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ON CREMONA TRANSFORMATIONS OF P* WITH ALL POSSIBLE
BIDEGREES

IVAN PAN

1. INTRODUCTION

The aim of this note is to correct a mistake in the proof of Theorem [Pa2000-2,
Théoreme. 2.2] which was pointed me out by Igor Dolgachev. More precisely, the ex-
ample [Pa2000-2, Exemple 2.1] is wrong, and it was used to prove [Pa2000-2, Lemme
2.1] which is needed, in turn, to obtain that Theorem. Apparently that example can not
be rewritten in order to use it as before, then we propose here a more precise and ex-
plicit construction of Cremona transformations of P? (see §2, specially Lemma 2) which,
together with their inverses, provide all possible bidegrees (Theorem 3 and Corollary 4).

Acknowledge I would like thank Igor Dolgachev for point me out a mistake in [Pa2000-2,
Exemple 2.1].

2. MAIN CONSTRUCTION AND RESULTS

Let P2 be the projective space over the complex number field C; we fix homogeneous
coordinates w, z,y, z on P3.

We recall that a Cremona transformation of P? is a birational map F : P3 — — = P3,
We say F has bidegree (d,e) when F and its inverse F~! are defined by homogeneous
polynomials, without non trivial common factors, of degrees d and e respectively; notice
that in this case F'~! has bidegree (e,d). If V' C P3 is a dense open set where F~! is well
defined and injective, and L C P? is a line with LNV # (), then e is the degree of the
closure of F~'(L NV) (see for example [Pa2000-2, Proposition 1.1]).

If X C P?is a curve and p € P? we denote by mult,(X) the multiplicity of X at p.
If S,8" C P? are surfaces and C C S NS is an irreducible component, we denote by
multe (S, S7) the intersection multiplicity of S and S along C'.

Consider a rational map 7 : P® — — = P3 defined by
T =(g:qt1:qta: qt3)
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where t1,t5,t5 € Clz,y, 2] are homogeneous of degree r, without non trivial common
factors, and g,q € Clw,z,y, z] are homogeneous of degrees d,d — 1, with d > r > 1
and g irreducible. We know that T is birational when 7 := (t; : ty : t3) : P? — - > P?
is birational and g¢,q vanish at o = (1 : 0 : 0 : 0) with orders d — 1 and > d —r — 1
respectively (see [Pa2000-1, Proposition 2.2]).

On the other hand, consider 2r — 1 points pg, 1, . . ., par—o in P2, r > 2, satisfying the
following condition:

There exist curves X,,Y,_; C P? of degrees r,r — 1, respectively, with
X, irreducible, such that mult, (X,) = r — 1, mult,,(Y;) > r — 2 and
pi € X, NY,_yfori=1,...,2r —2.

Hence loc. cit also implies there exists a plane Cremona transformation defined by poly-
nomials of degree r which vanish at py with order » — 1 and with order 1 at the other
points: indeed, if we suppose py = (1 : 0 : 0) and take polynomials ¢; and f, of degrees
r and r — 1, defining X, and Y,_; respectively, then (t; : yf : z2f) : P2 —-> P? is a
Cremona transformation as required; such a transformation is said to be associated to the
points po, p1, - - ., P2r—2.

Remark 1. The transformations satisfying the condition quoted above are general cases
of the so-called de Jonguiéres transformations (see [dJo1864] or [Alb2000, Def. 2.6.10]).
We note that the Enriques criterion [A1b2000, Thm. 5.1.1] may be also used to prove
that a set of 2r — 2 points pg, p1, . . . , p2r_2 With assigned multiplicities »r — 1,1,...,1, and
satisfying the condition above, defines a de Jonquieres transformation.

Fix r = d and take a homogeneous irreducible polynomial g = wA(z,y, z) + B(z,y, 2)
of degree d; that is, in this case the polynomial ¢ is a nonzero complex number. Denote
by T, ; the Cremona transformation defined by

Tyr=10(9:t 1t2:t3)
where 7 = (t1 : 19 : t3) is associated to 2d — 2 points satisfying the condition quoted above.
We have
Lemma 2. Let d > 2 be an integer number. There exist g and T such that:
(a) T, has bidegree (d,2d — 1 —m) for 0 <m <d — 1.
(b) T,+ has bidegree (d,d* —¢* —m) for0<{<d—1and0<m <2d—2.

Proof. We identify P? with the plane {w = 0} C P?. Fix a point p, € P2.

To prove (a) we first choose ¢g vanishing along a line opy with order d — 1 and being
general with respect to this condition: for example, if pp = (0 : 1 : 0 : 0) we take



g = wA+ B with

A=As1(y,2),B=2xBy 1(y,2) + Baly, 2),
where A;, B; are general homogeneous polynomials of degree i. Hence A = 0 defines the
union of d — 1 distinct lines in P? passing through py and B = 0 defines an irreducible
degree d curve with an ordinary singular point of multiplicity d — 1 at py.

Notice that, by construction, in the open set P* — {po} the curves A = 0 and B = 0
intersect at d(d—1)—(d—1)? = d—1 points; in particular, if m < d—1 , there exist m points
D1y - -, Pm satisfying A(p;) = B(p;) = 0 for 1 < i < m. Therefore, we consider m such
points and choose P41, . . ., Pag—2 With A(p;) # 0, B(p;) =0, forall j =m+1,...,2d -2,
and in order that pg, p1, ..., paq_o satisfy the condition quoted above. Let 7 be the plane
Cremona transformation associated to these points.

Now consider a general member in the linear system defining 7} ;, that is a degree d
irreducible surface, S say, with equation of the form

ag + a1t1 + (lztg + a3t3 = O,

where a, a1, as, a3 € C are general. Therefore S has an ordinary singularity of multiplicity
d — 1 at the generic point of the line opy and is smooth at the generic point of the line op;
for 1 < i < m. If S is another general member of that linear system, then there exists
a rational irreducible curve I' of degree e = deg(ngTl) such that the intersection scheme
S NS’ is supported on

I'U (UZgop;)
where

multr (S, S") = 1;mult,,, (S, S") = (d — 1)* mult,,,(S,5) =1,i=1,...,m.

We conclude ¢ = d* — (d — 1)> —m = 2d — 1 — m, which proves the assertion (a).

To prove (b) we work analogously but by choosing ¢ = wA + B with

d—1 d
A= Zxd_l_iAi(y, z),B = Zfd_‘ij(ya z)
i= J=t

where A;, B; are general homogeneous polynomials of degree ¢. Since £ < d — 2 there exist
points py, ..., pag—2 such that A(p;) = B(p;) =0 for 1 <i <m and A(p;) # 0 B(p;) =0
for j=m+1,...,2d —2: indeed, in the open set P? — {py}, the curves A =0 and B =0
intersect at d(d — 1) — (2> > d(d — 1) — (d — 2)?> = 3d — 4 points.

O

Theorem 3. There exist Cremona transformations of bidegree (d,e) for d < e < d>.

Proof. By using part (a) of Lemma 2 we obtain Cremona transformations of bidegrees
(d,e) for d < e <2d—1.



4 IVAN PAN

Now we suppose £ < d — 1 and think of e = d* — /2 — m as a function e(¢, m) depending
on ¢ and m; to complete the proof it suffices to prove that the image of this function
contains {2d,2d + 1,...,d*}.

We note that e(d —2,2d — 2) = 2d — 2 and ¢(0,0) = d?; in other words, the part (b) of
Lemma 2 implies there are Cremona transformations of bidegrees (d, 2d — 2) and (d, d?).
On the other hand e(¢,0) —e(¢ —1,2d —2) = 2(d — ¢) — 1 > 0. Since e(¢, m) decreases
with m, we easily obtain the result. ([l

For d = 2 the Theorem gives transformations of bidegrees (2,2), (2, 3), (2,4), for d = 3
it gives transformations of bidegrees (3, 3), (3,4),...,(3,9), and son on. By symmetry we
deduce

Corollary 4. There exist Cremona transformations of bidegree (d,e) for Vid<e<d?

Remark 5. The inequalities Vd < e < d? are the unique obstructions to the degree of the
inverse of a Cremona transformation of degree d in P3.
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