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Abstract. For an algebraic variety X we study the behavior of algebraic functions
from an algebraic variety to the group Bir(X) of birational maps of X and obtain, as
application, some insight about the relationship between the so-called Zariski topology
of Bir(X) and the algebraic structure of this group, where X is a rational variety.

1. Introduction

Let k be an algebraically closed field and denote by Pn the projective space of dimension
n over k. The set Bir(Pn) of birational maps f : Pn 99K Pn is the so-called Cremona
group of Pn. For an element f ∈ Bir(Pn) there exist homogeneous polynomials of the
same degree f0, . . . , fn ∈ k[x0, . . . , xn], without nontrivial common factors, such that if
x = (x0 : · · · : xn) is not a common zero of the fi’s, then f(x) =

(
f0(x) : · · · : fn(x)

)
. The

(algebraic) degree of f is the common degree of the fi’s, and is denoted by deg(f).

A natural way to produce an “algebraic family” of birational maps is to consider a
birational map f = (f0 : · · · : fn) ∈ Bir(Pn) and to allow the coefficients of the fi’s vary in
an affine (irreducible) k-variety T . That is, we consider polynomials f0, . . . , fn ∈ k[T ] ⊗
k[x0, . . . , xn], homogeneous and of the same degree in x and we define ϕ : T → Bir(Pn)
by

ϕ(t,x) =
(
f0(t,x) : · · · : fn(t,x)

)
;

in particular we assume that for all t ∈ T the map ϕt := ϕ(t, ·) : Pn 99K Pn is birational.

As pointed out by Serre in [Ser08, §1.6] there exists an unique topology on Bir(Pn)
which makes any such algebraic family a continuous function, designed in loc. cit as the
Zariski Topology of Bir(Pn). Moreover, we can replace Pn with an irreducible algebraic
variety X of dimension n and the same holds for Bir(X).

The aim of this work is to study the behavior of this “morphisms” T → Bir(X) and
obtain, as application, some insight about the relationship between the topology and the
algebraic structure of the group Bir(X), where X is a rational variety.

More precisely, in Section 2 we present some basic results about Bir(X) that show the
relationship between the algebraic structure and the Zariski topology.

Both authors are partially supported by the ANII, MathAmSud and CSIC-Udelar (Uruguay).
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In Section 3, the main one, we deal with the case X = Pn, or more generally the
case where X is a rational variety(see Lemma 2). We begin by stating two deep results
about the connectedness and simplicity of Bir(Pn) proved in [Bl2011] and [CaLa2011]
(Proposition 16) and extract as an easy consequence that a nontrivial normal subgroup
of Bir(P2) has trivial centralizer. Next we prove that for a morphism ϕ : T → Bir(Pn),
the function t 7→ deg(ϕt) is lower semicontinuous (§3.2). This result has some nice
consequences:

(a) every Cremona transformation of degree d is a specialization of Cremona trans-
formations of degree > d;

(b) the degree map deg : Bir(Pn) → Z is lower semicontinuous and every morphism
T → Bir(Pn) restricts to a dense open set as a morphism of algebraic varieties
(§3.3);

(c) a morphism T → Bir(Pn) maps constructible sets into constructible sets (§3.4);
(d) the Zariski topology of Bir(Pn) is not Noetherian (§3.5);
(e) there exist (explicit, non canonical) closed immersions of Bir(Pn−1) ↪→ Bir(Pn).
(f) the subgroup consisting of the elements f ∈ Bir(Pn) which stabilize the set of lines

passing through a fixed point is closed (§3.6).

Some weeks before this work was finished Blanc and Furter posted a preprint in arXiv
(see arXiv:1210.6960v1) where, among other interesting things, they also obtain some of
our results as for example item (a) above.

2. Generalities

Following [De1997, §2] a birational map ϕ : T × X 99K T × X, where T and X are
k-varieties and X is irreducible, is said to be a pseudo-automorphism of T ×X, over T ,
if there exists a dense open subset U ⊂ T ×X such that:

(a) ϕ is defined on U ;
(b) Ut := U ∩

(
{t} ×X

)
is dense in {t} ×X for all t ∈ T , and

(c) there exists a morphism f : U → X such that ϕ|
U

(t, x) =
(
t, f(t, x)

)
, and ϕ|

Ut
:

Ut → {t} ×X is a birational morphism.

In particular, a pseudo-automorphism ϕ as above induces a family T → Bir(X) of
birational maps ϕt : X 99K X. Following [Bl2011] we call this family an algebraic family
in Bir(X) or a morphism from T to Bir(X).

We will identify a morphism ϕ : T → Bir(X) with its corresponding pseudo-automorphism
and denote ϕt = ϕ(t).

Note that if ϕ : T → Bir(X) is a morphism, the map ψ : T → Bir(X) defined by
ψt = ϕ−1t is also a morphism where ϕ−1t denotes the inverse map of ϕt.
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We say F ⊂ Bir(X) is closed if its pullback under every morphism T → Bir(X) is
closed in T , for all T . This defines the so-called Zariski topology on Bir(X) ([Mu1974],
[Ser08, §1.6], [Bl2011]).

In order to define the Zariski topology, as above, it suffices to consider morphisms from
an affine variety T . Indeed, notice that a subset F ⊂ T is closed if and only if there exists
a cover by open sets T = ∪Vi, with Vi affine, such that F ∩ Vi is closed in Vi, for all i.
Then we may restrict a pseudo-automorphism ϕ : T ×X 99K T ×X to each Vi ×X and
obtain a pseudo-automorphism ϕi : Vi ×X 99K Vi ×X, for every i. The assertion follows
easily from the previous remark. Clearly, we may also suppose T is irreducible.

Unless otherwise explicitly stated, in the sequel we always suppose T is affine and
irreducible.

Lemma 1. Let X be an algebraic variety, and endow Bir(X) with a topology T . Let
Z ⊂ Bir(X) be a locally closed set with respect to T such that T induces a structure
of algebraic variety on Z. Then the T -topology of Z is finer than the induced Zariski
topology, that is, if F ⊂ Bir(X) is a Zariski closed subset, then F ∩ Z is T -closed in Z.

Proof. Let ϕ : Z × X → Z × X be given by ϕ(z, x) =
(
z, z(x)

)
. Cleary, ϕ is a pseudo-

automorphism such that ϕ−1(F) = F ∩ Z. Since F is closed in Bir(X) for the Zariski
topology, it follows that F ∩ Z is closed in Z. �

Lemma 2. Let F : X 99K Y be a birational morphism between two algebraic varieties.
Then the map F ∗ : Bir(Y )→ Bir(X) defined by F ∗(f) = F−1◦f ◦F is a homeomorphism,
with inverse (F−1)∗.

Proof. The result follows once we observe that ϕ : T × Y 99K T × Y is a pseudo-
automorphism if and only if (id×F−1) ◦ ϕ ◦ (id×F ) : T × X 99K T × X is a pseudo
automorphism. �

We consider Bir(X) × Bir(Y ) ⊂ Bir(X × Y ) by taking (f, g) ∈ Bir(X) × Bir(Y ) into
the rational map F : X × Y → X × Y defined as F (x, y) =

(
f(x), g(y)

)
.

Lemma 3. Let X, Y be algebraic varieties and F ∈ Bir(X × Y ) a birational map; write
F (x, y) =

(
F1(x, y), F2(x, y)

)
for (x, y) ∈ X×Y in the domain of F . Then F ∈ Bir(X)×

Bir(Y ) ⊂ Bir(X × Y ) if and only if there exist dense open subsets U ⊂ X, V ⊂ Y such
that F is defined on U × V and F1(x, y) = F1(x, y

′), F2(x, y) = F1(x
′, y) for x, x′ ∈ U ,

y, y′ ∈ V ,

Proof. First suppose there exist f ∈ Bir(X) and g ∈ Bir(Y ) such that F (x, y) =
(
f(x), g(y)

)
.

Consider nonempty open sets U ⊂ X and V ⊂ Y such that f and g are defined on U and
V respectively. Hence, F1 and F2 are defined on U × V and we have that F1(x, y) = f(x)
and F2(x, y) = g(y), from which the “only if part” follows.
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Conversely, suppose there exist nonempty open sets U and V as stated. Then F1 and
F2 induce morphisms f : U → X and g : V → Y such that F (x, y) =

(
f(x), g(y)

)
for

(x, y) ∈ U × V . Since U × V is dense in X × Y , this completes the proof. �

Proposition 4. If X, Y are algebraic varieties, then Bir(X)×Bir(Y ) ⊂ Bir(X × Y ) is a
closed subgroup.

Proof. In view of Lemma 2, we can assume that X ⊂ An, Y ⊂ Am are affine varieties.
Let ϕ : T ×X × Y 99K T ×X × Y be a pseudo-automorphism (over T ). Then

ϕ(t, x, y) =
(
t, f1(t, x, y), . . . , fn(t, x, y), g1(t, x, y), . . . , gm(t, x, y)

)
,

where fi, gj ∈ k(T ×X × Y ) are rational functions on T ×X × Y (of course, fi, gj verify
additional conditions).

Let A := ϕ−1
(
Bir(X) × Bir(Y )

)
and denote by A the closure of A in T . Following

Lemma 3 it suffices to prove that the restrictions of the f ′is (resp. the g′js) to A×X × Y
do not depend on y (resp. on x), which implies A = A.

Up to restrict ϕ to each irreducible component of A we may suppose that A is dense in
T . By symmetry we only consider the case relative to the f ′is and write f = fi for such a
rational function.

Since the poles of f are contained in a proper subvariety of T × X × Y , we deduce
that there exists y0 ∈ Y such that the restriction of f to T ×X ×{y0} induces a rational
function on this subvariety. If p : T × X × Y → T × X × {y0} denotes the morphism
(t, x, y) 7→ (t, x, y0) we conclude f ◦ p is a rational function on T ×X × Y .

Our assumption implies f coincides with f ◦ p along A × X × Y, which is dense in
T ×X × Y , so f = f ◦ p and the result follows. �

Remark 5. Two pseudo-automorphisms ϕ : T × X 99K T × X and ψ : T × Y 99K
T × Y induce a morphism (ϕ, ψ) : T → Bir(X) × Bir(Y ), that is, an algebraic family
in Bir(X) × Bir(Y ). As in the proof of Proposition 4, it follows from Lemma 3 that
F ⊂ Bir(X) × Bir(Y ) is closed if and only if (ϕ, ψ)−1(F) is closed for every pair ϕ, ψ.
Moreover, it is easy to prove that the topology on Bir(X)×Bir(Y ) induced by the Zariski
topology of Bir(X × Y ) is the unique topology for which all the morphisms (ϕ, ψ) are
continuous.

Observe that the Zariski topology of Bir(X)×Bir(Y ) is finner that the product topology
of the Zariski topologies of its factors.

Proposition 6. If ϕ, ψ : T → Bir(X) are morphisms, then t 7→ ϕt◦ψt defines an algebraic
family in Bir(X). Moreover, the product homomorphism Bir(X)×Bir(X)→ Bir(X) and
the inversion map Bir(X)→ Bir(X) are continuous.

Proof. To prove the first assertion it suffices to note that the family t 7→ ϕt◦ψt corresponds
to the pseudo-automorphism ϕ ◦ ψ : T × X 99K T × X. Appling Remark 5, the first
part of the second assertion follows. Indeed, if F ⊂ Bir(X) is a closed subset, then
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(ϕ, ψ)−1
(
m−1(F)

)
= (ϕ ◦ ψ)−1(F). For the rest of the proof it suffices to note that for a

family ϕ as above the map t 7→ ψ−1t defines an algebraic family. �

Lemma 7. The Zariski topology on Bir(X) is T1. In particular, if ϕ, ψ : T → Bir(X)
are two morphisms, then the subset

{
t ∈ T ;ϕ(t) = ψ(t)

}
is closed.

Proof. It suffices to show that id ∈ Bir(X) is a closed point. Without loss of generality
we may suppose X ⊂ Pm is a projective variety. Then a morphism ϕ : T → Bir(X) may
be represented as

ϕt =
(
f0(t, x) : · · · : fm(t, x)

)
, t ∈ T, x ∈ X

where fi ∈ k[t, x0, . . . , xm], i = 0, . . . ,m, are homogeneous of same degree in the variables
x0, . . . , xm. Therefore{

t ∈ T ;ϕ(t) = id
}

=
m⋂

i,j=0

{
t ∈ T : xjfi(t, x) = xifj(t, x), ∀x ∈ X

}
=

m⋂
i,j=0,x∈X

{
t ∈ T : xjfi(t, x) = xifj(t, x)

}
.

Since for all i, j the equations

xjfi(t, x)− xifj(t, x) = h1(x) = · · · = h`(x) = 0

define a closed set in T ×X, and X is projective we deduce
{
t ∈ T : ϕ(t) = id

}
is closed

in T . �

Corollary 8. Let ψ : Y → Bir(X) be a morphism, where Y is a projective variety. Then
ψ(Y ) is closed.

Proof. A morphism ϕ : T → Bir(X) induces a morphism φ : T × Y → Bir(X) defined by
(t, y) 7→ ϕ(t) ◦ ψ(y)−1. Then φ−1

(
{id}

)
=
{

(t, y);ϕ(t) = ψ(y)
}

is closed in T × Y . The

projection of this set onto the first factor is exactly ϕ−1
(
ψ(Y )

)
which is closed. �

Corollary 9. The centralizer of an element f ∈ Bir(X) is closed. In particular, the
centralizer CBir(X)(G) of a subgroup G ⊂ Bir(X) is closed. �

Proof. Since the commutator map cf : Bir(X) → Bir(X), cf (h) = hfh−1f−1, is continu-
ous, c−1f

(
{id}

)
is closed. �

Another consequence of Lemma 7 (and Remark 5) is that for an arbitrary topological
subspace A ⊂ Bir(X) and a point f ∈ Bir(X), the natural identification map {f}×A→ A
is an homeomorphism. As in [Sha, Chap.I, Thm. 3] we obtain:

Corollary 10. If A,B ⊂ Bir(X) are irreducible subspaces, then A× B is an irreducible
subspace of Bir(X)× Bir(X).
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Proposition 11. The irreducible components of Bir(X) do not intersect. Moreover,
Bir(X)0, the unique irreducible component of Bir(X) which contains id, is a normal
(closed) subgroup.

Proof. Let A,B be irreducible components containing id. Corollary 10 implies A · B is
irreducible. Since id ∈ A ∩ B then A ∪ B ⊂ A · B from which it follows A = A · B = B.
This proves the uniqueness of Bir(X)0.

The rest of the proof works as in [FSRi, Chapter 3, Thm. 3.8]. �

We have also the following easy result:

Proposition 12. Let H ⊂ Bir(X) be a subgroup.

(a) The closure H of H is a subgroup. Moreover, if H is normal, then H is normal.

(b) If H contains a dense open set, then H = H.

Proof. The proof of this result follows the same arguments that the analogous case for
algebraic groups (see [FSRi, Chapter 3, Section 3]). For example, in order to prove
the second part of (a) it suffices to note that since Intf is an homeomorphism, then

Intf (H) = Intf (H). �

3. The Cremona group

Now we consider the case X = Pn; we fix homogeneous coordinates x0, . . . , xn in Pn.
As in the introduction, if f : Pn 99K Pn is a birational map, the degree of f is the minimal
degree deg(f) of homogeneous polynomials in k[x0, . . . , xn] defining f .

3.1. Connectedness and simplicity.

In [Bl2011, Thms. 4.2 and 5.1] Jérémy Blanc proves the following two results:

Theorem 13 (J. Blanc). Bir(P2) does not admit nontrivial normal closed subgroups.

Theorem 14 (J. Blanc). If f, g ∈ Bir(Pn), then there exists a morphism θ : U → Bir(Pn),
where U is an open subset of A1 containing 0, 1, such that θ(0) = f, θ(1) = g. In particular
Bir(Pn) is connected.

In Theorem 14 the open set U is irreducible and the morphism θ is continuous. Hence
we deduce that Bir(Pn) is irreducible.

On the other hand, in [CaLa2011] Serge Cantat and Sthéphane Lamy prove the following
result:

Theorem 15 (S. Cantat-S. Lamy). Bir(P2) is not a simple (abstract) group, i.e., it
contains a non trivial normal subgroup.
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In fact they prove that for a “very general” birational map f ∈ Bir(P2) of degree d,
with d� 0, the minimal normal subgroup containing f is nontrivial. From Theorems 13
and 15 it follows that all non trivial normal subgroup in Bir(P2) is dense.

Putting all together we obtain:

Proposition 16. Let G ⊂ Bir(P2) be a nontrivial normal subgroup. Then CBir(P2)(G) =
{id}.

Proof. Suppose CBir(P2)(G) 6= {id}. The closure G of G is a normal subgroup, then it
coincides with the entire Cremona group. If f ∈ CBir(P2)(G), then G is contained in
the centralizer of f , which is closed. We deduce that f commute with all the elements
of Bir(P2), that is CBir(P2)(G) coincides with the center Z(Bir(P2)) of Bir(P2). Since
Z(Bir(P2)) = {id}, the result follows. For the convenience of the reader we give a proof
of the well known fact that Z(Bir(P2)) = {id}.

Recall that Bir(P2) is generated by quadratic transformations, i.e. maps of the form
g1σg2 where g1, g2 ∈ PGL(3,k) and σ = (x1x2 : x0x2 : x0x1) is the standard quadratic
transformation. Take f ∈ Z(Bir(P2)). If L ⊂ P2 is a general line, then we may construct
a quadratic transformation σL which contracts L to a point and such that f is well defined
in this point. Since fσL = σLf and we may suppose f is well defined and injective on an
open set of L we deduce f transforms L into a curve contracted by σL, that is, the strict
transform of L under f is a line, and then f ∈ PGL(3,k), so f ∈ Z(PGL(3,k)) = {id}. �

3.2. Degree and semicontinuity.

Let ϕ : T → Bir(Pn) be a morphism, where T is an affine irreducible variety. We may
represent ϕ in the form

ϕ(t,x) =
(
f0(t,x) : · · · : fn(t,x)

)
where fi ∈ k[T ] ⊗ k[x] = k[T ] ⊗ k[x0, . . . , xn] are polynomials which are homogeneous
of same degree in x0, . . . , xn. We suppose this degree minimal among all possible such
representations for ϕ and denote it by Deg(ϕ). For t ∈ T we denote by deg(ϕt) the usual
algebraic degree of the map ϕt : Pn 99K Pn; this is the minimal degree of the homogeneous
polynomials defining ϕt. Clearly deg(ϕt) ≤ Deg(ϕ) for all t ∈ T .

Consider the ideal I(ϕ) ⊂ k[T ] ⊗ k[x] generated by f0, . . . , fn. Then I(ϕ) defines a
subvariety Xϕ ⊂ T ×An+1. Notice that Xϕ is stable under the action of k∗ on T ×An+1

defined by λ · (t, x) 7→ (t, λx). Moreover, the projection π : Xϕ → T onto the first
factor is equivariant and, by definition, surjective. The function t 7→ dim π−1(t) is upper-
semicontinuous, from which we deduce Tn := {t; dimπ−1(t) ≥ n} is closed in T . Since
π−1(t) = Xϕ ∩

(
({t} ×An+1

)
, it follows that dimπ−1(t) > n implies π−1(t) = {t} ×An+1

which contradicts that fact that ϕt is well defined. Hence:

Lemma 17. Let ϕ : T → Bir(Pn) be a morphism. Then t ∈ Tn if and only if one of the
following assertions holds

(a) there is a codimension 1 subvariety Xϕ
t ⊂ An+1 such that π−1(t) = {t} ×Xϕ

t .
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(b) deg(ϕt) < Deg(ϕ).

Proposition 18. Let ϕ : T → Bir(Pn) be a morphism. Then the set Uϕ := {t ∈ T :
deg(ϕt) = Deg(ϕ)} is dense and open.

Proof. Let Tn ⊂ T be the closed subset introduced above. We will prove that Uϕ = T\Tn.

Suppose for a moment Tn = T and denote by Z ⊂ T × An+1 the zero set defined by
I(ϕ). Then Z has codimension 1; denote by Z1 the union of codimension 1 irreducible
components of Z. If T ′ ⊂ T is an affine dense open set consisting of smooth points of T ,
then Z ′1 := Z1 ∩ (T ′×An+1) is dense in Z1 and Z ′1 is the zero set of a reduced polynomial
g ∈ k[T ′]⊗k[x], homogeneous in x0, . . . , xn whose degree in x is lesser that Deg(ϕ). Since
g extends to an element in k(T ) ⊗ k[x], multiplying it by an element in k[T ] we may
suppose g ∈ k[T ]⊗ k[x].

By construction every polynomial fi factors as fi = ghi for a polynomial hi whose
coefficients are, a priori, in the algebraic closure of k(T ). Since these coefficients satisfy
(at least) a compatible linear system of equations with coefficients in k[T ], a posteriori
we deduce h ∈ k(T )⊗ k[x]. Then for a suitable a ∈ k[T ] we may suppose afi = ghi with
hi ∈ k[T ]⊗ k[x] for all i = 0, . . . , n.

The morphism ψ : T → Bir(Pn) induced by the pseudo-automorphism

(t, x) 7→
(
t, (h0(t,x) : · · · : hn(t,x))

)
coincides with ϕ but Deg(ψ) < Deg(ϕ): contradiction. Thus Tn 6= T .

We conclude that T\Tn is a dense open set consisting of points t ∈ T such that deg(ϕt) =
Deg(ϕ). �

Clearly the function t 7→ deg(ϕt) takes finitely many values, say d1 = Deg(ϕ) > d2 >
· · · > d` ≥ 1. Consider the decomposition T\Uϕ = X1∪· · ·∪Xr in irreducible components.
We may restrict ϕ to each Xi and apply Proposition 18 to conclude deg(ϕt) = d2 for t in
an open set (possibly empty for some i) Ui ⊂ Xi and deg(ϕt) < d2 on Xi\Ui, i = 1, . . . , r.
Repeating the argument with d3, and so on we deduce:

Theorem 19. Let ϕ : T → Bir(Pn) be a morphism. Then

(a) There exists a stratification by locally closed sets T\Uϕ = ∪`j=1Vj such that deg(ϕt)
is constant on Vj, for all j = 1, . . . , `.

(b) The function deg ◦ϕ : T → N, t 7→ deg(ϕt), is lower-semicontinuous.

Corollary 20. Every Cremona transformation of degree d is specialization of Cremona
transformations of degrees > d.

Proof. Let f be a Cremona transformation of degree d. Consider a morphism θ : T →
Bir(Pn), where T is a dense open set in A1 containing 0, 1 such that θ(0) = f and θ(1) is
a transformation of degree e > d (Theorem 14). Then Deg(θ) ≥ e and the proof follows
from Proposition 18. �
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Corollary 21. The degree function deg : Bir(Pn) → N is lower-semicontinuous, i.e. for
all d the subset Bir≤d(Pn) of birational maps of degree ≤ d is closed. In particular, a
subset F ⊂ Bir(Pn) is closed if and only if F ∩ Bir(Pn)≤d is closed for all d > 0.

Proof. The assertion relative to semicontinuity is a direct consequence of Theorem 19(b).
For the last assertion we note that if ϕ : T → Bir(Pn) is a morphism and e = Deg(ϕ),
then ϕ−1(F) = ϕ−1

(
F ∩ Bir(Pn)≤e

)
. �

Remark 22. Note that Bir(Pn) =
⋃
d≥1 Bir(Pn)≤d, with Bir(Pn)≤d ( Bir(Pn)≤d+1 and

Bir(Pn)1 = PGL(n+ 1,k).

3.3. Algebraization of morphisms.

In this paragraph we deal with the morphisms ϕ : T → Bir(Pn) and their relation-
ship with the stratification described in Theorem 19. We consider the locally closed
sets Bir(Pn)d := Bir(Pn)≤d\Bir(Pn)≤d−1, where d ≥ 2. If Deg(ϕ) = d, then Uϕ =
ϕ−1(Bir(Pn)d).

For integers d, n, r, with d, n > 0 and r ≥ 0, we consider the vector space V =
k[x0, . . . , xn]r+1

d of (r+1)-uples of d-forms. Notice that the projective space P(d,n,r) = P(V )

consisting of dimension 1 subspaces in V has dimension N(d, n, r) =
(
n+d
d

)
(r + 1)− 1.

Theorem 23. We have the following assertions:

(a) Bir(Pn)d is a quasi projective variety whose topology coincides with the topology induced
by Bir(Pn); in particular Bir(Pn)≤d is a finite union of quasi projective varieties.

(b) If ϕ : T → Bir(Pn) is a morphism, then the induced map Uϕ → Bir(Pn)d is a morphism
of algebraic varieties.

Proof. Let e < d be a non negative integer number. Consider the projective spaces P(d,n,n),
P(d−e,n,n) and P(e,n,0). Then there exists a “Segre type” morphism s : P(d−e,n,n)×P(e,n,0) →
P(d,n,n) which to a pair of elements (g0 : · · · : gn) ∈ P(d−e,n,n), (f) ∈ P(e,n,0) it associates
(g0f : · · · : gnf). We denote by We ⊂ P(d,n,n) the image of s, which is a projective
subvariety.

Now consider the open set U ⊂ P(d,n,n) consisting of points (f0 : f1 : · · · : fn) where
the Jacobian determinant ∂(f0, f1, . . . , fn)/∂(x0, . . . , xn) is not identically zero. Clearly,
points (f0 : f1 : · · · : fn) ∈ P(d,n,n) ∩ U may be identified with dominant rational maps
Pn → Pn defined by homogeneous polynomials (without common factors) of degree ≤ d.
Under this identification, points in Ud :=

[
P(d,n,n)\

(
∪d−1e=1We

)]
∩U correspond to dominant

rational maps defined by polynomials of degree exactly d.

As it follows readily from [RPV2001, Annexe B, Pro. B], the open set Bir(Pn)d =
Bir(Pn) ∩ Ud is closed in Ud. Hence it is a quasi projective variety. Moreover, taking into
account Lemma 1 the last assertion in (a) follows from part (b).

In order to prove (b) we represent ϕ as

ϕ(t) =
(
f0(t,x) : · · · : fn(t,x)

)
,
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for suitable polynomials fi ∈ k[T ][x0, . . . , xn], homogeneous in x. If t0 ∈ Uϕ is a (closed)
point, then the polynomials f0(t0,x), · · · , fn(t0,x) ∈ k[x] do not admit a common fac-
tor. Hence the homogeneous coordinates of ϕ(t0) define a point in P(d,n,n) which varies
algebraically in t0. This completes the proof. �

3.4. Chevalley type Theorem.

Theorem 24. Let X be a rational variety. If ϕ : T → Bir(X) is a morphism and C ⊂ T

is a constructible set, then ϕ(C) is constructible and contains a open subset of ϕ(C).

Proof. By Lemma 2 we may suppose X = Pn and ϕ with degree d = Deg(ϕ). Hence

ϕ(T ) ⊂ Bir(Pn)≤d; we consider the morphism ϕ0 : U0 = Uϕ → Bir(Pn)d induced by ϕ.

On the other hand, Theorem 19 gives a stratification T\U0 = ∪V `
j by locally closed sets

such that dj := deg
(
ϕ(t)

)
is constant on each Vj; set ϕj : Vj → Bir(Pn)dj the morphism

induced by ϕ on Vj.

We deduce the result by using Theorem 23 and applying the standard Chevalley The-
orem to the morphisms ϕ0, ϕ1, . . . , ϕ`. �

3.5. Cyclic closed subgroups.

Corollary 25. Let {fm} ⊂ Bir(Pn) be a infinite sequence of birational maps. Then {fm}
is closed if and only if limm→∞ deg(fm) = ∞. In particular, the Zariski topology on
Bir(Pn) is not Noetherian.

Proof. Let ϕ : T → Bir(Pn) be a morphism, with Deg(ϕ) = d. Then there exists m0 such
that deg(fm) ≥ d for all m ≥ m0, and thus ϕ−1

(
{fm}

)
is finite. Hence, the only if follows

from Corollary 21 and Theorem 23.

Conversely, suppose that lim infm→∞ deg(fm) = d < ∞. Then there exist infinitely
many fi whose degree is d. Hence, {fm} ∩ Bir(Pn)d is an infinite countable subset of the
algebraic variety and thus it is not closed.

�

Corollary 26. Let f ∈ Bir(Pn) be a birational map of degree d. The cyclic subgroup 〈f〉
generated by f is closed if and only if either f is of finite order or limm→∞ deg(fm) =∞.

Example 27. When n = 2 the behavior of the sequence deg(fm) is well known. Indeed,
following [DiFa2001], if 〈f〉 is infinite, then the sequence deg(fm) satisfies exactly one of
the following:

(a) deg(fm) ≤ b for some positive b ∈ R.

(b) am ≤ deg(fm) ≤ bm for some positive a, b ∈ R.

(c) am2 ≤ deg(fm) ≤ bm2 for some positive a, b ∈ R.

(d) amd ≤ deg(fm) ≤ bmd for some positive a, b ∈ R where d = deg(f).
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Hence the infinite cyclic group 〈f〉 is not closed only when the sequence deg(fm) satisfies
(a) above.

3.6. Some big closed subgroups.

Let o ∈ Pn be a point. Consider the subgroup Sto(Pn) ⊂ Bir(Pn) of birational transfor-
mations which stabilize (birationality) the set of lines passing through o. If o′ is another
point Sto(Pn) and Sto′(Pn) may be conjugated by mean of a linear automorphism; in the
sequel we fix o = (1 : 0 : · · · : 0). In [Do2011] the group Sto(Pn) is introduced in a different
form and is called the de Jonquières subgroup of level n− 1 (see also [Pa2000]).

Let π : Pn 99K Pn−1 be the projection of center o defined by

(x0 : x1 : · · · : xn) 7→ (x1 : · · · : xn).

Then Sto(Pn) = {f ∈ Bir(Pn) : πf = fπ}. Moreover, note that Sto(Pn) is the semidirect
product

1 // Jono(Pn) // Sto(Pn)
ρ // Bir(Pn−1) // 1

where Jono(Pn) = {f ∈ Bir(Pn) : πf = π} and ρ is the evident homomorphism. The
morphism σ : Bir(Pn−1)→ Bir(Pn) given by

(h1 : · · · : hn) 7→ (x0h1 : x1h1 : · · · : x1hn)

is injective and such that σ
(
Pn−1

)
⊂ Sto(Pn). Clearly, ρ◦σ = id.

Moreover, we affirm that ρ is continuos, and σ is a continuos closed immersion. Indeed,
if ϕ : T → Bir(Pn) is a morphism then the composition ρ◦ϕ defines a morphism T →
Bir(Pn−1); therefore ρ is a continuous function. Clearly, σ is continuos. In order to prove,
among other things, that σ is a closed immersion we need the following:

Lemma 28. Let f ∈ k[T ] ⊗ k[x0, . . . , xn] be a polynomial, homogeneous in x; denote by
degx0(f) its degree in x0. Then for all integer m ≥ 0 and i = 0, . . . , n the sets

R =
{
t ∈ T : xi|f(t,x)

}
, Sm =

{
t ∈ T ; degx0(f) ≤ m

}
are closed in T .

Proof. Let a1, . . . , aN ∈ k[T ] be the coefficients of f as polynomial in x0, . . . , xn. It
is clear that R and Sm are defined as common zeroes of a subset of the polynomials
{a1, . . . , aN} ⊂ k[T ]. �

Theorem 29. The subgroups Jono(Pn) and Sto(Pn) are closed and σ(Bir(Pn−1) is closed
in Bir(Pn). In particular, σ is a closed immersion.

Proof. Let ϕ : T → Bir(Pn) be a morphism, say with Deg(ϕ) = d. In order to prove
that ϕ−1

(
Jono(Pn)

)
is closed it suffices to consider a net (tξ) in ϕ−1

(
Jono(Pn)

)
, where

ξ varies in a directed set, and show that every limit point t∞ ∈ T of that net satisfies
ϕ(t∞) ∈ Jono(Pn). Let t∞ be such a limit point and T = ∪lj=0Vj be the stratification given



12 IVAN PAN AND ALVARO RITTATORE

by Theorem 19(a), where V0 = Uϕ. Then there exists j such that the subnet (tξ)∩ Vj has
t∞ as limit point. Thus, we can assume tξ ∈ Uϕ for all ξ, that is that deg(ϕtξ) = d. Write

ϕ(t,x) =
(
f0(t,x) : · · · : fn(t,x)

)
,

where fi ∈ k[T ] ⊗ k[x] are homogeneous in x = {x0, . . . , xn} of degree d. From the
description given in [Pa2000, §2] it follows that for all ξ there exists a homogeneous
polynomial qξ ∈ k[x] such that:

(a) fi(tξ,x) = xiqξ(x), for i > 0;
(b) f0(tξ,x) and qξ(x) have degrees ≤ 1 in x0;
(c) f0(tξ,x)qξ(x) has degree ≥ 1 in x0.

By Lemma 28, when tξ specializes to t∞, then ϕξ = ϕ(tξ) specializes to the birational
map ϕt∞ = (f : x1q : · · · : xnq) : Pn 99K Pn, where f(x) and xiq(x), i > 0, are
polynomials in x of degree d and with degree ≤ 1 in x0. Suppose that f and q admit a
common factor h ∈ k[x0, . . . , xn], of degree ≥ 0. Since the limit map ϕt∞ is birational (of
degree ≤ d) we deduce that h ∈ k[x1, . . . , xn]: otherwise h would have degree 1 in x0 and
the map ϕt∞ would be defined by polynomials in x1, . . . , xn contradicting birationality.
Hence f ′ := f/h and q′ := q/h satisfy the conditions (b) and (c) above. We conclude
ϕt∞ = (f ′ : x1q

′ : · · · : xnq
′). Applying again the description of [Pa2000, §2], we deduce

that πϕt∞ = π , that is ϕt∞ ∈ Jono(Pn), which proves Jono(Pn) is closed.

In order to prove that σ
(
Bir(Pn−1)

)
is closed, consider a net (tξ) ⊂ ϕ−1

(
σ(Pn−1)

)
, with

limit point t∞. As before, we can assume that tξ ∈ Uϕ for all ξ. With the notation
introduced above we have that

(a) fi(tξ,x) = x1hi,ξ(x), for i > 0, and
(b) f0(tξ,x) = x0h1,ξ(x),

where (h1,ξ : · · · : hn,ξ) : Pn−1 99K Pn−1 is birational. From Lemma 28 we obtain that
hi,ξ specializes to a polynomial hi ∈ k[x1, . . . , xn], i > 0 and that ϕt∞ = (x0h1 : x1h1 :
· · · : x1hn). Since πϕt∞ = ϕt∞π we conclude that ϕt∞ ∈ Sto(Pn) and thus (h1 : · · · :
hn) ∈ Bir(Pn−1 ([Pa2000, Prop. 2.2]). Since σ

(
(h1 : · · · : hn)

)
= ϕt∞ , it follows that

σ
(
Bir(Pn−1

)
is closed.

Finally, since for elements f ∈ Jono(Pn) and h ∈ Bir(Pn−1) the product f o h is the
composition f ◦σ(h), then Sto(Pn) = Jono(Pn)Im(σ) (product in Bir(Pn)). The fact that
Sto(Pn) is closed follows then from the two assertions we have just proved together with
the continuity of the functions ρ : Sto(Pn)→ Bir

(
Pn−1

)
, the group product and the group

inversion. Indeed, let (fξohξ) be a net in Sto(Pn) which specializes to s ∈ Bir(Pn). Then
ρ(fξohξ) = ρ(1ohξ) = hξ specializes to ρ(s) = h ∈ Bir(Pn−1). Since (fξohξ)·(1oh−1ξ ) =

fξo1 ∈ Jono(Pn), the net (fξo1) specializes to sσ(h−1) ∈ Jono(Pn). Thus s ∈ Sto(Pn). �

Remark 30. More generally, for ` = 1, . . . , n, the map σ` : Bir(Pn−1) → Bir(Pn) defined
by

σ`
(
(h1 : · · · : hn)

)
= (x0h` : x`h1 : · · · : x`hn)
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is a continuous, closed, homomorphism whose image is contained in Sto(Pn) and such that
ρσ` = id. In this notation, the map σ of Theorem 29 is σ1. Moreover, one has

n⋂
`=1

σ`
(
Bir(Pn−1)

)
= {id}.

If U` is the dense open set Bir(Pn)\σ`
(
Bir(Pn−1)

)
, then Bir(Pn)− {id} =

⋃n
`=1 U`.
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