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Abstract

Brownian motion on stationary random manifolds

Abstract

We introduce the concept of a stationary random manifold with the objective of treating
in a unified way results about manifolds with transitive isometry group, manifolds with a
compact quotient, and generic leaves of compact foliations. We prove inequalities relating
linear drift and entropy of Brownian motion with the volume growth of such manifolds,
generalizing previous work by Avez, Kaimanovich, and Ledrappier among others. In the
second part we prove that the leaf function of a compact foliation is semicontinuous,
obtaining as corollaries Reeb’s local stability theorem, part of Epstein’s local structure
theorem for foliations by compact leaves, and a continuity theorem of Álvarez and Candel.

Keywords

Ergodic theory, Random manifolds, Brownian motion, Entropy, Liouville property.

Mouvement brownien sur les variétés aléatoires
stationnaires

Résumé

On introduit le concept d’une variété aléatoire stationnaire avec l’objectif de traiter de
façon unifiée les résultats sur les variétés avec un group d’isométries transitif, les variétés
avec quotient compact, et les feuilles génériques d’un feuilletage compact. On démontre
des inégalités entre la vitesse de fuite, l’entropie du mouvement brownien et la croissance
de volume de la variété aléatoire, en généralisant des résultats d’Avez, Kaimanovich, et
Ledrappier. Dans la deuxième partie on démontre que la fonction feuille d’un feuilletage
compact est semicontinue, en obtenant comme conséquences le théorème de stabilité local
de Reeb, une partie du théorème de structure local pour les feuilletages à feuilles compactes
d’Epstein, et un théorème de continuité d’Álvarez et Candel.
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Mots-clefs

Théorie ergodique, Variétés aléatoires, Mouvement brownien, Entropie, Propriétés de Liou-
ville.

Movimiento Browniano en variedades aleatorias
estacionarias

Resumen
Introducimos el concepto de variedad aleatoria estacionaria con el fin de probar en for-
ma unificada resultados sobre variedades con grupo de isometría transitivo, variedades
con cociente compacto, y hojas genéricas de foliaciones compactas. Probamos desigualda-
des relacionando la velocidad de escape del movimiento Browniano con la entropía y el
crecimiento de volumen de dichas variedades generalizando trabajos anteriores de Avez,
Kaimanovich, y Ledrappier entre otros. En la segunda parte mostramos que la función
hoja de una foliación compacta es semicontinua, obteniendo como corolarios el teorema de
estabilidad local de Reeb, parte del teorema de estructura local de Epstein para foliaciones
por hojas compactas, y el teorema de continuidad de Álvarez y Candel.

Palabras claves

Teoría ergódica, Variedades aleatorias, Movimiento Browniano, Entropía, Propiedad de
Liouville.
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Introduction

This thesis has two parts. In the first we are concerned with harmonic measures of
foliations, the entropy theory of Riemannian manifolds, Liouville properties, and how
they relate to the behavior of Brownian motion. The main influence for this part of our
work are the two very rich papers of Kaimanovich, [Kăı86] and [Kăı88]. By analogy with
the, by then, well established theory of entropy for random walks on discrete groups (see
[KV83]), Kaimanovich defined an entropy for Riemannian manifolds and outlined how this
entropy would relate to the Liouville properties, algebraic properties of the fundamental
group of the manifold, and volume growth among other things. The main idea is that
the Riemannian metric on the manifold must have some sort of recurrence in order for
this statistical approach to work. The three main cases where one suspects that this
recurrence condition is satisfied are: manifolds with transitive isometry group, manifolds
with a compact quotient, and generic leaves of compact foliations.

The entropy theory of discrete groups has seen its results successively generalized to
more general types of graphs then just Cayley graphs. So for example in [KW02] the
theory is worked out for graphs whose isometry group is transitive. Benjamini and Curien
[BC12] have introduced the concept of a stationary random graph which simultaneously
generalizes and includes the case of Cayley graphs and graphs with transitive isometry.
Following their lead we introduce the concept of a stationary random manifold, which is
a rooted random manifold whose distribution is invariant under re-rooting by Brownian
motion, and develop the basic theory of entropy for them. This concept allows for unified
proofs of results about manifolds with transitive isometry group, compact quotient, or
generic leaves of compact foliations.

The first part of the thesis is divided into three chapters. In the first we deal with
results about a single manifold, roughly the relationship between the Liouville property and
the behavior of Brownian motion on the manifold. In the second we introduce stationary
random manifolds and three invariants for them: Kaimanovich entropy, linear drift (the
mean rate of displacement of Brownian motion from the basepoint), and volume growth
(which measures the exponential growth rate of the volume of balls as a function of their
radii). The main results are that entropy exists, is non-negative, and is zero if and only
if the manifold is almost surely Liouville; and the basic inequalities relating the three
asymptotic quantities which are

1
2`(M)2 ≤ h(M) ≤ `(M)v(M)

where `(M), h(M) and v(M) are the drift, entropy and volume growth respectively. These
inequalities have several interesting consequences which had been established indepen-
dently before. The third chapter deals with Brownian motion on stationary random
manifolds and can be seen as a more detailed look at the results in the second chap-
ter (in particular we improve the lower bound for entropy above, following the results of
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Kaimanovich and Ledrappier for manifolds with compact quotient [Kăı86, Theorem 10],
[Led10, Theorem A]).

In the second part of the thesis we prove geometric results about how the leaves of
a compact foliation vary from point to point. The only thing we had needed to know
about compact foliations in the first part of the thesis was that the leaf of a random
point whose distribution is harmonic in the sense of Garnett [Gar83] is an example of a
stationary random manifold. In this part of the thesis we look at the continuity properties
of the leaf function, i.e. the function associating to each point its leaf considered as a
Riemannian manifold with basepoint. The main influence here is the work of Álvarez and
Candel [ÁC03] where they introduced the leaf function and outlined how it could be used
to study the quasi-isometry invariants of topologically generic leaves of foliations (we do
not work on their theory explicitly but the concept of the leaf function and their statement
that it is continuous on the set of leaves without holonomy have been the main seeds for
our research). We establish that the leaf function is semicontinuous in the sense that any
limit of leaves of a converging sequence of points is a covering space of the leaf of the
limit point. Furthermore we provide an upper bound for the largest covering space which
can be obtained in this way, the holonomy cover. As a consequence we obtain, Álvarez
and Candel’s theorem that the leaf function is continuous on the set of leaves without
holonomy, Reeb’s local stability theorem, and part of Epstein’s local structure theorem
for foliations by compact leaves. The main tools for this part of the work come from
the convergence theory of Riemannian manifolds of Cheeger, Gromov, Anderson, etc; in
particular we use the Ck-compactness theorem of [Pet06, Theorem 72].



Part I

Ergodic theory of stationary
random manifolds





Chapter 1

Liouville properties and Zero-one
laws on Riemannian manifolds

Introduction

In this chapter we establish some results which can be considered folklore of the boundary
theory of Markov chains. Our motivation here has been to clarify and provide proofs as
well as to introduce the concept of mutual information which will be important in our
study of entropy in the next chapter (see Theorem 2.11).

We begin by recalling the definition and basic properties of the heat kernel and Brow-
nian motion on a complete and stochastically complete Riemannian manifold. We then
establish the correspondance between bounded tail measurable functions on the space
of Brownian paths and bounded solutions to the backward heat equation on a Rieman-
nian manifold (see Lemma 1.5). In particular this shows that there are no non-constant
bounded solutions to the backward heat equation if and only if Brownian motion satisfies
the zero-one law and, similarly, a manifold will satisfy the Liouville property (i.e. there
are no non-constant bounded harmonic functions) if and only if its Brownian motion is
ergodic (see Theorem 1.4). A treatment of these results in the case of discrete time Markov
chains can be found in [Kai92].

We continue by providing an example (due to Kaimanovich, see [Kai92] and also [AT11,
Lemma 1.1, Remark 4.9]) of a manifold where not every bounded solution to the backward
heat equation is a harmonic functions (i.e. there is a tail event which does not coincide
with any invariant event even after modification on a set of zero probability). We then
show that such examples do not occur among manifolds with bounded geometry (this is
a particular case of Derrienic’s zero-two law, see [Der85]).

Finally, we introduce the concept of mutual information and show that it can be
used to characterize when Brownian motion satisfies the zero-one law. This idea was
used by Varopoulos to show that any Riemannian manifold with a compact quotient and
subexponential volume growth satisfies the Liouville property (see [Var86]). We also use
mutual information to provide proofs of some results on Kaimanovich entropy announced
in [Kăı86] and [Kăı88] (notably existence of entropy and equivalence of the Liouville prop-
erty to it being zero on stationary random manifolds, see Theorem 2.11). For example, it
follows from the properties of mutual information established in this chapter that that on
a bounded geometry manifold M the limit

ε(x) = lim
t→+∞

∫
log

(
q(t− 1, y, z)
q(t, x, z)

)
q(1, x, y)q(t− 1, y, z)dydz
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exists and is non-negative for all x ∈M where q(t, x, y) is the transition probability density
of Brownian motion, and that the Liouville property is equivalent to ε(x) being 0 for some
x (see [Kăı88, Lemma 1] and [Kai92, Section 3]).

1.1 Brownian motion and the backward heat equation

1.1.1 Laplacian, heat semigroup, and heat kernel

Consider a connected complete d-dimensional Riemannian manifold M . We will begin by
recalling the basic properties of the Laplacian, the heat semigroup, and the heat kernel on
M . Detailed treatment can be found in [Gri09].

The Laplacian ∆f(x) of a smooth function f : M → R at a point x ∈ M is defined
as the sum of second derivatives of f along d perpendicular geodesics through the point
x. This coincides with the Euclidean Laplacian at 0 ∈ Rd of the pullback of f under a
normal parametrization around the point x (in particular, since the Euclidean Laplacian is
invariant under rotations, our definition is independent of the choice of geodesics through
p).

It can be shown (see [Gri09, Chapter 3]) that the manifold Laplacian satisfies integral
formulas analogous to those satisfied by the Euclidean Laplacian on Rd. Integration by
parts takes the form ∫

f(x)∆g(x)dx = −
∫
〈∇f(x),∇g(x)〉dx

for all smooth f, g : M → R with compact support where integration is with respect to
the Riemannian volume (proofs involve local calculations plus partitions of the unity).

The above integral formula implies that the Laplacian ∆ is non-positive definite and
coincides with its adjoint ∆∗ when restricted to the subspace of L2(M) consisting of smooth
functions with compact support. The domain of ∆∗ is strictly larger than the subspace of
smooth functions with compact support. However , it is possible (using the notion of weak
derivatives) to find a subspace of L2(M) containing the smooth functions with compact
support such that ∆∗ is self adjoint when restricted to this subspace (see [Gri09, Chapter
4]). Abusing notation we denote the self-adjoint extension of the Laplacian by ∆.

The spectral theorem now implies that ∆ is conjugate via an isometry to multiplication
by a non-positive function φ : X → R on the space L2(X,µ) of square integrable functions
on some measure space (X,µ). In particular one can define for each t ≥ 0 the operator
P t = exp(t∆) so as to be conjugate to multiplication by exp(tφ). This defines a semigroup
of bounded operators (i.e. P t+s = P tP s and P 0 is the identity) with norm less than
or equal to 1 (because exp(tφ) ≤ 1) which can therefore be extended to all of L2(M)
(instead of only the dense subspace on which ∆ was self-adjoint). This is the so-called
heat semigroup.

The heat semigroup is continuous in the sense that t 7→ P tf is continuous on t ≥ 0
with respect to the L2 norm for any f ∈ L2(M). Furthermore one has

∂tP
tf = ∆f

for all t > 0 and all f ∈ L2(M) (in particular it is implied that P tf belongs to the domain
of definition of the self-adjoint extension of ∆) where the limit on the left hand side and
the equality are interpreted in L2(M) (see [Gri09, Theorem 4.9]).

Using a local argument involving Sobolev’s embedding theorem one obtains that P tf
is a smooth function on M for any t > 0 and f ∈ L2(M). Furthermore the function



1.1. Brownian motion and the backward heat equation 17

u(t, x) = P tf(x) is smooth at all t > 0 and x ∈M and satisfies the heat equation

∂tu(t, x) = ∆xu(t, x).

The Riesz representation theorem yields the existence for each t > 0 and x ∈ M of a
function p(t, x, ·) ∈ L2(M) such that

P tf(x) =
∫
p(t, x, y)f(y)dy

for all f ∈ L2(M).
The semigroup property yields

p(t+ s, x, z) =
∫
p(t, x, y)p(s, y, z)dy

so that u(t, y) = p(t, x, y) satisfies the heat equation and (by the regularity properties
above) is smooth. At this point one may replace p(t, x, y) by the symmetric integral∫
p(t/2, x, z)p(t/2, y, z)dz so that p(t, x, y) is smooth with respect to all three variables.
The function p(t, x, y) is called the heat kernel of M . The maximum principle for

parabolic equations implies that one always has p(t, x, y) > 0 and one can show that∫
p(t, x, y)dy ≤ 1 for all t > 0. If the last integral is always equal to 1 then one says that

M is stochastically complete.
The Euclidean plane minus one point R2\{0} is an example of a stochastically complete

manifold which is not complete. An example of a complete but not stochastically complete
manifold can be obtained by endowing the plane R2 with the Riemannian metric given in
polar coordinates by

ds2 = dr2 + p(r)2dθ2,

for some function p satisfying p(r) = er
3 for all r large enough.

1.1.2 Brownian motion

On R one has p(t, x, y) = (4πt)−1/2 exp
(
− (x−y)2

4t

)
. We notice that the density of the

time t of a standard Brownian motion starting at x ∈ R can be written as p(t/2, x, y).
When passing to a Riemannian manifold we have decided to keep this factor of 1

2 which
distinguishes the heat kernel from the transition density function of Brownian motion.
With this choice Brownian motion on a Riemannian motion solves the simplest possible
stochastic differential equation driven by a standard Brownian motion on Rd. To avoid
confusion we keep the notation q(t, x, y) = p(t/2, x, y).

Given a stochastically complete manifold M and x ∈ M as above we define Weiner
measure Px starting at x on the space Ω = C([0,+∞),M) of continuous paths from
[0,+∞) toM as the unique Borel measure (the topology being that of uniform convergence
on closed intervals) such that for all Borel sets A1, . . . , An ⊂ M and all positive times
t1 < · · · < tn the probability

Px(ωt1 ∈ A1, · · · , ωtn ∈ An)

of the set of paths ω ∈ Ω which visit each Ai at the corresponding time ti is given by the
integral ∫

A1×···×An

q(t1, x, x1)q(t2 − t1, x1, x2) · · · q(tn − tn−1, xn−1, xn)dx1 · · · dxn.
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A Brownian motion with initial distribution µ (a Borel probability on M) is defined
to be an M valued stochastic process whose distribution is given by∫

Pxdµ(x).

With the above definition one can prove the existence of manifold valued Brownian
motion via Kolmogorov’s continuity theorem using further properties of the heat kernel
(i.e. upper bounds in terms of distance).

Perhaps the most elegant construction of manifold Brownian motion (usually at-
tributed to Eells, Elsworthy, and Malliavin, e.g. see [Hsu02, pg. 75]) is as a diffusion
on the orthogonal frame bundle O(M).

Consider the smooth vector fields Vi, i = 1, . . . , d on O(M) such that the flow of
Vi applied to a frame X = (x, v1, . . . , vd) ∈ O(M) (here x ∈ M and the vi form an
orthonormal basis of the tangent space at x) moves the basepoint along the geodesic
with initial condition vi and transports the frame horizontally. Then any solution to the
Stratonovich stochastic differential equation

dXt =
d∑
i=1

Vi(Xt) ◦ dW i
t

driven by a standard Brownian motion (W 1
t , . . . ,W

d
t ) in Rd, projects to a Brownian motion

on M .
The equivalence of these two approaches is established in [Hsu02, Propositions 3.2.2

and 4.1.6].

1.1.3 Zero-one laws

For each t ≥ 0 define the σ-algebra Ft of events occurring before time t as the Borel subsets
of Ω = C([0,+∞),M) generated by the open sets of the topology of uniform convergence
on the interval [0, t]. Similarly we let F t be the σ-algebra of events occurring after time
t which is generated by the open sets of the topology of uniform convergence on compact
subsets of the interval [t,+∞). Events belonging to all F t are called tail events and form
the tail σ-algebra defined by

F∞ =
⋂
t≥0
F t.

We notice that since Ω is separable and completely metrizable any probability on Ω is
tight meaning we can find a compact subset having probability 1 − ε for each ε > 0 (see
[Bil99, Theorem 1.3]). Compact subsets of Ω are characterized by the Arsela-Ascoli the-
orem as consisting of families of curves which are uniformly bounded and equicontinuous
on each interval [a, b], in particular on such subsets pointwise convergence coincides with
local uniform convergence. Combining these two facts one sees that any Borel subset in Ω
can be approximated (meaning the probability of the symmetric difference can be made
arbitrarily small) by a finite disjoint unions of events of the form

{ω ∈ Ω : ωt1 ∈ A1, . . . , ωtn ∈ An}

where t1 < . . . < tn and the sets Ai are Borel subsets of M . Similarly each set in Ft can
be approximated by finite disjoint unions of events of the above form with tn ≤ t and each
set in F t by events of the above form with the restriction t1 ≥ t.
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The Markov property allows one to express the probability of a tail event with respect
to the measure Px as averages over y of the probabilities with respect to Py of a ‘shifted’
event. More concretely let shiftt : Ω→ Ω be defined for t ≥ 0 by

(shifttω)s = ωt+s,

one has the following property.

Lemma 1.1. Let M be a complete connected and stochastically complete Riemannian
manifold. For each tail event A the function

u(t, x) = Px(shiftt(A))

solves the backward heat equation

∂tu(t, x) = −1
2∆u(t, x).

Proof. Fix T > 0 and set v(t, x) = u(T − t, x) for each t ∈ (0, T ) and x ∈M . By applying
the Markov property one obtains

v(t, x) =
∫
q(t, x, y)Py

(
shiftT shiftT−tA

)
dy =

∫
p(t/2, x, y)v(0, y)dy

which implies that ∂tv(t, x) = 1
2∆v(t, x) from which the desired result follows.

We say that an event A ⊂ Ω is trivial if it has probability 0 or 1 with respect to all
measures Px. Brownian motion onM is said to satisfy the zero-one law if all tail events are
trivial. Lemma 1.1 allows one to show that triviality of a tail event for Px is independent
of the choice of x ∈M (in particular the zero-one law can be verified at a single x ∈M).

Corollary 1.2. Let M be a complete connected and stochastically complete Riemannian
manifold and A ⊂ Ω be a tail event. Then A is trivial if and only if shiftt(A) has probability
0 or 1 with respect to some Px for some t ≥ 0.

Proof. Apply the maximimum principle to u(t, x) defined in Lemma 1.1.

An event A is said to be invariant if (shiftt)−1(A) = A for all t ≥ 0 (this implies
shiftt(A) = A since the shift maps are surjective). The σ-algebra of all invariant events is
denoted by F inv. Since invariant events are also tail events one may apply Lemma 1.1 to
obtain the following.

Corollary 1.3. Let M be a complete connected and stochastically complete Riemannian
manifold. For each invariant event A the function

v(x) = Px(A)

is harmonic (i.e. ∆v(x) = 0 for all x).

We say Brownian motion is ergodic onM if all invariant events are trivial. By Corollary
1.2 ergodicity is equivalent to triviality of all invariant events with respect to a single
probability Px.
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1.1.4 Liouville properties

A manifold M is said to satisfy the Liouville property (some times we just say M is
Liouville) if it admits no non-constant bounded harmonic functions. Similarly we say M
is backward-heat Liouville if it admits no non-constant bounded solutions to the backward
heat equation (defined for all t ≥ 0).

Theorem 1.4. Let M be a complete connected and stochastically complete Riemannian
manifold. Then M is backward-heat Liouville if and only if its Brownian motion satisfies
the zero-one law. Similarly, M is Liouville if and only if its Brownian motion is ergodic.

Proof. Suppose M is backward-heat Liouville and A is a tail event. Then by Lemma 1.1
the function

u(t, x) = Px(shifttA)

solves the backward equation and by hypothesis must be constant.
Given times t1 < · · · < tn and Borel sets A1, . . . An ⊂M we calculate using the Markov

property (which is possible because A ∈ F tn) to obtain that the probability

Px (ωti ∈ Ai for i = 1, . . . , n and ω ∈ A)

of the trajectory belonging to A while hitting each Ai at the corresponding time ti is given
by ∫

A1×···×An

q(t1, x, x1) · · · q(tn − tn−1, xn−1, xn)Pxn(shifttnA)dx1 · · · dxn

which since u(t, x) is constant yields

Px (ωti ∈ Ai for i = 1, . . . , n)Px (ω ∈ A) .

This implies that A is independent from Ft for all t so that A is independent from
itself and must have probability 0 or 1. We conclude that if M is backward-heat Liouville
then its Brownian motion satisfies the zero-one law (notice that the proof mimics that of
the classical zero-one law).

The same argument shows that if M is Liouville then its Brownian motion is ergodic.
On the other hand if there is a bounded backward solution u(t, x) defined for all t ≥ 0

then
u(t, ωt)

is a bounded martingale with respect to any Px. Since u(t, ·) is not constant (otherwise u
would be constant) the random variable u(t, ωt) is not almost-surely constant with respect
to Px. On the other hand the martingale convergence theorem implies that the limit

f(ω) = lim
t→+∞

u(t, ωt)

exists almost surely with respect to Px and that its conditional expectation to Ft is u(t, ωt).
This shows that f is not almost-surely constant with respect to Px and, since L is tail
measurable, there are non-trivial tail events.

In the case where one assumes that there is a non-constant bounded harmonic function
v(x) one has that u(t, x) = v(x) is a bounded backward solution independent of t. The
same argument above works with the additional fact that the limit f is shift invariant and
hence yields non-trivial invariant events.
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We conclude this subsection reexamining the last part of the previous proof (i.e. the
construction of bounded tail measurable function f : Ω → R starting from a bounded
backward solution u(t, x)). In view of Corollary 1.2 all the measures Px are mutually
absolutely continuous when restricted to the tail σ-algebra F∞. We call the measure class
of any and all Px the harmonic measure class on F∞. We say a tail measurable function
f : Ω→ R is invariant if f ◦ shiftt = f for all t ≥ 0.

Lemma 1.5. Let M be a complete connected and stochastically complete Riemannian
manifold. There is a one to one correspondence associating to each bounded solution u(t, x)
to the backward equation ∂tu(t, x) = −1

2∆u(t, x) the bounded tail measurable function

fu(ω) = lim
t→+∞

u(t, ωt)

considered up to modifications on zero-measure sets with respect to the harmonic measure
class. Furthermore fu can be modified on a null set with respect to the harmonic measure
class so that it is shift invariant if and only if u(t, x) = v(x) for some bounded harmonic
function v : M → R.

Proof. First of all we fix x ∈ M and notice that u(t, ωt) is a bounded martingale with
respect to Px so that the limit fu(ω) exists Px-almost surely. Since the existence of the
limit fu is a tail event this implies that fu is well defined almost surely with respect to
the harmonic measure class on F∞.

We will now show that u 7→ fu is injective.
For this purpose suppose fu = fv almost surely with respect to Px. By the martingale

convergence theorem the conditional expectation of fu to Ft with respect to Px is given
by

Ex (fu|Ft) = u(t, ωt)

and similarly for fv so that one has for each t ≥ 0 that

u(t, ωt) = v(t, ωt)

for Px almost every ω ∈ Ω. Since ωt has a strictly positive density q(t, x, ·) under Px and
the functions u(t, ·) and v(t, ·) are continuous this implies that u(t, ·) = v(t, ·) for each t
so that u = v as claimed.

If u(t, x) = v(x) for some harmonic function v then

fu(ω) = lim
t→+∞

v(ωt) = lim
t→+∞

v(ωt+s) = fu(shiftsω)

almost surely with respect to the harmonic measure class so fu can be modified on a zero
measure set to be invariant.

Reciprocally assume that fu is shift invariant. One has

lim
t→+∞

u(t, ωt) = fu(ω) = fu(shiftsω) = lim
t→+∞

u(t, ωt+s) = lim
t→+∞

u(t− s, ωt).

Setting us(t, x) = u(t− s, x) 1 one obtains that fu = fus so that by the previously estab-
lished injectivity u = us. Since this works for all s we obtain that u(t, x) = v(x) for some
harmonic function v.

It remains only to show that the map u 7→ fu is surjective.

1. One can extend us to t ≤ s uniquely using the heat equation.
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By Lemma 1.6 below for each t and x there is a probability P(t,x) on F t which satisfies

P(t,x) (A) = Px
(
shiftt(A)

)
.

Denoting by E(t,x) the expectation with respect to P(t,x) and setting

u(t, x) = E(t,x) (f(ω))

one has by the martingale convergence theorem and Lemma 1.6 that f = fu. Hence
u 7→ fu is surjective as claimed.

Lemma 1.6. Let M be a complete connected and stochastically complete Riemannian
manifold. For each t ≥ 0 the map shiftt is a bijection between the σ-algebras FT and
FT−t on Ω for all T ≥ t. In particular each shiftt is a bijection on F∞.

Furthermore, denoting by P(t,x) the unique probability on F t which satisfies

P(t,x) (A) = Px
(
shiftt(A)

)
for all A ∈ F t one has that the conditional expectation of any bounded and tail measurable
function f : Ω→ R to the σ-algebra Ft relative to the probability Px0 (x0 being any chosen
point in M) is given by

Ex0 (f(ω)|Ft) = u(t, ωt)

where u(t, x) = E(t,x)(f(ω)) is the expectation of f relative to P(t,x) for all t ≥ 0 and
x ∈M .

Proof. We had glossed over this point earlier (e.g. in Lemma 1.1) but the continuity of
shiftt does not imply that if A ∈ F t then shiftt(A) is Borel.

However, if ω ∈ A for some A ∈ F t then all continuous paths which coincide with ω
after time t also belong to A. This property implies (valid for all t ≥ 0) that shiftt is a
bijection between FT and FT−t (even though shiftt certainly is not injective as a function
on Ω) for all T ≥ t.

The second claim amounts to establishing the fact that

Ex0 (f(ω)1A(ω)) = Ex0 (u(t, ωt)1A(ω)) (1.1)

for all A ∈ Ft.
Suppose first that f = 1B for some B ∈ F∞ and

A = {ω ∈ Ω : ωsi ∈ Ai, i = 1, . . . ,m}

where the Ai are Borel subsets of M and t1 < · · · < tn ≤ t.
Then one has

Ex0 (f(ω)1A(ω)) = Px0 (A ∩B)

=
∫

A1×···×Am

q(s1, x0, x1) · · · q(t− sm, xm, y)Py
(
shifttB

)
dx0 · · · dxmdy

= Ex0 (u(t, ωt)1A(ω)) .

Since any A ∈ Ft can be approximated (with respect to Px0) by finite disjoint unions
of events of the above form we have established the claim for bounded tail measurable
functions that are indicators of a tail set.
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For the general case notice that given two functions for which Equation 1.1 holds one
has that the equation holds for any linear combination of them. Furthermore, if f is the
monotone limit of a sequence of non-negative functions for which Equation 1.1 is known
to hold then by the monotone convergence theorem the equation holds for f as well. This
proves that the claim holds for all bounded tail measurable functions.

1.2 A bounded backward heat solution
Since the heat equation regularizes functions one expects that most solutions to the back-
ward heat equation should explode in finite time. In particular it seems plausible that
the existence of bounded solutions u(t, x), defined for all t ∈ R, to the backward equation
should be rather rare.

One way in which one can obtain a bounded solution to the backward heat equation
is to set u(t, x) = v(x) where v is a bounded harmonic function. In particular on the
hyperbolic plane there exist many such bounded solutions.

With the above comments in mind one might conjecture that all bounded solutions to
the backward heat equation come from bounded harmonic functions. Our purpose in this
section is to show that this is not always the case.

We will construct a metric on the plane which is rotationally symmetric around the
origin and show that there are non-trivial tail events with respect to the radial part of its
Brownian motion which are not shift invariant.

This idea was suggested to us by Vadim Kaimanovich (see also [Kai92, pg. 23]).

Theorem 1.7. Consider the smooth Riemannian metric g on the plane R2 which in polar
coordinates has the form

ds2 = dr2 + p(r)2dθ2

with p(r) = re
1
2 r

2. There exists a smooth bounded function u(t, x) which solves the back-
ward heat equation with respect to this metric and such that u(t, ·) is not harmonic for any
t ∈ R.

Proof. To see that such an expression in polar coordinates yields a smooth metric at the
origin of R2 we calculate explicitly the coefficients of the metric (letting e1, e2 be the
canonical basis of R2 and (x, y) = (r cos(θ), r sin(θ))) and obtain

g11 = g(e1, e1) = 1 + y2(p(r)2/r2 − 1)/r2

g12 = g(e1, e2) = −xy(p(r)2/r2 − 1)/r2

g22 = g(e2, e2) = 1 + x2(p(r)2/r2 − 1)/r2,

so the claim follows because (p(r)2/r2 − 1)/r2 can be extended analytically to r = 0 (just
consider the power series of p(r)).

Consider a solution rt to the Ito differential equation{
r0 = 1
drt = dXt + f(rt)dt

where f(r) = 1
2p
′(r)/p(r) = (r + 1/r)/2 and Xt is a standard Brownian motion on R. If

one sets
τT =

∫ T

0

1
f(rt)2 dt
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and
θt = Yτt

where Yt is an Euclidean Brownian motion independent fromXt, then (rt cos(θt), rt sin(θt))
is a Brownian motion for the metric g (see [Hsu02, Example 3.3.3]).

We will show that there is a non-trivial tail event for the process rt which is not shift
invariant.

For this purpose notice that the fact that f(r) ≥ 1 implies that

rT = 1 +XT +
∫ T

0
f(rt)dt ≥ (1 +XT + T )+

for all T where x+ = x if x > 0 and 0 otherwise.
Next set H(r) = log(1 + r2) and notice that H ′(r) = h(r) = 1/f(r) if r > 0. By the

Ito formula one has
dH(rt) = h(rt)dXt + (1 + 1

2h
′(rt))dt.

We will show that the limit

L = lim
t→+∞

H(rt)− t

exists almost surely. Clearly L is tail measurable with respect to the filtration associated
to rt and is not shift invariant (replacing rt by rt+s changes the value of L by s as well).
If we show that L is not almost surely constant then there are non-trivial tail events (of
the form {L > a}) which are not shift invariant.

Notice that
H(rT )− T =

∫ T

0
h(rt)dXt + 1

2

∫ T

0
h′(rt)dt.

Using the inequality rt ≥ (1 +Xt + t)+ one obtains that for almost all trajectories one
eventually has rt > t/2. Combined with the fact that |h′(r)| = O(1/r2) when r → +∞
one obtains that ∫ +∞

0
|h′(rt)|dt < +∞

almost surely.
To show that the martingale part of H(rT ) − T converges it suffices to show that its

variance is bounded. By the Ito isometry one has

E

(∫ T

0
h(rt)dXt

)2
 =

∫ T

0
E
[
h(rt)2

]
dt.

To bound the integrand we separate into two cases according to whether |Xt| > t/2 or
not and obtain (for t > 2 using that h ≤ 1 and that h is decreasing on r > 1)

E
[
h(rt)2

]
≤ P [|Xt| > t/2] + h(t/2)2 = P

[
|X1| >

√
t/2
]

+ h(t/2)2.

The right hand side is integrable because the first term decreases exponentially while the
second is of order O(1/t2).

Hence we have established that the limit L of H(rt) − t exists almost surely when
t → +∞. To complete the proof it remains to show that the random variable L is not
almost surely constant (see Figure 1.1 below for evidence supporting this claim).
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Suppose that L were almost surely equal to a constant C. Let the stopping time σ
for rt be minimal among those with the property that rσ = 1 and rt = 2 for some t < σ.
One always has σ > 0 and, by the Varadhan-Stroock support theorem, there is a positive
probability that σ is finite. The Markov property implies that on the set with σ <∞ one
has

C = lim
t→+∞

H(rt)− t = lim
t→+∞

H(rσ+t)− t = C + σ

contradicting the fact that σ is positive.

0 5 10 15

t

0

0.5

1

1.5

H
(r

t
)
−
t

Figure 1.1: Ten trajectories of the process H(rt)− t.

In the above example the radial process rt grows super-linearly so that τt converges
almost surely as t → +∞ and hence so does θt. Events of the form θ∞ = limt→+∞ θt ∈
[a, b] are invariant and therefore may be used to define non-constant bounded harmonic
functions.

The existence of a manifold which satisfies the Liouville property but none the less
admits non-constant bounded solutions to the backward heat equation was announced in
[Kai92, pg. 23].

1.3 Steadyness of Brownian motion
In the previous section we gave an example of a radially symmetric Riemannian metric
on R2 such that the corresponding Brownian motion had a non-trivial tail event which
was not invariant. The curvature at distance r from the origin in this example can be
calculated to be −(3+r2), in particular it is unbounded. We will show in this section that
examples of this kind with bounded curvature and positive injectivity radius do not exist.

Following Kaimanovich we say Brownian motion on M is steady if every tail event
can be modified on a null set with respect to the harmonic measure class on F∞ to be
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invariant. This is equivalent (via Lemma 1.5) to the property that every bounded solution
to the backward heat equation is of the form u(t, x) = v(x) for some bounded harmonic
function v.

Recall that a Riemannian manifold is said to have bounded geometry if its injectivity
radius is positive and its sectional curvature is bounded in absolute value. In particular
such a manifold is complete since unit speed geodesics starting at any point are always
defined up to a time at least equal to the injectivity radius, and hence are defined for all
time.

The following result was proved in the caseM has a compact quotient under isometries
by Varopoulos (see [Var86, pg. 359]). A more general result with no assumption on the
injectivity radius of M was announced by Kaimanovich with a proof sketch (see [Kăı86,
Theorem 1]).

Theorem 1.8. Let M be connected Riemannian manifold with bounded geometry. Then
M is stochastically complete and Brownian motion on M is steady. In particular every
bounded solution u(t, x) to the backward heat equation defined for all t ≥ 0 is of the form
u(t, x) = v(x) for some harmonic function v.

The so-called zero-two law is a sharp criteria for equivalence of the tail and invariant
σ-algebras of Markov chains (see [Der76]). In our situation it amounts to the statement
that

sup
x∈M

{
lim

t→+∞

∫
|p(t+ τ, x, y)− p(t, x, y)|dy

}
is either equal to 0 or to 2 for all x ∈ M and all τ > 0 and furthermore the limit is 0 if
and only if Brownian motion is steady.

We will verify that the above limit cannot be 2 in Lemma 1.9 below. From this,
steadiness of Brownian motion follows from the zero-two law. A proof which does not rely
on the zero-two law will be given at the end of this subsection.

Lemma 1.9. Let M be a connected Riemannian manifold with bounded geometry. For
each τ > 0 there exists ετ > 0 such that∫

|q(t+ τ, x, y)− q(t, x, y)|dy ≤ 2− ετ

for all x ∈ M and t ≥ τ . In particular, if u(t, x) is a solution to the backward equation
∂tu = −1

2∆xu bounded by 1 in absolute value then

|u(t+ τ, x)− u(t, x)| ≤ 2− ετ

for all t ≥ 0 and all x ∈M .

Proof. Let K > 0 be a finite bound for the absolute value of all the sectional curvatures
of M and ρ > 0 be strictly less than the injectivity radius at all points of M and the
diameter of the d-dimensional sphere of constant curvature K.

Fix x ∈ M and let ψ : Rd → M be a normal parametrization at x, i.e. ψ(v) =
expx ◦L(v) where expx : TxM → M is the Riemannian exponential map at x and L :
Rd → TxM is a linear isometry between Rd (endowed with the usual inner product) and
the tangent space TxM (with the inner product given by the Riemannian metric on M).

Consider the metric of constant curvature −K ball Bρ(0) of radius ρ centered at 0 in
Rd of the form ds2 = dr2 + p(r)dθ2 where dθ2 is the standard Riemannian metric on the
unit sphere Sd−1 ⊂ Rd and one sets

p(r) = sinh(
√
Kr).
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We denote by ϕ(t, ·) the probability density of the time t of Brownian motion started
at 0 and killed upon first exit from Bρ with respect to the constant curvature metric above.
The only fact about ϕ we need is that it is everywhere positive on Bρ for all t.

Let qKρ (t, x, y) be defined for y in the open ball Bρ(x) of radius ρ centered at x by

qKρ (t, x, y) = ϕ(t, ψ−1(y))

where ψ−1(y) is the unique preimage of y in Bρ(0).
Theorem 1 of [DGM77] states that for all y ∈ Bρ(x) one has

qKρ (t, x, y) ≤ qρ(t, x, y)

where qρ(t, x, ·) is the probability density of the time t of Brownian motion on M started
at x and killed upon first exit from the ball of radius ρ centered at x.

Also one has qρ(t, x, y) ≤ q(t, x, y) since the probability of Brownian motion on M
going from x to a small neighborhood of y in time t diminishes if one demands that it
never exit the ball of radius ρ centered at x before that. Therefore one has

qKρ (t, x, y) ≤ q(t, x, y)

for all y ∈ Bρ(x).
Define ετ (x) by the equation

ετ (x) =
∫

Bρ(x)

min(qKρ (τ, x, y), qKρ (2τ, x, y))dy.

Let ω be the Euclidean volume form on Bρ and λ(p)ω be the pullback of the volume
form of M under ψ. Since the sectional curvature of M is bounded from above by K by
[Pet06, Theorem 27] one has λ(p) ≥ sin(

√
Kr)d−1 for all p at distance r from 0 in Bρ.

Since ετ (x) can be calculated by integrating a fixed positive function on Bρ with respect
to the form λ(p)ω one obtains that ετ = inf{ετ (x), x ∈M} is positive.

Since q(τ, x, ·) ≥ qKρ (τ, x, ·) and q(2τ, x, ·) ≥ qKρ (2τ, x, ·) one obtains the following∫
|q(τ, x, y)−q(2τ, x, y)|dy ≤

∫
q(τ, x, y)+q(2τ, x, y)−min(q(τ, x, y), q(2τ, x, y))dy ≤ 2−ετ .

From this it follows for all t ≥ 0 that∫
|q(t+ 2τ, x, y)− q(t+ τ, x, y)|dy ≤

∫
|q(2τ, x, z)− q(τ, x, z)|q(t, z, y)dzdy ≤ 2− ετ

as claimed.
To conclude we observe that if u satisfies the backward equation and is bounded in

absolute value by 1 then one has

|u(t+ ε, x)− u(t, x)| = |
∫

(q(τ, x, y)− q(2τ, x, y))u(t+ 2τ, y)dy| ≤ 2− ετ

which concludes the proof.

As mentioned above one can prove Theorem 1.8 from the previous lemma using the
zero-two law. The proof below relies instead on the bijection between bounded tail mea-
surable functions and solutions to the backward equation (see Lemma 1.5).
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Proof of Theorem 1.8. Let vr(x) denote the volume of the ball of radius r centered at a
point x ∈ M . The lower curvature bound implies that vr is less than or equal to the
volume of a ball of radius r in hyperbolic space of constant curvature −K (see [Pet06,
Lemma 35]). In particular one has∫ +∞

1

r

log(vr)
dr = +∞

so that M is stochastically complete by [Gri09, Theorem 11.8].
Suppose that Brownian motion on M is not steady. Then one can find a non-trivial

non-invariant (even up to modifications on null-sets with respect to the harmonic measure
class) tail set A and τ > 0 such that B = shiftτ (A) is disjoint from A. It follows from
Lemma 1.2 that B is also non-trivial.

Consider the tail function defined by f(ω) = 1A(ω) − 1B(ω). By Lemma 1.5 there
exists a bounded solution u to the backward equation such that f = fu. By Lemma 1.6
one knows that u is bounded by 1 in absolute value almost eveywhere and by continuity
of u this holds everywhere.

Notice that for almost every ω with respect to the harmonic measure class one has:

lim
t→+∞

u(t, ωt) = f(ω)

and
lim

t→+∞
u(t− τ, ωt) = lim

t→+∞
u(t, ωt+τ ) = f(shiftτ (ω)).

In particular by choosing such a generic path in B one obtains that there exists ω ∈ Ω
such that

lim
t→+∞

u(t, ωt) = −1

and
lim

t→+∞
u(t− τ, ωt) = 1.

This implies that there exist values of t and x such that u(t−τ, x)−u(t, x) is arbitrarily
close to 2, contradicting Lemma 1.9.

1.4 Mutual information

SupposeM is a stochastically complete manifold whose Brownian motion satisfies the zero-
one law. Then given x ∈M , A ∈ Ft and B ∈ F∞ one has that A and B are independent
under Px i.e. Px(A ∩ B) = Px(A)Px(B). The converse is also true, i.e. if each tail event
B is independent from the events in Ft for all t then the Brownian motion on M satisfies
the zero-one law (Proof: As in the proof of the classical zero-one law, one approximates
B by events in Ft to show that it is independent from itself and hence trivial).

A, perhaps convoluted, but useful way of rephrasing this is the following: Consider
the function ω 7→ (ω, ω) from Ω to Ω× Ω. Since this function is continuous one can push
forward Px to obtain a probability P̂x on Ω × Ω. The measure P̂x describes the joint
distribution of two copies of the same Brownian motion on M . On the other hand the
probability Px×Px on Ω×Ω describes the joint distribution of two independent Brownian
motions on M starting at x. The two probabilities P̂x and Px × Px are very different
(e.g. they are mutually singular). However, assuming the zero-one law is satisfied, if one
restricts them both to the σ-algebra σ (Ft ×F∞) generated by sets of the form A × B
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with A ∈ Ft and B ∈ F∞ then they coincide. In fact, Brownian motion on M satisfies
the zero-one law if and only if P̂x and Px × Px coincide when restricted to σ (Ft ×F∞)
for all t ≥ 0.

The mutual information between two random variables is a non-negative number which
is zero if and only if they are independent. Given a σ-algebra F of Borel sets in Ω one may
consider the identity map ω 7→ ω as a random variable from Ω endowed with the Borel
σ-algebra to Ω endowed with F , and hence one may define mutual information between
σ-algebras.

Concretely, given x ∈M we define the mutual information between Ft and FT (where
0 ≤ t ≤ T and possibly T =∞) under Px as

Ix
(
Ft,FT

)
= sup

{
n∑
i=1

log
(

P̂x(Ai)
Px × Px(Ai)

)
P̂x(Ai)

}

where the supremum is taken over all finite partitions A1, . . . , An of Ω × Ω with each Ai
belonging to σ

(
Ft ×FT

)
. One may interpret the result as a measure of how much the

behavior of Brownian motion after time T (or the tail behavior if T = ∞) depends on
what happened before time t.

The fact that Ix
(
Ft,FT

)
is always non-negative and is zero if and only if P̂x and

Px × Px coincide on σ
(
Ft ×FT

)
follows from Jensen’s inequality applied to the strictly

convex function − log (see [Gra11, Lemma 3.1] for details).
Mutual information was used to unify results about random walks on discrete and

continuous groups by Derriennic, in particular he established several results analogous to
the Theorem below in that context (e.g. see [Der85, Section III]). In the case of a manifold
with a compact quotient under isometries similar results to those below where established
by Varopoulos (see [Var86, Part I.5]). Results of this type where also announced by
Kaimanovich both in the case when M has a compact quotient and when M is a generic
leaf of a compact foliation (e.g. [Kăı86, Theorem 2] and [Kăı88, Lemma 1]). In the context
of discrete time Markov chain similar results are discussed in detail in [Kai92, Section 3].

Theorem 1.10. Let M be a complete connected and stochastically complete Rieman-
nian manifold. Then Brownian motion on M satisfies the zero-one law if and only if
Ix (Ft,F∞) = 0 for some t > 0 and x ∈ M . Furthermore, the following properties hold
for all x ∈M and 0 < t ≤ T <∞:

1. Ix(Ft,FT ) =
∫

log
(
q(T−t,x1,x2)
q(T,x,x2)

)
q(t, x, x1)q(T − t, x1, x2)dx1dx2.

2. The function T 7→ Ix
(
Ft,FT

)
is non-increasing and satisfies the inequality Ix (Ft,F∞) ≤

lim
T→+∞

Ix
(
Ft,FT

)
with equality if some Ix

(
Ft,FT

)
is finite.

Proof. If Brownian motion on M satisfies the zero-one law then Ft is independent from
F∞ under Px for all x and therefore Ix (Ft,F∞) = 0.

Assume now that there is some x ∈ M with Ix (Ft,F∞) = 0 and fix B ∈ F∞. We
must show that Px(B) is either 0 or 1.

For this purpose fix s < t and and an open subset U of M and notice that

Px(ωs ∈ U, ω ∈ B) =
∫
U

q(s, x, y)P(s,y)(B)dy.
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On the other hand by hypothesis the above is also equal to

Px(ωs ∈ U)Px(B) =
∫
U

q(s, x, y)Px(B)dy

from which one obtains that
P(s,y)(B) = Px(B)

for almost all y ∈ M . Since u(s, y) = P(s,y)(B) is a solution to the backward equation it
must be constant and equal to Px(B) for all s and y.

Consider now the set of paths where with ωti ∈ Ai for all i = 1, . . . , n where t1 < · · · <
tn and the Ai are Borel subsets of M . One may calculate using the above to obtain

Px (A ∩B) =
∫

A1×···×An

q(t1, x, x1) · · · q(tn − tn−1, xn−1, xn)P(tn,xn)(B)dy

= Px(A)Px(B)

so that B is independent from all events A of this form. Since B may be approximated
with respect to Px by finite disjoint unions of events of the form A above this shows that
B is independent from itself and hence has probability equal to 0 or 1 as claimed.

We will now establish the integral formula for Ix
(
Ft,FT

)
(property 1 above).

The so-called Gelfand-Yaglom-Perez Theorem (see [Pin64, Theorem 2.1.2] and the
translator’s notes on page 23 or [Gra11, Lemma 7.4] for further detail) implies that

Ix
(
Ft,FT

)
=
∫
fT (ω1, ω2) log(fT (ω1, ω2))d(Px × Px)(ω1, ω2)

where fT is the Radon-Nikodym derivative of P̂x restricted to σ
(
Ft,FT

)
with respect to

Px × Px restricted to the same σ-algebra. The formula then follows by substituting the
explicit formula for fT that we will establish below in Lemma 1.11. Notice that, because
x 7→ x log(x) is bounded from below, the integral formula always makes sense regardless
of convergence considerations, but may assume the value +∞.

We will now prove property 2 of the statement.
To begin notice that when T increases the set of partitions used to define Ix

(
Ft,FT

)
decreases, hence the supremum taken over all such partitions decreases as well. This
implies that T 7→ Ix

(
Ft,FT

)
is decreasing and also that

Ix (Ft,F∞) ≤ lim
T→+∞

Ix
(
Ft,FT

)
.

Now assume that Ix(Ft,FT0) is finite and set f = fT0 . Notice that by definition of the
Radon-Nikodym derivative one has

P̂x(A) =
∫
A

f(ω1, ω2)d(Px × Px)(ω1, ω2)

for all A ∈ σ(Ft,FT0). In particular the same equation is valid for all A in σ(Ft,FT ) if
T > T0. This implies that whenever T > T0 the function fT coincides with the conditional
expectation of f to the σ-algebra σ(Ft,FT ) with respect to Px×Px. Hence fT is a reverse
martingale (all statements of this type are relative to the measure Px × Px from now on)
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when T → +∞ and converges almost surely to f∞ which is the Radon-Nikodym derivative
of P̂x with respect to Px × Px on σ(Ft,F∞) (see [Doo01, pg. 483]).

It follows that fT log(fT ) converges almost surely to f∞ log(f∞) when T goes to +∞
and it remains to show only that these functions are uniformly integrable in order to obtain
that

lim
T→+∞

∫
fT log(fT )d(Px × Px) =

∫
f∞ log(f∞)d(Px × Px)

and conclude (by the Gelfand-Yaglom-Perez Theorem as above) that

lim
T→+∞

Ix(Ft,FT ) = Ix(Ft,F∞)

as claimed.
To simplify notation set ϕ(x) = x log(x) and GT = σ(Ft × FT ) (including the case

T = ∞), and denote integration and conditional expectation with respect to Px × Px by
E. We notice that x 7→ ϕ(x) is convex and always larger than or equal to −e−1 on x ≥ 0.

Setting g = ϕ(f) and gT = ϕ(fT ) one has by Jensen’s inequality

−e−1 ≤ gT = ϕ(fT ) = ϕ (E (f |GT )) ≤ E (ϕ(f)|GT ) .

By the reverse martingale convergence theorem (see [Doo01, pg. 483]) the right hand
side converges in L1 to E (ϕ(f)|G∞). From this it follows that the functions gT are uni-
formly integrable which concludes the proof of claim 2.

We now establish the result on the Radon-Nikodym derivative of P̂x with respect to
Px × Px which was used in the previous proof (see also [Var86, pg. 354]).

Lemma 1.11. Let M be a complete connected and stochastically complete Riemannian
manifold. Then for all x and 0 < t < T < +∞ the measure P̂x restricted to σ

(
Ft ×FT

)
is absolutely continuous with respect to Px × Px restricted to the same σ-algebra and the
corresponding Radon-Nikodym derivative is given by

fT (ω1, ω2) = q(T − t, ω1
t , ω

2
T )

q(T, ω1
0, ω

2
T )

.

Proof. Consider two subsets of Ω defined by

A = {ω ∈ Ω : ωs1 ∈ A1, . . . , ωsm ∈ Am}

B = {ω ∈ Ω : ωt1 ∈ B1, . . . , ωtn ∈ Bn}

where s1 < · · · < sm = t, T = t1 < · · · tn, and the sets Ai and Bj are Borel subsets of M .
By direct calculation using the definition of fT we obtain that∫

A×B

fT (ω1, ω2)dPx × Px(ω1, ω2) =
∫

A×B

q(T − t, ω1
t , ω

2
T )

q(T, ω1
0, ω

2
T )

dPx(ω1)dPx(ω2).

The right hand side coincides (via the definition of Px) with the integral over A1 ×
· · ·Am ×B1 × · · · ×Bn of

q(T − t, xm, y1)
q(T, x, y1) q(s1, x, x1) · · · q(sm − sm−1, xm−1, xm)q(t1, x, y1) · · · q(tn − tn−1, xn−1, xn)
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which after cancellation yields

Px(ωs1 ∈ A1, . . . , ωsm ∈ Am, ωt1 ∈ B1, . . . , ωtn ∈ Bn).

This last probability is seen to be equal to P̂x(A×B) by definition of P̂x.
Hence we have established that the integral of fT with respect to Px × Px over any

set of the form A × B as above is P̂x(A × B). Since any set in G = σ(Ft × FT ) can
be approximated by finite disjoint unions of such sets we have that the integral of fT
on any set of this σ-algebra with respect to Px × Px is equal to the probability of the
set with respect to P̂x. As fT is G-measurable this implies that fT is (a version of) the
Radon-Nikodym derivative of Px with respect to Px × Px on G as claimed.



Chapter 2

Entropy of stationary random
manifolds

Introduction

In this chapter we introduce the notion of a stationary random manifold, which is a random
Riemannian manifold with basepoint whose distribution is invariant under re-rooting by
moving the basepoint a fixed time along a Brownian motion. The typical examples of
stationary random manifolds are the following:

1. A single manifold with basepoint whose isometry group is transitive (e.g. a Lie group
with a left invariant Riemannian metric).

2. A manifold M admitting a compact quotient with a random basepoint whose distri-
bution is uniform on a fundamental domain.

3. The leaf of a random point in a foliation whose distribution is a harmonic measure
in the sense of Lucy Garnett (see [Gar83]).

The point of the definition is that theorems for the above three special cases of man-
ifolds can be dealt with in a uniform way. Our definition is analogous to the concept of
a ‘stationary random graph’ of Benjamini and Curien (see [BC12]), which simultaneously
generalizes and includes known results about random walks on discrete groups (see [Ave74]
and [KV83]) and graphs with transitive isomorphism groups (see [KW02]).

We study three asymptotic quantities associated to stationary random manifolds: lin-
ear drift, which measures the mean displacement of Brownian motion from the origin per
unit of time; entropy which measures the growth of differential entropy of the distribution
of Brownian motion relative to the Riemannian volume measure; and volume growth which
measures the exponential growth rate of the volume of balls in terms of their radii. All
these quantities have been previously studied in different contexts, for example the linear
drift of group random walks was studied by Guivarc’h (see [Gui80]), entropy of group
random walks appears in the work of Avez (see [Ave74]), and the entropy of Riemannian
manifolds was first defined by Kaimanovich (see [Kăı86]).

We show (see Theorem 2.11) that the entropy of a stationary random manifold is
zero if and only if this manifold is almost surely Liouville, this result was announced by
Kaimanovich in the case of manifolds with a compact quotient (see [Kăı86]) and generic
leaves with respect to a harmonic measure in a foliation (see [Kăı88]).
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Our main result (see Theorem 2.15) is that the following inequalities hold for ergodic
stationary random manifolds

1
2`(M)2 ≤ h(M) ≤ `(M)v(M)

where `(M), h(M) and v(M) are the drift, entropy, and volume growth respectively.
As a toy case is obtained by settingM constant equal to the Euclidean plane (with any

fixed basepoint) one has that volume growth is subexponential (i.e. v(M) = 0) and hence
entropy is zero. This implies that there are no non-constant bounded harmonic functions
on the Euclidean plane, i.e. Liouville’s theorem.

The same proof works for manifolds with a transitive isometry group. We obtain Avez’s
theorem which states that if such a manifold has subexponential volume growth then it
satisfies the Liouville property (see [Ave74]).

For manifolds admitting a compact quotient one obtains the same result, i.e. subexpo-
nential volume growth implies the Liouville property. This was proved by Varopoulos (see
[Var86]) and announced by Kaimanovich among a wealth of other results (see [Kăı86]). In
particular Kaimanovich announced that the upper inequality h(M) ≤ `(M)v(M) held in
this context (for group random walks this is essentially contained in the work of Guivarc’h,
[Gui80]).

One might conjecture that all Riemannian manifolds with subexponential volume
growth are Liouville. The counterexample given by R2 with the metric ds2 = dx2 +
(1 +x2)2dy2 (which admits the harmonic function arctan(x)) was attributed to O. Chung
(possibly Lung Ock Chung?) by Avez.

Even though they do not necessarily admit a compact quotient, generic leaves of a
compact foliation are recurrent and therefore their Riemannian metric has a loosely re-
peating pattern (we might say that the metric is quasi-periodic and that if a compact
quotient exists it is exactly periodic). It was announced by Kaimanovich in [Kăı88] that
this recurrence is enough to show that if almost every leaf has subexpontial volume growth
then almost every leaf is Liouville. Our result also implies this as a corollary.

The sharper lower bound for entropy 2`(M)2 ≤ h(M) was proved by Kaimanovich in
the case of negatively curved manifolds admitting a compact quotient, and this was later
generalized to any manifold admitting a compact quotient by Ledrappier (see [Kăı86,
Theorem 10] and [Led10, Theorem A]). We will prove this inequality for a special type of
stationary manifold in the next chapter (see 3.23).

The consequence that linear drift is positive if and only if entropy is, was established by
Ledrappier and Karlsson in the case of a manifold with a compact quotient (see [KL07]).

To conclude we point out some of the main technical difficulties which distinguish the
theory of stationary random manifolds from that of stationary random graphs.

An initial problem is that, while a Polish space of isometry classes of graphs is relatively
easy to define, an analogous definition for a space of manifolds does not come so easily.
For this purpose we use the idea of the Gromov space, a space whose points correspond
to isometry classes of proper pointed metric spaces, which was introduced to the study of
foliations in the work of Álvarez and Candel (see [ÁC03]). In order to show the the leaf
of a random point in a foliation yields an example of a stationary random manifold we
are lead to study the regularity properties of the leaf function establishing measurability
in Lemma 2.8 and semicontinuity in the second part of the thesis (see Theorem 4.3).

Once this approach is adopted one must overcome the fact that convergence on the
Gromov space is essentially a C0 notion but one is interested in quantities such as the
heat kernel which depend on derivatives of the Riemannian metric. We bridge this gap
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by restricting ourselves to subspaces of the Gromov space consisting of manifolds with
‘uniformly bounded geometry’ (see Theorem 2.4). On these subspaces one may use com-
pactness theorems (in particular we use [Pet06, Theorem 72]) to show that convergence
on the Gromov space is equivalent to higher order ‘smooth convergence’. We can then use
the continuous dependence of the heat kernel under smooth convergence (see [Lu12]) to
establish the existence of harmonic measures and the necessary regularity of the quantities
used to define linear drift and entropy.

2.1 The Gromov space and harmonic measures

2.1.1 The Gromov space

In this subsection we construct a model of ‘the Gromov space’ which is a complete separable
metric space whose points represent the isometry classes of all proper (i.e. closed balls are
compact) pointed metric spaces. The topology on the Gromov space is that of pointed
Gromov-Hausdorff convergence (see [BBI01, Chapter 8]).

Our main point is that one can construct the Gromov space using well defined sets
(i.e. avoiding use of ‘the set of all metric spaces’) and without using the axiom of choice
(see [BBI01, Remark 7.2.5] and the paragraph preceding it). We will later be interested
in certain probability measures on the Gromov space.

A sequence of pointed metric spaces (Xn, on) (here on is the basepoint of the space
which we will sometimes abuse notation by omitting; also, we use d to denote the distance
on different metric spaces simultaneously) is said to converge in the pointed Gromov-
Hausdorff sense to a pointed metric space (X, o) if for each r > 0 and ε > 0 there exists n0
and for all n > n0 a function fn : Br(on)→ X (we use Br(x) to denote the ball of radius
r centered at x in a metric space) satisfying the following three properties:

1. fn(on) = o

2. sup {|d(fn(x), fn(y))− d(x, y)| : x, y ∈ Br(on)} < ε

3. Br−ε(o) ⊂
⋃

x∈Br(on)
Bε(fn(x)).

Given two metric spaces X and Y we say a distance on the disjoint union X t Y is
admissible if it coincides with the given distance on X when restricted to X × X and
similarly for Y .

Following Gromov (see [Gro81, Section 6]) we metricize pointed Gromov-Hausdorff
convergence by defining the distance dGS(X1, X2) between two pointed metric spaces
(X1, o1) and (X2, o2) as the infimum of all ε ∈ (0, 1

2) such that there exists an ad-
missible distance d on the disjoint union X1 t X2 which satisfies the three inequalities
d(o1, o2) < ε, d(B1/ε(o1), X2) < ε, and d(X1, B1/ε(o2)) < ε; or 1

2 if no such admissible dis-
tance exists (this truncation is necessary in order for dGS to satisfy the triangle inequality
as noted by Gromov in the above-mentioned reference). The author is grateful to Jan
Cristina for the following proof (see [Cri08]).

Lemma 2.1. The distance dGS metricizes pointed Gromov-Hausdorff convergence.

Proof. If a sequence (Xn, on) converges to (X, o) then given δ > 0 and setting ε = δ/2
and r = 2/δ there exists for each sufficiently large n a function fn satisfying the three
properties in the definition above for r and ε.
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Using this one can define d : (Xn tX)2 → [0,+∞) so that it coincides with the given
distance on each Xi and satisfies

d(x, y) = d(y, x) = inf{d(x, x′) + δ + d(f(x′), y)}

for all x ∈ Xn and y ∈ X (where the infimum is over x′ ∈ Br(on)).
One verifies that d is a distance on Xn tX which shows that dGS(Xn, X) < δ.
For the converse statement suppose that dGS(Xn, X) < δ. Then setting ε = 2δ and

r = 1/δ there exists an admissible distance d on the disjoint union Xn t X satisfying
d(on, o) < δ, d(Br(on), X) < δ, and d(Xn, Br(o)) < δ.

Using this we define fn : Br(on) → X so that fn(on) = o and d(x, fn(x)) < δ for all
x ∈ Br(on). By the triangle inequality we obtain

|d(fn(x), fn(y))− d(x, y)| ≤ d(fn(x), x) + d(y, fn(y)) < ε.

Given y ∈ Br−ε(o) there exists x ∈ Xn with d(x, y) < δ. In particular d(on, x) <
d(on, o) + d(o, y) < r. Hence fn is defined at x and one has d(y, fn(x)) ≤ d(y, x) +
d(x, fn(x)) < ε. So we have established that

Br−ε(o) ⊂
⋃

x∈Br(on)
Bε(f(x))

which concludes the proof.

We now consider the set of finite pointed metric spaces of the form (X, o) where
X = {0, . . . , n} for some non-negative integer n and o = 0. Consider two such pointed
metric spaces to be equivalent if they are isometric via a basepoint preserving isometry
(each equivalence class has finitely many elements) and let FGS (read ‘finite Gromov
space’) be the set of all equivalence classes. One verifies that (FGS,dGS) is a separable
metric space.

Definition 2.2. We define the Gromov space (GS, dGS) as the metric completion of
(FGS,dGS).

With the above definition it follows immediately that the Gromov space is a complete
separable metric space with FGS as a dense subset. It remains to show that each of its
points ‘represents’ an isometry class of proper pointed metric spaces and that all such
classes are represented by some point.

Theorem 2.3. For each point p in GS there exists a unique (up to pointed isometry) proper
pointed metric space (X, o) with the property that all sequences (Xn, on) of representatives
of Cauchy sequences in FGS converging to p converge in the pointed Gromov-Hausdorff
sense to (X, o).

Furthermore, the thus defined correspondence between isometry classes of pointed proper
metric spaces and points in the Gromov space is bijective.

Proof. Consider a sequence (Xn, on) of finite metric spaces representing some Cauchy
sequence in FGS. By taking a subsequence we assume that the distance between Xn and
Xn+1 is less than 2−n for all n.

By definition there exists an adapted metric dn on Xn tXn+1 with the property that
dn(on, on+1) < 2−n and the ball of radius 2n centered at the basepoint of either half is at
distance less than 2−n from the other half.
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Let Y be the countable disjoint union of all Xn. We define a distance on Y by letting
d(x, y) in the case x ∈ Xn and y ∈ Xn+k be the infimum of

dn(x0, x1) + · · ·+ dn+k−1(xk−1, xk)

over all sequences of k elements with x = x0, . . . , xk = y and xi ∈ Xn+i for all i. The
other case is determined by symmetry.

Set X = Ŷ \Y and o = limn→+∞ on where Ŷ is the metric completion of Y . We claim
(X, o) is proper and is the limit of (Xn, on) in the pointed Gromov-Hausdorff sense. Once
this claim is established uniqueness of (X, o) up to pointed isometry is given by [BBI01,
Theorem 8.1.7]. And, since pointed Gromov-Hausdorff convergence is characterized by
dGS (see Lemma 2.1), the triangle inequality implies that (X, o) is also the limit of any
Cauchy sequence equivalent to the one determined by (Xn, on).

We will now establish the claim.
Fix r > 0 and let B be the closed ball of radius r centered at o in X. We must show

that B is compact.
For this purpose notice that for all n and all k ≥ 0 one has that ball of radius 2n−1

centered at on+k is at distance less than 2−(n−1) from Xn. If 2n−1 > r then one can
approximate any x by a sequence xk in Y with the property that eventually d(xk, onk) <
2n−1 (where one chooses nk so that xk ∈ Xnk). It follows that nk → +∞ (otherwise
infinitely many xk would belong to the same XN which is finite, and ultimately one
obtains that x ∈ XN ) and one obtains that the distance between B and Xn is less than
or equal to 2−(n−1) as well. In particular since Xn is finite this shows that B can be
covered by a finite number of balls of radius 2−(n−2). This establishes that B is compact
as claimed.

We have shown that each equivalence class of Cauchy sequences in Y determines a
unique isometry class of pointed proper metric spaces. Now let (X, o) be a pointed proper
metric space and for each n letXn = {on = xn,0, xn,1, . . . , xn,kn} be a finite subset of B2n(o)
which is 2−n-dense. There is a unique point pn ∈ FGS such that all of its representatives
are isometric to the pointed metric space (Xn, on). Since (Xn, on) converges in the pointed
Gromov-Hausdorff sense to (X, o) it follows that any sequence of such representatives
converges to (X, o) as well. From this one obtains that pn converges to some point p in GS
which represents the isometry class of (X, o). Hence the correspondence between points
in GS and isometry classes of pointed proper metric spaces is bijective, which concludes
the proof.

In view of the above theorem we will no longer distinguish between a point in GS and
a pointed proper metric spaces (X, o) in the isometry class represented by it.

2.1.2 Spaces of manifolds with uniformly bounded geometry

We say a complete connected Riemannian manifoldM has geometry bounded by (r, {Ck})
(where r is a positive radius and Ck is a sequence of positive constants indexed on k =
0, 1, . . .) if its injectivity radius is larger than or equal to r and one has

|∇kR| ≤ Ck
at all points, where R is the curvature tensor, ∇kR is its k-th covariant derivate, and the
tensor norm induced by the Riemannian metric is used on the left hand side.

We denote by M (d, r, {ck}) the subset of the Gromov space representing isome-
try classes of d-dimensional pointed Riemannian manifolds with geometry bounded by
(r, {ck}).
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Following [Pet06, 10.3.2] we say a sequence (Mn, on, gn) of pointed connected complete
Riemannian manifolds (here gn is the Riemannian metric an on the basepoint) converges
smoothly to a pointed connected complete Riemannian manifold (M,o, g) if for each r > 0
there exists an open set Ω ⊃ Br(o) and for n large enough a smooth pointed (i.e. fn(o) =
on) embedding fn : Ω → M such that the pullback metric f∗ngn converges smoothly to g
on compact subsets of Ω.

We will prove the following geometric result in the second part of the thesis (see
Theorem 4.11).

Theorem 2.4. LetM =M (d, r, {Ck}) for some choice of dimension d, radius r, and se-
quence Ck. ThenM is a compact subset of the Gromov space on which smooth convergence
is equivalent to convergence in the pointed Gromov-Hausdorff sense.

We will say a subset of the Gromov space ‘consists of manifolds with uniformly bounded
geometry’ if it is contained in some set of the formM (d, r, {Ck}). Elements of such subsets
are represented by triplets (M, oM , gM ) (oM being the basepoint and gM the Riemannian
metric). We usually write just M leaving the other two elements implicit and will refer to
them as oM and gM when needed.

Recall that a complete Riemannian manifoldM is said to be stochastically complete if
the integral of its heat kernel p(t, x, y) with respect to y equals 1 for all t > 0 and x ∈M .
We denote by q(t, x, y) = p(t/2, x, y) the transition probability density of Brownian motion
on such a manifold M . With this convention one has that q(t, x, y) is (2πt)−1/2e−(x−y)2/2t

on R and (2πt)−3/2e−t/2−d(x,y)2/2td(x, y)/ sinh(d(x, y)) on three dimensional hyperbolic
space (see [DM88, pg. 185]).

We will need the following uniform upper bound on the transition density q for mani-
folds with uniformly bounded geometry.

Theorem 2.5. LetM be a subset of the Gromov space consisting of n-dimensional man-
ifolds with uniformly bounded geometry. Then for each t0 > 0 and D > 2 there exist a
positive constant C such that the inequality

q(t, x, y) ≤ C exp
(
−d(x, y)2

Dt

)

hold for all t ≥ t0 and all pairs of points x, y belonging to any manifold M ofM.

Proof. The on diagonal bound given by Theorem 8 of [Cha84, pg. 198] (setting r =
√
t)

yields a constant c1 depending only on n such that any complete manifold of dimension n
satisfies

q(t, x, x) ≤ c1
vol(B√

t/2(x)) t
−n2 .

Because of the uniform bounds on curvature and injectivity radius one may bound the
volume of the ball of radius

√
t/2 from below uniformly on M by some multiple of tn/2

for small t and by a constant for large t.
Using this one obtains that

q(t, x, x) ≤ 1
γ(t)

for all t > 0 and all x in a manifold ofM where γ(t) is of the form

γ(t) = max(c2t
n, c3).
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One verifies that there exists c4 such that γ(t) ≤ γ(2t) ≤ c4γ(t) for all t > 0 after
which by Corollary 16.4 of [Gri09] one obtains that for each D > 2 there exist c5, c6 > 0
(depending onM) such that

q(t, x, y) ≤ c5
γ(c6t)

exp
(
−d(x, y)2

Dt

)

for all x, y ∈M , t > 0 and M ∈M.
Restricting to t ≥ t0 on obtains for each D > 2 a constant C such that

q(t, x, y) ≤ C exp
(
−d(x, y)2

Dt

)

for all x, y ∈M , t ≥ t0 and M ∈M, as claimed.

2.1.3 Harmonic measures

We say a probability measure µ on the Gromov space is harmonic if gives full measure
to some set M of manifolds with uniformly bounded geometry and is invariant under
re-rooting by Brownian motion, i.e. one has∫

f(M,o, g)dµ(M,o, g) =
∫
f(M,x, g)q(t, o, x)dxdµ(M,o, g)

for all t > 0 and all bounded measurable functions f :M→ R.
In order for the above equation to make sense one needs to know that the inner

integral on the right hand side is Borel measurable on the Gromov space. We prove this
in the following lemma together with further regularity properties which will be useful to
construct harmonic measures. The key point is that the heat kernel depends continuously
on the manifold in the smooth topology. This intuitive fact was used (for time-dependent
metrics) by Perelman in his proof of the geometrization conjecture after which it has
received careful treatment by several authors (see [Lu12] and the references therein). It
had also been previously used by Lucy Garnett to prove the existence of harmonic measures
on foliated spaces which we will consider in the next subsection (see [Gar83, Fact 1] and
[Can03]).

Lemma 2.6. LetM be a compact subset of the Gromov space consisting of manifolds of
uniformly bounded geometry and for each t > 0,r > 0 and each function f :M→ R define
P tf and P trf onM by

P trf(M,o, g) =
∫

Br(o)

f(M,x, g)q(t, o, x)dx

P tf(M,o, g) =
∫
M

f(M,x, g)q(t, o, x)dx.

Then the following properties hold:

1. If f is continuous then P trf is continuous.

2. If f is continuous then P trf converges uniformly to P tf when r → +∞. In particular,
P tf is continuous.
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3. If f is bounded and Borel measurable then P tf is also Borel measurable and satisfies
sup |P tf | ≤ sup |f |.

Proof. We begin by showing that if f is continuous then P trf is as well.
Consider a manifold (M, o, g) ∈ M and a sequence (Mn, on, gn) ∈ M converging to

it. By Theorem 2.4 the convergence is smooth so there exists an exhaustion Un of M by
precompact open sets and a sequence of diffeomorphisms ϕn : Un → Vn ⊂ Mn such that
ϕn(o) = on and the pullback metric ϕ∗ngn converges smoothly on compact subsets to g.

In this situation Theorem 2.1 of [Lu12] (applied in the case where the fields Xn and
the potentials Qn are equal to 0 and the metrics gn(τ) are constant with respect to τ)
guarantees that the sequence of pullbacks qn(t, o, x) = qMn(t, on, ϕ(x)) of the transition
probability densities of Brownian motion on each Mn converges uniformly on compact
subsets of [0,+∞)×M to a fundamental solution q̃(t, o, ·) of the heat equation (that fact
that we use ∆/2 instead of ∆ is clearly inessential) which satisfies∫

M

q̃(t, o, x)dx ≤ sup
{∫

Mn

qMn(t, on, x)dx
}

= 1.

By Theorem 4.1.5 [Hsu02] the transition density q(t, o, x) is the minimal fundamental
solution so one has q(t, o, x) ≤ q̃(t, o, x). Combined with the fact that the integral of both
kernels with respect to x is at most 1 and the

∫
q(t, o, x)dx = 1 one obtains q(t, o, x) =

q̃(t, o, x) so that qn(t, o, ·) converges uniformly on compact sets to q(t, o, ·).
Setting F (x) = f(M,x, g) and Fn(x) = f(Mn, ϕn(x), gn) and using the fact that f

is uniformly continuous (because M is compact) one obtains that Fn → F uniformly on
compact subsets of M .

Finally because the pullback metrics ϕ∗ngn converge smoothly to g, the Jacobian Jn of
ϕn converges uniformly to 1 on compact subsets and also the open sets Ωn = ϕ−1

n (Br(on))
converge in the Hausdorff distance to Br(o).

Combining these four facts (local uniform convergence of qn(t, o, ·) to q(t, o, ·), Fn to
F , Jn to 1, and Hausdorff convergence of Ωn to Br(o)) with the fact that f is bounded
one obtains

lim
n→+∞

P trf(Mn, on, gn) = lim
n→+∞

∫
Br(on)

q(t, on, x)f(Mn, x, gn)dx

= lim
n→+∞

∫
Ωn

qn(t, o, x)Fn(x)Jn(x)dx

= lim
n→+∞

∫
Br(o)

qn(t, o, x)Fn(x)Jn(x)dx

= lim
n→+∞

∫
Br(o)

q(t, o, x)F (x)dx

= lim
n→+∞

∫
Br(o)

q(t, o, x)f(M,x, g)dx

= P trf(M,o, g)

which implies that P trf is continuous as claimed.
We will now show that P trf converges uniformly to P tf when r → +∞ if f is contin-

uous.
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By Theorem 2.5 for each fixed t > 0 there exists a constant C such that

q(t, o, x) ≤ C exp
(
−d(o, x)2/C

)
for all manifolds (M,o, g) ∈ M and all x ∈ M . Furthermore by the Bishop comparison
theorem one may increase C above so that the volume of the ball of radius r is bounded
from above by exp(Cr).

Combining these two facts one obtains that

|(P tr − P t)f(M,o, g)| ≤
∫

d(o,x)>r

|f(M,x, g)|q(t, o, x)dx

≤ C sup |f |
∫

d(o,x)>r

exp
(
−d(o, x)2/C

)
dx

≤ C sup |f |
+∞∑
n=1

exp(−(nr)2/C + C(n+ 1)r)

≤ C sup |f |
+∞∑
n=1

exp(−(nr)2/C + C(n+ 1)r)

= C sup |f |ϕ(r)

where the last inequality is obtained by bounding the integral by the sum over anulii of
the form B(n+1)r(o)\Bnr(o) and the integral over each anulus by the maximum value time
the volume of the ball of radius (n+ 1)r.

As soon as r > 2C2 one has that C(n+1)r−n2r2/C is decreasing with respect to r for
all n ≥ 1. Hence ϕ(r)→ 0 when r → +∞ and one obtains that P trf converges uniformly
to P tf as claimed.

To conclude we will prove that P tf is Borel for all bounded Borel f and that it is
bounded in absolute value by sup |f |.

For this purpose consider for some C > 0 the family of functions F on M bounded
in absolute value by C and such that P tf is Borel measurable. We have shown that F
contains the continuous functions bounded in absolute value by C. By the dominated
convergence theorem it is closed by pointwise limits (this is because Borel functions are
the smallest class containing continuous functions and closed under pointwise limits, see
for example [Kec95, Theorem 11.6]). Therefore it contains all Borel measurable functions
bounded by C in absolute value. Since this works for all C one has that P tf is Borel
measurable for all bounded Borel measurable f . The claim sup |P tf | ≤ sup |f | follows
directly from the definition of P tf because one has

∫
q(t, x, y)dy = 1 on all manifolds in

M.

Here are three simple examples of harmonic measure:

1. The measure giving full mass to a single Riemannian manifold whose isometry group
acts transitively (e.g. a Lie group with a left invariant Riemannian metric) is har-
monic.

2. If (M, g) is a compact Riemannian manifold and x is a random point in M whose
distribution is given by normalized volume measure, then the distribution of (M,x, g)
is harmonic.
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3. Let (M, g) be a Riemannian manifold admitting a discrete group of isometries G
acting with a finite volume fundamental domain M0. If x is a random point in M0
whose distribution is given by normalized volume measure, then the distribution of
(M,x, g) is harmonic.

The following theorem implies that one can associate at least one harmonic measure to
each manifold of bounded geometry. By this we mean that if (M, g) has bounded geometry
then the closure in the Gromov space of the set of pointed manifolds of the form (M,x, g)
supports at least one harmonic measure. We will see other examples of harmonic measures
in the next subsection.

Theorem 2.7. IfM is a compact subset of the Gromov space consisting of manifolds with
uniformly bounded geometry then there exists at least one harmonic measure supported on
M.

Proof. For each probability µ onM and t > 0 define the measure P tµ onM using the Riesz
representation theorem and Lemma 2.6 in such way that for all continuous f : M → R
one has ∫

M
fdP tµ =

∫
M

P tfdµ.

The maps {P t : t ≥ 0} form a commuting family of linear maps which leave the convex
and weakly compact set of probability measures onM invariant. By the Markov-Kakutani
fixed point theorem there is a common fixed point for all the P t which must be a harmonic
measure.

2.1.4 Foliations and leaf functions

Harmonic measures on foliations were introduced by Lucy Garnett in [Gar81] (see also
[Gar83] and [Can03]). In this subsection we will explore how they relate to harmonic
measures on the Gromov space in the sense of our definition.

To begin we must fix a definition of foliation. There are several definitions in the
literature, the crucial feature for our purposes is that each leaf should be a Riemannian
manifold. An important example is given by the foliation defined by an integrable distri-
bution of tangent subspaces on a Riemannian manifold, in this case each leaf inherits a
Riemannian metric from the ambient space.

A d-dimensional foliation is a metric space X partitioned into disjoint subsets called
leaves. Each leaf is a continuously and injectively immersed d-dimensional connected com-
plete Riemannian manifold. Furthermore, for each x ∈ X there is an open neighborhood
U , a Polish space T , and a homeomorphism h : Rd×T → U with the following properties:

1. For each t ∈ T the map x 7→ h(x, t) is a smooth injective immersion of Rd into a
single leaf.

2. For each t ∈ T let gt be the metric on Rd obtained by pullback under x 7→ h(x, t)
of the corresponding leaf’s metric. If a sequence tn converges to t ∈ T then the
Riemannian metrics gtn converge smoothly on compact sets to gt.

As part of a program to study the geometry of topologically generic leaves Álvarez and
Candel introduced the ‘leaf function’ which is a natural function into the Gromov space
associated to each foliation X (see [ÁC03]). It is defined as the function mapping each
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point x in the foliation to the leaf L(x) containing it considered as a pointed Riemannian
manifold with basepoint x.

We will now establish that the leaf function is Borel measurable. We do this by using
a result of Solovay for which we must assume the existence of an inaccessible cardinal.
The author believes a more direct proof without this assumption is attainable in the same
vein as Theorem 4.3 of the second section where semicontinuity of the leaf function is
established and related to Reeb type stability results.

Lemma 2.8. Let X be a compact foliation and L its leaf function. Then the following
holds:

1. L takes values in a compact subset of the Gromov space consisting of manifolds with
uniformly bounded geometry.

2. L is measurable with respect to the completion of the Borel σ-algebra with respect to
any probability measure on X.

Proof. We will prove the the first claim in the second section of this thesis, see Theorem
4.1.

To establish the second claim suppose X is a compact foliation, µ is a probability on
X and there exists an open set U in the Gromov space such that L−1 is not µ-measurable
(where L is the leaf function of X).

By [dlR93, Théorème 4-3] (see also [Roh52]) there exists a full measure set X ′ ⊂ X
and a bi-measurable bijection f : X ′ → R such that f(X ′) = [0,m0] t C where m0 ≥ 0
and C is a countable subset of R disjoint form [0,m0], such that f∗µ equals the sum of
Lebesgue measure on [0,m0] with a probability measure on C.

If follows that f(L−1(U)) is not Lebesgue measurable. And we have therefore con-
structed a non-Lebesgue measurable subset of R without using the axiom of choice.

Assuming the existence of an inaccessible cardinal this is not possible due to [Sol70,
Theorem 1].

A probability measure m on a foliation X is said to be harmonic (see [Gar83, Fact 4])
if it satisfies ∫

f(x)dm(x) =
∫
q(t, x, y)f(y)dydm(x)

for all bounded measurable functions f : X → R.
Every compact foliation admits at least one harmonic measure (see [Gar83] and [Can03]).

The following theorem implies that any result which establishes properties of generic man-
ifolds for harmonic measures on the Gromov space immediately implies a similar result
for generic leaves of compact foliations.

Theorem 2.9. Let X be a compact foliation with leaf function L and m a harmonic
measure on X. Then the push-forward measure L∗m is harmonic measure on the Gromov
space.

Proof. Let M be a compact set of the Gromov space containing the image of L and
consisting of manifolds with uniformly bounded geometry. If f :M→ R is bounded and
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measurable then by definition of L∗m and harmonicity of m one has∫
M

∫
L(x)

q(t, x, y)f(M,y, g)dydL∗m(M,x, g)

=
∫
X

∫
L(x)

q(t, x, y)f ◦ L(y)dydm(x)

=
∫
X

f ◦ L(x)dm(x) =
∫
M

f(M,x, g)dL∗m(M,x, g)

so L∗m is harmonic as claimed.

2.2 Asymptotics of random manifolds

2.2.1 Stationary random manifolds

We define a stationary random manifold to be a random element of the Gromov space
whose distribution is a harmonic measure. A typical example is obtained as follows: let X
be a compact foliation and m a harmonic measure on X, the leaf function L : X → GS is a
stationary random manifold defined on (X,m) (see 2.9). As noted in the previous section if
a bounded geometry manifold (M, g) admits a finite volume quotient under isometries and
one takes a random point o in a fundamental domain of this action distributed according
to the normalized volume measure then (M,o, g) is a stationary random manifold. This
poses the following question:

Question 2.1 (Andrés Sambarino). Let (M, g) be a bounded geometry manifold and
suppose there exists a random point o of M such that (M, o, g) is stationary. Does it
follow that M admits a finite volume quotient by isometries?

We will next introduce and study several asymptotic quantities associated to each
stationary random manifold M .

2.2.2 Entropy

We introduce an asymptotic quantity ‘Kaimanovich entropy’ associated to each station-
ary random manifold which measures the asymptotic behavior of the differential entropy
between the time t distribution of Brownian motion and the Riemannian volume measure.
Several alternate definitions for this quantity in different contexts as well as theorems
and applications where announced in the interesting papers [Kăı86] and [Kăı88]. For the
case of manifolds with a compact quotient some of these properties (e.g. the so-called
Shannon-McMillan-Breiman type theorem) were later proved in [Led96].

The main point is that Kaimanovich entropy relates directly to the mutual informa-
tion between σ-algebras Ft and FT for Brownian motion. This allows one to show that
Kaimanovich entropy is zero if and only if the random manifold satisfies the Liouville
property almost surely. Later on we will will relate entropy to other asymptotic quanti-
ties.

The following technical lemma sets the basis for our study.

Lemma 2.10. Let M be a compact subset of the Gromov space consisting of manifolds
with uniformly bounded geometry. The following function is finite and continuous with



2.2. Asymptotics of random manifolds 45

respect to t > 0 and M ∈M:

ht(M) = −
∫
M

q(t, oM , x) log(q(t, oM , x))dx,

ITt (M) =
∫

M×M

log
(
q(T − t, x, y)
q(T, oM , y)

)
q(t, oM , x)q(T − t, x, y)dxdy.

Also, the following formula holds (where P t is defined by Lemma 2.6):

ITt (M) = hT (M)− (P thT−t)(M).

Proof. The proof is similar to that of Lemma 2.6. We define

hrt (M) = −
∫
Br(oM )

q(t, oM , x) log(q(t, oM , x))dx

with the purpose of showing that hrt is continuous and converges uniformly to ht on M
when r → +∞.

AssumeM consists of n-dimensional manifolds with curvature greater than−k2 and let
K(t, r) be the heat kernel at time t between two points at distance r in the n dimensional
hyperbolic plane with constant curvature −k2. Then by Theorem 2.2 of [Ich88] one has
q(t, oM , x) ≥ K(t, d(oM , x)) for all M ∈ M. From [DM88, Theorem 3.1] one obtains that
log(K(t, r)) is bounded from below by a polynomial f in r on any compact interval of
positive times.

On the other hand by Theorem 2.5 for each compact interval of times there exists
C > 0 such that one has q(t, oM , x) ≤ Ce−d(oM ,x)2/3t on all M ofM.

Combining these facts yields

− log(C) ≤ − log(q(t, oM , x)) ≤ f(d(oM , x))

for all M ∈M.
By Bishop’s volume comparison theorem the volume of the ball of radius r in any

manifold ofM is bounded by that in n-dimensional hyperbolic space with curvature −k2.
Hence one has an upper bound for volume of the form vol(Br(oM )) ≤ exp(Cr) (notice
that the previous inequality remains valid if one increases C so there is no problem in
using the same constant for both bounds).

Similarly to the proof of Lemma 2.6 one obtains for each r a positive constant ε(r)
which decreases to 0 as r → +∞ such that

|ht(M)− hrt (M)| ≤
∫

M\Br(oM )

q(t, oN , x)| log(q(t, oM , x))|dy ≤ ε(r)

for all manifolds inM.
Hence ht(M) is the uniform limit on M of hrt (M) when r → +∞ and it suffices to

establish continuity of the later.
Before doing that we establish continuity with respect to t of ht. Given M ∈ M,

ε > 0 and t > 0, one can find r > 0 such that |hs − hrs| < ε/3 for all s in a compact
neighborhood of t (notice that our bounds were obtained uniformly on such intervals).
Since q(t, oM , x) is continuous with respect to t and x one has that q(s, oM , ·) converges
uniformly to q(t, oM , ·) on Br(oM ) when s → t. Hence hrs(M) → hrt (M). Combining the
two facts one obtains that there exists a neighborhood of t on which

|hs(M)− ht(M)| ≤ |hs(M)− hrs(M)|+ |hrs(M)− hrt (M)|+ |hrt (M)− ht(M)| < ε
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which yields continuity of ht with respect to t as claimed.
We now establish continuity of hrt (M) with respect to M . Assume the sequence

(Mn, on, g) in M converges to (M,o, g). By Theorem 2.4 convergence is smooth so that
there exists an exhaustion Un of M by precompact open sets and a sequence of diffeomor-
phisms ϕn : Un → Vn ⊂Mn such that ϕn(o) = on and the pullback metric ϕ∗ngn converges
smoothly on compact subsets to g.

From this it follows that the Jacobian J(x) of ϕn at x converges to 1 uniformly on
compact sets. And by the results of [Lu12] the functions qn(t, o, x) = qMn(t, on, ϕn(x))
(qMn being the transition density of Brownian motion on Mn) converge uniformly on
compact sets to the transition density q(t, o, x) of Brownian motion on M . Using this the
continuity of hrt (M) follows as claimed.

We will establish the formula ITt = hT −P thT−t, from this the continuity of ITt follows
from that of hT and hT−t by Lemma 2.6. The proof is the following computation using
the property

∫
q(t, x, y)q(s, y, z)dy = q(t+ s, x, z) of the heat kernel:

ITt (M) =
∫

log
(
q(T − t, x, y)
q(T, o, y)

)
q(t, o, x)q(T − t, x, y)dxdy

=
∫

log (q(T − t, x, y)) q(t, o, x)q(T − t, x, y)dxdy

−
∫

log (q(T, o, y)) q(t, o, x)q(T − t, x, y)dxdy

= −
∫
q(t, o, x)hT−t(M,x, g)dx−

∫
log (q(T, o, y)) q(T, o, y)dy

= −P thT−t(M) + hT (M).

Recall that we say a Riemannian manifold is Liouville if it admits no non-constant
bounded harmonic functions.

Theorem 2.11. The following limit (Kaimanovich entropy) exists and is non-negative
for any stationary random manifold M :

h(M) = lim
t→+∞

E
(1
t
ht(M)

)
.

Furthermore, h(M) = 0 if and only if M is almost surely Liouville.

Proof. Let Ht = E(ht(M)) and notice that by dominated convergence it is continuous
with respect to t > 0, bounded by the maximum of ht onM, and by Lemma 2.10 one has

HT −HT−t = E(hT (M)− hT−t(M)) = E(hT (M)− P thT−t(M)) = E(ITt (M)).

The mutual information ITt is non-negative and decreases to I∞t (M) when T → +∞
(see Theorem 1.10 and preceding paragraphs). By the monotone convergence theorem it
follows that T 7→ HT −HT−t decreases to E(I∞t (M)) ≥ 0 when T → +∞. From this one
obtains that

h(M) = lim
T→+∞

E( 1
T
hT (M)) = E(1

t
I∞t (M))

for all t > 0.
If N is a manifold with bounded geometry then by Lemma 2.10 one has that ITt (N)

is finite. It follows from Theorem 1.10 that I∞t (N) = 0 for some t > 0 if and only if N is
Liouville. Hence h(M) = 0 if and only if M is almost surely Liouville as claimed.
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2.2.3 Linear Drift

Given a pointed bounded geometry manifold (M,o, g) we define by

`t(M) =
∫
d(o, x)q(t, o, x)dx

the mean displacement of Brownian motion starting at o from its starting point. We are
interested in the asymptotics of `t(M) when t → +∞ and M is a stationary random
manifold. In particular we introduce the linear drift of a random manifold M via the
following theorem.

Theorem 2.12. Let M be a stationary random manifold. Then the linear drift

`(M) = lim
t→+∞

E
(1
t
`t(M)

)
exists and is finite.

Proof. Suppose that M takes values in a set of manifolds M with uniformly bounded
geometry. We begin by establishing that `t(M) is continuous with respect to both M and
t.

If (Mn, on, gn) is a sequence inM converging to (M,o, g) then by Theorem 2.4 there
exists an exhaustion Un of M by relatively compact open sets and smooth embeddings
ϕn : Un →Mn with ϕn(o) = on such that ϕ∗ngn converges smoothly g on compact subsets
of M .

It follows that the Jacobian Jn of ϕn converges uniformly to 1 on compact sets and
dn(x) = d(on, ϕn(x)) converges uniformly on compact sets to d(o, x). Also, by Theorem
2.1 of [Lu12], one has that qn(t, x) = q(t, on, ϕn(x)) converges uniformly on compact sets
to q(t, o, x).

Combining these facts one obtains that for each r > 0

`rt (M) =
∫

Br(o)

q(t, o, x)d(o, x)dx

depends continuously on (M, o, g) ∈M.
Let A,B > 0 be given by Lemma 2.14 below. By Jensen’s inequality one has for all

M ∈M that

(
`(M)− `Att (M)

)2
=

 ∫
M\BAt(o)

q(t, o, x)d(o, x)dx


2

≤
∫

M\BAt(o)

q(t, o, x)d(o, x)2dx ≤ Be−Att2

which establishes that `rt converges uniformly to `t onM when r → +∞ for all t ≥ 1. In
particular `t is continuous with respect to M onM for t ≥ 1 (in fact this is true for all t
but we will not need it).

To establish continuity with respect to t assume t, s > 1 and notice that using Lemma
2.14 as above one obtains that for all T > max(s, t) the integrals of both d(o, x)q(t, o, x)
and d(o, x)q(s, o, x) on BAT (o) are bounded by Be−Att2. Combining this with the fact
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that if s → t then q(s, o, ·) converges uniformly on BAT (o) to q(t, o, ·) yields the desired
result.

It follows that if s→ t > 1 then `s(M) converges uniformly onM to `t(M) and hence

Lt = E(`t(M))

is continuous with respect to t ≥ 1.
We will now establish that Lt is subadditive, i.e. satisfies Lt+s ≤ Lt + Ls, from which

the existence of the finite limit limLt/t follows 1.
For this purpose we calculate using the triangle inequality

`t+s(M) =
∫
q(t+ s, o, x)d(o, x)dx

=
∫
q(t, o, y)q(s, y, x)d(o, x)dxdy

≤
∫
q(t, o, y)q(s, y, x)(d(o, y) + d(y, x))dxdy = `t(M) + P t`s(M)

which taking expectation yields the desired result.

Define `+(M) for a stationary random manifold M as the infimum of all L > 0 such
that

lim
t→+∞

E

 ∫
BLt(o)

q(t, o, x)dx

 = 1

we wish to guarantee that `(M) = `+(M).
However, a counterexample is given by a random manifold M which is equal to the

hyperbolic plane with constant curvature −1 or −2 each with probability 1/2. In this
example `(M) equals 1.5 but `+(M) equals 2. The problem arises because the distribution
of M is a convex combination of other harmonic measures (in this case Dirac deltas).
We say a harmonic measure on a compact set M of manifolds with uniformly bounded
geometry is ergodic if it is extremal among all harmonic measures on this set. A random
manifold is said to be ergodic if its distribution is.

Lemma 2.13. Let M be a stationary random manifold. Then `(M) ≤ `+(M). Further-
more, if M is ergodic then `(M) = `+(M).

Proof. Let A and B be given by Lemma 2.14. For any L > 0 one has

1
t
`t(M) ≤ L+A

∫
M\BLt(o)

q(t, o, x)dx+
∫

M\BAt(o)

d(o, x)
t

q(t, o, x)dx.

Using Jensen’s inequality and Lemma 2.14 one obtains that the third term is bounded
from above by

√
Be−At/2. This implies in particular that `+(M) ≤ A. If L > `+(M)

then the expectation of the second term goes to zero from which one obtains that `(M) ≤
`+(M).

Proof of the converse inequality will be postponed until the next chapter (see Corollary
3.7).

1. Notice that there exist subadditive functions St for which St/t has no limit. One such example can
be obtained by considering a Q-linear extension of the function defined for all rational a, b by Sa+b

√
2 =

a+ 2b
√

2. This shows that continuity of Lt is essential to the proof.
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The main result of [Ich88] is that one can compare the radial process of Brownian
motion on a Riemannian manifold with that of a model space with constant curvature.
Combining this result with upper bounds for the heat kernel yields the following technical
lemma which we have used in the proofs above.

Lemma 2.14. LetM be a compact subset of the Gromov space consisting manifolds with
uniformly bounded geometry. Then there exist constants A,B > 0 such that for each
Brownian motions Xt starting at the origin o of a manifold (M,o, g) inM one has

E
(
d(o,Xt)2

t2
1{d(o,Xt)>At}

)
≤ Be−At

for all t ≥ 1.

Proof. Let n denote the dimension of the manifolds inM and let −k2 be a lower bound
for their curvature.

Letting Yt be a Brownian motion starting at the origin of Rn endowed with a com-
plete metric of constant curvature −k2 one has by [Ich88, Theorem 2.1] that if Xt is any
Brownian motion starting at the origin of a manifold inM then

P(d(Y0, Yt) > x) ≥ P(d(X0, Xt) > x)

for all x.
Notice that if V,W are non-negative random variables with P(V > x) ≥ P(W > x)

for all x then E(V ) ≥ E(W ). In particular for any non-decreasing non-negative function
f one has E(f(V )) ≥ E(f(W )).

Applying this observation one obtains

E
(
d(Y0, Yt)2

t2
1{d(Y0,Yt)>At}

)
≥ E

(
d(X0, Xt)2

t2
1{d(X0,Xt)>At}

)
for all A > 0 and all t ≥ 0. So that it suffices to bound the expectation on the left hand
side.

Letting K(t, r) denote the probability transition density Brownian motion on the hy-
perbolic plane with constant curvature −k2. One has explicitly

E
(
d(Y0, Yt)1{d(Y0,Yt)>At}

)
=

+∞∫
At

r2

t2
vol(Sn−1) 1

k
sinh(kr)n−1K(t, r)dr,

where Sn−1 is the standard n− 1-dimensional sphere
By Theorem 2.5 there exists a constant C such that one has K(t, r) ≤ Ce−r2/3t for all

t ≥ 1. Applying this, and bounding sinh(r) by er, one obtains

E
(
d(Y0, Yt)1{d(Y0,Yt)>At}

)
≤ Cvol(Sn−1)

k

+∞∫
At

r2

t2
e(n−1)kr−r2/3tdr

which bounding e−r2/3t by e−Ar/3 and choosing A = 3nk yields

· · · ≤ Cvol(Sn−1)
kt2

+∞∫
At

r2e−rdr = Cvol(Sn−1)
kt2

(A2t2 + 2At+ 2)e−At

which, choosing B appropriately, yields the desired bound for t ≥ 1.
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2.2.4 Inequalities

For a manifold M with a compact quotient it can be shown that the limit

lim
r→+∞

1
r

log(vol(Br(x)))

exists and has the same value for all x ∈ M . If, for some Riemannian manifold possibly
without a compact quotient, this limit above is zero then we say M has subexponential
growth.

We define the volume growth of a stationary random manifold M as

v(M) = lim inf
r→+∞

E
(1
r

log(vol(Br(oM )))
)
.

By Bishop’s inequality one has a uniform exponential upper bound on the volume
of the ball of radius r on any set of manifolds with uniformly bounded geometry. This
implies by dominated convergence that M has subexponential growth almost surely then
v(M) = 0. On the other hand a uniform lower bound on volume is given by the fact
that M takes values in a space of manifolds with uniformly bounded geometry. Hence, by
Fatou’s Lemma one has that if v(M) = 0 then M satisfies

lim inf
r→+∞

1
r

log(vol(Br(oM ))) = 0

almost surely.
We will bound entropy of a stationary random manifold from above and below in terms

of its linear drift and volume growth. The upper bound was announced by Kaimanovich
in the case of manifolds with a compact quotient (see [Kăı86, Theorem 6]). A sharper
version of the lower bound, also for a manifolds with a compact quotient, was established
by Ledrappier (see [Led10]). Analogous results for random walks on discrete groups also
exist and have been sucessively improved by several authors, some of the first of these
can be attributed to Varopoulos, Carne, and Guivarc’h (see [GMM12] and the references
therein). An analogous theorem for stationary random graphs is due to Benjamini and
Curien (see [BC12, Proposition 3.6]).

Theorem 2.15. For all ergodic stationary random manifolds M the following holds:

1
2`(M)2 ≤ h(M) ≤ `(M)v(M).

Proof. We begin with the lower bound.
For this purpose fix D > 2 and let C be given by Theorem 2.5 so that

q(t, x, y) ≤ C exp
(
−d(x, y)2

Dt

)

holds on all manifolds in the range of M for all t ≥ 1.
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Using this upper bound and Jensen’s inequality we obtain
1
t
ht(M) = −1

t

∫
q(t, o, x) log(q(t, o, x))dx

≥ 1
t

∫
q(t, o, x)(d(o, x)2

Dt
− log(C))dx

=
∫
q(t, o, x)(d(o, x)√

Dt
)2dx− log(C)

t

≥
(∫

q(t, o, x)d(o, x)√
Dt

dx
)2
− log(C)

t

= 1
D

(1
t
`t(M))2 − log(C)

t
.

Taking expectation and using Jensen’s inequality once more one obtains

E(1
t
ht(M)) ≥ 1

D
E
(

(1
t
`t(M))2

)
− log(C)

t
≥ 1
D
E(1
t
`t(M))2 − log(C)

t

which by taking limit with t→ +∞ yields

h(M) ≥ 1
D
`(M)2.

Letting D decrease to 2 one obtains h(M) ≥ 1
2`(M)2 as claimed.

For the lower bound let K(t, r) be the transition density of Brownian motion on n-
dimensional hyperbolic space of constant curvature −k2 where we assume all manifolds in
the range of M have curvature greater than or equal to −k2 and dimension n. By [Ich88,
Theorem 2.2] one has

q(t, oM , x) ≥ K(t, d(oM , x))
which combined with the upper bound given by Theorem 2.5 yields

| log(q(t, oM , x))| ≤ max(log(C), log(K(t, d(oM , x)))

for some constant C > 0 depending only onM, and all t ≥ 1.
The density K(t, r) is obtained by evaluating the heat kernel of hyperbolic space (cur-

vature −1) at t/2 and r/k. Hence from the lower bounds for the hyperbolic heat kernel
given by [DM88, Theorem 3.1] one obtains constants a, b, c > 0 depending only onM such
that

| log(q(t, oM , x))| ≤ a+ b log(t) + c(t+ r + t/r)
for all t ≥ 1.

Let A,B be given by Lemma 2.14. We obtain uniformly over the range of M (setting
r(x) = d(oM , x)) that

1
t

∫
M\BAt

q(t, oM , x)| log(q(t, oM , x))|dx

≤ a

t
+ b log(t)

t
+ c

∫
M\BAt

q(t, oM , x)(1 + r(x)
t

+ r(x)2

t2
)dx

≤ a

t
+ b log(t)

t
+ c

∫
M\BAt

q(t, oM , x)(r(x)2

A2t2
+ r(x)2

At2
+ r(x)2

t2
)dx

≤ a

t
+ b log(t)

t
+ c(A−2 +A−1 +A)Be−At
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for all t ≥ 1.
This immediately implies (taking expectation and limit) that

h(M) = lim
t→+∞

E

−1
t

∫
BAt(oM )

q(t, oM , x) log(q(t, oM , x))dx

 .
The same upper bound on | log(q(t, oM , x)| can now be applied in the ball of radius At

(where r(x)/t can be bounded by A before integrating). One obtains that for any L ≤ A
letting Ut be the annulus between radii Lt and At centered at oM one has

1
t

∫
Ut

q(t, oM , x)| log(q(t, oM , x))|dx ≤ a

t
+ b log(t)

t
+ c(1 +A+A2)

∫
M\BLt(oM )

q(t, oM , x)dx

for all t ≥ 1.
Assuming L > `(M) this last inequality implies

h(M) = lim
t→+∞

E

−1
t

∫
BLt(oM )

q(t, oM , x) log(q(t, oM , x))dx

 .
To conclude notice that ϕ(z) = −z log(z) is convex on z > 0. Setting vt = vol(BLt(oM ))

and letting pt be the integral of q(t, oM , x) over x in BLt(oM ) one obtains using Jensen’s
inequality applied to normalized volume on the ball that

vt
1
vt

∫
BLt(oM )

ϕ(q(t, oM , x))dx ≤ vtϕ(pt/vt) = pt log(vt)− pt log(pt) ≤ log(vt).

Taking expectation now yields

h(M) ≤ lim inf
t→+∞

E
(1
t

log(vol(BLt(oM )))
)

= Lv(M)

for all L > `(M). Which letting L decrease to `(M) proves the claimed upper bound.

Recall that R2 endowed with the metric ds2 = dx2 + (1 + x2)2dy2 has subexponential
volume growth but admits the bounded harmonic function arctan(x) (this example was
attributed to O. Chung by Avez). Avez proved in 1976 that for manifolds with a transitive
isometry group such an example is impossible (see [Ave76]).

Corollary 2.16 (Avez). If (M, g) is a connected Riemannian manifold with subexponen-
tial volume growth whose isometry group acts transitively then M satisfies the Liouville
property.

A generalization of Avez’s result to manifolds admitting a compact quotient under
isometries was obtained by Varopolous (see [Var86, Theorem 3]).

Corollary 2.17 (Varopoulos). If (M, g) is a Riemannian manifold with subexponential
volume growth which admits a compact quotient under isometries then M satisfies the
Liouville property.
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An analogous result to the previous two for generic leaves of compact foliations (with
respect to any harmonic measure) was announced by Kaimanovich and also follows from
our theorem above (see Theorem 2 of [Kăı88] and the comments on page 307). A particular
interesting case is the horospheric foliation on the unit tangent bundle of a compact
negatively curved manifold.

Corollary 2.18 (Kaimanovich). If M is a negatively curved compact Riemannian mani-
fold then almost every horosphere with respect to any harmonic measure for the horospheric
foliation on the unit tangent bundle T 1M satisfies the Liouville property.

Another interesting consequence of Theorem 2.15 is that h(M) = 0 if and only if
`(M) = 0. The following case was established by Karlsson and Ledrappier using a dis-
cretization procedure to reduce the proof to an analysis of a random walk on a discrete
group (see [KL07]).

Corollary 2.19 (Karlsson-Ledrappier). Let (M, g) be a manifold with bounded geometry
that admits a compact quotient under isometries. Then the M satisfies the Liouville
property if and only if its Brownian motion is non-ballistic (i.e. linear drift is zero).

One might be tempted to conjecture that a stationary random manifold of exponential
growth must have non-constant bounded harmonic functions. A counterexample is pro-
vided by Thurston’s Sol-geometry (see [LS84, pg. 304] or consider the case with p = q = 1
and drift parameter a = 0 in the central limit theorem of [BSW12]).

Example 2.20 (Lyons-Sullivan). Let M = R3 endowed with the Riemannian metric
ds2 = e2zdx2 + e−2zdy2 + dz2. Then M has a transitive isometry group, exponential
volume growth, and satisfies the Liouville property.





Chapter 3

Brownian motion on stationary
random manifolds.

Introduction

In this chapter we construct Brownian motion on a stationary random manifold. The
technical steps consist of defining the corresponding path space (where both the manifold
and path can vary) and proving that the Weiner measures one has on the paths over each
manifold vary with sufficient regularity to define a global measure in path space over any
harmonic measure on the set of manifolds under consideration.

Once this object (Brownian motion on a stationary random manifold) is shown to exist
several interesting consequences follow almost immediately.

First, applying Kingman’s subadditive ergodic theorem (see [Kin68]), one obtains that
linear drift can be defined pathwise, i.e. almost every path has a well defined rate of
escape. This implies for example that linear drift of Brownian motion is well defined for
almost every Brownian path on almost every leaf of a compact foliation (with respect to
any harmonic measure). Also, it allows us to complete the proof of the fact, needed in
the previous chapter, that the linear drift `(M) of an ergodic stationary random mani-
fold coincides with the growth rate of a ball containing almost all mass of the transition
probability density q(t, o, x) (see Lemma 2.13 and Corollary 3.7).

Second, using Birkhoff’s ergodic theorem, one obtains that a non-compact ergodic sta-
tionary random manifold must almost surely contain infinitely many disjoint diffeomorphic
copies of any finite radius ball. This is in the spirit of the much more detailed result of
Ghys which reduces the possible topologies of non-compact generic leaves of a foliation by
surfaces to six possible types (see [Ghy95]).

The original proof of Kingman’s subadditive ergodic theorem (see [Kin68]) consisted
in showing that for any stationary subadditive process {xs,t : s < t} with finite time
constant there exists and additive process {ys,t : s < t} with the same time constant
and satisfying ys,t ≤ xs,t almost surely. This reduces the subadditive ergodic theorem to
Birkhoff’s ergodic theorem. This ‘subadditive decomposition’ has been mostly forgotten
(evidence for this is that, although the subadditive ergodic theorem has been reproved a
great number of times, see for example [Ste89] and the references therein; the subadditive
decomposition theorem has received only two additional proofs beside the original, see
commentary by Burkholder in [Kin73] and the alternative proof by del Junco in [dJ77]).

A more or less independent sequence of works also relying on the idea of ‘subaddi-
tive decomposition’ exists beginning with Furstenberg’s formula for the largest Lyapunov
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exponent of a sequence of random matrices (see [Fur63, Theorem 8.5] and [Led84, pg.
358]). Karlsson and Ledrappier have unified such results in a general framework by giving
a formula expressing the rate of escape of random sequences in metric spaces using the
expected increment of a Busemann function along the sequence (see [KL11, Theorem 18]).
Notice that since Busemann functions are 1-Lipschitz their increments along a random
sequence form an additive process which is dominated by the subadditive distance process
of the sequence, hence these type of results amount to a more explicit version of the de-
composition theorem for subadditive processes (where the additive processes has a natural
geometric interpretation). In our context we obtain (see Theorem 3.14) a Furstenberg-
type formula for the linear drift of Brownian motion on a stationary random manifold in
terms of increments of a random Busemann function similar to [Led10, Proposition 1.1].

In the last subsection we improve the lower bound 1
2`(M)2 ≤ h(M) for entropy ob-

tained in Theorem 2.15 to 2`(M)2 ≤ h(M) in the case of certain stationary random
Hadamard manifold. In the case of a manifold with compact quotient this result was
proved by Kaimanovich and Ledrappier, see [Kăı86, Theorem 10] and [Led10, Theorem
A]. Equality implies that the gradient of almost every Busemann function at the origin
must be collinear with that of a positive harmonic function, a condition which has strong
rigidity consequences in the case of a single negatively curved manifold with compact quo-
tient (see [Led10] and [LS12]). It is unknown to the author whether similar rigidity results
can be obtained for stationary random manifolds.

3.1 Brownian motion on stationary random manifolds

3.1.1 Path space

We will construct a ‘path space’ over a given set M = M (d, r, {Ck}) of manifolds with
uniformly bounded geometry. Since later on we will be interested in time-reversal of
Brownian motion we chose to consider paths whose domain is the entire real line instead
of [0,+∞) as it was in previous chapters.

For this purpose let M̂′ be the set of pairs (M,ω) where M is a manifold in M
(denote by oM its basepoint and by gM its Riemannian metric) and ω : R → M is a
continuous curve with ω0 = oM . And by M̂ denote the equivalence classes of elements of
M̂′ where (M,ω) and (M ′, ω′) are equivalent if there is a pointed isometry f : M → M ′

such that ω′ = f ◦ ω. We will not be careful in distinguishing elements of M̂ with their
representatives (M,ω) in M̂′ since all our definitions will be invariant under the defined
equivalence relationship.

Recall that a metric on a disjoint union of two metric spaces is admissible if it coincides
with the given metrics when restricted to each half. We mimick the definition of the
distance on the Gromov space to turn M̂ into a metric space.

Definition 3.1. Define the distance between two elements (M,ω) and (M ′, ω′) in M̂ as
either 1/2 or, if such an ε exists, the infimum among all ε ∈ (0, 1/2) such that that there
exist an admissible metric on the disjoint union M tM ′ with the following properties:

1. d(o, o′) < ε.

2. d(B1/ε(o),M ′) < ε and d(M,B1/ε(o′)) < ε.

3. d(ωt, ω′t) < ε for all t ∈ [−1/ε, 1/ε].
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Define for each t ∈ R the shift map shiftt : M̂ → M̂ by

shiftt(M,ω) = (M, shifttω)

where (shifttω)s = ωt+s for all s and the basepoint of M on the right hand has been
changed to ωt (previously it was ω0).

Also, one has a projection π : M̂ → M which associates to each (M,ω) the unique
pointed manifold inM isometric (with basepoint) to (M,ω0).

M̂ shiftt

M

π

Figure 3.1: The main objects of this section.

Recall that a sequence (Mn, on, gn) of pointed manifolds is said to converge smoothly
to (M,o, g) if there exists an exaustion Un of M be increasing relatively compact open
sets and a sequence of smooth embeddings ϕn : Un → Mn with ϕn(o) = on such that the
pullback metrics ϕ∗ngn converge smoothly on compact sets to g. We record the regularity
properties of the spaces and arrows in the above diagram for future use.

Lemma 3.2. Let M and M̂ be as above. Then M is compact and metrizable when
endowed with the topology of smooth convergence, M̂ is a complete metric space with the
distance defined above, and the projection π : M̂ → M is continuous and surjective.
Furthermore, for each t ∈ R the shift map shiftt is a self homeomorphism of M̂.

Proof. By Theorem 2.4 one has that M is compact with respect to pointed Gromov-
Hausdorff convergence and that this convergence is equivalent to smooth convergence on
M. Since Gromov-Hausdorff convergence is metric this establishes the claim onM.

The continuity of the projection follows because we have defined M̂ to be larger than
the pointed Gromov-Hausdorff distance between the projected manifolds. Continuity of
the shift map can be verified directly from the definition. Hence it remains to establish
that M̂ is separable and complete.

We begin by establishing completeness. For this purpose take a sequence (Mn, ω
n) in

M̂ such that d((Mn, ω
n), (Mn+1, ω

n+1)) < 2−n for all n. For each n let dn be an admissible
metric on the disjoint union Mn t Mn+1 satisfying the conditions of Definition 3.1 for
ε = 2−n. Using these distances define a distance on the infinite disjoint union X =

⊔
Mn

such that if x ∈Mn and y ∈Mn+p the distance between them is the infimum over sequences
x = x0, x1, x2, . . . , xp = y with xi ∈Mn+i of dn(x0, x1) + · · ·+ dn+p−1(xn+p−1, xn+p). Let
X̂ be the completion of X, M = X̂ \X, and let ω be the local uniform limit of the curves
ωn in X̂.

One can verify that ωt belongs to M for all t. Furthermore we have shown in Theorem
2.3 that the sequence Mn converges in the pointed Gromov-Hausdorff sense to M . It
follows that M is isometric to a pointed manifold in M. Since the distance between
(Mn, ω

n) and (M,ω) is less than 2−(n−1) this establishes that M̂ is complete as claimed.
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Take a countable dense subset D of M and consider a countable set D̂ consisting of
pairs (M,ω) where M ranges over D and ω over a countable dense (with respect to local
uniform convergence) subset of curves in each M . We claim that D̂ is dense in M̂.

To establish this fact fix (M,ω) in M̂ and ε > 0. Since ω is continuous we may
partition the interval [−1/ε, 1/ε] into a finite number of disjoint intervals Ii = [ti, ti+1]
such that the diameter of {ωt : t ∈ Ii} is less than ε/3 for all i. Take δ ∈ (0, ε/3) so
that 1/δ is larger than the diameter of {ωt : t ∈ [−1/ε, 1/ε]} and notice that there exists
(M ′, o′, g′) in D at distance less than than δ from (M,ω0, g) (g being the metric on M).
It follows that there exists an admissible distance on the disjoint union M tM ′ such each
point ωti is at distance less than ε/3 from some point pi ∈ M ′. Interpolating between
the pi with geodesic segments one obtains a curve ω′t in M ′ at distance less than ε from
ωt for all t ∈ [−1/ε, 1/ε]. Arbitrarily close to omega′ in the topology of local uniform
convergence there are curves ω′′ such that (M ′, ω′′) belongs to D̂. This proves that D̂ is
dense as claimed.

3.1.2 Brownian motion

By the topology of local uniform convergence on an interval I ⊂ R on M̂ we mean
the topology generated by replacing t ∈ [−1/ε, 1/ε] in condition 3 of Definition 3.1 by
t ∈ [−1/ε, 1/ε] ∩ I . We denote by F∞0 the σ-algebra generated by the topology of local
uniform convergence on [0,+∞) on M̂.

Recall that C(R,M) denotes the space of continuous curves on a manifold M and
denote by F∞0 (M) the σ-algebra on C(R,M) generated by the topology of local uniform
convergence on [0,+∞). Each element ω of C(R,M) is naturally associated to the element
(M,ω) of M̂ though this association is not necessarily injective (e.g. applying any isometry
to a curve yields the same element of M̂).

Lemma 3.3. The natural projection ω 7→ (M,ω) from the space of continuous curves
C(R,M) on a manifold M ∈ M into M̂ is continuous when both are endowed with the
topology of local uniform convergence on the same interval I ⊂ R. In particular each
probability measure on F∞0 (M) yields a probability on

(
M̂,F∞0

)
.

Proof. The uniform distance between two curves ω, ω′ in M on a compact interval [a, b]
is larger than or equal to the corresponding distance on M̂ endowed with the topology of
uniform convergence on [a, b] (this follows directly from Definition 3.1).

Given (M, o, g) ∈ M we denote by P(M,o,g) the pushforward of Wiener measure cor-
responding to Brownian motion starting at o to the σ-algebra F∞0 on M̂. The Markov
property of Brownian motion on M takes the following form:

Corollary 3.4. Let (M,o, g) ∈M, then for any t > 0 and A ∈ F∞t one has

P(M,o,g)(A) =
∫
q(t, o, x)P(M,x,g)(A)dx.

By a Brownian motion on a stationary random manifold we mean a random element
(M,ω) of M̂ with distribution µ̂ given by the following theorem for some harmonic measure
µ onM.

Theorem 3.5. For each probability measure µ on M there is a unique probability µ̂ on(
M̂,F∞0

)
defined by

µ̂ =
∫

P(M,o,g)dµ(M,o, g).
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Furthermore the following two properties hold

1. If a probability µ onM is harmonic then its lift µ̂ can be extended uniquely to a shift
invariant Borel probability on M̂.

2. If a probability µ on M is harmonic and ergodic then the unique shift invariant
extension of µ̂ is ergodic.

Proof. We have shown in Lemma 3.3 that the Weiner measures on each (M,o, g) in M
lifts to a probability P(M,o,g) on M̂. If we show that

(M,o, g) 7→
∫
f(M,ω)dP(M,o,g)(N,ω) (3.1)

is continuous for all continuous bounded f : M̂ → R then µ̂ =
∫
P(M,o,g)dµ is well defined

as an element of the dual of the space of bounded continuous functions. By the Riesz
representation theorem this means that µ̂ is well defined as a probability on the Stone-
Cech compactification of M̂. After this it suffices to show that for each ε > 0 there is a
compact subset K of M̂ with P(M,o,g)(K) ≥ 1− ε for all (M,o, g) inM to obtain that in
fact µ̂ is a probability on M̂.

To begin we define the space of orthonormal frames O(M) as the set of tuples

(M, o, g, v1, . . . , vd)

where (M, o, g) is inM and v1, . . . , vd is an orthonormal basis of the tangent space ToM .
This space is considered up to equivalence by isometries which respect the basepoints and
orthonormal frames. A sequence (Mn, on, gn, vn1 , . . . , v

n
d ) converges to (M,o, g, v1, . . . , vd)

if there exists an exhaustion Un ofM and smooth embeddings ϕn : Un →Mn satisfying the
usual properties for smooth convergence plus that |Dϕnvi − vni | → 0 for i = 1, . . . , d. We
omit the verification that O(M) is separable, compact and the projection is continuous.
Similarly we define the space of frames F (M) by dropping the condition that v1, . . . , vd
be orthonormal (this space is no longer compact).

On the frame bundle F (M) of any manifold (M, o, g) ∈M there are d unique smooth
vector fields H1, . . . ,Hd with the property that the flow defined by Hi corresponds to
parallel transport of each orthonormal frame along the geodesic whose initial condition is
the i-th vector of the frame. Any solution to the Stratonovich differential equation

dXt =
d∑
i=1

Hi(Xt) ◦ dW i
t (3.2)

driven by a standard Brownian motion (W 1
t , . . . ,W

d
t ) on Rd and starting at an orthonormal

frame, projects to a Brownian motion on M . In particular the distribution of the solution
starting at any orthonormal frame v1, . . . , vd over the basepoint o is the Weiner measure Po
and lifts to P(M,o,g) on M̂. We will show that P(M,o,g) depends continuously on (M,o, g) in
M by showing that it depends continuously on the points in O(M). Since points projecting
to the same element ofM have the same associated measure in M̂ this approach may seem
unnecessarily complicated, however it allows us to use standard theorems on continuity of
solutions to rough differential equations and simultaneously solve the problem of finding
compact sets with large probability for all P(M,o,g).

Choose p ∈ (2, 3) and consider for each T > 0 the Polish space Ω of geometric rough
paths with locally finite p-variation (by which we mean that restricted to each interval
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I = [0, T ] the path belongs to Cp−var(I,G2(Rd)) as defined in [FV10, Definition 9.15]). Let
ν be the probability measure on ΩGp(Rd) which is the distribution of ‘Stranovich enhanced
Brownian motion’ (see [FV10, Section 13.2]). Given (M,o, g, v1, . . . , vd) and a path α in
Ω there is a unique curve ω : [0,+∞) → M which is the projection to M of the solution
to Equation 3.2 driven by the rough path α (this is the existence and uniqueness theorem
for rough differential equations of Terry Lyons, we will use the version given by [FV10,
Theorem 10.26]). We will show that (M,ω) is continuous as a function from Ω × O(M)
to M̂ (where the later is endowed with the topology of local uniform convergence).

Assuming the continuity claim has been established we notice that, because the push-
forward of ν under the map α 7→ ω is the Weiner measure corresponding to o, it would
follow by dominated convergence that the function defined by Equation 3.1 is continu-
ous for all bounded f . Furthermore, by letting α vary in a compact subset of Ω with
ν-probability greater than 1 − ε one would obtain that there is a compact subset of M̂
with probability greater than 1− ε for all P(M,o,g).

We now establish the continuity claim. Consider a sequence in O(M) such that

(Mn, on, gn, vn1 , . . . , v
n
d )→ (M,o, g, v1, . . . , vd)

when n→ +∞, and let ϕn : Un →Mn be the corresponding embeddings of an exaustion
of M . Given α ∈ Ω and a compact interval [0, T ] we may take a compact d-dimensional
submanifold with boundary N ⊂ F (M) such that the solution to Equation 3.2 driven
by α starting at v1, . . . , vd remains in N on [0, T ]. We embed N into some RN and
consider smooth compactly supported extensions of the horizontal vector fields Hi to
RN . The pullbacks of the horizontal vector fields Hn

i on F (Mn) under ϕn restricted to
N can be extended to all of RN in such a way that they share a compact support and
converge smoothly to the corresponding Hi and the pullbacks of the orthonormal frames
vni eventually belong to N and converge to v1, . . . , vd. Hence by [FV10, Theorem 10.26] the
solutions to Equation 3.2 driven by α and the vector fields Hn

i starting at the pullbacks of
vn1 , . . . , v

n
d converge to the corresponding solution driven by the vector fields Hi uniformly

on [0, T ]. This implies continuity of the solution with respect to (M,o, g, v1, . . . , vd) in
O(M) 1. Continuity with respect to α for a fixed manifold with frame in O(M) also
follows from [FV10, Theorem 10.26].

We have thus far established the existence of µ̂ for each probability µ onM. It remains
to interpret harmonicity and ergodicity of µ with properties of µ̂ relative to the shift maps.

If µ is harmonic then by Corollary 3.4 one has for all A ∈ F∞t that µ̂(A) = shiftt∗µ̂(A)
from this it follows that the pushforward measure shiftt∗µ̂ (defined on F∞−t coincides with
µ on F∞0 . Hence we may extend µ̂ uniquely to a shift invariant probability F∞t for all
t ∈ R. Since all these extensions are compatible Tulcea’s extension theorem implies that
there is a unique shift invariant Borel extension.

Suppose that µ is ergodic, harmonic, and that the unique shift invariant extension of
µ̂ to the Borel σ-algebra is not ergodic. Then by definition one can obtain two distinct
shift invariant probabilities such that

µ̂ = αµ̂1 + (1− α)µ̂2

for some α ∈ (0, 1). Since µ̂ projects to µ this allows one to express µ as a non-trivial
convex combination of the projection µ1 and µ2 of µ̂1 and µ̂2 respectively. Using Corollary

1. Here we use the fact that if there is an exhaustion Un of M and embeddings ϕn : Un →Mn defining
the conditions for smooth convergence, and furthermore there are curves ω on M and ωn on Mn such that
ϕ−1
n ◦ ωn converges to ω uniformly on compact sets, then (Mn, ωn) converges to (M,ω) as elements of M̂.

The proof amounts to repeating the arguments in Lemma 2.1.
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3.4 one sees that because the µ̂i are shift invariant µ1 and µ2 are harmonic. But because
µ is ergodic one must have µ1 = µ2 = µ contradicting the fact that µ̂1 6= µ̂2. Hence
each ergodic harmonic measure µ on M lifts to (after taking the unique shift invariant
extension) an ergodic shift invariant probability µ̂ as claimed.

3.1.3 Pathwise linear drift

Suppose Xt is a Brownian motion on a manifold with bounded geometry. By the results
of Ichihara (see [Ich88, Example 2.1]) one has that lim sup

t→+∞
d(X0, Xt)/t is finite. However,

the limit

lim
t→+∞

d(X0, Xt)
t

need not exists almost surely. Furthermore even if the above limit exists it might be
random (i.e. take different values with positive probability). For a concrete example
consider a metric on R2 which contains isometrically embedded copies of a half space
with constant curvature −1 and a half space of constant curvature −2. For any Brownian
motion with respect to such a metric the above limit will take two distinct values with
positive probability.

The construction of the Brownian motion process on M̂ implies that manifolds such as
the previously discussed cannot be generic with respect to any ergodic harmonic measure.

Theorem 3.6. Let (M,ω) be a Brownian motion an an ergodic stationary random man-
ifold. Then there one has

lim
t→+∞

E
(
d(ω0, ωt)

t

)
= `(M)

and

lim
t→+∞

d(X0, Xt)
t

= `(M)

almost surely, where `(M) is the linear drift of the stationary random manifold M .

Proof. Let µ be the distribution of M and consider the shift invariant lift µ̂ of µ to M̂
given by Theorem 3.5. We define the function ds,t on M̂ for s < t by

ds,t(M,ω) = d(ωs, ωt).

The triangle inequality implies that ds,u ≤ ds,t + ds,u, added to the fact that µ̂ is shift
invariant one obtains that the family {ds,t} is a stationary subadditive process with respect
to the probability µ̂. Therefore by Kingman’s subadditive ergodic theorem (see Theorems
1 and 5 of [Kin68]) the limits

lim
t→+∞

ds,t
t

exists µ̂ almost surely and in L1. Since the limit is almost surely shift invariant it must
be constant if µ̂ is ergodic.

As a consequence of the previous theorem we can complete the proof that `+(M) =
`(M) for all ergodic stationary random manifoldsM , a fact which was used in the previous
chapter.
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Corollary 3.7. Let M be an ergodic stationary random manifold then one has

lim
t→+∞

E

 ∫
BLt(oM )

q(t, oM , x)dx

 = 1

for all L > `(M).

Proof. Let µ be the distribution of M ,M the support of µ, and µ̂ the lift of µ to M̂. The
quantity inside the limit is equal to

µ̂ ({(M,ω) ∈ µ̂ : d(ω0, ωt) < Lt})

which converges to 1 by Theorem 3.6.

3.1.4 Recurrence and the correspondence principle

Szemeredi’s theorem states that if a set of integers A has positive upper density then
it contains arbitrarily long arithmetic progressions. Furstenberg’s proof of this result
begins by associating to A a shift invariant probability measure µ on the space of infinite
strings of zeros and ones with the property that if the measure of the set of strings
beginning with a particular finite pattern is positive then this pattern appears in A. In
particular the set U of strings beginning with 1 has positive probability and Szermeridi’s
theorem is shown to be equivalent to the property that for each k there exist n such that
µ(U ∩T−nU ∩· · ·∩T−nkU) > 0 where T is the shift transformation (see [EW11, pg. 178]).

The above idea of Furstenberg has been abstracted to a general albeit informal ‘corre-
spondence principle’ which might be roughly stated as follows: The combinatorial proper-
ties of a concrete mathematical object can sometimes be codified by a measure preserving
dynamical system. Hence ergodic theorems can yield proofs of combinatorial statements
and vice-versa.

In this subsection we try to apply the above principle to a fixed bounded geometry
manifold (M, g). The idea is that the closure of the set of manifolds (M,x, g) where
x varies over all of M , supports at least one harmonic measure ‘diffused from M ’. If
for some o ∈ M the pointed manifold (M, o, g) belongs to the support of this measure
then this imposes strong ‘recurrence’ properties on the Riemannian metric and topology
of M forcing a certain finite radius ‘pattern’ in the manifold to appear infinitely many
times. Perhaps the strongest result which has been obtained by this type of reasoning
is the theorem of Ghys which states that a non-compact leaf of a compact foliation by
surfaces which is generic with respect to a harmonic measure can only have one out of six
possible topologies (see [Ghy95]). We will prove a weaker result which illustrates the same
principle. We begin with a definition.

Definition 3.8. Let (M, o, g) be a pointed bounded geometry manifold in some set of
manifolds with uniformly bounded geometry M. A diffusion measure (M, o, g) is any
weak limit when t→ +∞ of a subsequence of the measures

1
t

∫ t

0
(π ◦ shifts)∗P(M,o,g)ds

where π is the projection from M̂ toM and the shift maps on M̂ are denoted by shiftt.
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We might say a manifold is ‘recurrent’ if it belongs to the support of at least one of its
diffusion measures. We begin by showing that, with this definition, all manifolds which
are generic with respect to an ergodic harmonic measure are recurrent and in fact have a
unique diffusion measure.

Lemma 3.9. Let µ be an ergodic harmonic measure on a space of manifolds with uni-
formly bounded geometry M. Then µ is the unique diffusion measure for µ-almost every
(M, o, g) ∈M.

Proof. Consider the ergodic shift invariant lift µ̂ of µ to M̂ given by Theorem 3.5 and let
{Un} be a countable basis of the topology onM by open sets whose boundaries have zero
µ measure. By Birkhoff’s ergodic theorem one has for µ̂ almost every (M,ω) in M̂ that

µ(Un) = µ̂
(
π−1(Un)

)
= lim

t→+∞

1
t

∫ t

0
1Un (π ◦ shifts(M,ω)) ds

for all n.
This implies that

µ = lim
t→+∞

1
t

∫ t

0
(π ◦ shifts)∗P(M,ω0,g)ds

so µ is a diffusion measure for µ̂ almost every (M,ω0, g). This implies the claim since µ̂
projects to µ.

The following theorem shows, for example, that the plane with one handle cannot be
the generic leaf of a compact foliation no matter what bounded geometry Riemannian
metric we put on it.

Theorem 3.10. Suppose that (M,o, g) is a non-compact bounded geometry manifold which
belongs to the support of its only diffusion measure µ. Then for each r > 0 there are
infinitely many disjoint diffeomorphic copies of Br(o) embedded in M .

Proof. Given r we can choose a neighborhood U of (M, o, g) sufficiently small so that for
all (M ′, o′, g′) in U there is a diffeomorphism ϕ : Br(o) → M ′ with ϕ(o) = o′ and such
that ϕ(Br(o)) is contained in B2r(o′).

Consider the set A = {x ∈M : (M,x, g) ∈ U} and notice that one has

lim
t→+∞

1
t

∫ t

0
1A(ωs)ds = µ(U) > 0

for Po almost every Brownian path ω.
On the other hand, since M is non-compact and has bounded geometry it has infinite

volume. This implies that the fraction of time spent by Brownian motion in any compact
subset of M converges to 0 as t → +∞. It follows that A is unbounded and hence M
contains infinitely many disjoint copies of Br(o).

The main result of [Ghy95] can be stated by saying that the non-compact generic
leaves with respect to any ergodic harmonic measure on a compact foliation by surfaces
has either zero or infinite genus and either one, two, or infinitely many ends. The first
part of this result follows from the theorem above.

Corollary 3.11 (Ghys). Any non-compact generic leaf with respect to an ergodic harmonic
measure on a compact foliation by surfaces must have either zero or infinite genus.
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3.2 Busemann functions and linear drift

3.2.1 Busemann functions

The Busemann function ξx : X → R associated to a point x in a pointed proper metric
space (X, o) is defined by

ξx(y) = d(x, y)− d(x, o)

and the Busemann compactification ofX is the closure of all such functions in the topology
of local uniform convergence (this is equivalent to pointwise convergence since all Buse-
mann functions are 1-Lipschitz). Given a set of pointed manifolds with uniformly bounded
geometryM we will show in this section that the linear drift of a harmonic measure onM
can be expressed in terms of the increment of a ‘random Busemann function’ on a fixed
time interval of Brownian motion.

As a first step we must construct a space containing the Brownian paths M̂ and
Busemann functions. For this purpose we define M̂1 as the set of triplets (M,ω, ξ) where
(M,ω) is in M̂ and ξ : M → R is 1-Lipschitz and satisfies ξ(ω0) = 0. Elements of M̂1 are
considered up to the usual equivalence by isometries preserving ω and ξ.

The distance on M̂1 is defined similarly to that of M̂ adding only one condition.

Definition 3.12. Define the distance between two elements (M,ω, ξ) and (M ′, ω′, ξ′) in
M̂ as either 1/2 or, if such an ε exists, the infimum among all ε ∈ (0, 1/2) such that
that there exist an admissible metric on the disjoint union M tM ′ with the following
properties:

1. d(o, o′) < ε.

2. d(B1/ε(o),M ′) < ε and d(M,B1/ε(o′)) < ε.

3. d(ωt, ω′t) < ε for all t ∈ [−1/ε, 1/ε].

4. |ξ(x)− ξ′(x′)| < ε whenever d(x, x′) < ε and either x ∈ B1/ε(o) or x′ ∈ B1/ε(o′).

Usually the Busemann functions of a manifold M are defined as the locally uniform
limits of the functions ξx (where x ∈M). We define the generalized Busemann space M̂b

as the closure of the Busemann functions (M,ω, ξx) (where x ∈ M) in the above metric
space. The elements of this space will be called generalized Busemann functions.

Lemma 3.13. The metric space M̂b is complete and separable, and the projection π̂ :
M̂b → M̂ is continuous surjective and proper (i.e. preimage of any compact set is com-
pact).

Proof. Completeness of M̂b follows from an argument similar to that of Lemma 3.2. We
consider a sequence (Mn, ωn, ξn) with distance between consecutive elements less than 2−n.
We take an admissible metric dn onMntMn+1 satisfying the conditions of Definition 3.12
and use it to define a metric on the countable disjoint union

⊔
Mn by setting d(x, y) with

x ∈ Mn and y ∈ Mn+p to be the infimum of dn(x, x1) + · · · + dn+p−1(xp−1, y) over all
chains x1, . . . , xp−1 with xi ∈ Mn+i for i = 1, . . . , p− 1. We take X to be the completion
of this disjoint union and M = X \

⊔
Mn. As in Lemma 3.2 one has that ωn converge

locally uniformly to a curve ω in M .
Take a point x ∈M and assume that x = lim xn where xn ∈Mn and d(xn, xn+1) < 2−n

for each n. Then because d(on, xn) → d(o, x) we will have for all n large enough that
|ξn(xn) − ξn+1(xn+1)| < 2−n. This implies that lim ξn(xn) exists. Furthermore, if yn is
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another sequence with the same properties converging to x then d(yn, xn) → 0 and since
each ξn is 1-Lipschitz one has that lim ξn(yn) = lim ξn(xn). We define ξ(x) = lim ξn(xn).
One verifies that ξ is 1-Lipschitz and defined on a dense subset of M , therefore it extends
uniquely to a continuous function on M .

By definition the function F on X which coincides with ξn on each Mn and with ξ
on M is continuous. Therefore it is uniformly continuous on compact sets. Hence, given
ε > 0 we may find δ > 0 such that if x ∈ Bε+1/ε(o) and d(x, y) < δ then |F (x)−F (y)| < ε.
The admissible distance on Mn tM which equals d(x, y) + ε − δ whenever x ∈ Mn and
y ∈M and coincides with d otherwise, shows that the distance between (Mn, ω

n, ξn) and
(M,ω, ξ) is less than ε for all n large enough. Hence M̂b is complete.

Surjectivity of π̂ is immediate. Separability of M̂b follows from that of M̂ once we
show that π̂ is proper (the preimage of each point in a dense countable subset of M̂ is
compact, hence has a countable dense set, the union of these sets is dense in M̂b).

To establish that π̂ is proper it suffices to show that if (Mn, ωn, ξxn) is a sequence
of Busemann functions in M̂b such that (Mn, ωn) converges to (M,ω) in M̂, then there
is a 1-Lipschitz function ξ on M such that a subsequence of (Mn, ωn, ξxn) converges to
(M,ω, ξ).

Repeating the construction above we may assume without loss of generality that there
is an admissible metric on

⊔
MntM such that the curves ωn converge locally uniformly to

ω and the metric restricted to Mn tMn+1 satisfies properties 1,2, and 3 of Definition 3.12
for ε = 2−n. The same conditions are verified by the metric when restricted to Mn tM
for ε = 2−n+1.

Notice that each ξxn is defined in terms of the distance on Mn. Hence it extends,
using the admissible distance, to a 1-Lipschitz function Fn on all of M t

⊔
Mn. Since

the sequence Fn is equicontinuous there is a locally uniformly convergent subsequence Fnk
which converges to a limit F . We define ξ as the restriction of F to M . An argument
similar to the one above shows that (Mnk , ωnk , ξxnk ) converges to (M,ω, ξ).

3.2.2 A Furstenberg type formula for linear drift

We recall the idea of Furstenberg that the largest Lyapunov exponent

χ = lim 1
n

log(|A0 · · ·An|)

of a sequence . . . , A−1, A0, A1, . . . of independent identically distributed random 2 × 2
matrices with determinant equal to 1 can be expressed as

χ = E(log(|A0v|))

where v is a random vector on the unit circle which is independent from A0 (it belongs to
the unstable direction of the sequence of matrices and depends only on A−1, A−2, . . .).

The distribution of v above is, a priori, unknown but must satisfy a stationarity prop-
erty, and even without full knowledge of v the formula can be used to establish that the
exponent is positive under certain assumptions on the sequence of matrices. This idea
has been generalized considerably and there are now several ‘Furstenberg type formulas’
which express asymptotic quantities of a random trajectory as integrals over a finite time
segment of the trajectory involving some random element of a ‘boundary space’ whose
distribution is unknown (see for example [KL11, Theorem 18]).

The purpose of this subsection is to establish a Furstenberg type formula for the linear
drift of a harmonic measure (compare with [Led10, Proposition 1.1]). The Busemann
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function space M̂b will play the role of the boundary (the circle in the above example)
and our trajectory is the path of Brownian motion. We extend the shift maps shiftt to
M̂b so that (M,ω, ξ) goes to (M,ωt+·, ξ − ξ(ωt)) and notice that they are continuous.

By a Brownian motion on a stationary random manifoldM we mean a random element
(M,ω) of M̂ whose distribution is the shift invariant lift µ̂ of the harmonic distribution
µ of M (see Theorem 3.5). In the following theorem the existence of the random element
(M,ω, ξ) extending (M,ω) may depend on modifying the domain probability space of
(M,ω) somewhat (without changing the distribution of (M,ω)).

Theorem 3.14 (Furstenberg type formula for linear drift). Let (M,ω) be a Brownian
motion on an ergodic stationary random manifold M . Then (possibly modifying the do-
main of (M,ω)) there exists a random generalized Busemann function ξ such that the
distribution of (M,ω, ξ) is shift invariant and one has

E (ξ(ωt)) = t`(M)

for all t ∈ R \ {0}. Furthermore ξ can be chosen so that its distribution is ergodic for the
shift maps and so that the conditional distribution of {ωt : t ≥ 0} given M,o = ω0 and ξ
is Po.

Proof. Let (M,ω) be a Brownian motion on an ergodic stationary random manifold M
and let u be a uniform random variable in [0, 1]. Because the projection π̂ from M̂b to
M̂ is proper the distributions of the random variables (M,ω, ξω−uT ) (where T ranges over
R) are tight (i.e. for each ε > 0 there is a compact subset of M̂b with probability greater
than 1 − ε for all the distributions). Hence there exists a sequence Tn → +∞ such that
(M,ω, ξω−uTn ) converges in distribution to some random element (M,ω, ξ) in M̂b (see
[Bil99, Theorem 5.1], notice that this element projects to our original Brownian motion
(M,ω)).

Since all functions in M̂b are 1-Lipschitz we have that |ξ(ωt)| ≤ d(ω0, ωt). Notice also
that, as shown in the previous chapter, the expectation of d(ω0, ωt) is finite for any Brow-
nian motion (M,ω) on a stationary random manifold. Also, by Skorohod’s representation
theorem (see [Bil99, Theorem 6.7]) there exist random elements with the distribution of
(M,ω, ξω−uTn ) which converge pointwise to a random element with the distribution of
(M,ω, ξ). Hence we may use dominated convergence to establish the first in the following
chain of equalities (we assume for simplicity that t > 0)

E (ξ(ωt)) = lim
n→+∞

E
(
ξω−uTn (ωt)

)
= lim

n→+∞
E (d(ω−uTn , ωt)− d(ω−uTn , ω0))

= lim
n→+∞

E (d(ω0, ωuTn+t)− d(ω0, ωuTn)) .

Notice that u + t/Tn is uniformly distributed on [t/Tn, t/Tn + 1]. Therefore, setting
v = u if u > t/Tn and v = 1 +u otherwise one obtains that v has the same distribution as
u+ t/Tn from which it follows that

E (ξ(ωt)) = lim
n→+∞

E (d(ω0, ωvTn)− d(ω0, ωuTn))

where the inner terms cancel except on a set of probability t/Tn where u < t/Tn.
Hence we have obtained

E (ξ(ωt)) = t lim
n→+∞

E
(
d(ω0, ωs+Tn)

Tn

)
− t lim

n→+∞
E
(
d(ω0, ωs)

Tn

)
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where s is independent from (M,ω) and uniformly distributed on [0, t].
In second term we may bound the expected value of d(ω0, ωs), using Ichihara’s com-

parison result (see [Ich88]), by the expected diameter of a segment of length t of Brownian
motion on a space of constant curvature lower than that of all possible values of M . Since
Tn → +∞ it follows that the second limit is 0. For the first term we can bound the
expected value of |d(ω0, ωs+Tn)− d(ω0, ωTn)| by the same. This implies that one has

E (ξ(ωt)) = t lim
n→+∞

E
(
d(ω0, ωTn)

Tn

)
= t`(M)

where `(M) is the linear drift of the stationary random manifold M . We omit the proof
for negative t which is very similar.

To see that the distribution of (M,ω, ξ) is shift invariant take any s > 0 and notice
that

shift−s(M,ω, ξωuTn ) = (M,ω·−s, ξωuTn − ξωuTn (ω−s))

has the same distribution as (M,ω, ξωuTn+s). We may define v so that uTn + s has the
same distribution as the vTn by setting v = u if uTn < s and v = u + 1 otherwise.
Hence the shift−s(M,ω, ξωuTn ) has the same distribution as (M,ω, ξvTn) which coincides
with (M,ω, ξtTn) outside of a set of probability s/Tn. Taking limits when n → +∞ one
obtains that shift−s(M,ω, ξ) has the same distribution as (M,ω, ξ) for all s > 0, so the
distribution of (M,ω, ξ) is shift invariant.

Since u is independent from (M,ω) and the conditional distribution of {ωt : t ≥ 0}
relative to M,o = ω0 is Po one obtains the same property for conditioning relative to
ξω−uTn and by taking limits also for ξ.

The possible shift invariant distributions of (M,ω, ξ) satisfying E(ξ(ωt)) = t`(M) for
all t 6= 0 and such that the conditional distribution of {ωt : t ≥ 0} relative to M,o = ω0, ξ
are Po, form a convex and weakly compact set. Any extremal element of this set (and
such an element exists by the Krein-Milman theorem) is ergodic with respect to the shift
maps. This shows that the distribution of ξ can be chosen to be ergodic.

3.3 Entropy of reversed Brownian motion

3.3.1 Reversibility

The purpose of this section is to improve the inequality 1
2`(M)2 ≤ h(M) obtained in The-

orem 2.15 in the case of Brownian motions on a stationary random Hadamard manifold to
2`(M)2 ≤ h(M) (recall that a Hadamard manifold is a manifold isometric to Rd endowed
with a complete Riemannian metric of non-positive sectional curvature). This improve-
ment was established by Kaimanovich and Ledrappier in the case of a single manifold with
a compact quotient (no curvature assumption) and has strong rigidity consequences if for
manifolds with negative curvature in this case (see [Led10] and the references therein 2).
We are able to prove the inequality under the assumption that Brownian motion is re-
versible; a technical hypothesis which is automatically satisfied in the case of a single
manifold with compact quotient. We will discuss this assumption briefly in this subsec-
tion.

2. Since we use q(t, x, y) = p(t/2, x, y) our definitions of ` and h differ from Ledrappier’s by a factor of
two. Hence then inequality h ≤ `v remains the same with both conventions but our claim that 2`2 ≤ h
corresponds to `2 ≤ h in Ledrappier’s notation.
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Consider a Brownian motion (M,ω) on a stationary random manifold M . The reverse
process is defined by (M,ω′) where ω′t = ω−t. We say the Brownian motion is reversible
if (M,ω) and (M,ω′) have the same distribution.

As an example consider a compact manifold M . The unique stationary measure for
Brownian motion is the normalized volume measure hence the unique shift invariant mea-
sure on C([0,+∞),M) is

∫
Pxdx/vol(M). We use this to define a unique shift invariant

measure on the continuous paths C(R,M) defined on all of R. Giving rise to a Brownian
motion on a stationary random manifold (M,ω) where M is fixed and the basepoint ω0 is
uniformly distributed.

We claim that (M,ω) thus defined is reversible. For this purpose notice that given
Borel sets A0, A1 in M and t > 0 one has

P (ω0 ∈ A0, ωt ∈ A1) =
∫

A0×A1

q(t, x, y)dxdy/vol(M) = P (ω0 ∈ A1, ωt ∈ A0)

because q(t, x, y) = q(t, y, x). The claim follows from repeating this calculation for an
arbitrary finite number of sets and times.

Given a compact foliation X and a harmonic measure µ one can define a measure on
the space of paths C([0,+∞), X) corresponding to ‘leafwise Brownian motion’ with initial
distribution µ. Similarly to the case discussed above where X = M was a single compact
leaf, the fact that µ is harmonic allows one to uniquely extend this probability in a shift
invariant way to all of C(R, X). The results of Deroin and Klepsyn (see [DK07, Theorem
B]) imply that for a minimal codimension one foliation without any transverse invariant
measure the corresponding Brownian motion indexed on R is not reversible.

In the above example non-reversibility follows because holonomy is contracting in
the forward time direction and hence expanding in the backward time direction. But
transverse information such as holonomy is lost when one applies the leaf function to push
forward the harmonic measure on X to a harmonic measure on the Gromov space. This
poses the following question:

Question 3.1. Does there exist a non-reversible Brownian motion on a stationary random
manifold?

3.3.2 Furstenberg type formula for Hadamard manifolds with pinched
negative curvature

Recall that the Busemann functions of a manifold (M,o, g) are defined as local uniform
limits of the function of the form ξx(y) = d(x, y)−d(x, o). The Busemann functions which
are not of the form ξx form the so-called Busemann boundary of M .

Lemma 3.15. Let (M, o, g) be a Hadamard manifold with curvature bounded between two
negative constants. Then for Po almost every Brownian path ω the following limit exists
and is an element of the Busemann boundary

ξ = lim
t→+∞

ξωt .

Proof. Convergence of ξωt to a boundary Busemann function follows if one shows that
d(ω0, ωt) → +∞ and that the geodesic segment joining o to ωt converges to a geodesic
ray (see [Wan11, Proposition 2] and the references therein). Both of these properties
of Brownian motion were established by Prat in the mid 70s (see [AT11, Theorem 3.2],
[Pra71] and [Pra75]).
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The Martin boundary of a manifold M consists of the limits of functions of the form
y 7→ G(x, y)/G(x, o) where G is a minimal Green’s function (see [Wan11]). The elements
of the Martin boundary are positive harmonic functions which we choose to consider
up to multiplication by positive constants. In the context of Hadamard manifolds with
pinched negative curvature the equivalence between Martin and Busemann boundaries
was established by Anderson and Schoen.

Lemma 3.16. Let (M,o, g) be a Hadamard manifold with curvature bounded between two
negative constants. Then there is a natural homeomorphism ξ 7→ kξ between the Busemann
and Martin boundaries. Furthermore the probability transition density of Brownian motion
conditioned on the value of ξ = limt→+∞ ξωt is given by

kξ(y)
kξ(x)q(t, x, y).

Proof. For the homeomorphism between the two boundaries see [AS85, Theorem 6.3]. The
conditional distribution for Brownian motion is verified on page 36 of [Anc90] (this is a
special case of the so-called h-transform due to Doob, see [Doo01]).

We can now established a refined version of Theorem 3.14 for random Hadamard
manifolds with pinched negative curvature.

Lemma 3.17. Let (M,ω) be a reversible Brownian motion on a stationary random
Hadamard manifold with sectional curvatures bounded between two negative constants.
Then letting ξ = limt→+∞ ξω−t one has

E(ξ(ωt)) = t`(M)

for all t 6= 0.

Proof. By Lemma 3.15 the distribution of (M,ω, ξω−uT ) where u is uniformly distributed
in [0, 1] and independent from (M,ω), converges to that of (M,ω, ξ). Hence the result
follows exactly as in the proof of Theorem 3.14.

Boundary Busemann functions are at least two times continuously differentiable on
any Hadamard manifold (see [HIH77]) this allows us to pass to the limit when t → 0 in
the formulas above (this idea for obtaining infinitesimal formulas for the linear drift goes
back to [Kăı86]). Doing so along positive and negative t yields different formulas, in order
to use Lemma 3.16 to obtain the distribution of reversed Brownian motion conditioned to
ξ we must impose the hypothesis that our Brownian motion is reversible.

Lemma 3.18. Let (M,ω) be a reversible Brownian motion on a stationary random
Hadamard manifold with sectional curvatures bounded between two negative constants and
let ξ = limt→+∞ ξω−t. Then one has

`(M) = E
(1

2∆ξ(oM )
)

= −E
(1

2〈∇ log kξ(oM ),∇ξ(oM )〉
)
.

Proof. By Lemma 3.17 on has

`(M) = E
(1
t

∫
q(t, oM , x)ξ(x)dx

)
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for all t > 0. Since the Busemann functions ξ are 1-Lipschitz and
∫
q(t, oM , x)d(oM , x)dx

can be uniformly bounded on the support of the distribution of M , one can take limit
when t→ 0+ from which one obtains that

`(M) = E
(1

2∆ξ(oM )
)
.

Similarly, by our assumption of reversibility, ω−t has distribution q(t, oM , x) on M .
The conditional distribution with respect to ξ is given by Lemma 3.16 and one has

`(M) = −E
(

1
t

∫
kξ(x)
kξ(oM )q(t, oM , x)ξ(x)dx

)

for all t > 0. Passing to the limit with t→ 0− one obtains 3

`(M) = −E
(1

2∆ξ(oM ) + 〈∇ log kξ(oM ),∇ξ(oM )〉
)

from which the second claimed formula for `(M) follows using the first.

As a toy example of the previous formulas for drift consider the hyperbolic half plane
M = {(x, y) ∈ R2 : y > 0} with the metric ds2 = y−2(dx2 + dy2) and base point
oM = (0, 1). Notice that (M,oM ) is a stationary random manifold so one may indeed apply
Lemma 3.18. All Busemann functions are obtained by applying isometries to ξ(x, y) =
− log(y). Calculating the Laplacian of ξ at oM one obtains 1 so `(M) = 1/2. On the
other hand the positive harmonic function associated to ξ (the Poisson kernel function
associated to the boundary point at infinity) is kξ(x, y) = y so that in the second formula
∇ log kξ = −∇ξ and one obtains again `(M) = 1/2.

As stated before our objective in this section is to obtain the inequality 2`(M)2 ≤ h(M)
for stationary random Hadamard manifolds with curvature bounded between two negative
constants and reversible Brownian motion. So far we have the following.

Corollary 3.19. Let (M,ω) be a reversible Brownian motion on a stationary random
Hadamard manifold with sectional curvatures bounded between two negative constants and
let ξ = limt→+∞ ξω−t. Then one has

2`(M)2 ≤ E
(1

2 |∇ log kξ(oM )|2
)

Proof. Using Lemma 3.18 followed by Jensen’s inequality and the Cauchy-Schwarz in-
equality one obtains

2`(M)2 ≤ E
(1

2 |〈∇ log kξ(oM ),∇ξ(oM )〉|2
)
≤ E

(1
2 |∇ log kξ(oM )|2

)
where we have also used the fact that ξ is 1-Lipschitz.

3. Notice that kξ(x)/kξ(oM ) is bounded by C exp(Cd(oM , x)) for some C (see [ADT07, Corollary 4.5])
and ξ is Lipschitz so one has a uniform bound for the inner integral on all manifolds in the support of the
distribution of M by virtue of the uniform upper heat kernel bounds.
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3.3.3 Reverse entropy and entropy difference

The purpose of this section is to understand the right-hand side of the inequality in
Corollary 3.19. We want to show that it is smaller than h(M) in order to obtain the
inequality 2`(M)2 ≤ h(M). In short the proof consists in establishing that the right
hand side k(M) is the difference between the entropy h(M) and an entropy associated
to the reversed process (conditioned on ξ = lim

t→+∞
ξω−t), since this ‘reversed entropy’ is

non-negative one obtains k(M) ≤ h(M). As a first step we obtain an alternate formula
for k(M) as the expected increment of log kξ along a Brownian path.

Lemma 3.20. Let (M,ω) be a reversible Brownian motion on a stationary random
Hadamard manifold with curvature bounded between two negative constants, and let ξ =
lim

t→+∞
ξω−t. Then setting

k(M) = E
(1

2 |∇ log kξ(oM )|2
)

one has
k(M) = −E

(
1
t

log
(
kξ(ωt)
kξ(oM )

))
= E

(
1
t

log
(
kξ(ω−t)
kξ(oM )

))
for all t > 0.

Proof. Using that kξ is shift invariant one obtains for

Kt = −E
(

log
(
kξ(ωt)
kξ(oM )

))

that Kt+s = Kt +Ks.
Furthermore since there is a uniform bound for |∇ log kξ| over the entire support of

(M,ω, ξ) (see [ADT07, Corollary 4.4]) one obtains that Kt is continuous with respect to
t by dominated convergence. This implies Kt = tK1 for all t > 0.

In particular one has for all t > 0 that

K1 = −E
(

1
t

∫
q(t, oM , x) log

(
kξ(x)
kξ(oM )

)
dx
)

and taking limit when t→ 0+ (which is justified by dominated convergence, again by the
uniform bounds of [ADT07, Corollary 4.4]) one obtains

K1 = E
(1

2∆ log kξ(oM )
)

= E
(1

2 |∇ log kξ(oM )|2
)

as claimed.
The equality

−E
(

1
t

log
(
kξ(ωt)
kξ(oM )

))
= E

(
1
t

log
(
kξ(ω−t)
kξ(oM )

))

follows by shift invariance of kξ.

Given a Hadamard manifold (M, o, g) with curvature bounded by two negative con-
stants and a boundary Busemann function ξ let Px,ξ be the probability measure on
C([0,+∞),M) which is the distribution of Brownian motion conditioned to exit at ξ
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(the transition probability densities are given by Lemma 3.16). As in Chapter 1 we denote
by Ft and FT the σ-algebras generated by ωs with s ≤ t and s ≥ T respectively and by
F∞ the tail σ-algebra on C([0,∞),M).

In this context let ITt (M, ξ) (where 0 < t < T ≤ ∞) be the mutual information between
Ft and FT with respect to the probability Po,ξ.

Lemma 3.21. Let (M, oM , g) be a Hadamard manifold with curvature strictly bounded be-
tween two negative constants and ξ be a boundary Busemann function. Then the following
properties hold for all 0 < t < T <∞:

1. ITt (M, ξ) =
∫

log
(
kξ(oM )
kξ(x)

q(T−t,x,y)
q(T,oM ,y)

)
kξ(y)
kξ(oM )q(t, o, x)q(T − T, x, y)dxdy.

2. The function T 7→ ITt (M, ξ) is non-negative and non-increasing.

Proof. The formula for ITt (M, ξ) follows from Lemma 3.16 and the Gelfand-Yaglom-Peres
theorem (see the proof of Theorem 1.10). Non-negativity and monotonicity follow directly
form the definition of mutual information.

The following result identifies k(M) as the difference between h(M) and an entropy
for the reverse process of (M,ω) conditioned to its limit Busemann function ξ.

Lemma 3.22. Let (M,ω) be a reversible Brownian motion on a stationary random
Hadamard manifold with curvature bounded between two negative constants, and let ξ =
lim

t→+∞
ξω−t. Then for all t > 0 one has

0 ≤ lim
T→+∞

E
(
ITt (M, ξ)

)
= t(h(M)− k(M)).

In particular k(M) ≤ h(M).

Proof. We calculate using Lemma 3.21, Lemma 3.16, and the fact that (M,ω, ξ) is shift
invariant to obtain

0 ≤ E
(
ITt (M, ξ)

)
= E

(
log

(
kξ(ω0)
kξ(ω−t)

)
+ log(q(T − t, ω−t, ω−T )− log(q(T, ω0, ω−T )

)

= E
(

log
(
kξ(ωt)
kξ(ω0)

)
+ log(q(T − t, ω0, ωT−t))− log(q(T, ω0, ωT ))

)
= tk(M)−HT−t +HT

where Ht = E(
∫

log(q(t, oM , x))q(t, oM , x)dx).
When T → +∞ one has that HT −HT−t converges to th(M) (see the proof of Theorem

2.11) and therefore one has

0 ≤ E
(
ITt (M, ξ)

)
= t(h(M)− k(M))

as claimed.

To conclude we combine the previous results to obtain a sharp lower bound for the
entropy h(M) of a stationary random Hadamard manifold in terms of its linear drift `(M).
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Theorem 3.23. Let (M,ω) be a reversible Brownian motion on a stationary random
Hadamard manifold with curvature bounded between two negative constants, and let ξ =
lim

t→+∞
ξω−t. Then one has 2`(M)2 ≤ h(M) with equality if and only if

∇ log kξ(oM ) = −2`(M)∇ξ(oM )

almost surely.

Proof. By Lemma 3.18 one has

`(M) = −E
(1

2〈∇ log kξ(oM ),∇ξ(oM )〉
)
.

Squaring and applying Jensen’s inequality one obtains

2`(M)2 ≤ E
(1

2 |〈∇ log kξ(oM ),∇ξ(oM )〉|2
)
.

Notice at this point that if the equality E(X)2 = E(X2) holds for some random variable
X then X is almost surely constant. Hence if equality holds in the last inequality above
one obtains that `(M) = −1

2〈∇ log kξ(oM ),∇ξ(oM )〉 almost surely.
Next we apply the Cauchy-Schwartz inequality and the fact that ξ is 1-Lipschitz to

obtain
E
(1

2 |〈∇ log kξ(oM ),∇ξ(oM )〉|2
)
≤ k(M)

and by Lemma 3.22 conclude that 2`(M)2 ≤ k(M) ≤ h(M).
At this step we notice that equality would imply that ∇ log kξ(oM ) and ∇ξ(oM ) are

collinear almost surely. Combining this with the previous observation about equality in
the Jensen’s inequality one sees that if 2`(M)2 = h(M) then one would have

∇ log kξ(oM ) = −2`(M)∇ξ(oM )

almost surely as claimed.
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Chapter 4

The leaf function of compact
foliations

4.1 Introduction

In this chapter we study the regularity of the leaf function of a compact foliation X, i.e.
the function associating to each x ∈ X the leaf Lx of x considered as an element of the
Gromov space.

The proof of measurability of the leaf function (which we needed in order to push-
forward harmonic measures of any foliation to the Gromov space, see Lemma 2.8) depends
on the results of this chapter. However, we are more interested in continuity properties
and how they relate to Reeb type stability results.

Recall that the Reeb local stability theorem [Ree47, Theorem 2] states that if the
fundamental group of a compact leaf in a foliation is finite then all nearby leaves are finite
covers of it. In the special case when a leaf is compact and has trivial holonomy one can
strengthen the conclusion to yield that all nearby leaves are diffeomorphic to the given
leaf (this is the case for example for simply connected leaves such as spheres).

In [ÁC03] Álvarez and Candel introduced the leaf function as part of a program for
studying the geometry (e.g. quasi-isometry invariants) of generic leaves in foliations. One
result in this program is that the leaf function of any compact foliation is continuous on
the set of leaves (compact or otherwise) without holonomy (see [ÁC03, Theorem 2]).

In general a sequence of manifolds can converge in the Gromov-Hausdorff sense to a
compact manifold without any element of the sequence being homeomorphic to the limit
(for example one can shrink the handle on a sphere with one handle to obtain a sequence
converging to a sphere, see [BBI01, Figure 7.4]).

Our first result, Theorem 4.1, shows that this type of sequences do not exist within a
compact foliation. As a consequence one can conclude that on compact foliations Álvarez
and Candel’s continuity theorem implies Reeb stability of compact leaves with trivial
holonomy as a special case.

Our second and main result, Theorem 4.3, is that the leaf function of a compact folia-
tion is semicontinuos in the sense that the limit of any sequence of leaves is a Riemannian
covering of the limiting leaf. An upper bound (the so-called holonomy covering) is pro-
vided for the coverings obtainable this way and allows us to obtain Reeb’s local stability
theorem and Ávarez and Candel’s continuity theorem as special cases.
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4.2 Examples of leaf functions

Recall that by a d-dimensional foliation we mean a metric space X partitioned into disjoint
subsets called leaves. Each leaf is assumed to be a continuously and injectively immersed
d-dimensional connected complete Riemannian manifold. We further assume that each x ∈
X belongs to an open set U such that there exists a Polish space T and a homeomorphism
h : Rd × T → U with the following properties:

1. For each t ∈ T the map x 7→ h(x, t) is a smooth injective immersion of Rd into a
single leaf.

2. For each t ∈ T let gt be the metric on Rd obtained by pullback under x 7→ h(x, t)
of the corresponding leaf’s metric. If a sequence tn converges to t ∈ T then the
Riemannian metrics gtn converge smoothly on compact sets to gt.

Given a point x in a foliation X we denote by (Lx, x, gLx) the leaf of x considered as
a pointed Riemannian manifold with basepoint x. We sometimes write only Lx and leave
the basepoint x and metric gLx implicit. Homeomorphisms satisfying the conditions of h
above are called foliated parametrizations and their inverses are foliated charts.

We recall that in any metric space (X, d) there is a natural distance between subsets,
Hausdorff distance, which is defined by

dH(A,B) = inf {ε > 0 : d(a,B) < ε and d(A, b) < ε for all a ∈ A and b ∈ B} .

In what follows we use Br(x) to denote the open ball centered at a point x in a metric
space and Br(x) to denote its closure. A metric space is said to be proper if all closed
balls are compact.

It will be convenient for this chapter to work with the distance on Gromov-space
defined between two pointed proper metric spaces (Xi, xi, di) where i = 1, 2 as

dGS (X1, X2) =
+∞∑
n=1

2−n min (1, dn) (X1, X2)

where
dn (X1, X2) = inf

{
d(x1, x2) + dH(Bn(x1), Bn(x2))

}
the infimum being taken over all distances d on the disjoint union Bn(x1)tBn(x2) which
coincide with di when restricted to Bn(xi) for i = 1, 2.

The notion of convergence induced by dGS is that of Hausdorff convergence of all integer
radius balls. This coincides with Gromov-Hausdorff convergence only on the closed subset
formed by length spaces (see [BBI01, Exercise 8.1.3, Theorem 8.1.9]). Since we will be
working exclusively with Riemannian manifolds we will use the above distance instead of
the one defined in Section 2.1.1 without further comment.

The leaf function of a foliation X is the function from X to GS is defined by

x 7→ Lx

where the leaf Lx is considered up to pointed isometry.
We begin our study of the regularity of this function with a series of examples.
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4.2.1 Example: the vinyl record foliation

Consider a foliation of the closed annulus {(x, y) ∈ R2 : 1 ≤ x2 + y2 ≤ 2} such that the
two boundary circles are leaves and all other leaves are spirals which accumulate on both
boundary components. The leaf function of such a foliation is clearly not continuous since
there are leaves which are isometric to R accumulating on a leaf isometric to an Euclidean
circle.

Figure 4.1: The vinyl record foliation.

4.2.2 Example: the Reeb cylinder

Consider the foliation of the solid cylinder C = {(x, y, z) ∈ R3 : x2 + y2 ≤ π/2} where
the boundary cylinder is a leaf and all other leaves are of the form {(x, y, z) ∈ Rd : z =
t− tan(x2 + y2)2} for t ∈ R.

In this example the leaf function is continuous but there are simply connected leaves
accumulating on a non-simply connected leaf. Hence the function

p 7→ L̃p

associating to each point in C the universal covering of its leaf, is not continuous.
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Figure 4.2: A section of the Reeb cylinder.

4.2.3 Example: the Reeb component

One may take the quotient space of a Reeb cylinder by a translation along the axis to
obtain a foliation of the solid torus normally called a Reeb component.

The leaf function of a Reeb component is not continuous since for any sequence xn of
interior points converging to a boundary point x one has that the sequence of leaves Lxn
converges to a cylinder M while the leaf Lx is a torus.

We notice that the cylinderM is a covering space of the torus leaf Lx. Furthermore one
can choose a covering map fromM to Lx in such a way that the image of the fundamental
group of M is exactly the set of curves in Lx without holonomy.

Hence one sees that in this example the function

x 7→ L̃x
hol

associating to each point the holonomy covering of its leaf (see Section 4.9), is continuous.

Figure 4.3: Half a Reeb component.
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4.2.4 Example: the broken record foliation

Consider a foliation of the closed annulus which is obtained by pasting a copy of the vinyl
record foliation with a trivially foliated annulus (i.e. foliated by parallel circles).

The holonomy of leaves in the trivially foliated annulus is trivial and hence they co-
incide with their holonomy covers. However a sequence of such leaves can be chosen to
converge to the single circular leaf separating the two components. This leaf has non-
trivial holonomy and hence its holonomy cover is isometric to R. Hence in this example
on sees that the function

x 7→ L̃x
hol

is not continuous.

Figure 4.4: A broken record foliation. Circu-
lar leaves with trivial holonomy accumulate
on a circular leaf with non-trivial holonomy.

4.2.5 Example: the Reeb transition

The following example was introduced by Reeb in [Ree48].
Consider the product Riemannian manifold S2 × S1 × S1 where S2 = {(x, y, z) ∈ R2 :

x2 + y2 + z2 = 1} is the standard two-dimensional sphere, and S1 = {z ∈ C : |z| = 1} the
standard circle. We consider the coordinates ((x, y, z), eis, eit) and the one forms{

ω1 = dt
ω2 =

(
(1− sin(t))2 + x2) ds+ sin(t)dx

The conditions of Frobenius’ integrability theorem (see [CLN85, Theorem 2, pg. 185])
are satisfied and hence there is a unique two-dimensional foliation such that the tangent
space of each leaf is contained in the kernel of ω1 and ω2. The equation ω1 = 0 for
vectors tangent to the foliation implies that each leaf is contained in a set of the form
S2 × S1 × {constant} and hence we may consider the foliation as a family of foliations on
S2 × S1 parametrized by t.
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When sin(t) = 0 it is easy to verify that one obtains the foliation of S2 × S1 by leaves
of the form S2 × {constant}. However, when sin(t) = 1 one has

ω2 = x2ds+ dx

so that the torus in S2 × S1 defined by x = 0 is a leaf, while the other leaves are planes
parametrized by functions of the form

(x, y, z) 7→ ((x, y, z), ei(c+1/x))

on the hemispheres x < 0 and x > 0, for different values of the constant c.
Whenever sin(t) 6= 0 one obtains a foliation of S2 × S1 by spheres such that all leaves

are obtained by applying a rotation to the S1 components of a single leaf (i.e. they are
all graphs of functions from S2 to S1 which in fact can be written explicitly).

Hence the set of spherical leaves is given by {sin(t) 6= 1}, and the set of non-compact
leaves is defined by {sin(t) = 1, x 6= 0}.

One can explain this example geometrically. By pasting two copies of the partition of
the solid torus D×S1 into closed disks D×{constant} one can obtain the trivial foliation
of S2 × S1 by leaves of the form S2 × {constant}. Pushing each disk at its center in the
direction of the central circle of the solid torus one deforms the foliation but all leaves are
still copies of S2. This is done in such a way that the number of turns each disk does
around the solid torus diverges, at which point the boundary torus becomes a leaf and
we obtain a foliation of S2 × S1 by two Reeb components. We call this process a Reeb
transition.

Reeb noticed that in any such example there must be spherical leaves with arbitrarily
large volume. We will show that this is a consequence of the regularity properties of the
leaf function.

Figure 4.5: A Reeb transition: the trivial partition of a solid torus into disks is deformed
into a Reeb component.

4.3 Regularity of leaf functions
In this section we state and prove our two main results after which we discuss applications
to Reeb-type stability results and the Reeb transition example of the previous section.

4.3.1 Regularity theorems

A sequence of pointed complete connected Riemannian manifolds of the same dimension
(Mn, on, gn) is said to smoothly converge to a pointed complete Riemannian manifold
(M, o, g) if there exists for each r > 0 a sequence of pointed smooth embeddings fn :
Br(o)→Mn of the open ball of radius r centered at o into Mn defined for n large enough
with the property that the pullback Riemannian metrics f∗ngn converge smoothly to g on
all compact subsets of Br(o) (see [Pet06, Chapter 10.3.2] and Section 4.7).
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In principle smooth convergence of a sequence of manifolds is much stronger than
GS-convergence of the same sequence. However we can use compactness results from
Riemannian geometry to obtain the following results.

Theorem 4.1 (Precompactness of the leaf function). Let X be a compact d-dimensional
foliation. Then the leaf function of X takes values in a compact subset M of GS which
contains only complete Riemannian manifolds of dimension d. Furthermore smooth and
GS-convergence are equivalent onM.

Proof. We establish in Section 4.8 that there exists r > 0 and a sequence Ck such that
the injectivity radius of all leaves is at least r and the tensor norm of k-th derivative of
the curvature tensor of any leaf is at most Ck.

Hence all leaves belong to the set M of (isometry classes of) pointed complete d-
dimensional Riemannian manifolds with geometry bounded by (r, {Ck}) (see Section 4.4).

We establish in Theorem 4.11 that M is GS-compact and that a sequence in M
converges smoothly if and only if it GS-converges.

Corollary 4.2. If xn is a sequence converging to a point x in a compact foliation X and
the sequence of leaves Lxn GS-converges to a pointed metric space M then, in fact, M is
a smooth complete Riemannian manifold and Lxn converges smoothly to M . In particular
if M is compact then Lxn is diffeomorphic to M for all n large enough.

By a Riemannian covering we mean a pointed local isometry f : M → N between
complete pointed Riemannian manifolds. If such a covering exists we say that M is a
Riemannian covering (or just a covering) of N and that N is covered by M . See Section
4.9 for the definition of the holonomy covering of a leaf.

Theorem 4.3 (Semicontinuity of the leaf function). Let X be a compact foliation and xn
be a sequence converging to a point x ∈ X. If the sequence of leaves Lxn GS-converges to
a pointed Riemannian manifold M then M is a Riemannian covering space of Lx and is
covered by L̃x

hol.

Proof. By Theorem 4.1 the leaf function takes values in a compact subspace of GS where
Gromov-Hausdorff and smooth convergence are equivalent. Hence M is a complete Rie-
mannian manifold and the sequence converges smoothly to M .

By smooth convergence (see Section 4.7), for each r > 0 there is a sequence of pointed
embedding fn,r : Br(oM )→ Lxn (defined for n large enough) such that |f∗n,rgLxn − gM |gM
converges uniformly to 0 on Br(oM ). We show in Lemma 4.34 that this implies that
the maps fn,r have a subsequence which converges locally uniformly to a local isometry
fr : Br(oM )→ Lx.

Now consider the family of functions fr : Br(oM )→ Lx when r → +∞. Since all these
functions are local isometries one obtains a local isometry f : M → Lx as a the uniform
limit on compact subsets frk for some subsequence rk → +∞. Hence M is a Riemannian
covering of Lx via the covering map f .

Suppose that for some pair of distinct points x, y ∈ M one has f(x) = f(y) and let
α : [0, 1] → M be a curve joining x and y. Take r > 0 large enough so that Br(oM )
contains α([0, 1]) and let fn,r : Br(oM ) → Lxn be a sequence of embeddings as above
which converges locally uniformly to f on Br(oM ).

Since each fn,r is injective and the pullback metrics converge to gM the leafwise distance
between fn,r(x) and fn,r(y) is bounded below by a positive constant for n large enough.



84 Chapter 4. The leaf function of compact foliations

However since fn,r ◦ α converges uniformly to f ◦ α we obtain that the holonomy along
the closed curve f ◦ α is non-trivial (see Corollary 4.31).

We have established that any closed curve in Lx having a lift under f which is not
closed has non-trivial holonomy. In particular the lift of any curve with trivial holonomy
in Lx is closed inM and hence the image of the fundamental group ofM under f contains
the subgroup of curves with trivial holonomy. By the classification of covering spaces (see
Lemma 4.27) L̃x

hol is a Riemannian cover of M .

4.3.2 Applications to continuity and Reeb stability

The main result of [EMT77] is that in any foliation the set of leaves without holonomy is
residual. Combined with Theorem 4.3 we obtain that the leaf function is continuous on a
residual set. Potential applications of this result to the study of quasi-isometry invariants
of leaves are discussed by Álvarez and Candel in [ÁC03, Section 2].

Corollary 4.4 (Álvarez-Candel continuity theorem). The leaf function of any compact
foliation is continuous on the set of leaves without holonomy. In particular the set of
continuity points contains a residual set.

Smooth convergence of a sequence to a compact manifold implies that the sequence
elements are eventually diffeomorphic to the limit. Combined with Theorem 4.3 one
obtains Reeb’s local stability theorem (see [Ree47, Theorem 2]).

Corollary 4.5 (Reeb’s local stability theorem). Let X be a compact foliation and x ∈ X
be such that L̃x is compact. Then there exists a neighborhood U of x such that L̃y is
diffeomorphic to L̃x for all y ∈ U .

The same argument gives the usual generalization of Reeb’s stability theorem to com-
pact leaves with trivial or finite holonomy (see for example [CLN85, pg. 70]).

Corollary 4.6 (Stability of compact leaves with finite holonomy). Let X be a compact
foliation and x ∈ X be such that L̃x

hol is compact. Then there is a neighborhood U of x
such that for each y ∈ U the leaf Ly is compact and diffeomorphic to a covering space of
Lx.

We say X is a foliation by compact leaves if all leaves are compact. The volume
function of such a foliation is the function

x 7→ vol (Lx)

associating to each leaf its volume (which is finite). Since a Riemannian covering has
larger volume then the space it covers one obtains the following.

Corollary 4.7 (Volume function semicontinuity). Let X be a compact foliation by compact
leaves. Then the volume function of X is lower semicontinuous.

Notice that since any sequence of leaves has a smoothly convergent subsequence we
obtain the following part of Epstein’s structure theorem (see [Eps76, Theorem 4.3]).

Corollary 4.8 (Epstein). Let X be a compact foliation by compact leaves whose volume
function is bounded. Then every point x ∈ X has a neighborhood U such that for all y ∈ U
the leaf Ly is diffeomorphic to a finite covering of Lx.
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We say a foliation X has codimension k if it admits an atlas by foliated charts {hi :
Ui → Rd × Ti, i ∈ I} with Ti = Rk for all i. Under this hypothesis X is automatically a
topological manifold.

Notice that any holonomy transformations of a codimension one foliation will be a
homeomorphism between two open subsets of R. We say a codimension one foliation is
transversally orientable if every holonomy transformation associated to a closed chain of
compatible charts is increasing.

The following elementary lemma implies that in a transversally oriented codimension
one foliation by compact leaves all leaves have trivial holonomy (here we denote by fn(x) =
f(f(· · · f(x) · · · )) the n-th iterate of the point x under the function f and notice that in
order for it to be well defined fk(x) must belong to the domain of f for all k = 0, . . . , n−1):

Lemma 4.9. Let h : U → V ⊂ R be an increasing homeomorphisms between two neigh-
borhoods of 0 ∈ R such that h(0) = 0. Then either h is the identity map or there exists
x ∈ U and f = h±1 such that the set {fn(x) : n ≥ 0} is well defined and infinite.

Epstein established in [Eps72] that a flow on a 3-manifold for which all orbits are
periodic has the property that the periods are bounded. This was later generalized to
state that compact codimension two foliations by compact leaves have bounded volume
functions (see [EMS77]). Notice that these results are very subtle since they are false
for foliations of codimension 3 or more (see [EV78]). The codimension one case follows
directly from our results and the above elementary lemma.

Corollary 4.10. Let X be a connected compact transversally oriented codimension one
foliation. Then the leaf function of X is continuous. In particular all leaves are diffeo-
morphic and the volume function is continuous.

For tranversally oriented codimension one foliations of connected manifolds Reeb’s
local stability combines with properties of one dimensional dynamics in the spirit of the
lemma above to yield Reeb’s global stability theorem (see [Ree47, Theorem 3] and [CLN85,
pg. 72]) which states that if a leaf has a compact universal cover than all leaves are
diffeomorphic.

In view of these results one might conjecture that the set of leaves with compact
universal cover, besides being open, is always closed. However this is false as shown by
the Reeb transition example given in Section 4.2.5. We will now discuss some aspects of
this example.

The fact that in the Reeb transition there must be spheres with arbitrarily large volume
follows from Corollary 4.4 and the smooth convergence given by Theorem 4.1. To see this
consider a sequence of points xn belonging to compact leaves which converge to a point
x whose leaf is non-compact and notice that the sequence of manifolds Lxn smoothly
converge to Lx.

Consider now in the same example a sequence xn on spherical leaves which converges to
a point x on the single torus leaf. By Theorem 4.3 any smooth limit point of the sequence
Lxn must either be a finite covering of the torus Lx or the cylinder L̃x

hol. The first case
is impossible because convergence to a compact limit would imply that the manifolds in
the sequence Lxn are eventually diffeomorphic to the limit manifold which would have to
be a torus. Hence the sequence of spheres Lxn converges smoothly to the cylinder L̃x

hol.
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4.4 Uniformly bounded geometry

In this section we prove that certain subsets of GS consisting of manifolds with ‘uniformly
bounded geometry’ are compact and that furthermore smooth and GS-convergence coin-
cide on them. This result was used in the proof of Theorem 4.1.

4.4.1 Spaces of manifolds with uniformly bounded geometry

We say a complete d-dimensional Riemannian manifold has geometry bounded by r > 0
and a sequence Ck if the injectivity radius ofM is at least r at all points and the curvature
tensor of M satisfies

|∇kR| ≤ Ck

for all k, where ∇ denotes the covariant derivative and we are using the tensor norms
induced by the Riemannian metric.

We useM (d, r, {Ck}) to denote the subset of GS consisting of all isometry classes of
d-dimensional complete pointed Riemannian manifolds with geometry bounded by r and
the sequence Ck.

An element ofM (d, r, {Ck}) is represented by a triplet (M, oM , gM ) and two triplets
represent the same element if there is a pointed isometry between them. We will sometimes
write M ∈ M (d, r, {Ck}) in which case it is implied that the basepoint will be denoted
by oM and the Riemannian metric by gM .

4.4.2 A smooth compactness theorem

Usually GS-convergence of a sequence of manifolds is much weaker than smooth con-
vergence. However we will show they are equivalent on sets of manifolds with uniform
bounded geometry.

To understand this it might be helpful to consider the following fact: Let F be a C1

compact family of functions from the interval [0, 1] to R. Then if a sequence fn in F
converges uniformly to a limit f , in fact f ∈ F and the derivatives f ′n converge uniformly
to f ′.

The proof can also be thought of as an application of the fact that a continuous bijective
function whose domain is compact has a continuous inverse (in the setting of the previous
paragraph the domain would be F with the C1-topology the codomain would be the same
set with the C0-topology and function would be the identity). The difficulty in our case is
in establishing compactness of the domain plus a subtle technical point which is discussed
immediately after the proof.

We will now state the main result of this section.

Theorem 4.11. Let M = M (d, r, {Ck}) for some choice of dimension d, radius r, and
sequence Ck. Then M is a compact subset of GS on which GS-convergence and smooth
convergence are equivalent.

Proof with gap. The proof rests on the following facts

1. The setM is precompact with respect to smooth convergence.

2. The setM is closed under smooth convergence.

3. Smooth convergence implies pointed Gromov-Hausdorff convergence.
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We will establish facts 1 and 2 in sections 4.5 and 4.6 respectively.

Fact 3 is generally accepted (e.g. see [Pet06, Section 10.3.2] and [BBI01, Section 7.4.1])
but we include a proof in the next subsection for completeness.

Using these facts the proof proceeds as follows.

Given a sequenceMn inM we may, using smooth precompactness, extract a smoothly
convergent subsequence Mnk with limit M . SinceM is closed under smooth convergence
we have M ∈ M. Finally, since smooth convergence implies pointed Gromov-Hausdorff
convergence one has

lim
n→+∞

dGS(Mnk ,M) = 0.

This establishes thatM is a compact subset of GS.

Suppose now that some sequenceMn inM converges in the pointed Gromov-Hausdorff
sense to M ∈ M. Since any subsequence of Mn will have a further subsequence which
converges smoothly and any smooth limit must in fact coincide with M we obtain that
the original sequence Mn converges smoothly to M .

There is a gap in the above proof which is illustrated by the following example (see
Figure 4.6).

Consider the sequence of functions indexed on finite strings of zeros and ones defined
by

fa1...ar : [0, 1]→ R

fa1...ar(x) =

 1 if
r∑

k=1
ak2−k < x < 2−r +

r∑
k=1

ak2−k.

0 otherwise.

The sequence does not converge Lebesgue almost surely to any function. However any
subsequence has a further subsequence which converges almost surely to 0. In particular
the arguments in our proof above would imply that L2 convergence and almost sure
convergence coincide on the set of functions {0} ∪ {fa1...ar} but this conclusion is false.

To exclude this type of behavior it suffices to show that smooth convergence comes
from a topology. We do this in Section 4.7.
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Figure 4.6: Six elements of a sequence of functions which does not converge almost surely
to 0 but has no other limit points.

4.4.3 Smooth vs Gromov-Hausdorff convergence

For the readers convenience we present a proof of the fact that smooth convergence is
stronger than GS-convergence. The key ideas are contained in the proof of part 2 of
[BBI01, Theorem 7.3.25] and the indications given in Section 7.4.1 of the same reference.

Lemma 4.12. If a sequence (Mn, on, gMn) converges smoothly to (M, o, g) then it also
GS-converges to the same limit.

Proof. We must show that for each r > 0 the sequence of pointed compact metric spaces
Br(on) (where the metric is inherited from Mn) converges in the Gromov-Hausdorff sense
to Br(o).

By smooth convergence (see Section 4.7) given r > 0 there exists a sequence of smooth
pointed embeddings fn : B3r(o) → Mn with the property that the pullback metrics gn =
f∗ngMn satisfy

an = sup{|gn(x)− g(x)|g : x ∈ B3r(o)} → 0

when n→ +∞.
Notice that whenever an = 0 one has that Br(o) is isometric to Br(on) via fn so that

there is nothing to prove. Hence we may assume without loss of generality in what follows
that an 6= 0. Also, since we are only interested in behavior when n→ +∞ we may assume
that an < 1.

Let d be the Riemannian distance of M and dn be the pullback under fn of the
Riemannian distance on Mn. Since the shortest curve between fn(x) and fn(y) might in
principle exit fn(B3r(o)) it is not necessarily true that dn equals the distance on B3r(o)
induced by the metric gn.
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However notice that if v is a tangent vector in B3r(o) of unit norm for g then

|gn(v, v)− 1| ≤ an

so that the gn norm of v is between (1 − an)1/2 and (1 + an)1/2. This implies that the
gn-length of any curve in B3r(o) is within a multiplicative factor b±1

n of its g-length where
bn = max

(
(1− an)−1/2, (1 + an)1/2

)
. In particular, for n large enough, the Riemannian

distance induced by gn on B3r(o) coincides with dn when restricted to Br(o).
The previous comparison of lengths of curves also implies for n large that

|dn(x, y)− d(x, y)| ≤ (bn − 1)d(x, y) ≤ 2r(bn − 1)

for all x, y ∈ Br(o) (the first inequality relies on the fact that 1 − b−1
n ≤ bn − 1 which is

true since bn ≥ 1).
Following the proof of part 2 of [BBI01, Theorem 7.3.25] we consider for each n the

distance d̃n on the disjoint union Br(o) t Br(o) which coincides with d on the left-hand
copy, with dn on the right-hand copy and for x, z in different copies is defined by

d̃n(x, z) = inf
{
d(x, y) + 2r(bn − 1) + dn(y, z) : y ∈ Br(o)

}
.

The Hausdorff distance between the two copies of Br(o) with the above defined distance
is less than 3r(bn−1) and therefore goes to 0 when n→ +∞. This shows that the Gromov-
Hausdorff distance between Br(o) and fn(Br(o)) (the later inheriting its metric from Mn)
converges to 0 when n→ +∞.

To conclude it suffices to establish that the Hausdorff distance (with respect to the
Riemannian distance on Mn) between fn(Br(o)) and Br(on) goes to 0 when n → +∞.
This follows from our comparison of d and dn since fn(Br(o)) contains the ball of radius
b−1
n r and is contained in the ball of radius bnr centered at on.

4.5 Smooth precompactness
In this section we prove that sets of manifolds with uniformly bounded geometry are
precompact with respect to smooth convergence. This was used in the proof of Theorem
4.11.

We recall (see [Pet06, Chapter 10] and Section 4.7) that, in similar fashion to the def-
inition of smooth convergence, a sequence of complete Riemannian manifolds (Mn, on, gn)
is said to converge Ck to (M,o, g) if for each r > 0 there exists a sequence of smooth
pointed embeddings fn : Br(o)→Mn (defined for large enough n) such that the pullback
metrics f∗ngn converge Ck to g on compact subsets of Br(o).

Lemma 4.13. All subsets of GS of the form M = M (d, r, {Ck}) are sequentially pre-
compact with respect to smooth convergence.

Proof. For each M ∈ M we consider the atlas A by normal coordinates on the balls of
radius r′ given by Lemma 4.16 below.

A theorem of Eichhorn (see Lemma 4.15 below) shows that there exists a sequence Cknor
such that all the metrics on Br′ obtained from such coordinates have coefficients which
satisfy

|∂i1 · · · ∂ikgij | ≤ C
k
nor

for all choices of indices i1, . . . , ik.
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Furthermore we establish in Lemma 4.16 that there is a sequence Cktran bounding the
k-th order partial derivatives of the transition maps of any such atlas A and that the
Euclidean and Riemannian norms on Br′ differ at most by a multiplicative factor of 2±1/2.

This shows that for each k there exists Q such that all manifold inM have Ck norm
less than or equal to Q on a scale of r in the sense of Petersen (see the definition in
subsection 4.5.1 below).

Applying Petersen’s compactness theorem (see Theorem 4.14 below) one obtains that
M is Ck precompact for all k, and hence smoothly precompact as claimed.

4.5.1 Norms and sequential compactness

Following [Pet06, Chapter 10.3.1] (taking, for simplicity, α = 1 in his notation) we say
that a manifold M has Ck-norm less than or equal to Q on a scale of r if there exists an
atlas A of M which satisfies the following properties:

1. Every ball of radius e−Qr/10 is contained in the domain of some chart in A.

2. For each chart ϕ ∈ A one has |Dϕ| ≤ eQ and |Dϕ−1| ≤ eQ, where Dϕ is the tangent
map to the chart and one uses the operator norm between the tangent space of M
with the Riemannian metric and Euclidean space with the usual Euclidean metric.

3. For each chart ϕ ∈ A and each 0 ≤ i ≤ k the partial derivatives of order i of the
coefficients of ϕ∗gM are Q/(ri+1)-Lipschitz.

4. For each ϕ1, ϕ2 ∈ A the Ck+2-norm (i.e. sum of suprema of absolute values of all
partial derivatives up to order k + 2) of the transition map ϕ2 ◦ ϕ−1

1 is less than or
equal to (10 + r)eQ.

We now restate Petersen’s [Pet06, Theorem 72] as we will use it.

Theorem 4.14 (Petersen). For any positive constants r and Q the class of pointed, com-
plete, d-dimensional Riemannian manifolds with Ck-norm less than or equal to Q on a
scale of r is sequentially compact with respect to Ck convergence.

4.5.2 Normal coordinates

We recall that a normal parametrization of a manifold M ∈M (d, r, {Ck}) at a point p is
a function ψ : Rd →M satisfying

ψ(x) = expψ(0) ◦f(x)

where exp : Tψ(0)M → M is the Riemannian exponential map and f : Rd → Tψ(0)M is a
linear isometry between Rd and the tangent space Tψ(0)M at ψ(0).

If M ∈ M (d, r, {Ck}) then any normal parametrization ψ is a diffeomorphism when
restricted to the ball Br of radius r centered at 0 ∈ Rd. Hence the pullback g = ψ∗gM of
the Riemannian metric of M to Br is also a Riemannian metric (i.e. non-degenerate).

We recall that the coefficients of a metric g defined on some open subset of Rd are the
functions

x 7→ g(x)(ei, ej) = gij(x)

where e1, . . . , ed is the canonical basis of Rd.
The coefficients obtained in this manner from manifolds inM (d, r, {Ck}) are uniformly

Ck bounded as is shown by the following lemma (see [Eic91, Corollary 2.6]).
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Lemma 4.15 (Eichhorn). Given M = M (d, r, {Ck}) for each k ≥ 0 there exists a
constant Cknor such that if g = ψ∗gM is a metric on Br obtained by pulling back the metric
of some manifold M ∈M via a normal parametrization ψ then one has:

|∂i1 · · · ∂ikgij | ≤ C
k
nor

for all indices i, j, i1, . . . , ik.

4.5.3 Transition maps

This subsection is devoted to establishing the following uniform estimate for the derivatives
of transition maps between normal coordinates.

Lemma 4.16. Given M = M (d, r, {Ck}) there exists r′ < r and for each k ≥ 0 a
constant Cktran such that the k-th order partial derivatives of any transition map between
normal coordinates on balls of radius r′ in any manifold M ∈M are bounded in absolute
value by Cktran.

For partial derivatives of order one and two the above result can be compared to
Lemma 3.4 and Lemma 4.3 of [Che70].

The first derivative of the change of coordinates between maximal normal coordinates
based at the north and south pole on the standard two dimensional sphere is not bounded.
This shows that it’s indeed necessary to take r′ < r in the above lemma.

Our proof proceeds in three steps. First we bound the k-th order covariant derivative
of any curve of the form t 7→ x + tv for any metric on the Euclidean ball of radius r′
in Rd obtained by pullback from a normal parametrization of a manifold inM. Second,
we bound the the actual (Euclidean) k-th order derivative of any curve whose covariant
derivatives satisfy the previously obtained bounds (the point here being that covariant
derivatives are invariant under the transition maps). Finally, combining the preceding
result one obtains a bound for the k-th derivative of any transition map along any straight
line which implies the same bound is satisfied for the partial derivatives of order k (this
amounts to the statement that a symmetric k-linear function attains its maximum norm
on the diagonal, see [Wat90] for a proof).

To begin we recall that the Christoffel symbols of a metric on an open subset of Rd
with coefficients gij are given by

Γkij = 1
2g

kl (∂jgil + ∂iglj − ∂lgij)

where gij are the coefficients of the inverse of the matrix (gij) and summation is implied
over the repeated indices of each term.

In what follows we use Bs for the open Euclidean ball of radius s centered at 0 ∈ Rd.

Lemma 4.17. GivenM =M (d, r, {Ck}) there exists r′ < r and for each k ≥ 0 a constant
C ′k such that for any metric g on Br′ obtained by pullback from a normal parametrization
of a manifold M ∈M one has:

1. The k-th order partial derivatives of the metric coefficients gij, the coefficients of the
inverse matrix gij, and the Christoffel symbols Γlij, are bounded in absolute value by
C ′k for all k.

2. For all v ∈ Rd and x ∈ Br′ one has 2−1|v| ≤ |v|g(x) ≤ 2|v| where |v| is the Euclidean
norm of v and |v|g(x) its norm with respect to the inner product g(x).
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Proof. Notice that for any of the coefficients gij under consideration one has (gij(0)) = (δij)
where the right-hand side is the d× d identity matrix. Let K be a compact neighborhood
of the identity matrix such that any inner product whose matrix of coefficients (i.e. the
matrix whose entry in the i-th row and j-th column is the inner product between the i-th
and j-th vectors of the canonical basis of Rd) is in K satisfies property 2 above.

Since one has a uniform bound C1
nor (given by Lemma 4.15) for the first order deriva-

tives of gij on Br there exits r′ < r (depending only on this C1
nor) such that for all the

metrics under consideration (gij(x)) belongs to K for all x ∈ Br′ .
By Lemma 4.15 one has uniform bounds on the partial derivatives of the metric co-

efficients gij on Br (and in particular on Br′). Combining this with the fact that matrix
inversion is smooth on K one obtains uniform bounds for the partial derivatives of all
orders of the inverse matrix (gij) on Br′ . From this one can bound the partial derivatives
of the Christoffel symbols as well.

The covariant derivative of a vector field v(t) over a curve x(t) in Rd with respect to
a metric with Christoffel symbols Γkij is given by

∇x′v = v′ + Γkij(xi)′vjek (4.1)

where a superscript i denotes the i-th coordinate and ′ denotes derivative with respect to
t. We convene that ∇0

x′v(t) = v(t) and define inductively ∇k+1
x′ v(t) = ∇x′∇kx′v(t).

Lemma 4.18. FixM =M (d, r, {Ck}) and let C ′k and r′ be given by Lemma 4.17. There
exists a sequence C ′′k such that for any metric g on Br′ obtained by pullback from a normal
parametrization of a manifold M ∈M and any curve of the form

x(t) = x0 + tv

where x0 ∈ Br′ and |v| = 1 one has

|∇kx′x′|g ≤ C ′′k

for all k ≥ 0.

Proof. From Lemma 4.17 the Riemannian norm of v is bounded by 2 at all points in Br′ .
This shows that one can take C ′′0 = 2.

In order to bound the higher order covariant derivatives define inductively

v2(t) = ∇x′v = vivjΓkijek

and
vn+1(t) = ∇x′vn(t) = v′n + vivjnΓkijek.

Since the coordinates vi of v are constants of absolute value less than or equal to 1 the
Euclidean norm of vn+1 can be bounded in terms of that of vn and the derivatives of the
Christofell symbols. This is possible and is equivalent to bounding the Riemannian norm
due to Lemma 4.17.

We denote by x(k)(t) denote the k-th (Euclidean) derivative of a curve in Rd.
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Lemma 4.19. FixM =M (d, r, {Ck}) and let C ′′k and r′ be given by Lemma 4.17. There
exists a sequence C ′′′k such that for any metric g on Br′ obtained by pullback from a normal
parametrization of a manifold M ∈M and any curve x(t) satisfying

|∇kx′x′|g ≤ C ′′k

for all k ≥ 0 one has
|x(k)(t)| ≤ C ′′′k

for all k ≥ 0.

Proof. By Lemma 4.17 the Euclidean and Riemannian norms differ at most by a factor of
2±1/2.

In particular one can take C ′′′0 = 2C ′′0 and the Euclidean norm of

∇x′x′ = x′′ + Γkij(xi)′(xj)′ek

is bounded by 2C ′′1 .
Since one has |x′| ≤ 2C ′′0 one obtains from the last equation a bound for |x′′|.
The higher order case follows by induction since there is a single term in ∇kx′x′ which

is equal to x(k+1) and the rest can be bounded in terms of lower order derivatives of x and
the derivatives of the Christoffel symbols.

We now complete the final step for the proof of Lemma 4.16.

Lemma 4.20. Let f : U ⊂ Rd → Rd be a smooth function satisfying

|g(k)(0)| ≤ C ′′k

for all k ≥ 0 and g of the form g(t) = f(x + tv) with |v| = 1 and x ∈ U . Then for all
x ∈ U one has

|∂i1 · · · ∂ikf(x)| ≤ C ′′k

for all k ≥ 0 and i1, . . . , ik ∈ {1, . . . , d}.

Proof. Define inductively

Dxf(v) = lim
h→0

f(x+ hv)− f(x)
h

D2
xf(v1, v2) = lim

h→0

Dx+hv1f(v2)−Dxf(v2)
h

Dk+1
x f(v1, . . . , vk+1) = lim

h→0

Dk
x+hv1

f(v2, . . . , vk+1)−Dk
xf(v2, . . . , vk+1)

h
.

Letting P kx f(v) = Dk
xf(v, . . . , v) we have by hypothesis and multilinearity that |P kx f(v)| ≤

C
′′
k |v|k.
Since partial derivatives commute the multilinear function Dk

xf : (Rd)k → Rd is sym-
metric and P kx f determines Dk

xf by polarization. This implies a bound for the mixed
partial derivatives, and in fact one has |Dk

xf(v1, . . . , vk)| ≤ C
′′
k |v1| · · · |vk| as shown in

[Wat90].
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4.6 Curvature and injectivity radius
In this section we prove that sets of manifolds with uniform bounded geometry are closed
with respect to smooth convergence. This was used in the proof of Theorem 4.11.

Lemma 4.21. SupposeM =M (d, r, {Ck}) for some value of the parameters. If (Mn, on, gn)
is a sequence inM converging smoothly to (M,o, g) then M ∈M.

Proof. The fact that the injectivity radius ofM is larger than or equal to r follows because
the injectivity radius is upper semicontinuous with respect to smooth convergence as we
will show in the next subsection (see Lemma 4.22).

We will now establish that M satisfies the curvature bounds

|∇kR|g ≤ Ck.

Let (gij) be the matrix of coefficients of a metric g on an open subset of Rd and (gij)
the inverse matrix. The g norm of a (p, q) tensor field 1

T = a
iq+1,...,ip+q
i1,...,iq

ei1 ⊗ · · · ⊗ eiq ⊗ eiq+1 ⊗ · · · eip+q

(where we denote by ei the canonical basis and ei the dual basis of Rd) is given by

|T |2g = a
iq+1,...,ip+q
i1,...,iq

a
jq+1,...,jp+q
j1,...,jq

gi1j1 · · · giqjqgiq+1jq+1 · · · gip+qjp+q .

The curvature tensor of g is the (1, 3)-tensor field R = Rlijke
i ⊗ ej ⊗ ek ⊗ el given by

(e.g. see [Bre10, Section 5])

Rlijk = ∂jΓlki − ∂kΓljk + ΓkjmΓmki − ΓlkmΓmji

where the Christoffel symbols Γkij are defined by

Γkij = 1
2g

kl(∂igil + ∂jgjl − ∂lgij).

Since matrix inversion is smooth the two formulas above prove that if a sequence of
metrics gn converges uniformly on compact sets to g then the norm of their curvature
tensors converge pointwise to that of g.

Similarly, for each k the covariant derivative ∇kR is a (1, 3 + k)-tensor field whose
coefficients are smooth functions of the partial derivatives of the coefficients gij and gij .
This shows that the bound |∇kR| ≤ Ck passes to the limit when a sequence of manifolds
converges C∞ to another. Hence one has that the limit manifold M of the the sequence
Mn also satisfies these bounds.

4.6.1 Semicontinuity of the injectivity radius

Continuity of the injectivity radius with respect to a varying family of metrics on a single
compact manifold was established in [Ehr74] and [Sak83].

The injectivity radius is not continuous under smooth convergence of pointed manifolds
as can be seen by considering a metric g on R2 which has finite injectivity radius but is
flat outside of a compact set. In this setting the sequence of pointed manifolds (R2, xn, g)

1. In all tensor calculations we use the convention that summation is implied over indices which are
repeated in a term
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will smoothly converge to R2 endowed with the Euclidean metric if xn → ∞ when n →
+∞. Hence we have a sequence of manifolds with finite and constant injectivity radius
converging to a manifold whose injectivity radius is infinite.

Figure 4.7: An asymptotically flat surface with finite injectivity
radius. Changing the basepoint gives an sequence converging to a
limit whose injectivity radius is infinite.

However, upper semicontinuity still holds as we will now show.

Lemma 4.22 (Semicontinuity of the injectivity radius). The injectivity radius is upper
semicontinuous with respect to smooth convergence.

Proof. Suppose for the sake of contradiction that there is a sequence (Mn, on, gn) with
the injectivity radius of each term larger than or equal to some r > 0 which converges
smoothly to a manifold (M,o, g) whose injectivity radius is strictly less than r.

By Proposition 19 and Lemma 14 of [Pet06, pg. 139-142], there exists a geodesic
α : [0, 1]→M of length L < r and some other smooth curve β : [0, 1]→M with the same
endpoints with length L′ < L.

By the definition of smooth convergence there is an open set Ω containing α([0, 1]) and
β([0, 1]) and a sequence of pointed embeddings fn : Ω → Mn such that f∗ngn converges
C∞ to g on compact subsets of Ω.

Consider αn : [0, 1]→M the geodesic for the metric f∗ngn with initial condition α′(0).
We claim that αn(1)→ α(1) and that the f∗ngn length of αn converges to L when n→ +∞.
By covering α([0, 1]) with a finite number of charts and noticing that in each chart the
coefficients of f∗ngn converge C∞ on compact sets to those of g, this follows from continuity
of solutions to ordinary differential equations with respect to the vector field (see [DK00,
Theorem B3, pg. 333]). We omit further details.

Smooth convergence of f∗ngn to g implies that the f∗ngn length of β converges to L′ and
the f∗ngn distance between β(1) and αn(1) converges to 0.

Hence for n large enough the manifold Mn contains a geodesic of length strictly less
than r which is not the shortest curve between its endpoints. By the Hopf-Rinow theorem
we will find two geodesics of length strictly less than r joining the same endpoints in Mn

contradicting the fact that the injectivity radius of Mn is larger than or equal to r.
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4.7 Smooth convergence and tensor norms
In this section we discuss in detail the definition of Ck and smooth convergence of pointed
Riemannian manifolds. In particular we provide a coordinate free definition of convergence
in terms of tensor norms and prove that it is equivalent to definition given in [Pet06,
Chapter 10.3.2].

We also establish that Ck and smooth convergence on certain subsets of GS comes
from a topology, a fact that was used in the proof of Theorem 4.11.

4.7.1 Coordinate free definition of convergence

Following [Pet06, 10.3.2] a sequence (Mn, on, gn) of pointed connected complete Rieman-
nian manifolds is said to converge Ck to (M,o, g) if for every r > 0 there exists a domain Ω
containing Br(o) and (for n large enough) a sequence of pointed embeddings fn : Ω→Mn

such that fn(Ω) ⊃ Br(on) and f∗ngn converges Ck to g on compact subsets of Ω. Smooth
convergence is by definition Ck convergence for all k.

Recall that the coefficients of a Riemannian metric g defined on an open subset U of
Rd are the functions

x 7→ g(x)(ei, ej) = gij(x)

where e1, . . . , ed is the canonical basis of Rd.
By Ck convergence of f∗ngn to g on compact subsets of Ω we mean that for any smooth

parametrization h : U → V ⊂ Ω the coefficients of the metrics h∗f∗ngn converge to those
of h∗g in the Ck topology on every compact subset of U .

To see that the restriction to compact subsets of U is necessary consider the sequence
of Riemannian metrics gn on the open interval (0, 1) defined by

gn(x)(v, w) = ex/nvw.

The sequence of coefficients x 7→ ex/n in this example converges uniformly to the
coefficient of the metric g on (0, 1) given by

g(x)(v, w) = vw

however taking pullback under the diffeomorphism h : (0, 1)→ (0, 1) defined by h(x) = xα

one obtains
h∗gn(x)(v, w) = ex

α/nα2x2(α−1)vw

so that taking for example α = 1/2 one sees that uniform convergence of the sequence of
coefficients no longer holds.

We now present a coordinate free definition of Ck convergence.
For this purpose we recall that a (p, q) tensor on a vector space V is an element of

(V ∗)⊗q⊗V ⊗p. If g is an inner product on V then g induces an inner product and norm on
the space of (p, q) tensors. This inner product can be defined by taking any g-orthonormal
basis v1, . . . , vd of V , considering the dual basis v1, . . . , vd, and declaring that the tensors
of the form vi1 ⊗ · · · viq ⊗ vi1+q ⊗ · · · ⊗ vip+q are orthonormal.

In particular given a Riemannian manifold (M, g) and a (p, q) tensor field T one can
consider the tensor norm |T (x)|g of the tensor T (x) over the tangent space TxM with
respect to the inner product g(x).

Lemma 4.23 (Characterization of convergence). A sequence (Mn, on, gn) of pointed con-
nected complete Riemannian manifolds converges Ck to (M,o, g) if and only if for each
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r > 0 there exists a sequence of pointed embeddings (defined for n large enough) fn :
Br(o)→Mn such that

lim
n→+∞

sup{|∇i(f∗ngn − g)(x)|g : x ∈ Br(o), i = 0, . . . , k} → 0

where ∇ denotes the covariant derivative corresponding to the Riemannian metric g (in
particular for i 6= 0 one has ∇ig = 0).

Proof. Assume first that a sequence (Mn, on, gn) in M converges Ck to (M,o, g) and fix
r > 0.

By definition of Ck convergence there exists a domain Ω ⊃ B2r(o) sequence of pointed
embeddings fn : Ω → Mn such that f∗ngn converges Ck on compact sets of Ω to g. This
means that in any local chart the coefficients of f∗ngn will converge Ck on compact sets to
those of g. By Lemma 4.25 below this implies |∇i(f∗ngn − g)| → 0 uniformly on compact
subset of B2r(o) for i = 0, . . . , k. In particular since Br(o) is compact one has

lim
n→+∞

sup{|∇ign(x)−∇ig(x)|g : x ∈ Br(o), i = 0, . . . , k} → 0

as claimed.
We will now prove the converse claim.
Given r we must obtain a sequence of embeddings fn of an open set Ω ⊃ Br(o) into

Mn such that fn(Ω) ⊃ Br(on) and f∗ngn converges Ck to g on compact sets. We will show
that one can take Ω = B2r(o).

By hypothesis there exists a sequence of pointed embeddings fn : B2r(o) → Mn such
that |∇i(f∗ngn − g)| → 0 uniformly for i = 0, . . . , k. By Lemma 4.25 below this implies
that f∗ngn converges Ck to g on compact subsets of B2r(o).

We must now establish that fn(B2r(o)) ⊃ Br(on) for all n large enough.
To see this let v1, . . . , vd be a g-orthonormal basis of the tangent space TxM at a point

x ∈ B2r(o) and v1, . . . , vd the dual basis. One has f∗ngn(x) = aijv
i ⊗ vj and

|(f∗ngn − g)(x)|2g =
∑
i,j

(aij − δij)2

where (δij) is the identity matrix.
For all n large enough the left-hand side above will be small enough to guarantee that

a11 = f∗ngn(x)(v1, v1) = |v1|2f∗ngn > 1/4. And, since one can choose any g-orthonormal
basis to calculate the norm above, this implies

1
2 |v|g < |v|f

∗
ngn

for all v ∈ TxM and all x ∈ B2r(o).
In particular for n large enough the f∗ngn length of any curve joining o and the boundary

of B2r(o) will be at least r. So that fn(B2r) ⊃ Br(on) as claimed.

The following consequence was used in the proof of Theorem 4.11.

Lemma 4.24. On any subset of GS of the formM =M (d, r, {Ck}) smooth convergence
is topologizable.
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Proof. We define the k-th order (r, ε)-neighborhood of a manifold M ∈ M as the set of
N ∈M such that there exists a pointed embedding f : Br(oM )→ N satisfying

sup
{
|∇i(gM − f∗gN )(x)|g : x ∈ Br(oM ), i = 0, . . . , k

}
< ε.

By Lemma 4.23 convergence with respect to the topology on M generated by all k-
th order (r, ε)-neighborhoods (for all k ∈ N, r > 0 and ε > 0) coincides with smooth
convergence.

4.7.2 Convergence of tensor fields

We will now complete the calculations in local coordinates needed for the proof of Lemma
4.23.

Recall that the coefficients of a (p, q) tensor field T on an open set of Rd are the
functions

x 7→ T (x)(ei1 , . . . , eiq , eiq+1 , . . . , eip+q).

In what follows we use |T | to denote the Euclidean tensor norm and |T |g to denote the
tensor norm coming from a metric g.

The following result characterizes Ck convergence of the coefficients of such a tensor
on a compact set in a coordinate invariant manner.

Lemma 4.25 (Convergence of tensor fields). Let U be an open subset of Rd, g a Rieman-
nian metric on U , K a compact subset of U , and Tn a sequence of (p, q)-tensor fields on
U . Then the following two statements are equivalent for all k ≥ 0:

1. The coefficients of Tn and their partial derivatives up to order k converge to 0 uni-
formly on K.

2. For each i = 0, 1, . . . , k one has

lim
n→+∞

max
{
|∇iTn(x)|g : x ∈ K

}
= 0.

Proof. Since K is compact and the metric coefficients and Christoffel symbols are smooth
there exist constants C ≥ 1 and Γ > 0 such that

1. The absolute value of the derivatives of the Christoffel symbols up to order k are
bounded by Γ on K.

2. For any tensor field T of type (p, q′) with q ≤ q′ ≤ q + k one has

C−1|T (x)| ≤ |T (x)|g ≤ C|T (x)|

for all x ∈ K.

Notice that, by the existence of the constant C above, if Tn is a sequence of (p, q′)-
tensor fields with q ≤ q′ ≤ q+ k then |Tn(x)| converges to 0 uniformly on K if and only if
|Tn(x)|g does. On the other hand |Tn(x)| is the square root of the sum of squares of the
coefficients of Tn which implies that both the previous statements are equivalent to the
uniform convergence of the coefficients to 0 on K.

In particular, this establishes the case k = 0 of the lemma. We will prove the lemma
by induction on k but first we must establish some basic properties of the coefficients of
∇iTn.
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For this purpose, assuming that T is a (p, q′)-tensor field, observe that the coefficients
of ∇T are obtained from the equation

∇T (Y,X1, . . . , Xp+q′) = ∇Y T (X1, . . . , Xp+q′)−
p+q′∑
i=1

T (X1, . . . ,∇YXi, . . . , Xp+q′)

by substituting elements of the canonical basis for Y,X1, . . . , Xq′ and elements of the dual
basis for Xq′+1, . . . , Xp+q′ .

The first term above is simply the derivative in the direction of the basis vector Y of a
coefficient of T while the other terms are products of the coefficients of T with Christoffel
symbols.

By induction one can establish that for each i one has

1. Each coefficient of ∇iT is the sum of one i-th order partial derivative of a coefficient
of T with products of lower order partial derivatives coefficients of T with partial
derivatives of the Christoffel symbols of order less than or equal to i.

2. Every partial derivative of order i of each coefficient of T appears in at least one of
the aforementioned sums.

Now assume that our lemma is true for k − 1.
If |∇iTn|g converges to 0 uniformly onK for each i ≤ k then by the induction hypothesis

the partial derivatives of the coefficients of Tn up to order k − 1 converge uniformly to
0 on K. Using the properties of ∇kTn established above and the bound Γ on partial
derivatives of the Christoffel symbols it follows that the k-th order partial derivatives of
the coefficients of Tn converge to 0 uniformly on K as well.

Similarly if the partial derivatives up to order k of the coefficients of Tn converge to
0 uniformly on K then by the properties of ∇iTn established above and the bounds on
the Christoffel factors one obtains that the coefficients of ∇iTn converge to 0 uniformly
for each i ≤ k on K. This implies (using the constant C defined above) the claim on
|∇iTn|g.

4.8 Bounded geometry of leaves
We now verify that the leaves of a compact foliation have uniformly bounded geometry.
This was used in the proof of Theorem 4.1.

Lemma 4.26. If X is a compact d-dimensional foliation then there exists r > 0 and a
sequence {Ck : k ≥ 0} such that all leaves belong to the spaceM (d, r, {Ck}).

Proof. We have shown in Section 4.6 that the norm of the k-th covariant derivative of the
curvature tensor is a continuous function of the metric coefficients, the coefficients of the
inverse matrix, and a finite number of their partial derivatives. This implies (by looking
at the leaf metrics in a foliated chart) that this norm is continuous on X and hence has a
global maximum Ck.

Let h : Rd × T → U ⊂ X be a foliated parametrization and for each t ∈ T let gt be
the Riemannian metric on Rd obtained by pullback under x 7→ h(x, t).

Let expx,t denote the exponential map of the metric gt at x (i.e. expx,t : Rd → Rd with
expt(v) = α(1) where α is the gt-geodesic satisfying α(0) = x and α′(0) = v).

By continuity of the solution to an ordinary differential equation with respect to the
vector field (see [DK00, Theorem B3, pg. 333]) one has that (x, t) 7→ expx,t is continuous
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when the codomain is endowed with the topology of Ck convergence on compact subsets
of Rd.

In particular each (x, t) ∈ Rd × T has a neighborhood U on which there is a radius
r > 0 such that the operator norm of the difference between the differential of expy,s and
the identity is less than 1

2 at all points in B2r(0) for all (y, s) ∈ U . This implies that
expy,s−z is a contraction mapping B2r(0) into itself for all z ∈ Br(y). In particular the
injectivity radius of gs at y is at least r.

It follows that each point x ∈ X has a neighborhood on which there is a uniform
positive lower bound for the leafwise injectivity radius at each point. Covering X by a
finite number of these open sets one obtains that there is a global positive lower bound
for the injectivity radius of all leaves.

4.9 Covering spaces and holonomy

In this section we recall some basic facts on Riemannian coverings and provide the defini-
tions and results on holonomy which are relevant for Theorem 4.3.

4.9.1 Riemannian coverings

By a Riemannian covering of a pointed complete connected Riemannian manifold (M, o, g)
we mean a pointed local isometry f : N → M from some pointed complete connected
Riemannian manifold (N, oN , gN ) to M . We sometimes omit the function f and simply
say that N is a Riemannian covering of M (meaning there exists at least one suitable f).

Any covering space N in the sense of [Hat02, Chapter 1.3] can be made a Riemannian
covering by constructing local charts which are compositions of the covering map and the
local charts of the covered manifoldM . Reciprocally any Riemannian covering satisfies the
‘pile of disks’ property for the preimage of balls of radius smaller than half the injectivity
radius of M .

We recall that the fundamental group π1(M) of (M, o, g) is the group of (endpoint
fixing) homotopy classes of closed curves starting and ending at the basepoint o. Any
covering f : N →M induces a morphism f∗ from π1(N) to π1(M).

With these observations we restate [Hat02, Theorem 1.38] and the comment immedi-
ately after about ordering covering spaces as we shall use them.

Lemma 4.27 (Classification of covering spaces). Let (M,o, g) be a pointed complete Rie-
mannian manifold. For each subgroup H of π1(M) there exists a Riemannian covering
f : N → M with f∗(π1(N)) = H and this covering space is unique up to pointed isome-
tries. If two Riemannian coverings N and N ′ correspond to subgroups H ⊂ H ′ then N is
a Riemannian covering of N ′.

The Riemannian covering associated to the trivial subgroup of π1(M) is the universal
covering which we denote by M̃ .

4.9.2 Holonomy covering

Let X be a foliation and hi : Ui → Rd × Ti (where i = 1, 2) be foliated charts.
The charts h1, h2 are said to be compatible if there exists a homeomorphism ψ :

h1(U1 ∩ U2)→ h2(U1 ∩ U2) such that

h2 ◦ h−1
1 (x, t) = (ϕ(x, t), ψ(t))
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for a certain (automatically smooth with respect to x) function ϕ and all (x, t) with
h1(x, t) ∈ U1 ∩ U2. The map ψ is called the holonomy from h1 to h2.

Notice that the Vinyl record foliation of Section 4.2.1 cannot be covered by only two
compatible charts.

By a chain of compatible foliated charts we mean a finite sequence hi : Ui → Rd × Ti
indexed on i = 0, 1, . . . , r of foliated charts such that Ui intersects Ui+1 and hi is compatible
with hi+1 for all i = 0, . . . , r − 1. The chain is closed if hr = h0. The holonomy of the
chain is the map ψr−1,r ◦ · · · ◦ ψ0,1 where ψi,i+1 is the holonomy from hi to hi+1 and we
assume the maximal possible domain for the composition.

A leafwise curve is a continuous function α : [0, 1]→ X whose image is contained in a
single leaf. We say α is covered by a compatible chain of foliated charts {hi, i = 0, . . . , r}
if there exists a finite sequence t0 = 0 < · · · < tr = 1 such that α([ti, ti+1]) ⊂ Ui for all
i = 0, . . . , r − 1 where Ui is the domain of hi.

A closed leafwise curve α : [0, 1] → X is said to have trivial holonomy if there exists
a closed chain of compatible charts {hi : i = 0, . . . , r} covering α whose holonomy map is
the identity on a neighborhood of t ∈ T where t is the second coordinate of h0(α(0)).

The holonomy covering L̃x
hol of a leaf Lx is defined as the Riemannian covering corre-

sponding (via Lemma 4.27) to the subgroup H of homotopy classes of closed curves based
at x in Lx which have trivial holonomy.

To show that this is well defined we must prove that:

1. Each closed leafwise curve admits a covering by a compatible closed chain of foliated
charts.

2. The property of having trivial holonomy does not depend on the choice of covering.

3. The property of having trivial holonomy is invariant under homotopy.

A leaf Lx is said to have trivial holonomy if Lx is isometric to its holonomy cover
(equivalently all leafwise closed curves based at x have trivial holonomy). The fact that
this property does not depend on the basepoint x follows from Lemma 4.32 below, this
lemma also covers item 3 in the above list and shows that the holonomy cover is a normal
covering space (although we will not use this fact).

4.9.3 Trivial holonomy

In this subsection we verify the claims necessary for the definition of the holonomy covering
of a leaf. We also provide a characterization of trivial holonomy which was used in the
proof of Theorem 4.3.

Recall that an atlas of a foliation is simply a collection of foliated charts whose domains
cover the foliation. We say one atlas refines another if the domain of each chart of the
former is contained in the domain of some chart of the later. We call an atlas consisting
of pairwise compatible charts ‘admissible’.

Lemma 4.28. Every atlas of a compact foliation has an admissible refinement.

Proof. Let A be an atlas of a compact foliation X. Since X is compact we may take a
finite subatlas B of A.

Let h : U → Rd × T be a chart in B. Given an open ball D ⊂ Rd and an open subset
S ⊂ T we may construct a chart g : h−1(D × S) → Rd × S by letting g(x) = f(h(x))
where f acts as the identity on the second coordinate and a fixed diffeomorphism between
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D and Rd on the second. We call any such chart a restriction of h and note that any two
restrictions of the same chart are compatible.

Now let hi : Ui → Rd × Ti be charts in B for i = 1, 2. Even if these charts are not
compatible the fact that they are foliated charts implies that each point x in U1 ∩ U2 has
a neighborhood V = h−1

1 (D × S) where D ⊂ Rd is an Euclidean open ball and S is an
open subset of T1, such that

h2 ◦ h−1
1 (y) = (ϕ(y, t), ψ(t))

on h1(V ), where ψ is a homeomorphism between certain open sets in T1 and T2. This
implies that restricting h1 to V one obtains a chart which is compatible with any restriction
of h1 or h2.

Since there are only finitely many charts we may choose for each point x a neigh-
borhood, and a restriction of a certain chart in B to this neighborhood which will be
compatible with (the restrictions of) all charts in B. The collection of such charts gives a
compatible refinement C of A.

From the above result it follows that any closed curve has a covering by a compatible
chain of foliated charts.

We now establish the fact that having trivial holonomy does not depend on the choice
of covering. We recall that the plaques of a foliated chart h : U → Rd × T are the sets of
the form h−1(Rd × {t}).

Lemma 4.29. If α is a leafwise closed curve in a compact foliation X. Then α has trivial
holonomy if and only if for each sequence αn of (possibly non-closed) leafwise curves which
converge uniformly to α and any foliated chart h : U → Rd × T where α(0) ∈ U one has
that αn(0) and αn(1) belong to the same plaque for n large enough.

Proof. Observe that if hi : Ui → Rd × Ti (where i = 1, 2) are compatible foliated charts
and β is a leafwise curve whose image is contained in U1 ∪ U2 then there exists ti ∈ Ti
(i = 1, 2) such that β is in the plaque h−1

i (Rd × {ti}) whenever it is in Ui. Furthermore
t2 = ψ(t1) where ψ is the holonomy between the charts.

By definition α is covered by a closed chain of compatible charts hi : Ui → Rd × Ti
where i = 0, . . . , r and there exist t0 = 0 < · · · < tr = 1 such that α([ti, ti+1]) ⊂ Ui
for all i = 0, . . . , r − 1. Furthermore the holonomy ψ of the chain is the identity on a
neighborhood of the second coordinate of h0(α(0)).

Take ε > 0 such that

1. Any leafwise curve β : [0, 1]→ X at distance less than ε from α one has β([ti, ti+1]) ⊂
Ui for all i = 0, . . . , r − 1.

2. Any point p at distance less than ε from α(0) is of the form h−1
0 (x, t) where ψ(t) = t.

It follows that any leafwise curve at uniform distance less than ε from α will start and
end in the same plaque.

The first observation in the above proof yields the following.

Corollary 4.30. If α is a leafwise closed curve with trivial holonomy in a compact foliation
X. Then any closed chain of compatible charts hi : Ui → Rd×Ti (where i = 0, . . . , r) which
covers α has trivial holonomy in a neighborhood of the second coordinate of h0(α(0)).
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By the leafwise distance between to points on the same leaf Lx we mean the distance
with respect to the Riemannian metric gLx .

The following corollary amounts to the observation that if xn, yn are two sequences
of points converging to the same limit x which belong to the same sequence of plaques
with respect to some chart h covering x, then the leafwise distance between xn and yn
converges to 0.

Corollary 4.31. If a sequence of leafwise curves αn : [0, 1] → X converges uniformly
to a closed leafwise curve α and the leafwise distance between αn(0) and αn(1) does not
converge to 0, then α has non-trivial holonomy.

We say two leafwise curves α, β : [0, 1] → X are leafwise freely homotopic if they
belong to the same leaf L and there exists a continuous function h : [0, 1] × [0, 1] → X
such that t 7→ h(s, t) = hs(t) is a leafwise closed curve in L for all s, h0 = α and h1 = β.

Lemma 4.32. Let X be a compact foliation and α : [0, 1] → X a closed leafwise curve
with trivial holonomy. Then any closed leafwise curve which is leafwise freely homotopic
to α also has trivial holonomy.

Proof. Take an admissible finite atlas A of X and let ε > 0 be the Lebesgue number of the
associated open covering. It follows from Corollary 4.30 that if two closed curves belong to
the same leaf and are at uniform distance less than ε and one of them has trivial holonomy
then they both do.

Letting hs be a homotopy between α and β one can find times s0 = 0 < . . . < sr = 1
such that hsi is at uniform distance less than ε from hsi+1 for all i = 0, . . . , r − 1 from
which the lemma follows.

4.10 Convergence of leafwise functions

In this section we justify the claims on convergence of immersions into foliations which
were used in the proof of Theorem 4.3.

4.10.1 Adapted distances

Let X be a compact foliation. Denote by dL the leafwise distance in X which is defined
by

dL(x, y) =
{
dLx(x, y) if y ∈ Lx.
+∞ otherwise.

where dLx is the Riemannian distance on the leaf Lx.
We call a distance d on X adapted if it metricizes the topology of X and satisfies

d(x, y) ≤ dL(x, y).
Consider a smooth Riemannian manifold X foliated by smoothly immersed leaves each

of which inherits the ambient Riemannian metric (e.g. any example in Section 4.2). The
Riemannian distance between two points x, y ∈ X is the infimum of the lengths of arbitrary
curves connecting them while the leafwise distance is the infimum among leafwise curves.
Hence one clearly has that the Riemannian distance is adapted to the foliation. This
makes the following result plausible.

Lemma 4.33. Every compact foliation has an adapted distance.



104 Chapter 4. The leaf function of compact foliations

Proof. Let X be a compact foliation. We will construct an adapted distance by averaging
pseudodistances obtained by a local construction.

Let h : V → Rd×T be a foliated chart and let gt be the family of Riemannian metrics
on Rd parametrized by t ∈ T obtained by pushforward of the leafwise metrics under h.
Fix a complete distance dT on T and metrizice Rd × T by defining

ρ1((x, t), (x′, t′)) = |x− x′|+ dT (t, t′)

for all (x, t), (x′, t′) ∈ Rd × T .
We observe that becauseX is compact any point in Rd×T has a compact neighborhood,

and it follows that T is locally compact.
Fix (x, t) ∈ Rd × T and consider a precompact open neighborhood S ⊂ T of t. The

family of Riemannian metrics on the Euclidean ball B1(x) of the form gs for s ∈ S is
smoothly precompact. Hence there exists a constant C > 0 such that the gs-length of any
curve between points y, y′ ∈ B1(x) is at least C|y − y′| for all s ∈ S.

For this constant C we choose a continuous function ϕ : Rd × T → [0, C] which is
strictly positive exactly on the set B1(x) × S and zero outside of it and define for all
(y, s), (y′, s′) ∈ Rd × T

ρ2((y, s), (y′, s′)) = inf
{
k−1∑
i=0

ϕ(yi, si) + ϕ(yi+1, si+1)
2 · ρ1((yi, si), (yi+1, si+1))

}

where the infimum is among all k ∈ N and all finite chains in Rd× T with (y0, s0) = (y, s)
and (yk, sk) = (y′, s′).

Because one can reverse a chain and concatenate two of them one obtains that ρ2 is
symmetric and satisfies the triangle inequality. Notice also that ρ2 is zero for any pair of
points not in B1(x)× S.

Now consider (y, s) ∈ B1(x) × S and the function f(y′, s′) = ρ2((y, s), (y′, s′)). By
the triangle inequality f is constant outside of B1(x)× S. Given (y′, s′) 6= (y, s) one may
choose r > 0 such that the ρ1-ball Bρ1,r(y, s) of radius r centered at (y, s) does not contain
(y′, s′) and the values of ϕ on this ball are bounded from below by a positive constant ε.
For any finite chain (yi, si) joining (y, s) and (y′, s′) one may take the first k such that
(yk, sk) /∈ Bρ1,r(y, s) and since ρ1 is a distance one has

k−1∑
i=0

ϕ(yi, si) + ϕ(yi+1, si+1)
2 · ρ1((yi, si), (yi+1, si+1)) ≥ 1

2εr.

Hence f is zero only at (y, s). Combined with the inequality ρ2 ≤ Cρ1 one obtains that
ρ2 is a continuous bounded pseudodistance on Rd × T which is an actual distance when
restricted to B1(x)× S and which is zero on pairs of points not belonging to B1(x)× S.

Hence the pullback of ρ2 to V via h can be extended to a bounded continuous pseu-
dodistance ρ : X ×X → [0,+∞) which is an actual distance when restricted to the open
set U = h−1(B1(x)× S) and which is zero on pairs of points not belonging to this set.

We will now establish that ρ(p, p′) ≤ dL(p, p′) whenever p and p′ are on the same leaf.
The only interesting case (i.e. ρ 6= 0) is if either p or p′ belong to U . Suppose p ∈ U and
let α : [0, 1] → X be the leafwise geodesic of length dL(p, p′) joining p and p′. There are
two cases to consider: either α leaves U or it does not.

If α([0, 1]) ⊂ U then taking β = h ◦ α and setting (y, s) = β(0) and (y′, s′) = β(1)
one obtains that s = s′. Since ρ(p, p′) = ρ2((y, s), (y′, s)) ≤ C|y − y′| which is a lower
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bound for the gs length of any curve joining y and y′ one obtains that ρ(p, p′) ≤ dL(p, p′)
as claimed.

Now suppose that α leaves U and take T ∈ [0, 1) so that β = h ◦ α is well defined on
[0, T ] and β(T ) /∈ B1(x) × S. Setting (y, s) = β(0) and (y′, s′) = β(T ) one obtains once
again that s = s′ and that the gs-length of β is at least C|y − y′| which is larger than
ρ(α(0), α(T )) = ρ2((y, s), (y′, s′)). If p′ /∈ U we are done since ρ(α(T ), p′) = 0. Otherwise
we take T < T2 < 1 so that β2 = h ◦ α is well defined on [T2, 1] and repeat the preceeding
argument to obtain that ρ(p, p′) ≤ ρ(p, α(T )) + ρ(α(T2), p′) is less than the length of α as
claimed.

We have succeeded in constructing for each p ∈ X an open neighborhood U and
a continuous bounded pseudodistance ρ which is an actual distance when restricted to
U × U and which satisfies ρ(q, q′) ≤ dL(q, q′). Covering X with a finite number of such
neighborhoods U1, . . . , Un with associated pseudodistances ρ1, . . . , ρn and setting d(p, q) =
1
n

n∑
i=1

ρi(p, q) one obtains an adapted distance for the foliation X.

4.10.2 Convergence of leafwise immersions

We conclude the section with the following result which was used to proved Theorem 4.3
(recall that a function into a foliation is said to be leafwise if its image is contained in a
single leaf).

Lemma 4.34. Let X be a compact foliation and (M,o, g) be a complete pointed Rie-
mannian manifold. If fn : Br(o) → X is a sequence of leafwise functions such that
|f∗ngLfn(o) − g|g converges to 0 uniformly then there exists a subsequence converging locally
uniformly to a leafwise local isometry f : Br(o)→ X.

Proof. The hypothesis implies that the fn are locally uniformly Lipschitz with respect to
any adapted distance on X. By the Arzelà-Ascoli Theorem there exists a subsequence fnk
which converges locally uniformly to a limit f .

Given x ∈ Br(o) we may consider a foliated parametrization h : Rd×T → U ⊂ X of a
neighborhood of f(x) such that f(x) = h(0, t). For each s ∈ T let gs be the Riemannian
metric on Rd obtained by pullback under z 7→ h(z, s).

Let ε > 0 be such that the gt-ball centered at 0 of radius 2ε is bounded with respect
to the Euclidean metric on Rd, the ball of radius 2ε centered at x is contained in Br(o),
and f(B2ε(x)) is contained in the open set parametrized by h.

We will show that π1 ◦h−1 ◦ f is an isometry from Bε(x) into Rd with the Riemannian
metric gt where π1 : Rd × T → Rd is the projection onto the first coordinate.

For this purpose consider y ∈ Bε(x). The sequences pn = π1 ◦ h ◦ fn(x) and qn =
π1◦h◦fn(y) are eventually well defined and converge to p = π1◦h◦f(x) and q = π1◦h◦f(y)
respectively. Furthermore letting tn be the common coordinate in T of h ◦ fn(x) and
h◦fn(y) one has that the gtn-distance between pn and qn converges to dM (x, y) (dM being
the Riemannian distance onM) 2. Since gtn converges smoothly on compact sets to gt one
has that the gt-distance between p and q equals dM (x, y) as claimed.

2. Here we use the fact that, if n is large enough, the gtn -ball of radius ε is bounded in Rd.
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[Kăı88] V. A. Kăımanovich. Brownian motion on foliations: entropy, invariant measures,
mixing. Funktsional. Anal. i Prilozhen., 22(4):82–83, 1988.

[Kai92] Vadim A. Kaimanovich. Measure-theoretic boundaries of Markov chains, 0-2 laws
and entropy. In Harmonic analysis and discrete potential theory (Frascati, 1991),
pages 145–180. Plenum, New York, 1992.

[Kec95] Alexander S. Kechris. Classical descriptive set theory, volume 156 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 1995.

[Kin68] J. F. C. Kingman. The ergodic theory of subadditive stochastic processes. J. Roy.
Statist. Soc. Ser. B, 30:499–510, 1968.

[Kin73] J. F. C. Kingman. Subadditive ergodic theory. Ann. Probability, 1:883–909, 1973.
With discussion by D. L. Burkholder, Daryl Daley, H. Kesten, P. Ney, Frank
Spitzer and J. M. Hammersley, and a reply by the author.

[KL07] Anders Karlsson and François Ledrappier. Propriété de Liouville et vitesse de
fuite du mouvement brownien. C. R. Math. Acad. Sci. Paris, 344(11):685–690,
2007.

[KL11] Anders Karlsson and François Ledrappier. Noncommutative ergodic theorems. In
Geometry, rigidity, and group actions, Chicago Lectures in Math., pages 396–418.
Univ. Chicago Press, Chicago, IL, 2011.
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