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The classical theory of Lyapunov characteristic exponents is reformulated in invar- 
iant geometric terms and carried over to arbitrary noncompact semisimple Lie groups 
with finite center. A multiplicative ergodic theorem (a generalization of a theo- 
rem of Oseledets) and the global law of large numbers are preyed for semisimple Lie 
groups, as well as a criterion for Lyapunov regularity of linear systems of ordinary 
differential equations with subexponential growth of coefficients. 

The concepts of characteristic exponents and regularity of a one-parameter family of 
matrices were introduced by Lyapunov in his fundamental work [i] and were originally used to 
describe solutions of systems of ordinary differential equations with variable coefficients 
[2]. Applications of these concepts to the theory of dynamical systems are based on the "mul- 
tiplicative ergodic theorem" of Oseledets [3], which establishes regularity conditions for 
products of random matrices. Despite much work devoted to Lyapunov exponents in various 
situations, judging overall, the simple fact that Lyapunov regularity of a sequence of matrices 
is equivalent to its asymptotic proximity to the sequence of powers of some fixed matrix has 
remained unnoticed up to now. This observation makes it possible to carry the classical 
theory of Lyapunov characteristic exponents over to arbitrary noncompact semisimple Lie grous 
with finite center, reformulating it in invariant geometric terms without using matrix repre- 
sentations of these groups. Application of the apparatus of Riemannian geometry and the theory 
of symmetric spaces allows us to get both generalizations of already facts, and results which 
apparently have not been previously formulated in matrix form, in particular a "global" ver- 
sion of the law of large numbers for semisimple Lie groups, simply. Our proofs are new even 
for matrix groups~ 

The structure of the paper is the following. In Sec. 1 we introduce the definitions and 
notation needed from the theory of semisimple Lie groups and symmetric spaces, and also dis- 
cuss the connection between different compactifications of symmetric spaces. Section 2 is 
basic; in it we define regular sequences in a symmetric spaces as sequences which are asympto- 
tically close to geodesics, and we give some criteria for regularity (in polar and horos- 
pherical coordinates, and also in terms of finite-dimensional representations). In Section 3 
these criteria are used to prove the multiplicative ergodic theorem (a generalization of a 
theorem of Oseledets) and the global law of large numbers for semisimple Lie groups, in Sec- 
tion 4 we show that for sequences of matrices, regularity in our sense is naturally connected 
with Lyapunov regularity, and as a consequence we get a criterion for Lyapunov regularity of 
linear systems of ordinary differential equations with subexponential growth of coefficients~ 

Theorem 2.1, which is key in this paper, was announced in ~4], where it was used to des- 
cribe harmonic functions on discrete subgroups of semisimple groups. The author thanks Yu0 D. 
Burago, A. M. Vershik, M. I. Zakharevich, G. A. Margulis, and Mo A. Ol'shanetskii for helpful 
discussions and comments. 

i. Preliminary Information and Notation 

The concepts and notation introduced here will be used below without further mention. 

1.1o Let ~ be a noncompact semisimple real Lie group with finite center, K be a maximal 

compact subgroup of it, ~ be a principal vector subgroup, ~,~, ~ be the corresponding Lie 

algebras ~ = ~* ~ be the Cartan decomposition, ~ be a principal Cartan subalgebra such that 

= ~ ~ p By ~ we denote a system of roots of the complexification ~ with respect to 
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the complexification % by ~ (~  ~ "~) , the root subspaces of ~ ' .  We fix a basis ~ C 

so ~ ={~I0~: i 6 ~} and ~ = { zl0~: 4 e~ are respectively a system of restricted roots 

and a basis of it [5]. We denote the subsets of positive roots of ~ and ~ by ~,and A+. 

We set ~ ~ q ~ = were the sum is taken over all ~ e ~ + �9 By W we denote the restricted 

Weyl group, acting on O0 by ~+={~EOt:~,s the closure of a dominant Weyl chamber. 

+ =[~ ~ Ot + We denote the norm in ~ induced by the Killing form <. ~. > by If" I �9 We set ot~ 
X ~ ll~=i~. In addition, we shall use the notation ~I=[~ e~ <p~>=O V~6>[I~ =XIN ~ ~ 

where ~ is a subset of ~ 

1.2. For any element ~ ~ C~ for a Cartan decomposition ~ =K, ie~p4)K~ K~,z s K, < e 0~ + 

there is uniquely defined the "complex radius" ~(~) = s ~ Ot +. We set ~i~)=ll~(~)ll. Then 

~(~z)~ 5(~i)+~[~a)+C , and if M cC~ is a compactum, whose interior contains the 

identity of the group G , and ~M ~) = ~ [ ~: ~ e M~ then ~t~M+~<~_~M+ 5 ~ 0L, ~, A~ 

~5~ 6 are constants, where c and A are positive). Thus, % is a principal gauge on CT [6]. 

1.3. If E ~ ~ we set 

and 

We define subalgebras 

~+(E) =~+\ ~o(,E). 

e 

"~ (E) = ~(E,) + ~(E), 

# (I) = ~'(E) ,'{(E) 

(here G denotes the orthogonal complement with respect to the Killing form). The real parts 

~'iE)=~'iE) ~ ~ , etc., are subalgebras of ~ while the algebra ~r(E) is semisimple, 

~'(E) is a principal vector subalgebra of it ~'(E) = ~'(E) N ~, is a maximal compact sub- 

algebra of it, %'(E)= ~'([) a ~ is a nilpotent subalgebra, and ~'(E) has Iwasawa decomposi- 

tion ~'(E) + ~'(E) + %'[E) . Further, the subalgebra ~ iE) is nilpotent, while R splits 
%' into a direct sum ~ (E) + QE) , and the subalgebra ~(E) is solvable. The subalgebra ~ (E) 

is called the standard parabolic subalgebra (of type E ), and the decomposition ~ = ~ (E)t 

(E)+~r(E)+~ (nonunique by ~riE) ) is a generalized Iwasawa decomposition. 

1.4. Let A (E) etc. be the analytic subgroup of G corresponding to the subalgebras 

IE) etc. Then N (E) and NriE) are simply connected nilpotent subgroups, where any 

element ~o~ N can be represented uniquely in the form ~o= ~' where ~ N (E), r ~ M' ~E) 

and the group ~ (E) = ~ [5) A[E) is simply connected and solvable. The group G'iE) is 

semisimple with finite center, G'iE) = ~'(E) A'iE) K ~ [E) i:s its lwasawa decomposition 
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A =A(E) @ A'~E) and one has the global decomposition G = h(E) G'~E) K where L (E) n G' [E)  
=I and L(E) G'iE)AK=K'iE ). The group P~E)=LiE)G'iE) Z , where Z is the central- 

izer of A in K , is called the standard parabolic subgroup of ~ (of type E ) [7-i0]. 

1.5. By $ we denote the Riemannin symmetric space $ = G/K- { ~ K} with distinghished 

point ~ - { K~ in it and canonical invariant metric ~. If ~ = ~ ~o , then there is uniquely 

defined the "complex radius" �9 [~) = �9 ~) 60& + and ~ (~, ~o) = II ~ i~)ll , 

We denote by $ ~ the set of asymptotic pencils of geodesics in $. Each pencil con- 

tains a unique geodesic ~ (~) = K iemp ~) mo, ~ e ~7, < 6 K, issuing from the point ~o so $ 

can be identified with the unit sphere of the tangent space p to ~ at the point ~o . Here, 

any point ~ E $ ~ corresponds to a uniquely defined vector ~ = ~ (p) e ~[ . The set 

= B U $ ~ is the compactification of $ in the conical topology - convergence of sequences 

of points i~t} C ~ going to infinity in ~ is equivalent to convergence of the directing 

vectors of the geodesics ~o~%) [ii]. The action of G extends naturally from 5 to g 

With respect to this action ~ splits into orbitals $< ={~:~?)=~; s ~ ~ while the 

group K acts transitively on each orbit. 

ment of 5~ is a parabolic subgroup P (s176 

to the space @E $ = ~/P(E)~ where E = ~~ 

e $ can be represented as ~=~'~0 

The stabilizer of the vector s ~ ~f as an ele- 

and the whole orbit 5~ is canonically isomorphic 

If the vector ~ s is fixed, then any point 

where ~(~~ ~ ~ A (~~ ~'e ~'(~~ , While 

and ~ are uniquely defined, and ~ is unique up to a factor from K'Qg~ Thus, the points 

e $ are in one-one correspondence with triples ~ ~ ~, ~ C~)) where ~(~)= ~ (~~ 

is a point of the symmetric space ~ig)= G~i~/K~(s176 o We shall call the coordinates 

( m~ ~ ~e (~)) standard horospheric coordinates (of type ~0 ) on $ ~ Since any point 

e8 ~ can be represented in the form ~ =iA~ K) i4) where K ~ K ~ ~ e ~f , then the 

horospheric coordinates with respect to ~ are obtained from the standard horospheric coordi- 

nates of type ~~ by rotation with the help of the group K [9]. The orbits of the group 

P (E) in $~ are in one-to-one correspondence with the double cosets P ~E) ~ P (~~ , ioe~, 

with the double cosets V4' (E) ~ W (~~ , where W(E) is the subgroup of W, generated by 

reflections with respect to elements of E [i0]. Thus, any point p ~ ~ can be repre- 

sented as ~ = A&(~ ~) (~) where ~N(E), ~ N~(E) ~eW (Bruhat decomposition). 

We note that the conical compactification is incomparable with the Satake-Furstenberg- 

Moore compactification in which the boundary of $ is ~ $ or DE g for suitable choice of 

E [7-9]. The Martin compactification and the stronger Karpelevich compactification are 

gotten from the conical compactification by closure of the components ~t(g) o Both of them 

are stronger than both the conical compactification and the Satake-Furstenberg-Moore compacti- 

fication [9, 12]. 

1.6. Let ~ be a representation of ~ in a finite-dimensional complex space V . By 

restricted weights of ~g we mean the restrictions of the weights of the representation ~: 

----~E~ ~V) on ~ . By ~1I~ we shall denote the irreducible representation of G in the 

finite-dimensional space Vk corresponding to the integer-valued restricted highest weight 

k ~ ~ + [5]. Then if ~.II is a norm on E~i {V~) then i~ll~(~)~-4%(~)~k>l< C 
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for some constant G. For any finite-dimensional representation l~ of the group ~ one can 

choose a Hermitian form in the space of the representation so that the matrices ~F (K)~ ~EK 

lie in $ ~ iV) , and the matrices ~F ~) ~ ~ ~ ~ are diagonal with positive diagonal ele- 

ments. Then the representation qf induces a map BI~: g --~g~= gh iV) / $~ (V)~ where 

the image of ~ is a completely geodesic submanifold of the symmetric space ~: If the 

representation ~qf is faithful, then $1V is an isometric imbedding [7]. 

2. Regular Sequences in Symmetric Spaces 

Definition. We call a sequence of points {~t]7=~ of the symmetric space $ regular, 

if there exists a geodesic ~ : [0~ o~) ~ $ and a number ~0 such that & ( ~  ~ ~ ~)) = 

0 ~) If ~=0 , i.e., if ~i~t~ ) = 0 (1) for ~ , then we shall say that { ~i~ is 

a trivial regular sequence. We call a sequence { ~il of elements of the group ~ regular 

if the sequence { ~i ~ is regular in g for some (or equivalently all) ~ E ~ . 

As follows from point 1.5, regularity of a sequence {m~} is equivalent to the exis- 

tence of a K ~ K and an s ~ O~ + such that ~t~ K (e~ ~)~o) = o(~) where the vector 

is uniquely determined by the sequence { ~li i ~ = ~ ~ i~t)/t) �9 We shall call the vector 

e ~ + the vector of exponents of the sequence i~i~. 

THEOREM 2.1. For the sequence {~i~ of points of the symmetric space $ to be regular, 

it is necessary and sufficient that ~ (~i~ ~i+L) ~ o (~) and the limit ~ = [L~ ~ (~)/~ 
exist. 

LEMMA. Let { '~{~ 
z of curvature ~0. plane H 

be a sequence of geodesics issuing from one point in the Lobachevskii 

If 

for some @ ~ 0 then ~ converges pointwise to a limit geodesic ~ and 

Proof. Let @~ be the angle between the directing vectors of the geodesics ~ and 

Tt*i so by the sine theorem [13] 

from which ~0~@t ='[f-~ @t + o it ) . Consequently, for ~P t= ~ ~ one has ~ x~t = ~-~ @ ~ + 

oil) also. Since for any ~>~ the angle between the directing vectors of the geo- 

desics T~ and T~ does not exceed ~t applying the sine theorem again we get the assertion 

of the lemma. 

Proof of the Theorem. The necessity of the condition of the theorem is obvious. We 

establish its sufficiency. Without loss of generality one can assume that mt = Kt (em~i~) mo 

and ~ ~0 . We must prove that from the condition ~ ~t ~ ~t+l) = olt) the regularity of the 

sequence [ ~ follows. Let ~ (~)=K~) e~ (T) ~o be a geodesic joining the 

points m~ and mi+1 By ~[T)ep we denote the tangent vector to ~ at the point #(T) 

translated along the geodesic (~ (~7)~ ~o) to the point ~ . The components of the vector 

~(T) in 0~ and p~) O~ are, respectively, ~(T)-s and ~ziT)= e~iemp(-~[~)) ~[T)) 

2390 



where s e0~ and K iT) e ~ are the tangent vectors to the curves ~ and K , carried 

to the identity of the group ~ by left translation, ~% is the orthogonal projection of the 

algebra ~ to p . 

where the vector 

Obvious ly, 

II ( .r) l l"  = II [ )I1 + II (z) ll 

Since i (~t, ~i+i)= oit) , one can find an 

: ~It)=~+o(1), such that ~ (T) - ~4 e O~ ~ for all ~. 

Now we consider the curve ~'(T)= K~T)(e~p~)~o , joining the points m~ = K~ (e~ ~4)mo 
~ 

and ~ ~+l-Kt+lie~o~)mo . Since ~i iT)= 0 and ail~z(T)II~,j~.(~)II for any T with respect to the 

, ti ~il ._ choice of ~ the length of the curve does not exceed the length of ~ i.e., the dis- 

tance between the points ~t and ~i+i " Thus the distance between the points ~ and $~+i 

in the intrinsic metric of the surface 

It = K(e~lT.+<~)~<> = {K  (eoe.p.~.)~o,, ~ e K ,  ~01 

is also oll) We join the points mt and ~t+l by the geodesic B (T)=KIT) emp ~ iT) ~o 

on the surface E We set 

and we denote by ~ the intrinsic metric in R~ It is easy to see that either m~ and 

~a~ lie on the geodesic ray, issuing from ~o in which case E~ degenerates into a 

ray, or Sz iT)~ 0 for all ~ in which case ~t is the infinite sector included between 

the rays ~o ~) and ~o m[+i) and is geodesically convex (in the metric of the surface 

). In the latter case the curvature of Rt at the point K (~)(emp ~) mo is (cf. [13]) 

= -il t'r), II / li l II  ,11. 

Since ~ (T) e ~i• for all ]Y , we get that K ~ ~ < 0, where 

Now we se t  T$(r)=Ktempi~a/ll~ll)~b and we c o n s i d e r  t h e  sequence o f  g e o d e s i c s  ~ t  

on the Lobachevskii plane H z of curvature ~ with metric ~ , constructed as follows: all 

'];t issue from one point, and the directing vector of the geodesic ~$+I is laid off clock- 

wise from the directing vector of the geodesic ~t so that 

The geodesic 6 in H a ~ , joining the points ~([ l lzl I)  and }t+K (tllzU) 
s e c t s  a l l  t h e  i n t e r m e d i a t e  g e o d e s i c s  t [ + ~  ~ t ~ ~ ~ K-~ . We deno te  by ~ 

the segments cut off by 6 on }t+i (i.e., ~t+~(~) lies on 8 ). Then it follows from 

the Aleksandrov theorem on comparison of triangles [].4] that 

for large ~ inter 

the lengths of 

2391 



so 

for all ~. Using the lemma, we now get that the deodesic ~t converges point-wise in 

to the limit geodesic ~ ~ and 

The theorem is proved. 

Remark. For the symmetric space 5L~7~)/S0(~ ) our theorem is similar to Raghunathan's 

lemma [15] which gives an estimate of the rate of convergence of the eigenspaces of positive 

definite matrices. Our proof, however, is based on different considerations. 

COROLLARY. A sequence of points {mt~ of a symmetric space 8 is regular if and only if 

~(~61~%+~)=o(t) , the limit ~ ~($80~t)/~=s exists, and, if ~ is positive, the direct- 

ing vectors of the geodesics (~0 mL) converge. 

From Theorem 2.1 we now get: 

THEOREM 2.2. The following conditions are equivalent: 

i) The sequence of points {~ of the symmetric space ~ is regular; 

2) The sequence of points [ 5~I S ~)~ is regular in the symmetric space ~ ,~ij for any 

finite-dimensional representation [l~ of the group ~ ; 

3) i i~i,~i+~)= ~It) and for any finite-dimensional representation Us the limit ~II~ 

15[~ [~i))II/i exists. Moreover, the coordinates of the vector of exponents of the sequen- 

ce { 5~lJ~t) ~ (in the standard basis, as an element of ~ ~, ~ = ~h% Vl~ ) are ~ ~ ~> , where 

is the vector of exponents of the sequence { mL} and k runs through the set of all restric 

ted weights of the representation ~V (taken with their multiplicities considered). If $~I ~ 

is an imbedding, then the regularity of the sequence { ~I: (mt)~ in the symmetric space 

5~ is equivalent with the regularity of the sequence { ~t~ in the symmetric space 5 

THEOREM 2.3. The sequence of elements { ~I of the group G is regular if and only if 

[%~ ~t*~) = 0[t) and for any finite-dimesional representation ~ of the group Q, the limit 

~ ~ ~ (~)II / ~ exists (which is equivalent to the existence of this limit for fundamen- 

tal representations of ~ only). 

Now we establish a criterion for the regularity of a sequence { ~I in the horospher- 

ical coordinates of the symmetric space. As follows from point 1.5, it suffices to restrict 

oneself to considering only standard horospherical coordnates. 

THEOREM 2.4. Let [wt ~ ~t ~ ~s (~)) be the standard horospherical coordinates of type 

of the points of the sequence [ ~i~ C ~ i.e., %~ s ~ [~)~ ~t ~ A ~). The sequence {~t~ 

is regular in ~ if and only if i (~, ~s o(~)~ the sequence of points { ~E (~t)~ is 

regular in the symmetric space ~s and the limit s = ~  ~$/I e~Q~) exists. If 

�9 ' s ~'(E) is the vector of exponents of the sequence { $~ (~)~ then the vector of 

exponents {~i~ of the sequence Z e~ has the form Z =~Q~+s where ~ is an element 

of the Weyl group ~q. 
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LEMMA (cf. [16], Le~ma 9.4). In the space M~t ~, ~) of matrices of size ~ ~ ~ with 

complex coefficients, we fix a norm ~'II and a block partition into blocks of size ~x~ 

(~=~). Let {~t~ C M~(~C) be a sequence of upper quasitriangular matrices with 

diagonal blocks A~ EMat(~,C) . If l~et At l = I , ~ II A? ~t+ill = olt) and for all i 

the limit i~-~ II ~ ll/t , also exists and ~v ~ II A~ ~/~ = ~ ~ = r~a~ ~. 

Proof of the Theorem. Let the sequence { ~i~ be regular ~ E ~+ be its vector of 

exponents; then as is clear from point 1.4, one can find a ~ ~h/ and an ~ ~ N such 

that ~ ( ~ ,  

since A (E) 

is proved. 

~(e~c~tZ)~o)= o(~). We decompose ~ = ~' and ~=~+~', where ~ e N (E), 

and ~ ( E ) ~  ~ A'(~). Then ~t = ~ e % o ~ Z = ( ~ e ~ p ~ )  ( ~ ' e ~ ' ) ~  

centralizes N'(E) . Since ~(~i,~i~0)= o(~)~ the first part of the theorem 

The converse assertion is easily proved, using Theorem 2.2 and the lemma. 

The next theorem follows from Theorem 2.4. 

THEOREM 2.5. The sequence of elements ~t = ~i ~i~ e P (E) where ~$ e N(E), ~i e A (E), 
! 

~ ~ G (E), is regular in the group G if and only if ~(~ ~+~) = o(~)~ the limit ~ =~ ~i~ 

exists, and the sequence { ~%~ is regular in the group ~([). 

When E =r , i.e., P (r P is a minimal parabolic subgroup of G , we get 

COROLLARY.. The sequence of elements ~ = ~i ~[ E P~ where ~t ~ N ~ ~t ~ h is regular 

in ~ if and only if ~ (~t-i ~t+i ) ~ o([) and the limit s =~ ~ ~/~ exists. In this case 

the vector of exponents of the sequence {]~} is ~ where ~ is an element of the Weyl 

group W, such that g~ ~+. 

We note that the element ~ of the Weyl group participating in the formulation of the 

corollary determines uniquely on which of the orbits of the group P in ~ ~ the limit of 

the sequence m~ = ~t ~o can lie (cf. point 1.5). In particular, if ~ E ~* , i.e., ~=e 

then the limit of the sequence { ~i~ in g~ is defined by the vector ~ and does not 

depend on the nilpotent factors {~t}. 

Remark. Theorems 2.1-2.5 carry over naturally to the case when the parameter ~ assumes 

continuous values. Here it is necessary to replace the condition d (~t~ ~t+i)= o(t) 

by the condition 

3. Multiplicative Ergodic Theorem and Law of Large Numbers 

for Semisimple Lie Groups 

We shall say that the probability distribution .~ on the group 

moment, if 

has finite first 
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THEOREM 3.1o If { ~%~ _ is a stationary sequence of random variables with values in 

G and finite first moment, then the sequence of products ~ = ~i. $~ is a.s. regular. 

Proof. Since the distribution ~% has finite first moment, by virtue of the ergodic 

theorem a.s. ~(~) = o(~). The use of the Furstenberg--Kesten theorem or the subadditive 

ergodic theorem of Kingman (cf. [15, 17]) now lets us apply Theorem 2.3. 

As we shall see in Sec. 4, for the case when ~ = $ h ~ ~ ~)~ Theorem 3.1 coincides 

with the multiplicative ergodic theorem of Oseledets, so it is natural to call it the multi- 

plicative ergodic theorem for semisimple Lie groups. The next theorem follows quickly 

from Theorem 3.1. 

THEOREM 3.2. If { ~t~ is a stationary sequence of random variables with values 

in ~ and finite first moment, then for a.a. trajectories of the random walk ~ = ~ t  on 

the group ~ with increments {~[~ there exists a "mean" ~ = ~Q{~tl) such that 

i~-t ~i) = o ~). One can always choose the mean to have the form % = K l e~<) K-i 

where ~ ~ ~+ and KEK under this condition ~({~) defines [~i~ uniquely and is 

measurable with respect to the tail ~J -algebra of the sequence {~t~" 

Remarks. i. The classical strong law of large numbers for stationary random sequences 

(the ergodic theorem) can be written in two forms: ~%~+ �9 ..+~)/~--~ and X[ +. + X~ = 

~ + o~) Carrying the law of large numbers in the first form over to noncommutative 

groups in general is impossible due to the absence of a normalizing operation, so as a rule 

one considers either the law of large numbers for some numerical functionals on the group, 

or the law of large numbers for infinitesimal systems [6, 16, 18]. We give a law of large 

numbers for noncommutative groups, starting from the second way of writing the classical law 

of large numbers. Despite the complete naturality of such a formulation, it has apparently 

not occurred in the literature previously. The arbitrariness one has in the choice of values 

of the "mean" is explained by the fact that the classes of the relation of asymptotic equiva- 

lence in 

generally contain more than one element. It is clear from point 1.5 and Theorem 2.3 that the 

elements of the form K ~e~p ~) K -~ form a complete system of representatives of the classes. 

The measurable dependence of the mean ~ on the tail behavior of the trajectory {~i~ 

has the same character as in the ordinary ergodic theorem for nonergodic stationary sequences 

(we stress that the tail ~ -algebra of the sequence [ ~i~ is nontrivial as a rule, despite 

the ergodicity of i ~})" 

2. The theorem proved shows the equivalence (as in the classical case of the additive 

group ~ ) of the law of large numbers ("in the global formulation") and the multiplicative 

ergodic theorem for semisimple Lie groups with finite center. For the group of matrices our 

theorem can be obtained from Oseledets' theorem if one notes that the regularity of a sequence 
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of matrices in the sense of Lyapunov is equivalent to its proximity to the sequence of powers 

of a symmetric matrix (cf. Sec. 4). 

3. It is interesting to clarify when the tail 6 -algebra of the sequence [ ~t~ is 

completely determined by themeans ~{~) (this is so for the case when {~s are indepen- 

dent and their distribution is not a singular Haar measure [16], or, on the contrary, is 

concentrated on some discrete subgroup of ~ [4]). We note that if the first moment of the 

increments ~5 is infinite, then it is not entirely clear even in what terms one could 

describe the tail behavior for groups of rank greater than one. 

4. It would be quite interesting to determine the class of Lie groups for which the law 

of large numbers is valid in the global formulation given above. It is proved for all nilpo- 

tent Lie groups and simply connected decomposable solvable Lie groups [19, 20]. However~ as 

G. A. Margulis noted, for semisimple Lie groups with infinite center, this law is no longer 

valid. In fact, let 0 be a simply connected semisimple Lie group with infinite center, 

G be its quotient by the free component of the center G We denote by 

the universal covering of the group K Fixing a fundamental domain K in Ko with 

compact closure, we can represent any element ~ E K uniquely in the form ~ = (c~K) , 

where the "rotation number" C lies in C and ~ e--~K . Using the Cartan decomposition ~ = K 

emp ~+) K , this representation can be extended to the entire group ~ . It is clear from 

the results of Sec. 2 that for any element ~ ~ G such that ~v ~ (~)/~ > 0 the factors 

~ and K~ in the decomposition ~=K~lemp~)K~ stabilize (up to factors from Z) and 

e~/~--~. Hence for ~e =QCe~ ~) the limit~ C~/~ = c E C exists. Obviously one 

can choose ~ so that C,0 On the other hand, if~ =~i .~=IC~ ~e), where ~ 

are independent and have distribution ~ ~ + (i-~) ~ then ~ C~/~ = ~C . It is easy to 

see that the function ~ (c~) = I CI + ~ (~) is a principal gauge on ~ (cf. point 1.2) and 

in order that two elements of G be distant from one another by o~) it is necessary that 

their "rotation numbers" differ by o ~). But as we just showed, the "mean number of rota- 

tions" for the sequence of powers of any element ~ E ~ necessarily lies in 0 ~ at the same 

time that for the sequence of partial products of random variables it can also not lie in 

(for irrational $). Thus, for the group~ the global law of large numbers does not hold. 

4. Connection with Classical Lyapunov Exponents 

Definition [i-3]. Let V be a finite-dimensional vector space over the field ~ ( = 

or ~ ), il'~ be a norm in V The sequence { At~ ~=~ c ~ L ~V) is called Lyapunov regular 

if the following conditions hold: 

I) the limit 

~ I ol~t A f.t / t, = J. &t 

exists; 
2) for any ~ 6 V x {0~ the limit 

exists; 
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3) if {0} = V 0 c Vl c,..cV~=V is the filtration of ~ corresponding to the function 

V, ioe.~ ~ [~) = ~ for ~ ~ V~ \ Vb-i and ~l < < ~, then 

The n bers are ca l led the Lyapunov c h a r a c t e r i s t i c  exponents of the sequence { A t }  

the dimensions ~V~- ~k~V~_ i , their multiplicities. (The definition obviously does not 

depend on the choice of norm.) 

In V we fix a Euclidean (reap., Hermitian) form @. By K we denote the subgroup of 

$ L iV) preserving the form @ . We identify the symmetric space g h ~V) / K with the 

set of positive self-adjoint operators (with respect to the form @ ) from ~ L iV) (the 

choice of the form 0 is equivalent to fixing a point go = K of the symmetric space). 

THEOREM 4.1. Let { At~ t=l c G L iV) and the limit ~k~ ~ I de~ A t I / t = ~d~L, exist; 

then the following conditions are equivalent: 

i) the sequence {A~ is Lyapunov regular; 

2) there exists a positive self-adjoint operator A such that ~ II At A-L}} = ~ 

3) ~ II ~i+l ~i ~ II = o it) and the limit A = ~ ~A~ A~) ~/zt exists; 

4) the sequence gt = (A[ AL) ~/I i~[ Ai • where ~ = ~ V is regular in the sym- 

metric space 5L(V)/K. 

In particular, if { AL~ c ~h iV) , then the regularity of the sequence { A~} in the 

sense of Lyapunov is equivalent to the regularity of the sequence [Aql of elements of the 

group ~h [V) in the sense of the definition of Sec. 2. The operator A from condition (2) 

is defined uniquely and coincides with the operator A from condition (3), its eigenvalues 

are e~q~ i ~ ~ - ~ det) and the corresponding eigenspaces are Vb @ V ~_i(orthogonal complement 

with respect to the form @ ). The vector of exponents of the sequence { gi~ is formed by the 

numbers ~ - ~de[ , taken according to their multiplicities and positioned in increasing order. 

Proof. Normalization of At reduces the general case to the case I lei As = [ ; then 

the equivalence of conditions (2), (3), and (4) follows from the results of Section 2. To 

prove the implication (2) -~-->(i) we note that if B[ =AtA -t then ~llB~lll=o([) , since 

I ~et bl I = i and the Lyapunov regularity of the sequence A.g = 5[ % t follows from 

from the regularity of the sequence of powers {Atl To prove the opposite implication 

(I) ~(2) we define ~ as in the formulation of the theorem and we consider the basis 

{e~ in V , formed of eigenvectors of ~ . Then obviously ~ II A~-~eL II = o ~{) 

for all e% so ~,II A~ A-~ II = o(~). The description of the vector of exponents of the 

sequence { ~{~ follows directly from the description of the operator A. 

With the help of the theorem proved one can now carry the results of Secs. 2 and 3 over 

to sequences { ~} C GL iV) �9 In particular, it follows from Theorem 3.1 that if the 

increments A{+i A~[ form a stationary stochastic process, and their one-dimensional dis- 

tribution has finite first moment (i.e., ~IIA%+IA~ II =0[~) and $~ ~A t -~ 

then the sequence { At~ is Lyapunov regular, which is the content of the multiplicative 

ergodie theorem of Oseledets [3]. 
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Remark. I n  the general situation from the existence of the limit i = $ (i[ At) iNt 

(in geometric language this means convergence of the directing vectors of the geodesics 

(~o z6) and the existence of the limit ~h~ i (mo~ z6)/~ ) the Lyapunov regularity of the 

sequence { A~} (or the regularity of the sequence of points {E{} of the s~etric space 

no longer follows. This is so only when ~ II Ai+t A~ II = 0(~) (i.e., i(~{, ~+s 

If the increments ~+[ At t form a stationary process and their one-dimensinal distribution 

has finite first moment, then this condition holds (cf. the proof of Theorem 3.1). Hence 

for such sequences { At} Lyapunov regularity is equivalent to the a priori weaker condi- 

tion of existence of the limit ~ = ~(i[ At) t/z~ (cf. [21]). 

Theorem 4.1 combined with Theorems 2.3 and 2.5 lets us get the following criterion for 

Lyapunov regularity. 

THEOREM 4 .2 .  A sequence  { / ~ }  C G-L (V) i s  Lyapunov r e g u l a r  i f  an on ly  i f  

At. ~ II=~ and fo r  any K <~ ~av V the  l i m i t  

exists (here A^K is the k-th 

{Ai~ are the numbers ~K =~K 

exterior power of A ), here the exponents of the sequence 

--~K-I " 

THEOREM 4.3. Let the matrices A t E ~ g IV) be upper quasitriangular in some basis 

of the space V ; we denote by A~ their diagonal blocks. The sequence { All is Lyapunov 

regular if and only if ~ II At+L A~ II = o (~) and all sequences of diagonal blocks ~ A~ 

are Lyapunov regular. The collection of exponents of the sequence ~ A~} is formed by com- 

bining the collections of exponents of the sequences {A~. In particular, the sequence {A~ 

of triangular matrices is Lyapunov regular if and only if ~ II Ai+i ~ !I = o(g) and the 

~ I /~ exist (here ~ are the diagonal elements of the matrix A~); limits ~ = ~ ,  go~ ) ~  

the numbers 46 form the collection of exponents of the sequence { A t }. 

Theorems 4.1-4.3 carry over to the case when the parameter ~ assumes continuous values. 

Here the condition ~ )I A~el At~ = o (~) is replaced by the condition (cf. Section 2) 

The linear differential equation ~ = B(~) ~ in the space V is called regular, if its 

fundamental matrix ~ (1) E ~ L iV) is Lyapunov regular. If ~+ ~ B(~) !I = o (~) then (*) 

holds (the converse is generally false). Thus, Theorems 4.2 and 4.3 give necessary and suf- 

ficient conditions for the regularity of linear systems with subexponential growth of coef- 

ficients. For the case of bounded coefficients and triangular matrices, Theorem 4.3 is the 

Lyapunov criterion of [i], and Theorem 4.2 is also familiar for the case of bounded coef- 

ficients [2] ~. We stress that (*) is anecessarycondition for the system to be regular. 

*In [2] these assertions are formulated without any assumptions about the boundedness of the 
coefficients of ~ (t) but this condition is used there essentially. Some kind of restric- 
tions on the nondiagonal coefficients are also missing in the formulatin of Lyapunov's cri- 
terion in the paper of V. M. Millionshchikov "Regular linear systems" in Vol. 4 of the Mathe- 
matical Encyclopedia (in the original paper of Lyapunov the condition of boundedness of the 
coefficients is explicitly formulated), although, as will be shown below, Lyapunov's criterion 
is invalid without such restrictions. 
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If it fails (here, naturally ~0~ + II ~5 (~)~ ~ o ~t) ), then even a triangular system may not be 
regular even if the exact means of the diagonal elements of B(t) exist. Simplest example: 

0 ~ 0 ' 

5 

6 

7 

8. 

9. 

i0. 
Ii. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 
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