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Preface

The theory of positive definite matrices, positive definite functions,
and positive linear maps is rich in content. It offers many beautiful
theorems that are simple and yet striking in their formulation, uncom-
plicated and yet ingenious in their proof, diverse as well as powerful
in their application. The aim of this book is to present some of these
results with a minimum of prerequisite preparation.

The seed of this book lies in a cycle of lectures I was invited to give
at the Centro de Estruturas Lineares e Combinatórias (CELC) of the
University of Lisbon in the summer of 2001. My audience was made
up of seasoned mathematicians with a distinguished record of research
in linear and multilinear algebra, combinatorics, group theory, and
number theory. The aim of the lectures was to draw their attention
to some results and methods used by analysts. A preliminary draft
of the first four chapters was circulated as lecture notes at that time.
Chapter 5 was added when I gave another set of lectures at the CELC
in 2003.

Because of this genesis, the book is oriented towards those interested
in linear algebra and matrix analysis. In some ways it supplements
my earlier book Matrix Analysis (Springer, Graduate Texts in Math-
ematics, Volume 169). However, it can be read independently of that
book. The usual graduate-level preparation in analysis, functional
analysis, and linear algebra provides adequate background needed for
reading this book.

Chapter 1 contains some basic ideas used throughout the book.
Among other things it introduces the reader to some arguments in-
volving 2×2 block matrices. These have been used to striking, almost
magical, effect by T. Ando, M.-D. Choi, and other masters of the sub-
ject and the reader will see some of that in later parts of the book.

Chapters 2 and 3 are devoted to the study of positive and com-
pletely positive maps with special emphasis on their use in proving
matrix inequalities. Most of this material is very well known to those
who study C∗-algebras, and it ought to be better known to workers in
linear algebra. In the book, as in my Lisbon lectures, I have avoided
the technical difficulties of the theory of operator algebras by staying
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in finite-dimensional spaces. Thus some of the major theorems of the
subject are presented in their toy versions. This is good enough for
the purposes of matrix analysis and also of the currently popular area
of quantum information theory. Quantum communication channels,
at present, are thought of as completely positive trace-preserving lin-
ear maps on matrix algebras and many problems of the subject are
phrased in terms of block matrices.

In Chapter 4 we discuss means of two positive definite matrices
with special emphasis on the geometric mean. Among spectacular
applications of these ideas we include proofs of some theorems on
matrix convex functions, and of two of the most famous theorems on
quantum mechanical entropy.

Chapter 5 gives a quick introduction to positive definite functions
on the real line. Many examples of such functions are constructed us-
ing elementary arguments and then used to derive matrix inequalities.
Again, a special emphasis has been placed on various means of ma-
trices. Many of the results presented are drawn from recent research
work.

Chapter 6 is, perhaps, somewhat unusual. It presents some stan-
dard and important theorems of Riemannian geometry as seen from
the perspective of matrix analysis. Positive definite matrices consti-
tute a Riemannian manifold of nonpositive curvature, a much-studied
object in differential geometry. After explaining the basic ideas in a
language more familiar to analysts we show how these are used to
define geometric means of more than two matrices. Such a definition
has been elusive for long and only recently some progress has been
made. It leads to some intriguing questions for both the analyst and
the geometer.

This is neither an encyclopedia nor a compendium of all that is
known about positive definite matrices. It is possible to use this book
for a one semester topics course at the graduate level. Several exer-
cises of varying difficulty are included and some research problems are
mentioned. Each chapter ends with a section called “Notes and Refer-
ences”. Again, these are written to inform certain groups of readers,
and are not intended to be scholarly commentaries.

The phrase positive matrix has been used all through the book
to mean a positive semidefinite, or a positive definite, matrix. No
confusion should be caused by this. Occasionally I refer to my book
Matrix Analysis. Most often this is done to recall some standard
result. Sometimes I do it to make a tangential point that may be
ignored without losing anything of the subsequent discussion. In each
case a reference like “MA, page xx” or “See Section x.y.z of MA”
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points to the relevant page or section of Matrix Analysis.
Over the past 25 years I have learnt much from several colleagues

and friends. I was a research associate of W. B. Arveson at Berkeley
in 1979–80, of C. Davis and M.-D. Choi at Toronto in 1983, and of T.
Ando at Sapporo in 1985. This experience has greatly influenced my
work and my thinking and I hope some of it is reflected in this book.
I have had a much longer, and a more constant, association with K.
R. Parthasarathy. Chapter 5 of the book is based on work I did with
him and the understanding I obtained during the process. Likewise
Chapter 6 draws on the efforts J.A.R. Holbrook and I together made
to penetrate the mysteries of territory not familiar to us.

D. Drissi, L. Elsner, R. Horn, F. Kittaneh, K. B. Sinha, and X.
Zhan have been among my frequent collaborators and correspondents
and have generously shared their ideas and insights with me. F. Hiai
and H. Kosaki have often sent me their papers before publication,
commented on my work, and clarified many issues about which I have
written here. In particular, Chapter 5 contains many of their ideas.

My visits to Lisbon were initiated and organized by J. A. Dias da
Silva and F. C. Silva. I was given a well-appointed office, a good
library, and a comfortable apartment—all within 20 meters of each
other, a faithful and devoted audience for my lectures, and a cheerful
and competent secretary to type my notes. In these circumstances it
would have been extraordinarily slothful not to produce a book.

The hard work and good cheer of Fernanda Proença at the CELC
were continued by Anil Shukla at the Indian Statistical Institute,
Delhi. Between the two of them several drafts of the book have been
processed over a period of five years.

Short and long lists of minor and major mistakes in the evolving
manuscript were provided by helpful colleagues: they include J. S.
Aujla, J. C. Bourin, A. Dey, B. P. Duggal, T. Furuta, F. Hiai, J.A.R.
Holbrook, M. Moakher, and A. I. Singh. But even their hawk eyes
might have missed some bugs. I can only hope these are both few and
benignant.

I am somewhat perplexed by authors who use this space to suggest
that their writing activities cause acute distress to their families and
to thank them for bearing it all in the cause of humanity. My wife
Irpinder and son Gautam do deserve thanks, but my writing does not
seem to cause them any special pain.

It is a pleasure to record my thanks to all the individuals and in-
stitutions named above.





Chapter One

Positive Matrices

We begin with a quick review of some of the basic properties of positive
matrices. This will serve as a warmup and orient the reader to the
line of thinking followed through the book.

1.1 CHARACTERIZATIONS

Let H be the n-dimensional Hilbert space Cn. The inner product
between two vectors x and y is written as 〈x, y〉 or as x∗y. We adopt
the convention that the inner product is conjugate linear in the first
variable and linear in the second. We denote by L(H) the space of
all linear operators on H, and by Mn(C) or simply Mn the space of
n×n matrices with complex entries. Every element A of L(H) can be
identified with its matrix with respect to the standard basis {ej} of
Cn. We use the symbol A for this matrix as well. We say A is positive
semidefinite if

〈x,Ax〉 ≥ 0 for all x ∈ H, (1.1)

and positive definite if, in addition,

〈x,Ax〉 > 0 for all x 6= 0. (1.2)

A positive semidefinite matrix is positive definite if and only if it is
invertible.

For the sake of brevity, we use the term positive matrix for a positive
semidefinite, or a positive definite, matrix. Sometimes, if we want to
emphasize that the matrix is positive definite, we say that it is strictly
positive. We use the notation A ≥ O to mean that A is positive, and
A > O to mean it is strictly positive.

There are several conditions that characterize positive matrices.
Some of them are listed below.

(i) A is positive if and only if it is Hermitian (A = A∗) and all its
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eigenvalues are nonnegative. A is strictly positive if and only if
all its eigenvalues are positive.

(ii) A is positive if and only if it is Hermitian and all its principal
minors are nonnegative. A is strictly positive if and only if all
its principal minors are positive.

(iii) A is positive if and only if A = B∗B for some matrix B. A is
strictly positive if and only if B is nonsingular.

(iv) A is positive if and only if A = T ∗T for some upper triangular
matrix T . Further, T can be chosen to have nonnegative diag-
onal entries. If A is strictly positive, then T is unique. This is
called the Cholesky decomposition of A. A is strictly positive if
and only if T is nonsingular.

(v) A is positive if and only if A = B2 for some positive matrix B.
Such a B is unique. We write B = A1/2 and call it the (positive)
square root of A. A is strictly positive if and only if B is strictly
positive.

(vi) A is positive if and only if there exist x1, . . . , xn in H such that

aij = 〈xi, xj〉. (1.3)

A is strictly positive if and only if the vectors xj , 1 ≤ j ≤ n, are
linearly independent.

A proof of the sixth characterization is outlined below. This will
serve the purpose of setting up some notations and of introducing an
idea that will be often used in the book.

We think of elements of Cn as column vectors. If x1, . . . , xm are such
vectors we write [x1, . . . , xm] for the n×m matrix whose columns are
x1, . . . , xm. The adjoint of this matrix is written as




x∗
1
...

x∗
m


 .

This is an m×n matrix whose rows are the (row) vectors x∗
1, . . . , x

∗
m.

We use the symbol [[aij ]] for a matrix with i, j entry aij .
Now if x1, . . . , xn are elements of Cn, then
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[[x∗
i xj ]] =




x∗
1
...

x∗
n


 [x1, . . . , xn].

So, this matrix is positive (being of the form B∗B). This shows that
the condition (1.3) is sufficient for A to be positive. Conversely, if A
is positive, we can write

aij = 〈ei, Aej〉 = 〈A1/2ei, A
1/2ej〉.

If we choose xj = A1/2ej , we get (1.3).

1.1.1 Exercise

Let x1, . . . , xm be any m vectors in any Hilbert space. Then the m×m
matrix

G(x1, . . . , xm) = [[x∗
ı xj ]] (1.4)

is positive. It is strictly positive if and only if x1, . . . , xm are linearly
independent.

The matrix (1.4) is called the Gram matrix associated with the
vectors x1, . . . , xm.

1.1.2 Exercise

Let λ1, . . . , λm be positive numbers. The m×m matrix A with entries

aij =
1

λi + λj
(1.5)

is called the Cauchy matrix (associated with the numbers λj). Note
that

aij =

∫ ∞

0
e−(λi+λj)tdt. (1.6)

Let fi(t) = e−λit, 1 ≤ i ≤ m. Then fi ∈ L2([0,∞)) and aij = 〈fi, fj〉.
This shows that A is positive.
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More generally, let λ1, . . . , λm be complex numbers whose real parts
are positive. Show that the matrix A with entries

aij =
1

λi + λj

is positive.

1.1.3 Exercise

Let µ be a finite positive measure on the interval [−π, π]. The numbers

am =

∫ π

−π
e−imθdµ(θ), m ∈ Z, (1.7)

are called the Fourier-Stieltjes coefficients of µ. For any n = 1, 2, . . . ,
let A be the n × n matrix with entries

αij = ai−j, 0 ≤ i, j ≤ n − 1. (1.8)

Then A is positive.

Note that the matrix A has the form

A =




a0 a1 . . . an−1

a1 a0 a1 . . .
...

. . .
. . . a1

an−1 . . . a1 a0




. (1.9)

One special feature of this matrix is that its entries are constant along
the diagonals parallel to the main diagonal. Such a matrix is called a
Toeplitz matrix. In addition, A is Hermitian.

A doubly infinite sequence {am : m ∈ Z} of complex numbers
is said to be a positive definite sequence if for each n = 1, 2, . . . ,
the n × n matrix (1.8) constructed from this sequence is positive.
We have seen that the Fourier-Stieltjes coefficients of a finite positive
measure on [−π, π] form a positive definite sequence. A basic theorem
of harmonic analysis called the Herglotz theorem says that, conversely,
every positive definite sequence is the sequence of Fourier-Stieltjes
coefficients of a finite positive measure µ. This theorem is proved in
Chapter 5.
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1.2 SOME BASIC THEOREMS

Let A be a positive operator on H. If X is a linear operator from
a Hilbert space K into H, then the operator X∗AX on K is also
positive. If X is an invertible opertator, and X∗AX is positive, then
A is positive.

Let A,B be operators on H. We say that A is congruent to B, and
write A ∼ B, if there exists an invertible operator X on H such that
B = X∗AX. Congruence is an equivalence relation on L(H). If X is
unitary, we say A is unitarily equivalent to B, and write A ≃ B.

If A is Hermitian, the inertia of A is the triple of nonnegative inte-
gers

In(A) = (π(A), ζ(A), ν(A)), (1.10)

where π(A), ζ(A), ν(A) are the numbers of positive, zero, and nega-
tive eigenvalues of A (counted with multiplicity).

Sylvester’s law of inertia says that In(A) is a complete invariant
for congruence on the set of Hermitian matrices; i.e., two Hermitian
matrices are congruent if and only if they have the same inertia. This
can be proved in different ways. Two proofs are outlined below.

1.2.1 Exercise

Let λ↓
1(A) ≥ · · · ≥ λ↓

n(A) be the eigenvalues of the Hermitian ma-
trix A arranged in decreasing order. By the minimax principle (MA,
Corollary III.1.2)

λ↓
k(A) = max

dim M=k

min
x∈M
‖x‖=1

〈x,Ax〉,

where M stands for a subspace of H and dimM for its dimension.
If X is an invertible operator, then dimX(M) = dimM. Use this
to prove that any two congruent Hermitian matrices have the same
inertia.

1.2.2 Exercise

Let A be a nonsingular Hermitian matrix and let B = X∗AX, where
X is any nonsingular matrix. Let X have the polar decomposition
X = UP , where U is unitary and P is strictly positive. Let
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P (t) = (1 − t)I + tP, 0 ≤ t ≤ 1 ,

X(t) = UP (t), 0 ≤ t ≤ 1 .

Then P (t) is strictly positive, and X(t) nonsingular. We have X(0) =
U , and X(1) = X. Thus X(t)∗AX(t) is a continuous curve in the
space of nonsingular matrices joining U∗AU and X∗AX. The eigen-
values of X(t)∗AX(t) are continuous curves joining the eigenvalues of
U∗AU (these are the same as the eigenvalues of A) and the eigenval-
ues of X∗AX = B. [MA, Corollary VI.1.6]. These curves never touch
the point zero. Hence

π(A) = π(B); ζ(A) = ζ(B) = 0; ν(A) = ν(B);

i.e., A and B have the same inertia.
Modify this argument to cover the case when A is singular. (Then
ζ(A) = ζ(B). Consider A ± εI.)

1.2.3 Exercise

Show that a Hermitian matrix A is congruent to the diagonal matrix
diag (1, . . . , 1, 0, . . . , 0,−1, . . . ,−1), in which the entries 1, 0,−1 occur
π(A), ζ(A), and ν(A) times on the diagonal. Thus two Hermitian
matrices with the same inertia are congruent.

Two Hermitian matrices are unitarily equivalent if and only if they
have the same eigenvalues (counted with multiplicity).

Let K be a subspace of H and let P be the orthogonal projection
onto K. If we choose an orthonormal basis in which K is spanned by
the first k vectors, then we can write an operator A on H as a block
matrix

A =

[
A11 A12

A21 A22

]

and

PAP =

[
A11 O
O O

]
.
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If V is the injection of K into H, then V ∗AV = A11. We say that A11

is the compression of A to K.
If A is positive, then all its compressions are positive. Thus all

principal submatrices of a positive matrix are positive. Conversely,
if all the principal subdeterminants of A are nonnegative, then the
coefficients in the characteristic polynomial of A alternate in sign.
Hence, by the Descartes rule of signs A has no negative root.

The following exercise says that if all the leading subdeterminants
of a Hermitian matrix A are positive, then A is strictly positive. Pos-
itivity of other principal minors follows as a consequence.

Let A be Hermitian and let B be its compression to an (n −
k)-dimensional subspace. Then Cauchy’s interlacing theorem [MA,
Corollary III.1.5] says that

λ↓
j (A) ≥ λ↓

j(B) ≥ λ↓
j+k(A). (1.11)

1.2.4 Exercise

(i) If A is strictly positive, then all its compressions are strictly
positive.

(ii) For 1 ≤ j ≤ n let A[j] denote the j × j block in the top left
corner of the matrix of A. Call this the leading j × j subma-
trix of A, and its determinant the leading j× j subdeterminant.
Show that A is strictly positive if and only if all its leading sub-
determinants are positive. [Hint: use induction and Cauchy’s
interlacing theorem.]

The example A =
[

0 0
0 −1

]
shows that nonnegativity of the two

leading subdeterminants is not adequate to ensure positivity of A.

We denote by A ⊗ B the tensor product of two operators A and
B (acting possibly on different Hilbert spaces H and K). If A,B are
positive, then so is A ⊗ B.

If A,B are n×n matrices we write A◦B for their entrywise product;
i.e., for the matrix whose i, j entry is aijbij. We will call this the Schur
product of A and B. It is also called the Hadamard product. If A and
B are positive, then so is A◦B. One way of seeing this is by observing
that A ◦ B is a principal submatrix of A ⊗ B.
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1.2.5 Exercise

Let A,B be positive matrices of rank one. Then there exist vectors
x, y such that A = xx∗, B = yy∗. Show that A ◦ B = zz∗, where
z is the vector x ◦ y obtained by taking entrywise product of the
coordinates of x and y. Thus A ◦B is positive. Use this to show that
the Schur product of any two positive matrices is positive.

If both A,B are Hermitian, or positive, then so is A + B. Their
product AB is, however, Hermitian if and only if A and B commute.
This condition is far too restrictive. The symmetrized product of A,B
is the matrix

S = AB + BA. (1.12)

If A,B are Hermitian, then S is Hermitian. However, if A,B are
positive, then S need not be positive. For example, the matrices

A =

[
1 0
0 ε

]
, B =

[
1 α
α 1

]

are positive if ε > 0 and 0 < α < 1, but S is not positive when ε is
close to zero and α is close to 1. In view of this it is, perhaps, surprising
that if S is positive and A strictly positive, then B is positive. Three
different proofs of this are outlined below.

1.2.6 Proposition

Let A,B be Hermitian and suppose A is strictly positive. If the sym-
metrized product S = AB + BA is positive (strictly positive), then B
is positive (strictly positive).

Proof. Choose an orthonormal basis in which B is diagonal; B =
diag(β1, . . . , βn). Then sii = 2βiaii. Now observe that the diagonal
entries of a (strictly) positive matrix are (strictly) positive. �

1.2.7 Exercise

Choose an orthonormal basis in which A is diagonal with entries
α1, α2, . . . , αn, on its diagonal. Then note that S is the Schur product
of B with the matrix [[αi + αj ]]. Hence B is the Schur product of S
with the Cauchy matrix [[1/(αi + αj)]]. Since this matrix is positive,
it follows that B is positive if S is.
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1.2.8 Exercise

If S > O, then for every nonzero vector x

0 < 〈x, Sx〉 = 2Re 〈x,ABx〉.

Suppose Bx = βx with β ≤ 0. Show that 〈x,ABx〉 ≤ 0. Conclude
that B > O.

An amusing corollary of Proposition 1.2.6 is a simple proof of the
operator monotonicity of the map A 7−→ A1/2 on positive matrices.

If A,B are Hermitian, we say that A ≥ B if A−B ≥ O; and A > B
if A − B > O.

1.2.9 Proposition

If A,B are positive and A > B, then A1/2 > B1/2.

Proof. We have the identity

X2 − Y 2 =
(X + Y )(X − Y ) + (X − Y )(X + Y )

2
. (1.13)

If X,Y are strictly positive then X + Y is strictly positive. So, if
X2 − Y 2 is positive, then X − Y is positive by Proposition 1.2.6. �

Recall that if A ≥ B, then we need not always have A2 ≥ B2; e.g.,
consider the matrices

A =

[
2 1
1 1

]
, B =

[
1 1
1 1

]
.

Proposition 1.2.6 is related to the study of the Lyapunov equation,
of great importance in differential equations and control theory. This
is the equation (in matrices)

A∗X + XA = W. (1.14)

It is assumed that the spectrum of A is contained in the open right
half-plane. The matrix A is then called positively stable. It is well
known that in this case the equation (1.14) has a unique solution.
Further, if W is positive, then the solution X is also positive.
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1.2.10 Exercise

Suppose A is diagonal with diagonal entries α1, . . . , αn. Then the
solution of (1.14) is

X =

[[
1

αı + αj

]]
◦ W.

Use Exercise 1.1.2 to see that if W is positive, then so is X. Now
suppose A = TDT−1, where D is diagonal. Show that again the
solution X is positive if W is positive. Since diagonalisable matrices
are dense in the space of all matrices, the same conclusion can be
obtained for general positively stable A.

The solution X to the equation (1.14) can be represented as the
integral

X =

∫ ∞

0
e−tA∗

We−tAdt. (1.15)

The condition that A is positively stable ensures that this integral is
convergent. It is easy to see that X defined by (1.15) satisfies the
equation (1.14). From this it is clear that if W is positive, then so is
X.

Now suppose A is any matrix and suppose there exist positive ma-
trices X and W such that the equality (1.14) holds. Then if Au = αu,
we have

〈u,Wu〉= 〈u, (A∗X + XA)u〉 = 〈XAu, u〉 + 〈u,XAu〉
= 2Re α〈Xu, u〉.

This shows that A is positively stable.

1.2.11 Exercise

The matrix equation

X − F ∗XF = W (1.16)

is called the Stein equation or the discrete time Lyapunov equation.
It is assumed that the spectrum of F is contained in the open unit
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disk. Show that in this case the equation has a unique solution given
by

X =
∞∑

m=0

F ∗mWFm. (1.17)

From this it is clear that if W is positive, then so is X. Another proof
of this fact goes as follows. To each point β in the open unit disk
there corresponds a unique point α in the open right half plane given
by β = α−1

α+1 . Suppose F is diagonal with diagonal entries β1, . . . , βn.
Then the solution of (1.16) can be written as

X =

[[
1

1 − βiβj

]]
◦ W.

Use the correspondence between β and α to show that

[[
1

1 − βiβj

]]
=

[[
(αi + 1)(αj + 1)

2(αi + αj)

]]
∼
[[

1

αi + αj

]]
.

Now use Exercise 1.2.10.
If F is any matrix such that the equality (1.16) is satisfied by some

positive matrices X and W, then the spectrum of F is contained in
the unit disk.

1.2.12 Exercise

Let A,B be strictly positive matrices such that A ≥ B. Show that
A−1 ≤ B−1. [Hint: If A ≥ B, then I ≥ A−1/2BA−1/2.]

1.2.13 Exercise

The quadratic equation

XAX = B

is called a Riccati equation. If B is positive and A strictly positive,
then this equation has a positive solution. Conjugate the two sides of
the equation by A1/2, take square roots, and then conjugate again by
A−1/2 to see that

X = A−1/2(A1/2BA1/2)1/2A−1/2

is a solution. Show that this is the only positive solution.
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1.3 BLOCK MATRICES

Now we come to a major theme of this book. We will see that 2 × 2

block matrices
»

A B
C D

–
can play a remarkable—almost magical—role

in the study of positive matrices.
In this block matrix the entries A,B,C,D are n × n matrices. So,

the big matrix is an element of M2n, or, of L(H ⊕ H). As we pro-
ceed we will see that several properties of A can be obtained from
those of a block matrix in which A is one of the entries. Of special
importance is the connection this establishes between positivity (an
algebraic property) and contractivity (a metric property).

Let us fix some notations. We will write A = UP for the polar
decomposition of A. The factor U is unitary and P is positive; we
have P = (A∗A)1/2. This is called the positive part or the absolute
value of A and is written as |A|. We have A∗ = PU∗, and

|A∗| = (AA∗)1/2 = (UP 2U∗)1/2 = UPU∗.

A is said to be normal if AA∗ = A∗A. This condition is equivalent
to UP = PU ; and to the condition |A| = |A∗|.

We write A = USV for the singular value decomposition (SVD) of
A. Here U and V are unitary and S is diagonal with nonnegative
diagonal entries s1(A) ≥ · · · ≥ sn(A). These are the singular values
of A (the eigenvalues of |A|).

The symbol ‖A‖ will always denote the norm of A as a linear op-
erator on the Hilbert space H; i.e.,

‖A‖ = sup
‖x‖=1

‖Ax‖ = sup
‖x‖≤1

‖Ax‖.

It is easy to see that ‖A‖ = s1(A).
Among the important properties of this norm are the following:

‖AB‖≤‖A‖‖B‖,
‖A‖= ‖A∗‖,
‖A‖= ‖UAV ‖ for all unitary U, V. (1.18)

This last property is called unitary invariance. Finally

‖A∗A‖ = ‖A‖2. (1.19)
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There are several other norms on Mn that share the three properties
(1.18). It is the condition (1.19) that makes the operator norm ‖ · ‖
very special.

We say A is contractive, or A is a contraction, if ‖A‖ ≤ 1.

1.3.1 Proposition

The operator A is contractive if and only if the operator
»

I A
A∗ I

–
is

positive.

Proof. What does the proposition say when H is one-dimensional?
It just says that if a is a complex number, then |a| ≤ 1 if and only

if the 2 × 2 matrix
»

1 a
a 1

–
is positive. The passage from one to many

dimensions is made via the SVD. Let A = USV . Then

[
I A
A∗ I

]
=

[
I USV

V ∗SU∗ I

]

=

[
U O
O V ∗

] [
I S
S I

] [
U∗ O
O V

]
.

This matrix is unitarily equivalent to
»

I S
S I

–
, which in turn is unitarily

equivalent to the direct sum

[
1 s1

s1 1

]
⊕
[

1 s2

s2 1

]
⊕ · · · ⊕

[
1 sn

sn 1

]
,

where s1, . . . , sn are the singular values of A. These 2 × 2 matrices
are all positive if and only if s1 ≤ 1 (i.e.,‖A‖ ≤ 1). �

1.3.2 Proposition

Let A,B be positive. Then the matrix
»

A X
X∗ B

–
is positive if and only

if X = A1/2KB1/2 for some contraction K.

Proof. Assume first that A,B are strictly positive. This allows us
to use the congruence

[
A X
X∗ B

]
∼
[

A−1/2 O
O B−1/2

] [
A X
X∗ B

] [
A−1/2 O

O B−1/2

]
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=

[
I A−1/2XB−1/2

B−1/2X∗A−1/2 I

]
.

Let K = A−1/2XB−1/2. Then by Proposition 1.3.1 this block ma-
trix is positive if and only if K is a contraction. This proves the
proposition when A,B are strictly positive. The general case follows
by a continuity argument. �

It follows from Proposition 1.3.2 that if
»

A X
X∗ B

–
is positive, then

the range of X is a subspace of the range of A, and the range of X∗

is a subspace of the range of B. The rank of X cannot exceed either
the rank of A or the rank of B.

1.3.3 Theorem

Let A,B be strictly positive matrices. Then the block matrix
»

A X
X∗ B

–

is positive if and only if A ≥ XB−1X∗.

Proof. We have the congruence

[
A X
X∗ B

]
∼
[

I −XB−1

O I

] [
A X
X∗ B

] [
I O

−B−1X∗ I

]

=

[
A − XB−1X∗ O

O B

]
.

Clearly, this last matrix is positive if and only if A ≥ XB−1X∗. �

Second proof. We have A ≥ XB−1X∗ if and only if

I ≥A−1/2(XB−1X∗)A−1/2

= A−1/2XB−1/2 · B−1/2X∗A−1/2

= (A−1/2XB−1/2)(A−1/2XB−1/2)∗.

This is equivalent to saying ‖A−1/2XB−1/2‖ ≤ 1, or X = A1/2KB1/2

where ‖K‖ ≤ 1. Now use Proposition 1.3.2. �

1.3.4 Exercise

Show that the condition A ≥ XB−1X∗ in the theorem cannot be
replaced by A ≥ X∗B−1X (except when H is one dimensional!).
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1.3.5 Exercise

Let A,B be positive but not strictly positive. Show that Theorem
1.3.3 is still valid if B−1 is interpreted to be the Moore-Penrose inverse
of B.

1.3.6 Lemma

The matrix A is positive if and only if
[
A
A

A
A

]
is positive.

Proof. We can write

[
A A
A A

]
=

[
A1/2 O
A1/2 O

] [
A1/2 A1/2

O O

]
.

1.3.7 Corollary

Let A be any matrix. Then the matrix
[
|A|
A

A∗

|A∗|

]
is positive.

Proof. Use the polar decomposition A = UP to write

[
|A| A∗

A |A∗|

]
=

[
P PU∗

UP UPU∗

]

=

[
I O
O U

] [
P P
P P

] [
I O
O U∗

]
,

and then use the lemma. �

1.3.8 Corollary

If A is normal, then
[
|A|
A

A∗

|A|

]
is positive.

1.3.9 Exercise

Show that (when n ≥ 2) this is not always true for nonnormal matri-
ces.

1.3.10 Exercise

If A is strictly positive, show that
[
A
I

I
A−1

]
is positive (but not strictly

positive.)



16 CHAPTER 1

Theorem 1.3.3, the other propositions in this section, and the ideas
used in their proofs will occur repeatedly in this book. Some of their
power is demonstrated in the next sections.

1.4 NORM OF THE SCHUR PRODUCT

Given A in Mn, let SA be the linear map on Mn defined as

SA(X) = A ◦ X, X ∈ Mn, (1.20)

where A◦X is the Schur product of A and X. The norm of this linear
operator is, by definition,

‖SA‖ = sup
‖X‖=1

‖SA(X)‖ = sup
‖X‖≤1

‖SA(X)‖. (1.21)

Since

‖A ◦ B‖ ≤ ‖A ⊗ B‖ = ‖A‖ ‖B‖, (1.22)

we have

‖SA‖ ≤ ‖A‖. (1.23)

Finding the exact value of ‖SA‖ is a difficult problem in general.
Some special cases are easier.

1.4.1 Theorem (Schur)

If A is positive, then

‖SA‖ = max aii. (1.24)

Proof. Let ‖X‖ ≤ 1. Then by Proposition 1.3.1
»

I X
X∗ I

–
≥ O. By

Lemma 1.3.6
»

A A
A A

–
≥ O. Hence the Schur product of these two block

matrices is positive; i.e,
[

A ◦ I A ◦ X
(A ◦ X)∗ A ◦ I

]
≥ O.
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So, by Proposition 1.3.2, ‖A ◦X‖ ≤ ‖A ◦ I‖ = max aii. Thus ‖SA‖ =
max aii. �

1.4.2 Exercise

If U is unitary, then ‖SU‖ = 1. [Hint: U ◦U is doubly stochastic, and
hence, has norm 1.]

For each matrix X, let

‖X‖c = maximum of the Euclidean norms of columns of X. (1.25)

This is a norm on Mn, and

‖X‖c ≤ ‖X‖. (1.26)

1.4.3 Theorem

Let A be any matrix. Then

‖SA‖ ≤ inf {‖X‖c ‖Y ‖c : A = X∗Y }. (1.27)

Proof. Let A = X∗Y . Then

[
X∗X A
A∗ Y ∗Y

]
=

[
X∗ O
Y ∗ O

] [
X Y
O O

]
≥ O. (1.28)

Now if Z is any matrix with ‖Z‖ ≤ 1, then
»

I Z
Z∗ I

–
≥ O. So, the Schur

product of this with the positive matrix in (1.28) is positive; i.e.,

[
(X∗X) ◦ I A ◦ Z
(A ◦ Z)∗ (Y ∗Y ) ◦ I

]
≥ O.

Hence, by Proposition 1.3.2

‖A ◦ Z‖ ≤ ‖(X∗X) ◦ I‖1/2 ‖(Y ∗Y ) ◦ I‖1/2 = ‖X‖c‖Y ‖c.

Thus ‖SA‖ ≤ ‖X‖c‖Y ‖c. �
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In particular, we have

‖SA‖ ≤ ‖A‖c, (1.29)

which is an improvement on (1.23).
In Chapter 3, we will prove a theorem of Haagerup (Theorem 3.4.3)

that says the two sides of (1.27) are equal.

1.5 MONOTONICITY AND CONVEXITY

Let Ls.a.(H) be the space of self-adjoint (Hermitian) operators on H.
This is a real vector space. The set L+(H) of positive operators is
a convex cone in this space. The set of strictly positive operators is
denoted by L++(H). It is an open set in Ls.a.(H) and is a convex cone.
If f is a map of Ls.a.(H) into itself, we say f is convex if

f((1 − α)A + αB) ≤ (1 − α)f(A) + αf(B) (1.30)

for all A,B ∈ Ls.a.(H) and for 0 ≤ α ≤ 1. If f is continuous, then f
is convex if and only if

f

(
A + B

2

)
≤ f(A) + f(B)

2
(1.31)

for all A,B.
We say f is monotone if f(A) ≥ f(B) whenever A ≥ B.

The results on block matrices in Section 1.3 lead to easy proofs of
the convexity and monotonicity of several functions. Here is a small
sampler.

Let A,B > O. By Exercise 1.3.10

[
A I
I A−1

]
≥ O and

[
B I
I B−1

]
≥ O. (1.32)

Hence,

[
A + B 2I

2I A−1 + B−1

]
≥ O.
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By Theorem 1.3.3 this implies

A−1 + B−1 ≥ 4(A + B)−1

or
(

A + B

2

)−1

≤ A−1 + B−1

2
. (1.33)

Thus the map A 7→ A−1 is convex on the set of positive matrices.
Taking the Schur product of the two block matrices in (1.32) we get

[
A ◦ B I

I A−1 ◦ B−1

]
≥ O.

So, by Theorem 1.3.3

A ◦ B ≥ (A−1 ◦ B−1)−1 . (1.34)

The special choice B = A−1 gives

A ◦ A−1 ≥ (A−1 ◦ A)−1 = (A ◦ A−1)−1 .

But a positive matrix is larger than its inverse if and only if it is larger
than I. Thus we have the inequality

A ◦ A−1 ≥ I (1.35)

known as Fiedler’s inequality.

1.5.1 Exercise

Use Theorem 1.3.3 to show that the map (B,X) 7→ XB−1X∗ from
L++(H) ×L(H) into L+(H) is jointly convex, i.e.,

(
X1 + X2

2

)(
B1 + B2

2

)−1(X1 + X2

2

)∗
≤ X1B

−1
1 X∗

1 + X2B
−1
2 X∗

2

2
.

In particular, this implies that the map B 7→ B−1 on L++(H) is
convex (a fact we have proved earlier), and that the map X 7→ X2 on
Ls.a.(H) is convex. The latter statement can be proved directly: for
all Hermitian matrices A and B we have the inequality

(
A + B

2

)2

≤ A2 + B2

2
.
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1.5.2 Exercise

Show that the map X 7→ X3 is not convex on 2× 2 positive matrices.

1.5.3 Corollary

The map (A,B,X) 7→ A − XB−1X∗ is jointly concave on L+(H) ×
L++(H) × L(H). It is monotone increasing in the variables A,B.

In particular, the map B 7→ −B−1 on L++(H) is monotone (a fact
we proved earlier in Exercise 1.2.12).

1.5.4 Proposition

Let B > O and let X be any matrix. Then

XB−1X∗ = min

{
A :

[
A X
X∗ B

]
≥ O

}
. (1.36)

Proof. This follows immediately from Theorem 1.3.3. �

1.5.5 Corollary

Let A,B be positive matrices and X any matrix. Then

A − XB−1X∗ = max

{
Y :

[
A X
X∗ B

]
≥
[

Y O
O O

]}
. (1.37)

Proof. Use Proposition 1.5.4. �

Extremal representations such as (1.36) and (1.37) are often used
to derive matrix inequalities. Most often these are statements about
convexity of certain maps. Corollary 1.5.5, for example, gives useful
information about the Schur complement, a concept much used in
matrix theory and in statistics.

Given a block matrix A =
[

A11 A12

A21 A22

]
the Schur complement of A22

in A is the matrix

Ã22 = A11 − A12A
−1
22 A21. (1.38)
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The Schur complement of A11 is the matrix obtained by interchanging
the indices 1 and 2 in this definition. Two reasons for interest in this
object are given below.

1.5.6 Exercise

Show that

detA = det Ã22 detA22.

1.5.7 Exercise

If A is invertible, then the top left corner of the block matrix A−1 is
(Ã11)

−1; i.e.,

[
A11 A12

A21 A22

]−1

=

[
(Ã11)

−1 ∗
∗ ∗

]
.

Corollary 1.5.3 says that on the set of positive matrices (with a
block decomposition) the Schur complement is a concave function.
Let us make this more precise. Let H = H1 ⊕ H2 be an orthogonal
decomposition of H. Each operator A on H can be written as A =[

A11 A12

A21 A22

]
with respect to this decomposition. Let P (A) = Ã22. Then

for all strictly positive operators A and B we have

P (A + B) ≥ P (A) + P (B).

The map A 7→ P (A) is positively homogenous; i.e., P (αA) = αP (A)
for all positive numbers α. It is also monotone in A.

We have seen that while the function f(A) = A2 is convex on the
space of positive matrices, the function f(A) = A3 is not; and while
the function f(A) = A1/2 is monotone on the set of positive matrices,
the function f(A) = A2 is not. Thus the following theorems are
interesting.

1.5.8 Theorem

The function f(A) = Ar is convex on L+(H) for 1 ≤ r ≤ 2.

Proof. We give a proof that uses Exercise 1.5.1 and a useful integral
representation of Ar. For t > 0 and 0 < r < 1, we have (from one of
the integrals calculated via contour integration in complex analysis)
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tr =
sin rπ

π

∫ ∞

0

t

λ + t
λr−1dλ .

The crucial feature of this formula that will be exploited is that we
can represent tr as

tr =

∫ ∞

0

t

λ + t
dµ(λ), 0 < r < 1, (1.39)

where µ is a positive measure on (0,∞). Multiplying both sides by t,
we have

tr =

∫ ∞

0

t2

λ + t
dµ(λ), 1 < r < 2.

Thus for positive operators A, and for 1 < r < 2,

Ar =

∫ ∞

0
A2(λ + A)−1dµ(λ)

=

∫ ∞

0
A(λ + A)−1A dµ(λ).

By Exercise 1.5.1 the integrand is a convex function of A for each
λ > 0. So the integral is also convex. �

1.5.9 Theorem

The function f(A) = Ar is monotone on L+(H) for 0 ≤ r ≤ 1.

Proof. For each λ > 0 we have A(λ + A)−1 = (λA−1 + I)−1. Since
the map A 7→ A−1 is monotonically decreasing (Exercise 1.2.12), the
function fλ(A) = A(λ + A)−1 is monotonically increasing for each
λ > 0. Now use the integral representation (1.39) as in the preceding
proof. �
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1.5.10 Exercise

Show that the function f(A) = Ar is convex on L++(H) for −1 ≤ r ≤
0. [Hint: For −1 < r < 0 we have

tr =

∫ ∞

0

1

λ + t
dµ(λ).

Use the convexity of the map f(A) = A−1.]

1.6 SUPPLEMENTARY RESULTS AND EXERCISES

Let A and B be Hermitian matrices. If there exists an invertible
matrix X such that X∗AX and X∗BX are diagonal, we say that A
and B are simultaneously congruent to diagonal matrices (or A and B
are simultaneously diagonalizable by a congruence). If X can be chosen
to be unitary, we say A and B are simultaneously diagonalizable by a
unitary conjugation.

Two Hermitian matrices are simultaneously diagonalizable by a uni-
tary conjugation if and only if they commute. Simultaneous congru-
ence to diagonal matrices can be achieved under less restrictive con-
ditions.

1.6.1 Exercise

Let A be a strictly positive and B a Hermitian matrix. Then A and
B are simultaneously congruent to diagonal matrices. [Hint: A is
congruent to the identity matrix.]

Simultaneous diagonalization of three matrices by congruence, how-
ever, again demands severe restrictions. Consider three strictly pos-
itive matrices I, A1 and A2. Suppose X is an invertible matrix such
that X∗X is diagonal. Then X = UΛ where U is unitary and Λ is
diagonal and invertible. It is easy to see that for such an X, X∗A1X
and X∗A2X both are diagonal if and only if A1 and A2 commute.

If A and B are Hermitian matrices, then the inequality AB+BA ≤
A2 + B2 is always true. It follows that if A and B are positive, then

(
A1/2 + B1/2

2

)2

≤ A + B

2
.



24 CHAPTER 1

Using the monotonicity of the square root function we see that

A1/2 + B1/2

2
≤
(

A + B

2

)1/2

.

In other words the function f(A) = A1/2 is concave on the set L+(H).
More generally, it can be proved that f(A) = Ar is concave on

L+(H) for 0 ≤ r ≤ 1. See Theorem 4.2.3.
It is known that the map f(A) = Ar on positive matrices is mono-

tone if and only if 0 ≤ r ≤ 1, and convex if and only if r ∈ [−1, 0] ∪
[1, 2]. A detailed discussion of matrix monotonicity and convexity may
be found in MA, Chapter V. Some of the proofs given here are differ-
ent. We return to these questions in later chapters.

Given a matrix A let A(m) be the m-fold Schur product A ◦ A ◦
· · · ◦ A. If A is positive semidefinite, then so is A(m). Suppose all
the entries of A are nonnegative real numbers aij. In this case we

say that A is entrywise positive, and for each r > 0 we define A(r)

as the matrix whose entries are ar
ij . If A is entrywise positive and

positive semidefinite, then A(r) is not always positive semidefinite.
For example, let

A =




1 1 0
1 2 1
0 1 1




and consider A(r) for 0 < r < 1.
An entrywise positive matrix is said to be infinitely divisible if the

matrix A(r) is positive semidefinite for all r > 0.

1.6.2 Exercise

Show that if A is an entrywise positive matrix and A(1/m) is positive
semidefinite for all natural numbers m, then A is infinitely divisible.

In the following two exercises we outline proofs of the fact that the
Cauchy matrix (1.5) is infinitely divisible.

1.6.3 Exercise

Let λ1, . . . , λm be positive numbers and let ε > 0 be any lower bound

for them. For r > 0, let C
(r)
ε be the matrix whose i, j entries are

1

(λi + λj − ε)r
.
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Write these numbers as

(
ε

λiλj

)r

 1

1 − (λi−ε)(λj−ε)
λiλj




r

.

Use this to show that C
(r)
ε is congruent to the matrix whose i, j entries

are

 1

1 − (λi−ε)(λj−ε)
λiλj




r

=
∞∑

n=0

an

(
(λi − ε)(λj − ε)

λiλj

)n

.

The coefficients an are the numbers occurring in the binomial expan-
sion

(
1

1 − x

)r

=

∞∑

n=0

anxn, |x| < 1,

and are positive. The matrix with entries

(λi − ε)(λj − ε)

λiλj

is congruent to the matrix with all its entries equal to 1. So, it is

positive semidefinite. It follows that C
(r)
ε is positive semidefinite for

all ε > 0. Let ε ↓ 0 and conclude that the Cauchy matrix is infinitely
divisible.

1.6.4 Exercise

The gamma function for x > 0 is defined by the formula

Γ(x) =

∫ ∞

0
e−ttx−1dt.

Show that for every r > 0 we have

1

(λi + λj)r
=

1

Γ(r)

∫ ∞

0
e−t(λi+λj)tr−1dt.

This shows that the matrix
[[

1
(λi+λj)r

]]
is a Gram matrix, and gives

another proof of the infinite divisibility of the Cauchy matrix.
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1.6.5 Exercise

Let λ1, . . . , λn be positive numbers and let Z be the n×n matrix with
entries

zij =
1

λ2
i + λ2

j + tλiλj
,

where t > −2. Show that for all t ∈ (−2, 2] this matrix is infinitely
divisible. [Hint: Use the expansion

zr
ij =

1

(λi + λj)2r

∞∑

m=0

am(2 − t)m
λm

i λm
j

(λi + λj)2m
.]

Let n = 2. Show that the matrix Z(r) in this case is positive semidef-
inite for t ∈ (−2,∞) and r > 0.

Let (λ1, λ2, λ3) = (1, 2, 3) and t = 10. Show that with this choice
the 3 × 3 matrix Z is not positive semidefinite.

In Chapter 5 we will study this example again and show that the
condition t ∈ (−2, 2] is necessary to ensure that the matrix Z de-
fined above is positive semidefinite for all n and all positive numbers
λ1, . . . , λn.

If A = [[aij ]] is a positive matrix, then so is its complex conju-
gate A = [[aij]]. The Schur product of these two matrices [[ |aij|2]] is
positive, as are all the matrices [[ |aij |2k]], k = 0, 1, 2, . . . .

1.6.6 Exercise

(i) Let n ≤ 3 and let [[aij ]] be an n× n positive matrix. Show that
the matrix [[ |aij | ]] is positive.

(ii) Let

A =




1 1√
2

0 −1√
2

1√
2

1 1√
2

0

0 1√
2

1 1√
2

−1√
2

0 1√
2

1


 .

Show that A is positive but [[ |aij | ]] is not.

Let ϕ : C → C be a function satisfying the following property:
whenever A is a positive matrix (of any size), then [[ϕ(aij)]] is positive.
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It is known that such a function has a representation as a series

ϕ(z) =

∞∑

k,l=0

bkl z
k zl, (1.40)

that converges for all z, and in which all coefficients bkl are nonnega-
tive.

From this it follows that if p is a positive real number but not an
even integer, then there exists a positive matrix A (of some size n
depending on p) such that [[ |aij |p ]] is not positive.

Since ‖A‖ = ‖ |A| ‖ for all operators A, the triangle inequality may
be expressed also as

‖A + B‖ ≤ ‖ |A| ‖ + ‖ |B| ‖ for all A,B ∈ L(H). (1.41)

If both A and B are normal, this can be improved. Using Corollary
1.3.8 we see that in this case

[
|A| + |B| A∗ + B∗

A + B |A| + |B|

]
≥ O.

Then using Proposition 1.3.2 we obtain

‖A + B‖ ≤ ‖ |A| + |B| ‖ for A,B normal. (1.42)

This inequality is stronger than (1.41). It is not true for all A and B,
as may be seen from the example

A =

[
1 0
0 0

]
, B =

[
0 1
0 0

]
.

The inequality (1.42) has an interesting application in the proof of
Theorem 1.6.8 below.

1.6.7 Exercise

Let A and B be any two operators, and for a given positive integer m
let ω = e2πi/m. Prove the identity

Am + Bm =
(A + B)m + (A + ωB)m + · · · + (A + ωm−1B)

m
. (1.43)
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1.6.8 Theorem

Let A and B be positive operators. Then

‖Am + Bm‖ ≤ ‖(A + B)m‖ for m = 1, 2, . . . . (1.44)

Proof. Using the identity (1.43) we get

‖Am + Bm‖≤ 1

m

m−1∑

j=0

‖(A + ωjB)m‖

≤ 1

m

m−1∑

j=0

‖A + ωjB‖m. (1.45)

For each complex number z, the operator zB is normal. So from
(1.42) we get

‖A + zB‖ ≤ ‖A + |z|B‖.

This shows that each of the summands in the sum on the right-hand
side of (1.45) is bounded by ‖A + B‖m. Since A + B is positive, ‖A +
B‖m = ‖(A + B)m‖. This proves the theorem. �

The next theorem is more general.

1.6.9 Theorem

Let A and B be positive operators. Then

‖Ar + Br‖≤‖(A + B)r‖ for 1 ≤ r < ∞, (1.46)

‖Ar + Br‖≥‖(A + B)r‖ for 0 ≤ r ≤ 1. (1.47)

Proof. Let m be any positive integer and let Ωm be the set of all real
numbers r in the interval [1,m] for which the inequality (1.46) is true.
We will show that Ωm is a convex set. Since 1 and m belong to Ωm,
this will prove the inequality (1.46).

Suppose r and s are two points in Ωm and let t = (r + s)/2. Then
[

At + Bt O
O O

]
=

[
Ar/2 Br/2

O O

] [
As/2 O
Bs/2 O

]
.

Hence

‖At + Bt‖ ≤
∣∣∣∣
∣∣∣∣
[

Ar/2 Br/2

O O

]∣∣∣∣
∣∣∣∣
∣∣∣∣
∣∣∣∣
[

As/2 O
Bs/2 O

]∣∣∣∣
∣∣∣∣ .
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Since ‖X‖ = ‖X∗X‖1/2 = ‖XX∗‖1/2 for all X, this gives

‖At + Bt‖ ≤ ‖Ar + Br‖1/2 ‖As + Bs‖1/2.

We have assumed r and s are in Ωm. So, we have

‖At + Bt‖≤‖(A + B)r‖1/2 ‖(A + B)s‖1/2

= ‖A + B‖r/2‖A + B‖s/2

= ‖A + B‖t = ‖(A + B)t‖.

This shows that t ∈ Ωm, and the inequality (1.46) is proved.
Let 0 < r ≤ 1. Then from (1.46) we have

‖A1/r + B1/r‖ ≤ ‖(A + B)1/r‖ = ‖A + B‖1/r.

Replacing A and B by Ar and Br, we obtain the inequality (1.47). �

We have seen that AB+BA need not be positive when A and B are
positive. Hence we do not always have A2 +B2 ≤ (A+B)2. Theorem
1.6.8 shows that we do have the weaker assertion

λ↓
1(A

2 + B2) ≤ λ↓
1(A + B)2.

1.6.10 Exercise

Use the example

A =

[
1 1
1 1

]
, B =

[
1 0
0 0

]
,

to see that the inequality

λ↓
2(A

2 + B2) ≤ λ↓
2(A + B)2

is not always true.

1.7 NOTES AND REFERENCES

Chapter 7 of the well known book Matrix Analysis by R. A. Horn
and C. R. Johnson, Cambridge University Press, 1985, is an excellent
source of information about the basic properties of positive definite
matrices. See also Chapter 6 of F. Zhang, Matrix Theory: Basic
Results and Techniques, Springer, 1999. The reader interested in nu-
merical analysis should see Chapter 10 of N. J. Higham, Accuracy and
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Stability of Numerical Algorithms, Second Edition, SIAM 2002, and
Chapter 5 of G. H. Golub and C. F. Van Loan, Matrix Computations,
Third Edition, Johns Hopkins University Press, 1996.

The matrix in (1.5) is a special case of the more general matrix C
whose entries are

cij =
1

λi + µj
,

where (λ1, . . . , λm) and (µ1, . . . , µm) are any two real m-tuples. In
1841, Cauchy gave a formula for the determinant of this matrix:

det C =

∏
1≤i<j≤m

(λj − λi)(µj − µi)

∏
1≤i, j≤m

(λi + µj)
.

From this it follows that the matrix in (1.5) is positive. The Hilbert
matrix H with entries

hij =
1

i + j − 1

is a special kind of Cauchy matrix. Hilbert showed that the infinite
matrix H defines a bounded operator on the space l2 and ‖H‖ < 2π.
The best value π for ‖H‖ was obtained by I. Schur, Bemerkungen
zur Theorie der beschränkten Bilinearformen mit unendlich vielen
Veränderlichen, J. Reine Angew. Math., 140 (1911). This is now
called Hilbert’s inequality. See Chapter IX of G. H. Hardy, J. E.
Littlewood, and G. Pólya, Inequalities, Second Edition, Cambridge
University Press, 1952, for different proofs and interesting extensions.
Chapter 28 of Higham’s book, cited earlier, describes the interest that
the Hilbert and Cauchy matrices have for the numerical analyst.

Sylvester’s law of inertia is an important fact in the reduction of a
real quadratic form to a sum of squares. While such a reduction may
be achieved in many different ways, the law says that the number of
positive and the number of negative squares are always the same in
any such reduced representation. See Chapter X of F. Gantmacher,
Matrix Theory, Chelsea, 1977. The law has special interest in the
stability theory of differential equations where many problems depend
on information on the location of the eigenvalues of matrices in the left
half-plane. A discussion of these matters, and of the Lyapunov and
Stein equations, may be found in P. Lancaster and M. Tismenetsky,
The Theory of Matrices, Second Edition, Academic Press, 1985.

The Descartes rule of signs (in a slightly refined form) says that
if all the roots of a polynomial f(x) are real, and the constant term
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is nonzero, then the number k1 of positive roots of the polynomial
is equal to the number s1 of variations in sign in the sequence of
its coefficients, and the number k2 of negative roots is equal to the
number s2 of variations in sign in the sequence of coefficients of the
polynomial f(−x). See, for example, A. Kurosh, Higher Algebra, Mir
Publishers, 1972.

The symmetrized product (1.12), divided by 2, is also called the
Jordan product. In Chapter 10 of P. Lax, Linear Algebra, John Wiley,
1997, the reader will find different (and somewhat longer) proofs of
Propositions 1.2.6 and 1.2.9. Proposition 1.2.9 and Theorem 1.5.9 are
a small part of Loewner’s theory of operator monotone functions. An
exposition of the full theory is given in Chapter V of R. Bhatia, Matrix
Analysis, Springer, 1997 (abbreviated to MA in our discussion).

The equation XAX = B in Exercise 1.2.13 is a very special kind of
Riccati equation, the general form of such an equation being

XAX − XC − C∗X = B.

Such equations arise in problems of control theory, and have been
studied extensively. See, for example, P. Lancaster and L. Rodman,
The Algebraic Riccati Equation, Oxford University Press, 1995.

Proposition 1.3.1 makes connection between an algebraic property–
positivity, and a metric property—contractivity. The technique of
studying properties of a matrix by embedding it in a larger matrix
is known as “dilation theory” and has proved to be of great value.
An excellent demonstration of the power of such methods is given in
the two books by V. Paulsen, Completely Bounded Maps and Dila-
tions, Longman, 1986 and Completely Bounded Maps and Operator
Algebras, Cambridge University Press, 2002. Theorem 1.3.3 has been
used to great effect by several authors. The idea behind this 2 × 2
matrix calculation can be traced back to I. Schur, Über Potenzreihen
die im Innern des Einheitskreises beschränkt sind [I], J. Reine Angew.
Math., 147 (1917) 205–232, where the determinantal identity of Ex-
ercise 1.5.6 occurs. Using the idea in our first proof of Theorem 1.3.3

it is easy to deduce the following. If A =
[

A11 A12

A21 A22

]
is a Hermitian

matrix and Ã22 is defined by (1.38), then we have the relation

In (A) = In(A22) + In(Ã22)

between inertias. This fact was proved by E. Haynsworth, Determina-
tion of the inertia of a partitioned Hermitian matrix, Linear Algebra
Appl., 1 (1968) 73–81. The term Schur complement was introduced
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by Haynsworth. The argument of Theorem 1.3.3 is a special case of
this additivity of inertias.

The Schur complement is important in matrix calculations aris-
ing in several areas like statistics and electrical engineering. The re-
cent book, The Schur Complement and Its Applications, edited by F.
Zhang, Springer, 2005, contains several expository articles and an ex-
haustive bibliography that includes references to earlier expositions.
The Schur complement is used in quantum mechanics as the decima-
tion map or the Feshbach map. Here the Hamiltonian is a Hermitian
matrix written in block form as

H =

[
A B
C D

]
.

The block A corresponds to low energy states of the system without
interaction. The decimated Hamiltonian is the matrix A−BD−1C. See
W. G. Faris, Review of S. J. Gustafson and I. M. Sigal, Mathematical
Concepts of Quantum Mechanics, SIAM Rev., 47 (2005) 379–380.

Perhaps the best-known theorem about the product A ◦ B is that
it is positive when A and B are positive. This, together with other
results like Theorem 1.4.1, was proved by I. Schur in his 1911 paper
cited earlier.

For this reason, this product has been called the Schur product.
Hadamard product is another name for it. The entertaining and infor-
mative article R. Horn, The Hadamard product, in Matrix Theory and
Applications, C. R. Johnson, ed., American Math. Society, 1990, con-
tains a wealth of historical and other detail. Chapter 5 of R. A. Horn
and C. R. Johnson, Topics in Matrix Analysis, Cambridge University
Press, 1991 is devoted to this topic. Many recent theorems, espe-
cially inequalities involving the Schur product, are summarised in the
report T. Ando, Operator-Theoretic Methods for Matrix Inequalities,
Sapporo, 1998.

Monotone and convex functions of self-adjoint operators have been
studied extensively since the appearance of the pioneering paper by
K. Löwner, Über monotone Matrixfunctionen, Math. Z., 38 (1934)
177–216. See Chapter V of MA for an introduction to this topic. The
elegant and effective use of block matrices in this context is mainly
due to T. Ando, Topics on Operator Inequalities, Hokkaido University,
Sapporo, 1978, and Concavity of certain maps on positive definite ma-
trices and applications to Hadamard products, Linear Algebra Appl.
26 (1979) 203–241.

The representation (1.40) for functions that preserve positivity (in
the sense described) was established in C. S. Herz, Fonctions opérant
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sur les fonctions définies-positives, Ann. Inst. Fourier (Grenoble), 13
(1963) 161–180. A real variable version of this was noted earlier by I.
J. Schoenberg.

Theorems 1.6.8 and 1.6.9 were proved in R. Bhatia and F. Kit-
taneh, Norm inequalities for positive operators, Lett. Math. Phys. 43
(1998) 225–231. A much more general result, conjectured in this pa-
per and proved by T. Ando and X. Zhan, Norm inequalities related to
operator monotone functions, Math. Ann., 315 (1999) 771–780, says
that for every nonnegative operator monotone function f on [0,∞) we
have ‖f(A + B)‖ ≤ ‖f(A) + f(B)‖ for all positive matrices A and B.
Likewise, if g is a nonnegative increasing function on [0,∞) such that
g(0) = 0, g(∞) = ∞, and the inverse function of g is operator mono-
tone, then ‖g(A)+ g(B)‖ ≤ ‖g(A+ B)‖. This includes Theorem 1.6.9
as a special case. Further, these inequalities are valid for a large class
of norms called unitarily invariant norms. (Operator monotone func-
tions and unitarily invariant norms are defined in Section 2.7.) It may
be of interest to mention here that, with the notations of this para-
graph, we have also the inequalities ‖f(A) − f(B)‖ ≤ ‖f(|A − B|)‖,
and ‖g(|A − B|)‖ ≤ ‖g(A) − g(B)‖. See Theorems X.1.3 and X.1.6
in MA. More results along these lines can be found in X. Zhan, Ma-
trix Inequalities, Lecture Notes in Mathematics, Vol. 1790, Springer,
2002.

Many important and fundamental theorems of the rapidly develop-
ing subject of quantum information theory are phrased as inequalities
for positive matrices (often block matrices). One popular book on this
subject is M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information, Cambridge University Press, 2002.





Chapter Two

Positive Linear Maps

In this chapter we study linear maps on spaces of matrices. We use
the symbol Φ for a linear map from Mn into Mk. When k = 1 such a
map is called a linear functional, and we use the lower-case symbol ϕ
for it. The norm of Φ is

‖Φ‖ = sup
‖A‖=1

‖Φ(A)‖ = sup
‖A‖≤1

‖Φ(A)‖.

In general, it is not easy to calculate this. One of the principal results
of this chapter is that if Φ carries positive elements of Mn to positive
elements of Mk, then ‖Φ‖ = ‖Φ(I)‖.

2.1 REPRESENTATIONS

The interplay between algebraic properties of linear maps Φ and their
metric properties is best illustrated by considering representations of
Mn in Mk. These are linear maps that

(i) preserve products; i.e., Φ(AB) = Φ(A)Φ(B);

(ii) preserve adjoints; i.e., Φ(A∗) = Φ(A)∗;

(iii) preserve the identity; i.e., Φ(I) = I.

Let σ(A) denote the spectrum of A, and spr(A) its spectral radius.

2.1.1 Exercise

If Φ has properties (i) and (iii), then

σ(Φ(A)) ⊂ σ(A). (2.1)

Hence
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spr(Φ(A)) ≤ spr(A). (2.2)

Our norm ‖·‖ has two special properties related to the ∗ operation:
‖A‖2 = ‖A∗A‖; and ‖A‖ = spr(A) if A is Hermitian. So, if Φ is a
representation we have

‖Φ(A)‖2 = ‖Φ(A)∗Φ(A)‖ = ‖Φ(A∗A)‖ = spr(Φ(A∗A))

≤ spr(A∗A) = ‖A∗A‖ = ‖A‖2.

Thus ‖Φ(A)‖ ≤ ‖A‖ for all A. Since Φ(I) = I, we have ‖Φ‖ = 1.
We have shown that every representation has norm one.

How does one get representations? For each unitary element of
Mn, Φ(A) = U∗AU is a representation. Direct sums of such maps
are representations; i.e., if U1, . . . , Ur are n×n unitary matrices, then
Φ(A) = U∗

1 AU1 ⊕ · · · ⊕ U∗
r AUr is a representation.

Choosing Uj = I, 1 ≤ j ≤ r, we get the representation Φ(A) =
Ir ⊗ A. The operator A ⊗ Ir is unitarily equivalent to Ir ⊗ A, and
Φ(A) = A ⊗ Ir is another representation.

2.1.2 Exercise

All representations of Mn are obtained by composing unitary conju-
gations and tensor products with Ir, r = 1, 2, . . .. Thus we have ex-
hausted the family of representations by the examples we saw above.
[Hint: A representation carries orthogonal projections to orthogonal
projections, unitaries to unitaries, and preserves unitary conjugation.]

Thus the fact that ‖Φ‖ = 1 for every representation Φ is not too
impressive; we do know ‖I ⊗ A‖ = ‖A‖ and ‖U∗AU‖ = ‖A‖.

We will see how we can replace the multiplicativity condition (i) by
less restrictive conditions and get a richer theory.

2.2 POSITIVE MAPS

A linear map Φ : Mn → Mk is called positive if Φ(A) ≥ O whenever
A ≥ O. It is said to be unital if Φ(I) = I. We will say Φ is strictly
positive if Φ(A) > O whenever A > O. It is easy to see that a positive
linear map Φ is strictly positive if and only if Φ(I) > O.
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2.2.1 Examples

(i) ϕ(A) = trA is a positive linear functional; ϕ(A) = 1
ntrA is

positive and unital.

(ii) Every linear functional on Mn has the form ϕ(A) = trAX for
some X ∈ Mn. It is easy to see that ϕ is positive if and only if X
is a positive matrix; ϕ is unital if trX = 1. (Positive matrices of
trace one are called density matrices in the physics literature.)

(iii) Let ϕ(A) =
∑
i,j

aij , the sum of all entries of A. If e is the vector

with all of its entries equal to one, and E = ee∗, the matrix with
all entries equal to one, then

ϕ(A) = 〈e,Ae〉 = tr AE.

Thus ϕ is a positive linear functional.

(iv) The map Φ(A) = trA
n I is a positive map of Mn into itself. (Its

range consists of scalar matrices.)

(v) Let Atr denote the transpose of A. Then the map Φ(A) = Atr

is positive.

(vi) Let X be an n × k matrix. Then Φ(A) = X∗AX is a positive
map from Mn into Mk.

(vii) A special case of this is the compression map that takes an n×n
matrix to a k × k block in its top left corner.

(viii) Let P1, . . . , Pr be mutually orthogonal projections with P1⊕· · ·⊕
Pr = I. The operator Φ(A) =

∑
PjAPj is called a pinching of

A. In an appropriate coordinate system this can be described
as

A =




A11 . . . A1r

A21 . . . A2r

· . . . ·
Ar1 . . . Arr


, C(A) =




A11

A22
. . .

Arr


.

Every pinching is positive. A special case of this is r = n and
each Pj is the projection onto the linear span of the basis vector
ej . Then C(A) is the diagonal part of A.
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(ix) Let B be any positive matrix. Then the map Φ(A) = A ⊗ B is
positive. So is the map Φ(A) = A ◦ B.

(x) Let A be a matrix whose spectrum is contained in the open right
half plane. Let LA(X) = A∗X + XA. The operator LA on Mn

is invertible and its inverse L−1
A is a positive linear map. (See

the discussion in Exercise 1.2.10.)

(xi) Any positive linear combination of positive maps is positive.
Any convex combination of positive unital maps is positive and
unital.

It is instructive to think of positive maps as noncommutative (ma-
trix) averaging operations. Let C(X) be the space of continuous func-
tions on a compact metric space. Let ϕ be a linear functional on C(X).
By the Riesz representation theorem, there exists a signed measure µ
on X such that

ϕ(f) =

∫
fdµ. (2.3)

The linear functional ϕ is called positive if ϕ(f) ≥ 0 for every
(pointwise) nonnegative function f . For such a ϕ, the measure µ
representing it is a positive measure. If ϕ maps the function f ≡ 1 to
the number 1, then ϕ is said to be unital, and then µ is a probability
measure. The integral (2.3) is then written as

ϕ(f) = Ef, (2.4)

and called the expectation of f . Every positive, unital, linear func-
tional on C(X) is an expectation (with respect to a probability mea-
sure µ). A positive, unital, linear map Φ may thus be thought of as a
noncommutative analogue of an expectation map.

2.3 SOME BASIC PROPERTIES OF POSITIVE MAPS

We prove three theorems due to Kadison, Choi, and Russo and Dye.
Our proofs use 2 × 2 block matrix arguments.
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2.3.1 Lemma

Every positive linear map is adjoint-preserving; i.e., Φ(T ∗) = Φ(T )∗

for all T .

Proof. First we show that Φ(A) is Hermitian if A is Hermitian.
Every Hermitian matrix A has a Jordan decomposition

A = A+ − A− where A± ≥ O.

So,

Φ(A) = Φ(A+) − Φ(A−)

is the difference of two positive matrices, and is therefore Hermitian.
Every matrix T has a Cartesian decomposition

T = A + iB where A,B are Hermitian.

So,

Φ(T )∗ = Φ(A) − iΦ(B) = Φ(A − iB) = Φ(T ∗). �

2.3.2 Theorem ( Kadison’s Inequality)

Let Φ be positive and unital. Then for every Hermitian A

Φ(A)2 ≤ Φ(A2). (2.5)

Proof. By the spectral theorem, A =
∑

λjPj , where λj are the
eigenvalues of A and Pj the corresponding projections with

∑
Pj = I.

Then A2 =
∑

λ2
jPj and

Φ(A) =
∑

λjΦ(Pj), Φ(A2) =
∑

λ2
jΦ(Pj),

∑
Φ(Pj) = I.

Since Pj are positive, so are Φ(Pj). Therefore,

[
Φ(A2) Φ(A)
Φ(A) I

]
=
∑[

λ2
j λj

λj 1

]
⊗ Φ(Pj).
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Each summand in the last sum is positive and, hence, so is the sum.
By Theorem 1.3.3, therefore,

Φ(A2) ≥ Φ(A)I−1Φ(A) = Φ(A)2. �

2.3.3 Exercise

The inequality (2.5) may not be true if Φ is not unital.

Recall that for real functions we have (Ef)2 ≤ Ef2. The inequality
(2.5) is a noncommutative version of this. It should be pointed out
that not all inequalities for expectations of real functions have such
noncommutative counterparts. For example, we do have (Ef)4 ≤
Ef4, but the analogous inequality Φ(A)4 ≤ Φ(A4) is not always true.
To see this, let Φ be the compression map from M3 to M2, taking a
3 × 3 matrix to its top left 2 × 2 submatrix. Let

A =




1 0 1
0 0 1
1 1 1


 .

Then Φ(A)4 =
[

1 0
0 0

]
and Φ(A4) =

[
9 5
5 3

]
.

This difference can be attributed to the fact that while the function
f(t) = t4 is convex on the real line, the matrix function f(A) = A4 is
not convex on Hermitian matrices.

The following theorem due to Choi generalizes Kadison’s inequality
to normal operators.

2.3.4 Theorem (Choi)

Let Φ be positive and unital. Then for every normal matrix A

Φ(A)Φ(A∗) ≤ Φ(A∗A), Φ(A∗)Φ(A) ≤ Φ(A∗A). (2.6)

Proof. The proof is similar to the one for Theorem 2.3.2. We have

A =
∑

λjPj , A∗ =
∑

λjPj, A∗A =
∑

|λj|2Pj .

So
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[
Φ(A∗A) Φ(A)
Φ(A∗) I

]
=
∑[

|λj |2 λj

λj 1

]
⊗ Φ(Pj)

is positive. �

In Chapter 3, we will see that the condition that A be normal can
be dropped if we impose a stronger condition (2-positivity) on Φ.

2.3.5 Exercise

If A is normal, then Φ(A) need not be normal. Thus the left-hand
sides of the two inequalities (2.6) can be different.

2.3.6 Theorem (Choi’s Inequality)

Let Φ be strictly positive and unital. Then for every strictly positive
matrix A

Φ(A)−1 ≤ Φ(A−1). (2.7)

Proof. The proof is again similar to that of Theorem 2.3.2. Now
we have A =

∑
λjPj with λj > 0. Then A−1 =

∑
λ−1

j Pj, and

[
Φ(A−1) I

I Φ(A)

]
=
∑[

λ−1
j 1
1 λj

]
⊗ Φ(Pj)

is positive. Hence, by Theorem 1.3.3

Φ(A−1) ≥ Φ(A)−1. �

2.3.7 Theorem (The Russo-Dye Theorem)

If Φ is positive and unital, then ‖Φ‖ = 1.

Proof. We show first that ‖Φ(U)‖ ≤ 1 when U is unitary. In this
case the eigenvalues λj are complex numbers of modulus one. So,
from the spectral resolution U =

∑
λjPj , we get

[
I Φ(U)

Φ(U)∗ I

]
=
∑[

1 λj

λj 1

]
⊗ Φ(Pj) ≥ O.
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Hence, by Proposition 1.3.1, ‖Φ(U)‖ ≤ 1. Now if A is any contraction,
then we can write A = 1

2(U + V ) where U, V are unitary. (Use the
singular value decomposition of A and observe that if 0 ≤ s ≤ 1, then
we have s = 1

2 (eiθ + e−iθ) for some θ.) So

‖Φ(A)‖ =
1

2
‖Φ(U + V )‖ ≤ 1

2
(‖Φ(U)‖ + ‖Φ(V )‖) ≤ 1.

Thus ‖Φ‖ ≤ 1, and since Φ is unital ‖Φ‖ = 1. �

Second proof. Let ‖A‖ ≤ 1. Then A has a unitary dilation Â

Â =

[
A −(I − AA∗)1/2

(I − A∗A)1/2 A∗

]
. (2.8)

(Check that this is a unitary element of M2n.)
Now let Ψ be the compression map taking a 2n× 2n matrix to its top
left n× n corner. Then Ψ is positive and unital. So, the composition
Φ ◦ Ψ is positive and unital. Now Choi’s inequality (2.6) can be used
to get

[ (Φ ◦ Ψ)(Â) ] [ (Φ ◦ Ψ)(Â∗) ] ≤ (Φ ◦ Ψ)(I).

But this says

Φ(A)Φ(A∗) ≤ I.

This shows that ‖Φ(A)‖ ≤ 1 whenever ‖A‖ ≤ 1. Hence, ‖Φ‖ = 1. �

We can extend the result to any positive linear map as follows.

2.3.8 Corollary

Let Φ be a positive linear map. Then ‖Φ‖ = ‖Φ(I)‖.

Proof. Let P = Φ(I), and assume first that P is invertible. Let

Ψ(A) = P−1/2Φ(A)P−1/2.

Then Ψ is a positive unital linear map. So, we have

‖Φ(A)‖ = ‖P 1/2Ψ(A)P 1/2‖ ≤ ‖P‖ ‖Ψ(A)‖ ≤ ‖P‖ ‖A‖.
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Thus ‖Φ‖ ≤ ‖P‖; and since Φ(I) = P , we have ‖Φ‖ = ‖P‖. This
proves the assertion when Φ(I) is invertible. The general case follows
from this by considering the family Φε(A) = Φ(A) + εI and letting
ε ↓ 0. �

The assertion of (this Corollary to) the Russo-Dye theorem is some
times phrased as: every positive linear map on Mn attains its norm
at the identity matrix.

2.3.9 Exercise

There is a simpler proof of this theorem in the case of positive linear
functionals. In this case ϕ(A) = trAX for some positive matrix X.
Then

|ϕ(A)| = |trAX| ≤ ‖A‖ ‖X‖1 = ‖A‖ trX = ϕ(I) ‖A‖.

Here ‖T‖1 is the trace norm of T defined as ‖T‖1 = s1(T )+· · ·+sn(T ).
The inequality above is a consequence of the fact that this norm is
the dual of the norm ‖ · ‖.

2.4 SOME APPLICATIONS

We have seen several examples of positive maps. Using the Russo-Dye
Theorem we can calculate their norms easily. Thus, for example,

‖C(A)‖ ≤ ‖A‖ (2.9)

for every pinching of A. (This can be proved in several ways. See MA
pp. 50, 97.)

If A is positive, then the Schur multiplier SA is a positive map. So,

‖SA‖ = ‖SA(I)‖ = ‖A ◦ I‖ = max aii. (2.10)

This too can be proved in many ways. We have seen this before in
Theorem 1.4.1.

We have discussed the Lyapunov equation

A∗X + XA = W, (2.11)
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where A is an operator whose spectrum is contained in the open right
half plane. (Exercise 1.2.10, Example 2.2.1 (x)). Solving this equation
means finding the inverse of the Lyapunov operator LA defined as
LA(X) = A∗X + XA. We have seen that L−1

A is a positive linear
map. In some situations W is known with some imprecision, and we
have the perturbed equation

A∗X + XA = W + △W. (2.12)

If X and X+△X are the solutions to (2.11) and (2.12), respectively,
one wants to find bounds for ‖△X‖. This is a very typical problem
in numerical analysis. Clearly,

‖△X‖ ≤ ‖L−1
A ‖ ‖△W‖.

Since L−1
A is positive we have ‖L−1

A ‖ = ‖L−1
A (I)‖. This simplifies the

problem considerably. The same considerations apply to the Stein
equation (Exercise 1.2.11).

Let ⊗kH be the k-fold tensor product H⊗ · · · ⊗H and let ⊗kA be
the k-fold product A⊗· · ·⊗A of an operator A on H. For 1 ≤ k ≤ n,
let ∧kH be the subspace of ⊗kH spanned by antisymmetric tensors.
This is called the antisymmetric tensor product, exterior product, or
Grassmann product. The operator ⊗kA leaves this space invariant
and the restriction of ⊗kA to it is denoted as ∧kA. This is called the
kth Grassmann power, or the exterior power of A.

Consider the map A 7−→ ⊗kA. The derivative of this map at A,
denoted as D ⊗k (A), is a linear map from L(H) into L(⊗kH). Its
action is given as

D ⊗k (A)(B) =
d

dt

∣∣∣∣
t=0

⊗k (A + tB).

Hence,

D⊗k (A)(B) = B⊗A⊗· · ·⊗A+A⊗B⊗· · ·⊗A+ · · ·+A⊗· · ·⊗A⊗B.
(2.13)

It follows that

‖D ⊗k (A)‖ = k‖A‖k−1. (2.14)
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We want to find an expression for ‖D ∧k (A)‖.
Recall that ∧k is multiplicative, ∗ - preserving, and unital (but not

linear!). Let A = USV be the singular value decomposition of A.
Then

D ∧k (A)(B) =
d

dt

∣∣∣∣
t=0

∧k (A + tB)

=
d

dt

∣∣∣∣
t=0

∧k (USV + tB)

=
d

dt

∣∣∣∣
t=0

∧k U · ∧k(S + tU∗BV ∗) · ∧kV

= ∧kU

[
d

dt

∣∣∣∣
t=0

∧k (S + tU∗BV ∗)

]
∧k V.

Thus

‖D ∧k (A)(B)‖ = ‖D ∧k (S)(U∗BV ∗)‖,

and hence

‖D ∧k (A)‖ = ‖D ∧k (S)‖.

Thus to calculate ‖D ∧k (A)‖, we may assume that A is positive and
diagonal.

Now note that if A is positive, then for every positive B, the expres-
sion (2.13) is positive. So D⊗k (A) is a positive linear map from L(H)
into L(⊗kH). The operator D∧k (A)(B) is the restriction of (2.13) to
the invariant subspace ∧kH. So ∧k(A) is also a positive linear map.
Hence

‖D ∧k (A)‖ = ‖D ∧k (A)(I)‖.

Let A = diag(s1, . . . , sn) with s1 ≥ s2 ≥ · · · ≥ sn ≥ 0. Then ∧kA is
a diagonal matrix of size (nk) whose diagonal entries are si1

si2
· · · sik

,
1 ≤ i1 < i2 < · · · < ik ≤ n. Use this to see that

‖D ∧k (A)‖ = pk−1(s1, . . . , sk) (2.15)
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the elementary symmetric polynomial of degree k− 1 with arguments
s1, . . . , sk.

The effect of replacing D ∧k (A)(B) by D ∧k (A)(I) is to reduce a
highly noncommutative problem to a simple commutative one. An-
other example of this situation is given in Section 2.7.

2.5 THREE QUESTIONS

Let Φ : Mn 7−→ Mk be a linear map. We have seen that if Φ is
positive, then

‖Φ‖ = ‖Φ(I)‖. (2.16)

Clearly, this is a useful and important theorem. It is natural to explore
how much, and in what directions, it can be extended.

Question 1 Are there linear maps other than positive ones for which
(2.16) is true? In other words, if a linear map Φ attains its norm at
the identity, then must Φ be positive?

Before attempting an answer, we should get a small irritant out of
the way. If the condition (2.16) is met by Φ, then it is met by −Φ
also. Clearly, both of them cannot be positive maps. So assume Φ
satisfies (2.16) and

Φ(I) ≥ O. (2.17)

2.5.1 Exercise

If k = 1, the answer to our question is yes. In this case ϕ(A) = trAX
for some X. Then ‖ϕ‖ = ‖X‖1 (see Exercise 2.3.9). So, if ϕ satisfies
(2.16) and (2.17), then ‖X‖1 = trX. Show that this is true if and
only if X is positive. Hence ϕ is positive.

If k ≥ 2, this is no longer true. For example, let Φ be the linear
map on M2 defined as

Φ

([
a11 a12

a21 a22

])
=

[
a11 a12

0 0

]
.
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Then ‖Φ‖ = ‖Φ(I)‖ = 1 and Φ(I) ≥ O, but Φ is not positive.

It is a remarkable fact that if Φ is unital and ‖Φ‖ = 1, then Φ
is positive. Thus supplementing (2.16) with the condition Φ(I) = I
ensures that Φ is positive. This is proved in the next section.

Question 2 Let S be a linear subspace of Mn and let Φ : S → Mk be
a linear map. Do we still have a theorem like the Russo-Dye theorem?
In other words how crucial is the fact that the domain of Φ is Mn (or
possibly a subalgebra)?

Again, for the question to be meaningful, we have to demand of S a
little more structure. If we want to talk of positive unital maps, then
S must contain some positive elements and I.

2.5.2 Definition

A linear subspace S of Mn is called an operator system if it is ∗ closed
(i.e., if A ∈ S, then A∗ ∈ S) and contains I.

Let S be an operator system. We want to know whether a positive
linear map Φ : S 7−→ Mk attains its norm at I. The answer is yes if
k = 1, and no if k ≥ 2. However, we do have ‖Φ‖ ≤ 2‖Φ(I)‖ for all k.

A related question is the following:

Question 3 By the Hahn-Banach theorem, every linear functional
ϕ on (a linear subspace) S can be extended to a linear functional ϕ̂ on
Mn in such a way that ‖ϕ̂‖ = ‖ϕ‖. Now we are considering positivity
rather than norms. So we may ask whether a positive linear functional
ϕ on an operator system S in Mn can be extended to a positive linear
functional ϕ̂ on Mn. The answer is yes. This is called the Krein
extension theorem. Then since ‖ϕ̂‖ = ϕ(I), we have ‖ϕ‖ = ϕ(I).

Next we may ask whether a positive linear map Φ from S into Mk

can be extended to a positive linear map Φ̂ from Mn into Mk. If this
were the case, then we would have ‖Φ‖ = ‖Φ(I)‖. But we have said
that this is not always true when k ≥ 2. This is illustrated by the
following example.

2.5.3 Example

Let n be any number bigger than 2 and let S be the n×n permutation
matrix
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S =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1
1 0 0 . . . 0



.

Let S be the collection of all matrices C of the form C = aI+bS+cS∗,
a, b, c ∈ C. (The matrices C are circulant matrices.) Then S is an
operator system in Mn. What are the positive elements of S? First, we
must have a ≥ 0 and c = b. The eigenvalues of S are 1, ω, . . . , ωn−1,
the n roots of 1. So, the eigenvalues of C are

a + b + b, a + bω + bω, . . . , a + bωn−1 + bωn−1,

and C is positive if and only if all these numbers are nonnegative.
It is helpful to consider the special case n = 4. The fourth roots of

unity are {1, i,−1,−i} and one can see that a matrix C of the type
above is positive if and only if

a ≥ 2 |Re b| and a ≥ 2 |Im b|.

Let Φ : S → M2 be the map defined as

Φ(C) =

[
a

√
2b√

2c a

]
.

Then Φ is linear, positive, and unital. Since

Φ(S) =

[
0

√
2

0 0

]
,

‖Φ‖ ≥
√

2. So, Φ cannot be extended to a positive, linear, unital map
from M4 into M2.

2.5.4 Exercise

Let n ≥ 3 and consider the operator system S ⊂ Mn defined in the
example above. For every t the map Φ : S → M2 defined as

Φ(C) =

[
a tb
tc a

]

is linear and unital. Show that for 1 < t < 2 there exists an n such
that the map Φ is positive.
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We should remark here that the elements of S commute with each
other (though, of course, S is not a subalgebra of Mn).

In the next section we prove the statements that we have made in
answer to the three questions.

2.6 POSITIVE MAPS ON OPERATOR SYSTEMS

Let S be an operator system in Mn, Ss.a. the set of self-adjoint ele-
ments of S, and S+ the set of positive elements in it.

Some of the operations that we performed freely in Mn may take
us outside S. Thus if T ∈ S, then Re T = 1

2(T + T ∗) and Im T =
1
2i (T − T ∗) are in S. However, if A ∈ Ss.a., then the positive and
negative parts A± in the Jordan decomposition of A need not be in
S+. For example, consider

S = {A ∈ M3 : a11 = a22 = a33}.

This is an operator system. The matrix A =

[
0 0 1
0 0 0
1 0 0

]
is in S. Its

Jordan components are

A+ =
1

2




1 0 1
0 0 0
1 0 1


, A− =

1

2




1 0 −1
0 0 0
−1 0 1


.

They do not belong to S.
However, it is possible still to write every Hermitian element A of

S as

A = P+ − P− where P± ∈ S+. (2.18)

Just choose

P± =
‖A‖I ± A

2
. (2.19)

Thus we can write every T ∈ S as

T = A + iB (A,B ∈ Ss.a)
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= (P+ − P−) + i(Q+ − Q−) (P±, Q± ∈ S+).

Using this decomposition we can prove the following lemma.

2.6.1 Lemma

Let Φ be a positive linear map from an operator system S into Mk.
Then Φ(T ∗) = Φ(T )∗ for all T ∈ S.

2.6.2 Exercise

If A = P1 − P2 where P1, P2 are positive, then

‖A‖ ≤ max(‖P1‖, ‖P2‖).

2.6.3 Theorem

Let Φ be a positive linear map from an operator system S into Mk.
Then

(i) ‖Φ(A)‖ ≤ ‖Φ(I)‖‖A‖ for all A ∈ Ss.a.

and

(ii) ‖Φ(T )‖ ≤ 2‖Φ(I)‖‖T‖ for all T ∈ S.

(Thus if Φ is also unital, then ‖Φ‖ = 1 on the space Ss.a., and ‖Φ‖ ≤ 2
on S.)

Proof. If P is a positive element of S, then O ≤ P ≤ ‖P‖I, and
hence O ≤ Φ(P ) ≤ ‖P‖Φ(I).

If A is a Hermitian element of S, use the decomposition (2.18),
Exercise 2.6.2, and the observation of the preceding sentence to see
that

‖Φ(A)‖= ‖Φ(P+) − Φ(P−)‖
≤max(‖Φ(P+)‖, ‖Φ(P−)‖)
≤max(‖P+‖, ‖P−‖) ‖Φ(I)‖
≤‖A‖ ‖Φ(I)‖.

This proves the first inequality of the theorem. The second is obtained
from this by using the Cartesian decomposition of T. �
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Exercise 2.5.4 shows that the factor 2 in the inequality (ii) of The-
orem 2.6.3 is unavoidable in general. It can be dropped when k = 1:

2.6.4 Theorem

Let ϕ be a positive linear functional on an operator system S. Then
‖ϕ‖ = ϕ(I).

Proof. Let T ∈ S and ‖T‖ ≤ 1. We want to show |ϕ(T )| ≤ ϕ(I).
If ϕ(T ) is the complex number reiθ, we may multiply T by e−iθ, and
thus assume ϕ(T ) is real and positive. So, if T = A+ iB in the Carte-
sian decomposition, then ϕ(T ) = ϕ(A). Hence by part (i) of Theorem
2.6.3 ϕ(T ) ≤ ϕ(I)‖A‖ ≤ ϕ(I)‖T‖. �

The converse is also true.

2.6.5 Theorem

Let ϕ be a linear functional on S such that ‖ϕ‖ = ϕ(I). Then ϕ is
positive.

Proof. Assume, without loss of generality, that ϕ(I) = 1. Let
A be a positive element of S and let σ(A) be its spectrum. Let
a = minσ(A) and b = maxσ(A). We will show that the point ϕ(A)
lies in the interval [a, b]. If this is not the case, then there exists a disk
D = {z : |z − z0| ≤ r} such that ϕ(A) is outside D but D contains
[a, b], and hence also σ(A). From the latter condition it follows that
σ(A−z0I) is contained in the disk {z : |z| ≤ r} , and hence ‖A−z0I‖ ≤
r. Using the conditions ‖ϕ‖ = ϕ(I) = 1, we get from this

|ϕ(A) − z0| = |ϕ(A − z0 I)| ≤ ‖ϕ‖ ‖A − z0 I‖ ≤ r.

But then ϕ(A) could not have been outside D.
This shows that ϕ(A) is a nonnegative number, and the theorem is

proved. �

2.6.6 Theorem (The Krein Extension Theorem)

Let S be an operator system in Mn. Then every positive linear func-
tional on S can be extended to a positive linear functional on Mn.

Proof. Let ϕ be a positive linear functional on S. By Theorem
2.6.4, ‖ϕ‖ = ϕ(I). By the Hahn-Banach Theorem, ϕ can be extended
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to a linear functional ϕ̂ on Mn with ‖ϕ̂‖ = ‖ϕ‖ = ϕ(I). But then ϕ̂
is positive by Theorem 2.6.5 (or by Exercise 2.5.1). �

Finally we have the following theorem that proves the assertion
made at the end of the discussion of Question 1 in Section 2.5.

2.6.7 Theorem

Let S be an operator system and let Φ : S −→ Mk be a unital linear
map such that ‖Φ‖ = 1. Then Φ is positive.

Proof. For each unit vector x in Ck, let

ϕx(A) = 〈x,Φ(A)x〉, A ∈ S.

This is a unital linear functional on S. Since |ϕx(A)| ≤ ‖Φ(A)‖ ≤ ‖A‖,
we have ‖ϕx‖ = 1. So, by Theorem 2.6.5, ϕx is positive. In other
words, if A is positive, then for every unit vector x

ϕx(A) = 〈x,Φ(A)x〉 ≥ 0.

But that means Φ is positive. �

2.7 SUPPLEMENTARY RESULTS AND EXERCISES

Some of the theorems in Section 2.3 are extended in various directions
in the following propositions.

2.7.1 Proposition

Let Φ be a positive unital linear map on Mn and let A be a positive
matrix. Then

Φ(A)r ≥ Φ(Ar) for 0 ≤ r ≤ 1.

Proof. Let 0 < r < 1. Using the integral representation (1.39) we

have

Ar =

∫ ∞

0
A(λ + A)−1dµ(λ),

where µ is a positive measure on (0,∞). So it suffices to show that

Φ(A)(λ + Φ(A))−1 ≥ Φ(A(λ + A)−1)
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for all λ > 0. We have the identity

A(λ + A)−1 = I − λ(λ + A)−1.

Apply Φ to both sides and use Theorem 2.3.6 to get

Φ(A(λ + A)−1) = I − λΦ((λ + A)−1)

≤ I − λ(Φ(λ + A))−1

= I − λ(λ + Φ(A))−1.

The identity stated above shows that the last expression is equal to
Φ(A)(λ + Φ(A))−1. �

2.7.2 Exercise

Let Φ be a positive unital linear map on Mn and let A be a positive
matrix. Show that

Φ(A)r ≤ Φ(Ar)

if 1 ≤ r ≤ 2. If A is strictly positive, then this is true also when
−1 ≤ r ≤ 0. [Hint: Use integral representations of Ar as in Theorem
1.5.8, Exercise 1.5.10, and the inequalities (2.5) and (2.7).]

2.7.3 Proposition

Let Φ be a strictly positive linear map on Mn. Then

Φ(HA−1H) ≥ Φ(H) Φ(A)−1 Φ(H) (2.20)

whenever H is Hermitian and A > 0.

Proof. Let

Ψ(Y ) = Φ(A)−1/2 Φ(A1/2Y A1/2) Φ(A)−1/2. (2.21)

Then Ψ is positive and unital. By Kadison’s inequality we have
Ψ(Y 2) ≥ Ψ(Y )2 for every Hermitian Y . Choose Y = A−1/2HA−1/2

to get

Ψ(A−1/2HA−1HA−1/2) ≥
(
Ψ(A−1/2HA−1/2)

)2
.

Use (2.21) now to get (2.20). �
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2.7.4 Exercise

Construct an example to show that a more general version of (2.20)

Φ(X∗A−1X) ≥ Φ(X)∗Φ(A)−1Φ(X),

where X is arbitrary and A positive, is not always true.

2.7.5 Proposition

Let Φ be a strictly positive linear map on Mn and let A > O. Then

A ≥ X∗A−1X =⇒ Φ(A) ≥ Φ(X)∗Φ(A)−1Φ(X). (2.22)

Proof. Let Ψ be the linear map defined by (2.21). By the Russo-Dye
theorem

Y ∗Y ≤ I =⇒ Ψ(Y )∗Ψ(Y ) ≤ I.

Let A ≥ X∗A−1X and put Y = A−1/2XA−1/2. Then Y ∗Y = A−1/2

X∗A−1 XA−1/2 ≤ I. Hence Ψ(A−1/2X∗A−1/2)Ψ(A−1/2XA−1/2) ≤ I.
Use (2.21) again to get (2.22). �

In classical probability the quantity

var(f) = Ef2 − (Ef)2 (2.23)

is called the variance of the real function f . In analogy we consider

var(A) = Φ(A2) − Φ(A)2, (2.24)

where A is Hermitian and Φ a positive unital linear map on Mn.
Kadison’s inequality says var(A) ≥ O. The following proposition gives
an upper bound for var(A).

2.7.6 Proposition

Let Φ be a positive unital linear map and let A be a Hermitian operator
with mI ≤ A ≤ MI. Then
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var(A) ≤ (MI − Φ(A))(Φ(A) − mI) ≤ 1

4
(M − m)2I. (2.25)

Proof. The matrices MI−A and A−mI are positive and commute
with each other. So, (MI − A)(A − mI) ≥ O; i.e.,

A2 ≤ MA + mA − MmI.

Apply Φ to both sides and then subtract Φ(A)2 from both sides. This
gives the first inequality in (2.25). To prove the second inequality
note that if m ≤ x ≤ M , then (M − x)(x − m) ≤ 1

4 (M − m)2. �

2.7.7 Exercise

Let x ∈ Cn. We say x ≥ 0 if all its coordinates xj are nonnegative.
Let e = (1, . . . , 1).

A matrix S is called stochastic if sij ≥ 0 for all i, j, and
n∑

j=1
sij = 1

for all i. Show that S is stochastic if and only if

x ≥ 0 =⇒ Sx ≥ 0 (2.26)

and

Se = e. (2.27)

The property (2.26) can be described by saying that the linear map
defined by S on Cn is positive, and (2.27) by saying that S is unital.

If x is a real vector, let x2 = (x2
1, . . . , x

2
n). Show that if S is a

stochastic matrix and m ≤ xj ≤ M , then

0 ≤ S(x2) − S(x)2 ≤ (Me − Sx)(Sx − me) ≤ 1

4
(M − m)2e. (2.28)

A special case of this is obtained by choosing sij = 1
n for all i, j. If

x = 1
n

∑
xj, this gives

1

n

n∑

j=1

(xj − x)2 ≤ (M − x)(x − m) ≤ 1

4
(M − m)2 . (2.29)
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An inequality complementary to (2.7) is given by the following
proposition.

2.7.8 Proposition

Let Φ be strictly positive and unital. Let 0 < m < M. Then for every
strictly positive matrix A with mI ≤ A ≤ MI, we have

Φ(A−1) ≤ (M + m)2

4Mm
Φ(A)−1 . (2.30)

Proof. The matrices A − mI and MA−1 − I are positive and
commute with each other. So, O ≤ (A−mI)(MA−1 − I). This gives

MmA−1 ≤ (M + m)I − A,

and hence

MmΦ(A−1) ≤ (M + m)I − Φ(A).

Now, if c and x are real numbers, then (c − 2x)2 ≥ 0 and therefore,
for positive x we have c − x ≤ 1

4c2x−1. So, we get

MmΦ(A−1) ≤ (M + m)2

4
Φ(A)−1. �

A very special corollary of this is the inequality

〈x,Ax〉 〈x,A−1x〉 ≤ (M + m)2

4Mm
, (2.31)

for every unit vector x. This is called the Kantorovich inequality.

2.7.9 Exercise

Let f be a convex function on an interval [m,M ] and let L be the
linear interpolant

L(t) =
1

M − m
[(t − m)f(M) + (M − t)f(m)] .
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Show that if Φ is a unital positive linear map, then for every Hermitian
matrix A whose spectrum is contained in [m,M ], we have

Φ(f(A)) ≤ L(Φ(A)).

Use this to obtain Propositions 2.7.6 and 2.7.8.

The space Mn has a natural inner product defined as

〈A,B〉 = tr A∗B. (2.32)

If Φ is a linear map on Mn, we define its adjoint Φ∗ as the linear map
that satisfies the condition

〈Φ(A), B〉 = 〈A,Φ∗(B)〉 for all A,B. (2.33)

2.7.10 Exercise

The linear map Φ is positive if and only if Φ∗ is positive. Φ is unital
if and only if Φ∗ is trace preserving; i.e., tr Φ∗(A) = tr A for all A.

We say Φ is a doubly stochastic map on Mn if it is positive,unital,
and trace preserving (i.e., both Φ and Φ∗ are positive and unital).

2.7.11 Exercise

(i) Let Φ be the linear map on Mn defined as Φ(A) = X∗AX. Show
that Φ∗(A) = XAX∗.

(ii) For any A, let SA(X) = A◦X be the Schur product map. Show
that (SA)∗ = SA∗.

(iii) Every pinching is a doubly stochastic map.

(iv) Let LA(X) = A∗X +XA be the Lyapunov operator, where A is
a matrix with its spectrum in the open right half plane. Show
that (L−1

A )∗ = (LA∗)−1.

A norm ||| · ||| on Mn is said to be unitarily invariant if |||UAV ||| =
|||A||| for all A and unitary U, V . It is convenient to make a normalisa-
tion so that |||A||| = 1 whenever A is a rank-one orthogonal projection.
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Special examples of such norms are the Ky Fan norms

||A||(k) =

k∑

j=1

sj(A), 1 ≤ k ≤ n,

and the Schatten p-norms

||A||p =




n∑

j=1

(sj(A))p




1/p

, 1 ≤ p ≤ ∞.

Note that the operator norm, in this notation, is

||A|| = ||A||∞ = ||A||(1),

and the trace norm is the norm

||A||1 = ||A||(n).

The norm ‖A‖2 is also called the Hilbert-Schmidt norm.

The following facts are well known:

||A||(k) = min{||B||(n) + k||C || : A = B + C}. (2.34)

If ||A||(k) ≤ ||B||(k) for 1 ≤ k ≤ n, then |||A||| ≤ |||B||| for all
unitarily invariant norms. This is called the Fan dominance theorem.
(See MA, p. 93.)

For any three matrices A,B,C we have

|||ABC||| ≤ ||A|| |||B||| ||C||. (2.35)

If Φ is a linear map on Mn and ||| · ||| any unitarily invariant norm,
then we use the notation |||Φ||| for

|||Φ||| = sup
|||A|||=1

|||Φ(A)||| = sup
|||A|||≤1

|||Φ(A)|||. (2.36)

In the same way,

||Φ||1 = sup
||A||1=1

||Φ(A)||1,
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etc.
The norm ||A||1 is the dual of the norm ||A|| on Mn. Hence

||Φ|| = ||Φ∗||1. (2.37)

2.7.12 Exercise

Let ||| · ||| be any unitarily invariant norm on Mn.

(i) Use the relations (2.34) and the Fan dominance theorem to show
that if ‖Φ‖ ≤ 1 and ‖Φ∗‖ ≤ 1, then |||Φ||| ≤ 1.

(ii) If Φ is a doubly stochastic map, then |||Φ||| ≤ 1.

(iii) If A ≥ O, then |||A ◦ X||| ≤ max aii|||X||| for all X.

(iv) Let LA be the Lyapunov operator associated with a positively
stable matrix A. We know that ||L−1

A || = ||L−1
A (I)||. Show that in

the special case when A is normal we have |||L−1
A ||| = ||L−1

A (I)||
= [2 min Re λi]

−1, where λi are the eigenvalues of A.

2.7.13 Exercise

Let A and B be Hermitian matrices. Suppose A = Φ(B) for some
doubly stochastic map Φ on Mn. Show that A is a convex combination
of unitary conjugates of B; i.e., there exist unitary matrices U1, . . . , Uk

and positive numbers p1, . . . , pk with
∑

pj = 1 such that

A =

k∑

j=1

pjU
∗
j BUj.

[Hints: There exist diagonal matrices D1 and D2, and unitary matrices
W and V such that A = W ∗D1W and B = V D2V

∗. Use this to
show that D1 = Ψ(D2) where Ψ is a doubly stochastic map. By
Birkhoff’s theorem there exist permutation matrices S1, . . . , Sk and
positive numbers p1, . . . , pk with

∑
pj = 1 such that

D1 =

k∑

j=1

pjS
∗
j D2Sj .

Choose Uj = V SjW. (Note that the matrices Uj and the numbers pj

depend on Φ, A and B.)]
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Let Hn be the set of all n × n Hermitian matrices. This is a real
vector space. Let I be an open interval and let C1(I) be the space
of continuously differentiable real functions on I. Let Hn(I) be the
set of all Hermitian matrices whose eigenvalues belong to I. This
is an open subset of Hn. Every function f in C1(I) induces a map
A 7−→ f(A) from Hn(I) into Hn. This induced map is differentiable
and its derivative is given by an interesting formula known as the
Daleckii-Krein formula.

For each A ∈ Hn(I) the derivative Df(A) at A is a linear map from
Hn into itself. If A =

∑
λiPi is the spectral decomposition of A, then

the formula is

Df(A)(B) =
∑

i

∑

j

f(λi) − f(λj)

λi − λj
PiBPj (2.38)

for every B ∈ Hn. For i = j, the quotient in (2.38) is to be interpreted
as f ′(λi).

This formula can be expressed in another way. Let f [1] be the
function on I × I defined as

f [1](λ, µ) =
f(λ) − f(µ)

λ − µ
if λ 6= µ,

f [1](λ, λ) = f ′(λ).

This is called the first divided difference of f . For A ∈ Hn(I), let
f [1](A) be the n × n matrix

f [1](A) =

[[
f(λi) − f(λj)

λi − λj

]]
, (2.39)

where λ1, . . . , λn are the eigenvalues of A. The formula (2.38) says

Df(A)(B) = f [1](A) ◦ B, (2.40)

where ◦ denotes the Schur product taken in a basis in which A is
diagonal. A proof of this is given in Section 5.3.

Suppose a real function f on an interval I has the following prop-
erty: if A and B are two elements of Hn(I) and A ≥ B, then f(A) ≥
f(B). We say that such a function f is matrix monotone of order n
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on I. If f is matrix monotone of order n for all n = 1, 2, . . . , then we
say f is operator monotone.

Matrix convexity of order n and operator convexity can be defined
in a similar way. In Chapter 1 we have seen that the function f(t) = t2

on the interval [0,∞) is not matrix monotone of order 2, and the
function f(t) = t3 is not matrix convex of order 2. We have seen
also that the function f(t) = tr on the interval [0,∞) is operator
monotone for 0 ≤ r ≤ 1, and it is operator convex for 1 ≤ r ≤ 2 and
for −1 ≤ r ≤ 0. More properties of operator monotone and convex
functions are studied in Chapters 4 and 5.

It is not difficult to prove the following, using the formula (2.40).

2.7.14 Exercise

If a function f ∈ C1(I) is matrix monotone of order n, then for each
A ∈ Hn(I), the matrix f [1](A) defined in (2.39) is positive.

The converse of this statement is also true. A proof of this is given
in Section 5.3. At the moment we note the following interesting con-
sequence of the positivity of f [1](A).

2.7.15 Exercise

Let f ∈ C1(I) and let f ′ be the derivative of f . Show that if f is
matrix monotone of order n, then for each A ∈ Hn(I)

‖Df(A)‖ = ‖f ′(A)‖. (2.41)

By definition

‖Df(A)‖ = sup
‖B‖=1

‖Df(A)(B)‖, (2.42)

and

Df(A)(B) =
d

dt

∣∣∣∣
t=0

f(A + tB).

This expression is difficult to calculate for functions such as f(t) =
tr, 0 < r < 1. The formula (2.41) gives an easy way to calculate its
norm. Its effect is to reduce the supremum in (2.42) to the class of
matrices B that commute with A.
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2.8 NOTES AND REFERENCES

Since positivity is a useful and interesting property, it is natural to
ask what linear transformations preserve it. The variety of interesting
examples, and their interpretation as “expectation,” make positive
linear maps especially interesting. Their characterization, however,
has turned out to be slippery, and for various reasons the special class
of completely positive linear maps has gained in importance.

Among the early major works on positive linear maps is the paper
by E. Størmer, Positive linear maps of operator algebras, Acta Math.,
110 (1963) 233–278. Research expository articles that explain several
subtleties include E. Størmer, Positive linear maps of C∗-algebras, in
Foundations of Quantum Mechanics and Ordered Linear Spaces, Lec-
ture Notes in Physics, Vol. 29, Springer, 1974, pp.85–106, and M.-D.
Choi, Positive linear maps, in Operator Algebras and Applications,
Part 2, R. Kadison ed., American Math. Soc., 1982. Closer to our
concerns are Chapter 2 of V. Paulsen, Completely Bounded Maps and
Operator Algebras, Cambridge University Press, 2002, and sections of
the two reports by T. Ando, Topics on Operator Inequalities, Sap-
poro, 1978 and Operator-Theoretic Methods for Matrix Inequalities,
Sapporo, 1998.

The inequality (2.5) was proved in the paper R. Kadison, A general-
ized Schwarz inequality and algebraic invariants for operator algebras,
Ann. Math., 56 (1952) 494–503. This was generalized by C. Davis, A
Schwarz inequality for convex operator functions, Proc. Am. Math.
Soc., 8 (1957) 42–44, and by M.-D. Choi, A Schwarz inequality for
positive linear maps on C∗-algebras, Illinois J. Math., 18 (1974) 565–
574. The generalizations say that if Φ is a positive unital linear map
and f is an operator convex function, then we have a Jensen-type
inequality

f
(
Φ(A)

)
≤ Φ

(
f(A)

)
. (2.43)

The inequality (2.7) and the result of Exercise 2.7.2 are special cases of
this. Using the integral representation of an operator convex function
given in Problem V.5.5 of MA, one can prove the general inequality by
the same argument as used in Exercise 2.7.2. The inequality (2.43)
characterises operator convex functions, as was noted by C. Davis,
Notions generalizing convexity for functions defined on spaces of ma-
trices, in Proc. Symposia Pure Math., Vol. VII, Convexity, American
Math. Soc., 1963.

In our proof of Theorem 2.3.7 we used the fact that any contraction
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is an average of two unitaries. The infinite-dimensional analogue says
that the unit ball of a C∗-algebra is the closed convex hull of the
unitary elements. (Unitaries, however, do not constitute the full set
of extreme points of the unit ball. See P. R. Halmos, A Hilbert Space
Problem Book, Second Edition, Springer, 1982.) This theorem about
the closed convex hull is also called the Russo-Dye theorem and was
proved in B. Russo and H. A. Dye, A note on unitary operators in
C∗-algebras, Duke Math. J., 33 (1966) 413–416.

Applications given in Section 2.4 make effective use of Theorem
2.3.7 in calculating norms of complicated operators. Our discussion
of the Lyapunov equation follows the one in R. Bhatia and L. Elsner,
Positive linear maps and the Lyapunov equation, Oper. Theory: Adv.
Appl., 130 (2001) 107–120. As pointed out in this paper, the use
of positivity leads to much more economical proofs than those found
earlier by engineers. The equality (2.15) was first proved by R. Bhatia
and S. Friedland, Variation of Grassman powers and spectra, Linear
Algebra Appl., 40 (1981) 1–18. The alternate proof using positivity is
due to V. S. Sunder, A noncommutative analogue of |DXk| = |kXk−1|,
ibid., 44 (1982) 87-95. The analogue of the formula (2.15) when the
antisymmetric tensor product is replaced by the symmetric one was
worked out in R. Bhatia, Variation of symmetric tensor powers and
permanents, ibid., 62 (1984) 269–276. The harder problem embracing
all symmetry classes of tensors was solved in R. Bhatia and J. A.
Dias da Silva, Variation of induced linear operators, ibid., 341 (2002)
391–402.

Because of our interest in certain kinds of matrix problems involv-
ing calculation or estimation of norms we have based our discussion
in Section 2.5 on the relation (2.16). There are far more compelling
reasons to introduce operator systems. There is a rapidly developing
and increasingly important theory of operator spaces (closed linear
subspaces of C∗-algebras) and operator systems. See the book by V.
Paulsen cited earlier, E. G. Effros and Z.-J. Ruan, Operator Spaces,
Oxford University Press, 2000, and G. Pisier, Introduction to Oper-
ator Space Theory, Cambridge University Press, 2003. This is being
called the noncommutative or quantized version of Banach space the-
ory. One of the corollaries of the Hahn-Banach theorem is that every
separable Banach space is isometrically isomorphic to a subspace of
l∞; and every Banach space is isometrically isomorphic to a subspace
of l∞(X) for some set X. In the quantized version the commutative
space l∞ is replaced by the noncommutative space L(H) where H is
a Hilbert space. Of course, it is not adequate functional analysis to
study just the space l∞ and its subspaces. Likewise subspaces of L(H)
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are called concrete operator spaces, and then subsumed in a theory of
abstract operator spaces.

Our discussion in Section 2.6 borrows much from V. Paulsen’s book.
Some of our proofs are simpler because we are in finite dimensions.

Propositions 2.7.3 and 2.7.5 are due to M.-D. Choi, Some assorted
inequalities for positive linear maps on C∗-algebras, J. Operator The-
ory, 4 (1980) 271–285. Propositions 2.7.6 and 2.7.8 are taken from
R. Bhatia and C. Davis, A better bound on the variance, Am. Math.
Monthly, 107 (2000) 602–608. Inequalities (2.29), (2.31) and their gen-
eralizations are important in statistics, and have been proved by many
authors, often without knowledge of previous work. See the article S.
W. Drury, S. Liu, C.-Y. Lu, S. Puntanen, and G. P. H. Styan, Some
comments on several matrix inequalities with applications to canonical
correlations: historical background and recent developments, Sankhyā,
Series A, 64 (2002) 453–507.

The Daleckii-Krein formula was presented in Ju. L. Daleckii and
S. G. Krein, Formulas of differentiation according to a parameter of
functions of Hermitian operators, Dokl. Akad. Nauk SSSR, 76 (1951)
13–16. Infinite dimensional analogues in which the double sum in
(2.38) is replaced by a double integral were proved by M. Sh. Birman
and M. Z. Solomyak, Double Stieltjes operator integrals (English trans-
lation), Topics in Mathematical Physics Vol. 1, Consultant Bureau,
New York, 1967.

The formula (2.41) was noted in R. Bhatia, First and second order
perturbation bounds for the operator absolute value, Linear Algebra
Appl., 208/209 (1994) 367–376. It was observed there that this equal-
ity of norms holds for several other functions that are not operator
monotone. If A is positive and f(A) = Ar, then the equality (2.41)
is true for all real numbers r other than those in (1,

√
2). This, some-

what mysterious, result was proved in two papers: R. Bhatia and K.
B. Sinha, Variation of real powers of positive operators, Indiana Univ.
Math. J., 43 (1994) 913–925, and R. Bhatia and J. A. R. Holbrook,
Fréchet derivatives of the power function, ibid., 49(2000) 1155–1173.
Similar equalities involving higher-order derivatives have been proved
in R. Bhatia, D. Singh, and K. B. Sinha, Differentiation of opera-
tor functions and perturbation bounds, Commun. Math. Phys., 191
(1998) 603–611.



Chapter Three

Completely Positive Maps

For several reasons a special class of positive maps, called completely
positive maps, is especially important. In Section 3.1 we study the
basic properties of this class of maps. In Section 3.3 we derive some
Schwarz type inequalities for this class; these are not always true
for all positive maps. In Sections 3.4 and 3.5 we use general results
on completely positive maps to study some important problems for
matrix norms.

Let Mm(Mn) be the space of m×m block matrices [[Aij ]] whose i, j
entry is an element of Mn = Mn(C). Each linear map Φ : Mn → Mk

induces a linear map Φm : Mm(Mn) → Mm(Mk) defined as

Φm([[Aij ]]) = [[Φ(Aij)]]. (3.1)

We say that Φ is m-positive if the map Φm is positive, and Φ is
completely positive if it is m-positive for all m = 1, 2, . . .. Thus positive
maps are 1-positive.

The map Φ(A) = Atr on M2 is positive but not 2-positive. To see
this consider the 2 × 2 matrices Eij whose i, j entry is one and the
remaining entries are zero. Then [[Eij ]] is positive, but [[Φ(Eij)]] is
not.

Let V ∈ Cn×k, the space of n× k matrices. Then the map Φ(A) =
V ∗AV from Mn into Mk is completely positive. To see this note that
for each m

[[Φ(Aij)]] = (Im ⊗ V ∗)[[Aij ]](Im ⊗ V ).

If V1, . . . , Vl ∈ Cn×k, then

Φ(A) =
l∑

j=1

V ∗
j AVj (3.2)

is completely positive.
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Let ϕ be any positive linear functional on Mn. Then there exists a
positive matrix X such that ϕ(A) = tr AX for all A. If uj, 1 ≤ j ≤ n,
constitute an orthonormal basis for Cn, then we have

ϕ(A) = tr X1/2AX1/2 =

n∑

j=1

u∗
jX

1/2AX1/2uj .

So, if we put vj = X1/2uj, we have

ϕ(A) =

n∑

j=1

v∗j Avj .

This shows that in the special case k = 1, every positive linear map
Φ : Mn → Mk can be represented in the form (3.2) and thus is com-
pletely positive.

3.1 SOME BASIC THEOREMS

Let us fix some notations. The standard basis for Cn will be written
as ej , 1 ≤ j ≤ n. The matrix eie

∗
j will be written as Eij . This

is the matrix with its i, j entry equal to one and all other entries
equal to zero. These matrices are called matrix units. The family
{Eij : 1 ≤ i, j ≤ n} spans Mn.

Our first theorem says all completely positive maps are of the form
(3.2).

3.1.1 Theorem (Choi, Kraus)

Let Φ : Mn −→ Mk be a completely positive linear map. Then there
exist Vj ∈ Cn×k, 1 ≤ j ≤ nk, such that

Φ(A) =
nk∑

j=1

V ∗
j AVj for all A ∈ Mn. (3.3)

Proof. We will find Vj such that the relation (3.3) holds for all
matrix units Ers in Mn. Since Φ is linear and the Ers span Mn this
is enough to prove the theorem.

We need a simple identification involving outer products of block
vectors. Let v ∈ Cnk. We think of v as a direct sum v = x1⊕· · ·⊕xn,
where xj ∈ Ck; or as a column vector
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v =




x1
...

xn


 where xj ∈ Ck.

Identify this with the k × n matrix

V ∗ = [x1, . . . , xn]

whose columns are the vectors xj. Then note that

V ∗ErsV = [x1, . . . , xn]ere
∗
s[x1, . . . , xn]∗ = xrx

∗
s.

So, if we think of vv∗ as an element of Mn(Mk) we have

vv∗ = [[xrx
∗
s]] = [[V ∗ErsV ]]. (3.4)

The matrix [[Ers]] = [[ere
∗
s]] is a positive element of Mn(Mn). So,

if Φ : Mn → Mk is an n-positive map, [[Φ(Ers)]] is a positive element
of Mn(Mk) = Mnk(C).

By the spectral theorem, there exist vectors vj ∈ Cnk such that

[[Φ(Ers)]] =

nk∑

j=1

vjv
∗
j =

nk∑

j=1

[[V ∗
j ErsVj ]].

Thus for all 1 ≤ r, s ≤ n

Φ(Ers) =

nk∑

j=1

V ∗
j ErsVj,

as required. �

Note that in the course of the proof we have shown that if a linear
map Φ : Mn −→ Mk is n-positive, then it is completely positive. We
have shown also that if Φn([[Ers]]) is positive, then Φ is completely
positive.



68 CHAPTER 3

The vectors vj occurring in the proof are not unique; and so the Vj

in the representation are not unique. If we impose the condition that
the family {vj} does not contain any zero vector and all vectors in it
are mutually orthogonal, then the Vj in (3.3) are unique up to unitary
conjugations. The proof of this statement is left as an exercise.

The map Φ is unital if and only if
∑

V ∗
j Vj = I. Unital completely

positive maps form a convex set. We state, without proof, two facts
about its extreme points. The extreme points are those Φ for which
the set {V ∗

i Vj : 1 ≤ i, j ≤ nk} is linearly independent. For such Φ,
the number of terms in the representation (3.3) is at most k.

3.1.2 Theorem (The Stinespring Dilation Theorem)

Let Φ : Mn → Mk be a completely positive map. Then there exist a
representation

Π : Mn → Mn2k

and an operator

V : Ck −→ Cn2k

such that ‖V ‖2 = ‖Φ(I)‖ and

Φ(A) = V ∗Π(A)V.

Proof. The equation (3.3) can be rewritten as

Φ(A) =

nk∑

j=1

V ∗
j AVj

= [V ∗
1 , . . . , V ∗

nk]




A
A

. . .

A







V1
...

Vnk


 .

Let V =

[
V1

.

..
Vnk

]
and Π(A) =

[
A

. . .

A

]
. �
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Note that if Φ is unital, then V ∗V = I. Hence V is an isometric
embedding of Ck in Cn2k and V ∗ a projection. The representation
Π(A) = A ⊗ · · · ⊗ A is a direct sum of nk copies of A. This number
could be smaller in several cases. The representation with the minimal
number of copies is unique upto unitary conjugation.

3.1.3 Corollary

Let Φ : Mn → Mk be completely positive. Then ‖Φ‖ = ‖Φ(I)‖. (This
is true, more generally, for all positive linear maps, as we saw in
Chapter 2.)

Next we consider linear maps whose domain is a linear subspace
S ⊂ Mn and whose range is Mk. To each element Φ of L(S, Mk(C))
corresponds a unique element ϕ of L(Mk(S), C). This correspondence
is described as follows. Let Sij , 1 ≤ i, j ≤ k be elements of S. Then

ϕ([[Sij ]]) =
1

k

k∑

i,j=1

[Φ(Sij)]i,j , (3.5)

where we use the notation [T ]i,j for the i, j entry of a matrix T .
If ej , 1 ≤ j ≤ k is the standard basis for Ck, and x is the vector in

Ck2
given by x = e1 ⊕ · · · ⊕ ek, then (3.5) can be written as

ϕ([[Sij ]]) =
1

k

k∑

i,j=1

〈ei,Φ(Sij)ej〉 =
1

k
〈x, [[Φ(Sij)]]x〉. (3.6)

In the reverse direction, suppose ϕ is a linear functional on Mk(S).
Given an A ∈ S let Φ(A) be the element of Mk(C) whose i, j entry is

[Φ(A)]i,j = kϕ(Eij ⊗ A), (3.7)

where Eij , 1 ≤ i, j ≤ k, are the matrix units in Mk(C).
It is easy to see that this sets up a bijective correspondence between

the spaces L(S, Mk(C)) and L(Mk(S), C). The factor 1/k in (3.5)
ensures that Φ is unital if and only if ϕ is unital.
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3.1.4 Theorem

Let S be an operator system in Mn, and let Φ : S −→ Mk be a linear
map. Then the following three conditions are equivalent:

(i) Φ is completely positive.

(ii) Φ is k-positive.

(iii) The linear functional ϕ defined by (3.5) is positive.

Proof. Obviously (i) ⇒ (ii). It follows from (3.6) that (ii) ⇒ (iii).
The hard part of the proof consists of establishing the implication (iii)
⇒ (i).

Since S is an operator system in Mn(C), Mk(S) is an operator sys-
tem in Mk(Mn) = Mkn(C). By Krein’s extension theorem (Theorem
2.6.6), the positive linear functional ϕ on Mk(S) has an extension ϕ̃,
a positive linear functional on Mk(Mn). To this ϕ̃ corresponds an

element Φ̃ of L(Mn(C), Mk(C)) defined via (3.7). This Φ̃ is an exten-

sion of Φ (since ϕ̃ is an extension of ϕ). If we show Φ̃ is completely
positive, it will follow that Φ is completely positive.

Let m be any positive integer. Every positive element of Mm(Mn)
can be written as a sum of matrices of the type [[A∗

i Aj ]] where Aj , 1 ≤
j ≤ m are elements of Mn. To show that Φ̃ is m-positive, it suffices
to show that [[Φ̃(A∗

i Aj)]] is positive. This is an mk ×mk matrix. Let
x be any vector in Cmk. Write it as

x = x1 ⊕ · · · ⊕ xm, xj ∈ Ck, xj =

k∑

p=1

ξjpep.

Then

〈x, [[Φ̃(A∗
i Aj)]]x〉=

m∑

i,j=1

〈xi, Φ̃(A∗
i Aj)xj〉

=

m∑

i,j=1

k∑

p,q=1

ξipξjq〈ep, Φ̃(A∗
i Aj)eq〉

=

m∑

i,j=1

k∑

p,q=1

ξipξjqkϕ̃(Epq ⊗ A∗
i Aj),

(3.8)
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using (3.7). For 1 ≤ i ≤ m let Xi be the k × k matrix

Xi =




ξi1 ξi2 . . . ξik

0 0 . . . 0
. . . . . . . . . . . .
0 0 . . . 0


.

Then [X∗
i Xj ]p,q = ξipξjq. In other words

X∗
i Xj =

k∑

p,q=1

ξipξjqEpq.

So (3.8) can be written as

〈x, [[Φ̃(A∗
i Aj)]]x〉= k

m∑

i,j=1

ϕ̃(X∗
i Xj ⊗ A∗

i Aj)

= k ϕ̃

((
m∑

i=1

Xi ⊗ Ai

)∗ ( m∑

i=1

Xi ⊗ Ai

))
.

Since ϕ̃ is positive, this expression is positive. That completes the
proof. �

In the course of the proof we have also proved the following.

3.1.5 Theorem (Arveson’s Extension Theorem)

Let S be an operator system in Mn and let Φ : S −→ Mk be a
completely positive map. Then there exists a completely positive map
Φ̃ : Mn −→ Mk that is an extension of Φ.

Let us also record the following fact that we have proved.

3.1.6 Theorem

Let Φ : Mn → Mk be a linear map. Let m = min(n, k). If Φ is
m-positive, then it is completely positive.

For l < m, there exists a map Φ that is l-positive but not (l + 1)-
positive.
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We have seen that completely positive maps have some desirable
properties that positive maps did not have: they can be extended
from an operator system S to the whole of Mn, and they attain their
norm at I for this reason (even when they have been defined only
on S). Also, there is a good characterization of completely positive
maps given by (3.3). No such simple representation seems possible
for positive maps. For example, one may ask whether every positive
map Φ : Mn → Mk is of the form

Φ(A) =

r∑

i=1

V ∗
i AVi +

s∑

j=1

W ∗
j AtrWj

for some n × k matrices Vi,Wj . For n = k = 3, there exist positive
maps Φ that can not be represented like this.

For these reasons the notion of complete positivity seems to be more
useful than that of positivity.

We remark that many of the results of this section are true in the
general setting of C∗-algebras. The proofs, naturally, are more intri-
cate in the general setting.

In view of Theorem 3.1.6, one expects that if Φ is a positive linear
map from a C∗-algebra a into a C∗-algebra b, and if either a or b is
commutative, then Φ is completely positive. This is true.

3.2 EXERCISES

3.2.1

We have come across several positive linear maps in Chapter 2. Which
of them are completely positive? What are (minimal) Stinespring
dilations of these maps?

3.2.2

Every positive linear map Φ has a restricted 2-positive behaviour in
the following sense:

(i)

[
A X
X∗ A

]
≥ O =⇒

[
Φ(A) Φ(X)
Φ(X)∗ Φ(A)

]
≥ O.

(ii)

[
A H
H B

]
≥ O (H = H∗) =⇒

[
Φ(A) Φ(H)
Φ(H) Φ(B)

]
≥ O.

[Hint: Use Proposition 2.7.3 and Proposition 2.7.5.]
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3.2.3

Let Φ be a strictly positive linear map. Then the following three
conditions are equivalent:

(i) Φ is 2-positive.

(ii) If A,B are positive matrices and X any matrix such that B ≥
X∗A−1X, then Φ(B) ≥ Φ(X)∗Φ(A)−1Φ(X).

(iii) For every matrix X and positive A we have Φ(X∗A−1X) ≥
Φ(X)∗ Φ(A)−1 Φ(X).

[Compare this with Exercise 2.7.4 and Proposition 2.7.5.]

3.2.4

Let Φ : M3 −→ M3 be the map defined as Φ(A) = 2 (tr A) I−A. Then
Φ is 2-positive but not 3-positive.

3.2.5

Let A and B be Hermitian matrices and suppose A = Φ(B) for some
doubly stochastic map Φ on Mn. Then there exists a completely pos-
itive doubly stochastic map Ψ such that A = Ψ(B). (See Exercise
2.7.13.)

3.2.6

Let S be the collection of all 2×2 matrices A with a11 = a22. This is an
operator system in M2. Show that the map Φ(A) = Atr is completely
positive on S. What is its completely positive extension on M2?

3.2.7

Suppose [[Aij ]] is a positive element of Mm(Mn). Then each of the
m × m matrices [[ tr Aij ]], [[

∑
i,j

aij ]], and [[ ‖Aij‖2
2 ]] is positive.

3.3 SCHWARZ INEQUALITIES

In this section we prove some operator versions of the Schwarz in-
equality. Some of them are extensions of the basic inequalities for
positive linear maps proved in Chapter 2.
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Let µ be a probability measure on a space X and consider the
Hilbert space L2(X,µ). Let Ef =

∫
fdµ be the expectation of a

function f. The covariance between two functions f and g in L2(X,µ)
is the quantity

cov(f, g) = E(f̄ g) − EfEg. (3.9)

The variance of f is defined as

var(f) = cov(f, f) = E(|f |2) − |Ef |2. (3.10)

(We have come across this earlier in (2.23) where we restricted
ourselves to real-valued functions.) The expression (3.9) is plainly an
inner product in L2(X,µ) and the usual Schwarz inequality tells us

|cov(f, g)|2 ≤ var(f)var(g). (3.11)

This is an important, much used, inequality in statistics.
As before, replace L2(X,µ) by Mn and the expectation E by a

positive unital linear map Φ on Mn. The covariance between two
elements A and B of Mn (with respect to a given Φ) is defined as

cov(A,B) = Φ(A∗B) − Φ(A)∗Φ(B), (3.12)

and variance of A as

var(A) = cov(A,A) = Φ(A∗A) − Φ(A)∗Φ(A). (3.13)

Kadison’s inequality (2.5) says that if A is Hermitian, then var(A) ≥
O. Choi’s generalization (2.6) says that this is true also when A is
normal. However, with no restriction on A this is not always true.

(Let Φ(A) = Atr, and let A =
[

0 1
0 0

]
.)

If Φ is unital and 2-positive, then by Exercise 3.2.3(iii) we have

Φ(A)∗Φ(A) ≤ Φ(A∗A) (3.14)

for all A. This says that var(A) ≥ O for all A if Φ is 2-positive and
unital. The inequality (3.14) says that

|Φ(A)|2 ≤ Φ(|A|2). (3.15)

The inequality |Φ(A)| ≤ Φ(|A|) is not always true even when Φ
is completely positive. Let Φ be the pinching map on M2. If A =[

0 0
1 1

]
, then |Φ(A)| =

[
0 0
0 1

]
and Φ(|A|) = 1√

2
I.

An analogue of the variance-covariance inequality (3.11) is given by
the following theorem.
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3.3.1 Theorem

Let Φ be a unital completely positive linear map on Mn. Then for all
A,B

[
var(A) cov(A,B)
cov(A,B)∗ var(B)

]
≥ O. (3.16)

Proof. Let V be an isometry of the space Cn into any Cm. Then
V ∗V = I and V V ∗ ≤ I. From the latter condition it follows that

[
A∗ O
B∗ O

] [
A B
O O

]
≥
[

A∗ O
B∗ O

] [
V V ∗ O
O V V ∗

] [
A B
O O

]
.

This is the same as saying

[
A∗A A∗B
B∗A B∗B

]
≥
[

A∗V V ∗A A∗V V ∗B
B∗V V ∗A B∗V V ∗B

]
.

This inequality is preserved when we multiply both sides by the matrix[
V ∗ O
O V ∗

]
on the left and by

[
V O
O V

]
on the right. Thus

[
V ∗A∗AV V ∗A∗BV
V ∗B∗AV V ∗B∗BV

]
≥
[

V ∗A∗V V ∗AV V ∗A∗V V ∗BV
V ∗B∗V V ∗AV V ∗B∗V V ∗BV

]
.

This is the inequality (3.16) for the special map Φ(T ) = V ∗TV. The
general case follows from this using Theorem 3.1.2. �

3.3.2 Remark

It is natural to wonder whether complete positivity of Φ is necessary
for the inequality (3.16). It turns out that 2-positivity is not enough
but 3-positivity is. Indeed, if Φ is 3-positive and unital, then from the
positivity of the matrix




A∗A A∗B A∗

B∗A B∗B B∗

A B I


 =




A∗ O O
B∗ O O
I O O






A B I
O O O
O O O




it follows that the matrix



Φ(A∗A) Φ(A∗B) Φ(A∗)
Φ(B∗A) Φ(B∗B) Φ(B∗)
Φ(A) Φ(B) I



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is positive. Hence by Theorem 1.3.3 (see Exercise 1.3.5)

[
Φ(A∗A) Φ(A∗B)
Φ(B∗A) Φ(B∗B)

]
≥
[

Φ(A∗) O
Φ(B∗) O

] [
I O
O O

] [
Φ(A) Φ(B)

O O

]
.

In other words,
[

Φ(A∗A) Φ(A∗B)
Φ(B∗A) Φ(B∗B)

]
≥
[

Φ(A)∗Φ(A) Φ(A)∗Φ(B)
Φ(B)∗Φ(A) Φ(B)∗Φ(B)

]
. (3.17)

This is the same inequality as (3.16).
To see that this inequality is not always true for 2-positive maps,

choose the map Φ on M3 as in Exercise 3.2.4. Let A = E13, and
B = E12, where Eij stands for the matrix whose i, j entry is one and
all other entries are zero. A calculation shows that the inequality
(3.17) is not true in this case.

3.3.3 Remark

If Φ is 2-positive, then for all A and B we have
[

Φ(A∗A) Φ(A∗B)
Φ(B∗A) Φ(B∗B)

]
≥ O. (3.18)

The inequality (3.17) is a considerable strengthening of this under the
additional assumption that Φ is 3-positive and unital. The inequality
(3.18) is equivalent to

Φ(A∗A) ≥ Φ(A∗B) [Φ(B∗B)]−1 Φ(B∗A) (3.19)

(for 2-positive linear maps Φ). This is an operator version of the
Schwarz inequality.

3.4 POSITIVE COMPLETIONS AND SCHUR PRODUCTS

A completion problem gives us a matrix some of whose entries are not
specified, and asks us to fill in these entries in such a way that the
matrix so obtained (called a completion) has a given property.

For example, we are given a 2× 2 matrix
[

1 1
1 ?

]
with only three of

its entries and are asked to choose the unknown (2,2) entry in such
a way that the norm of the completed matrix is minimal among all
completions. Such a completion is obtained by choosing the (2,2)
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entry to be −1. This is an example of a minimal norm completion
problem.

A positive completion problem asks us to fill in the unspecified en-
tries in such a way that the completed matrix is positive. Sometimes
further restrictions may be placed on the completion. For example

the incomplete matrix
[

? 1
1 ?

]
has several positive completions: we

may choose any two diagonal entries a, b such that a, b are positive
and ab ≥ 1. Among these the choice that minimises the norm of the
completion is a = b = 1.

To facilitate further discussion, let us introduce some definitions.
A subset J of {1, 2, . . . , n} × {1, 2, . . . , n} is called a pattern. A

pattern J is called symmetric if

(i, i) ∈ J for 1 ≤ i ≤ n, and

(i, j) ∈ J if and only if (j, i) ∈ J.

We say T is a partially defined matrix with pattern J if the entries
tij are specified for all (i, j) ∈ J . We call such a T symmetric if J is
symmetric, tii is real for all 1 ≤ i ≤ n, and tji = tij for (i, j) ∈ J .

Given a pattern J , let

SJ = {A ∈ Mn : aij = 0 if (i, j) /∈ J}.

This is a subspace of Mn, and it is an operator system if the pattern
J is symmetric.

For T ∈ Mn, we use the notation ST for the linear operator

ST (A) = T ◦ A , A ∈ Mn

and sT for the linear functional

sT (A) =
∑

i,j

tijaij , A ∈ Mn.

3.4.1 Theorem

Let T be a partially defined symmetric matrix with pattern J . Then
the following three conditions are equivalent:

(i) T has a positive completion.
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(ii) The linear map ST : SJ → Mn is positive.

(iii) The linear functional sT on SJ is positive.

Proof. If T has a positive completion T̃ , then by Schur’s theorem
S eT is a positive map on Mn. For A ∈ SJ , S eT (A) = ST (A). So, ST is
positive on SJ . This proves the implication (i) ⇒ (ii). The implication
(ii) ⇒ (iii) is obvious. (The sum of all entries of a positive matrix is
a nonnegative number.)

(iii) ⇒ (i): Suppose sT is positive. By Krein’s extension theorem
there exists a positive linear functional s on Mn that extends sT . Let
t̃ij = s(Eij). Then the matrix T̃ =

[[
t̃ij
]]

is a completion of T. We
have for every vector x

〈x, T̃ x〉=
∑

i,j

xıt̃ijxj =
∑

i,j

s(xıxjEij)

= s(xx∗) ≥ 0.

Thus T̃ is positive. �

For T ∈ Mn let T# be the element of M2n defined as T# =
[

I T
T ∗ I

]
.

We have seen that T is a contraction if and only if T# is positive.

3.4.2 Proposition

Let S be the operator system in M2n defined as

S =

{[
D1 A
B D2

]
: D1,D2 diagonal;A,B ∈ Mn

}
.

Then for any T ∈ Mn, the Schur multiplier ST is contractive on Mn

if and only if ST# is a positive linear map on the operator system S.

Proof. Suppose ST# is positive on S. Then

[
I A
A∗ I

]
≥ O ⇒

[
I T ◦ A

(T ◦ A)∗ I

]
≥ O,

i.e., ‖A‖ ≤ 1 ⇒ ‖T ◦A‖ ≤ 1. In other words ST is contractive on Mn.
To prove the converse, assume D1,D2 > O, and note that
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ST#

([
D1 A
A∗ D2

])
=

[
D1 T ◦ A

(T ◦ A)∗ D2

]

=

[
D

1/2
1 O

O D
1/2
2

][
I D

−1/2
1 (T ◦ A)D

−1/2
2

D
−1/2
2 (T ◦ A)∗D−1/2

1 I

]

[
D

1/2
1 O

O D
1/2
2

]

∼
[

I D
−1/2
1 (T ◦ A)D

−1/2
2

D
−1/2
2 (T ◦ A)∗D−1/2

1 I

]

=

[
I T ◦ (D

−1/2
1 AD

−1/2
2 )

(T ◦ D
−1/2
1 AD

−1/2
2 )∗ I

]
.

If ST is contractive on Mn, then

‖D−1/2
1 AD

−1/2
2 ‖ ≤ 1 ⇒ ‖T ◦ D

−1/2
1 AD

−1/2
2 ‖ ≤ 1,

i.e.,

[
D1 A
A∗ D2

]
≥ O ⇒

[
I T ◦ (D

−1/2
1 AD

−1/2
2 )

(T ◦ D
−1/2
1 AD

−1/2
2 )∗ I

]
≥ O.

We have seen above that the last matrix is congruent to
ST#

([
D1 A
A∗ D2

])
. This shows that ST# is positive on S. �

We can prove now the main theorem of this section.

3.4.3 Theorem (Haagerup’s Theorem)

Let T ∈ Mn. Then the following four conditions are equivalent:

(i) ST is contractive; i.e., ‖T ◦ A‖ ≤ ‖A‖ for all A.

(ii) There exist vectors vj, wj , 1 ≤ j ≤ n, all with their norms ≤ 1,
such that tij = v∗ı wj.

(iii) There exist positive matrices R1, R2 with diag R1 ≤ I, diag R2 ≤
I and such that

[
R1 T
T ∗ R2

]
is positive.
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(iv) T can be factored as T = V ∗W with ‖V ‖c ≤ 1, ‖W‖c ≤ 1. (The
symbol ‖Y ‖c stands for the maximum of the Euclidean norms of
the columns of Y.)

Proof. Let ST be contractive. Then, by Proposition 3.4.2, ST# is
a positive operator on the operator system S ⊂ M2n. By Theorem
3.4.1, T# has a positive completion. (Think of the off-diagonal entries
of the two diagonal blocks as unspecified.) Call this completion P . It
has a Cholesky factoring P = △∗△ where △ is an upper triangular

2n × 2n matrix. Write △ =
[

V W
O X

]
. Then

P =

[
V ∗V V ∗W
W ∗V W ∗W + X∗X

]
.

Let vj , wj , 1 ≤ j ≤ n be the columns of V,W , respectively. Since P
is a completion of T#, we have T = V ∗W ; i.e., tij = v∗ı wj. Since
diag(V ∗V ) = I, we have ‖vj‖ = 1. Since diag(W ∗W + X∗X) = I, we
have ‖wj‖ ≤ 1. This proves the implication (i) ⇒ (ii).

The condition (ii) can be expressed by saying T = V ∗W , where
diag(V ∗V ) ≤ I and diag(W ∗W ) ≤ I. Since

[
V ∗V V ∗W
W ∗V W ∗W

]
=

[
V ∗ O
W ∗ O

] [
V W
O O

]
≥ O,

this shows that the statement (ii) implies (iii). Clearly (iv) is another
way of stating (ii).

To complete the proof we show that (iii) ⇒ (i). Let A ∈ Mn,

‖A‖ ≤ 1. This implies
[

I A
A∗ I

]
≥ O. Then the condition (iii) leads

to the inequality

[
I T ◦ A

(T ◦ A)∗ I

]
≥
[

R1 ◦ I T ◦ A
(T ◦ A)∗ R2 ◦ I

]

=

[
R1 T
T ∗ R2

]
◦
[

I A
A∗ I

]

≥O.

But this implies ‖T ◦ A‖ ≤ 1. In other words ST is contractive. �

3.4.4 Corollary

For every T in Mn, we have ‖ST ‖ = min {‖V ‖c ‖W‖c : T = V ⋆W} .
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3.5 THE NUMERICAL RADIUS

The numerical range of an operator A is the set of complex numbers

W (A) =
{
〈x,Ax〉 : ‖x‖ = 1

}
,

and the numerical radius is the number

w(A) = sup
‖x‖=1

|〈x,Ax〉| = sup
{
|z| : z ∈ W (A)

}
.

It is known that the set W (A) is convex, and w(·) defines a norm.
We have

w(A) ≤ ‖A‖ ≤ 2w(A) for all A.

Some properties of w are summarised below. It is not difficult to
prove them.

(i) w(UAU∗) = w(A) for all A, and unitary U.

(ii) If A is diagonal, then w(A) = max |aii|.
(iii) More generally,

w(A1 ⊕ · · · ⊕ Ak) = max
1≤j≤k

w(Aj).

(iv) w(A) = ‖A‖ if (but not only if) A is normal.

(v) w is not submultiplicative: the inequality w(AB) ≤ w(A)w(B)
is not always true for 2 × 2 matrices.

(vi) Even the weaker inequality w(AB) ≤ ‖A‖w(B) is not always
true for 2 × 2 matrices.

(vii) The inequality w(A ⊗ B) ≤ w(A)w(B) is not always true for
2 × 2 matrices A,B.

(viii) However, we do have w(A⊗B) ≤ ‖A‖w(B) for square matrices
A,B of any size.

(Proof: It is enough to prove this when ‖A‖ = 1. Then A =
1
2(U + V ) where U, V are unitary. So it is enough to prove that
w(U ⊗B) ≤ w(B) if U is unitary. Choose an orthonormal basis
in which U is diagonal, and use (iii).)
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(ix) If w(A) ≤ 1, then I ± ReA ≥ O.

(|Re〈x,Ax〉| ≤ |〈x,Ax〉| ≤ 〈x, x〉 for all x.)

(x) The inequality w(AB) ≤ w(A)w(B) may not hold even when
A,B commute. Let

A =




0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


.

Then w(A) < 1, w(A2) = w(A3) = 1/2. So w(A3) > w(A)w(A2)
in this case.

Proposition 1.3.1 characterizes operators A with ‖A‖ ≤ 1 in terms
of positivity of certain 2 × 2 block matrices. A similar theorem for
operators A with w(A) ≤ 1 is given below.

3.5.1 Theorem (Ando)

Let A ∈ Mn. Then w(A) ≤ 1 if and only if there exists a Hermitian

matrix H such that
[

I + H A
A∗ I − H

]
is positive.

Proof. If
[

I + H A
A∗ I − H

]
≥ O, then there exists an operator K with

‖K‖ ≤ 1 such that A = (I + H)1/2K(I − H)1/2. So, for every vector
x

|〈x,Ax〉|= |〈x, (I + H)1/2K(I − H)1/2x〉|
≤ ‖(I + H)1/2x‖ ‖(I − H)1/2x‖

≤ 1

2

(
‖(I + H)1/2x‖2 + ‖(I − H)1/2x‖2

)

=
1

2
(〈x, (I + H)x〉 + 〈x, (I − H)x〉)

= ‖x‖2.

This shows that w(A) ≤ 1.
The proof of the other half of the theorem is longer. Let A be an

operator with w(A) ≤ 1. Let S be the collection of 2 × 2 matrices
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[
x y
z x

]
where x, y, z are complex numbers. Then S is an operator

system. Let Φ : S → Mn be the unital linear map defined as

Φ

([
x y
z x

])
= xI +

1

2
(yA + zA∗).

It follows from property (ix) listed at the beginning of the section
that Φ is positive. We claim it is completely positive. Let m be any
positive integer. We want to show that if the m×m block matrix with

the 2 × 2 block
[

xij yij

zij xij

]
as its i, j entry is positive, then the m × m

block matrix with the n×n block xijI+ 1
2(yijA+zijA

∗) as its i, j entry
is also positive. Applying permutation similarity the first matrix can

be converted to a matrix of the form
[

X Y
Z X

]
where X,Y,Z are m×m

matrices. If this is positive, then we have Z = Y ∗, and our claim is
that

[
X Y
Y ∗ X

]
≥ O ⇒ X ⊗ In +

1

2
(Y ⊗ A + Y ∗ ⊗ A∗) ≥ O.

We can apply a congruence, and replace the matrices X by I and Y
by X−1/2Y X−1/2, respectively. Thus we need to show that

[
Im Y
Y ∗ Im

]
≥ O ⇒ Im ⊗ In +

1

2
(Y ⊗ A + Y ∗ ⊗ A∗) ≥ O.

The hypothesis here is (equivalent to) ‖Y ‖ ≤ 1. By property (viii)
this implies w(Y ⊗ A) ≤ w(A) ≤ 1. So the conclusion follows from
property (ix).

We have shown that Φ is completely positive on S. By Arveson’s
theorem Φ can be extended to a completely positive map Φ̃ : M2 →
Mn.

Let Eij , 1 ≤ i, j ≤ 2 be the matrix units in M2. Then the matrix

[[Φ̃(Eij)]] is positive. Thus, in particular, Φ̃(E11) and Φ̃(E22) are

positive, and their sum is I since Φ̃ is unital.
Put H = Φ̃(E11) − Φ̃(E22). Then H is Hermitian, and

Φ̃(E11) =
I + H

2
, Φ̃(E22) =

I − H

2
.
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Since Φ̃ is an extension of Φ, we have

Φ̃(E12) =
1

2
A, Φ̃(E21) =

1

2
A∗.

Thus

[[Φ̃(Eij)]] =
1

2

[
I + H A

A∗ I − H

]
,

and this matrix is positive. �

3.5.2 Corollary

For every A and k = 1, 2, . . .

w(Ak) ≤ w(A)k. (3.20)

Proof. It is enough to show that if w(A) ≤ 1, then w(Ak) ≤ 1. Let
w(A) ≤ 1. By Ando’s theorem, there exists a Hermitian matrix H
such that

[
I + H A

A∗ I − H

]
≥ O.

Hence, there exists a contraction K such that

A = (I + H)1/2K(I − H)1/2.

Then

Ak = (I + H)1/2K[(I − H2)1/2K]k−1(I − H)1/2

= (I + H)1/2L(I − H)1/2,

where L = K[(I−H2)1/2K]k−1 is a contraction. But this implies that

[
I + H Ak

A∗k I − H

]
≥ O.
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So, by Ando’s Theorem w(Ak) ≤ 1. �

The inequality (3.20) is called the power inequality for the numerical
radius.

Ando and Okubo have proved an analogue of Haagerup’s theorem
for the norm of the Schur product with respect to the numerical radius.
We state it without proof.

3.5.3 Theorem (Ando-Okubo)

Let T be any matrix. Then the following statements are equivalent:

(i) w(T ◦ A) ≤ 1 whenever w(A) ≤ 1.

(ii) There exists a positive matrix R with diagR ≤ I such that

[
R T
T ∗ R

]
≥ O.

3.6 SUPPLEMENTARY RESULTS AND EXERCISES

The Schwarz inequality, in its various forms, is the most important
inequality in analysis. The first few remarks in this section supplement
the discussion in Section 3.3.

Let A be an n × k matrix and B an n × l matrix of rank l. The
matrix

[
A∗A A∗B
B∗A B∗B

]

is positive. This is equivalent to the assertion

A∗A ≥ A∗B(B∗B)−1B∗A. (3.21)

This is a matrix version of the Schwarz inequality. It can be proved in
another way as follows. The matrix B(B∗B)−1B∗ is idempotent and
Hermitian. Hence I ≥ B(B∗B)−1B∗ and (3.21) follows immediately.
The inequality (3.19) is an extension of (3.21).

Let A be a positive operator and let x, y be any two vectors. From
the Schwarz inequality we get

|〈x,Ay〉|2 ≤ 〈x,Ax〉〈y,Ay〉. (3.22)
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An operator version of this in the spirit of (3.19) can be obtained as
follows. For any two operators X and Y we have

[
X∗AX X∗AY
Y ∗AX Y ∗AY

]
=

[
X∗ O
O Y ∗

] [
A A
A A

] [
X O
O Y

]
≥ O.

So, if Φ is a 2-positive linear map, then
[

Φ(X∗AX) Φ(X∗AY )
Φ(Y ∗AX) Φ(Y ∗AY )

]
≥ O,

or, equivalently,

Φ(X∗AY ) [Φ(Y ∗AY )]−1 Φ(Y ∗AX) ≤ Φ(X∗AX). (3.23)

This is an operator version of (3.22).
There is a considerable strengthening of the inequality (3.22) in the

special case when x is orthogonal to y. This says that if A is a positive
operator with mI ≤ A ≤ MI, and x ⊥ y, then

|〈x,Ay〉|2 ≤
(

M − m

M + m

)2

〈x,Ax〉〈y,Ay〉. (3.24)

This is called Wielandt’s inequality. The following theorem gives an
operator version.

3.6.1 Theorem

Let A be a positive element of Mn with mI ≤ A ≤ MI. Let X,Y be
two mutually orthogonal projection operators in Cn. Then for every
2-positive linear map Φ on Mn we have

Φ(X∗AY ) [Φ(Y ∗AY )]−1 Φ(Y ∗AX) ≤
(

M − m

M + m

)2

Φ(X∗AX).

(3.25)

Proof. First assume that X ⊕ Y = I. With respect to this decom-
position, let A have the block form

A =

[
A11 A12

A21 A22

]
.

By Exercise 1.5.7

A−1 =

[
(A11 − A12A

−1
22 A21)

−1 ⋆
⋆ ⋆

]
.
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Apply Proposition 2.7.8 with Φ as the pinching map. This shows

(
A11 − A12A

−1
22 A21

)−1 ≤ (M + m)2

4Mm
A−1

11 .

Taking inverses changes the direction of this inequality, and then re-
arranging terms we get

A12A
−1
22 A21 ≤

(
M − m

M + m

)2

A11.

This is the inequality (3.25) in the special case when Φ is the identity
map. A minor argument shows that the assumption X ⊕ Y = I can
be dropped.

Let α = (M − m)/(M + m). The inequality we have just proved is
equivalent to the statement

[
αX∗AX X∗AY
Y ∗AX Y ∗AY

]
≥ O.

This implies that the inequality (3.25) holds for every 2-positive linear
map Φ. �

We say that a complex function f on Mn is in the Lieb class L
if f(A) ≥ 0 whenever A ≥ O, and |f(X)|2 ≤ f(A)f(B) whenever[

A X
X∗ B

]
≥ O. Several examples of such functions are given in MA

(pages 268–270). We have come across several interesting 2× 2 block
matrices that are positive. Many Schwarz type inequalities for func-
tions in the class L can be obtained from these block matrices.

The next few results concern maps associated with pinchings and
their norms.

Let D(A) be the diagonal part of a matrix:

D(A) = diag(A) =

n∑

j=1

PjAPj , (3.26)

where Pj = eje
∗
j is the orthogonal projection onto the one-dimensional

space spanned by the vector ej . This is a special case of the pinching
operation C introduced in Example 2.2.1 (vii). Since

∑
Pj = I and

Pj ≥ O, we think of the sum (3.26) as a noncommutative convex
combination. There is another interesting way of expressing for D(A).
Let ω = e2πi/n and let U be the diagonal unitary matrix
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U = diag(1, ω, . . . , ωn−1). (3.27)

Then

D(A) =
1

n

n−1∑

k=0

U∗kAUk. (3.28)

(The sum on the right-hand side is the Schur product of A by a matrix
whose i, j entry is

n−1∑

k=0

ωk(j−i) = nδij .)

This idea can be generalized.

3.6.2 Exercise

Partition n × n matrices into an r × r block form in which the diag-
onal blocks are square matrices of dimension d1, . . . , dr. Let C be the
pinching operation sending the block matrix A = [[Aij ]] to the block

diagonal matrix C(A) = diag(A11, . . . , Arr). Let ω = e2πi/r and let V
be the diagonal unitary matrix

V = diag(I1, ωI2, . . . , ω
r−1Ir)

where Ij is the identity matrix of size dj . Show that

C(A) =
1

r

r−1∑

k=0

V ∗kAV k. (3.29)

3.6.3 Exercise

Let J be a pattern and let J be the map on Mn induced by J as
follows. The i, j entry of J (A) is aij for all (i, j) ∈ J and is zero
otherwise. Suppose J is an equivalence relation on {1, 2, . . . , n} and
has r equivalence classes. Show that
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J (A) =
1

r

r−1∑

k=0

W ∗kAW k, (3.30)

where W is a diagonal unitary matrix. Conversely, show that if J
can be represented as

J (A) =

r−1∑

k=0

λkU
∗
kAUk, (3.31)

where Uj are unitary matrices and λj are positive numbers with∑
λj = 1, then J is an equivalence relation with r equivalence classes.

It is not possible to represent J as a convex combination of unitary
transforms as in (3.31) with fewer than r terms.

3.6.4 Exercise

Let V be the permutation matrix

V =




0 0 0 . . . 1
1 0 0 . . . 0
0 1 0 . . . 0
. . . . .
0 0 0 1 0


. (3.32)

Show that

D
(

n−1∑

k=0

V ∗kAV k

)
=

trA

n
I. (3.33)

Find n2 unitary matrices Wj such that

trA

n
I =

n2∑

j=1

W ∗
j AWj for all A. (3.34)

This gives a representation of the linear map T (A) = trA
n I from Mn

into scalar matrices.
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It is of some interest to consider what is left of a matrix after the
diagonal part is removed. Let

O(A) = A −D(A) (3.35)

be the off-diagonal part of A. Using (3.28) we can write

O(A) =

(
1 − 1

n

)
A +

1

n

n−1∑

k=1

U∗kAUk.

From this we get

‖O(A)‖ ≤ 2

(
1 − 1

n

)
‖A‖. (3.36)

This inequality is sharp. To see this choose A = E − n
2 I, where E is

the matrix all of whose entries are equal to one.

3.6.5 Exercise

Let B = E − I. We have just seen that the Schur multiplier norm

‖SB‖ = 2

(
1 − 1

n

)
. (3.37)

Find an alternate proof of this using Theorem 3.4.3.

3.6.6 Exercise

Use Exercise 3.6.3 to show that

‖A − T (A)‖ ≤ 2

(
1 − 1

n2

)
‖A‖ for all A.

This inequality can be improved:

(i) Every matrix is unitarily similar to one with constant diago-
nal entries. [Prove this by induction, with the observation that
trA
n = 〈x,Ax〉 for some unit vector x.]

(ii) Thus, in some orthonormal basis, removing T (A) has the same
effect as removing D(A) from A. Thus
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‖A − T (A)‖ ≤ 2

(
1 − 1

n

)
‖A‖ for all A, (3.38)

and this inequality is sharp.

3.6.7 Exercise

The Schur multiplier norm is multiplicative over tensor products; i.e.,

‖SA⊗B‖ = ‖SA‖ ‖SB‖ for all A,B.

3.6.8 Exercise

Let B =
[

1 1
0 1

]
. Show, using Theorem 3.4.3 and otherwise, that

‖SB‖ =
2√
3
.

Let △n be the triangular truncation operator taking every n×n matrix
to its upper triangular part. Then we have ‖△2‖ = 2/

√
3. Try to find

‖△3‖.

3.6.9 Exercise

Fill in the details in the following proof of the power inequality (3.20).

(i) If a is a complex number, then |a| ≤ 1 if and only if Re(1−za) ≥
0 for all z with |z| < 1.

(ii) w(A) ≤ 1 if and only if Re(I − zA) ≥ O for |z| < 1.

(iii) w(A) ≤ 1 if and only if Re((I − zA)−1) ≥ O for |z| < 1.

(iv) Let ω = e2πi/k. Prove the identity

1

1 − zk
=

1

k

k−1∑

j=0

1

1 − ωjz
if zk 6= 1.
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(v) If w(A) ≤ 1, then

(I − zkAk)−1 =
1

k

k−1∑

j=0

(I − ωjzA)−1, for |z| < 1.

(vi) Assume w(A) ≤ 1. Use (v) and (iii) to conclude that w(Ak) ≤ 1.

By Exercise 3.2.7, if [[Aij ]] is a positive element of Mm(Mn), then
the m × m matrices [[ tr Aij ]] and [[ ‖Aij‖2

2 ]] are positive. Matricial
curiosity should make us wonder whether this remains true when tr
is replaced by other matrix functions like det, and the norm ‖ · ‖2 is
replaced by the norm ‖ · ‖.

For the sake of economy, in the following discussion we use (tem-
porarily) the terms positive, m-positive, and completely positive to
encompass nonlinear maps as well. Thus we say a map Φ : Mn → Mk

is positive if Φ(A) ≥ O whenever A ≥ O, and completely positive
if [[Φ(Aij)]] is positive whenever a block matrix [[Aij ]] is positive.
For example, det(A) is a positive (nonlinear) function, and we have
observed that Φ(A) = ‖A‖2

2 is a completely positive (nonlinear) func-
tion. In Chapter 1 we noted that a function ϕ : C → C is completely
positive if and only if it can be expressed in the form (1.40).

3.6.10 Proposition

Let ϕ(A) = ‖A‖2. Then ϕ is 2-positive but not 3-positive.

Proof. The 2-positivity is an easy consequence of Proposition 1.3.2.
The failure of ϕ to be 3-positive is illustrated by the following example
in M3(M2). Let

X =

[
1 0
0 0

]
, Y =

[
1 1
1 1

]
, Z =

[
1 −1
−1 1

]
.

Since X,Y and Z are positive, so is the matrix

A =




X X X
X X X
X X X


+




Y Y O
Y Y O
O O O


+




O O O
O Z Z
O Z Z


.

If we write A as [[Aij ]] where Aij , 1 ≤ i, j ≤ 3 are 2× 2 matrices, and
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replace each Aij by ‖Aij‖2 we obtain the matrix



α α 1
α 9 α
1 α α


, α =

7 +
√

45

2
.

This matrix is not positive as its determinant is negative. �

3.6.11 Exercise

Let Φ : M2 → M2 be the map defined as Φ(X) = |X|2 = X∗X. Use
the example in Exercise 1.6.6 to show that Φ is not two-positive.

3.6.12 Exercise

Let ⊗kA = A ⊗ · · · ⊗ A be the k-fold tensor power of A. Let A =
[[Aij ]] be an element of Mm(Mn). Then ⊗kA is a matrix of size (mn)k

whereas [[⊗kAij ]] is a matrix of size mnk. Show that the latter is a
principal submatrix of the former. Use this observation to conclude
that ⊗k is a completely positive map from Mn to Mnk .

3.6.13 Exercise

For 1 ≤ k ≤ n let ∧kA be the kth antisymmetric tensor power of an
n × n matrix A. Show that ∧k is a completely positive map from Mn

into M(n
k)

. If

tn − c1(A)tn−1 + c2(A)tn−2 − · · · + (−1)ncn(A)

is the characteristic polynomial of A, then ck(A) = tr ∧kA. Hence each
ck is a completely positive functional. In particular, det is completely
positive.

Similar considerations apply to other “symmetry classes” of ten-
sors and the associated “Schur functions.” Thus, for example, the
permanent function is completely positive.

3.6.14 Exercise

Let Φ : Mn → Mk be any 4-positive map. Let X,Y,Z be positive
elements of Mn and let

A =




X + Y X + Y X X
X + Y X + Y + Z X + Z X

X X + Z X + Z X
X X X X


.
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Then A = [[Aij ]] is positive. Let X = [I,−I, I,−I]. Consider the
product X[[Φ(Aij)]]X

∗ and conclude that

Φ(Y + X) + Φ(X + Z) ≤ Φ(X) + Φ(X + Y + Z). (3.39)

Inequalities of the form (3.39) occur in other contexts. For example,
if P,Q and R are (rectangular) matrices and the product PQR is
defined, then the Frobenius inequality is the relation between ranks:

rk(PQ) + rk(QR) ≤ rk(Q) + rk(PQR).

The inequality (4.49) in Chapter 4 is another one with a similar struc-
ture.

3.7 NOTES AND REFERENCES

The theory of completely positive maps has been developed by opera-
tor algebraists and mathematical physicists over the last four decades.

The two major results of Section 3.1, the theorems of Stinespring
and Arveson, hold in much more generality. We have given their baby
versions by staying in finite dimensions.

Stinespring’s theorem was proved in W. F. Stinespring, Positive
functions on C∗-algebras, Proc. Amer. Math. Soc., 6 (1955) 211–
216. To put it in context, it is helpful to recall an earlier theorem due
to M. A. Naimark.

Let (X,S) be a compact Hausdorff space with its Borel σ-algebra S,
and let P(H) be the collection of orthogonal projections in a Hilbert
space H. A projection-valued measure is a map S 7−→ P (S) from S
into P(H) that is countably additive: if {Si} is a countable collection
of disjoint sets, then

〈P
(
∪∞

i=1 Si

)
x, y〉 =

∞∑

i=1

〈P (Si)x, y〉

for all x and y in H. The spectral theorem says that if A is a bounded
self-adjoint operator on H, then there exists a projection-valued mea-
sure on [−‖A‖, ‖A‖] taking values in P(H), and with respect to this
measure A can be written as the integral A =

∫
λdP (λ).

Instead of projection-valued measures we may consider an operator-
valued measure. This assigns to each set S an element E(S) of L(H),
the map is countably additive, and sup {‖E(S)‖ : S ∈ S} < ∞. Such
a measure gives rise to a complex measure

µx,y(S) = 〈E(S)x, y〉 (3.40)
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for each pair x, y in H. This in turn gives a bounded linear map Φ
from the space C(X) into L(H) via

〈Φ(f)x, y〉 =

∫
fdµx,y. (3.41)

This process can be reversed. Given a bounded linear map Φ :
C(X) → L(H) we can construct complex measures µx,y via (3.40)
and then an operator-valued measure E via (3.39). If E(S) is a posi-
tive operator for all S, we say the measure E is positive.

Naimark’s theorem says that every positive operator-valued mea-
sure can be dilated to a projection-valued measure. More precisely,
if E is a positive L(H)-valued measure on (X,S), then there exist a
Hilbert space K, a bounded linear map V : H → K, and a P(H)-
valued measure P such that

E(S) = V ∗P (S)V for all S in S.

The point of the theorem is that by dilating to the space K we
have replaced the operator-valued measure E by the projection-valued
measure P which is nicer in two senses: it is more familiar because of
its connections with the spectral theorem and the associated map Φ
is now a ∗-homomorphism of C(X).

The Stinespring theorem is a generalization of Naimark’s theorem
in which the commutative algebra C(X) is replaced by a unital C∗-
algebra. The theorem in its full generality says the following. If Φ
is a completely positive map from a unital C∗-algebra a into L(H),
then there exist a Hilbert space K, a unital ∗-homomorphism (i.e.,
a representation) Π : a → L(K), and a bounded linear operator V :
H → K with ‖V ‖2 = ‖Φ(I)‖ such that

Φ(A) = V ∗Π(A)V for all A ∈ a.

A “minimal” Stinespring dilation (in which K is a smallest possible
space) is unique up to unitary equivalence.

The term completely positive was introduced in this paper of Stine-
spring. The theory of positive and completely positive maps was
vastly expanded in the hugely influential papers by W. B. Arveson,
Subalgebras of C∗-algebras, I, II, Acta Math. 123 (1969) 141–224
and 128 (1972) 271–308. In the general version of Theorem 3.1.5 the
space Mn is replaced by an arbitrary C∗-algebra a, and Mn is replaced
by the space L(H) of bounded operators in a Hilbert space H. This
theorem is the Hahn-Banach theorem of noncommutative analysis.

Theorem 3.1.1 is Stinespring’s theorem restricted to algebras of ma-
trices. It was proved by M.-D. Choi, Completely positive linear maps
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on complex matrices, Linear Algebra Appl., 10 (1975) 285–290, and
by K. Kraus, General state changes in quantum theory, Ann. of Phys.,
64 (1971) 311–335. It seems that the first paper has been well known
to operator theorists and the second to physicists. The recent devel-
opments in quantum computation and quantum information theory
have led to a renewed interest in these papers.

The book M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information, Cambridge University Press, 2000, is a
popular introduction to this topic. An older book from the physics
literature is K. Kraus, States, Effects, and Operations: Fundamen-
tal Notions of Quantum Theory, Lecture Notes in Physics Vol. 190,
Springer, 1983.

A positive matrix of trace one is called a density matrix in quan-
tum mechanics. It is the noncommutative analogue of a probability
distribution (a vector whose coordinates are nonnegative and add up
to one). The requirement that density matrices are mapped to den-
sity matrices leads to the notion of a trace-preserving positive map.
That this should happen also when the original system is tensored
with another system (put in a larger system) leads to trace-preserving
completely positive maps. Such maps are called quantum channels.
Thus quantum channels are maps of the form (3.3) with the addi-
tional requirement

∑
VjV

∗
j = I. The operators Vj are called the noise

operators, or errors of the channel.
The representation (3.3) is one reason for the wide use of com-

pletely positive maps. Attempts to obtain some good representation
theorem for positive maps were not very successful. See E. Størmer,
Positive linear maps of operator algebras, Acta Math., 110 (1963)
233–278, S. L. Woronowicz, Positive maps of low dimensional matrix
algebras, Reports Math. Phys., 10 (1976) 165–183, and M.-D. Choi,
Some assorted inequalities for positive linear maps on C∗-algebras, J.
Operator Theory, 4 (1980) 271–285. Let us say that a positive linear
map Φ : Mn → Mk is decomposable if it can be written as

Φ(A) =
r∑

i=1

V ∗
i AVi +

s∑

j=1

W ∗
j AtWj.

If every positive linear map were decomposable it would follow that
every real polynomial in n variables that takes only nonnegative val-
ues is a sum of squares of real polynomials. That the latter statement
is false was shown by David Hilbert. The existence of a counterex-
ample to the question on positive linear maps gives an easy proof of
this result of Hilbert. See M.-D. Choi, Positive linear maps, cited in
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Chapter 2, for a discussion.
The results of Exercises 3.2.2 and 3.2.3 are due to Choi and are

given in his 1980 paper cited above. The idea that positive maps
have a restricted 2-positive behavior seems to have first appeared in
T. Ando, Concavity of certain maps ..., Linear Algebra Appl., 26
(1979) 203–241. Examples of maps on Mn that are (n − 1)-positive
but not n-positive were given in M.-D. Choi, Positive linear maps on
C∗-algebras, Canadian J. Math., 24 (1972) 520–529. The simplest
examples are of the type given in Exercise 3.2.4 (with n and (n − 1)
in place of 3 and 2, respectively).

The Schwarz inequality is one of the most important and useful
inequalities in mathematics. It is natural to seek its extensions in all
directions and to expect that they will be useful. The reader should see
the book J. M. Steele, The Cauchy-Schwarz Master Class, Math. As-
sociation of America, 2004, for various facets of the Schwarz inequality.
(Noncommutative or matrix versions are not included.) Section IX.5
of MA is devoted to certain Schwarz inequalities for matrices. The
operator inequality (3.19) was first proved for special types of positive
maps (including completely positive ones) by E. H. Lieb and M. B.
Ruskai, Some operator inequalities of the Schwarz type, Adv. Math.,
12 (1974) 269–273. That 2-positivity is an adequate assumption was
noted by Choi in his 1980 paper. Theorem 3.3.1 was proved in R. Bha-
tia and C. Davis, More operator versions of the Schwarz inequality,
Commun. Math. Phys., 215 (2000) 239–244. It was noted there (ob-
servation due to a referee) that 4-positivity of Φ is adequate to ensure
the validity of (3.16). That 3-positivity suffices but 2-positivity does
not was observed by R. Mathias, A note on: “More operator versions
of the Schwarz inequality,” Positivity, 8 (2004) 85–87. The inequal-
ities (3.23) and (3.25) are proved in the paper of Bhatia and Davis
cited above, and in a slightly different form in S.-G. Wang and W.-C.
Ip, A matrix version of the Wielandt inequality and its applications,
Linear Algebra Appl., 296 (1999) 171–181.

Section 3.4 is based on material in the paper V. I. Paulsen, S. C.
Power, and R. R. Smith, Schur products and matrix completions, J.
Funct. Anal., 85 (1989) 151–178, and on Paulsen’s two books cited
earlier. Theorem 3.4.3 is attributed to U. Haagerup, Decomposition
of completely bounded maps on operator algebras, unpublished report.
Calculating the exact value of the norm of a linear operator on a
Hilbert space is generally a difficult problem. Calculating its norm as
a Schur multiplier is even more difficult. Haagerup’s Theorem gives
some methods for such calculations.

Completion problems of various kinds have been studied by several
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authors with diverse motivations coming from operator theory, elec-
trical engineering, and optimization. A helpful introduction may be
obtained from C. R. Johnson, Matrix completion problems: a survey,
Proc. Symposia in Applied Math. Vol. 40, American Math. Soc.,
1990.

Theorem 3.5.1 was proved by T. Ando, Structure of operators with
numerical radius one, Acta Sci. Math. (Szeged), 34 (1973) 11–15.
The proof given here is different from the original one, and is from T.
Ando, Operator Theoretic Methods for Matrix Inequalities, Sapporo,
1998. Theorem 3.5.3 is proved in T. Ando and K. Okubo, Induced
norms of the Schur multiplier operator, Linear Algebra Appl., 147
(1991) 181–199. This and Haagerup’s theorem are included in Ando’s
1998 report from which we have freely borrowed. A lot more informa-
tion about inequalities for Schur products may be obtained from this
report.

The inequality (3.20) is called Berger’s theorem. The lack of sub-
multiplicativity and of its weaker substitutes has been a subject of
much investigation in the theory of the numerical radius.

We have seen that even under the stringent assumption AB = BA
we need not have w(AB) ≤ w(A)w(B). Even the weaker assertion
w(AB) ≤ ‖A‖w(B) is not always true in this case. A 12 × 12
counterexample, in which w(AB) > (1.01)‖A‖w(B) was found by
V. Müller, The numerical radius of a commuting product, Michigan
Math. J., 35 (1988) 255–260. This was soon followed by K. R.
Davidson and J.A.R. Holbrook, Numerical radii of zero-one matrices,
ibid., 35 (1988) 261–267, who gave a simpler 9 × 9 example in which
w(AB) > C‖A‖w(B) where C = 1/ cos(π/9) > 1.064. The reader will
find in this paper a comprehensive discussion of the problem and its
relation to other questions in dilation theory.

The formula (3.28) occurs in R. Bhatia, M.-D. Choi, and C. Davis,
Comparing a matrix to its off-diagonal part, Oper. Theory: Adv. and
Appl., 40 (1989) 151–164. The results of Exercises 3.6.2–3.6.6 are also
taken from this paper. The ideas of this paper are taken further in
R. Bhatia, Pinching, trimming, truncating and averaging of matrices,
Am. Math. Monthly, 107 (2000) 602–608. Finding the exact norm
of the operator △n of Exercise 3.6.8 is hard. It is a well-known and
important result of operator theory that for large n, the norm ‖△n‖
is close to log n. See the paper by R. Bhatia (2000) cited above.

The operation of replacing the matrix entries Aij of a block ma-
trix [[Aij ]] by f(Aij) for various functions f has been studied by
several linear algebraists. See, for example, J. De Pillis, Transfor-
mations on partitioned matrices, Duke Math. J., 36 (1969) 511–515,
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R. Merris, Trace functions I, ibid., 38 (1971) 527–530, and M. Mar-
cus and W. Watkins, Partitioned Hermitian matrices, ibid., 38(1971)
237–249. Results of Exercises 3.6.11-3.6.13 are noted in this paper
of Marcus and Watkins. Two foundational papers on this topic that
develop a general theory are T. Ando and M.-D. Choi, Non-linear
completely positive maps, in Aspects of Positivity in Functional Anal-
ysis, North-Holland Mathematical Studies Vol. 122, 1986, pp.3–13,
and W. Arveson, Nonlinear states on C∗-algebras, in Operator Al-
gebras and Mathematical Physics, Contemporary Mathematics Vol.
62, American Math. Society, 1987, pp. 283–343. Characterisations
of nonlinear completely positive maps and Stinespring-type represen-
tation theorems are proved in these papers. These are substantial
extensions of the representation (1.40). Exercise 3.6.14 is borrowed
from the paper of Ando and Choi.

Finally, we mention that the theory of completely positive maps is
now accompanied by the study of completely bounded maps, just as
the study of positive measures is followed by that of bounded mea-
sures. The two books by Paulsen are an excellent introduction to the
major themes of this subject. The books K. R. Parthasarathy, An
Introduction to Quantum Stochastic Calculus, Birkhäuser, 1992, and
P. A. Meyer, Quantum Probability for Probabilists, Lecture Notes in
Mathematics Vol. 1538, Springer, 1993, are authoritative introduc-
tions to noncommutative probability, a subject in which completely
positive maps play an important role.





Chapter Four

Matrix Means

Let a and b be positive numbers. Their arithmetic, geometric, and
harmonic means are the familiar objects

A(a, b) =
a + b

2
,

G(a, b) =
√

ab,

H(a, b) =

(
a−1 + b−1

2

)−1

.

These have several properties that any object that is called a mean
M(a, b) should have. Some of these properties are

(i) M(a, b) > 0,

(ii) If a ≤ b, then a ≤ M(a, b) ≤ b,

(iii) M(a, b) = M(b, a) (symmetry),

(iv) M(a, b) is monotone increasing in a, b,

(v) M(αa, αb) = αM(a, b) for all positive numbers a, b, and α,

(vi) M(a, b) is continuous in a, b.

The three of the most familiar means listed at the beginning satisfy
these conditions. We have the inequality

H(a, b) ≤ G(a, b) ≤ A(a, b). (4.1)

Among other means of a, b is the logarithmic mean defined as

L(a, b) =
a − b

log a − log b
=

∫ 1

0
atb1−tdt. (4.2)
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This has the properties (i)–(vi) listed above. Further

G(a, b) ≤ L(a, b) ≤ A(a, b). (4.3)

This is a refinement of the arithmetic-geometric mean inequality—the
second part of (4.1). See Exercise 4.5.5 and Lemma 5.4.5.

Averaging operations are of interest in the context of matrices as
well, and various notions of means of positive definite matrices A and
B have been studied. A mean M(A,B) should have properties akin
to (i)–(vi) above. The order “≤” now is the natural order X ≤ Y on
Hermitian matrices. It is obvious what the analogues of properties
(i)–(vi) are for the case of positive definite matrices. Property (v)
has another interpretation: for positive numbers a, b and any nonzero
complex number x

M(x̄ax, x̄bx) = x̄M(a, b)x.

It is thus natural to expect any mean M(A,B) to satisfy the condition

(v′) M(X∗AX, X∗BX) = X∗M(A,B)X,

for all A,B > O and all nonsingular X. This condition is called con-
gruence invariance and if the equality (v′) is true, we say that M is
invariant under congruence. Restricting X to scalar matrices we see
that

M(αA,αB) = αM(A,B)

for all positive numbers α.
So we say that a matrix mean is a binary operation (A,B) 7−→

M(A,B) on the set of positive definite matrices that satisfies (the
matrix versions of) the conditions (i)–(vi), the condition (v) being
replaced by (v′).

What are good examples of such means? The arithmetic mean
presents no difficulties. It is obvious that M(A,B) = 1

2(A + B) has
all the six properties listed above. The harmonic mean of A and B

should be the matrix
(

A−1+B−1

2

)−1
. Now some of the properties (i)–

(vi) are obvious, others are not. It is not clear what object should be
called the geometric mean in this case. The product A1/2B1/2 is not
Hermitian, let alone positive, unless A and B commute.

In this chapter we define a geometric mean of positive matrices and
study its properties along with those of the arithmetic and the har-
monic mean. We use these ideas to prove some theorems on operator
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monotonicity and convexity. These theorems are then used to derive
important properties of the quantum entropy. A positive matrix in
this chapter is assumed to be strictly positive. Extensions of some of
the considerations to positive semidefinite matrices are briefly indi-
cated.

4.1 THE HARMONIC MEAN AND THE GEOMETRIC MEAN

The parallel sum of two positive matrices A,B is defined as the matrix

A : B = (A−1 + B−1)−1. (4.4)

This definition could be extended to positive semidefinite matrices A,
B by a limit from above:

A : B = lim
ε↓0

[
(A + εI)−1 + (B + εI)−1

]−1
if A,B ≥ O. (4.5)

This operation was studied by Anderson and Duffin in connection
with electric networks. (If two wires with resistances r1 and r2 are
connected in parallel, then their total resistance r according to one of
Kirchhoff’s laws is given by 1

r = 1
r1

+ 1
r2

.)

The harmonic mean of A,B is the matrix 2(A : B). To save on
symbols we will not introduce a separate notation for it. Note that

A : B = (A−1 + B−1)−1 =
[
A−1(A + B)B−1

]−1
= B(A + B)−1A

= B(A + B)−1A + B(A + B)−1B − B(A + B)−1B

= B − B(A + B)−1B. (4.6)

By symmetry

A : B = A − A(A + B)−1A. (4.7)

Thus A : B is the Schur complement of A + B in either of the block
matrices

[
A A
A A + B

]
or

[
B B
B A + B

]
.
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Several properties of A : B can be derived from this.

4.1.1 Theorem

For any two positive matrices A,B we have

(i) A : B ≤ A, A : B ≤ B.

(ii) A : B is monotonically increasing and jointly concave in the
arguments A,B.

(iii)

A : B = max

{
Y : Y ≥ O,

[
A A
A A + B

]
≥
[

Y O
O O

]}
. (4.8)

Proof.

(i) The subtracted terms in (4.6) and (4.7) are positive.

(ii) See Corollary 1.5.3.

(iii) See Corollary 1.5.5. �

4.1.2 Proposition

If A ≤ B, then A ≤ 2(A : B) ≤ B.

Proof.

A ≤ B ⇒ 2A ≤ A + B

⇒ 2(A + B)−1 ≤ A−1

⇒ 2A(A + B)−1A ≤ A

⇒ A = 2A − A ≤ 2A − 2A(A + B)−1A = 2(A : B).

A similar argument shows 2(A : B) ≤ B. �

Thus the harmonic mean satisfies properties (i)–(v) listed at the
beginning of the chapter. (Notice one difference: for positive numbers
a, b either a ≤ b or b ≤ a; this is not true for positive matrices A,B.)

How about the geometric mean of A,B? If A,B commute, then
their geometric mean can be defined as A1/2B1/2. But this is the
trivial case. In all other cases this matrix is not even Hermitian. The
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matrix 1
2

(
A1/2B1/2 +B1/2A1/2

)
is Hermitian but not always positive.

Positivity is restored if we consider

1

2
(B1/4A1/2B1/4 + A1/4B1/2A1/4).

It turns out that this is not monotone in A,B. (Exercise: construct
a 2 × 2 example to show this.) One might try other candidates; e.g.,
e(log A+log B)/2, that reduce to a1/2b1/2 for positive numbers. This par-
ticular one is not monotone.

Here the property (v′)—congruence invariance—that we expect a
mean to have is helpful. We noted in Exercise 1.6.1 that any two posi-
tive matrices are simultaneously congruent to diagonal matrices. The
geometric mean of two positive diagonal matrices A and B, naturally,
is A1/2B1/2.

Let us introduce a notation and state a few elementary facts that
will be helpful in the ensuing discussion. Let GL(n) be the group
consisting of n × n invertible matrices. Each element X of GL(n)
gives a congruence transformation on Mn. We write this as

ΓX(A) = X∗AX. (4.9)

The collection {ΓX : X ∈ GL(n)} is a group of transformations on
Mn. We have ΓXΓY = ΓY X and Γ−1

X = ΓX−1 . This group preserves
the set of positive matrices. Given a pair of matrices A,B we write
ΓX(A,B) for (ΓX(A),ΓX (B)) .

Let A,B be positive matrices. Then

ΓA−1/2(A,B) = (I,A−1/2BA−1/2).

We can find a unitary matrix U such that U∗ (A−1/2BA−1/2
)
U = D,

a diagonal matrix. So

ΓA−1/2U (A,B) = (I,D).

The geometric mean of the matrices I and D is

D1/2 = U∗
(
A−1/2BA−1/2

)1/2
U.

So, if the geometric mean of two positive matrices A and B is required
to satisfy the property (v′), then it has to be the matrix

A#B = A1/2
(
A−1/2BA−1/2

)1/2
A1/2. (4.10)
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If A and B commute, then A#B = A1/2B1/2. The expression (4.10)
does not appear to be symmetric in A and B. However, it is. This is
seen readily from another description of A#B. By Exercise 1.2.13 the
matrix in (4.10) is the unique positive solution of the equation

XA−1X = B. (4.11)

If we take inverses of both sides, then this equation is transformed to
XB−1X = A. This shows that

A#B = B#A. (4.12)

Using Theorem 1.3.3 and the relation

A = (A#B)B−1(A#B)

that we have just proved, we see that
[

A A#B
A#B B

]
≥ O. (4.13)

On the other hand if X is any Hermitian matrix such that
[

A X
X B

]
≥ O, (4.14)

then again by Theorem 1.3.3, we have A ≥ XB−1X. Hence

B−1/2AB−1/2 ≥ B−1/2XB−1XB−1/2 = (B−1/2XB−1/2)2.

Taking square roots and then applying the congruence ΓB1/2 , we get
from this

B1/2(B−1/2AB−1/2)1/2B1/2 ≥ X.

In other words A#B ≥ X for any Hermitian matrix X that satisfies
the inequality (4.14).

The following theorem is a summary of our discussion so far.

4.1.3 Theorem

Let A and B be two positive matrices. Let

A#B = A1/2(A−1/2BA−1/2)1/2A1/2.

Then

(i) A#B = B#A,
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(ii) A#B is the unique positive solution of the equation XA−1X =
B,

(iii) A#B has an extremal property:

A#B = max

{
X : X = X∗,

[
A X
X B

]
≥ O

}
. (4.15)

The properties (i)–(vi) listed at the beginning of the chapter can
be verified for A#B using one of the three characterizations given in
Theorem 4.1.3. Thus, for example, the symmetry (4.12) is apparent
from (4.15) as well. Monotonicity in the variable B is apparent from
(4.10) and Proposition 1.2.9; and then by symmetry we have mono-
tonicity in A. This is plain from (4.15) too. From (4.15) we see that
A#B is jointly concave in A and B.

Since congruence operations preserve order, the inequality (4.1) is
readily carried over to operators. We have

2(A : B) ≤ A#B ≤ 1

2
(A + B). (4.16)

It is easy to see either from (4.10) or from Theorem 4.1.3 (ii) that

A−1#B−1 = (A#B)−1. (4.17)

4.1.4 Exercise

Use the characterization (4.15) and the symmetry (4.12) to give an-
other proof of the second inequality in (4.16). Use (4.15) and (4.17)
to give another proof of the first inequality in (4.16).

If A or B is not strictly positive, we can define their geometric mean
by a limiting procedure, as we did in (4.5) for the parallel sum.

The next theorem describes the effect of positive linear maps on
these means.

4.1.5 Theorem

Let Φ be any positive linear map on Mn. Then for all positive matrices
A,B

(i) Φ(A : B) ≤ Φ(A) : Φ(B);

(ii) Φ(A#B) ≤ Φ(A)#Φ(B).
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Proof. (i) By the extremal characterization (4.8)

[
A − (A : B) A

A A + B

]
≥ O.

By Exercise 3.2.2 (ii), we get from this

[
Φ(A) − Φ(A : B) Φ(A)

Φ(A) Φ(A) + Φ(B)

]
≥ O.

Again, by (4.8) this means Φ(A : B) ≤ Φ(A) : Φ(B).
The proof of (ii) is similar to this. Use the extremal characterization

(4.15) for A#B, and Exercise 3.2.2 (ii). �

For the special map ΓX(A) = X∗AX, where X is any invertible
matrix the two sides of (i) and (ii) in Theorem 4.1.5 are equal.This
need not be the case if X is not invertible.

4.1.6 Exercise

Let A,B, and X be the 2 × 2 matrices

A =

[
4 0
0 1

]
, B =

[
20 6
6 2

]
, X =

[
1 0
0 0

]
.

Show that

X∗(A#B)X =

[
8 0
0 0

]
, (X∗AX)#(X∗BX) =

[√
80 0
0 0

]
.

So, if Φ(A) = X∗AX, then in this example we have

Φ(A#B) 6= Φ(A)#Φ(B).

The inequality (4.13) and Proposition 1.3.2 imply that there exists
a contraction K such that A#B = A1/2KB1/2. More is true as the
next Exercise and Proposition show.

4.1.7 Exercise

Let U = (A−1/2BA−1/2)1/2A1/2B−1/2. Show that U∗U = UU∗ = I.
Thus we can write

A#B = A1/2UB1/2,
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where U is unitary.

It is an interesting fact that this property characterizes the geomet-
ric mean:

4.1.8 Proposition

Let A,B be positive matrices and suppose U is a unitary matrix such
that A1/2UB1/2 is positive. Then A1/2UB1/2 = A#B.

Proof. Let G = A1/2UB1/2. Then

[
A G
G B

]
=

[
A1/2 O
O B1/2

] [
I U

U∗ I

] [
A1/2 O
O B1/2

]
∼
[

I U
U∗ I

]
.

We have another congruence

[
A G
G B

]
∼
[

A − GB−1G O
O B

]
.

(See the proof of Theorem 1.3.3.) Note that the matrix
[

I U
U∗ I

]
has

rank n. Since congruence preserves rank we must have A = GB−1G.
But then, by Theorem 4.1.3 (ii), G = A#B. �

Two more ways of expressing the geometric mean are given in the
following propositions. We use here the fact that if X is a matrix with
positive eigenvalues, then it has a unique square root Y with positive
eigenvalues. A proof is given in Exercise 4.5.2.

4.1.9 Proposition

Let A,B be positive matrices and let
(
A−1B

)1/2
be the the square root

of A−1B that has positive eigenvalues. Then

A#B = A
(
A−1B

)1/2
.

Proof. We have the identity

A−1/2BA−1/2 = A1/2A−1BA−1/2 =
[
A1/2

(
A−1B

)1/2
A−1/2

]2
.

Taking square roots, we get

(
A−1/2BA−1/2

)1/2
= A1/2

(
A−1B

)1/2
A−1/2.
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This, in turn, shows that

A1/2
(
A−1/2BA−1/2

)1/2
A1/2 = A

(
A−1B

)1/2
. �

4.1.10 Exercise

Show that for positive matrices A,B we have

A#B =
(
AB−1

)1/2
B.

4.1.11 Proposition

Let A,B be positive matrices. Then

A#B = (A + B)
[
(A + B)−1A(A + B)−1B

]1/2
.

(The matrix inside the square brackets has positive eigenvalues and
the square root chosen is the one with positive eigenvalues.)

Proof. Use the identity

X =
(
X−1 + I

)−1
(I + X)

to get

A−1B =
(
B−1A + I

)−1 (
I + A−1B

)

= (A + B)−1 (AB−1
)−1

(A + B).

Taking square roots, we get

(
A−1B

)1/2
= (A + B)−1 (AB−1

)−1/2
(A + B).

This gives

A
(
A−1B

)1/2
(A + B)−1 (AB−1

)1/2
B = A (A + B)−1 B.

Using Proposition 4.1.9 and Exercise 4.1.10, we get from this

(A#B) (A + B)−1 (A#B) = A (A + B)−1 B.

Premultiply both sides by (A + B)−1, and then take square roots, to
get

(A + B)−1 (A#B) =
[
(A + B)−1A(A + B)−1B

]1/2
.
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This proves the proposition. �

On first sight, the three expressions in 4.1.9–4.1.11 do not seem to
be positive matrices, nor do they seem to be symmetric in A, B.

The expression (4.10) and the ones given in Propositions 4.1.9 and
4.1.11 involve finding square roots of matrices, as should be expected
in any definition of geometric mean. Calculating these square roots
is not an easy task. For 2× 2 matrices we have a formula that makes
computation easier.

4.1.12 Proposition

Let A and B be 2× 2 positive matrices each of which has determinant
one. Then

A#B =
A + B√

det(A + B)
.

Proof. Use the formula given for A#B in Proposition 4.1.9. Let X =
(A−1B)1/2. Then det X = 1 and so X has two positive eigenvalues λ
and 1/λ. Further,

det (A + B) = det
[
A(I + A−1B)

]
= det(I + X2) = (λ + 1/λ)2,

and hence tr X =
√

det(A + B). So, by the Cayley-Hamilton theorem

X2 −
√

det(A + B)X + I = O.

Multiply on the left by A and rearrange terms to get

A(A−1B)1/2 =
A + B√

det(A + B)
. �

Exercise. Let A and B be 2×2 positive matrices and let det A = α2,
det B = β2. Then

A#B =

√
αβ√

det (α−1A + β−1B)
(α−1A + β−1B).

4.2 SOME MONOTONICITY AND CONVEXITY THEOREMS

In Section 5 of Chapter 1 and Section 7 of Chapter 2 we have dis-
cussed the notions of monotonicity, convexity and concavity of opera-
tor functions. Operator means give additional information as well as



112 CHAPTER 4

more insight into these notions. Some of the theorems in this section
have been proved by different arguments in Chapter 1.

4.2.1 Theorem

If A ≥ B ≥ O, then Ar ≥ Br for all 0 ≤ r ≤ 1.

Proof. We know that the assertion is true for r = 0, 1. Suppose
r1, r2 are two real numbers for which Ar1 ≥ Br1 and Ar2 ≥ Br2.
Then, by monotonicity of the geometric mean, we have Ar1#Ar2 ≥
Br1#Br2. This is the same as saying A(r1+r2)/2 ≥ B(r1+r2)/2. Thus,
the set of real numbers r for which Ar ≥ Br is a closed convex set.
Since 0 and 1 belong to this set, so does the entire interval [0, 1]. �

4.2.2 Exercise

We know that the function f(t) = t2 is not matrix monotone of order
2. Show that the function f(t) = tr on R+ is not matrix monotone of
order 2 for any r > 1. [Hint: Prove this first for r > 2.]

It is known that a function f from R+ into itself is operator mono-
tone if and only if it is operator concave. For the functions f(t) = tr,
0 ≤ r ≤ 1, operator concavity is easily proved:

4.2.3 Theorem

For 0 < r < 1, the map A 7−→ Ar on positive matrices is concave.

Proof. Use the representation

Ar =

∫ ∞

0
A(λ + A)−1 dµ(λ), 0 < r < 1 (4.18)

(see Theorem 1.5.8). The integrand

A(λ + A)−1 = (λA−1 + I)−1 =
A

λ
: I

is concave in A by Theorem 4.1.1. Hence, so is the integral. (The
integrand is also monotone in A. In Section 1.5 we used this argument
to prove Theorem 4.2.1 and some other statements.) �
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4.2.4 Exercise

For 0 < r < 1, the map A 7−→ A−r on positive matrices is monotone
decreasing and convex. [Use the facts that A 7−→ Ar is monotone and
concave, and A 7−→ A−1 is monotone decreasing and convex.] See
Exercise 1.5.10 also.

4.2.5 Exercise

The map A 7−→ log A on positive matrices is monotone and concave.

[Hint: d
dr

∣∣∣
r=0+

ar = log a .]

4.2.6 Exercise

The map A 7−→ −A log A on positive matrices is concave.

[Hint: d
dr

∣∣∣
r=1+

ar = a log a. Use Theorem 1.5.8.]

Some results on convexity of tensor product maps can be deduced
easily using the harmonic mean. The following theorem was proved
by Lieb. This formulation and proof are due to Ando.

4.2.7 Theorem

For 0 < r < 1, the map f(A,B) = Ar ⊗ B1−r is jointly concave and
monotone on pairs of positive matrices A,B.

Proof. Note that Ar ⊗ B1−r = (I ⊗ B)(A ⊗ B−1)r. So, by the
representation (4.18) we have

f(A,B) =

∫ ∞

0
(I ⊗ B)(A ⊗ B−1)(λI ⊗ I + A ⊗ B−1)−1 dµ(λ).

The integrand can be written as

(λA−1 ⊗ I + I ⊗ B−1)−1 =

(
A ⊗ I

λ

)
: (I ⊗ B).

This is monotone and jointly concave in A,B. Hence, so is f(A,B).
�
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4.2.8 Exercise

Let r1, r2 be positive numbers with r1 + r2 ≤ 1. Show that f(A,B) =
Ar1⊗Br2 is jointly concave and monotone on pairs of positive matrices
A,B. [Hint: Let r1 + r2 = r. Then f(A,B) = (Ar1/r ⊗ Br2/r)r.]

4.2.9 Exercise

Let r1, r2, . . . , rk be positive numbers with r1 + · · ·+rk = 1. Then the
product Ar1

1 ⊗Ar2
2 ⊗· · ·⊗Ark

k is jointly concave on k-tuples of positive
matrices A1, . . . , Ak.

A special case of this says that for k = 1, 2, . . . , the map A 7−→
⊗kA1/k on positive matrices is concave. This leads to the inequality

⊗k(A + B)1/k ≥ ⊗kA1/k + ⊗kB1/k. (4.19)

By restricting to symmetry classes of tensors one obtains inequalities
for other induced operators. For example

∧k(A + B)1/k ≥ ∧kA1/k + ∧kB1/k. (4.20)

For k = n, this reduces to the famous Minkowski determinant inequal-
ity

det(A + B)1/n ≥ det A1/n + det B1/n. (4.21)

It is clear that many inequalities of this kind are included in the master
inequality (4.19).

4.2.10 Exercise

For 0 ≤ r ≤ 1, the map f(A,B) = A−r ⊗ B1+r is jointly convex on
pairs of positive matrices A,B. [Hint: f(A,B) =

∫∞
0 (I ⊗ B)(λA ⊗

I + I ⊗ B)−1(I ⊗ B) dµ(λ).]

4.3 SOME INEQUALITIES FOR QUANTUM ENTROPY

Theorem 4.2.7 is equivalent to a theorem of Lieb on the concavity of
one of the matrix functions arising in the study of entropy in quantum
mechanics. We explain this and related results briefly.
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Let (p1, . . . , pk) be a probability vector; i.e., pj ≥ 0 and
∑

pj = 1.
The function

H(p1, . . . , pk) = −
∑

pj log pj, (4.22)

called the entropy function, is of fundamental importance in informa-
tion theory.

In quantum mechanics, the role analogous to that of (p1, . . . , pk) is
played by a positive matrix A with tr A = 1. Such a matrix is called
a density matrix. The entropy of A is defined as

S(A) = −tr (A log A). (4.23)

The condition tr A = 1 is not essential for some of our theorems; and
we will drop it some times.

It is easy to see that the function (4.22) is jointly concave in pj. An
analogous result is true for the quantum mechanical entropy (4.23).
In fact we have proved a much stronger result in Exercise 4.2.6. The
proof of concavity of the scalar function (4.23) does not require the
machinery of operator concave function.

4.3.1 Exercise

Let A be any Hermitian matrix and f any convex function on R. Then
for every unit vector x

f(〈x,Ax〉) ≤ 〈x, f(A)x〉. (4.24)

Use this to prove that S(A) is a concave function of A. [Hint: Choose
an orthonormal basis {ui} consisting of eigenvectors of 1

2(A + B).
Show that for any convex function f

∑〈
ui, f

(
A + B

2

)
ui

〉
≤
∑〈

ui,
f(A) + f(B)

2
ui

〉
.]

4.3.2 Proposition

Let f be a convex differentiable function on R and let A,B be any two
Hermitian matrices. Then

tr [f(A) − f(B)] ≥ tr
[
(A − B)f ′(B)

]
. (4.25)
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Proof. Let {ui} be an orthonormal basis whose elements are eigen-
vectors of B corresponding to eigenvalues βi. Then

tr[f(A) − f(B)]=
∑

〈ui, [f(A) − f(B)]ui〉

=
∑

[〈ui, f(A)ui〉 − f(βi)]

≥
∑

[f(〈ui, Aui〉) − f(βi)]

≥
∑

[〈ui, Aui〉 − βi]f
′(βi)

=
∑

〈ui, (A − B)f ′(B)ui〉

= tr[(A − B)f ′(B)].

The first inequality in this chain follows from (4.24) and the second
from the convexity of f . �

Other notions of entropy have been introduced in classical informa-
tion theory and in quantum mechanics. One of them is called skew
entropy or entropy of A relative to K, where A is positive and K
Hermitian. This is defined as

S(A,K) =
1

2
tr
[
A1/2,K

]2
. (4.26)

More generally we may consider for 0 < t < 1 the function

St(A,K) =
1

2
tr
[
At,K

] [
A1−t,K

]
. (4.27)

Here [X,Y ] is the Lie bracket XY − Y X. Note that

St(A,K) = tr (KAt KA1−t − K2A). (4.28)

The quantity (4.26) was introduced by Wigner and Yanase, (4.27) by
Dyson. These are measures of the amount of noncommutativity of A
with a fixed Hermitian operator K. The Wigner-Yanase-Dyson con-
jecture said St(A,K) is concave in A for each K. Note that tr (−K2A)
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is linear in A. So, from the expression (4.28) we see that the conjecture
says that for each K, and for 0 < t < 1, the function tr KAtKA1−t is
concave in A. A more general result was proved by Lieb in 1973.

4.3.3 Theorem (Lieb)

For any matrix X, and for 0 ≤ t ≤ 1, the function

f(A,B) = tr X∗AtXB1−t

is jointly concave on pairs of positive matrices A,B.

Proof. We will show that Theorems 4.2.7 and 4.3.3 are equivalent.
The tensor product H ⊗ H∗ and the space L(H) are isomorphic.

The isomorphism ϕ acts as ϕ(x ⊗ y∗) = xy∗. If ei, 1 ≤ i ≤ n is the
standard basis for H, and Eij the matrix units in L(H), then

ϕ(ei ⊗ e∗j ) = eie
∗
j = Eij,

ϕ−1(A) =
∑

j

(Aej) ⊗ e∗j .

From this one can see that

〈
ϕ−1(A1), ϕ

−1(A2)
〉
H⊗H∗ = tr A∗

1A2 = 〈A1, A2〉L(H) .

Thus ϕ is an isometric isomorphism between the Hilbert space H ⊗
H∗ and the Hilbert space L(H) (the latter with the inner product
〈A1, A2〉L(H) = tr A∗

1A2).
Let ϕ be the map induced by ϕ on operators; i.e., ϕ makes the

diagram

H⊗H∗

A ⊗ B∗

H⊗H∗

L(H)

ϕ(A ⊗ B∗)

L(H)

ϕ

ϕ

?

-

?

-
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commute. It is easy to see that

ϕ(A ⊗ B∗)(T ) = ATB∗ for all T ∈ L(H).

So

tr X∗AXB∗ = 〈X,AXB∗〉L(H)

= 〈X,ϕ(A ⊗ B∗)(X)〉L(H)

=
〈
ϕ−1(X) , (A ⊗ B∗)ϕ−1(X)

〉
H⊗H∗ .

Thus for positive A,B, the concavity of tr X∗AtXB1−t is equivalent
to the concavity of At ⊗ B1−t. �

Other useful theorems can be derived from Theorem 4.3.3. Here is
an example. The concept of relative entropy in classical information
theory is defined as follows. Let p, q be two probability distributions;
i.e., p = (p1, . . . , pk), q = (q1, . . . , qk), pj ≥ 0, qj ≥ 0,

∑
pj =

∑
qj =

1. Their relative entropy is defined as

S(p|q) =





∑
j pj(log pj − log qj) if pj = 0 whenever qj = 0

+∞, otherwise.

The relative entropy of density matrices A,B is defined as

S(A|B) = tr A(log A − log B). (4.29)

4.3.4 Exercise (Klein’s Inequality)

For positive matrices A,B

tr A(log A − log B) ≥ tr (A − B). (4.30)

[Hint: Use Proposition 4.3.2. with f(x) = x log x]. Thus, if A,B are
density matrices, then

S(A|B) ≥ 0. (4.31)

Note
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S(A|I) = −S(A) = tr A log A. (4.32)

(I is not a density matrix.) We have seen that S(A|I) is a convex
function of A.

4.3.5 Theorem

The relative entropy S(A|B) is a jointly convex function of A and B.

Proof. For A positive and X arbitrary, let

It(A,X) = tr (X∗AtXA1−t − X∗XA),

I(A,X) =
d

dt

∣∣∣∣
t=0+

It(A,X).

By Lieb’s theorem It(A,X) is a concave function of A. Hence, so is
I(A,X). Note that

I(A,X) = tr (X∗(log A)XA − X∗X(log A)A).

Now, given the positive matrices A,B let T,X be the 2 × 2 block
matrices

T =

(
A O
O B

)
, X =

(
O O
I O

)
.

Then I(T,X) = −S(A|B). Since I(T,X) is concave, S(A|B) is con-
vex. �

The next few results describe the behaviour of the entropy function
(4.23) with respect to tensor products. Here the condition tr A = 1
will be crucial for some of the statements.

4.3.6 Proposition

Let A,B be any two density matrices. Then

S(A ⊗ B) = S(A) + S(B). (4.33)
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Proof. Let A,B have eigenvalues λ1, . . . , λn and µ1, . . . , µm, re-
spectively. Then

∑
λi = 1, and

∑
µj = 1. The tensor product A⊗B

has eigenvalues λiµj, 1 ≤ i ≤ n, 1 ≤ j ≤ m. So

S(A ⊗ B)=−
∑

i,j

λiµj log(λiµj)

=−
∑

i

λi log λi −
∑

µj log µj

= S(A) + S(B). �

The equation (4.33) says that the entropy function S is additive
with respect to tensor products.

Now let H1,H2 be two Hilbert spaces, and let A ∈ L(H1⊗H2). The
operator A is called decomposable if A = A1 ⊗ A2 where A1, A2 are
operators on H1,H2. Not every operator on H1⊗H2 is decomposable.
We associate with every operator A on H1 ⊗H2 two operators A1, A2

on H1,H2 called the partial traces of A. These are defined as follows.
Let dimH1 = n, dimH2 = m and let e1, . . . , em be an orthonormal

basis in H2. For A ∈ L(H1 ⊗H2) its partial trace A1 = trH2A is an
operator on H1 defined by the relation

〈x,A1y〉 =

m∑

i=1

〈x ⊗ ei, A(y ⊗ ei)〉 (4.34)

for all x, y ∈ H1.

4.3.7 Exercise

The operator A1 above is well defined. (It is independent of the basis
{ei} chosen for H2.)

The partial trace A2 = trH1A is defined in an analogous way.
It is clear that if A is positive, then so are the partial traces A1, A2;

and if A is a density matrix, then so are A1, A2. Further, if A = A1 ⊗
A2 and A1, A2 are density matrices, then A1 = trH2A, A2 = trH1A.

4.3.8 Exercise

Let A be an operator on H1 ⊗ H2 with partial traces A1, A2. Then
for every decomposable operator B of the form B1⊗ I on H1 ⊗H2 we
have



MATRIX MEANS 121

tr AB = tr A1B1. (4.35)

The next proposition is called the subadditivity property of entropy.

4.3.9 Proposition

Let A be a density matrix in H1⊗H2 with partial traces A1, A2. Then

S(A) ≤ S(A1) + S(A2) = S(A1 ⊗ A2). (4.36)

Proof. The matrix A1 ⊗ A2 is a density matrix. So, by Exercise
4.3.4, the relative entropy S(A|A1 ⊗ A2) is positive. By definition

S(A|A1 ⊗ A2)= tr A(log A − log(A1 ⊗ A2))

= tr A(log A − log(A1 ⊗ I) − log(I ⊗ A2)).

By Exercise 4.3.8, this shows

S(A|A1 ⊗ A2)= tr A log A − tr A1 log A1 − tr A2 log A2

=−S(A) + S(A1) + S(A2). (4.37)

Since this quantity is positive, we have the inequality in (4.36). �

There is another way of looking at the partial trace operation that
is more transparent and makes several calculations easier:

4.3.10 Proposition

Let f1, . . . , fn and e1, . . . , em be orthonormal bases for H1 and H2.
Let A be an operator on H1 ⊗ H2 and write its matrix in the basis
fi ⊗ ej in the n × n partitioned form

A = [[Aij ]] (4.38)

where Aij , 1 ≤ i, j ≤ n are m× m matrices. Then trH2A is the n× n
matrix defined as
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trH2A = [[trAij ]] . (4.39)

Proof. It is not difficult to derive this relation from (4.34). �

4.3.11 Exercise

The map trH2 is the composition of three special kinds of maps de-
scribed below.

(i) Let ω = e2πi/m and let U = diag(1, ω, . . . , ωm−1). Let W be the
n × n block-diagonal matrix W = U ⊕ U ⊕ · · · ⊕ U (n copies).
Let

Φ1(A) =
1

m

m−1∑

k=0

W ∗kAW k, (4.40)

where A is as in (4.38). Show that

Φ1(A) = [[diag (Aij)]]. (4.41)

(See (3.28)).

(ii) Let V be the m × m permutation matrix defined as

V =




0 0 0 . . . 1
1 0 0 . . . 0
0 1 0 . . . 0
· · · · ·
0 0 0 · · 1 0


.

Let X be the n×n block-diagonal matrix X = V ⊕V ⊕ · · · ⊕V
(n copies). Let

Φ2(A) =
1

m

m−1∑

k=0

X∗kAXk. (4.42)
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Show that

Φ2(Φ1(A)) =

[[(
1

m
trAij

)
Im

]]
. (4.43)

Thus the effect of Φ2 on the block matrix (4.41) is to replace
each of the diagonal matrices Aij by the scalar matrix with the
same trace as Aij.

(iii) Let A be as in (4.38) and let A
(1,1)
ij be the (1,1) entry of Aij .

Let

Φ3(A) = m
[[

A
(1,1)
ij

]]
. (4.44)

Note that the matrix
[[

A
(1,1)
ij

]]
is a principal n × n submatrix

of A. We have then

trH2A = Φ3Φ2Φ1(A). (4.45)

(iv) Each of the maps Φ1,Φ2,Φ3 is completely positive; Φ1,Φ2, and
Φ3Φ2Φ1 are trace preserving.

The next theorem says that taking partial traces of A,B reduces
the relative entropy S(A|B).

4.3.12 Theorem

Let A,B be density matrices on H1 ⊗H2. Then

S(trH2A|trH2B) ≤ S(A|B). (4.46)

Proof. It is clear from the definition (4.29) that

S(U∗AU |U∗BU) = S(A|B) (4.47)

for every unitary matrix U . Since S(A|B) is jointly convex in A,B by
Theorem 4.3.5, it follows from the representations (4.40) and (4.42)
that
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S(Φ2Φ1(A)|Φ2Φ1(B)) ≤ S(Φ1(A)|Φ1(B)) ≤ S(A|B).

Now note that Φ2Φ1(A) is a matrix of the form 1
m [[αij ]]⊗ Im and Φ3

maps it to the n × n matrix [[αij ]]. Thus

S (Φ3Φ2Φ1(A)|Φ3Φ2Φ1(B)) = S (Φ2Φ1(A)|Φ2Φ1(B)) .

This proves the theorem. �

4.3.13 Exercise

Let Φ : Mn → Mk be any completely positive trace-preserving map.
Use Stinespring’s theorem (Theorem 3.1.2) to show that

S (Φ(A)|Φ(B)) ≤ S(A|B). (4.48)

The inequality (4.46) is a special case of this.

Now we can state and prove the major result of this section: the
strong subadditivity of the entropy function S(A). This is a much
deeper property than the subadditivity property (4.36). It is conve-
nient to adopt some notations. We have three Hilbert spaces H1, H2,
H3; A123 stands for a density matrix on H1⊗H2⊗H3. A partial trace
like trH3A123 is denoted as A12, and so on for other indices. Likewise
a partial trace trH1A12 is denoted by A2.

4.3.14 Theorem (Lieb-Ruskai)

Let A123 be any density matrix in H1 ⊗H2 ⊗H3. Then

S(A123) + S(A2) ≤ S(A12) + S(A23). (4.49)

Proof. By Theorem 4.3.12, taking the partial trace trH3 gives

S(A12|A1 ⊗ A2) ≤ S(A123|A1 ⊗ A23).

The equation (4.37) gives
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S(A123|A1 ⊗ A23) = −S(A123) + S(A1) + S(A23),

and

S(A12|A1 ⊗ A2) = −S(A12) + S(A1) + S(A2).

Together, these three relations give (4.49). �

4.4 FURUTA’S INEQUALITY

We have seen that the function f(A) = A2 is not order preserving on
positive matrices; i.e., we may have A and B for which A ≥ B ≥ O
but not A2 ≥ B2. Can some weaker form of monotonicity be retrieved
for the square function? This question can have different meanings.
For example, we can ask whether the condition A ≥ B ≥ O leads to
an operator inequality implied by A2 ≥ B2. For positive matrices A
and B consider the statements

(i) A2 ≥ B2;

(ii) BA2B ≥ B4;

(iii) (BA2B)1/2 ≥ B2.

Clearly (i) ⇒ (ii) ⇒ (iii). Let A ≥ B. We know that the inequality
(i) does not always hold in this case. Nor does the weaker inequality
(ii). A counterexample is provided by

A =

[
3 1
1 1

]
, B =

[
2 1
1 1

]
.

The matrix BA2B − B4 =
[

24 13
13 7

]
has determinant −1.

It turns out that the inequality (iii) does follow from A ≥ B.
Note also that A2 ≥ B2 ⇒ A4 ≥ AB2A ⇒ A2 ≥ (AB2A)1/2. Once

again, for A,B in the example given above we do not have A4 ≥
AB2A. But we will see that A ≥ B always implies A2 ≥ (AB2A)1/2.

The most general result inspired by these considerations was proved
by T. Furuta. To put it in perspective, consider the following state-
ments:
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(i) A ≥ B ≥ O;

(ii) Ap ≥ Bp, 0 ≤ p ≤ 1;

(iii) BrApBr ≥ Bp+2r, 0 ≤ p ≤ 1, r ≥ 0;

(iv) (BrApBr)1/q ≥ (Bp+2r)1/q, 0 ≤ p ≤ 1, r ≥ 0, q ≥ 1.

We know that (i) ⇒ (ii) ⇒ (iii) ⇒ (iv). When p > 1, the implication
(i) ⇒ (ii) breaks down. Furuta’s inequality says that (iv) is still valid
for all p but with some restriction on q.

4.4.1 Theorem (Furuta’s Inequality)

Let A ≥ B ≥ O. Then

(BrApBr)1/q ≥ B(p+2r)/q (4.50)

for p ≥ 0, r ≥ 0, q ≥ 1, q ≥ p+2r
1+2r .

Proof. For 0 ≤ p ≤ 1, the inequality (4.50) is true even without the
last restriction on q. So assume p ≥ 1. If q ≥ p+2r

1+2r , then p+2r
(1+2r)q ≤ 1.

So, the inequality (4.50) holds for such q provided it holds in the
special case q = p+2r

1+2r . Thus we need to prove

(BrApBr)(1+2r)/(p+2r) ≥ B1+2r (4.51)

for p ≥ 1, r ≥ 0. We may assume that A,B are strictly positive. Let

BrAp/2 = UP. (4.52)

be the polar decomposition. Then

BrApBr = UP 2 U∗.

Hence, for any q > 0

(BrApBr)1/q = UP 2/qU∗,

and, therefore (using (4.52) thrice) we get
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B−r(BrApBr)1/qB−r = B−rUP 2/qU∗B−r

= (Ap/2P−1U∗)(UP 2/qU∗)(UP−1Ap/2)

= Ap/2(P 2)1/q−1Ap/2

= Ap/2(Ap/2B2rAp/2)1/q−1Ap/2

= Ap/2(A−p/2B−2rA−p/2)1−1/qAp/2. (4.53)

Now suppose 0 ≤ r ≤ 1/2. Then A2r ≥ B2r, and hence B−2r ≥ A−2r.
Choose q = p+2r

1+2r . Then 1 − 1
q = p−1

p+2r ≤ 1. So, we get from (4.53)

B−r(BrApBr)1/qB−r ≥ Ap/2(A−p/2A−2rA−p/2)(p−1)/(p+2r)Ap/2 = A.

Thus

(BrApBr)1/q ≥ BrABr ≥ B1+2r. (4.54)

We have thus proved the inequality (4.51) for r in the domain [0, 1/2].
This domain is extended by inductive steps as follows. Let

A1 = (BrApBr)1/q, B1 = B1+2r, (4.55)

where r ∈ [0, 1/2] and q = (p + 2r)/(1 + 2r). We have proved that
A1 ≥ B1. Let p1, r1 be any numbers with p1 ≥ 1, r1 ∈ [0, 1/2]
and let q1 = (p1 + 2r1)/(1 + 2r1). Apply the inequality (4.54) to
A1, B1, p1, r1, q1 to get

(Br1
1 Ap1

1 Br1
1 )1/q1 ≥ B1+2r1

1 . (4.56)

This is true, in particular, when p1 = q and r1 = 1/2. So we have

(B
1/2
1 Aq

1B
1/2
1 )1/q1 ≥ B2

1 .

Substitute the values of A1, B1 from (4.55) to get from this

(B2r+1/2ApB2r+1/2)1/q1 ≥ B2(1+2r). (4.57)

Put 2r + 1/2 = s, and note that with the choices just made
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q1 =
p1 + 2r1

1 + 2r1
=

q + 1

2
=

(p + 2r)/(1 + 2r) + 1

2

=
p + 4r + 1

4r + 2
=

p + 2s

1 + 2s
.

So, (4.57) can be written as

(BsApBs)(1+2s)/(p+2s) ≥ B1+2s,

where s ∈ [1/2, 3/2]. Thus we have enlarged the domain of validity
of the inequality (4.51) from r in [0, 1/2] to r in [0, 3/2]. The process
can be repeated to see that the inequality is valid for all r ≥ 0. �

4.4.2 Corollary

Let A,B, p, q, r be as in the Theorem. Then

(Ap+2r)1/q ≥ (ArBpAr)1/q. (4.58)

Proof. Assume A,B are strictly positive. Since B−1 ≥ A−1 > O,
(4.50) gives us

(A−rB−pA−r)1/q ≥ A−(p+2r)/q.

Taking inverse on both sides reverses this inequality and gives us
(4.58). �

4.4.3 Corollary

Let A ≥ B ≥ O, p ≥ 1, r ≥ 0. Then

(BrApBr)1/p ≥ (Bp+2r)1/p, (4.59)

(Ap+2r)1/p ≥ (ArBpAr)1/p. (4.60)
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4.4.4 Corollary

Let A ≥ B ≥ O. Then

(BA2B)1/2 ≥ B2, (4.61)

A2 ≥ (AB2A)1/2. (4.62)

These are the statements with which we began our discussion in
this section. Another special consequence of Furuta’s inequality is
the following.

4.4.5 Corollary

Let A ≥ B ≥ O. Then for 0 < p < ∞

Ap # B−p ≥ I. (4.63)

Proof. Choose r = p/2 and q = 2 in (4.58) to get

Ap ≥
(
Ap/2 Bp Ap/2

)1/2
.

This is equivalent to the inequality

I ≥ A−p/2
(
Ap/2 Bp Ap/2

)1/2
A−p/2 = A−p # Bp.

Using the relation (4.17) we get (4.63). �

For 0 ≤ p ≤ 1, the inequality (4.63) follows from Theorem 4.2.1.
While the theorem does need this restriction on p, the inequality (4.63)
exhibits a weaker monotonicity of the powers Ap for p > 1.

4.5 SUPPLEMENTARY RESULTS AND EXERCISES

The matrix equation

AX − XB = Y (4.64)
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is called the Sylvester equation. If no eigenvalue of A is an eigenvalue
of B, then for every Y this equation has a unique solution X. The
following exercise outlines a proof of this.

4.5.1 Exercise

(i) Let A(X) = AX. This is a linear operator on Mn. Each eigen-
value of A is an eigenvalue of A with multiplicity n times as
much. Likewise the eigenvalues of the operator B(X) = XB are
the eigenvalues of B.

(ii) The operators A and B commute. So the spectrum of A− B is
contained in the difference σ(A) − σ(B), where σ(A) stands for
the spectrum of A.

(iii) Thus if σ(A) and σ(B) are disjoint, then σ(A − B) does not
contain the point 0. Hence the operator A − B is invertible.
This is the same as saying that for each Y, there exists a unique
X satisfying the equation (4.64).

The Lyapunov equation (1.14) is a special type of Sylvester equa-
tion.

There are various ways in which functions of an arbitrary matrix
may be defined. One standard approach via the Jordan canonical
form tells us how to explicitly write down a formula for f(A) for every
function that is n − 1 times differentiable on an open set containing
σ(A). Using this one can see that if A is a matrix whose spectrum is
in (0,∞), then it has a square root whose spectrum is also in (0,∞).
Another standard approach using power series expansions is equally
useful.

4.5.2 Exercise

Let B2
1 = A and B2

2 = A. Then

B1(B1 − B2) + (B1 − B2)B2 = O.

Suppose all eigenvalues of B1 and B2 are positive. Use the (uniqueness
part of) Exercise 4.5.1 to show that B1 = B2. This shows that for every
matrix A whose spectrum is contained in (0,∞) there is a unique
matrix B for which B2 = A and σ(B) is contained in (0,∞).

The same argument shows that if σ(A) is contained in the open right
half plane, then there is a unique matrix B with the same property
that satisfies the equation B2 = A.
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4.5.3 Exercise

Let Φ be a positive unital linear map on Mn. Use Theorem 4.1.5(i) to
show that if A and B are strictly positive, then

(
Φ
(
(A + B)−1

))−1
≥
(
Φ(A−1)

)−1
+
(
Φ(B−1)

)−1
.

Thus the map A 7→
(
Φ(A−1)

)−1
is monotone and concave on the set

of positive matrices.

4.5.4 Exercise

Let Φ be a positive unital linear map. Show that for all positive
matrices A

log Φ(A) ≥ Φ(log A).

(See Proposition 2.7.1.)

The Schur product A ◦ B is a principal submatrix of A ⊗ B. So,
there is a positive unital linear map Φ from Mn2 into Mn such that
Φ(A ⊗ B) = A ◦ B. This observation is useful in deriving convexity
and concavity results about Schur products from those about tensor
products. We leave it to the reader to obtain such results from what
we have done in Chapters 2 and 4.

The arithmetic, geometric, and harmonic means are the best-known
examples of means. We have briefly alluded to the logarithmic mean
in (4.2). Several other means arise in various contexts. We mention
two families of such means.

For 0 ≤ ν ≤ 1 let

Hν(a, b) =
aν b1−ν + a1−ν bν

2
. (4.65)

We call these the Heinz means. Notice that Hν = H1−ν , H1/2 is
the geometric mean, and H0 = H1 is the arithmetic mean. Thus,
the family Hν interpolates between the geometric and the arithmetic
mean. Each Hν satisfies conditions (i)–(vi) for means.

4.5.5 Exercise

(i) For fixed positive numbers a and b, Hν(a, b) is a convex function
of ν in the interval [0, 1], and attains its minimum at ν = 1/2.
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Thus
√

ab ≤ Hν(a, b) ≤ a + b

2
. (4.66)

(ii) Show that
∫ 1

0
Hν(a, b)dν = L(a, b), (4.67)

and use this to prove the inequality (4.3).

For −∞ ≤ p ≤ ∞ let

Bp(a, b) =
(ap + bp

2

)1/p
. (4.68)

These are called the power means or the binomial means. Here it is
understood that

B0(a, b) = lim
p→0

Bp(a, b) =
√

ab,

B∞(a, b) = lim
p→∞

Bp(a, b) = max(a, b),

B−∞(a, b) = lim
p→−∞

Bp(a, b) = min(a, b).

The arithmetic and the harmonic means are included in this family.
Properties (i)–(vi) of means may readily be verified for this family.

In Section 4.1 we defined the geometric mean A#B by using the
congruence ΓA−1/2 to reduce the pair (A,B) to the commuting pair

(I,A−1/2BA−1/2). A similar procedure may be used for the other
means. Given a mean M on positive numbers, let

f(x) = M(x, 1). (4.69)

4.5.6 Exercise

From properties (i)–(vi) of M deduce that the function f on R+ has
the following properties:

(i) f(1) = 1,

(ii) xf(x−1) = f(x),

(iii) f is monotone increasing,

(iv) f is continuous,

(v) f(x) ≤ 1 for 0 < x ≤ 1, and f(x) ≥ 1 for x ≥ 1.
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4.5.7 Exercise

Let f be a map of R+ into itself satisfying the properties (i)–(v) given
in Exercise 4.5.6. For positive numbers a and b let

M(a, b) = a f(b/a). (4.70)

Show that M is a mean.
Given a mean M(a, b) on positive numbers let f(x) be the function

associated with it by the relation (4.69). For positive matrices A and
B let

M(A,B) = A1/2 f(A−1/2BA−1/2)A1/2. (4.71)

When M(a, b) =
√

ab this formula gives the geometric mean A#B
defined in (4.10). Does this procedure always lead to an operator mean
satisfying conditions (i)–(vi)? For the geometric mean we verified its
symmetry by an indirect argument. The next proposition says that
such symmetry is a general fact.

4.5.8 Proposition

Let M(A,B) be defined by (4.71). Then for all A and B

M(A,B) = M(B,A). (4.72)

Proof. We have to show that

f(A−1/2BA−1/2) = A−1/2B1/2f(B−1/2AB−1/2)B1/2A−1/2. (4.73)

If A−1/2B1/2 = UP is the polar decomposition, then B1/2A−1/2 =
PU∗ and B−1/2A1/2 = P−1U∗. The left-hand side of (4.73) is, there-
fore, equal to

f(UP 2U∗) = Uf(P 2)U∗.

The right-hand side of (4.73) is equal to

UPf(P−2)PU∗.

So, (4.73) will be proved if we show that f(P 2) = Pf(P−2)P. This
follows from the fact that for every x we have f(x2) = x2f(x−2) as
shown in Exercise 4.5.6. �
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4.5.9 Exercise

Show that M(A,B) defined by (4.71) is invariant under congruence;
i.e.,

M(X∗AX, X∗BX) = X∗ M(A,B)X

for every invertible matrix X. [Hint: Use the polar decomposition.]

Our next concern is whether M(A,B) defined by (4.71) is monotone
in the variables A and B. This is so provided the function f is operator
monotone. In this case monotonicity in B is evident from the formula
(4.71). By symmetry it is monotone in A as well.

For the means that we have considered in this chapter the function
f is given by

f(x)=
1 + x

2
(arithmetic mean),

f(x)=
√

x (geometric mean),

f(x)=
2x

1 + x
(harmonic mean),

f(x)=

∫ 1

0
xtdt (logarithmic mean),

f(x)=
xν + x1−ν

2
, 0 ≤ ν ≤ 1 (Heinz means),

f(x)=
(xp + 1

2

)1/p
, −∞ ≤ p ≤ ∞ (binomial means).

The first five functions in this list are operator monotone. The last
enjoys this property only for some values of p.

4.5.10 Exercise

Let f be an operator monotone function on (0,∞). Then the function

g(x) = [f(xp)]1/p is operator monotone for 0 < p ≤ 1. [It may be
helpful, in proving this, to use a theorem of Loewner that says f
is operator monotone if and only if it has an analytic continuation
mapping the upper half-plane into itself. See MA Chapter V.]

4.5.11 Exercise

Show that the function

f(x) =
(xp + 1

2

)1/p
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is operator monotone if and only if −1 ≤ p ≤ 1.

Thus the binomial means Bp(a, b) defined by (4.68) lead to matrix
means satisfying all our requirements if and only if −1 ≤ p ≤ 1. The
mean B0(a, b) leads to the geometric mean A#B.

The logarithmic mean is important in different contexts, one of
them being heat flow. We explain this briefly. Heat transfer by steady
unidirectional conduction is governed by Fourier’s law. If the direc-
tion of heat flow is along the x-axis, this law says

q = kA
dT

dx
, (4.74)

where q is the rate of heat flow along the x-axis across an area A
normal to the x-axis, dT/dx is the temperature gradient along the
x direction, and k is a constant called thermal conductivity of the
material through which the heat is flowing.

The cross-sectional area A may be constant, as for example in a
cube. More often, as in the case of a fluid traveling in a pipe, it is a
variable. In such cases it is convenient for engineering calculations to
write (4.74) as

q = kAm
∆T

∆x
(4.75)

where Am is the mean cross section of the body between two points at
distance ∆x along the x-axis and ∆T is the difference of temperatures
at these two points. For example, in the case of a body with uniformly
tapering rectangular cross section, Am is the arithmetic mean of the
two boundary areas A1 and A2.

A very common situation is that of a liquid flowing through a long
hollow cylinder (like a pipe). Here heat flows through the sides of the
cylinder in a radial direction perpendicular to the axis of the cylinder.
The cross sectional area in this case is proportional to the distance
from the centre.

Consider the section of the cylinder bounded by two concentric
cylinders at distances x1 and x2 from the centre. Total heat flow
across this section given by (4.74) is

∫ x2

x1

dx

A
= k

∆T

q
, (4.76)

where A = 2πxL, L being the length of the cylinder. This shows that

q =
k 2πL ∆T

log x2 − log x1
.
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If we wish to write it in the form (4.75) with ∆x = x2 − x1, then we
must have

Am = 2πL
x2 − x1

log x2 − log x1
=

2πLx2 − 2πLx1

log 2πLx2 − log 2πLx1
.

In other words,

Am =
A2 − A1

log A2 − log A1
,

the logarithmic mean of the two areas bounding the section under
consideration. In the chemical engineering literature this is called the
logarithmic mean area.

If instead of a hollow cylinder we consider a hollow sphere, then the
cross-sectional area is proportional to the square of the distance from
the center. In this case we get from (4.76)

∫ x2

x1

dx

4πx2
= k

∆T

q
.

The reader can check that in this case

Am =
√

A1A2,

the geometric mean of the two areas bounding the annular section
under consideration.

In Chapter 6 we will see that the inequality between the geomet-
ric and the logarithmic mean plays a fundamental role in differential
geometry.

4.6 NOTES AND REFERENCES

The parallel sum (4.4) was introduced by W. N. Anderson and R. J.
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ture of the second law of thermodynamics, in Current Developments
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by A. Wehrl, General properties of entropy, Rev. Mod. Phys., 50
(1978) 221–260, and The many facets of entropy, Rep. Math. Phys.,
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the subject. The text by M. Ohya and D. Petz, Quantum Entropy
and Its Use, Springer, 1993, is another resource. The book by M.
A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information, Cambridge University Press, 2000, reflects the renewed
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∑
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−∑ pi log pi as a measure of “average lack of information” in a statis-
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p1, . . . , pn. The quantum analogue of a probability vector is a density
matrix A; i.e., A ≥ O and tr A = 1. The quantum entropy func-
tion S(A) = −tr A log A was defined by J. von Neumann, Thermody-
namik quantenmechanischer Gesamtheiten, Göttingen Nachr., 1927,
pp. 273–291; see also Chapter 5 of his book Mathematical Founda-
tions of Quantum Mechanics, Princeton University Press, 1955. Thus
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physicists, especially L. Boltzmann.

Theorem 4.3.3 was proved in E. H. Lieb, Convex trace functions
and the Wigner-Yanase-Dyson conjecture, Adv. Math., 11 (1973)
267–288. Because of its fundamental interest and importance, several
different proofs appeared soon after Lieb’s paper. One immediate
major application of this theorem was made in the proof of Theorem
4.3.14 by E. H. Lieb and M. B. Ruskai, A fundamental property of
quantum-mechanical entropy, Phys. Rev. Lett., 30 (1973) 434–436,
and Proof of the strong subadditivity of quantum-mechanical entropy,
J. Math. Phys., 14 (1973) 1938–1941. Several papers of Lieb are
conveniently collected in Inequalities, Selecta of Elliot H. Lieb, M.
Loss and M. B. Ruskai eds., Springer, 2002. The matrix-friendly
proof of Theorem 4.3.14 is adopted from R. Bhatia, Partial traces
and entropy inequalities, Linear Algebra Appl., 375 (2003) 211–220.

Three papers of G. Lindblad, Entropy, information and quantum
measurements, Commun. Math. Phys., 33 (1973) 305–322, Expec-
tations and entropy inequalities for finite quantum systems, ibid. 39
(1974) 111–119, and Completely positive maps and entropy inequali-
ties, ibid. 40 (1975) 147–151, explore various convexity properties of
entropy and their interrelations. For example, the equivalence of The-
orems 4.3.5 and 4.3.14 is noted in the second paper and the inequality
(4.48) is proved in the third.
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In the context of quantum statistical mechanics the tensor product
operation represents the physical notion of putting a system in a larger
system. In quantum information theory it is used to represent the
notion of entanglement of states. These considerations have led to
several problems very similar to the ones discussed in Section 4.3. We
mention one of these as an illustrative example. Let Φ be a completely
positive trace-preserving (CPTP) map on Mn. The minimal entropy
of the “quantum channel” Φ is defined as

Smin(Φ) = inf {S(Φ(A)) : A ≥ O, tr A = 1} .

It is conjectured that

Smin(Φ1 ⊗ Φ2) = Smin(Φ1) + Smin(Φ2)

for any two CPTP maps Φ1 and Φ2. See P. W. Shor, Equivalence of
additivity questions in quantum information theory, Commun. Math.
Phys., 246 (2004) 453–472 for a statement of several problems of this
type and their importance.

Furuta’s inequality was proved by T. Furuta, A ≥ B ≥ O assures

(BrApBr)1/q ≥ B(p+2r)/q for r ≥ 0, p ≥ 0, q ≥ 1 with (1 + 2r)q ≥
p + 2r, Proc. Am. Math. Soc. 101 (1987) 85–88. This paper sparked
off several others giving different proofs, extensions, and applications.
For example, T. Ando, On some operator inequalities, Math. Ann.,
279 (1987) 157–159, showed that if A ≥ B, then e−tA#etB ≤ I for
all t ≥ 0. It was pointed out at the beginning of Section 4.4 that
A ≥ B ≥ O does not imply A2 ≥ B2 but it does imply the weaker
inequality (BA2B)1/2 ≥ B2. This can be restated as A−2#B2 ≤ I.
In a similar vein, A ≥ B does not imply eA ≥ eB but it does imply
e−A#eB ≤ I. It is not surprising that Furuta’s inequality is related
to the theory of means and to properties of matrix exponential and
logarithm functions.

The name “Heinz means” for (4.65) is not standard usage. We have
called them so because of the famous inequalities of E. Heinz (proved
in Chapter 5). The means (4.68) have been studied extensively. See
for example, G. H. Hardy, J. E. Littlewood, and G. Polya, Inequali-
ties, Second Edition, Cambridge University Press, 1952. The matrix
analogues

Mp(A,B) =

(
Ap + Bp

2

)1/p

are analysed in K. V. Bhagwat and R. Subramanian, Inequalities be-
tween means of positive operators, Math. Proc. Cambridge Philos.
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Soc., 83 (1978) 393–401. It is noted there that the limiting value

M0(A,B) = exp
(

log A+log B
2

)
. We have seen that this is not a suit-

able definition of the geometric mean of A and B.
A very interesting article on the matrix geometric mean is J. D.

Lawson and Y. Lim, The geometric mean, matrices, metrics, and
more, Am. Math. Monthly 108 (2001) 797–812. The importance of
the logarithmic mean in engineering problems is discussed, for exam-
ple, in W. H. McAdams, Heat Transmission, Third Edition, McGraw
Hill, 1954.



Chapter Five

Positive Definite Functions

Positive definite functions arise naturally in many areas of mathemat-
ics. In this chapter we study some of their basic properties, construct
some examples, and use them to derive interesting results about pos-
itive matrices.

5.1 BASIC PROPERTIES

Positive definite sequences were introduced in Section 1.1.3. We re-
peat the definition. A (doubly infinite) sequence of complex numbers
{an : n ∈ Z} is said to be positive definite if for every positive integer
N, we have

N−1∑

r,s=0

ar−s ξr ξs ≥ 0, (5.1)

for every finite sequence of complex numbers ξ0, ξ1, . . . , ξN−1. This
condition is equivalent to the requirement that for each N = 1, 2, . . . ,
the N × N matrix




a0 a−1 . . . a−(N−1)

a1 a0 a−1 . . .
... . . . a−1

aN−1 . . . a1 a0


 (5.2)

is positive.
From this condition it is clear that we must have

a0 ≥ 0, a−n = an, |an| ≤ a0. (5.3)
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A complex-valued function ϕ on R is said to be positive definite if
for every positive integer N, we have

N−1∑

r,s=0

ϕ(xr − xs) ξr ξs ≥ 0, (5.4)

for every choice of real numbers x0, x1, . . . , xN−1, and complex num-
bers ξ0, ξ1, . . . , ξN−1. In other words ϕ is positive definite if for each
N = 1, 2, . . . the N × N matrix

[[ϕ(xr − xs)]] (5.5)

is positive for every choice of real numbers x0, . . . , xN−1. It follows
from this condition that

ϕ(0) ≥ 0, ϕ(−x) = ϕ(x), |ϕ(x)| ≤ ϕ(0). (5.6)

Thus every positive definite function is bounded, and its maximum
absolute value is attained at 0.

5.1.1 Exercise

Let ϕ(x) be the characteristic function of the set Z; i.e., ϕ(x) = 1 if
x ∈ Z and ϕ(x) = 0 if x ∈ R \ Z. Show that ϕ is positive definite.
This remains true when Z is replaced by any additive subgroup of R.

5.1.2 Lemma

If ϕ is positive definite, then for all x1, x2

|ϕ(x1) − ϕ(x2)|2 ≤ 2ϕ(0)Re[ϕ(0) − ϕ(x1 − x2)].

Proof. Assume, without loss of generality, that ϕ(0) = 1. Choose
x0 = 0. The 3 × 3 matrix
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A =




1 ϕ(x1) ϕ(x2)

ϕ(x1) 1 ϕ(x1 − x2)

ϕ(x2) ϕ(x1 − x2) 1




is positive. So for every vector u, the inner product 〈u,Au〉 ≥ 0.
Choose u = (z, 1,−1) where z is any complex number. This gives the
inequality

−2Re{z(ϕ(x1) − ϕ(x2))} − |z|2 ≤ 2 [1 − Reϕ(x1 − x2)].

Now choose z = ϕ(x2) − ϕ(x1). This gives

|ϕ(x2) − ϕ(x1)|2 ≤ 2Re [1 − ϕ(x1 − x2)]. �

Exercise 5.1.1 showed us that a positive definite function ϕ need
not be continuous. Lemma 5.1.2 shows that if the real part of ϕ is
continuous at 0, then ϕ is continuous everywhere on R.

5.1.3 Exercise

Let ϕ(x) be positive definite. Then

(i) ϕ(x) is positive definite.

(ii) For every real number t the function ϕ(tx) is positive definite.

5.1.4 Exercise

(i) If ϕ1, ϕ2 are positive definite, then so is their product ϕ1ϕ2.
(Schur’s theorem.)

(ii) If ϕ is positive definite, then |ϕ|2 is positive definite. So is Re ϕ.

5.1.5 Exercise

(i) If ϕ1, . . . , ϕn are positive definite, and a1, . . . , an are positive
real numbers, then a1ϕ1 + · · · + anϕn is positive definite.
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(ii) If {ϕn} is a sequence of positive definite functions and ϕn(x) →
ϕ(x) for all x, then ϕ is positive definite.

(iii) If ϕ is positive definite, then eϕ is positive definite, and so is
eϕ+a for every a ∈ R.

(iv) If ϕ(x) is a measurable positive definite function and f(t) is a
nonnegative integrable function, then

∫∞
−∞ ϕ(tx)f(t) dt is posi-

tive definite.

(v) If µ is a finite positive Borel measure on R and ϕ(x) a measurable
positive definite function, then the function

∫∞
−∞ ϕ(tx) dµ(t) is

positive definite. (The statement (iv) is a special case of (v).)

Let I be any interval and let K(x, y) be a bounded continuous
complex-valued function on I × I. We say K is a positive definite
kernel if

∫

I

∫

I
K(x, y) f(x) f(y) dx dy ≥ 0 (5.7)

for every continuous integrable function f on the interval I.

5.1.6 Exercise

(i) A bounded continuous function K(x, y) on I × I is a positive
definite kernel if and only if for all choices of points x1, . . . , xN

in I, the N × N matrix [[K(xi, xj)]] is positive.

(ii) A bounded continuous function ϕ on R is positive definite if and
only if the kernel K(x, y) = ϕ(x − y) is positive definite.

5.2 EXAMPLES

5.2.1

The function ϕ(x) = eix is positive definite since

∑

r,s

ei(xr−xs) ξr ξs =

∣∣∣∣∣
∑

r

eixr ξr

∣∣∣∣∣

2

≥ 0.
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Exercise: Write the matrix (5.5) in this case as uu∗ where u is a
column vector.

This example is fundamental. It is a remarkable fact that all pos-
itive definite functions can be built from this one function by proce-
dures outlined in Section 5.1.

5.2.2

The function ϕ(x) = cos x is positive definite.

Exercise: sin x is not positive definite. The matrix A in Exercise
1.6.6 has entries aij = cos(xi − xj) where xi = 0, π/4, π/2, 3π/4. It
follows that | cos x| is not positive definite.

5.2.3

For each t ∈ R, ϕ(x) = eitx is a positive definite function.

5.2.4

Let f ∈ L1(R) and let f(t) ≥ 0. Then

f̂(x) :=

∫ ∞

−∞
e−itx f(t) dt (5.8)

is positive definite. More generally, if µ is a positive finite Borel
measure on R, then

µ̂(x) :=

∫ ∞

−∞
e−itx dµ(t) (5.9)

is positive definite. The function f̂ is called the Fourier transform of
f and µ̂ is called the Fourier-Stieltjes transform of µ. Both of them
are bounded uniformly continuous functions.

These transforms give us many interesting positive definite func-
tions.
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5.2.5

One of the first calculations in probability theory is the computation
of an integral:

∫ ∞

−∞
e−itx e−t2/2 dt = e−x2/2

∫ ∞

−∞
e−(t+ix)2/2 dt.

The integral on the right hand side can be evaluated using Cauchy’s
theorem. Let C be the rectangular contour with vertices −R,R,R +
ix,−R + ix. The integral of the analytic function f(z) = e−z2/2 along
this contour is zero. As R → ∞, the integral along the two vertical
sides of this contour goes to zero. Hence

∫ ∞

−∞
e−(t+ix)2/2 dt =

∫ ∞

−∞
e−t2/2 dt =

√
2π.

So,

∫ ∞

−∞
e−itxe−t2/2 dt =

√
2πe−x2/2. (5.10)

(This shows that, with a suitable normalization, the function e−x2/2

is its own Fourier transform.) Thus for each a ≥ 0, the function

ϕ(x) = e−ax2
is positive definite.

5.2.6

The function ϕ(x) = sin x/x is positive definite. To see this one can
use the product formula

sin x

x
=

∞∏

k=1

cos
x

2k
, (5.11)

and observe that each of the factors in this infinite product is a positive
definite function. Alternately, we can use the formula.

sin x

x
=

1

2

∫ 1

−1
e−itx dt. (5.12)
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(This integral is the Fourier transform of the characteristic function
χ[−1,1].)

We have tacitly assumed here that ϕ(0) = 1. This is natural. If
we assign ϕ(0) any value larger than 1, the resulting (discontinuous)
function is also positive definite.

5.2.7

The integral

∫ ∞

0
e−itx e−t dt =

1

1 + ix

shows that the function ϕ(x) = 1/(1 + ix) is positive definite. The
functions 1/(1 − ix) and 1/(1 + x2) are positive definite.

5.2.8

The integral formulas

1

1 + x2
=

1

2

∫ ∞

−∞
e−itx e−|t| dt

and

e−|x| =
1

π

∫ ∞

−∞

e−itx

1 + t2
dt

show that the functions 1/(1 + x2) and e−|x| are positive definite.
(They are nonnegative and are, up to a constant factor, Fourier trans-
forms of each other.)

5.2.9

From the product representations

sinh x

x
=

∞∏

k=1

(
1 +

x2

k2 π2

)
(5.13)
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and

cosh x =

∞∏

k=0

(
1 +

4x2

(2k + 1)2 π2

)
, (5.14)

one sees (using the fact that 1/(1+a2x2) is positive definite) that the
functions x/(sinh x) and 1/(cosh x) are positive definite. (Contrast
this with 5.2.6 and 5.2.2.)

5.2.10

For 0 < α < 1, we have from (5.13)

sinh αx

sinh x
= α

∞∏

k=1

1 + α2x2/k2π2

1 + x2/k2π2
. (5.15)

Each factor in this product is of the form

1 + b2x2

1 + a2x2
=

b2

a2
+

1 − b2/a2

1 + a2x2
, 0 ≤ b < a.

This shows that the function sinh αx/sinh x is positive definite for 0 ≤
α ≤ 1. In the same way using (5.14) one can see that cosh αx/cosh x
is positive definite for −1 ≤ α ≤ 1. The function

x cosh α x

sinh x
=

x/2

sinh x/2

cosh αx

cosh x/2

is positive definite for −1/2 ≤ α ≤ 1/2, as it is the product of two
such functions.

5.2.11

The integral

tanh x

x
=

∫ 1

0

cosh αx

cosh x
dα
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shows that tanh x/x is a positive definite function.

(Once again, it is natural to assign the functions sinhx/x, sinhαx/x
and tanh x/x the values 1, α and 1, respectively, at x = 0. Then the
functions under consideration are continuous and positive definite.
Assigning them larger values at 0 destroys continuity but not positive
definiteness.)

5.2.12

One more way of constructing positive definite functions is by convo-
lutions of functions in L2(R). For any function f let f̃ be the function

defined as f̃(x) = f(−x). If f ∈ L2(R) then the function ϕ = f ∗ f̃
defined as

ϕ(x) =

∫ ∞

−∞
f(x − t) f̃(t) dt

is a continuous function vanishing at ∞. It is a positive definite
function since

N−1∑

r,s=0

ϕ(xr − xs) ξr ξs =
N−1∑

r,s=0

ξr ξs

∫ ∞

−∞
f(xr − xs − t)f(−t) dt

=

N−1∑

r,s=0

ξr ξs

∫ ∞

−∞
f(xr − t)f(xs − t) dt

=

∫ ∞

−∞

∣∣∣∣∣

N−1∑

r=0

ξr f(xr − t)

∣∣∣∣∣

2

dt

≥ 0.

5.2.13

Let R be a positive real number. The tent function (with base R) is
defined as

∆R(x) =

{
1 − |x|/R if |x| ≤ R,

0 if |x| ≥ R.
(5.16)
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A calculation shows that

∆R = χ[−R/2,R/2] ∗ χ[−R/2,R/2].

So, ∆R(x) is positive definite for all R > 0.

5.2.14

For R > 0, let δR be the continuous function defined as

δR(x) =
R

2π

(
sin Rx/2

Rx/2

)2

. (5.17)

From 5.2.6 it follows that δR is positive definite. The family {δR}R>0
is called the Fejér kernel on R. It has the following properties (required
of any “summability kernel” in Fourier analysis):

(i) δR(x) ≥ 0 for all x, and for all R > 0.

(ii) For every a > 0, δR(x) → 0 uniformly outside [−a, a] as R → ∞.

(iii) lim
R→∞

∫

|x|>a

δR(x)dx = 0 for every a > 0.

(iv)
∞∫

−∞
δR(x)dx = 1 for all R > 0.

Property (iv) may be proved by contour integration, for example.
The functions ∆R and δR are Fourier transforms of each other (up

to constant factors). So the positive definiteness of one follows from
the nonnegativity of the other.

5.2.15

In this section we consider functions like the tent functions of Section
5.2.13.

a Let ϕ be any continuous, nonnegative, even function. Suppose
ϕ(x) = 0 for |x| ≥ R, and ϕ is convex and monotonically de-
creasing in the interval [0, R). Then ϕ is a uniform limit of sums

of the form
n∑

k=1

ak△Rk
, where ak ≥ 0 and Rk ≤ R. It follows

from 5.2.13 that ϕ is positive definite.
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b The condition that ϕ is supported in [−R,R] can be dropped.
Let ϕ be any continuous, nonnegative, even function that is con-
vex and monotonically decreasing in [0,∞). Let b = lim

x→∞
ϕ(x).

Then ϕ is a uniform limit of sums of the form b +
n∑

k=1

ak△Rk
,

where ak ≥ 0 and Rk > 0. Hence ϕ is positive definite. This is
Pólya’s Theorem.

c Let ϕ be any function satisfying the conditions in Part a of this
section, and extend it to all of R as a periodic function with
period 2R. Since ϕ is even, the Fourier expansion of ϕ does not
contain any sin terms. It can be seen from the convexity of ϕ
in (0, R) that the coefficients an in the Fourier expansion

ϕ(x) =
a0

2
+

∞∑

n=1

an cos
nπ

R
x

are nonnegative. Hence ϕ is positive definite.

5.2.16

Using 5.2.15 one can see that the following functions are positive def-
inite:

(i) ϕ(x) = 1
1+|x| ,

(ii) ϕ(x) =

{
1 − |x| for 0 ≤ |x| ≤ 1/2,

1
4|x| for |x| ≥ 1/2,

(iii) ϕ(x) = exp(−|x|a), 0 ≤ a ≤ 1.

The special case a = 1 of (iii) was seen in 5.2.8. The next theorem
provides a further extension.

5.2.17 Theorem

The function ϕ(x) = exp(−|x|a) is positive definite for 0 ≤ a ≤ 2.

Proof. Let 0 < a < 2. A calculation shows that

|x|a = Ca

∫ ∞

−∞

1 − cos xt

|t|1+a
dt,
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where

Ca =
1

2

[∫ ∞

0

1 − cos t

t1+a
dt

]−1

.

(The assumption a < 2 is needed to ensure that this last integral is
convergent. At 0 the numerator in the integrand has a zero of order
2.) Thus we have

−|x|a =

∫ ∞

−∞

cos xt − 1

|t|1+a
dµ(t),

where dµ(t) = Ca dt. Let ϕn be defined as

ϕn(x) =

∫

|t|>1/n

cos xt − 1

|t|1+a
dµ(t)

=

∫

|t|>1/n

cos xt

|t|1+a
dµ(t) −

∫

|t|>1/n

1

|t|1+a
dµ(t).

The second integral in the last line is a number, say cn, while the first
is a function, say gn(x). This function is positive definite since cos xt
is positive definite for all t. So, for each n, the function exp ϕn(x)
is positive definite by Exercise 5.1.5 (iii). Since limn→∞ exp ϕn(x) =
exp(−|x|a), this function too is positive definite for 0 < a < 2. Again,
by continuity, this is true for a = 2 as well. �

For a > 2 the function exp(−|x|a) is not positive definite. This is
shown in Exercise 5.5.8.

5.2.18

The equality




1 1 1
1 2 2
1 2 3


 =




1 1 1
1 1 1
1 1 1


 +




0 0 0
0 1 1
0 1 1


 +




0 0 0
0 0 0
0 0 1




shows that the matrix on the left-hand side is positive. Thus the
n × n matrix A with entries aij = min(i, j) is positive. This can be
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used to see that the kernel K(x, y) = min(x, y) is positive definite on
[0,∞) × [0,∞).

5.2.19 Exercise

Let B be the n × n matrix with entries bij = 1/max(i, j). Show that
this matrix is positive by an argument similar to the one in 5.2.18.

Note that if A is the matrix in 5.2.18, then B = DAD, where
D = diag(1, 1/2, . . . , 1/n).

5.2.20 Exercise

Let λ1, . . . , λn be positive real numbers. Let A and B be the n × n
matrices whose entries are aij = min(λi, λj) and bij = 1/max(λi, λj),
respectively. Show that A and B are positive definite.

5.2.21 Exercise

Show that the matrices A and B defined in Exercise 5.2.20 are in-
finitely divisible.

5.2.22 Exercise

Let 0 < λ1 ≤ λ2 ≤ · · · ≤ λn and let A be the symmetric matrix whose
entries aij are defined as aij = λi/λj for 1 ≤ i ≤ j ≤ n. Show that A
is infinitely divisible.

5.2.23 Exercise

Let λ1, λ2, . . . , λn be real numbers. Show that the matrix A whose
entries are

aij =
1

1 + |λi − λj|

is infinitely divisible. [Hint: Use Pólya’s Theorem.]

5.3 LOEWNER MATRICES

In this section we resume, and expand upon, our discussion of operator
monotone functions. Recall some of the notions introduced at the end
of Chapter 2. Let C1(I) be the space of continuously differentiable
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real-valued functions on an open interval I. The first divided difference
of a function f in C1(I) is the function f [1] defined on I × I as

f [1](λ, µ) =
f(λ) − f(µ)

λ − µ
if λ 6= µ,

f [1](λ, λ) = f ′(λ).

Let Hn(I) be the collection of all n × n Hermitian matrices whose
eigenvalues are in I. This is an open subset in the real vector space
Hn consisting of all Hermitian matrices. The function f induces a
map from Hn(I) into Hn.

If f ∈ C1(I) and A ∈ Hn(I) we define f [1](A) as the matrix whose
i, j entry is f [1](λi, λj), where λ1, . . . , λn are the eigenvalues of A. This
is called the Loewner matrix of f at A.

The function f on Hn(I) is differentiable. Its derivative at A, de-
noted as Df(A), is a linear map on Hn characterized by the condition

||f(A + H) − f(A) − Df(A)(H)|| = o(||H||) (5.18)

for all H ∈ Hn. We have

Df(A)(H) =
d

dt

∣∣∣∣
t=0

f(A + tH). (5.19)

An interesting expression for this derivative in terms of Loewner ma-
trices is given in the following theorem.

5.3.1 Theorem

Let f ∈ C1(I) and A ∈ Hn(I). Then

Df(A)(H) = f [1](A) ◦ H, (5.20)

where ◦ denotes the Schur product in a basis in which A is diagonal.

One proof of this theorem can be found in MA (Theorem V.3.3).
Here we give another proof based on different ideas.
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Let [X,Y ] stand for the Lie bracket: [X,Y ] = XY − Y X. If X is
Hermitian and Y skew-Hermitian, then [X,Y ] is Hermitian.

5.3.2 Theorem

Let f ∈ C1(I) and A ∈ Hn(I). Then for every skew-Hermitian matrix
K

Df(A)([A,K]) = [f(A),K]. (5.21)

Proof. The exponential etK is a unitary matrix for all t ∈ R. From
the series representation of etK one can see that

[f(A),K] =
d

dt

∣∣∣∣
t=0

e−tKf(A)etK

=
d

dt

∣∣∣∣
t=0

f(e−tKA etK)

=
d

dt

∣∣∣∣
t=0

f(A + t[A,K] + o(t)).

Since f is in the class C1, this is equal to

d

dt

∣∣∣∣
t=0

f(A + t[A,K]) = Df(A)([A,K]) . �

For each A ∈ Hn, the collection

CA = {[A,K] : K∗ = −K}

is a linear subspace of Hn. On Hn we have an inner product 〈X,Y 〉 =
tr XY . With respect to this inner product, the orthogonal comple-
ment of CA is the space

ZA = {H ∈ Hn : [A,H] = O}.
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(It is easy to prove this. If H commutes with A, then

〈H, [A,K]〉 = tr H(AK − KA) = tr (HAK − HKA) = 0.)

Proof of Theorem 5.3.1. Choose an orthonormal basis in which
A = diag(λ1, . . . , λn). Let H ∈ CA; i.e., H = [A,K] for some skew-
Hermitian matrix K. By (5.21), Df(A)(H) = [f(A),K]. The entries
of this matrix are

(f(λi) − f(λj)) kij =
f(λi) − f(λj)

λi − λj
(λi − λj) kij

=
f(λi) − f(λj)

λi − λj
hij .

These are the entries of f [1](A) ◦H also. Thus the two sides of (5.20)
are equal when H ∈ CA. Now let H belong to the complementary
space ZA. The theorem will be proved if we show that the equality
(5.20) holds in this case too. But this is easy. Since H commutes
with A, we may assume H too is diagonal, H = diag(h1, . . . , hn). In
this case the two sides of (5.20) are equal to the diagonal matrix with
entries f ′(λi)hi on the diagonal. �

The next theorem says that f is operator monotone on I if and
only if for all n and for all A ∈ Hn(I) the Loewner matrices f [1](A)
are positive. (This is a striking analogue of the statement that a real
function f is monotonically increasing if and only if f ′(t) ≥ 0.)

5.3.3 Theorem

Let f ∈ C1(I). Then f is operator monotone on I if and only if
f [1](A) is positive for every Hermitian matrix A whose eigenvalues
are contained in I.

Proof. Suppose f is operator monotone. Let A ∈ Hn(I) and let
H be the positive matrix with all its entries equal to 1. For small
positive t, A + tH is in Hn(I). We have A + tH ≥ A, and hence
f(A + tH) ≥ f(A). This implies Df(A)(H) ≥ O. For this H, the
right-hand side of (5.20) is just f [1](A), and we have shown this is
positive.
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To prove the converse, let A0, A1 be matrices in Hn(I) with A1 ≥
A0. Let A(t) = (1 − t)A0 + tA1, 0 ≤ t ≤ 1. Then A(t) is in Hn(I).
Our hypothesis says that f [1](A(t)) is positive. The derivative A′(t) =
A1 − A0 is positive, and hence the Schur product f [1](A(t)) ◦ A′(t) is
positive. By Theorem 5.3.1 this product is equal to Df(A(t))(A′(t)).
Since

f(A1) − f(A0) =

∫ 1

0
Df(A(t))(A′(t))dt

and the integrand is positive for all t, we have f(A1) ≥ f(A0). �

We have seen some examples of operator monotone functions in
Section 4.2. Theorem 5.3.3 provides a direct way of proving opera-
tor monotonicity of these and other functions. The positivity of the
Loewner matrices f [1](A) is proved by associating with them some
positive definite functions. Some examples follow.

5.3.4

The function

f(t) =
at + b

ct + d
, a, b, c, d ∈ R, ad − bc > 0

is operator monotone on any interval I that does not contain the point
−d/c.

To see this write down the Loewner matrix f [1](A) for any A ∈
Hn(I). If λ1, . . . , λn are the eigenvalues of A, this Loewner matrix
has entries

ad − bc

(cλi + d)(cλj + d)
.

This matrix is congruent to the matrix with all entries 1, and is there-
fore positive.
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5.3.5

The function f(t) = tr is operator monotone on (0,∞) for 0 ≤ r ≤ 1.
A Loewner matrix for this function is a matrix V with entries

vij =
λr

i − λr
j

λi − λj
, i 6= j,

vii = r λr−1
i for all i.

The numbers λi are positive and can, therefore, be written as exi for
some xi. We have then

vij =
erxi − erxj

exi − exj

=
erxi/2

exi/2

er(xi−xj)/2 − er(xj−xi)/2

e(xi−xj)/2 − e(xj−xi)/2

erxj/2

exj/2

=
erxi/2

exi/2

sinh r(xi − xj)/2

sinh (xi − xj)/2

erxj/2

exj/2
.

This matrix is congruent to the matrix with entries

sinh r(xi − xj)/2

sinh (xi − xj)/2
.

Since sinh rx/(sinh x) is a positive definite function for 0 ≤ r ≤ 1
(see 5.2.10), this matrix is positive.

5.3.6 Exercise

The function f(t) = tr is not operator monotone on (0,∞) for any
real number r outside [0, 1].

5.3.7

The function f(t) = log t is operator monotone on (0,∞).
A Loewner matrix in this case has entries
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vij =
log λi − log λj

λi − λj
, i 6= j,

vii =
1

λi
for all i.

The substitution λi = exi reduces this to

vij =
xi − xj

exi − exj
=

1

exi/2

(xi − xj)/2

sinh (xi − xj)/2

1

exj/2
.

This matrix is positive since the function x/(sinh x) is positive defi-
nite. (See 5.2.9.)

Another proof of this is obtained from the equality

log λi − log λj

λi − λj
=

∫ ∞

0

1

(λi + t)(λj + t)
dt.

For each t the matrix [[1/(λi + t)(λj + t)]] is positive. (One more proof
of operator monotonicity of the log function was given in Exercise
4.2.5.)

5.3.8

The function f(t) = tan t is operator monotone on
(
−π

2 , π
2

)
.

In this case a Loewner matrix has entries

vij =
tan λi − tan λj

λi − λj

=
1

cos λi

sin(λi − λj)

λi − λj

1

cos λj
.

This matrix is positive since the function sin x/x is positive definite.
(See 5.2.6.)

5.3.9 Exercise

For 0 ≤ r ≤ 1 let f be the map f(A) = Ar on the space of positive
definite matrices. Show that

‖Df(A)‖ = r‖A‖r−1. (5.22)
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5.4 NORM INEQUALITIES FOR MEANS

The theme of this section is inequalities for norms of some expressions
involving positive matrices. In the case of numbers they reduce to
some of the most fundamental inequalities of analysis.

As a prototype consider the arithmetic-geometric mean inequality√
ab ≤ 1

2(a + b) for positive numbers a, b. There are many different
directions in which one could look for a generalization of this to pos-
itive matrices A,B. One version that involves the somewhat subtle
concept of a matrix geometric mean is given in Section 4.1. Instead
of matrices we could compare numbers associated with them. Thus,
for example, we may ask whether

|||A1/2B1/2||| ≤ 1

2
|||A + B||| (5.23)

for every unitarily invariant norm. This is indeed true. There is a
more general version of this inequality that is easier to prove: we
have

|||A1/2XB1/2||| ≤ 1

2
|||AX + XB||| (5.24)

for every X. What makes it easier is a lovely trick. It is enough to
prove (5.24) in the special case A = B. (The inequality (5.23) is a
vacuous statement in this case.) Suppose we have proved

|||A1/2XA1/2||| ≤ 1

2
|||AX + XA||| (5.25)

for all matrices X and positive A. Then given X and positive A,B

we may replace A and X in (5.25) by the 2× 2 block matrices
[

A
O

O
B

]

and
[

O
O

X
O

]
. This gives the inequality (5.24).

Since the norms involved are unitarily invariant we may assume
that A is diagonal, A = diag(λ1, . . . , λn). Then we have

A1/2XA1/2 = Y ◦
(

AX + XA

2

)
(5.26)
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where Y is the matrix with entries

yij =
2
√

λiλj

λi + λj
. (5.27)

This matrix is congruent to the Cauchy matrix—the one whose entries
are 1/(λi + λj). Since that matrix is positive (Exercise 1.1.2) so is Y .
All the diagonal entries of Y are equal to 1. So, using Exercise 2.7.12
we get the inequality (5.25) from (5.26).

The inequalities that follow are proved using similar arguments.
Matrices that occur in the place of (5.27) are more complicated and
their positivity is not as easy to establish. But in Section 5.2 we have
done most of the work that is needed.

5.4.1 Theorem

Let A,B be positive and let X be any matrix. Then for 0 ≤ ν ≤ 1 we
have

2|||A1/2XB1/2||| ≤ |||AνXB1−ν + A1−νXBν ||| ≤ |||AX + XB|||.
(5.28)

Proof. Follow the arguments used above in proving (5.24). To prove
the second inequality in (5.28) we need to prove that the matrix Y
whose entries are

yij =
λν

i λ
1−ν
j + λ1−ν

i λν
j

λi + λj
(5.29)

is positive for 0 < ν < 1. (When ν = 1/2 this reduces to (5.27).)
Writing

yij = λ1−ν
i

(
λ2ν−1

i + λ2ν−1
j

λi + λj

)
λ1−ν

j

we see that Y is congruent to the matrix Z whose entries are
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zij =
λα

i + λα
j

λi + λj
, where − 1 < α < 1.

This matrix is like the one in 5.3.5. The argument used there reduces
the question of positivity of Z to that of positive definiteness of the
function cosh αx/(cosh x) for −1 < α < 1. In 5.2.10 we have seen
that this function is indeed positive definite. The proof of the first
inequality in (5.28) is very similar to this, and is left to the reader. �

5.4.2 Exercise

Show that for 0 ≤ ν ≤ 1

|||AνXB1−ν − A1−νXBν ||| ≤ |2ν − 1| |||AX − XB|||. (5.30)

5.4.3 Exercise

For the Hilbert-Schmidt norm we have

||AνXA1−ν ||2 ≤ ||νAX + (1 − ν)XA||2 (5.31)

for positive matrices A and 0 < ν < 1. This is not always true for the
operator norm || · ||.

5.4.4 Exercise

For any matrix Z let

Re Z =
1

2
(Z + Z∗) , Im Z =

1

2i
(Z − Z∗).

Let A be a positive matrix and let X be a Hermitian matrix. Let
S = AνXA1−ν , T = νAX + (1 − ν)XA. Show that for 0 ≤ ν ≤ 1

|||Re S||| ≤ |||Re T ||| , |||Im S||| ≤ |||Im T |||.

In Chapter 4 we defined the logarithmic mean of a and b. This is
the quantity
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a − b

log a − log b
=

∫ 1

0
at b1−t dt

=

[∫ 1

0

dt

ta + (1 − t)b

]−1

=

[∫ ∞

0

dt

(t + a)(t + b)

]−1

.

(5.32)

A proof of the inequality (4.3) using the ideas of Section 5.3 is given
below.

5.4.5 Lemma

√
ab ≤ a − b

log a − log b
≤ a + b

2
. (5.33)

Proof. Put a = ex and b = ey. A small calculation reduces the job
of proving the first inequality in (5.33) to showing that t ≤ sinh t for
t > 0, and the second to showing that tanh t ≤ t for all t > 0. Both
these inequalities can be proved very easily. �

5.4.6 Exercise

Show that for A,B positive and for every X

||A1/2XB1/2||2 ≤
∣∣∣∣
∣∣∣∣
∫ 1

0
AtXB1−tdt

∣∣∣∣
∣∣∣∣
2

≤ 1

2
||AX + XB||2 . (5.34)

This matrix version of the arithmetic-logarithmic-geometric mean
inequality can be generalized to all unitarily invariant norms.

5.4.7 Theorem

For every unitarily invariant norm we have

∣∣∣
∣∣∣
∣∣∣A1/2XB1/2

∣∣∣
∣∣∣
∣∣∣ ≤

∣∣∣∣
∣∣∣∣
∣∣∣∣
∫ 1

0
AtXB1−tdt

∣∣∣∣
∣∣∣∣
∣∣∣∣ ≤

1

2
|||AX + XB|||. (5.35)
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Proof. The idea of the proof is very similar to that of Theorem 5.4.1.
Assume B = A, and suppose A is diagonal with entries λ1, . . . , λn on
the diagonal. The matrix A1/2XA1/2 is obtained from

∫ 1
0 AtXA1−tdt

by entrywise multiplication with the matrix Y whose entries are

yij =
λ

1/2
i λ

1/2
j (log λi − log λj)

λi − λj
.

This matrix is congruent to one with entries

zij =
log λi − log λj

λi − λj
.

We have seen in 5.3.7 that this matrix is positive. That proves the
first inequality in (5.35).

The matrix
∫ 1
0 AtXA1−tdt is the Schur product of 1

2(AX + XA)
with the matrix W whose entries are

wij =
2(λi − λj)

(log λi − log λj)(λi + λj)
.

Making the substitution λi = exi , we have

wij =
tanh (xi − xj)/2

(xi − xj)/2
.

This matrix is positive since the function tanh x/x is positive definite.
(See 5.2.11.) That proves the second inequality in (5.35). �

5.4.8 Exercise

A refinement of the inequalities (5.28) and (5.35) is provided by the
assertion

1

2
|||AνXB1−ν + A1−νXBν ||| ≤ |||

∫ 1

0
AtXB1−tdt|||
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for 1/4 ≤ ν ≤ 3/4. Prove this using the fact that (x cosh αx)/ sinh x
is a positive definite function for −1/2 ≤ α ≤ 1/2. (See 5.2.10.)

5.4.9 Exercise

Let H,K be Hermitian, and let X be any matrix. Show that

|||(sin H)X(cos K) ± (cos H)X(sin K)||| ≤ |||HX ± XK|||.

This is a matrix version of the inequality |sin x| ≤ |x|.

5.4.10 Exercise

Let H,K and X be as above. Show that

|||HX ± XK||| ≤ |||(sinh H)X(cosh K) ± (cosh H)X(sinh K)|||.

5.4.11 Exercise

Let A,B be positive matrices. Show that

|||(logA)X − X(log B)||| ≤ |||A1/2XB−1/2 − A−1/2XB1/2|||.

Hence, if H,K are Hermitian, then

|||HX − XK||| ≤ |||eH/2Xe−K/2 − e−H/2XeK/2|||

for every matrix X.

5.5 THEOREMS OF HERGLOTZ AND BOCHNER

These two theorems give complete characterizations of positive defi-
nite sequences and positive definite functions, respectively. They have
important applications throughout analysis. For the sake of complete-
ness we include proofs of these theorems here. Some basic facts from
functional analysis and Fourier analysis are needed for the proofs. The
reader is briefly reminded of these facts.
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Let M[0, 1] be the space of complex finite Borel measures on the
interval [0, 1]. This is equipped with a norm ||µ|| =

∫
|dµ|, and is

the Banach space dual of the space C[0, 1]. If
∫

fdµn converges to∫
fdµ for every f ∈ C[0, 1], we say that the sequence {µn} in M[0, 1]

converges to µ in the weak∗ topology.
A basic fact about this convergence is the following theorem called

Helly’s Selection Principle.

5.5.1 Theorem

Let {µn} be a sequence of probability measures on [0, 1]. Then there
exists a probability measure µ and a subsequence {µm} of {µn} such
that µm converges in the weak∗ topology to µ.

Proof. The space C[0, 1] is a separable Banach space. Choose a
sequence {fj} in C[0, 1] that includes the function 1 and whose linear
combinations are dense in C[0, 1]. Since ||µn|| = 1, for each j we
have |

∫
fj dµn| ≤ ||fj || for all n. Thus for each j, {|

∫
fj dµn|} is a

bounded sequence of positive numbers. By the diagonal procedure,
we can extract a subsequence {µm} such that for each j, the sequence∫

fj dµm converges to a limit, say ξj, as m → ∞.
If f =

∑
ajfj is any (finite) linear combination of the fj, let

Λ0(f) :=
∑

ajξj = lim
m→∞

∫
f dµm.

This is a linear functional on the linear span of {fj}, and |Λ0(f)| ≤
||f || for every f in this span. By continuity Λ0 has an extension Λ
to C[0, 1] that satisfies |Λ(f)| ≤ ||f || for all f in C[0, 1]. This linear
functional Λ is positive and unital. So, by the Riesz Representa-
tion Theorem, there exists a probability measure µ on [0, 1] such that
Λ(f) =

∫
f dµ for all f ∈ C[0, 1].

Finally, we know that
∫

f dµm converges to
∫

f dµ for every f in
the span of {fj}. Since such f are dense and the µm are uniformly
bounded, this convergence persists for every f in C[0, 1]. �

Theorem 5.5.1 is also a corollary of the Banach Alaoglu theorem.
This says that the closed unit ball in the dual space of a Banach space
is compact in the weak∗ topology. If a Banach space X is separable,
then the weak∗ topology on the closed unit ball of its dual X∗ is
metrizable.
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5.5.2 Herglotz’ Theorem

Let {an}n∈Z be a positive definite sequence and suppose a0 = 1. Then
there exists a probability measure µ on [−π, π] such that

an =

∫ π

−π
e−inxdµ(x). (5.36)

Proof. The positive definiteness of {an} implies that for every real
x we have

N−1∑

r,s=0

ar−s ei(r−s)x ≥ 0.

This inequality can be expressed in another form

N
N−1∑

k=−(N−1)

(
1 − |k|

N

)
ake

ikx ≥ 0.

Let fN (x) be the function given by the last sum. Then

1

2π

∫ π

−π
fN(x)dx = a0 = 1.

For any Borel set E in [−π, π], let

µN (E) =
1

2π

∫

E
fN (x)dx.

Then µN is a probability measure on [−π, π]. Apply Helly’s selection
principle to the sequence {µN}. There exists a probability measure
µ to which (a subsequence of) µN converges in the weak∗ topology.
Thus for every n

∫ π

−π
e−inxdµ(x) = lim

N→∞

∫ π

−π
e−inxdµN (x)
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= lim
N→∞

1

2π

∫ π

−π
e−inxfN (x)dx

= lim
N→∞

(
1 − |n|

N

)
an

= an. �

We remark that the sum

N−1∑

k=−(N−1)

(
1 − |k|

N

)
eikx

is called the Fejér kernel and is much used in the study of Fourier
series.

The condition a0 = 1 in the statement of Herglotz’ theorem is an
inessential normalization. This can be dropped; then µ is a finite
positive measure with ||µ|| = a0.

Bochner’s theorem, in the same spirit as Herglotz’, says that ev-
ery continuous positive definite function on R is the Fourier-Stieltjes
transform of a finite positive measure on R. The proof needs some
approximation arguments. For the convenience of the reader let us
recall some basic facts.

For f ∈ L1(R) we write f̂ for its Fourier transform defined as

f̂(x) =

∫ ∞

−∞
e−itxf(t)dt.

This function is in C0(R), the class of continuous functions vanishing
at ∞. We write

f̌(x) =
1

2π

∫ ∞

−∞
eitxf(t)dt

for the inverse Fourier transform of f . If the function f̂ is in L1(R)

(and this is not always the case) then f = (f̂).̌
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The Fourier transform on the space L2(R) is defined as follows. Let

f ∈ L2(R) ∩ L1(R). Then f̂ is defined as above. One can see that

f̂ ∈ L2(R) and the map f 7→ (2π)−1/2f̂ is an L2-isometry on the
space L2(R) ∩ L1(R). This space is dense in L2(R). So the isometry
defined on it has a unique extension to all of L2(R). This unitary

operator on L2(R) is denoted again by (2π)−1/2f̂ . The inverse of the

map f 7→ f̂ is defined by inverting this unitary operator. The fact that
the Fourier transform is a bijective map of L2(R) onto itself makes
some operations in this space simpler.

Let δR be the function defined in 5.2.14. The family {δN} is an
approximate identity: as N → ∞, the convolution δN ∗ g converges
to g in an appropriate sense. The “appropriate sense” for us is the
following.

If g is either an element of L1(R), or a bounded measurable function,
then

lim
N→∞

(δN ∗ g)(x) := lim
N→∞

∫ ∞

−∞
δN (x − t)g(t)dt = g(x) a.e. (5.37)

In the discussion that follows we ignore constant factors involving
2π. These do not affect our conclusions in any way.

The Fourier transform “converts convolution into multiplication;”
i.e.,

f̂ ∗ g = f̂ ĝ for all f, g ∈ L1(R).

The Riesz representation theorem and Helly’s selection principle
have generalizations to the real line. The space C0(R) is a separable
Banach space. Its dual is the space M(R) of finite Borel measures on R

with norm ||µ|| =
∫
|dµ|. Every bounded sequence {µn} in M(R) has a

weak∗ convergent subsequence {µm}; i.e., for every f ∈ C0(R),
∫

fdµm

converges to
∫

fdµ as m → ∞. This too is a special case of the
Banach-Alaoglu theorem.

5.5.3 Bochner’s Theorem

Let ϕ be any function on the real line that is positive definite and
continuous at 0. Then there exists a finite positive measure µ such
that
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ϕ(x) =

∫ ∞

−∞
e−itxdµ(t). (5.38)

Proof. By Lemma 5.1.2, ϕ is continuous everywhere. Suppose in
addition that ϕ ∈ L1(R). Using (5.6) we see that

∫ ∞

−∞
|ϕ(x)|2dx ≤ ϕ(0)

∫ ∞

−∞
|ϕ(x)|dx.

Thus ϕ is in the space L2(R) also. Hence, there exists f ∈ L2(R) such
that

f(t) = ϕ̌(t) =

∫ ∞

−∞
eitxϕ(x)dx. (5.39)

Let ∆N (x) be the tent function defined in (5.16). Then

∫ ∞

−∞
eitxϕ(x)∆N (x)dx =

∫ N

−N
eitxϕ(x)

(
1 − |x|

N

)
dx. (5.40)

This integral (of a continuous function over a bounded interval) is a
limit of Riemann sums. Let xj = j N/K, −K ≤ j ≤ K. The last
integral is the limit, as K → ∞, of sums

K−1∑

j=−(K−1)

eitxjϕ(xj)

(
1 − |xj |

N

)
N

K
.

These sums can be expressed in another way:

c(K,N)

K−1∑

r,s=0

eit(xr−xs)ϕ(xr − xs) (5.41)

where c(K,N) is a positive number. (See the proof of Herglotz’ the-
orem where two sums of this type were involved.) Since ϕ is positive
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definite, the sum in (5.41) is nonnegative. Hence, the integral (5.41),
being the limit of such sums, is nonnegative. As N → ∞ the integral
in (5.40) tends to the one in (5.39). So, that integral is nonnegative
too. Thus f(t) ≥ 0.

Now let ϕ be any continuous positive definite function and let

ϕn(x) = e−x2/nϕ(x).

Since ϕ is bounded, ϕn is integrable. Since ϕ(x) and e−x2/n are posi-
tive definite, so is their product ϕn(x). Thus by what we have proved
in the preceding paragraph, for each n

ϕn = f̂n, where fn ∈ L2(R) and fn ≥ 0 a.e.

We have the relation δN ∗ ϕn = (∆Nfn)̂, i.e.,

∫ ∞

−∞
δN (x − t)ϕn(t)dt =

∫ ∞

−∞
e−itx∆N (t)fn(t)dt. (5.42)

At x = 0 this gives

∫ ∞

−∞
∆N (t)fn(t)dt =

∫ ∞

−∞
δN (−t)ϕn(t)dt

≤ϕn(0)

∫ ∞

−∞
δN (−t)dt

= ϕ(0).

Let N → ∞. This shows

∫ ∞

−∞
fn(t)dt ≤ ϕ(0) for all n,

i.e., fn ∈ L1(R) and ||fn||1 ≤ ϕ(0). Let dµn(t) = fn(t)dt. Then {µn}
are positive measures on R and ||µn|| ≤ ϕ(0). So, by Helly’s selection
principle, there exists a positive measure µ, with ||µ|| ≤ ϕ(0), to which
(a subsequence of) µn converges in the weak∗ topology.
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The equation (5.42) says

∫ ∞

−∞
δN (x − t)ϕn(t)dt =

∫ ∞

−∞
e−itx∆N (t)dµn(t). (5.43)

Keep N fixed and let n → ∞. For the right-hand side of (5.43)
use the weak∗ convergence of µn to µ, and for the left-hand side the
Lebesgue-dominated convergence theorem. This gives

∫ ∞

−∞
δN (x − t)ϕ(t)dt =

∫ ∞

−∞
e−itx∆N (t)dµ(t). (5.44)

Now let N → ∞. Since ϕ is a bounded measurable function, by
(5.37) the left-hand side of (5.44) goes to ϕ(x) a.e. The right-hand
side converges by the bounded convergence theorem. This shows

ϕ(x) =

∫ ∞

−∞
e−itxdµ(t) a.e.

Since the two sides are continuous functions of x, this equality holds
everywhere. �

Of the several examples of positive definite functions in Section 5.2
some were shown to be Fourier transforms of nonnegative integrable
functions. (See 5.2.5 - 5.2.8.) One can do this for some of the other
functions too.

5.5.4

The list below gives some functions ϕ and their Fourier transforms ϕ̂
(ignoring constant factors).

(i) ϕ(x) =
x

sinhx
, ϕ̂(t) =

1

cosh2(tπ/2)
.

(ii) ϕ(x) =
1

cosh x
, ϕ̂(t) =

1

cosh (tπ/2)
.
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(iii) ϕ(x) =
sinhαx

sinhx
, ϕ̂(t) =

sin απ

cosh tπ + cos απ
, 0 < α < 1.

(iv) ϕ(x) =
cosh αx

cosh x
, ϕ̂(t) =

cos απ/2 cosh tπ/2

cosh tπ + cos απ
, −1 < α < 1.

(v) ϕ(x) =
tanh x

x
, ϕ̂(t) = log coth

πt

4
, t > 0.

Let ϕ be a continuous positive definite function. Then the measure
µ associated with ϕ via the formula (5.38) is a probability measure if
and only if ϕ(0) = 1. In this case ϕ is called a characteristic function.

5.5.5 Proposition

Let ϕ be a characteristic function. Then

1 − Reϕ(2nx) ≤ 4n(1 − Re ϕ(x)),

for all x and n = 1, 2, . . . .

Proof. By elementary trigonometry

1−cos tx = 2 sin2 tx

2
≥ 2 sin2 tx

2
cos2 tx

2
=

1

2
sin2 tx =

1

4
(1−cos 2tx).

An iteration leads to the inequality

1 − cos tx ≥ 1

4n
(1 − cos 2ntx).

From (5.38) we have

1 − Reϕ(x) =

∫ ∞

−∞
(1 − cos tx)dµ(t)

≥ 1

4n

∫ ∞

−∞
(1 − cos 2ntx)dµ(t)

=
1

4n
[1 − Reϕ(2nx)]. �
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5.5.6 Corollary

Suppose ϕ is a positive definite function and ϕ(x) = ϕ(0) + o(x2);
i.e.,

lim
x→0

ϕ(x) − ϕ(0)

x2
= 0.

Then ϕ is a constant.

Proof. We may assume that ϕ(0) = 1. Then using the Proposition
above we have for all x and n

1 − Re ϕ(x) ≤ 4n[1 − Re ϕ(x/2n)] =
1 − Reϕ(x/2n)

(x/2n)2
x2.

The hypothesis on ϕ implies that the last expression goes to zero
as n → ∞. Hence, Reϕ(x) = 1 for all x. But then ϕ(x) ≡ 1. �

5.5.7 Exercise

Suppose ϕ is a characteristic function, and ϕ(x) = 1 + o(x) + o(x2)
in a neighbourhood of 0, where o(x) is an odd function. Then ϕ ≡ 1.
[Hint: consider ϕ(x)ϕ(−x).]

5.5.8 Exercise

The functions e−x4
, 1/(1 + x4), and e−|x|a for a > 2, are not positive

definite.

Bochner’s theorem can be used also to show that a certain function
is not positive definite by showing that its Fourier transform is not
everywhere nonnegative.

5.5.9 Exercise

Use the method of residues to show that for all t > 0

∫ ∞

−∞

cos(tx)

1 + x4
dx =

π√
2

e−t/
√

2

(
cos

t√
2

+ sin
t√
2

)
.

It follows from Bochner’s theorem that the function f(x) = 1/(1+x4)
is not positive definite.
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5.6 SUPPLEMENTARY RESULTS AND EXERCISES

5.6.1 Exercise

Let U be a unitary operator on any separable Hilbert space H. Show
that for each unit vector x in H the sequence

an = 〈x,Unx〉 (5.45)

is positive definite.
This observation is the first step on one of the several routes to

the spectral theorem for operators in Hilbert space. We indicate this
briefly.

Let U be a unitary operator on H. By Exercise 5.6.1 and Herglotz’
theorem, for each unit vector x in H, there exists a probability measure
µx on the interval [−π, π] such that

〈x,Unx〉 =

π∫

−π

eintdµx(t). (5.46)

Using a standard technique called polarisation, one can obtain from
this, for each pair x, y of unit vectors a complex measure µx,y such
that

〈y, Unx〉 =

π∫

−π

eintdµx,y(t). (5.47)

Now for each Borel subset E ⊂ [−π, π] let P (E) be the operator on
H defined by the relation

〈y, P (E)x〉 = µx,y(E) for all x, y. (5.48)

It can be seen that P (E) is an orthogonal projection and that P (·) is
countably additive on the Borel σ-algebra of [−π, π]. In other words
P (·) is a projection-valued measure. We can then express U as an
integral

U =

π∫

−π

eitdP (t). (5.49)

This is the spectral theorem for unitary operators. The spectral the-
orem for self-adjoint operators can be obtained from this using the
Cayley transform.
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5.6.2 Exercise

Let B be an n × n Hermitian matrix. Show that for each unit vector
u the function

ϕ(t) = 〈u, eitBu〉

is a positive definite function on R. Use this to show that the functions
tr eitB and det eitB are positive definite.

5.6.3 Exercise

Let A,B be n × n Hermitian matrices and let

ϕ(t) = tr eA+itB . (5.50)

Is ϕ a positive definite function? Show that this is so if A and B
commute.

The general case of the question raised above is a long-standing
open problem in quantum statistical mechanics. The Bessis-Moussa-
Villani conjecture says that the function ϕ in (5.50) is positive definite
for all Hermitian matrices A and B.

The purpose of the next three exercises is to calculate Fourier trans-
forms of some functions that arose in our discussion.

5.6.4 Exercise

Let ϕ(x) = 1/cosh x. Its Fourier transform is

ϕ̂(t) =

∫ ∞

−∞

e−itx

cosh x
dx.

This integral may be evaluated by the method of residues. Let f be
the function

f(z) =
e−itz

cosh z
.

Then

f(z + iπ) = −etπf(z) for all z.

For any R > 0 the rectangular contour with vertices −R,R,R+iπ and
−R + iπ contains one simple pole, z = iπ/2, of f inside it. Integrate
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f along this contour and then let |R| → ∞. The contribution of the
two vertical sides goes to zero. So

∫ ∞

−∞

e−itx

cosh x
dx =

2πi

1 + etπ
Resz=iπ/2

(
e−itz

cosh z

)
,

where Resz=z0f(z) is the residue of f at a pole z0.

A calculation shows that

ϕ̂(t) =
π

cosh (tπ/2)
.

5.6.5 Exercise

More generally consider the function

ϕ(x) =
1

cosh x + a
, −1 < a < 1. (5.51)

Integrate the function

f(z) =
e−itz

cosh z + a

along the rectangular contour with vertices −R,R,R+ i2π and −R+
i2π. The function f has two simple poles z = i(π ± arccos a) inside
this rectangle. Proceed as in Exercise 5.6.4 to show

ϕ̂(t) =
2π sinh (t arccos a)√

1 − a2 sinh tπ
. (5.52)

It is plain that ϕ̂(t) ≥ 0. Hence by Bochner’s theorem ϕ(x) is positive
definite for −1 < a < 1. By a continuity argument it is positive definite
for a = 1 as well.

5.6.6 Exercise

Now consider the function

ϕ(x) =
1

cosh x + a
, a > 1. (5.53)

Use the function f and the rectangular contour of Exercise 5.6.5. Now
f has two simple poles z = ± arccosh t+iπ inside this rectangle. Show
that

ϕ̂(t) =
2π sin(t arccosh a)√

a2 − 1 sinh tπ
. (5.54)
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It is plain that ϕ̂(t) is negative for some values of t. So the function
ϕ in (5.53) is not positive definite for any a > 1.

5.6.7 Exercise

Let λ1, . . . , λn be positive numbers and let Z be the n×n matrix with
entries

zij =
1

λ2
i + λ2

j + tλiλj
.

Show that if −2 < t ≤ 2, then Z is positive definite; and if t > 2 then
there exists an n > 2 for which this matrix is not positive definite.
(See Exercise 1.6.4.)

5.6.8 Exercise

For 0 < a < 1, let fa be the piecewise linear function defined as

fa(x) =





1 for |x| ≤ a,
0 for |x| ≥ 1,
(1 − a)−1(1 − |x|) for a ≤ |x| ≤ 1.

Show that fa is not positive definite. Compare this with 5.2.13 and
5.2.15. Express fa as the convolution of two characteristic functions.

The technique introduced in Section 4 is a source of several inter-
esting inequalities. The next two exercises illustrate this further.

5.6.9 Exercise

(i) Let A be a Hermitian matrix. Use the positive definiteness of
the function sech x to show that for every matrix X

|||X||| ≤ |||(I + A2)1/2X(I + A2)1/2 − AXA|||.

(ii) Now let A be any matrix. Apply the result of (i) to the matrices

Ã =
[

O A
A∗ O

]
and X̃ =

[
O X
X∗ O

]
and show that

|||X||| ≤ |||(I + AA∗)1/2X(I + A∗A)1/2 − AX∗A|||
for every matrix X. Replacing A by iA, one gets

|||X||| ≤ |||(I + AA∗)1/2X(I + A∗A)1/2 + AX∗A|||.



POSITIVE DEFINITE FUNCTIONS 179

5.6.10 Exercise

Let A,B be normal matrices with ‖A‖ ≤ 1 and ‖B‖ ≤ 1. Show that
for every X we have

|||(I − A∗A)1/2X(I − B∗B)1/2||| ≤ |||X − A∗XB|||.

The inequalities proved in Section 5.4 have a leitmotiv. Let M(a, b)
be any mean of positive numbers a and b satisfying the conditions
laid down at the beginning of Chapter 4. Let A be a positive definite
matrix with eigenvalues λ1 ≥ · · · ≥ λn. Let M(A,A) be the matrix
with entries

mij = M(λi, λj).

Many of the inequalites in Section 5.4 say that for certain means M1

and M2

‖M1(A,A) ◦ X‖ ≤ ‖M2(A,A) ◦ X‖, (5.55)

for all X. We have proved such inequalites by showing that the matrix
Y with entries

yij =
M1(λi, λj)

M2(λi, λj)
(5.56)

is positive definite. This condition is also necessary for (5.55) to be
true for all X.

5.6.11 Proposition

Let M1(a, b) and M2(a, b) be two means. Then the inequality (5.55) is
true for all X if and only if the matrix Y defined by (5.56) is positive
definite.

Proof. The Schur product by Y is a linear map on Mn. The inequality
(5.55) says that this linear map on the space Mn equipped with the
norm ‖ · ‖ is contractive. Hence it is contractive also with respect to
the dual norm ‖ · ‖1; i.e.,

‖Y ◦ X‖1 ≤ ‖X‖1 for all X.

Choose X to be the matrix with all entries equal to 1. This gives
‖Y ‖1 ≤ n. Since Y is Hermitian

‖Y ‖1 =

n∑

i=1

|λi(Y )|
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where λi(Y ) are the eigenvalues of Y. Since yii = 1 for all i, we have

n∑

i=1

λi(Y ) = tr Y = n.

Thus
∑ |λi(Y )| ≤∑λi(Y ). But this is possible only if λi(Y ) ≥ 0 for

all i. In other words Y is positive. �

Let us say that M1 ≤ M2 if M1(a, b) ≤ M2(a, b) for all positive
numbers a and b; and M1 << M2 if for every n and every choice of
n positive numbers λ1, . . . , λn the matrix (5.56) is positive definite.
If M1 << M2 the inequality (5.55) is true for all positive matrices A
and all matrices X. Clearly M1 ≤ M2 if M1 << M2. The converse is
not always true.

5.6.12 Exercise

Let A(a, b) and G(a, b) be the arithmetic and the geometric means of
a and b. For 0 ≤ α ≤ 1 let

Fα(a, b) = (1 − α)G(a, b) + αA(a, b).

Clearly we have Fα ≤ Fβ whenever α ≤ β. Use Exercise 5.6.6 to show
that Fα << Fβ if and only if 1

2 ≤ α ≤ β.

Using Exercise 2.7.12 one can see that if M1 << M2, then the
inequality (5.55) is true for all unitarily invariant norms. The weaker
condition M1 ≤ M2 gives this inequality only for the Hilbert-Schmidt
norm ‖ · ‖2.

In Exercises 1.6.3, 1.6.4, 5.2.21, 5.2.22 and 5.2.23 we have outlined
simple proofs of the infinite divisibility of some special matrices. These
proofs rely on arguments specifically tailored to suit the matrices at
hand. In the next few exercises we sketch proofs of some general
theorems that are useful in this context.

An n × n Hermitian matrix A is said to be conditionally positive
definite if 〈x,Ax〉 ≥ 0 for all x ∈ Cn such that x1 + · · ·+xn = 0. (The
term almost positive definite is also used sometimes.)

5.6.13 Proposition

Let A = [[aij ]] be an n × n conditionally positive definite matrix.
Then there exist a positive definite matrix B = [[bij ]] and a vector
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y = (y1, . . . , yn) in Cn such that

aij = bij + yi + ȳj. (5.57)

Proof. Let J be the n × n matrix all of whose entries are equal to

1/n. For any vector x ∈ Cn let x# = Jx and x̃ = x − x#. Since
x̃1 + · · · + x̃n = 0 we have

〈x̃, Ax̃〉 ≥ 0.

Let B = A − AJ − JA + JAJ. The inequality above says that

〈x,Bx〉 ≥ 0 for all x ∈ Cn.

In other words B is positive definite.
If C1, . . . , Cn are the columns of the matrix A, then the jth column

of the matrix JA has all its entries equal to Ĉj , the number obtained
by averaging the entries of the column Cj. Likewise, if R1, . . . , Rn are

the rows of A, then the ith row of AJ has all its entries equal to R̂i.
Since A is Hermitian R̂i is the complex conjugate of Ĉi. The matrix
JAJ has all its entries equal to α = 1

n2

∑
i,j aij . Thus the i, j entry

of the matrix AJ + JA − JAJ is equal to R̂i + Ĉj − α. Let y be the
vector

y =
(
R̂1 −

α

2
, R̂2 −

α

2
, . . . , R̂n − α

2

)
.

Then the equation (5.57) is satisfied. �

5.6.14 Exercise

Let A = [[aij ]] be a conditionally positive definite matrix. Show that
the matrix [[eaij ]] is positive definite. [Hint: If B = [[bij ]] is positive
definite, then [[ebij ]] is positive definite. Use Proposition 5.6.13.]

5.6.15 Exercise

Let A = [[aij ]] be an n × n matrix with positive entries and let L =
[[log aij ]]. Let E be the matrix all whose entries are equal to 1. Note
that Ex = 0 if x1 + · · · + xn = 0.

(i) Suppose A is infinitely divisible. Let x be any vector with x1 +
· · · + xn = 0, and for r > 0 let A(r) be the matrix with entries
ar

ij. Then

1

r
〈x, (A(r) − E)x〉 =

1

r
〈x,A(r)x〉 ≥ 0.
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Let r ↓ 0. This gives

〈x,Lx〉 ≥ 0.

Thus L is conditionally positive definite.

(ii) Conversely, if L is conditionally positive definite, then so is rL
for every r ≥ 0. Use Exercise 5.6.14 to show that this implies A
is infinitely divisible.

Thus a Hermitian matrix A with entries aij > 0 is infinitely divisible
if and only if the matrix L = [[log aij]] is conditionally positive definite.
The next exercise gives a criterion for conditional positive definiteness.

5.6.16 Exercise

Given an n×n Hermitian matrix B = [[bij ]] let D be the (n−1)×(n−1)
matrix with entries

dij = bij + bi+1,j+1 − bi,j+1 − bi+1,j. (5.58)

Show that B is conditionally positive definite if and only if D is pos-
itive definite.

We now show how the results of Exercises 5.6.14–5.6.16 may be
used to prove the infinite divisibility of an interesting matrix.

For any n, the n × n Pascal matrix A is the matrix with entries

aij =

(
i + j

i

)
for 0 ≤ i, j ≤ n − 1. (5.59)

The entries of the Pascal triangle occupy the antidiagonals of A. Thus
the 4 × 4 Pascal matrix is

A =




1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20


.

5.6.17 Exercise

Prove the combinatorial identity

(
i + j

i

)
=

min(i,j)∑

k=0

(
i
k

)(
j
k

)
.
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[Hint: Separate i + j objects into two groups, the first containing i
objects and the second j objects. If we choose i− k objects from the
first group and k from the second, we have chosen i objects out of
i + j.]

5.6.18 Exercise

Show that

(
r + s

r

)
=

1

2π

∫ 2π

0
(1 + eiθ)r(1 + e−iθ)sdθ.

Use this to conclude that the Pascal matrix is a Gram matrix and is
thus positive definite.

5.6.19 Exercise

Let L be the n × n lower triangular matrix whose rows are the rows
of the Pascal triangle. Thus for n = 4

L =




1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1


.

Show that A = LL∗. This gives another proof of the positive definite-
ness of the Pascal matrix A.

5.6.20 Exercise

For every n, the n×n Pascal matrix is infinitely divisible. Prove this
statement following the steps given below.

(i) Use the results of Exercises 5.6.15 and 5.6.16. If B has entries
bij = log aij, where aij are defined by (5.59), then the entries
dij defined by (5.58) are given by

dij = log

(
1 +

1

i + j + 1

)
.

We have to show that the matrix D = [[dij ]] is positive definite.
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(ii) For x > 0 we have

log(1 + x) =

∫ ∞

1

tx

t + x
dµ(t)

where µ is the probability measure on [0,∞) defined as dµ(t) =
dt/t2. Use this to show that

dij =

∫ ∞

1

1

i + j + 1 + 1
t

dµ(t).

(iii) Thus the matrix D can be expressed as

D =

∫ ∞

1
C(t)dµ(t),

where C(t) = [[cij(t)]] is a Cauchy matrix for all t ≥ 1. This
shows that D is positive definite.

5.6.21 Exercise

The infinite divisibility of the Pascal matrix can be proved in another
way as follows. Let λ1, . . . , λn be positive numbers, and let K be the
n × n matrix with entries

kij =
Γ(λi + λj + 1)

Γ(λi + 1)(λj + 1)
.

When λj = j, 1 ≤ j ≤ n, this is the Pascal matrix. Use Gauss’s
product formula for the gamma function

Γ(z) = lim
m→∞

m!mz

z(z + 1) · · · (z + m)
, z 6= 0,−1,−2, . . . ,

to see that

kij = lim
m→∞

1

m · m!

m+1∏

p=1

(λi + p)(λj + p)

(λi + λj + p)
.

Each of the factors in this product is the i, j entry of a matrix that is
congruent to a Cauchy matrix. Hence K is infinitely divisible.

Let f be a nonnegative function on R. If for each r > 0 the function
(f(x))r is positive definite, then we say that f is an infinitely divisible
function. By Schur’s theorem, the product of two infinitely divisible
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functions is infinitely divisible. If f is a nonnegative function and for
each m = 1, 2, . . . the function (f(x))1/m is positive definite, then f is
infinitely divisible.

Some examples of infinitely divisible functions are given in the next
few exercises.

5.6.22 Exercise

(i) The function f(x) = 1/(cosh x) is infinitely divisible.

(ii) The function f(x) = 1/(cosh x + a) is infinitely divisible for
−1 < a ≤ 1. [Hint: Use Exercises 1.6.4 and 1.6.5.]

5.6.23 Exercise

In Section 5.2.10 we saw that the function

f(x) =
cosh α x

cosh x
, −1 ≤ α ≤ 1,

is positive definite. Using this information and Schur’s theorem one
can prove that f is in fact infinitely divisible. The steps of the argu-
ment are outlined.

(i) Let a and b be any two nonnegative real numbers. Then

either
cosh(a − b)x

cosh ax
or

cosh(a − b)x

cosh b x
is positive definite.

Hence

cosh(a − b)x

cosh ax cosh bx

is positive definite.

(ii) Use the identity

cosh(a + b)x + cosh(a − b)x = 2cosh ax cosh bx

to obtain

cosh bx

cosh(a + b)x
=

1

2 cosh ax

1

1 − cosh(a−b)x
2 cosh ax cosh bx

.
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(iii) For 0 < r < 1 we have the expansion

(
cosh bx

cosh(a + b)x

)r

=
1

2r(cosh ax)r

∞∑

n=0

an

2n

coshn(a − b)x

coshn ax coshn bx
,

where the coefficients an are nonnegative. Use Part (i) of this ex-
ercise and of Exercise 5.6.22 to prove that the series above repre-
sents a positive definite function. This establishes the assertion that
(cosh αx)/(cosh x) is infinitely divisible for 0 < α < 1.

5.6.24 Exercise

The aim of this exercise is to show that the function

f(x) =
sinhαx

sinh x
, 0 < α < 1,

is infinitely divisible. Its positive definiteness has been established in
Section 5.2.10.

(i) Imitate the arguments in Exercise 5.6.23. Use the identity

sinh(a + b)x + sinh(a − b)x = 2 sinh ax cosh bx

to show that the function

sinh ax

sinh(a + b)x

is infinitely divisible for 0 ≤ b ≤ a. (This restriction is needed to
handle the term sinh(a− b)x occurring in the series expansion.)
This shows that the function (sinh αx)/(sinh x) is infinitely di-
visible for 1/2 ≤ α ≤ 1.

(ii) Let α be any number in (0, 1) and choose a sequence

α = α0 < α1 < α2 < · · · < αm = 1

where αi/αi+1 ≥ 1/2. Then

sinh αx

sinh x
=

m−1∏

i=0

sinh αix

sinhαi+1x
.

Each factor in this product is infinitely divisible, and hence so
is the product.
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5.6.25 Exercise

(i) Use Exercise 5.6.24 to show that the function x/(sinh x) is in-
finitely divisible. [Hint: Take limit α ↓ 0.]

(ii) Use this and the result of Exercise 5.6.23 to show that the func-
tion

f(x) =
x cosh αx

sinh x
, −1/2 ≤ α ≤ 1/2,

is infinitely divisible.

5.6.26 Exercise

Let λ1, . . . , λn be any real numbers. Use the result of Exercise 5.2.22
to show that the matrix [[

e−|λi−λj |
]]

is infinitely divisible. Thus the function f(x) = e−|x| is infinitely
divisible. Use the integral formula

e−r|x| =
1

rπ

∫ ∞

−∞

e−itx

1 + t2/r2
dt, r > 0,

to obtain another proof of this fact.

5.6.27 Exercise

Using the gamma function, as in Exercise 1.6.4, show that for every
r > 0

1

(1 + ix)r
=

1

Γ(r)

∫ ∞

0
e−itx e−t tr−1 dt.

Thus the functions 1/(1 + ix)r, 1/(1 − ix)r, and 1/(1 + x2)r are pos-
itive definite for every r > 0. This shows that 1/(1 + x2) is infinitely
divisible.

5.6.28 Exercise

Let a and b be nonnegative numbers with a ≥ b. Let 0 < r < 1. Use
the integral formula (1.39) to show that

(
1 + bx2

1 + ax2

)r

=

∫ ∞

0

1 + bx2

1 + λ + (aλ + b)x2
dµ(λ),
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where µ is a positive measure. This is equal to
∫ ∞

0

(
b

aλ + b
+

λ(a − b)

aλ + b

1

1 + λ + (aλ + b)x2

)
dµ(λ).

Show that this is positive definite as a function of x. Note that it
suffices to show that for each λ > 0,

gλ(x) =
1

1 + λ + (aλ + b)x2

is positive definite. This, in turn, follows from the integral represen-
tation

gλ(x) =
1

2γ(1 + λ)

∫ ∞

−∞
e−itxe−|t|/γdt,

where γ = [(aλ + b)/(1 + λ)]1/2. Thus, for a ≥ b the function f(x) =
(1 + bx2)/(1 + ax2) is infinitely divisible.

5.6.29 Exercise

Show that the function f(x) = (tanh x)/x is infinitely divisible. [Hint:
Use the infinite product expansion for f(x).]

5.6.30 Exercise

Let t > −1 and consider the function

f(x) =
sinh x

x(cosh x + t)
.

Use the identity

cosh x = 2 cosh2 x

2
− 1

to obtain the equality

f(x) =
sinh (x/2) cosh(x/2)

(x/2) 2 cosh2(x/2)

1

1 − 1−t
2 cosh2(x/2)

.

Use the binomial theorem and Exercise 5.6.29 to prove that f is in-
finitely divisible for −1 < t ≤ 1.

Thus many of the positive definite functions from Section 5.2 are
infinitely divisible. Consequently the associated positive definite ma-
trices are infinitely divisible. In particular, for any positive numbers
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λ1, . . . , λn the n × n matrices V,W and Y whose entries are, respec-
tively,

vij =
λα

i − λα
j

λi − λj
, 0 < α < 1,

wij =
log λi − log λj

λi − λj
,

yij =
λν

i + λν
j

λi + λj
, −1 ≤ α ≤ 1,

are infinitely divisible.

5.6.31 Another proof of Bochner’s Theorem

The reader who has worked her way through the theory of Pick func-
tions (as given in Chapter V of MA) may enjoy the proof outlined
below.

(i) Let ϕ be a positive definite function on R, continuous at 0. Let
z = x + iy be a complex number and put

f(z) =

∫ ∞

0
eitzϕ(t)dt. (5.60)

Since ϕ is bounded, this integral is convergent for y > 0. Thus
f is an analytic function on the open upper half-plane H+.

(ii) Observe that
∫ ∞

0
eiv(z−z̄)dv =

1

2y
,

and so from (5.60) we have

Re f(z)

y
=

∫ ∞

0

∫ ∞

0
ei(t+v)ze−ivz̄ϕ(t)dt dv

+

∫ ∞

0

∫ ∞

0
e−i(t+v)z̄eivzϕ(−t)dt dv.

First substitute u = t + v in both the integrals, and then inter-
change u and v in the second integral to obtain

Re f(z)

y
=

∫ ∞

0

[∫ ∞

v
ei(uz−vz̄)ϕ(u − v)du

]
dv
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+

∫ ∞

0

[∫ ∞

u
ei(uz−vz̄)ϕ(u − v)dv

]
du.

Observe that these two double integrals are over the quarter-
planes {(u, v) : u ≥ v ≥ 0} and {(u, v) : v ≥ u ≥ 0}, respectively.
Hence

Re f(z)

y
=

∫ ∞

0

∫ ∞

0
ei(uz−vz̄)ϕ(u − v)du dv

=

∫ ∞

0

∫ ∞

0
ϕ(u − v)ei(u−v)xe−(u+v)ydu dv.

Since ϕ is a positive definite function, this integral is nonneg-
ative. (Write it as a limit of Riemann sums each of which is
nonnegative.)

Thus f maps the upper half-plane into the right half-plane. So
i f(z) is a Pick function.

(iii) For η > 0

|ηf(iη)| ≤
∫ ∞

0
ηe−tη |ϕ(t)| dt ≤ |ϕ(0)| .

Hence, by Problem V.5.9 of MA, there exists a finite positive
measure µ on R such that

if(z) =

∫ ∞

−∞

1

λ − z
dµ(λ).

(iv) Thus we have

f(z)=

∫ ∞

−∞

i

−λ + z
dµ(λ)

=

∫ ∞

−∞

∫ ∞

0
ei(−λ+z)tdt dµ(λ)

=

∫ ∞

0

[∫ ∞

−∞
e−iλtdµ(λ)

]
eitzdt.

(v) Compare the expression for f in (5.60) with the one obtained in
(iv) and conclude

ϕ(t) =

∫ ∞

−∞
e−iλtdµ(λ).

This is the assertion of Bochner’s theorem.
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5.7 NOTES AND REFERENCES

Positive definite functions have applications in almost every area of
modern analysis. In 1907 C. Carathéodory studied functions with
power series

f(z) =
a0

2
+ a1z + a2z

2 + · · · ,

and found necessary and sufficient conditions on the sequence {an}
in order that f maps the unit disk into the right half-plane. In 1911
O. Toeplitz observed that Carathéodory’s condition is equivalent to
(5.1). The connection with Fourier series and transforms has been
pointed out in this chapter. In probability theory positive definite
functions arise as characteristic functions of various distributions. See
E. Lukacs, Characteristic Functions, Griffin, 1960, and R. Cuppens,
Decomposition of Multivariate Probabilities, Academic Press, 1975.
We mention just one more very important area of their application:
the theory of group representations.

Let G be a locally compact topological group. A (continuous)
complex-valued function ϕ on G is positive definite if for each N =
1, 2, . . . , the N × N matrix

[[
ϕ
(
g−1
s gr

)]]
is positive for every choice

of elements g0, . . . , gN−1 from G. A unitary representation of G is a
homomorphism g 7→ Ug from G into the group of unitary operators on
a Hilbert space H such that for every fixed x ∈ H the map g 7→ Ugx
from G into H is continuous. (This is called strong continuity.) It is
easy to see that if Ug is a unitary representation of G in the Hilbert
space H, then for every x ∈ H the function

ϕ(g) = 〈x,Ugx〉 (5.61)

is positive definite on G. (This is a generalization of Exercise 5.6.1.)
The converse is an important theorem of Gelfand and Raikov proved
in 1943. This says that for every positive definite function ϕ on G
there exist a Hilbert space H, a unitary representation Ug of G in
H, and a vector x ∈ H such that the equation (5.61) is valid. This
is one of the first theorems in the representation theory of infinite
groups. One of its corollaries is that every locally compact group has
sufficiently many irreducible unitary representations. More precisely,
for every element g of G different from the identity, there exists an
irreducible unitary representation of G for which Ug is not the identity
operator.

An excellent survey of positive definite functions is given in J. Stew-
art, Positive definite functions and generalizations, an historical sur-
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vey, Rocky Mountain J. Math., 6 (1976) 409–434. Among books,
we recommend C. Berg, J.P.R. Christensen, and P. Ressel, Harmonic
Analysis on Semigroups, Springer, 1984, and Z. Sasvári, Positive Def-
inite and Definitizable Functions Akademie-Verlag, Berlin, 1994.

In Section 5.2 we have constructed a variety of examples using
rather elementary arguments. These, in turn, are useful in proving
that certain matrices are positive. The criterion in 5.2.15 is due to
G. Pólya, Remarks on characteristic functions, Proc. Berkeley Symp.
Math. Statist. & Probability, 1949, pp.115-123. This criterion is very
useful as its conditions can be easily verified.

The ideas and results of Sections 5.2 and 5.3 are taken from the
papers R. Bhatia and K. R. Parthasarathy, Positive definite functions
and operator inequalities, Bull. London Math. Soc. 32 (2000) 214–
228, H. Kosaki, Arithmetic-geometric mean and related inequalities for
operators, J. Funct. Anal., 15 (1998) 429–451, F. Hiai and H. Kosaki,
Comparison of various means for operators, ibid., 163 (1999) 300–
323, and F. Hiai and H. Kosaki, Means for matrices and comparison
of their norms, Indiana Univ. Math. J., 48 (1999) 899–936.

The proof of Theorem 5.3.1 given here is from R. Bhatia and K.
B. Sinha, Derivations, derivatives and chain rules, Linear Algebra
Appl., 302/303 (1999) 231–244. Theorem 5.3.3 was proved by K.
Löwner (C. Loewner) in Über monotone Matrixfunctionen, Math. Z.,
38 (1934) 177–216. Loewner then used this theorem to show that a
function is operator monotone on the positive half-line if and only if it
has an analytic continuation mapping the upper half-plane into itself.
Such functions are characterized by certain integral representations,
namely, f is operator monotone if and only if

f(t) = α + βt +

∫ ∞

0

λt

λ + t
dµ(t) (5.62)

for some real numbers α and β with β ≥ 0, and a positive measure
µ that makes the integral above convergent. The connection between
positivity of Loewner matrices and complex functions is made via
Carathéodory’s theorem (mentioned at the beginning of this section)
and its successors. Following Loewner’s work operator monotonic-
ity of particular examples such as 5.3.5–5.3.8 was generally proved
by invoking the latter two criteria (analytic continuation or integral
representation). The more direct proofs based on the positivity of
Loewner matrices given here are from the 2000 paper of Bhatia and
Parthasarathy.

The inequality (5.24) and the more general (5.28) were proved
in R. Bhatia and C. Davis, More matrix forms of the arithmetic-
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geometric mean inequality, SIAM J. Matrix Anal. Appl., 14 (1993)
132–136. For the operator norm alone, the inequality (5.28) was
proved by E. Heinz, Beiträge zur Störungstheorie der Spektralzer-
legung, Math. Ann., 123 (1951) 415–438. The inequality (5.24)
aroused considerable interest and several different proofs of it were
given by various authors. Two of them, R. A. Horn, Norm bounds
for Hadamard products and the arithmetic-geometric mean inequality
for unitarily invariant norms, Linear Algebra Appl., 223/224 (1995)
355–361, and R. Mathias, An arithmetic-geometric mean inequality
involving Hadamard products, ibid., 184 (1993) 71–78, observed that
the inequality follows from the positivity of the matrix in (5.27). The
papers by Bhatia-Parthasarathy and Kosaki cited above were mo-
tivated by extending this idea further. The two papers used rather
similar arguments and obtained similar results. The program was car-
ried much further in the two papers of Hiai and Kosaki cited above
to obtain an impressive variety of results on means. The interested
reader should consult these papers as well as the monograph F. Hiai
and H. Kosaki, Means of Hilbert Space Operators, Lecture Notes in
Mathematics Vol. 1820, Springer, 2003.

The theorems of Herglotz and Bochner concern the groups Z and
R. They were generalized to locally compact abelian groups by A.
Weil, by D. A. Raikov, and by A. Powzner, in independent papers
appearing almost together. Further generalizations (non-abelian or
non-locally compact groups) exist. The original proof of Bochner’s
theorem appears in S. Bochner, Vorlesungen über Fouriersche Inte-
grale, Akademie-Verlag, Berlin, 1932. Several other proofs have been
published. The one given in Section 5.5 is taken from R. Goldberg,
Fourier Transforms, Cambridge University Press, 1961, and that in
Section 5.6 from N. I. Akhiezer and I. M. Glazman, Theory of Linear
Operators in Hilbert Space, Dover, 1993 (reprint of original editions).
A generalization to distributions is given in L. Schwartz, Théorie des
Distributions, Hermann, 1954.

Integral representations such as the one given by Bochner’s theorem
are often viewed as a part of “Choquet Theory.” Continuous positive
definite functions ϕ(x) such that ϕ(0) = 1 form a compact convex set;
the family

{
eitx : t ∈ R

}
is the set of extreme points of this convex set.

Exercise 5.6.1 is an adumbration of the connections between positive
definite functions and spectral theory of operators. A basic theorem
of M. H. Stone in the latter subject says that every unitary repre-
sentation t 7→ Ut of R in a Hilbert space H is of the form Ut = eitA

for some (possibly unbounded) self-adjoint operator A. (The operator
A is bounded if and only if ‖Ut − I‖ → 0 as t → 0.) The theorems
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of Stone and Bochner can be derived from each other. See M. Reed
and B. Simon, Methods of Modern Mathematical Physics, Vols. I, II,
Academic Press, 1972, 1975, Chapters VIII, IX.

A sequence {an}∞n=0 is of positive type if for every positive integer
N, we have

N−1∑

r,s=0

ar+sξr ξ̄s ≥ 0 (5.63)

for every finite sequence of complex numbers ξ0, ξ1, . . . , ξN−1. This is
equivalent to the requirement that for each N = 1, 2, . . . , the N × N
matrix




a0 a1 a2 · · · aN−1

a1 a2 a3 · · · aN
...

...
...

...
aN−1 aN aN+1 · · · a2N−2


 (5.64)

is positive. Compare these conditions with (5.1) and (5.2). (Matrices
of the form (5.64) are called Hankel matrices while those of the form
(5.2) are Toeplitz matrices.) A complex valued function ϕ on the
positive half-line [0,∞) is of positive type if for each N the N × N
matrix

[[ϕ (xr + xs)]] (5.65)

is positive for every choice of x0, . . . , xN−1 in [0,∞). A theorem of
Bernstein and Widder says that ϕ is of positive type if and only if
there exists a positive measure µ on [0,∞) such that

ϕ(x) =

∫ ∞

0
e−txdµ(t), (5.66)

i.e., ϕ is the Laplace transform of a positive measure µ. Such func-
tions are characterized also by being completely monotone, which, by
definition, means that

(−1)mϕ(m)(x) ≥ 0, m = 0, 1, 2, . . . .

See MA p.148 for the connection such functions have with operator
monotone functions. The book of Berg, Christensen, and Ressel cited
above is a good reference for the theory of these functions.

Our purpose behind this discussion is to raise a question. Suppose
f is a function mapping [0,∞) into itself. Say that f is in the class
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L± if for each N the matrix

[[
f(λi) ± f(λj)

λi ± λj

]]

is positive for every choice λ1, . . . , λN in [0,∞). The class L− is pre-
cisely the operator monotone functions. Is there a good characteri-
sation of functions in L+? One can easily see that if f ∈ L+, then
so does 1/f. It is known that L− is contained in L+; see, e.g., M. K.
Kwong, Some results on matrix monotone functions, Linear Algebra
Appl., 118 (1989) 129–153. (It is easy to see, using the positivity of the
Cauchy matrix, that for every λ > 0 the function g(t) = λt/(λ + t)
is in L+. The integral representation (5.62) then shows that every
function in L− is in L+.)

The conjecture stated after Exercise 5.6.3 goes back to D. Bessis,
P. Moussa, and M. Villani, Monotonic converging variational approx-
imations to the functional integrals in quantum statistical mechanics,
J. Math. Phys., 16 (1975) 2318–2325. A more recent report on the
known partial results may be found in P. Moussa, On the representa-

tion of Tr
(
e(A−λB)

)
as a Laplace transform, Rev. Math. Phys., 12

(2000) 621–655. E. H. Lieb and R. Seiringer, Equivalent forms of the
Bessis-Moussa-Villani conjecture, J. Stat. Phys., 115 (2004) 185–190,
point out that the statement of this conjecture is equivalent to the
following: for all A and B positive, and all natural numbers p, the
polynomial λ 7→ tr (A + λB)p has only positive coefficients. When
this polynomial is multiplied out, the co-efficient of λr is a sum of
terms each of which is the trace of a word in A and B. It has been
shown by C. R. Johnson and C. J. Hillar, Eigenvalues of words in
two positive definite letters, SIAM J. Matrix Anal. Appl., 23 (2002)
916-928, that some of the individual terms in this sum can be nega-
tive. For example, tr A2B2AB can be negative even when A and B
are positive.

The matrix Z in Exercise 5.6.7 was studied by M. K. Kwong, On
the definiteness of the solutions of certain matrix equations, Linear
Algebra Appl., 108 (1988) 177–197. It was shown here that for each
n ≥ 2, there exists a number tn such that Z is positive for all t in
(−2, tn], and further tn > 2 for all n, tn = ∞, 8, 4 for n = 2, 3, 4,
respectively. The complete solution (given in Exercise 5.6.7) appears
in the 2000 paper of Bhatia-Parthasarathy cited earlier. The idea and
the method are carried further in R. Bhatia and D. Drissi, Generalised
Lyapunov equations and positive definite functions, SIAM J. Matrix
Anal. Appl., 27 (2005) 103-295–114. Using a Fourier transforms argu-
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ment D. Drissi, Sharp inequalities for some operator means, preprint
2006, has shown that the function f(x) = (x cosh αx)/ sinh x is not
positive definite when |α| > 1/2. The result of Exercise 5.6.9 is due
to E. Andruchow, G. Corach, and D. Stojanoff, Geometric operator
inequalities, Linear Algebra Appl., 258 (1997) 295-310, where other
related inequalities are also discussed. The result of Exercise 5.6.10
was proved by D. K. Jocić, Cauchy-Schwarz and means inequalities
for elementary operators into norm ideals, Proc. Am. Math. Soc.,
126 (1998) 2705–2711. Cognate results are proved in D. K. Jocić,
Cauchy-Schwarz norm inequalities for weak∗-integrals of operator val-
ued functions, J. Funct. Anal., 218 (2005) 318–346.

Proposition 5.6.11 is proved in the Hiai-Kosaki papers cited earlier.
They also give an example of two means where M1 ≤ M2, but M1 <<
M2 is not true. The simple example in Exercise 5.6.12 is from R.
Bhatia, Interpolating the arithmetic-geometric mean inequality and
its operator version, Linear Algebra Appl., 413 (2006) 355–363.

Conditionally positive definite matrices are discussed in Chapter 4
of the book R. B. Bapat and T. E. S. Raghavan, Nonnegative Matrices
and Applications, Cambridge University Press, 1997, and more briefly
in Section 6.3 of R. A. Horn and C. R. Johnson, Topics in Matrix Anal-
ysis, Cambridge University Press, 1991. This section also contains a
succinct discussion of infinitely divisible matrices and references to
original papers. The results of Exercises 5.6.20 and 5.6.21 are taken
from R. Bhatia, Infinitely divisible matrices, Am. Math. Monthly,
113 (2006) 221–235, and those of Exercises 5.6.23, 5.6.24 and 5.6.25
from R. Bhatia and H. Kosaki, Mean matrices and infinite divisibil-
ity, preprint 2006. In this paper it is shown that for several classes of
means m(a, b), matrices of the form [[m(λi, λj)]] are infinitely divisible

if m(a, b) ≤
√

ab for all a and b; and if
√

ab ≤ m(a, b), then matrices of
the form [[1/m(λi, λj)]] are infinitely divisible. The contents of Exer-
cise 5.6.28 are taken from H. Kosaki, On infinite divisibility of positive
definite functions, preprint 2006. In this paper Kosaki uses very in-
teresting ideas from complex analysis to obtain criteria for infinite
divisibility.

We have spoken of Loewner’s theorems that say that the Loewner
matrices associated with a function f on [0,∞) are positive if and
only if f has an analytic continuation mapping the upper half-plane
into itself. R. A. Horn, On boundary values of a schlicht mapping,
Proc. Am. Math. Soc., 18 (1967) 782–787, showed that this an-
alytic continuation is a one-to-one (schlicht) mapping if and only if
the Loewner matrices associated with f are infinitely divisible. This
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criterion gives another proof of the infinite divisibility of the matrices
in Sections 5.3.5 and 5.3.7.

Infinitely divisible distribution functions play an important role
in probability theory. These are exactly the limit distributions for
sums of independent random variables. See, for example, L. Breiman,
Probability, Addison-Wesley, 1968, pp. 190–196, or M. Loeve, Prob-
ability Theory, Van Nostrand, 1963, Section 22. The two founda-
tional texts on this subject are B. V. Gnedenko and A. N. Kol-
mogorov, Limit Distributions for Sums of Independent Random Vari-
ables, Addison-Wesley, 1954, and P. Lévy, Théorie de l’ Addition
des Variables Aléatoires, Gauthier-Villars, 1937. The famous Lévy-
Khintchine Formula says that a continuous positive definite function
ϕ, with ϕ(0) = 1, is infinitely divisible if and only if it can be repre-
sented as

log ϕ(t) = iγt +

∫ ∞

−∞

(
eitu − 1 − itu

1 + u2

)
1 + u2

u2
dG(u),

where γ is a real number, G is a nondecreasing function of bounded
variation, and the integrand at u = 0 is to be interpreted as the lim-
iting value −t2/2. This representation of log f(t) is unique. See the
book by Gnedenko and Kolmogorov, p. 76. A list of such representa-
tions for some of the examples we have considered is given in Lukacs,
p. 93.

A positive definite function is said to be self-decomposable if for
every real number ν in (0, 1) there exists a positive definite function
ϕν such that

ϕ(x) = ϕ(νx)ϕν(x).

Such functions are of importance in probability theory; see Section
23.3 of Loeve’s book. It is shown there that if ϕ is self-decomposable,
then it is infinitely divisible, and so are the functions ϕν , 0 < ν <
1. Our discussion in Section 5.2.10 shows that the functions 1/(1 +
x2), 1/ cosh x and x/ sinh x are self-decomposable. So, the infinite
divisibility of some of the functions in Exercises 5.6.22–5.6.28 is a
consequence also of Loeve’s theorem.

In Exercise 5.6.28 we observed that if a ≥ b ≥ 0, then the func-
tion f(x) = (1 + bx2)/(1 + ax2) is infinitely divisible, and in Exercise
5.6.29 asked the reader to use this to show that g(x) = (tanh x)/x
is infinitely divisible. In the paper Z. J. Jurek and M. Yor, Self de-
composable laws associated with hyperbolic functions, Probability and
Mathematical Statistics, 24 (2004), 181–190, it is observed that the
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function f is not self-decomposable but the function g is. Some of the
results in H. Kosaki, On infinite divisibility of positive definite func-
tions, preprint 2006, can be rephrased to say that certain functions
are self-decomposable. His list includes, for example, 1/(cosh x + a),
−1 ≤ a ≤ 1. The relevance and importance of these functions in prob-
ability theory is explained in the paper of Jurek and Yor, and in the
references therein.

Finally, we make a few comments on operator inequalities with spe-
cial reference to the arithmetic-geometric mean inequality. Operator
inequalities are sought and found in three different versions. If A
and B are positive, we may have sometimes an inequality A ≥ B.
By Weyl’s monotonicity principle, this implies that λj(A) ≥ λj(B),
1 ≤ j ≤ n, where λj(A) is the jth eigenvalue of A counted in decreas-
ing order. (This is equivalent to the existence of a unitary matrix U
such that A ≥ UBU∗.) This, in turn implies that |||A||| ≥ |||B||| for
all unitarily invariant norms. If A and B are not positive, we may ask
whether |A| ≥ |B|. This implies the set of inequalities sj(A) ≥ sj(B)
for all the singular values, which in turn implies |||A||| ≥ |||B||| for all
unitarily invariant norms.

In Chapter 4 we saw an arithmetic-geometric mean inequality of
the first kind; viz., A#B ≤ 1

2(A + B) for any two positive matrices.
The inequality (5.23) and its stronger version (5.24) are of the third
kind. An inequality of the second kind was proved by R. Bhatia
and F. Kittaneh, On the singular values of a product of operators,
SIAM J. Matrix Anal. Appl., 11 (1990) 272–277. This says that

sj

(
A1/2B1/2

)
≤ sj(A + B)/2, for 1 ≤ j ≤ n. This inequality for

singular values implies the inequality (5.23) for norms. A stronger
version sj(A

1/2XB1/2) ≤ sj(AX + XB)/2 is not always true. So,
there is no second level inequality generalising (5.24).

For positive numbers a and b, the arithmetic-geometric mean in-
equality may be written in three different ways:

(i)
√

ab ≤ (a + b)/2,

(ii) ab ≤ (a2 + b2)/2,

(iii) ab ≤ ((a + b)/2)2 .

While each of these three may be obtained from the other, the matrix
versions suggested by them are different. For example (i) leads to the
question whether

s
1/2
j (AB) ≤ sj

(
A + B

2

)
?
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This is different from the inequality of Bhatia and Kittaneh stated
above. It is not known whether this is true when n > 2. Weaker than
this is the third-level inequality

||| |AB|1/2 ||| ≤ 1

2
|||A + B|||.

This too is known to be true for a large class of unitarily invariant
norms (including Schatten p-norms for p = 1 and for p ≥ 2). It is
not known whether it is true for all unitarily invariant norms. From
properties of the matrix square function, one can see that this last
(unproven) inequality is stronger than the assertion

|||AB||| ≤
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

(
A + B

2

)2
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣ .

This version of the arithmetic-geometric mean inequality is known to
be true. Thus there are quite a few subtleties involved in noncommu-
tative versions of simple inequalities. A discussion of some of these
matters may be found in R. Bhatia and F. Kittaneh, Notes on ma-
trix arithmetic-geometric mean inequalities, Linear Algebra Appl., 308
(2000) 203–211, where the results just mentioned are proved. We rec-
ommend the monograph X. Zhan, Matrix Inequalities, Lecture Notes
in Mathematics Vol. 1790, Springer, 2002 for a discussion of several
topics related to these themes.





Chapter Six

Geometry of Positive Matrices

The set of n × n positive matrices is a differentiable manifold with
a natural Riemannian structure. The geometry of this manifold is
intimately connected with some matrix inequalities. In this chapter
we explore this connection. Among other things, this leads to a deeper
understanding of the geometric mean of positive matrices.

6.1 THE RIEMANNIAN METRIC

The space Mn is a Hilbert space with the inner product 〈A,B〉 =

tr A∗B and the associated norm ‖A‖2 = (tr A∗A)1/2. The set of Her-
mitian matrices constitutes a real vector space Hn in Mn. The subset
Pn consisting of strictly positive matrices is an open subset in Hn.
Hence it is a differentiable manifold. The tangent space to Pn at any
of its points A is the space TAPn = {A}×Hn, identified for simplicity,
with Hn. The inner product on Hn leads to a Riemannian metric on
the manifold Pn. At the point A this metric is given by the differential

ds = ‖A−1/2dAA−1/2‖2 =
[
tr
(
A−1dA

)2]1/2
. (6.1)

This is a mnemonic for computing the length of a (piecewise) differ-
entiable path in Pn. If γ : [a, b] → Pn is such a path, we define its
length as

L(γ) =

∫ b

a
‖γ−1/2(t)γ′(t)γ−1/2(t)‖2 dt. (6.2)

For each X ∈ GL(n) the congruence transformation ΓX(A) =
X∗AX is a bijection of Pn onto itself. The composition ΓX ◦ γ is
another differentiable path in Pn.

6.1.1 Lemma

For each X ∈ GL(n) and for each differentiable path γ

L
(
ΓX ◦ γ

)
= L(γ). (6.3)
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Proof. Using the definition of the norm ‖ · ‖2 and the fact that
tr XY = tr Y X for all X and Y we have for each t

‖
(
X∗γ(t)X

)−1/2(
X∗γ(t)X

)′(
X∗γ(t)X

)−1/2
‖2

=

[
tr
(
X∗γ(t)X

)−1(
X∗γ(t)X

)′(
X∗γ(t)X

)−1(
X∗γ(t)X

)′]1/2

=
[
tr X−1γ−1(t)γ′(t)γ−1(t)γ′(t)X

]1/2

=
[
tr γ−1(t)γ′(t)γ−1(t)γ′(t)

]1/2

= ‖γ−1/2(t)γ′(t)γ−1/2(t)‖2.

Intergrating over t we get (6.3). �

For any two points A and B in Pn let

δ2(A,B) = inf {L(γ) : γ is a path from A to B} . (6.4)

This gives a metric on Pn. The triangle inequality

δ2(A,B) ≤ δ2(A,C) + δ2(C,B)

is a consequence of the fact that a path γ1 from A to C can be adjoined
to a path γ2 from C to B to obtain a path from A to B. The length
of this latter path is L(γ1) + L(γ2).

According to Lemma 6.1.1 each ΓX is an isometry for the length L.
Hence it is also an isometry for the metric δ2; i.e.,

δ2

(
ΓX(A),ΓX(B)

)
= δ2(A,B), (6.5)

for all A, B in Pn and X in GL(n).
This observation helps us to prove several properties of δ2. We will

see that the infimum in (6.4) is attained at a unique path joining
A and B. This path is called the geodesic from A to B. We will
soon obtain an explicit formula for this geodesic and for its length.
The following inequality called the infinitesimal exponential metric
increasing property (IEMI) plays an important role. Following the
notation introduced in Exercise 2.7.15 we write DeH for the derivative
of the exponential map at a point H of Hn. This is a linear map on
Hn whose action is given as

DeH(K) = lim
t→0

eH+tK − eH

t
.
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6.1.2 Proposition (IEMI)

For all H and K in Hn we have

‖e−H/2DeH(K)e−H/2‖2 ≥ ‖K‖2. (6.6)

Proof. Choose an orthonormal basis in which H = diag (λ1, . . . , λn).
By the formula (2.40)

DeH(K) =

[[
eλi − eλj

λi − λj
kij

]]
.

Therefore, the i, j entry of the matrix e−H/2 D eH(K) e−H/2 is

sinh (λi − λj)/2

(λi − λj)/2
kij .

Since (sinh x)/x ≥ 1 for all real x, the inequality (6.6) follows. �

6.1.3 Corollary

Let H(t), a ≤ t ≤ b be any path in Hn and let γ(t) = eH(t). Then

L(γ) ≥
∫ b

a
‖H ′(t)‖2 dt. (6.7)

Proof. By the chain rule γ′(t) = D eH(t)
(
H ′(t)

)
. So the inequality

(6.7) follows from the definition of L(γ) given by (6.2) and the IEMI
(6.6). �

If γ(t) is any path joining A and B in Pn, then H(t) = log γ(t) is a
path joining log A and log B in Hn. The right-hand side of (6.7) is the
length of this path in the Euclidean space Hn. This is bounded below
by the length of the straight line segment joining log A and log B.
Thus L(γ) ≥ ‖ log A − log B‖2, and we have the following important
corollary called the exponential metric increasing property (EMI).

6.1.4 Theorem (EMI)

For each pair of points A, B in Pn we have

δ2(A,B) ≥ ‖ log A − log B‖2. (6.8)

In other words for any two matrices H and K in Hn

δ2(e
H , eK) ≥ ‖H − K‖2. (6.9)
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So the map

(Hn, ‖ · ‖2)
exp−→ (Pn, δ2) (6.10)

increases distances, or is metric increasing.
Our next proposition says that when A and B commute there is

equality in (6.8). Further the exponential map carries the line segment
joining log A and log B in Hn to the geodesic joining A and B in Pn.
A bit of notation will be helpful here. We write [H,K] for the line
segment

H(t) = (1 − t)H + tK, 0 ≤ t ≤ 1

joining two points H and K in Hn. If A and B are two points in Pn

we write [A,B] for the geodesic from A to B. The existence of such a
path is yet to be established. This is done first in the special case of
commuting matrices.

6.1.5 Proposition

Let A and B be commuting matrices in Pn. Then the exponential
function maps the line segment [log A, log B] in Hn to the geodesic
[A,B] in Pn. In this case

δ2(A,B) = ‖ log A − log B‖2.

Proof. We have to verify that the path

γ(t) = exp
(
(1 − t) log A + t log B

)
, 0 ≤ t ≤ 1,

is the unique path of shortest length joining A and B in the space
(Pn, δ2) . Since A and B commute, γ(t) = A1−tBt and
γ′(t) = (log B − log A) γ(t). The formula (6.2) gives in this case

L(γ) =

∫ 1

0
‖ log A − log B‖2 dt = ‖ log A − log B‖2.

The EMI (6.7) says that no path can be shorter than this. So the
path γ under consideration is one of shortest possible length.

Suppose γ̃ is another path that joins A and B and has the same
length as that of γ. Then H̃(t) = log γ̃(t) is a path that joins log A
and log B in Hn, and by Corollary 6.1.3 this path has length
‖ log A − log B‖2. But in a Euclidean space the straight line seg-

ment is the unique shortest path between two points. So H̃(t) is a
reparametrization of the line segment [log A, log B] . �
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Applying the reasoning of this proof to any subinterval [0, a] of [0, 1]
we see that the parametrization

H(t) = (1 − t) log A + t log B

of the line segment [log A, log B] is the one that is mapped isometri-
cally onto [A,B] along the whole interval. In other words the natural
parametrisation of the geodesic [A,B] when A and B commute is
given by

γ(t) = A1−tBt, 0 ≤ t ≤ 1,

in the sense that δ2

(
A, γ(t)

)
= tδ2(A,B) for each t. The general case

is obtained from this with the help of the isometries ΓX .

6.1.6 Theorem

Let A and B be any two elements of Pn. Then there exists a unique
geodesic [A,B] joining A and B. This geodesic has a parametrization

γ(t) = A1/2
(
A−1/2BA−1/2

)t
A1/2, 0 ≤ t ≤ 1, (6.11)

which is natural in the sense that

δ2(A, γ(t)) = t δ2(A,B) (6.12)

for each t. Further, we have

δ2(A,B) = ‖ log A−1/2BA−1/2‖2. (6.13)

Proof. The matrices I and A−1/2BA−1/2 commute. So the geodesic[
I,A−1/2BA−1/2

]
is naturally parametrized as

γ0(t) =
(
A−1/2BA−1/2

)t
.

Applying the isometry ΓA1/2 we obtain the path

γ(t) = ΓA1/2

(
γ0(t)

)
= A1/2

(
A−1/2BA−1/2

)t
A1/2

joining the points ΓA1/2(I) = A and ΓA1/2

(
A−1/2BA−1/2

)
= B. Since

ΓA1/2 is an isometry this path is the geodesic [A,B]. The equality
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(6.12) follows from the similar property for γ0(t) noted earlier. Using
Proposition 6.1.5 again we see that

δ2(A,B) = δ2

(
I,A−1/2BA−1/2

)

= ‖ log I − log
(
A−1/2BA−1/2

)
‖2

= ‖ log A−1/2BA−1/2‖2. �

Formula (6.13) gives an explicit representation for the metric δ2 that
we defined via (6.4). This is the Riemannian metric on the manifold
Pn. From the definition of the norm ‖ · ‖2 we see that

δ2(A,B) =
( n∑

i=1

log2 λi(A
−1B)

)1/2
, (6.14)

where λi are the eigenvalues of the matrix A−1B.

6.1.7 The geometric mean again

The expression (4.10) defining the geometric mean A#B now appears
in a new light. It is the midpoint of the geodesic γ joining A and
B in the space (Pn, δ2). This is evident from (6.11) and (6.12). The
symmetry of A#B in the two arguments A and B that we deduced by
indirect arguments in Section 4.1 is now revealed clearly: the midpoint
of the geodesic [A,B] is the same as the midpoint of [B,A].

The next proposition supplements the information given by the
EMI.

6.1.8 Proposition

If for some A, B ∈ Pn, the identity matrix I lies on the geodesic
[A,B], then A and B commute, [A,B] is the isometric image under
the exponential map of a line segment through O in Hn, and

log B = −1 − ξ

ξ
log A, (6.15)

where ξ = δ2(A, I)/δ2(A,B).

Proof. From Theorem 6.1.6 we know that

I = A1/2
(
A−1/2BA−1/2

)ξ
A1/2,

where ξ = δ2 (A, I) /δ2(A,B). Thus

B = A1/2A−1/ξA1/2 = A−(1−ξ)/ξ .
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So A and B commute and (6.15) holds. Now Proposition 6.1.5 tells
us that the exponential map sends the line segment [log A, log B]
isometrically onto the geodesic [A,B]. The line segment contains the
point O = log I. �

While the EMI says that the exponential map (6.10) is metric non-
decreasing in general, Proposition 6.1.8 says that this map is isometric
on line segments through O. This essentially captures the fact that Pn

is a Riemannian manifold of nonpositive curvature. See the discussion
in Section 6.5.

Another essential feature of this geometry is the semiparallelogram
law for the metric δ2. To understand this recall the parallelogram law
in a Hilbert space H. Let a and b be any two points in H and let
m = (a + b)/2 be their midpoint. Given any other point c consider
the parallelogram one of whose diagonals is [a, b] and the other [c, d].
The two diagonals intersect at m

a b

c

d

m

and the parallelogram law is the equality

‖a − b‖2 + ‖c − d‖2 = 2
(
‖a − c‖2 + ‖b − c‖2

)
.

Upon rearrangement this can be written as

‖c − m‖2 =
‖a − c‖2 + ‖b − c‖2

2
− ‖a − b‖2

4
.

In the semiparallelogram law this last equality is replaced by an in-
equality.

6.1.9 Theorem (The Semiparallelogram Law)

Let A and B any two points of Pn and let M = A#B be the midpoint
of the geodesic [A,B]. Then for any C in Pn we have

δ2
2(M,C) ≤ δ2

2(A,C) + δ2
2(B,C)

2
− δ2

2(A,B)

4
. (6.16)
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Proof. Applying the isometry ΓM−1/2 to all matrices involved, we
may assume that M = I. Now I is the midpoint of [A,B] and so by
Proposition 6.1.8 we have log B = − log A and

δ2(A,B) = ‖ log A − log B‖2.

The same proposition applied to [M,C] = [I, C] shows that

δ2(M,C) = ‖ log M − log C‖2.

The parallelogram law in the Hilbert space
(

Hn, ‖.‖2

)
tells us

‖ log M − log C‖2
2 =

‖ log A − log C‖2
2 + ‖ log B − log C‖2

2

2

−‖ log A − log B‖2
2

4
.

The left-hand side of this equation is equal to δ2
2(M,C) and the sub-

tracted term on the right-hand side is equal to δ2
2(A,B)/4. So the

EMI (6.8) leads to the inequality (6.16). �

In a Euclidean space the distance between the midpoints of two
sides of a triangle is equal to half the length of the third side. In a
space whose metric satisfies the semiparallelogram law this is replaced
by an inequality.

6.1.10 Proposition

Let A,B, and C be any three points in Pn. Then

δ2

(
A#B,A#C

)
≤ δ2(B,C)

2
. (6.17)

Proof. Consider the triangle with vertices A,B and C (and sides
the geodesic segments joining the vertices). Let M1 = A#B. This is
the midpoint of the side [A,B] opposite the vertex C of the triangle
{A,B,C}. Hence, by (6.16)

δ2
2 (M1, C) ≤ δ2

2(A,C) + δ2
2(B,C)

2
− δ2

2(A,B)

4
.

Let M2 = A#C. In the triangle {A,M1, C} the point M2 is the mid-
point of the side [A,C] opposite the vertex M1. Again (6.16) tells
us

δ2
2 (M1,M2) ≤

δ2
2(M1, C) + δ2

2(M1, A)

2
− δ2

2(A,C)

4
.
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Substituting the first inequality into the second we obtain

δ2
2(M1,M2)≤

1

4

[
δ2
2(A,C) + δ2

2(B,C)
]
− 1

8
δ2
2(A,B)

+
1

2
δ2
2(M1, A) − 1

4
δ2
2(A,C).

Since δ2(M1, A) = δ2(A,B)/2, the right-hand side of this inequality
reduces to δ2

2(B,C)/4. This proves (6.17). �

The inequality (6.17) can be used to prove a more general version
of itself. For 0 ≤ t ≤ 1 let

A#tB = A1/2
(
A−1/2BA−1/2

)t
A1/2. (6.18)

This is another notation for the geodesic curve γ(t) in (6.11). When
t = 1/2 this is the geometric mean A#B. The more general version
is in the following.

6.1.11 Corollary

Given four points B,C,B′, and C ′ in Pn let

f(t) = δ2

(
B′#tB, C ′#tC

)
.

Then f is convex on [0, 1]; i.e.,

δ2

(
B′#tB, C ′#tC

)
≤ (1 − t)δ2

(
B′, C ′)+ tδ2(B,C). (6.19)

Proof. Since f is continuous it is sufficient to prove that it is midpoint-
convex. Let M1 = B′#B, M2 = C ′#C, and M = B′#C. By Propo-
sition 6.1.10 we have δ2(M1,M) ≤ δ2(B,C)/2 and δ2(M,M2) ≤
δ2(B

′, C ′)/2. Hence

δ2(M1,M2) ≤ δ2(M1,M) + δ2(M,M2) ≤
1

2

[
δ2(B,C) + δ2(B

′, C ′)
]
.

This shows that f is midpoint-convex. �

Choosing B′ = C ′ = A in (6.19) gives the following theorem called
the convexity of the metric δ2.
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6.1.12 Theorem

Let A,B and C be any three points in Pn. Then for all t in [0, 1] we
have

δ2

(
A#tB,A#tC

)
≤ tδ2(B,C). (6.20)

6.1.13 Exercise

For a fixed A in Pn let f be the function f(X) = δ2
2(A,X). Show that

if X1 6= X2, then for 0 < t < 1

f
(
X1#tX2

)
< (1 − t)f(X1) + tf(X2). (6.21)

This is expressed by saying that the function f is strictly convex on
Pn. [Hint: Show this for t = 1/2 first.]

6.2 THE METRIC SPACE Pn

In this section we briefly study some properties of the metric space
(Pn, δ2) with special emphasis on convex sets.

6.2.1 Lemma

The exponential is a continuous map from the space (Hn, ‖.‖2) onto
the space (Pn, δ2).

Proof. Let Hm be a sequence in Hn converging to H. Then e−HmeH

converges to I in the metric induced by ‖.‖2. So all the eigenvalues

λi

(
e−HmeH

)
, 1 ≤ i ≤ n, converge to 1. The relation (6.14) then shows

that δ2

(
eHm , eH

)
goes to zero as m goes to ∞. �

6.2.2 Proposition

The metric space (Pn, δ2) is complete.

Proof. Let {Am} be a Cauchy sequence in (Pn, δ2) and let Hm =
log Am. By the EMI (6.8) {Hm} is a Cauchy sequence in (Hn, ‖ · ‖2) ,
and hence it converges to some H in Hn. By Lemma 6.2.1 the sequence
{Am} converges to A = eH in the space (Pn, δ2). �
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Note that Pn is not a complete subspace of (Hn, ‖.‖2). There it has
a boundary consisting of singular positive matrices. In terms of the
metric δ2 these are “points at infinity.” The next proposition shows
that we may approach these points along geodesics. We use A#tB for
the matrix defined by (6.18) for every real t. When A and B commute,
this reduces to A1−tBt.

6.2.3 Proposition

Let S be a singular positive matrix. Then there exist commuting ele-
ments A and B in Pn such that

‖A1−tBt − S‖2 → 0 and δ2

(
A1−tBt, A

)
→ ∞

as t → ∞.

Proof. Apply a unitary conjugation and assume S = diag (λ1, . . . , λn)
where λk are nonnegative for 1 ≤ k ≤ n, and λk = 0 for some k. If
λk > 0, then put αk = βk = λk, and if λk = 0, then put αk = 1 and
βk = 1/2. Let A = diag (α1, . . . , αn) and B = diag (β1, . . . , βn). Then

lim
t→∞

‖A1−tBt − S‖2 = 0.

For the metric δ2 we have

δ2

(
A1−tBt, A

)
= ‖ log A−1A1−tBt‖2 = ‖ log A−tBt‖2

≥
∣∣log 2−t

∣∣ = t log 2,

and this goes to ∞ as t → ∞. �

The point of the proposition is that the curve A#tB starts at A
when t = 0, and “goes away to infinity” in the metric space (Pn, δ2)
while converging to S in the space (Hn, ‖ · ‖2) .

It is conventional to extend some matrix operations from strictly
positive matrices to singular positive matrices by taking limits. For
example, the geometric mean A#B is defined by (4.10) for strictly
positive matrices A and B, and then defined for singular positive
matrices A and B as

A#B = lim
ε↓0

(
A + εI

)
#
(
B + εI

)
.

The next exercise points to the need for some caution when using this
idea.
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6.2.4 Exercise

The geometric mean A#B is continuous on pairs of strictly positive
matrices, but is not so when extended to positive semidefinite matri-
ces. (See Exercise 4.1.6.)

We have seen that any two points A and B in Pn can be joined
by a geodesic segment [A,B] lying in Pn. We say a subset K of Pn is
convex if for each pair of points A and B in K the segment [A,B] lies
entirely in K. If S is any subset of Pn, then the convex hull of S is the
smallest convex set containing S. This set, denoted as conv (S) is the
intersection of all convex sets that contain S. Clearly, the convex hull
of any two point set {A,B} is [A,B].

6.2.5 Exercise

Let S be any set in Pn. Define inductively the sets Sm as S0 = S and

Sm+1 = ∪{[A,B] : A,B ∈ Sm}.

Show that

conv (S) =
∞
∪

m=0

Sm.

The next theorem says that if K is a closed convex set in (Pn, δ2),
then a metric projection onto K exists just as it does in a Hilbert
space.

6.2.6 Theorem

Let K be a closed convex set in (Pn, δ2). Then for each A ∈ Pn there
exists a point C ∈ K such that δ2(A,C) < δ2(A,K) for every K in K,
K 6= C. (In other words C is the unique best approximant to A from
the set K.)

Proof. Let µ = inf {δ2(A,K) : K ∈ K} . Then there exists a sequence
{Cn} in K such that δ2(A,Cn) → µ. Given n and m, let M be the
midpoint of the geodesic segment [Cn, Cm]; i.e., M = Cn#Cm. By the
convexity of K the point M is in K. Using the semiparallelogram law
(6.16) we get

δ2
2(M,A) ≤ δ2

2(Cn, A) + δ2
2(Cm, A)

2
− δ2

2(Cn, Cm)

4
,
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and hence

δ2
2(Cn, Cm) ≤ 2

[
δ2
2(Cn, A) + δ2

2(Cm, A)
]
− 4µ2. (6.22)

As n and m go to ∞, the right-hand side of (6.22) goes to zero. Hence
{Cn} is a Cauchy sequence, and by Proposition 6.2.2 it converges to
a limit C in Pn. Since K is closed, C is in K. Further δ2(A,C) =
lim δ2(A,Cn) = µ. If K is any other element of K such that δ2(A,K) =
µ, then putting Cn = C and Cm = K in (6.22) we see that δ2(C,K) =
0; i.e., C = K. �

The map π(A) = C given by Proposition 6.2.6 may be called the
metric projection onto K.

6.2.7 Theorem

Let π be the metric projection onto a closed convex set K of Pn. If A
is any point of Pn and π(A) = C, then for any D in K

δ2
2(A,D) ≥ δ2

2(A,C) + δ2
2(C,D). (6.23)

Proof. Let {Mn} be the sequence defined inductively as M0 = D, and
Mn+1 = Mn#C. Then δ2(C,Mn) = 2−nδ2(C,D), and Mn converges
to C = M∞. By the semiparallelogram law (6.16)

2δ2
2(A,Mn+1) ≤ δ2

2(A,Mn) + δ2
2(A,C) − 1

2
δ2(C,Mn).

Hence,

δ2
2(A,Mn)− δ2

2(A,Mn+1) ≥
1

2 · 4n δ2
2(C,D) + δ2

2(A,Mn+1)− δ2
2(A,C).

Summing these inequalities we have

∞∑

n=0

[
δ2
2(A,Mn) − δ2

2(A,Mn+1)
]

≥ 2

3
δ2
2(C,D) +

∞∑

n=0

[
δ2
2(A,Mn+1) − δ2

2(A,C)
]
.

It is easy to see that the two series are absolutely convergent.
Let dn = δ2

2(A,Mn) − δ2
2(A,C). Then the last inequality can be

written as

δ2
2(A,D) − δ2

2(A,C) = d0 ≥ 2

3
δ2
2(C,D) +

∞∑

n=1

dn.
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The same argument applied to Mn in place of D shows

δ2
2(A,Mn) − δ2

2(A,C) = dn ≥ 2

3
δ2
2(C,Mn) +

∞∑

k=n+1

dk.

Thus

d0 ≥
2

3
δ2
2(C,D) + d1 +

∞∑

k=2

dk

≥ 2

3
δ2
2(C,D) +

2

3
δ2
2(C,M1) + 2

∞∑

k=2

dk

=
2

3
(1 +

1

4
)δ2

2(C,D) + 2d2 + 2

∞∑

k=3

dk

≥ 2

3
(1 +

1

4
)δ2

2(C,D) + 2

[
2

3
δ2
2(C,M2) +

∞∑

k=3

dk

]
+ 2

∞∑

k=3

dk

=
2

3

(
1 +

1

4
+

2

42

)
δ2
2(C,D) + 4

∞∑

k=3

dk

≥ · · · .

Since K is convex, each Mn ∈ K, and hence dn ≥ 0. Thus we have

d0 ≥ 2

3

[
1 +

∞∑

n=1

2n−1

4n

]
δ2
2(C,D) = δ2

2(C,D).

This proves the inequality (6.23). �

6.2.8 The geometric mean once again

If E is a Euclidean space with metric d, and a, b are any two points of
E , then the function

f(x) = d2(a, x) + d2(b, x)

attains its minimum on E at the unique point x0 = 1
2(a + b). In the

metric space (Pn, δ2) this role is played by the geometric mean.

Proposition. Let A and B be any two points of Pn, and let

f(X) = δ2
2(A,X) + δ2

2(B,X).

Then the function f is strictly convex on Pn, and has a unique mini-
mum at the point X0 = A#B.
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Proof. The strict convexity is a consequence of Exercise 6.1.13. The
semiparallelogram law implies that for every X we have

δ2
2 (A#B,X) ≤ 1

2
f(X) − 1

4
δ2
2(A,B) =

1

2
f(X) − 1

2
f(A#B).

Hence

f(A#B) ≤ f(X) − 2δ2
2(A#B,X).

This shows that f has a unique minimum at the point X0 = A#B. �

6.3 CENTER OF MASS AND GEOMETRIC MEAN

In Chapter 4 we discussed, and resolved, the problems associated
with defining a good geometric mean of two positive matrices. In this
section we consider the question of a suitable definition of a geometric
mean of more than two matrices. Our discussion will show that while
the case of two matrices is very special, ideas that work for three
matrices do work for more than three as well.

Given three positive matrices A1, A2, and A3, their geometric mean
G(A1, A2, A3) should be a positive matrix with the following proper-
ties. If A1, A2, and A3 commute with each other, then G(A1A2A3) =
(A1A2A3)

1/3. As a function of its three variables, G should satisfy the
conditions:

(i) G(A1, A2, A3) = G(Aπ(1), Aπ(2), Aπ(3)) for every permutation π
of {1, 2, 3}.

(ii) G(A1, A2, A3) ≤ G(A′
1, A2, A3) whenever A1 ≤ A′

1.

(iii) G(X∗A1X,X∗A2X,X∗A3X) = X∗G(A1, A2, A3)X for all X ∈
GL(n).

(iv) G is continuous.

The first three conditions may be called symmetry, monotonicity, and
congruence invariance, respectively.

None of the procedures that we used in Chapter 4 to define the geo-
metric mean of two positive matrices extends readily to three. While
two positive matrices can be diagonalized simultaneously by a congru-
ence, in general three cannot be. The formula (4.10) has no obvious
analogue for three matrices; nor does the extremal characterization
(4.15). It is here that the connections with geometry made in Sec-
tions 6.1.7 and 6.2.8 suggest a way out: the geometric mean of three
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matrices should be the “center” of the triangle that has the three
matrices as its vertices.

As motivation, consider the arithmetic mean of three points x1, x2,
and x3 in a Euclidean space (E , d). The point x̄ = 1

3(x1 + x2 + x3) is
characterized by several properties; three of them follow:

(i) x̄ is the unique point of intersection of the three medians of the
triangle △(x1, x2, x3). (This point is called the centroid of △.)

(ii) x̄ is the unique point in E at which the function

d2(x, x1) + d2(x, x2) + d2(x, x3)

attains its minimum. (This point is the center of mass of the
triple {x1, x2, x3} if each of them has equal mass.)

(iii) x̄ is the unique point of intersection of the nested sequence of
triangles {△n} in which △1 = △(x1, x2, x3) and △j+1 is the
triangle whose vertices are the midpoints of the three sides of
△j .

We may try to mimic these constructions in the space (Pn, δ2). As
we will see, this has to be done with some circumspection.

The first difficulty is with the identification of a triangle in this
space. In Section 6.2 we defined convex hulls and observed that the
convex hull of two points A1, A2 in Pn is the geodesic segment [A1, A2].
It is harder to describe the convex hull of three points A1, A2, A3. (This
seems to be a difficult problem in Riemannian geometry.) In the
notation of Exercise 6.2.5, if S = {A1, A2, A3}, then S1 = [A1, A2] ∪
[A2, A3] ∪ [A3, A1] is the union of the three “edges.” However, S2 is
not in general a “surface,” but a “fatter” object. Thus it may happen
that the three “medians” [A1, A2#A3], [A2, A1#A3], and [A3, A1#A2]
do not intersect at all in most cases. So, we have to abandon this as
a possible definition of the centroid of the triangle △(A1, A2, A3).

Next we ask whether for every triple of points A1, A2, A3 in Pn

there exists a (unique) point X0 at which the function

f(X) =
3∑

j=1

δ2
2(Aj ,X)

attains its minimum value on Pn. A simple argument using the semi-
parallelogram law shows that such a point exists. This goes as follows.
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Let m = inf f(X) and let {Xr} be a sequence in Pn such that
f(Xr) → m. By the semiparallellgram law we have for j = 1, 2, 3, and
for all r and s

δ2
2

(
Xr#Xs, Aj

)
≤ δ2

2(Xr, Aj) + δ2
2(Xs, Aj)

2
− δ2

2(Xr,Xs)

4
.

Summing up these three inequalities over j, we obtain

f
(
Xr#Xs

)
≤ 1

2

(
f(Xr) + f(Xs)

)
− 3

4
δ2
2(Xr,Xs).

This shows that

3

4
δ2
2(Xr,Xs)≤

1

2

(
f(Xr) + f(Xs)

)
− f

(
Xr#Xs

)

≤ 1

2

(
f(Xr) + f(Xs)

)
− m.

It follows that {Xr} is a Cauchy sequence, and hence it converges to a
limit X0. Clearly f attains its minimum at X0. By Exercise 6.1.13 the
function f is strictly convex and its minimum is attained at a unique
point.

We define the “center of mass” of {A1, A2, A3} as the point

G(A1, A2, A3) = arcmin
3∑

j=1

δ2
2(Aj ,X), (6.24)

where the notation arcmin f(X) stands for the point X0 at which
the function f(X) attains its minimum value. It is clear from the
definition that G(A1, A2, A3) is a symmetric and continuous function
of the three variables. Since each congruence transformation ΓX is an
isometry of (Pn, δ2) it is easy to see that G is congruence invariant;
i.e.,

G(X∗A1X,X∗A2X,X∗A3X) = X∗G(A1, A2, A3)X.

Thus G has three of the four desirable properties listed for a good
geometric mean at the beginning of this section. We do not know
whether G is monotone. Some more properties of G are derived below.

6.3.1 Lemma

Let ϕ1, ϕ2 be continuously differentiable real-valued functions on the
interval (0,∞) and let

h(X) =
〈
ϕ1(X), ϕ2(X)

〉
= tr ϕ1(X)ϕ2(X),



218 CHAPTER 6

for all X ∈ Pn. Then the derivative of h is given by the formula

Dh(X)(Y ) =
〈
ϕ′

1(X)ϕ2(X) + ϕ1(X)ϕ′
2(X), Y

〉
.

Proof. By the product rule for differentiation (see MA, p. 312) we
have

Dh(X)(Y ) =
〈
Dϕ1(X)(Y ), ϕ2(X)

〉
+
〈
ϕ1(X),Dϕ2(X)(Y )

〉
.

Choose an orthonormal basis in which X = diag (λ1, . . . , λn). Then
by (2.40)

Dϕ1(X)(Y ) =

[[
ϕ1(λi) − ϕ1(λj)

λi − λj

]]
◦ Y.

Hence,
〈
Dϕ1(X)(Y ), ϕ2(X)

〉
=
∑

i

ϕ′
1(λi)yiiϕ2(λi)

=
〈
ϕ′

1(X)ϕ2(X), Y
〉
.

Similarly,
〈
ϕ1(X),Dϕ2(X)(Y )

〉
=
〈
ϕ1(X)ϕ′

2(X), Y
〉
.

This proves the lemma. �

6.3.2 Corollary

Let h(X) = ‖ log X‖2
2, X ∈ Pn. Then

Dh(X)(Y ) = 2
〈
X−1 log X,Y

〉
for all Y ∈ Hn.

We need a slight modification of this result. If

h(X) = ‖ log(A−1/2XA−1/2)‖2
2,

then

Dh(X)(Y )

= 2
〈
(A−1/2XA−1/2)−1 log (A−1/2XA−1/2), A−1/2Y A−1/2

〉

(6.25)

for all Y ∈ Hn.
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6.3.3 Theorem

Let A1, A2, A3 be any three elements of Pn, and let

f(X) =

3∑

j=1

δ2
2(Aj ,X). (6.26)

Then the derivative of f at X is given by

Df(X)(Y ) = 2

3∑

j=1

〈
X−1 log (XA−1

j ), Y
〉
, (6.27)

for all Y ∈ Hn.

Proof. Using the relation (6.13) we have

f(X) =

3∑

j=1

‖ log
(
A

−1/2
j XA

−1/2
j

)
‖2
2.

Using (6.25) we see that Df(X)(Y ) is a sum of three terms of the
form

2 tr
[
A

1/2
j X−1A

1/2
j log

(
A

−1/2
j XA

−1/2
j

)
A

−1/2
j Y A

−1/2
j

]

= 2 tr
[
X−1A

1/2
j log

(
A

−1/2
j XA

−1/2
j

)
A

−1/2
j Y

]

= 2 tr
[
X−1 log

(
XA−1

j

)
Y
]
.

Here we have used the similarity invariance of trace at the first step,
and then the relation

S log(T )S−1 = log(STS−1)

at the second step. The latter is valid for all matrices T with no
eigenvalues on the half-line (−∞, 0] and for all invertible matrices
S, and follows from the usual functional calculus. This proves the
theorem. �

6.3.4 Theorem

Let A1, A2, A3 be three positive matrices and let X0 = G(A1, A2, A3)
be the point defined by (6.24). Then X0 is the unique positive solution
of the equation
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3∑

j=1

X−1 log(XA−1
j ) = O. (6.28)

Proof. The point X0 is the unique minimum of the function (6.26),

and hence, is characterised by the vanishing of the derivative (6.27)
for all Y ∈ Hn. But any matrix orthogonal to all Hermitian matrices
is zero. Hence

3∑

j=1

X−1
0 log(X0A

−1
j ) = O. (6.29)

In other words X0 satisfies the equation (6.28). �

6.3.5 Exercise

Let A1, A2, A3 be pairwise commuting positive matrices. Show that
G(A1, A2, A3) = (A1A2A3)

1/3.

6.3.6 Exercise

Let X and A be positive matrices. Show that

X−1 log(XA−1) = X−1/2 log
(
X1/2A−1X1/2

)
X−1/2. (6.30)

(This shows that the matrices occurring in (6.29) are Hermitian.)

6.3.7 Exercise

Let w = (w1, w2, w3), where wj ≥ 0 and
∑

wj = 1. We say that w is
a set of weights. Let

fw(X) =

3∑

j=1

wjδ
2
2(Aj ,X).

Show that fw is strictly convex, and attains a minimum at a unique
point.

Let Gw(A1, A2, A3) be the point where fw attains its minimum.
The special choice w = (1/3, 1/3, 1/3) leads to G(A1, A2, A3).



GEOMETRY OF POSITIVE MATRICES 221

6.3.8 Proposition

Each of the points Gw(A1, A2, A3) lies in the closure of the convex
hull conv ({A1, A2, A3}).
Proof. Let K be the closure of conv ({A1, A2, A3}) and let π be
the metric projection onto K. Then by Theorem 6.2.7, δ2

2(Aj ,X) ≥
δ2
2(Aj , π(X)) for every X ∈ Pn. Hence fw(X) ≥ fw(π(X)) for all

X. Thus the minimum value of fw(X) cannot be attained at a point
outside K. �

Now we turn to another possible definition of the geometric mean
of three matrices inspired by the characterisation of the centre of a
triangle as the intersection of a sequence of nested triangles.

Given A1, A2, A3 in Pn inductively construct a sequence of triples{
A

(m)
1 , A

(m)
2 , A

(m)
3

}
as follows. Set A

(0)
1 = A1, A

(0)
2 = A2, A

(0)
3 = A3,

and let

A
(m+1)
1 = A

(m)
1 #A

(m)
2 , A

(m+1)
2 = A

(m)
2 #A

(m)
3 , A

(m+1)
3 = A

(m)
3 #A

(m)
1 .

(6.31)

6.3.9 Theorem

Let A1, A2, A3 be any three points in Pn, and let
{

A
(m)
1 , A

(m)
2 , A

(m)
3

}

be the sequence defined by (6.31). Then for any choice of Xm in

conv
({

A
(m)
1 , A

(m)
2 , A

(m)
3

})
the sequence {Xm} converges to a point

X ∈ conv ({A1, A2, A3}). The point X does not depend on the choice
of Xm.

Proof. The diameter of a set S in Pn is defined as

diamS = sup{δ2(X,Y ) : X,Y ∈ S}.

It is easy to see, using convexity of the metric δ2, that if diamS = M,
then diam (conv (S)) = M.

Let Km = conv
({

A
(m)
1 , A

(m)
2 , A

(m)
3

})
. By (6.17), and what we

said above, diamKm ≤ 2−mM0, where M0 = diam {A1, A2, A3}. The
sequence {Km} is a decreasing sequence. Hence {Xm} is Cauchy and
converges to a limit X. Since Xm is in K0 for all m, the limit X is in
the closure of K0. The limit is unique as any two such sequences can
be interlaced. �
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6.3.10 A geometric mean of three matrices

Let G#(A1, A2, A3) be the limit point X whose existence has been
proved in Theorem 6.3.9. This may be thought of as a geomet-
ric mean of A1, A2, A3. From its construction it is clear that G# is
a symmetric continuous function of A1, A2, A3. Since the geometric
mean A#B of two matrices is monotone in A and B and is invari-
ant under congruence transformations, these properties are inherited
by G#(A1, A2, A3) as its construction involves successive two-variable
means and limits.

Exercise Show that for a commuting triple A1, A2, A3 of positive
matrices G#(A1, A2, A3) = (A1A2A3)

1/3.

One may wonder whether G#(A1, A2, A3) is equal to the centre of
mass G(A1, A2, A3). It turns out that this is not always the case. Thus
we have here two different candidates for a geometric mean of three
matrices. While G# has all properties that we seek, it is not known
whether G is monotone in its arguments. It does have all other desired
properties.

6.4 RELATED INEQUALITIES

Some of the inequalities proved in Section 6.1 can be generalized from
the special ‖·‖2 norm to all Schatten ‖·‖p norms and to the larger class
of unitarily invariant norms. These inequalities are very closely related
to others proved in very different contexts like quantum statistical
mechanics. This section is a brief indication of these connections.

Two results from earlier chapters provide the basis for our general-
izations. In Exercise 2.7.12 we saw that for a positive matrix A

|||A ◦ X||| ≤ max aii|||X|||

for every X and every unitarily invariant norm. In Section 5.2.9 we
showed that for every choice of n positive numbers λ1, . . . , λn, the
matrix

[[
sinh(λi − λj)

λi − λj

]]

is positive. Using these we can easily prove the following generalized
version of Proposition 6.1.2.
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6.4.1 Proposition (Generalized IEMI)

For all H and K in Hn we have

|||e−H/2DeH(K)e−H/2||| ≥ |||K||| (6.32)

for every unitarily invariant norm.

In the definition (6.2) replace ‖ · ‖2 by any unitarily invariant norm
||| · ||| and call the resulting length L|||·|||; i.e.,

L|||·|||(γ) =

∫ b

a
|||γ−1/2(t)γ′(t)γ−1/2(t)||| dt. (6.33)

Since |||X||| is a (symmetric gauge) function of the singular values of
X, Lemma 6.1.1 carries over to L|||·|||. The analogue of (6.4),

δ|||·|||(A,B) = inf
{
L|||·|||(γ) : γ is a path fromA to B

}
, (6.34)

is a metric on Pn invariant under congruence transformations. The
generalized IEMI leads to a generalized EMI. For all A,B in Pn we
have

δ|||·|||(A,B) ≥ ||| log A − log B|||, (6.35)

or, in other words, for all H,K in Hn

δ|||·|||(e
H , eK) ≥ |||H − K|||. (6.36)

Some care is needed while formulating statements about uniqueness
of geodesics. Many unitarily invariant norms have the property that,
in the metric they induce on Hn, the straight line segment is the
unique geodesic joining any two given points. If a norm ||| · ||| has
this property, then the metric δ|||·||| on Pn inherits it. The Schatten
p-norms have this property for 1 < p < ∞, but not for p = 1 or ∞.
With this proviso, statements made in Sections 6.1.5 and 6.1.6 can be
proved in the more general setting. In particular, we have

δ|||·|||(A,B) = ||| log A−1/2BA−1/2|||. (6.37)

The geometric mean A#B defined by (4.10) is equidistant from A
and B in each of the metrics δ|||·|||. For certain metrics, such as the
ones corresponding to Schatten p-norms for 1 < p < ∞, this is the
unique “metric midpoint” between A and B.

The parallelogram law and the semiparallelogram law, however,
characterize a Hilbert space norm and the associated Riemannian
metric. These are not valid for other metrics.
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Now we can see the connection between these inequalities arising
from geometry to others related to physics. Some facts about ma-
jorization and unitarily invariant norms are needed in the ensuing
discussion. Let H,K be Hermitian matrices. From (6.36) and (6.37)
we have

|||H + K||| ≤ ||| log(eH/2eKeH/2)|||. (6.38)

The exponential function is convex and monotonically increasing on R.
Such functions preserve weak majorization (Corollary II.3.4 in MA).
Using this property we obtain from the inequality (6.38)

|||eH+K ||| ≤ |||eH/2eKeH/2|||. (6.39)

Two special cases of this are well-known inequalities in physics. The
special cases of the ‖ · ‖1 and the ‖ · ‖ norms in (6.39) say

tr eH+K ≤ tr eHeK (6.40)

and

λ1(e
H+K) ≤ λ1(e

HeK), (6.41)

where λ1(X) is the largest eigenvalue of a matrix with real eigenvalues.
The first of these is called the Golden-Thompson inequality and the
second is called Segal’s inequality.

The inequality (6.41) can be easily derived from the operator mono-
tonicity of the logarithm function (Exercise 4.2.5 and Section 5.3.7).
Let

α = λ1

(
eHeK

)
= λ1

(
eK/2eHeK/2

)
.

Then

eK/2eHeK/2 ≤ αI,

and hence

eH ≤ αe−K .

Since log is an operator monotone function on (0,∞), it follows that

H ≤ (log α)I − K.

Hence

H + K ≤ (log α)I
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and therefore

eH+K ≤ αI.

This leads to (6.41).
More interrelations between various inequalities are given in the

next section and in the notes at the end of the chapter.

6.5 SUPPLEMENTARY RESULTS AND EXERCISES

The crucial inequality (6.6) has a short alternate proof based on the
inequality between the geometric and the logarithmic means. This
relies on the following interesting formula for the derivative of the
exponential map:

DeX(Y ) =

∫ 1

0
etXY e(1−t)Xdt. (6.42)

This formula, attributed variously to Duhamel, Dyson, Feynman, and
Schwinger, has an easy proof. Since

d

dt

(
etXe(1−t)Y

)
= etX(X − Y )e(1−t)Y ,

we have

eX − eY =

∫ 1

0
etX(X − Y )e(1−t)Y dt.

Hence

lim
h→0

eX+hY − eX

h
=

∫ 1

0
etXY e(1−t)Xdt.

This is exactly the statement (6.42).
Now let H and K be Hermitian matrices. Using the identity

K = eH/2
(
e−H/2Ke−H/2

)
eH/2

and the first inequality in (5.34) we obtain

‖K‖2 ≤
∣∣∣∣
∣∣∣∣
∫ 1

0
etH
(
e−H/2Ke−H/2

)
e(1−t)Hdt

∣∣∣∣
∣∣∣∣
2

=

∣∣∣∣
∣∣∣∣e

−H/2

[∫ 1

0
etHKe(1−t)Hdt

]
e−H/2

∣∣∣∣
∣∣∣∣
2

.
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The last integral is equal to DeH(K). Hence,

‖K‖2 ≤ ‖e−H/2DeH(K)e−H/2‖2.

This is the IEMI (6.6).
The inequality (5.35) generalizes (5.34) to all unitarily invariant

norms. So, exactly the same argument as above leads to a proof of
(6.32) as well.

From the expression (6.14) it is clear that

δ2(A
−1, B−1) = δ2(A,B), (6.43)

for all A,B ∈ Pn. Similarly, from (6.37) we see that

δ|||·|||(A
−1, B−1) = δ|||·|||(A,B). (6.44)

An important notion in geometry is that of a Riemannian sym-
metric space. By definition, this is a connected Riemannian manifold
M for each point p of which there is an isometry σp of M with two
properties:

(i) σp(p) = p, and

(ii) the derivative of σp at p is multiplication by −1.

The space (Pn, δ2) is a Riemannian symmetric space. We show this
using the notation and some basic facts on matrix differential calculus
from Section X.4 of MA. For each A ∈ Pn let σA be the map defined
on Pn by

σA(X) = AX−1A.

Clearly σA(A) = A. Let I(X) = X−1 be the inversion map. Then σA

is the composite ΓA · I. The derivative of I is given by DI(X)(Y ) =
−X−1Y X−1, while ΓA being a linear map is equal to its own deriva-
tive. So, by the chain rule

DσA(A)(Y ) = DΓA

(
I(A)

)
DI(A)(Y )

= A
(
− A−1Y A−1

)
A = −Y.

Thus Dσp(A) is multiplication by −1.
The Riemannian manifold Pn has nonpositive curvature. The EMI

captures the essence of this fact. We explain this briefly.
Consider a triangle △(O,H,K) with vertices O,H, and K in Hn.

The image of this set under the exponential map is a “triangle”
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△(I, eH , eK) in Pn. By Proposition 6.1.5 the δ2-lengths of the sides
[I, eH ] and [I, eK ] are equal to the ‖·‖2-lengths of the sides [O,H] and
[O,K], respectively. By the EMI (6.8) the third side [eH , eK ] is longer
than [H,K]. Keep the vertex O as a fixed pivot and move the sides
[O,H] and [O,K] apart to get a triangle △(O,H ′,K ′) in Hn whose
three sides now have the same lengths as the δ2-lengths of the sides of
△(I, eH , eK) in Pn. Such a triangle is called a comparison triangle for
△(I, eH , eK) and it is unique up to an isometry of Hn. The fact that
the comparison triangle in the Euclidean space Hn is “fatter” than the
triangle △(I, eH , eK) is a characterization of a space of nonpositive
curvature.

It may be instructive here to compare the situation with the space
Un consisting of unitary matrices. This is a compact manifold of non-
negative curvature. In this case the real vector space iHn consisting
of skew-Hermitian matrices is mapped by the exponential onto Un.
The map is not injective in this case; it is a local diffeomorphism.

6.5.1 Exercise

Let H and K be any two skew-Hermitian matrices. Show that

‖DeH(K)‖2 ≤ ‖K‖2. (6.45)

[Hint: Follow the steps in the proof of Proposition 6.1.2. Now the
λi are imaginary. So the hyperbolic function sinh occurring in the
proof of Proposition 6.1.2 is replaced by the circular function sin.
Alternately prove this using the formula (6.42). Observe that etH is
unitary.]

As a consequence we have the opposite of the inequality (6.8) in
this case: if A and B are sufficiently close in Un, then

δ2(A,B) ≤ ‖ log A − log B‖2.

Thus the exponential map decreases distance locally. This fact cap-
tures the nonnegative curvature of Un.

Of late there has been interest in general metric spaces of nonposi-
tive curvature (not necessarily Riemannian manifolds). An important
consequence of the generalised EMI proved in Section 6.4 is that for
every unitarily invariant norm the space (Pn, δ|||·|||) is a metric space
of nonpositive curvature. These are examples of Finsler manifolds,
where the metric arises from a non-Euclidean metric on the tangent
space.

A metric space (X, d) is said to satisfy the semiparallelogram law if
for any two points a, b ∈ X, there exists a point m such that
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d2(a, b) + 4d2(m, c) ≤ 2d2(a, c) + 2d2(b, c) (6.46)

for all c ∈ X.

6.5.2 Exercise

Let (X, d) be a metric space with the semiparallelogram law. Show
that the point m arising in the definition is unique and is the metric
midpoint of a and b; i.e., m is the point at which d(a,m) = d(b,m) =
1
2d(a, b).

A complete metric space satisfying the semiparallelogram law is
called a Bruhat-Tits space. We have shown that (Pn, δ2) is such a
space. Those of our proofs that involved only completeness and the
semiparallelogram law are valid for all Bruhat-Tits spaces. See, for
example, Theorems 6.2.6 and 6.2.7.

In the next two exercises we point out more connections between
classical matrix inequalities and geometric facts of this chapter. We
use the notation of majorization and facts about unitarily invariant
norms from MA, Chapters II and IV. The reader unfamiliar with these
may skip this part.

6.5.3 Exercise

An inequality due to Gel’fand, Naimark, and Lidskii gives relations
between eigenvalues of two positive matrices A and B and their prod-
uct AB. This says

log λ↓(A) + log λ↑(B) ≺ log λ(AB) ≺ log λ↓(A) + log λ↓(B). (6.47)

See MA p. 73. Let A,B, and C be three positive matrices. Then

λ(A−1C)= λ
(
B1/2A−1CB−1/2

)

= λ
(
B1/2A−1B1/2B−1/2CB−1/2

)
.

So, by the second part of (6.47)

log λ(A−1C)≺ log λ↓
(
B1/2A−1B1/2

)
+ log λ↓

(
B−1/2CB−1/2

)

= log λ↓ (A−1B
)

+ log λ↓ (B−1C
)
.

Use this to show directly that δ|||·||| defined by (6.36) is a metric on
Pn.
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6.5.4 Exercise

Let A and B be positive. Then for 0 ≤ t ≤ 1 and 1 ≤ k ≤ n we have

k∏

j=1

λj

(
B−t/2AtB−t/2

)
≤

k∏

j=1

λt
j

(
B−1/2AB−1/2

)
. (6.48)

See MA p. 258. Take logarithms of both sides and use results on
majorization to show that

||| log B−t/2AtB−t/2||| ≤ t ||| log B−1/2AB−1/2|||.

This may be rewritten as

δ|||·|||(A
t, Bt) ≤ t δ|||·|||(A,B), 0 ≤ t ≤ 1.

Show that this implies that the metric δ|||·||| is convex.

In Section 4.5 we outlined a general procedure for constructing ma-
trix means from scalar means. Two such means are germane to our
present discussion. The function f in (4.69) corresponding to the
logarithmic mean is

f(x) =

∫ 1

0
xtdt.

So the logarithmic mean of two positive matrices A and B given by
the formula (4.71) is

L(A,B) = A1/2

∫ 1

0

(
A−1/2BA−1/2

)t
dt A1/2.

In other words

L(A,B) =

∫ 1

0
γ(t)dt, (6.49)

where γ(t) is the geodesic segment joining A and B.
Likewise, for 0 ≤ t ≤ 1 the Heinz mean

Ht(a, b) =
atb1−t + a1−tbt

2
(6.50)

leads to the function

ft(x) = Ht(x, 1) =
xt + x1−t

2
,
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and then to the matrix Heinz mean

Ht(A,B) =
γ(t) + γ(1 − t)

2
. (6.51)

The following theorem shows that the geodesic γ(t) has very inti-
mate connections with the order relation on Pn.

6.5.5 Theorem

For every α in [0, 1/2] we have

A#B ≤ 1

2α

∫ 1/2+α

1/2−α
γ(t)dt

≤
∫ 1

0
γ(t)dt

≤ 1

2α

[∫ α

0
γ(t)dt +

∫ 1

1−α
γ(t)dt

]

≤ A + B

2
.

Proof. It is enough to prove the scalar versions of these inequalities as
they are preserved in the transition to matrices by our construction.
For fixed a and b, Ht(a, b) is a convex function of t on [0, 1]. It is
symmetric about the point t = 1/2 at which it attains its minimum.
Hence the quantity

1

2α

∫ 1/2+α

1/2−α
Ht(a, b)dt =

1

2α

∫ 1/2+α

1/2−α
atb1−tdt

is an increasing function of α for 0 ≤ α ≤ 1/2. Similarly,

1

2α

[∫ α

0
+

∫ 1

1−α
Ht(a, b)dt

]
=

1

2α

[∫ α

0
+

∫ 1

1−α
atb1−tdt

]

is a decreasing function of α. These considerations show

√
ab≤ 1

2α

∫ 1/2+α

1/2−α
atb1−tdt ≤

∫ 1

0
atb1−tdt

≤ 1

2α

[∫ α

0
+

∫ 1

1−α
atb1−tdt

]
≤ a + b

2
.

The theorem follows from this. �
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6.5.6 Exercise

Show that for 0 ≤ t ≤ 1

γ(t) ≤ (1 − t)A + tB. (6.52)

[Hint: Show that for each λ > 0 we have λt ≤ (1 − t) + tλ.]

6.5.7 Exercise

Let Φ be any positive linear map on Mn. Then for all positive matrices
A and B

Φ
(
L(A,B)

)
≤ L

(
Φ(A),Φ(B)

)
.

[Hint: Use Theorem 4.1.5 (ii).]

6.5.8 Exercise

The aim of this exercise is to give a simple proof of the convergence
argument needed to establish the existence of G#(A1, A2, A3) defined
in Section 6.3.10.

(i) Assume that A1 ≤ A2 ≤ A3. Then the sequences defined in
(6.31) satisfy

A
(m)
1 ≤ A

(m)
2 ≤ A

(m)
3 for all m.

The sequence {A(m)
1 } is increasing and {A(m)

3 } is decreasing.
Hence the limits

L = lim
m→∞

A
(m)
1 and U = lim

m→∞
A

(m)
3

exist. Show that L = U. Thus

lim
m→∞

A
(m)
1 = lim

m→∞
A

(m)
2 = lim

m→∞
A

(m)
3 .

Call this limit G#(A1, A2, A3).

(ii) Now let A1, A2, A3 be any three positive matrices. Choose pos-
itive numbers λ and µ such that

A1 < λA2 < µA3.
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Let (B1, B2, B3) = (A1, λA2, µA3). Apply the special case (i) to
get the limit G#(B1, B2, B3). The same recursion applied to the
triple of numbers (a1, a2, a3) = (1, λ, µ) gives

lim
m→∞

a
(m)
j = (λµ)1/3 for j = 1, 2, 3.

Since

A
(m)
j =

B
(m)
j

a
(m)
j

for all m = 1, 2, . . . ; j = 1, 2, 3,

it follows that the sequences A
(m)
j , j = 1, 2, 3, converge to the

limit G#(B1, B2, B3)/(λµ)1/3.

6.5.9 Exercise

Show that the center of mass defined by (6.24) has the property

G(A1, A2, A3)
−1 = G(A−1

1 , A−1
2 , A−1

3 )

for all positive matrices A1, A2, A3. Show that G# also satisfies this
relation.

6.6 NOTES AND REFERENCES

Much of the material in Sections 6.1 and 6.2 consists of standard topics
in Riemannian geometry. The arrangement of topics, the emphasis,
and some proofs are perhaps eccentric. Our view is directed toward
applications in matrix analysis, and the treatment may provide a quick
introduction to some of the concepts. The entire chapter is based on
R. Bhatia and J. A. R. Holbrook, Riemannian geometry and matrix
geometric means, Linear Algebra Appl., 413 (2006) 594–618.

Two books on Riemannian geometry that we recommend are M.
Berger, A Panoramic View of Riemannian Geometry, Springer, 2003,
and S. Lang, Fundamentals of Differential Geometry, Springer, 1999.
Closely related to our discussion is M. Bridson and A. Haefliger, Met-
ric Spaces of Non-positive Curvature, Springer, 1999. Most of the
texts on geometry emphasize group structures and seem to downplay
the role of the matrices that constitute these groups. Lang’s text is
exceptional in this respect. The book A. Terras, Harmonic Analysis
on Symmetric Spaces and Applications II, Springer, 1988, devotes a
long chapter to the space Pn.
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The proof of Proposition 6.1.2 is close to the treatment in Lang’s
book. (Lang says he follows “Mostow’s very elegant exposition of
Cartan’s work.”) The linear algebra in our proof looks neater because
a part of the work has been done earlier in proving the Daleckii-
Krein formula (2.40) for the derivative. The second proof given at
the beginning of Section 6.5 is shorter and more elementary. This is
taken from R. Bhatia, On the exponential metric increasing property,
Linear Algebra Appl., 375 (2003) 211–220.

Explicit formulas like (6.11) describing geodesics are generally not
emphasized in geometry texts. This expression has been used often
in connection with means. With the notation A#tB this is called
the t-power mean. See the comprehensive survey F. Hiai, Log-
majorizations and norm inequalities for exponential operators, Banach
Center Publications Vol. 38, pp. 119–181.

The role of the semiparallelogram law is highlighted in Chapter XI
of Lang’s book. A historical note on page 313 of this book places
it in context. To a reader oriented towards analysis in general, and
inequalities in particular, this is especially attractive. The expository
article by J. D. Lawson and Y. Lim, The geometric mean, matrices,
metrics and more, Am. Math. Monthly, 108 (2001) 797–812, draws
special attention to the geometry behind the geometric mean.

Problems related to convexity in differentiable manifolds are gen-
erally difficult. According to Note 6.1.3.1 on page 231 of Berger’s
book the problem of identifying the convex hull of three points in a
Riemannian manifold of dimension 3 or more is still unsolved. It is
not even known whether this set is closed. This problem is reflected
in some of our difficulties in Section 6.3.

Berger attributes to E. Cartan, Groupes simples clos et ouverts et
géometrie Riemannienne, J. Math. Pures Appl., 8 (1929) 1–33, the
introduction of the idea of center of mass in Riemannian geometry.
Cartan showed that in a complete manifold of nonpositive curvature
(such as Pn) every compact set has a unique center of mass. He used
this to prove his fundamental theorem that says any two compact
maximal subgroups of a semisimple Lie group are always conjugate.

The idea of using the center of mass to define a geometric mean of
three positive matrices occurs in the paper of Bhatia and Holbrook
cited earlier and in M. Moakher, A differential geometric approach to
the geometric mean of symmetric positive-definite matrices, SIAM J.
Matrix Anal. Appl., 26 (2005) 735–747. This paper contains many
interesting ideas. In particular, Theorem 6.3.4 occurs here. Applica-
tions to problems of elasticity are discussed in M. Moakher, On the
averaging of symmetric positive-definite tensors, preprint (2005).
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The manifold Pn is the most studied example of a manifold of non-
positive curvature. However, one of its basic features—order—seems
not to have received any attention. Our discussion of the center of
mass and Theorem 6.5.5 show that order properties and geometric
properties are strongly interlinked. A study of these properties should
lead to a better understanding of this manifold.

The mean G#(A1, A2, A3) was introduced in T. Ando, C.-K Li,
and R. Mathias, Geometric Means, Linear Algebra Appl., 385 (2004)
305–334. Many of its properties are derived in this paper which also
contains a detailed survey of related matters. The connection with
Riemannian geometry was made in the Bhatia-Holbrook paper cited
earlier. That G# and the center of mass may be different, is a con-
clusion made on the basis of computer-assisted numerical calculations
reported in Bhatia-Holbrook. A better theoretical understanding is
yet to be found.

As explained in Section 6.5 the EMI reflects the fact that Pn has
nonpositive curvature. Inequalities of this type are called CAT(0)
inequalities; the initials C,A, T are in honour of E. Cartan, A. D.
Alexandrov, and A. Toponogov, respectively. These ideas have been
given prominence in the work of M. Gromov. See the book W. Ball-
mann, M. Gromov, and V. Schroeder, Manifolds of Nonpositive Cur-
vature, Birkhäuser, 1985, and the book by Bridson and Haefliger cited
earlier. A concept of curvature for metric spaces (not necessarily Rie-
mannian manifolds) is defined and studied in the latter. The gener-
alised EMI proved in Section 6.4 shows that the space Pn with the
metric δ|||·||| is a metric space (a Finsler manifold) of nonpositive cur-
vature.

Segal’s inequality was proved in I. Segal, Notes towards the con-
struction of nonlinear relativistic quantum fields III, Bull. Am. Math.
Soc., 75 (1969) 1390–1395. The simple proof given in Section 6.4 is
borrowed from B. Simon, Trace Ideals and Their Applications, Second
Edition, American Math. Society, 2005. The Golden-Thompson in-
equality is due to S. Golden, Lower bounds for the Helmholtz function,
Phys. Rev. B, 137 (1965) 1127–1128, and C. J. Thompson, Inequality
with applications in statistical mechanics, J. Math. Phys., 6 (1965)
1812–1813. Stronger versions and generalizations to other settings
(like Lie groups) have been proved. Complementary inequalities have
been proved by F. Hiai and D. Petz, The Golden-Thompson trace in-
equality is complemented, Linear Algebra Appl., 181 (1993) 153–185,
and by T. Ando and F. Hiai, Log majorization and complementary
Golden-Thompson type inequalities, ibid., 197/198 (1994) 113–131.
These papers are especially interesting in our context as they involve
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the means A#tB in the formulation and the proofs of several results.
The connection between means, geodesics, and inequalities has been
explored in several interesting papers by G. Corach and coauthors.
Illustrative of this work and especially close to our discussion are the
two papers by G. Corach, H. Porta and L. Recht, Geodesics and oper-
ator means in the space of positive operators, Int. J. Math., 4 (1993)
193–202, and Convexity of the geodesic distance on spaces of positive
operators, Illinois J. Math., 38 (1994) 87–94.

The logarithmic mean L(A,B) has not been studied before. The
definition (6.49) raises interesting questions both for matrix theory
and for geometry. In differential geometry it is common to integrate
(real) functions along curves. Here we have the integral of the curve
itself. Theorem 6.5.5 relates this object to other means, and includes
the operator analogue of the inequality between the geometric, loga-
rithmic, and arithmetic means. The norm version of this inequality
appears as Proposition 3.2 in F. Hiai and H. Kosaki, Means for ma-
trices and comparison of their norms, Indiana Univ. Math. J., 48
(1999) 899–936. Exercise 6.5.8 is based on the paper D. Petz and
R. Temesi, Means of positive numbers and matrices, SIAM J. Matrix
Anal. Appl., 27 (2005) 712–720.
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1937.

[118] E. H. Lieb, Convex trace functions and the Wigner-Yanase-Dyson conjecture,

Adv. Math., 11 (1973) 267–288.

[119] E. H. Lieb, Inequalities, Selecta of Elliot H. Lieb, M. Loss and M. B. Ruskai
eds., Springer, 2002.

[120] E. H. Lieb and M. B. Ruskai, A fundamental property of quantum-mechanical

entropy, Phys. Rev. Lett., 30 (1973) 434–436.

[121] E. H. Lieb and M. B. Ruskai, Proof of the strong subadditivity of quantum-

mechanical entropy, J. Math. Phys., 14 (1973) 1938–1941.

[122] E. H. Lieb and M. B. Ruskai, Some operator inequalities of the Schwarz type,

Adv. Math., 12 (1974) 269–273.

[123] E. H. Lieb and R. Seiringer, Equivalent forms of the Bessis-Moussa-Villani

conjecture, J. Stat. Phys., 115 (2004) 185–190.

[124] E. H. Lieb and J. Yngvason, A guide to entropy and the second law of ther-

modynamics, Notices Am. Math. Soc., 45 (1998) 571–581.



BIBLIOGRAPHY 243

[125] E. H. Lieb and J. Yngvason, The mathematical structure of the second law

of thermodynamics, in Current Developments in Mathematics, 2001, Interna-
tional Press, 2002.

[126] G. Lindblad, Entropy, information and quantum measurements, Commun.
Math. Phys., 33 (1973) 305–322.

[127] G. Lindblad, Expectations and entropy inequalities for finite quantum sys-

tems, Commun. Math. Phys., 39 (1974) 111–119.

[128] G. Lindblad, Completely positive maps and entropy inequalities, Commun.
Math. Phys., 40 (1975) 147–151.

[129] M. Loeve, Probability Theory, Van Nostrand, 1963.
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[159] I. Schur, Über Potenzreihen die im Innern des Einheitskreises beschränkt

sind [I], J. Reine Angew. Math., 147 (1917) 205–232.
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L(γ), 201
L|||·|||(γ), 223
M(A, B), 102
M(a, b), 101
M1 << M2, 180
M1 ≤ M2, 180
S(A|B), 118
S(A), 115
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