SOME REMARKS ABOUT THE ZARISKI TOPOLOGY OF THE CREMONA GROUP

IVAN PAN AND ALVARO RITTATORE

Abstract

For an algebraic variety X we study the behavior of algebraic functions from an algebraic variety to the group $\operatorname{Bir}(X)$ of birational maps of X and obtain, as application, some insight about the relationship between the so-called Zariski topology of $\operatorname{Bir}(X)$ and the algebraic structure of this group, where X is a rational variety.

1. Introduction

Let \mathbb{k} be an algebraically closed field and denote by \mathbb{P}^{n} the projective space of dimension n over \mathbb{k}. The set $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$ of birational maps $f: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$ is the so-called Cremona group of \mathbb{P}^{n}. For an element $f \in \operatorname{Bir}\left(\mathbb{P}^{n}\right)$ there exist homogeneous polynomials of the same degree $f_{0}, \ldots, f_{n} \in k\left[x_{0}, \ldots, x_{n}\right]$, without nontrivial common factors, such that if $\mathbf{x}=\left(x_{0}: \cdots: x_{n}\right)$ is not a common zero of the f_{i} 's, then $f(\mathbf{x})=\left(f_{0}(\mathbf{x}): \cdots: f_{n}(\mathbf{x})\right)$. The (algebraic) degree of f is the common degree of the f_{i} 's, and is denoted by $\operatorname{deg}(f)$.

A natural way to produce an "algebraic family" of birational maps is to consider a birational map $f=\left(f_{0}: \cdots: f_{n}\right) \in \operatorname{Bir}\left(\mathbb{P}^{n}\right)$ and to allow the coefficients of the f_{i} 's vary in an affine (irreducible) \mathbb{k}-variety T. That is, we consider polynomials $f_{0}, \ldots, f_{n} \in \mathbb{k}[T] \otimes$ $\mathbb{k}\left[x_{0}, \ldots, x_{n}\right]$, homogeneous and of the same degree in \mathbf{x} and we define $\varphi: T \rightarrow \operatorname{Bir}\left(\mathbb{P}^{n}\right)$ by

$$
\varphi(t, \mathbf{x})=\left(f_{0}(t, \mathbf{x}): \cdots: f_{n}(t, \mathbf{x})\right)
$$

in particular we assume that for all $t \in T$ the map $\varphi_{t}:=\varphi(t, \cdot): \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$ is birational.
As pointed out by Serre in $[\operatorname{Ser} 08, \S 1.6]$ there exists an unique topology on $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$ which makes any such algebraic family a continuous function, designed in loc. cit as the Zariski Topology of $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$. Moreover, we can replace \mathbb{P}^{n} with an irreducible algebraic variety X of dimension n and the same holds for $\operatorname{Bir}(X)$.

The aim of this work is to study the behavior of this "morphisms" $T \rightarrow \operatorname{Bir}(X)$ and obtain, as application, some insight about the relationship between the topology and the algebraic structure of the group $\operatorname{Bir}(X)$, where X is a rational variety.

More precisely, in Section 2 we present some basic results about $\operatorname{Bir}(X)$ that show the relationship between the algebraic structure and the Zariski topology.

Both authors are partially supported by the ANII, MathAmSud and CSIC-Udelar (Uruguay).

In Section 3, the main one, we deal with the case $X=\mathbb{P}^{n}$, or more generally the case where X is a rational variety(see Lemma 2). We begin by stating two deep results about the connectedness and simplicity of $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$ proved in [Bl2011] and [CaLa2011] (Proposition 16) and extract as an easy consequence that a nontrivial normal subgroup of $\operatorname{Bir}\left(\mathbb{P}^{2}\right)$ has trivial centralizer. Next we prove that for a morphism $\varphi: T \rightarrow \operatorname{Bir}\left(\mathbb{P}^{n}\right)$, the function $t \mapsto \operatorname{deg}\left(\varphi_{t}\right)$ is lower semicontinuous (§3.2). This result has some nice consequences:
(a) every Cremona transformation of degree d is a specialization of Cremona transformations of degree $>d$;
(b) the degree map deg : $\operatorname{Bir}\left(\mathbb{P}^{n}\right) \rightarrow \mathbb{Z}$ is lower semicontinuous and every morphism $T \rightarrow \operatorname{Bir}\left(\mathbb{P}^{n}\right)$ restricts to a dense open set as a morphism of algebraic varieties (§3.3);
(c) a morphism $T \rightarrow \operatorname{Bir}\left(\mathbb{P}^{n}\right)$ maps constructible sets into constructible sets (§3.4);
(d) the Zariski topology of $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$ is not Noetherian (§3.5);
(e) there exist (explicit, non canonical) closed immersions of $\operatorname{Bir}\left(\mathbb{P}^{n-1}\right) \hookrightarrow \operatorname{Bir}\left(\mathbb{P}^{n}\right)$.
(f) the subgroup consisting of the elements $f \in \operatorname{Bir}\left(\mathbb{P}^{n}\right)$ which stabilize the set of lines passing through a fixed point is closed (§3.6).

Some weeks before this work was finished Blanc and Furter posted a preprint in arXiv (see arXiv:1210.6960v1) where, among other interesting things, they also obtain some of our results as for example item (a) above.

2. Generalities

Following [De1997, §2] a birational map $\varphi: T \times X \rightarrow T \times X$, where T and X are \mathbb{k}-varieties and X is irreducible, is said to be a pseudo-automorphism of $T \times X$, over T, if there exists a dense open subset $U \subset T \times X$ such that:
(a) φ is defined on U;
(b) $U_{t}:=U \cap(\{t\} \times X)$ is dense in $\{t\} \times X$ for all $t \in T$, and
(c) there exists a morphism $f: U \rightarrow X$ such that $\left.\varphi\right|_{U}(t, x)=(t, f(t, x))$, and $\left.\varphi\right|_{U_{t}}$: $U_{t} \rightarrow\{t\} \times X$ is a birational morphism.

In particular, a pseudo-automorphism φ as above induces a family $T \rightarrow \operatorname{Bir}(X)$ of birational maps $\varphi_{t}: X \rightarrow X$. Following [B12011] we call this family an algebraic family in $\operatorname{Bir}(X)$ or a morphism from T to $\operatorname{Bir}(X)$.

We will identify a morphism $\varphi: T \rightarrow \operatorname{Bir}(X)$ with its corresponding pseudo-automorphism and denote $\varphi_{t}=\varphi(t)$.

Note that if $\varphi: T \rightarrow \operatorname{Bir}(X)$ is a morphism, the map $\psi: T \rightarrow \operatorname{Bir}(X)$ defined by $\psi_{t}=\varphi_{t}^{-1}$ is also a morphism where φ_{t}^{-1} denotes the inverse map of φ_{t}.

We say $\mathcal{F} \subset \operatorname{Bir}(X)$ is closed if its pullback under every morphism $T \rightarrow \operatorname{Bir}(X)$ is closed in T, for all T. This defines the so-called Zariski topology on $\operatorname{Bir}(X)$ ([Mu1974], [Ser08, §1.6], [Bl2011]).

In order to define the Zariski topology, as above, it suffices to consider morphisms from an affine variety T. Indeed, notice that a subset $F \subset T$ is closed if and only if there exists a cover by open sets $T=\cup V_{i}$, with V_{i} affine, such that $F \cap V_{i}$ is closed in V_{i}, for all i. Then we may restrict a pseudo-automorphism $\varphi: T \times X \rightarrow T \times X$ to each $V_{i} \times X$ and obtain a pseudo-automorphism $\varphi_{i}: V_{i} \times X \rightarrow V_{i} \times X$, for every i. The assertion follows easily from the previous remark. Clearly, we may also suppose T is irreducible.

Unless otherwise explicitly stated, in the sequel we always suppose T is affine and irreducible.

Lemma 1. Let X be an algebraic variety, and endow $\operatorname{Bir}(X)$ with a topology \mathcal{T}. Let $Z \subset \operatorname{Bir}(X)$ be a locally closed set with respect to \mathcal{T} such that \mathcal{T} induces a structure of algebraic variety on Z. Then the \mathcal{T}-topology of Z is finer than the induced Zariski topology, that is, if $\mathcal{F} \subset \operatorname{Bir}(X)$ is a Zariski closed subset, then $\mathcal{F} \cap Z$ is \mathcal{T}-closed in Z.

Proof. Let $\varphi: Z \times X \rightarrow Z \times X$ be given by $\varphi(z, x)=(z, z(x))$. Cleary, φ is a pseudoautomorphism such that $\varphi^{-1}(\mathcal{F})=\mathcal{F} \cap Z$. Since \mathcal{F} is closed in $\operatorname{Bir}(X)$ for the Zariski topology, it follows that $\mathcal{F} \cap Z$ is closed in Z.

Lemma 2. Let $F: X \rightarrow Y$ be a birational morphism between two algebraic varieties. Then the map $F^{*}: \operatorname{Bir}(Y) \rightarrow \operatorname{Bir}(X)$ defined by $F^{*}(f)=F^{-1} \circ f \circ F$ is a homeomorphism, with inverse $\left(F^{-1}\right)^{*}$.

Proof. The result follows once we observe that $\varphi: T \times Y \rightarrow T \times Y$ is a pseudoautomorphism if and only if $\left(\mathrm{id} \times F^{-1}\right) \circ \varphi \circ(\mathrm{id} \times F): T \times X \rightarrow T \times X$ is a pseudo automorphism.

We consider $\operatorname{Bir}(X) \times \operatorname{Bir}(Y) \subset \operatorname{Bir}(X \times Y)$ by taking $(f, g) \in \operatorname{Bir}(X) \times \operatorname{Bir}(Y)$ into the rational map $F: X \times Y \rightarrow X \times Y$ defined as $F(x, y)=(f(x), g(y))$.

Lemma 3. Let X, Y be algebraic varieties and $F \in \operatorname{Bir}(X \times Y)$ a birational map; write $F(x, y)=\left(F_{1}(x, y), F_{2}(x, y)\right)$ for $(x, y) \in X \times Y$ in the domain of F. Then $F \in \operatorname{Bir}(X) \times$ $\operatorname{Bir}(Y) \subset \operatorname{Bir}(X \times Y)$ if and only if there exist dense open subsets $U \subset X, V \subset Y$ such that F is defined on $U \times V$ and $F_{1}(x, y)=F_{1}\left(x, y^{\prime}\right), F_{2}(x, y)=F_{1}\left(x^{\prime}, y\right)$ for $x, x^{\prime} \in U$, $y, y^{\prime} \in V$,

Proof. First suppose there exist $f \in \operatorname{Bir}(X)$ and $g \in \operatorname{Bir}(Y)$ such that $F(x, y)=(f(x), g(y))$. Consider nonempty open sets $U \subset X$ and $V \subset Y$ such that f and g are defined on U and V respectively. Hence, F_{1} and F_{2} are defined on $U \times V$ and we have that $F_{1}(x, y)=f(x)$ and $F_{2}(x, y)=g(y)$, from which the "only if part" follows.

Conversely, suppose there exist nonempty open sets U and V as stated. Then F_{1} and F_{2} induce morphisms $f: U \rightarrow X$ and $g: V \rightarrow Y$ such that $F(x, y)=(f(x), g(y))$ for $(x, y) \in U \times V$. Since $U \times V$ is dense in $X \times Y$, this completes the proof.

Proposition 4. If X, Y are algebraic varieties, then $\operatorname{Bir}(X) \times \operatorname{Bir}(Y) \subset \operatorname{Bir}(X \times Y)$ is a closed subgroup.

Proof. In view of Lemma 2, we can assume that $X \subset \mathbb{A}^{n}, Y \subset \mathbb{A}^{m}$ are affine varieties. Let $\varphi: T \times X \times Y \rightarrow T \times X \times Y$ be a pseudo-automorphism (over T). Then

$$
\varphi(t, x, y)=\left(t, f_{1}(t, x, y), \ldots, f_{n}(t, x, y), g_{1}(t, x, y), \ldots, g_{m}(t, x, y)\right)
$$

where $f_{i}, g_{j} \in \mathbb{k}(T \times X \times Y)$ are rational functions on $T \times X \times Y$ (of course, f_{i}, g_{j} verify additional conditions).

Let $A:=\varphi^{-1}(\operatorname{Bir}(X) \times \operatorname{Bir}(Y))$ and denote by \bar{A} the closure of A in T. Following Lemma 3 it suffices to prove that the restrictions of the $f_{i}^{\prime} \mathrm{s}$ (resp. the $g_{j}^{\prime} \mathrm{s}$) to $\bar{A} \times X \times Y$ do not depend on y (resp. on x), which implies $A=\bar{A}$.

Up to restrict φ to each irreducible component of \bar{A} we may suppose that A is dense in T. By symmetry we only consider the case relative to the f_{i}^{\prime} s and write $f=f_{i}$ for such a rational function.

Since the poles of f are contained in a proper subvariety of $T \times X \times Y$, we deduce that there exists $y_{0} \in Y$ such that the restriction of f to $T \times X \times\left\{y_{0}\right\}$ induces a rational function on this subvariety. If $p: T \times X \times Y \rightarrow T \times X \times\left\{y_{0}\right\}$ denotes the morphism $(t, x, y) \mapsto\left(t, x, y_{0}\right)$ we conclude $f \circ p$ is a rational function on $T \times X \times Y$.

Our assumption implies f coincides with $f \circ p$ along $A \times X \times Y$, which is dense in $T \times X \times Y$, so $f=f \circ p$ and the result follows.

Remark 5. Two pseudo-automorphisms $\varphi: T \times X \rightarrow T \times X$ and $\psi: T \times Y \rightarrow$ $T \times Y$ induce a morphism $(\varphi, \psi): T \rightarrow \operatorname{Bir}(X) \times \operatorname{Bir}(Y)$, that is, an algebraic family in $\operatorname{Bir}(X) \times \operatorname{Bir}(Y)$. As in the proof of Proposition 4, it follows from Lemma 3 that $\mathcal{F} \subset \operatorname{Bir}(X) \times \operatorname{Bir}(Y)$ is closed if and only if $(\varphi, \psi)^{-1}(\mathcal{F})$ is closed for every pair φ, ψ. Moreover, it is easy to prove that the topology on $\operatorname{Bir}(X) \times \operatorname{Bir}(Y)$ induced by the Zariski topology of $\operatorname{Bir}(X \times Y)$ is the unique topology for which all the morphisms (φ, ψ) are continuous.

Observe that the Zariski topology of $\operatorname{Bir}(X) \times \operatorname{Bir}(Y)$ is finner that the product topology of the Zariski topologies of its factors.
Proposition 6. If $\varphi, \psi: T \rightarrow \operatorname{Bir}(X)$ are morphisms, then $t \mapsto \varphi_{t} \circ \psi_{t}$ defines an algebraic family in $\operatorname{Bir}(X)$. Moreover, the product homomorphism $\operatorname{Bir}(X) \times \operatorname{Bir}(X) \rightarrow \operatorname{Bir}(X)$ and the inversion map $\operatorname{Bir}(X) \rightarrow \operatorname{Bir}(X)$ are continuous.

Proof. To prove the first assertion it suffices to note that the family $t \mapsto \varphi_{t} \circ \psi_{t}$ corresponds to the pseudo-automorphism $\varphi \circ \psi: T \times X \rightarrow T \times X$. Appling Remark 5 , the first part of the second assertion follows. Indeed, if $\mathcal{F} \subset \operatorname{Bir}(X)$ is a closed subset, then
$(\varphi, \psi)^{-1}\left(m^{-1}(\mathcal{F})\right)=(\varphi \circ \psi)^{-1}(\mathcal{F})$. For the rest of the proof it suffices to note that for a family φ as above the map $t \mapsto \psi_{t}^{-1}$ defines an algebraic family.

Lemma 7. The Zariski topology on $\operatorname{Bir}(X)$ is T1. In particular, if $\varphi, \psi: T \rightarrow \operatorname{Bir}(X)$ are two morphisms, then the subset $\{t \in T ; \varphi(t)=\psi(t)\}$ is closed.

Proof. It suffices to show that $i d \in \operatorname{Bir}(X)$ is a closed point. Without loss of generality we may suppose $X \subset \mathbb{P}^{m}$ is a projective variety. Then a morphism $\varphi: T \rightarrow \operatorname{Bir}(X)$ may be represented as

$$
\varphi_{t}=\left(f_{0}(t, x): \cdots: f_{m}(t, x)\right), t \in T, x \in X
$$

where $f_{i} \in \mathbb{k}\left[t, x_{0}, \ldots, x_{m}\right], i=0, \ldots, m$, are homogeneous of same degree in the variables x_{0}, \ldots, x_{m}. Therefore

$$
\begin{aligned}
\{t \in T ; \varphi(t)=i d\} & =\bigcap_{i, j=0}^{m}\left\{t \in T: x_{j} f_{i}(t, x)=x_{i} f_{j}(t, x), \forall x \in X\right\} \\
& =\bigcap_{i, j=0, x \in X}^{m}\left\{t \in T: x_{j} f_{i}(t, x)=x_{i} f_{j}(t, x)\right\} .
\end{aligned}
$$

Since for all i, j the equations

$$
x_{j} f_{i}(t, x)-x_{i} f_{j}(t, x)=h_{1}(x)=\cdots=h_{\ell}(x)=0
$$

define a closed set in $T \times X$, and X is projective we deduce $\{t \in T: \varphi(t)=i d\}$ is closed in T.

Corollary 8. Let $\psi: Y \rightarrow \operatorname{Bir}(X)$ be a morphism, where Y is a projective variety. Then $\psi(Y)$ is closed.

Proof. A morphism $\varphi: T \rightarrow \operatorname{Bir}(X)$ induces a morphism $\phi: T \times Y \rightarrow \operatorname{Bir}(X)$ defined by $(t, y) \mapsto \varphi(t) \circ \psi(y)^{-1}$. Then $\phi^{-1}(\{i d\})=\{(t, y) ; \varphi(t)=\psi(y)\}$ is closed in $T \times Y$. The projection of this set onto the first factor is exactly $\varphi^{-1}(\psi(Y))$ which is closed.

Corollary 9. The centralizer of an element $f \in \operatorname{Bir}(X)$ is closed. In particular, the centralizer $C_{\operatorname{Bir}(X)}(G)$ of a subgroup $G \subset \operatorname{Bir}(X)$ is closed.

Proof. Since the commutator map $c_{f}: \operatorname{Bir}(X) \rightarrow \operatorname{Bir}(X), c_{f}(h)=h f h^{-1} f^{-1}$, is continuous, $c_{f}^{-1}(\{i d\})$ is closed.

Another consequence of Lemma 7 (and Remark 5) is that for an arbitrary topological subspace $A \subset \operatorname{Bir}(X)$ and a point $f \in \operatorname{Bir}(X)$, the natural identification map $\{f\} \times A \rightarrow A$ is an homeomorphism. As in [Sha, Chap.I, Thm. 3] we obtain:

Corollary 10. If $A, B \subset \operatorname{Bir}(X)$ are irreducible subspaces, then $A \times B$ is an irreducible subspace of $\operatorname{Bir}(X) \times \operatorname{Bir}(X)$.

Proposition 11. The irreducible components of $\operatorname{Bir}(X)$ do not intersect. Moreover, $\operatorname{Bir}(X)^{0}$, the unique irreducible component of $\operatorname{Bir}(X)$ which contains id, is a normal (closed) subgroup.

Proof. Let A, B be irreducible components containing $i d$. Corollary 10 implies $A \cdot B$ is irreducible. Since $i d \in A \cap B$ then $A \cup B \subset A \cdot B$ from which it follows $A=A \cdot B=B$. This proves the uniqueness of $\operatorname{Bir}(X)^{0}$.

The rest of the proof works as in [FSRi, Chapter 3, Thm. 3.8].
We have also the following easy result:
Proposition 12. Let $H \subset \operatorname{Bir}(X)$ be a subgroup.
(a) The closure \bar{H} of H is a subgroup. Moreover, if H is normal, then \bar{H} is normal.
(b) If H contains a dense open set, then $H=\bar{H}$.

Proof. The proof of this result follows the same arguments that the analogous case for algebraic groups (see [FSRi, Chapter 3, Section 3]). For example, in order to prove the second part of (a) it suffices to note that since Int_{f} is an homeomorphism, then $\operatorname{Int}_{f}(\bar{H})=\overline{\operatorname{Int}_{f}(H)}$.

3. The Cremona group

Now we consider the case $X=\mathbb{P}^{n}$; we fix homogeneous coordinates x_{0}, \ldots, x_{n} in \mathbb{P}^{n}. As in the introduction, if $f: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$ is a birational map, the degree of f is the minimal degree $\operatorname{deg}(f)$ of homogeneous polynomials in $\mathbb{k}\left[x_{0}, \ldots, x_{n}\right]$ defining f.

3.1. Connectedness and simplicity.

In [Bl2011, Thms. 4.2 and 5.1] Jérémy Blanc proves the following two results:
Theorem 13 (J. Blanc). Bir $\left(\mathbb{P}^{2}\right)$ does not admit nontrivial normal closed subgroups.
Theorem 14 (J. Blanc). If $f, g \in \operatorname{Bir}\left(\mathbb{P}^{n}\right)$, then there exists a morphism $\theta: U \rightarrow \operatorname{Bir}\left(\mathbb{P}^{n}\right)$, where U is an open subset of \mathbb{A}^{1} containing 0,1 , such that $\theta(0)=f, \theta(1)=g$. In particular $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$ is connected.

In Theorem 14 the open set U is irreducible and the morphism θ is continuous. Hence we deduce that $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$ is irreducible.

On the other hand, in [CaLa2011] Serge Cantat and Sthéphane Lamy prove the following result:

Theorem 15 (S. Cantat-S. Lamy). $\operatorname{Bir}\left(\mathbb{P}^{2}\right)$ is not a simple (abstract) group, i.e., it contains a non trivial normal subgroup.

In fact they prove that for a "very general" birational map $f \in \operatorname{Bir}\left(\mathbb{P}^{2}\right)$ of degree d, with $d \gg 0$, the minimal normal subgroup containing f is nontrivial. From Theorems 13 and 15 it follows that all non trivial normal subgroup in $\operatorname{Bir}\left(\mathbb{P}^{2}\right)$ is dense.

Putting all together we obtain:
Proposition 16. Let $G \subset \operatorname{Bir}\left(\mathbb{P}^{2}\right)$ be a nontrivial normal subgroup. Then $C_{\operatorname{Bir}\left(\mathbb{P}^{2}\right)}(G)=$ $\{i d\}$.

Proof. Suppose $C_{\operatorname{Bir}\left(\mathbb{P}^{2}\right)}(G) \neq\{i d\}$. The closure \bar{G} of G is a normal subgroup, then it coincides with the entire Cremona group. If $f \in C_{\operatorname{Bir}\left(\mathbb{P}^{2}\right)}(G)$, then G is contained in the centralizer of f, which is closed. We deduce that f commute with all the elements of $\operatorname{Bir}\left(\mathbb{P}^{2}\right)$, that is $C_{\operatorname{Bir}\left(\mathbb{P}^{2}\right)}(G)$ coincides with the center $Z\left(\operatorname{Bir}\left(\mathbb{P}^{2}\right)\right)$ of $\operatorname{Bir}\left(\mathbb{P}^{2}\right)$. Since $Z\left(\operatorname{Bir}\left(\mathbb{P}^{2}\right)\right)=\{i d\}$, the result follows. For the convenience of the reader we give a proof of the well known fact that $Z\left(\operatorname{Bir}\left(\mathbb{P}^{2}\right)\right)=\{i d\}$.

Recall that $\operatorname{Bir}\left(\mathbb{P}^{2}\right)$ is generated by quadratic transformations, i.e. maps of the form $g_{1} \sigma g_{2}$ where $g_{1}, g_{2} \in \operatorname{PGL}(3, \mathbb{k})$ and $\sigma=\left(x_{1} x_{2}: x_{0} x_{2}: x_{0} x_{1}\right)$ is the standard quadratic transformation. Take $f \in Z\left(\operatorname{Bir}\left(\mathbb{P}^{2}\right)\right)$. If $L \subset \mathbb{P}^{2}$ is a general line, then we may construct a quadratic transformation σ_{L} which contracts L to a point and such that f is well defined in this point. Since $f \sigma_{L}=\sigma_{L} f$ and we may suppose f is well defined and injective on an open set of L we deduce f transforms L into a curve contracted by σ_{L}, that is, the strict transform of L under f is a line, and then $f \in \operatorname{PGL}(3, \mathbb{k})$, so $f \in Z(\operatorname{PGL}(3, \mathbb{k}))=\{i d\}$.

3.2. Degree and semicontinuity.

Let $\varphi: T \rightarrow \operatorname{Bir}\left(\mathbb{P}^{n}\right)$ be a morphism, where T is an affine irreducible variety. We may represent φ in the form

$$
\varphi(t, \mathbf{x})=\left(f_{0}(t, \mathbf{x}): \cdots: f_{n}(t, \mathbf{x})\right)
$$

where $f_{i} \in \mathbb{k}[T] \otimes \mathbb{k}[\mathbf{x}]=\mathbb{k}[T] \otimes \mathbb{k}\left[x_{0}, \ldots, x_{n}\right]$ are polynomials which are homogeneous of same degree in x_{0}, \ldots, x_{n}. We suppose this degree minimal among all possible such representations for φ and denote it by $\operatorname{Deg}(\varphi)$. For $t \in T$ we denote by $\operatorname{deg}\left(\varphi_{t}\right)$ the usual algebraic degree of the map $\varphi_{t}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$; this is the minimal degree of the homogeneous polynomials defining φ_{t}. Clearly $\operatorname{deg}\left(\varphi_{t}\right) \leq \operatorname{Deg}(\varphi)$ for all $t \in T$.

Consider the ideal $I(\varphi) \subset \mathbb{k}[T] \otimes \mathbb{k}[\mathbf{x}]$ generated by f_{0}, \ldots, f_{n}. Then $I(\varphi)$ defines a subvariety $X^{\varphi} \subset T \times \mathbb{A}^{n+1}$. Notice that X^{φ} is stable under the action of \mathbb{k}^{*} on $T \times \mathbb{A}^{n+1}$ defined by $\lambda \cdot(t, x) \mapsto(t, \lambda x)$. Moreover, the projection $\pi: X^{\varphi} \rightarrow T$ onto the first factor is equivariant and, by definition, surjective. The function $t \mapsto \operatorname{dim} \pi^{-1}(t)$ is uppersemicontinuous, from which we deduce $T_{n}:=\left\{t ; \operatorname{dim} \pi^{-1}(t) \geq n\right\}$ is closed in T. Since $\pi^{-1}(t)=X^{\varphi} \cap\left(\left(\{t\} \times \mathbb{A}^{n+1}\right)\right.$, it follows that $\operatorname{dim} \pi^{-1}(t)>n$ implies $\pi^{-1}(t)=\{t\} \times \mathbb{A}^{n+1}$ which contradicts that fact that φ_{t} is well defined. Hence:

Lemma 17. Let $\varphi: T \rightarrow \operatorname{Bir}\left(\mathbb{P}^{n}\right)$ be a morphism. Then $t \in T_{n}$ if and only if one of the following assertions holds
(a) there is a codimension 1 subvariety $X_{t}^{\varphi} \subset \mathbb{A}^{n+1}$ such that $\pi^{-1}(t)=\{t\} \times X_{t}^{\varphi}$.
(b) $\operatorname{deg}\left(\varphi_{t}\right)<\operatorname{Deg}(\varphi)$.

Proposition 18. Let $\varphi: T \rightarrow \operatorname{Bir}\left(\mathbb{P}^{n}\right)$ be a morphism. Then the set $U_{\varphi}:=\{t \in T:$ $\left.\operatorname{deg}\left(\varphi_{t}\right)=\operatorname{Deg}(\varphi)\right\}$ is dense and open.

Proof. Let $T_{n} \subset T$ be the closed subset introduced above. We will prove that $U_{\varphi}=T \backslash T_{n}$.
Suppose for a moment $T_{n}=T$ and denote by $Z \subset T \times \mathbb{A}^{n+1}$ the zero set defined by $I(\varphi)$. Then Z has codimension 1 ; denote by Z_{1} the union of codimension 1 irreducible components of Z. If $T^{\prime} \subset T$ is an affine dense open set consisting of smooth points of T, then $Z_{1}^{\prime}:=Z_{1} \cap\left(T^{\prime} \times \mathbb{A}^{n+1}\right)$ is dense in Z_{1} and Z_{1}^{\prime} is the zero set of a reduced polynomial $g \in \mathbb{k}\left[T^{\prime}\right] \otimes \mathbb{k}[\mathbf{x}]$, homogeneous in x_{0}, \ldots, x_{n} whose degree in \mathbf{x} is lesser that $\operatorname{Deg}(\varphi)$. Since g extends to an element in $\mathbb{k}(T) \otimes \mathbb{k}[\mathbf{x}]$, multiplying it by an element in $\mathbb{k}[T]$ we may suppose $g \in \mathbb{k}[T] \otimes \mathbb{k}[\mathbf{x}]$.

By construction every polynomial f_{i} factors as $f_{i}=g h_{i}$ for a polynomial h_{i} whose coefficients are, a priori, in the algebraic closure of $\mathbb{k}(T)$. Since these coefficients satisfy (at least) a compatible linear system of equations with coefficients in $\mathbb{k}[T]$, a posteriori we deduce $h \in \mathbb{k}(T) \otimes \mathbb{k}[\mathbf{x}]$. Then for a suitable $a \in \mathbb{k}[T]$ we may suppose $a f_{i}=g h_{i}$ with $h_{i} \in \mathbb{k}[T] \otimes \mathbb{k}[\mathbf{x}]$ for all $i=0, \ldots, n$.

The morphism $\psi: T \rightarrow \operatorname{Bir}\left(\mathbb{P}^{n}\right)$ induced by the pseudo-automorphism

$$
(t, x) \mapsto\left(t,\left(h_{0}(t, \mathbf{x}): \cdots: h_{n}(t, \mathbf{x})\right)\right)
$$

coincides with φ but $\operatorname{Deg}(\psi)<\operatorname{Deg}(\varphi)$: contradiction. Thus $T_{n} \neq T$.
We conclude that $T \backslash T_{n}$ is a dense open set consisting of points $t \in T$ such that $\operatorname{deg}\left(\varphi_{t}\right)=$ $\operatorname{Deg}(\varphi)$.

Clearly the function $t \mapsto \operatorname{deg}\left(\varphi_{t}\right)$ takes finitely many values, say $d_{1}=\operatorname{Deg}(\varphi)>d_{2}>$ $\cdots>d_{\ell} \geq 1$. Consider the decomposition $T \backslash U_{\varphi}=X_{1} \cup \cdots \cup X_{r}$ in irreducible components. We may restrict φ to each X_{i} and apply Proposition 18 to conclude $\operatorname{deg}\left(\varphi_{t}\right)=d_{2}$ for t in an open set (possibly empty for some i) $U_{i} \subset X_{i}$ and $\operatorname{deg}\left(\varphi_{t}\right)<d_{2}$ on $X_{i} \backslash U_{i}, i=1, \ldots, r$. Repeating the argument with d_{3}, and so on we deduce:

Theorem 19. Let $\varphi: T \rightarrow \operatorname{Bir}\left(\mathbb{P}^{n}\right)$ be a morphism. Then
(a) There exists a stratification by locally closed sets $T \backslash U_{\varphi}=\cup_{j=1}^{\ell} V_{j}$ such that $\operatorname{deg}\left(\varphi_{t}\right)$ is constant on V_{j}, for all $j=1, \ldots, \ell$.
(b) The function $\operatorname{deg} \circ \varphi: T \rightarrow \mathbb{N}, t \mapsto \operatorname{deg}\left(\varphi_{t}\right)$, is lower-semicontinuous.

Corollary 20. Every Cremona transformation of degree d is specialization of Cremona transformations of degrees $>d$.

Proof. Let f be a Cremona transformation of degree d. Consider a morphism $\theta: T \rightarrow$ $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$, where T is a dense open set in \mathbb{A}^{1} containing 0,1 such that $\theta(0)=f$ and $\theta(1)$ is a transformation of degree $e>d$ (Theorem 14). Then $\operatorname{Deg}(\theta) \geq e$ and the proof follows from Proposition 18.

Corollary 21. The degree function $\operatorname{deg}: \operatorname{Bir}\left(\mathbb{P}^{n}\right) \rightarrow \mathbb{N}$ is lower-semicontinuous, i.e. for all d the subset $\operatorname{Bir}_{\leq d}\left(\mathbb{P}^{n}\right)$ of birational maps of degree $\leq d$ is closed. In particular, a subset $\mathcal{F} \subset \operatorname{Bir}\left(\mathbb{P}^{n}\right)$ is closed if and only if $\mathcal{F} \cap \operatorname{Bir}\left(\mathbb{P}^{n}\right)_{\leq d}$ is closed for all $d>0$.

Proof. The assertion relative to semicontinuity is a direct consequence of Theorem 19(b). For the last assertion we note that if $\varphi: T \rightarrow \operatorname{Bir}\left(\mathbb{P}^{n}\right)$ is a morphism and $e=\operatorname{Deg}(\varphi)$, then $\varphi^{-1}(\mathcal{F})=\varphi^{-1}\left(\mathcal{F} \cap \operatorname{Bir}\left(\mathbb{P}^{n}\right)_{\leq e}\right)$.
Remark 22. Note that $\operatorname{Bir}\left(\mathbb{P}^{n}\right)=\bigcup_{d \geq 1} \operatorname{Bir}\left(\mathbb{P}^{n}\right)_{\leq d}$, with $\operatorname{Bir}\left(\mathbb{P}^{n}\right)_{\leq d} \subsetneq \operatorname{Bir}\left(\mathbb{P}^{n}\right)_{\leq d+1}$ and $\operatorname{Bir}\left(\mathbb{P}^{n}\right)_{1}=\operatorname{PGL}(n+1, \mathbb{k})$.

3.3. Algebraization of morphisms.

In this paragraph we deal with the morphisms $\varphi: T \rightarrow \operatorname{Bir}\left(\mathbb{P}^{n}\right)$ and their relationship with the stratification described in Theorem 19. We consider the locally closed sets $\operatorname{Bir}\left(\mathbb{P}^{n}\right)_{d}:=\operatorname{Bir}\left(\mathbb{P}^{n}\right)_{\leq d} \backslash \operatorname{Bir}\left(\mathbb{P}^{n}\right)_{\leq d-1}$, where $d \geq 2$. If $\operatorname{Deg}(\varphi)=d$, then $U_{\varphi}=$ $\varphi^{-1}\left(\operatorname{Bir}\left(\mathbb{P}^{n}\right)_{d}\right)$.

For integers d, n, r, with $d, n>0$ and $r \geq 0$, we consider the vector space $V=$ $\mathbb{k}\left[x_{0}, \ldots, x_{n}\right]_{d}^{r+1}$ of $(r+1)$-uples of d-forms. Notice that the projective space $\mathbb{P}_{(d, n, r)}=\mathbb{P}(V)$ consisting of dimension 1 subspaces in V has dimension $N(d, n, r)=\binom{n+d}{d}(r+1)-1$.
Theorem 23. We have the following assertions:
(a) $\operatorname{Bir}\left(\mathbb{P}^{n}\right)_{d}$ is a quasi projective variety whose topology coincides with the topology induced by $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$; in particular $\operatorname{Bir}\left(\mathbb{P}^{n}\right)_{\leq d}$ is a finite union of quasi projective varieties.
(b) If $\varphi: T \rightarrow \operatorname{Bir}\left(\mathbb{P}^{n}\right)$ is a morphism, then the induced map $U_{\varphi} \rightarrow \operatorname{Bir}\left(\mathbb{P}^{n}\right)_{d}$ is a morphism of algebraic varieties.

Proof. Let $e<d$ be a non negative integer number. Consider the projective spaces $\mathbb{P}_{(d, n, n)}$, $\mathbb{P}_{(d-e, n, n)}$ and $\mathbb{P}_{(e, n, 0)}$. Then there exists a "Segre type" morphism $s: \mathbb{P}_{(d-e, n, n)} \times \mathbb{P}_{(e, n, 0)} \rightarrow$ $\mathbb{P}_{(d, n, n)}$ which to a pair of elements $\left(g_{0}: \cdots: g_{n}\right) \in \mathbb{P}_{(d-e, n, n)},(f) \in \mathbb{P}_{(e, n, 0)}$ it associates $\left(g_{0} f: \cdots: g_{n} f\right)$. We denote by $\mathcal{W}_{e} \subset \mathbb{P}_{(d, n, n)}$ the image of s, which is a projective subvariety.

Now consider the open set $\mathcal{U} \subset \mathbb{P}_{(d, n, n)}$ consisting of points $\left(f_{0}: f_{1}: \cdots: f_{n}\right)$ where the Jacobian determinant $\partial\left(f_{0}, f_{1}, \ldots, f_{n}\right) / \partial\left(x_{0}, \ldots, x_{n}\right)$ is not identically zero. Clearly, points $\left(f_{0}: f_{1}: \cdots: f_{n}\right) \in \mathbb{P}_{(d, n, n)} \cap \mathcal{U}$ may be identified with dominant rational maps $\mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$ defined by homogeneous polynomials (without common factors) of degree $\leq d$. Under this identification, points in $\mathcal{U}_{d}:=\left[\mathbb{P}_{(d, n, n)} \backslash\left(\cup_{e=1}^{d-1} \mathcal{W}_{e}\right)\right] \cap \mathcal{U}$ correspond to dominant rational maps defined by polynomials of degree exactly d.

As it follows readily from [RPV2001, Annexe B, Pro. B], the open set $\operatorname{Bir}\left(\mathbb{P}^{n}\right)_{d}=$ $\operatorname{Bir}\left(\mathbb{P}^{n}\right) \cap \mathcal{U}_{d}$ is closed in \mathcal{U}_{d}. Hence it is a quasi projective variety. Moreover, taking into account Lemma 1 the last assertion in (a) follows from part (b).

In order to prove (b) we represent φ as

$$
\varphi(t)=\left(f_{0}(t, \mathbf{x}): \cdots: f_{n}(t, \mathbf{x})\right)
$$

for suitable polynomials $f_{i} \in \mathbb{k}[T]\left[x_{0}, \ldots, x_{n}\right]$, homogeneous in \mathbf{x}. If $t_{0} \in U_{\varphi}$ is a (closed) point, then the polynomials $f_{0}\left(t_{0}, \mathbf{x}\right), \cdots, f_{n}\left(t_{0}, \mathbf{x}\right) \in \mathbb{k}[\mathbf{x}]$ do not admit a common factor. Hence the homogeneous coordinates of $\varphi\left(t_{0}\right)$ define a point in $\mathbb{P}_{(d, n, n)}$ which varies algebraically in t_{0}. This completes the proof.

3.4. Chevalley type Theorem.

Theorem 24. Let X be a rational variety. If $\varphi: T \rightarrow \operatorname{Bir}(X)$ is a morphism and $C \subset T$ is a constructible set, then $\varphi(C)$ is constructible and contains a open subset of $\overline{\varphi(C)}$.
 $\overline{\varphi(T)} \subset \operatorname{Bir}\left(\mathbb{P}^{n}\right)_{\leq d} ;$ we consider the morphism $\varphi_{0}: U_{0}=U_{\varphi} \rightarrow \operatorname{Bir}\left(\mathbb{P}^{n}\right)_{d}$ induced by φ.

On the other hand, Theorem 19 gives a stratification $T \backslash U_{0}=\cup V_{j}^{\ell}$ by locally closed sets such that $d_{j}:=\operatorname{deg}(\varphi(t))$ is constant on each $V_{j} ;$ set $\varphi_{j}: V_{j} \rightarrow \operatorname{Bir}\left(\mathbb{P}^{n}\right)_{d_{j}}$ the morphism induced by φ on V_{j}.

We deduce the result by using Theorem 23 and applying the standard Chevalley Theorem to the morphisms $\varphi_{0}, \varphi_{1}, \ldots, \varphi_{\ell}$.

3.5. Cyclic closed subgroups.

Corollary 25. Let $\left\{f_{m}\right\} \subset \operatorname{Bir}\left(\mathbb{P}^{n}\right)$ be a infinite sequence of birational maps. Then $\left\{f_{m}\right\}$ is closed if and only if $\lim _{m \rightarrow \infty} \operatorname{deg}\left(f_{m}\right)=\infty$. In particular, the Zariski topology on $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$ is not Noetherian.

Proof. Let $\varphi: T \rightarrow \operatorname{Bir}\left(\mathbb{P}^{n}\right)$ be a morphism, with $\operatorname{Deg}(\varphi)=d$. Then there exists m_{0} such that $\operatorname{deg}\left(f_{m}\right) \geq d$ for all $m \geq m_{0}$, and thus $\varphi^{-1}\left(\left\{f_{m}\right\}\right)$ is finite. Hence, the only if follows from Corollary 21 and Theorem 23.

Conversely, suppose that $\liminf _{m \rightarrow \infty} \operatorname{deg}\left(f_{m}\right)=d<\infty$. Then there exist infinitely many f_{i} whose degree is d. Hence, $\left\{f_{m}\right\} \cap \operatorname{Bir}\left(\mathbb{P}^{n}\right)_{d}$ is an infinite countable subset of the algebraic variety and thus it is not closed.

Corollary 26. Let $f \in \operatorname{Bir}\left(\mathbb{P}^{n}\right)$ be a birational map of degree d. The cyclic subgroup $\langle f\rangle$ generated by f is closed if and only if either f is of finite order or $\lim _{m \rightarrow \infty} \operatorname{deg}\left(f^{m}\right)=\infty$.

Example 27. When $n=2$ the behavior of the sequence $\operatorname{deg}\left(f^{m}\right)$ is well known. Indeed, following [DiFa2001], if $\langle f\rangle$ is infinite, then the sequence $\operatorname{deg}\left(f^{m}\right)$ satisfies exactly one of the following:
(a) $\operatorname{deg}\left(f^{m}\right) \leq b$ for some positive $b \in \mathbb{R}$.
(b) $a m \leq \operatorname{deg}\left(f^{m}\right) \leq b m$ for some positive $a, b \in \mathbb{R}$.
(c) $a m^{2} \leq \operatorname{deg}\left(f^{m}\right) \leq b m^{2}$ for some positive $a, b \in \mathbb{R}$.
(d) $a m^{d} \leq \operatorname{deg}\left(f^{m}\right) \leq b m^{d}$ for some positive $a, b \in \mathbb{R}$ where $d=\operatorname{deg}(f)$.

Hence the infinite cyclic group $\langle f\rangle$ is not closed only when the sequence $\operatorname{deg}\left(f^{m}\right)$ satisfies (a) above.

3.6. Some big closed subgroups.

Let $o \in \mathbb{P}^{n}$ be a point. Consider the subgroup $\operatorname{St}_{o}\left(\mathbb{P}^{n}\right) \subset \operatorname{Bir}\left(\mathbb{P}^{n}\right)$ of birational transformations which stabilize (birationality) the set of lines passing through o. If o^{\prime} is another point $\mathrm{St}_{o}\left(\mathbb{P}^{n}\right)$ and $\mathrm{St}_{o^{\prime}}\left(\mathbb{P}^{n}\right)$ may be conjugated by mean of a linear automorphism; in the sequel we fix $o=(1: 0: \cdots: 0)$. In [Do2011] the group $\mathrm{St}_{o}\left(\mathbb{P}^{n}\right)$ is introduced in a different form and is called the de Jonquières subgroup of level $n-1$ (see also [Pa2000]).

Let $\pi: \mathbb{P}^{n} \longrightarrow \mathbb{P}^{n-1}$ be the projection of center o defined by

$$
\left(x_{0}: x_{1}: \cdots: x_{n}\right) \mapsto\left(x_{1}: \cdots: x_{n}\right)
$$

Then $\operatorname{St}_{o}\left(\mathbb{P}^{n}\right)=\left\{f \in \operatorname{Bir}\left(\mathbb{P}^{n}\right): \pi f=f \pi\right\}$. Moreover, note that $\operatorname{St}_{o}\left(\mathbb{P}^{n}\right)$ is the semidirect product

$$
1 \longrightarrow \operatorname{Jon}_{o}\left(\mathbb{P}^{n}\right) \longrightarrow \operatorname{St}_{o}\left(\mathbb{P}^{n}\right) \xrightarrow{\rho} \operatorname{Bir}\left(\mathbb{P}^{n-1}\right) \longrightarrow 1
$$

where $\operatorname{Jon}_{o}\left(\mathbb{P}^{n}\right)=\left\{f \in \operatorname{Bir}\left(\mathbb{P}^{n}\right): \pi f=\pi\right\}$ and ρ is the evident homomorphism. The morphism $\sigma: \operatorname{Bir}\left(\mathbb{P}^{n-1}\right) \rightarrow \operatorname{Bir}\left(\mathbb{P}^{n}\right)$ given by

$$
\left(h_{1}: \cdots: h_{n}\right) \mapsto\left(x_{0} h_{1}: x_{1} h_{1}: \cdots: x_{1} h_{n}\right)
$$

is injective and such that $\sigma\left(\mathbb{P}^{n-1}\right) \subset \operatorname{St}_{o}\left(\mathbb{P}^{n}\right)$. Clearly, $\rho_{\circ} \sigma=i d$.
Moreover, we affirm that ρ is continuos, and σ is a continuos closed immersion. Indeed, if $\varphi: T \rightarrow \operatorname{Bir}\left(\mathbb{P}^{n}\right)$ is a morphism then the composition $\rho \circ \varphi$ defines a morphism $T \rightarrow$ $\operatorname{Bir}\left(\mathbb{P}^{n-1}\right)$; therefore ρ is a continuous function. Clearly, σ is continuos. In order to prove, among other things, that σ is a closed immersion we need the following:

Lemma 28. Let $f \in \mathbb{k}[T] \otimes \mathbb{k}\left[x_{0}, \ldots, x_{n}\right]$ be a polynomial, homogeneous in \mathbf{x}; denote by $\operatorname{deg}_{x_{0}}(f)$ its degree in x_{0}. Then for all integer $m \geq 0$ and $i=0, \ldots, n$ the sets

$$
R=\left\{t \in T: x_{i} \mid f(t, \mathbf{x})\right\}, S_{m}=\left\{t \in T ; \operatorname{deg}_{x_{0}}(f) \leq m\right\}
$$

are closed in T.
Proof. Let $a_{1}, \ldots, a_{N} \in \mathbb{k}[T]$ be the coefficients of f as polynomial in x_{0}, \ldots, x_{n}. It is clear that R and S_{m} are defined as common zeroes of a subset of the polynomials $\left\{a_{1}, \ldots, a_{N}\right\} \subset \mathbb{k}[T]$.

Theorem 29. The subgroups $\operatorname{Jon}_{o}\left(\mathbb{P}^{n}\right)$ and $\mathrm{St}_{o}\left(\mathbb{P}^{n}\right)$ are closed and $\sigma\left(\operatorname{Bir}\left(\mathbb{P}^{n-1}\right)\right.$ is closed in $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$. In particular, σ is a closed immersion.

Proof. Let $\varphi: T \rightarrow \operatorname{Bir}\left(\mathbb{P}^{n}\right)$ be a morphism, say with $\operatorname{Deg}(\varphi)=d$. In order to prove that $\varphi^{-1}\left(\operatorname{Jon}_{o}\left(\mathbb{P}^{n}\right)\right)$ is closed it suffices to consider a net $\left(t_{\xi}\right)$ in $\varphi^{-1}\left(\operatorname{Jon}_{o}\left(\mathbb{P}^{n}\right)\right)$, where ξ varies in a directed set, and show that every limit point $t_{\infty} \in T$ of that net satisfies $\varphi\left(t_{\infty}\right) \in \operatorname{Jon}_{o}\left(\mathbb{P}^{n}\right)$. Let t_{∞} be such a limit point and $T=\cup_{j=0}^{l} V_{j}$ be the stratification given
by Theorem 19(a), where $V_{0}=U_{\varphi}$. Then there exists j such that the subnet $\left(t_{\xi}\right) \cap V_{j}$ has t_{∞} as limit point. Thus, we can assume $t_{\xi} \in U_{\varphi}$ for all ξ, that is that $\operatorname{deg}\left(\varphi_{t_{\xi}}\right)=d$. Write

$$
\varphi(t, \mathbf{x})=\left(f_{0}(t, \mathbf{x}): \cdots: f_{n}(t, \mathbf{x})\right)
$$

where $f_{i} \in \mathbb{k}[T] \otimes \mathbb{k}[\mathbf{x}]$ are homogeneous in $\mathbf{x}=\left\{x_{0}, \ldots, x_{n}\right\}$ of degree d. From the description given in [Pa2000, §2] it follows that for all ξ there exists a homogeneous polynomial $q_{\xi} \in \mathbb{k}[\mathbf{x}]$ such that:
(a) $f_{i}\left(t_{\xi}, \mathbf{x}\right)=x_{i} q_{\xi}(\mathbf{x})$, for $i>0$;
(b) $f_{0}\left(t_{\xi}, \mathbf{x}\right)$ and $q_{\xi}(\mathbf{x})$ have degrees ≤ 1 in x_{0};
(c) $f_{0}\left(t_{\xi}, \mathbf{x}\right) q_{\xi}(\mathbf{x})$ has degree ≥ 1 in x_{0}.

By Lemma 28, when t_{ξ} specializes to t_{∞}, then $\varphi_{\xi}=\varphi\left(t_{\xi}\right)$ specializes to the birational $\operatorname{map} \varphi_{t_{\infty}}=\left(f: x_{1} q: \cdots: x_{n} q\right): \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$, where $f(\mathbf{x})$ and $x_{i} q(\mathbf{x}), i>0$, are polynomials in \mathbf{x} of degree d and with degree ≤ 1 in x_{0}. Suppose that f and q admit a common factor $h \in \mathbb{k}\left[x_{0}, \ldots, x_{n}\right]$, of degree ≥ 0. Since the limit map $\varphi_{t_{\infty}}$ is birational (of degree $\leq d)$ we deduce that $h \in \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$: otherwise h would have degree 1 in x_{0} and the map $\varphi_{t_{\infty}}$ would be defined by polynomials in x_{1}, \ldots, x_{n} contradicting birationality. Hence $f^{\prime}:=f / h$ and $q^{\prime}:=q / h$ satisfy the conditions (b) and (c) above. We conclude $\varphi_{t_{\infty}}=\left(f^{\prime}: x_{1} q^{\prime}: \cdots: x_{n} q^{\prime}\right)$. Applying again the description of [Pa2000, §2], we deduce that $\pi \varphi_{t_{\infty}}=\pi$, that is $\varphi_{t_{\infty}} \in \operatorname{Jon}_{o}\left(\mathbb{P}^{n}\right)$, which proves $\operatorname{Jon}_{o}\left(\mathbb{P}^{n}\right)$ is closed.

In order to prove that $\sigma\left(\operatorname{Bir}\left(\mathbb{P}^{n-1}\right)\right)$ is closed, consider a net $\left(t_{\xi}\right) \subset \varphi^{-1}\left(\sigma\left(\mathbb{P}^{n-1}\right)\right)$, with limit point t_{∞}. As before, we can assume that $t_{\xi} \in U_{\varphi}$ for all ξ. With the notation introduced above we have that
(a) $f_{i}\left(t_{\xi}, \mathbf{x}\right)=x_{1} h_{i, \xi}(\mathbf{x})$, for $i>0$, and
(b) $f_{0}\left(t_{\xi}, \mathbf{x}\right)=x_{0} h_{1, \xi}(\mathbf{x})$,
where $\left(h_{1, \xi}: \cdots: h_{n, \xi}\right): \mathbb{P}^{n-1} \rightarrow \mathbb{P}^{n-1}$ is birational. From Lemma 28 we obtain that $h_{i, \xi}$ specializes to a polynomial $h_{i} \in \mathbb{k}\left[x_{1}, \ldots, x_{n}\right], i>0$ and that $\varphi_{t_{\infty}}=\left(x_{0} h_{1}: x_{1} h_{1}\right.$: $\cdots: x_{1} h_{n}$). Since $\pi \varphi_{t_{\infty}}=\varphi_{t_{\infty}} \pi$ we conclude that $\varphi_{t_{\infty}} \in \operatorname{St}_{o}\left(\mathbb{P}^{n}\right)$ and thus ($h_{1}: \cdots$: $\left.h_{n}\right) \in \operatorname{Bir}\left(\mathbb{P}^{n-1}\left(\left[\mathrm{~Pa} 2000\right.\right.\right.$, Prop. 2.2]). Since $\sigma\left(\left(h_{1}: \cdots: h_{n}\right)\right)=\varphi_{t_{\infty}}$, it follows that $\sigma\left(\operatorname{Bir}\left(\mathbb{P}^{n-1}\right)\right.$ is closed.

Finally, since for elements $f \in \operatorname{Jon}_{o}\left(\mathbb{P}^{n}\right)$ and $h \in \operatorname{Bir}\left(\mathbb{P}^{n-1}\right)$ the product $f \rtimes h$ is the composition $f_{\circ} \sigma(h)$, then $\operatorname{St}_{o}\left(\mathbb{P}^{n}\right)=\operatorname{Jon}_{o}\left(\mathbb{P}^{n}\right) \operatorname{Im}(\sigma)$ (product in $\left.\operatorname{Bir}\left(\mathbb{P}^{n}\right)\right)$. The fact that $\mathrm{St}_{o}\left(\mathbb{P}^{n}\right)$ is closed follows then from the two assertions we have just proved together with the continuity of the functions $\rho: \mathrm{St}_{o}\left(\mathbb{P}^{n}\right) \rightarrow \operatorname{Bir}\left(\mathbb{P}^{n-1}\right)$, the group product and the group inversion. Indeed, let $\left(f_{\xi} \rtimes h_{\xi}\right)$ be a net in $\mathrm{St}_{o}\left(\mathbb{P}^{n}\right)$ which specializes to $s \in \operatorname{Bir}\left(\mathbb{P}^{n}\right)$. Then $\rho\left(f_{\xi} \rtimes h_{\xi}\right)=\rho\left(1 \rtimes h_{\xi}\right)=h_{\xi}$ specializes to $\rho(s)=h \in \operatorname{Bir}\left(\mathbb{P}^{n-1}\right)$. Since $\left(f_{\xi} \rtimes h_{\xi}\right) \cdot\left(1 \rtimes h_{\xi}^{-1}\right)=$ $f_{\xi} \rtimes 1 \in \operatorname{Jon}_{o}\left(\mathbb{P}^{n}\right)$, the net $\left(f_{\xi} \rtimes 1\right)$ specializes to $s \sigma\left(h^{-1}\right) \in \operatorname{Jon}_{o}\left(\mathbb{P}^{n}\right)$. Thus $s \in \operatorname{St}_{o}\left(\mathbb{P}^{n}\right)$.
Remark 30. More generally, for $\ell=1, \ldots, n$, the map $\sigma_{\ell}: \operatorname{Bir}\left(\mathbb{P}^{n-1}\right) \rightarrow \operatorname{Bir}\left(\mathbb{P}^{n}\right)$ defined by

$$
\sigma_{\ell}\left(\left(h_{1}: \cdots: h_{n}\right)\right)=\left(x_{0} h_{\ell}: x_{\ell} h_{1}: \cdots: x_{\ell} h_{n}\right)
$$

is a continuous, closed, homomorphism whose image is contained in $\mathrm{St}_{o}\left(\mathbb{P}^{n}\right)$ and such that $\rho \sigma_{\ell}=i d$. In this notation, the map σ of Theorem 29 is σ_{1}. Moreover, one has

$$
\bigcap_{\ell=1}^{n} \sigma_{\ell}\left(\operatorname{Bir}\left(\mathbb{P}^{n-1}\right)\right)=\{i d\} .
$$

If \mathcal{U}_{ℓ} is the dense open set $\operatorname{Bir}\left(\mathbb{P}^{n}\right) \backslash \sigma_{\ell}\left(\operatorname{Bir}\left(\mathbb{P}^{n-1}\right)\right)$, then $\operatorname{Bir}\left(\mathbb{P}^{n}\right)-\{i d\}=\bigcup_{\ell=1}^{n} \mathcal{U}_{\ell}$.

References

[B12011] J. Blanc, Groupes de Cremona, connexité et simplicité, Ann. Sci. Éc. Norm. Supér. 43 (2010), no. 2, pp. 357-364.
[Ca2011] S. Cantat, Sur les groupes de transformations birationnelles des surfaces, Annals of Math. 174 (2011), pp. 299-340.
[CaLa2011] S. Cantat and S. Lamy, Normal subgroups of the Cremona group, to appear Acta Math.
[De1997] M. Demazure, Sous-groupes algébriques de rang maximum du groupe de Cremona, Ann. Sci. Éc. Norm. Supér. 4e série, t. 3, no 4 (1970), 507-588.
[DiFa2001] J. Diller and C. Favre, Dynamics of Bimeromorphic Maps of Surfaces, American Journal of Mathematics Vol. 123, No. 6 (Dec., 2001), pp. 1135-1169.
[Do2011] I. Dolgachev, Lectures on Cremona transformations, Ann Arbor-Rome, preprint 2011.
[FaWu11] Ch. Favre and E. Welcan, Degree Growth of Momonial maps and McMullen's Polytope Algebra, preprint at http://fr.arxiv.org/abs/1011.2854v2.
[FSRi] W. Ferrer-Santos and A. Rittatore, Actions and Invariants of Algebraic Groups, CRC Press, 2005.
[GSPa03] G. Gonzalez-Sprinberg and I. Pan, On the Monomial Birational Maps of the Projective Space, Annals of Braz. Acad. Sci. (2003) 75(2), pp. 129134.
[Mu1974] D. Mumford, Algebraic Geometry in Mathematical developments arising from Hilbert problems. Proceedings of the Symposium in Pure Mathematics of the American Ma- thematical Society held at Northern Illinois University, De Kalb, Ill., May, 1974. 4445.
[RPV2001] F. Ronga, I. Pan and T. Vust, Transformation quadratiques de l'espace projective à trois dimensions, Ann. Inst. Fourier, Grenoble 51, 5 (2001), 1153-1187.
[Pa2000] I. Pan, Les transformations de Cremona stellaires, Proc. American Math. Soc, V. 129, N. 5, 12571262.
[Sha] I. R. Shafarevich, Basic Algebraic Gemetry 1, Springer-Verlag, 1988.
[Ser08] J. P. Serre, Le groupe de Cremona et ses sous-groups finis, Séminaire BOURBAKI, No 1000, 2008-2009. 2008-2009.

Ivan Pan, Centro de Matemtica, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 - Montevideo - URUGUAY

E-mail address: ivan@cmat.edu.uy
Alvaro Rittatore, Centro de Matemtica, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 - Montevideo - URUGUAY

E-mail address: alvaro@cmat.edu.uy

