |

while, from (6.4) we have

1 u?
(7.5) P(f(4) 2 w) < pryexp <_Z)

Thus (6.8) and (7.3) are comparable (with the exception of worse constants in
(7.4) versus (7.5)). But, the conclusion of Proposition 7.3 holds for any k > 1.

8 - Control by several points.

Let us start by providing motivation. Suppose that we are given a sequence
(Y;)i<n of non-negative r.v., and that we know that

1
P ZYZ-SM =

i<N
observation is as follows. Set A ={ > Y; < M}. Consider v’ and w in A. Set
i<N

I'={i < N;Y;(w) =Yi(")}

We attempt to find bounds for the tail probabilities P | >  Y; > t). The basic

so that

(8.1) Y Yiw) =) Yilw) <M

i€l icl

1

by positivity of Y;. Consider now w-,...,w? in A, and set

(8.2) J={i <N;3 < q, V() = Yi(w")}
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Thus, by (8.1) and the positivity of Y;, we have

(8.3) d Vi) <gM+)Y;

i<N i¢J

One then hopes that if card{i ¢ J} is small, we will be able to control the last term.
This discussion should provide motivation for the following. Consider an integer
q > 2. For z € OV, and subsets Ay,... A, of QY we define

(8.4)f(Ay,... Ay, x) = inf {card{i < N;z; € {yil,...,yg}} gyt e Ay, oyl e Aq}

What we are really interested in is the case A;,= Ay = --- = A, but the proof
by induction requires considering different sets. Later, we will prove the following
basic fact about f(A4i,..., A4, ).

Theorem 8.1. If P is a product measure, we have

(85) /qf(A1 ..... Aq,x)dp<x) <

and in particular

(8.6) P(f(A,...,A) > k) < ————

Combining with (8.3) we see that if S; denotes the sum of the largest k terms
of the sequence (Y;);<ny we have

249
(8.7) P() Yi>qM+t) < F PGz

i<N

Hopefully the last term can be controlled by classical methods, and it remains only
to optimise (8.7) over the various parameters.
Certainly the previous method seems an overkill to study the tails of »_ Y.
i<N
Suppose however that we now have a function f on Q, and functions (Yi)i<n
such that, if A = {f < M}, where M is the median of f, the following occurs.
Given z € QN y!, ..., y? € A, and

J={i<N;IH<quz =y}
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then

(8.8) f(x) < qM + Sy,

where k = card{i < N;i ¢ J} and Sy is the sum of the k largest terms of the
sequence (Y;(z;));< . Then

(8.9) P(f > gM +1) < j—Z+P(Sk2t)

To give the most important example of this situation, let us consider the case
where

f(@) =Bl > & Zi(z:)|,

i<N

for functions Z; from Q to a Banach space, and where (¢;);<n are independent
Bernoulli r.v. The key observation is that the function

Ed| Y eiZi(z)|

icl
is an increasing function of I, as is seen by taking the expectation with respect to

certain ¢;’s inside rather than outside the norm. Thus, when J = gg Iy, by the
<q

triangle inequality we have

Ee| Y eiZi(@i)l <D B> eiZi(xs)|

icJ (<q icJ

and thus

f@) <Y BN aZila)ll+ ) 1 Ziw)l.

1<q ieJ i¢J

This implies that (8.8) holds for Y; = || Z;||. An important contribution of Ledoux

[L1] made clear that controlling f is the main step in controlling || > €;Z;(xz;)||.
i<n

This approach using inequality (8.9) has been very successful, as demonstrated in

the book [L-T], and it is remarkable that its proof is now so simple.

The key fact of the proof of Theorem 8.1 is the following simple statement about
functions.

Lemma 8.2. Consider a function g on 2, such that 1/q < g <1. Then
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(8.10) /Qédu (/Q gd,u)q <1

Proof. Observing that logz < x — 1, to prove that ab? < 1 it suffices to show that
a+ gb < g+ 1. Thus, it suffices to show that

1
/—du+q/gdu§q+1~
Y Q

But this is obvious since 27! +gr < g+ 1for ¢! <z < 1.

O

Corollary 8.3. Consider functions g; on 2,0 < g; < 1. Then

(8.11) / ( 1)dH/d<1

: min (¢, — | dp gidp < 1.
Q = gi q
-1
Proof. Set g = (nﬁn(q,g[l)) , observe that g; < g, and use (8.10).
i<q

O

We now prove Theorem 8.1 by induction over N. For N = 1, the result follows
from (8.11) taking g; = 14,.

We assume now that Theorem 8.1 has been proved for N, and we prove it for
N + 1. Consider sets Ayq,..., A, of Q¥ For w € Q, we define the sets A;(w) as
in (5.4) and we consider the projection B; of A; on QY. The basic observation is
that

(8.12) f(A1,..., Ay, (z,w)) <14 f(B1,...,Bgx)

and that, whenever j < ¢

(8.13) F(AL ... Ay (z,w) < f(Cy,....Cy 1)

where C; = B, for i # j,C; = Aj(w).
To prove Theorem 8.1, we observe that, using (8.12) and induction hypothesis,
we have
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1yeees q, ZL’,W 1
/qf(A Ag,( ))dp(x) SqHP(Bi)

1<q

while using (8.13) we get
1
/qf(Alz---7AQ7(m7w))dP(m) S q Iz

Thus, setting g;(w) = P(A4;(w))/P(B;)), we have

Ay, Ag(zw 1 ) .
/qf( ( )) dP(x) < m /mm (q,mm )du(w)

i<q g1(w)
1<q

Using now Fubini theorem and (8.11), we have

[ Gt ap(aydue) <

q
which finishes the proof since [ g;dp = P(A;)/P(B;). O
9 - Penalties.

Roughly speaking, the Hamming distance measures how far z is from A by
counting the smallest number of coordinates of x that cannot be captured by a
point of A. Thus we get a penalty one for each coordinate we miss. A natural
extension of this idea is to consider a non-negative function h on €2 x 2 and, for
ze QN A c QN to consider

(9.1) fu(A,z) = inf{ ) h(zi,y:);y € A}

i<N
as a way to measure the “distance” from x to A.

It is reasonable to require

(9.2) Vw € Q, h(w,w) =0

Thus, the case of the Hamming distance is simply hA(z,y) = 1{z£y}-

We observe that, since x,y do not play the same role, we will not require h to be
symmetric. In constrast with the work of Sections 5 to 8 that requires no structure
on 2, Definition 9.1 does require a minimum of structure, namely the existence of
the function h. On the other hand this opens the door to a theory whose complexity
certainly would not have been suspected beforehand.

Certainly one needs some control on the size of h. The most obvious way to
achieve this is through moment conditions on h. A typical result is as follows.
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Theorem 9.1. Set

|2l = sup{h(z,y);z,y € Q}

(93) I8l = [ 1ot

Then, for each subset A of QN , we have

(9-4) P(fu(A,-) Zu) <

1 e min( u? u )
N
p(a) P SN[IR]2" 2]

We do not know how to obtain sharp numerical constants in (9.4). Inequality
(9.4) generalizes Bernstein’s inequality the way Theorem 9.1 generalizes (1.3). If g
is a function on €, setting h(z,y) = |g(x) — g(y)|, it is an interesting exercise to
recover from (9.4) a qualitatively correct version of Bernstein’s inequality (that is,
only the numerical constants are different).

It is arguable that Theorem 9.1 does not represent a truly new phenomenon. It
turns out however that in Theorem 9.1 what matters is not really h, but rather the
following functional, defined for all subsets B of 2.

(9.5) h(w, B) = inf{h(w,w’);w’ € B}

Theorem 9.2. Assume that for each subset B of €2 we have

e
9.6 /eprhx,Bd xr) <
(96) [ exp2h(a. B)d(z) <
Then fort <1 and each subset A of QN we have

et’N
9.7 / exptfr(A, x)dP(x) <

In particular if u < 2N we have

9.9 PN 20 < e (~ 1)
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The point of (9.6) is that taking the infimum in (9.5) has a dramatic effect and
that condition (9.6) is less stringent than the control of

/QQeXth(w,y)dﬂ(x>dﬂ(y)

one would expect would be required in order to obtain something like (9.8).

We illustrate this in the case where (2 is itself a product of m spaces, and where
h(z,y) = ad(x,y), where d is the Hamming distance on 2 and a is a parameter. It
follows from (5.1) that (9.6) holds for a = 2m~/2. On the other hand if ||h|2 is
given by (9.3), then for this value of a, ||h||2 is of order \/m so that there is a loss
of a factor y/m in the exponent in (9.4) compared to (9.8).

To give a vivid illustration of what Theorem 9.2 can prove, consider a product
space QY. Consider a subset A of O, P(A) > 1/2. Then for most elements = of
OV, we can find an element y of A such that the set I = {i < N;x; # y;} has a
cardinal of order v/N. This is the content of Proposition 5.1; but now if we view
N as built from Nj blocks of length No(N = N3 N3) we can moreover require that
I meets only about v/N; blocks.

One of the most interesting phenomena related to the theory of penalties occurs
under a condition somewhat stronger than (9.6). However, rather than stating the
most general theorem (it requires some effort to understand the hypothesis) we will
only state the most important case. In that case, 2 = R, p has a density %e‘m
with respect to Lebesgue measure, and the function h is given by

h(z,y) = min (| — yl, (z —y)*) .

Theorem 9.3. For some universal constant K, and each subset A of RY , we have

(9.9) [ o (e ) ar) < 5o

The most obviously remarkable feature of this theorem is that (9.9) does not
depend upon N. The depth of Theorem 9.3 can however better be measured by
the fact that it does constitute a kind of improvement upon what was previously
known about Gaussian measure. To see this, consider the non-decreasing map ¢
from R to R that transforms p into the one-dimensional gaussian measure ;. It is
a simple fact to see that, for some universal constant K, we have

(9.10) (p(x) = ¢(y)* < Kh(z,y)

On the other hand the map 9 from RY to RN given by v ((z;)i<n) = (0(2:));« &
transforms P into . a
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Consider now B C RY. Thus

w(B) =Py~ (B))
Now, by (9.10), we have

d ($(A),9(x))* < K fu(4, )
where d(B,y) is the Euclidean distance from B to y, and thus from (9.9)

[ oo (gea(voe @) 0w) ) dr) <

so that (for a new constant K)

Therefore, for ¢t > 0,

1 t2
(9.11) I (B ) 2 1) £ e (—?) .

In the case yn(B) = 1/2, this is a weak form of (2.9).

It turns out that for many applications, (9.11) rather than (2.9) suffices. In
particular, it is now clearly understood that (9.11) is one of the central facts that
allows us to characterize continuity and boundedness of Gaussian processes [T1].
The importance of Theorem 9.3 is that it allows to extend these characterisations
to more general processes [T5].

One of the most intriguing further aspects of the theory of penalties is that
the roles of = and y in the penalty function h(z,y) are highly asymmetric. This
is particularly apparent when the idea of penalty function is combined with the
method of Section 6, a topic for which we must refer to [T6].

In conclusion, we have tried to make the reader aware that there are unexpectedly
subtle phenomenon related to concentration of measure in product spaces. That
such a rich theory should exist at all with such minimal structure is certainly
remarkable, as is remarkable the width of its applications. It is not clear to me at
present where lies the potential for future advances, if any. A worthy project would
be a systematic development of the “transportation method” that very recently
arose from the work of K. Marton [Mart2]. This method is a potentially serious
competitor to the induction method presented here. It allows in some cases an
easier computation of the best constants, and an easier approach to Theorem 9.1
[T8]; but whether it can lead to genuinely new results in the independent case is
unclear at present. In a different direction, an obvious research question is whether
there exists at all a usable theory beyond the case of product measures; see e.g.
[T6] for the case of the symmetric group (that resembles a product) and of [Mart2]
for certain Markov chains.
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