ON CREMONA TRANSFORMATIONS OF \mathbb{P}^{3} WITH ALL POSSIBLE BIDEGREES

IVAN PAN

1. Introduction

The aim of this note is to correct a mistake in the proof of Theorem [Pa2000-2, Théorème. 2.2] which was pointed me out by Igor Dolgachev. More precisely, the example [Pa2000-2, Exemple 2.1] is wrong, and it was used to prove [Pa2000-2, Lemme 2.1] which is needed, in turn, to obtain that Theorem. Apparently that example can not be rewritten in order to use it as before, then we propose here a more precise and explicit construction of Cremona transformations of \mathbb{P}^{3} (see § 2 , specially Lemma 2) which, together with their inverses, provide all possible bidegrees (Theorem 3 and Corollary 4).

Acknowledge I would like thank Igor Dolgachev for point me out a mistake in [Pa2000-2, Exemple 2.1].

2. Main construction and results

Let \mathbb{P}^{3} be the projective space over the complex number field \mathbb{C}; we fix homogeneous coordinates w, x, y, z on \mathbb{P}^{3}.

We recall that a Cremona transformation of \mathbb{P}^{3} is a birational map $F: \mathbb{P}^{3}-->\mathbb{P}^{3}$. We say F has bidegree (d, e) when F and its inverse F^{-1} are defined by homogeneous polynomials, without non trivial common factors, of degrees d and e respectively; notice that in this case F^{-1} has bidegree (e, d). If $V \subset \mathbb{P}^{3}$ is a dense open set where F^{-1} is well defined and injective, and $L \subset \mathbb{P}^{3}$ is a line with $L \cap V \neq \emptyset$, then e is the degree of the closure of $F^{-1}(L \cap V)$ (see for example [Pa2000-2, Proposition 1.1]).

If $X \subset \mathbb{P}^{2}$ is a curve and $p \in \mathbb{P}^{2}$ we denote by $\operatorname{mult}_{p}(X)$ the multiplicity of X at p. If $S, S^{\prime} \subset \mathbb{P}^{3}$ are surfaces and $C \subset S \cap S^{\prime}$ is an irreducible component, we denote by mult $_{C}\left(S, S^{\prime}\right)$ the intersection multiplicity of S and S^{\prime} along C.

Consider a rational map $T: \mathbb{P}^{3}-->\mathbb{P}^{3}$ defined by

$$
T=\left(g: q t_{1}: q t_{2}: q t_{3}\right)
$$

[^0]where $t_{1}, t_{2}, t_{3} \in \mathbb{C}[x, y, z]$ are homogeneous of degree r, without non trivial common factors, and $g, q \in \mathbb{C}[w, x, y, z]$ are homogeneous of degrees $d, d-1$, with $d \geq r \geq 1$ and g irreducible. We know that T is birational when $\tau:=\left(t_{1}: t_{2}: t_{3}\right): \mathbb{P}^{2}-->\mathbb{P}^{2}$ is birational and g, q vanish at $o=(1: 0: 0: 0)$ with orders $d-1$ and $\geq d-r-1$ respectively (see [Pa2000-1, Proposition 2.2]).

On the other hand, consider $2 r-1$ points $p_{0}, p_{1}, \ldots, p_{2 r-2}$ in $\mathbb{P}^{2}, r \geq 2$, satisfying the following condition:

There exist curves $X_{r}, Y_{r-1} \subset \mathbb{P}^{2}$ of degrees $r, r-1$, respectively, with X_{r} irreducible, such that $\operatorname{mult}_{p_{0}}\left(X_{r}\right)=r-1, \operatorname{mult}_{p_{0}}\left(Y_{r}\right) \geq r-2$ and $p_{i} \in X_{r} \cap Y_{r-1}$ for $i=1, \ldots, 2 r-2$.

Hence loc. cit also implies there exists a plane Cremona transformation defined by polynomials of degree r which vanish at p_{0} with order $r-1$ and with order 1 at the other points: indeed, if we suppose $p_{0}=(1: 0: 0)$ and take polynomials t_{1} and f, of degrees r and $r-1$, defining X_{r} and Y_{r-1} respectively, then $\left(t_{1}: y f: z f\right): \mathbb{P}^{2}--\mathbb{P}^{2}$ is a Cremona transformation as required; such a transformation is said to be associated to the points $p_{0}, p_{1}, \ldots, p_{2 r-2}$.

Remark 1. The transformations satisfying the condition quoted above are general cases of the so-called de Jonquières transformations (see [dJo1864] or [Alb2000, Def. 2.6.10]). We note that the Enriques criterion [Alb2000, Thm. 5.1.1] may be also used to prove that a set of $2 r-2$ points $p_{0}, p_{1}, \ldots, p_{2 r-2}$ with assigned multiplicities $r-1,1, \ldots, 1$, and satisfying the condition above, defines a de Jonquières transformation.

Fix $r=d$ and take a homogeneous irreducible polynomial $g=w A(x, y, z)+B(x, y, z)$ of degree d; that is, in this case the polynomial q is a nonzero complex number. Denote by $T_{g, \tau}$ the Cremona transformation defined by

$$
T_{g, \tau}=\left(g: t_{1}: t_{2}: t_{3}\right)
$$

where $\tau=\left(t_{1}: t_{2}: t_{3}\right)$ is associated to $2 d-2$ points satisfying the condition quoted above.
We have
Lemma 2. Let $d \geq 2$ be an integer number. There exist g and τ such that:
(a) $T_{g, \tau}$ has bidegree $(d, 2 d-1-m)$ for $0 \leq m \leq d-1$.
(b) $T_{g, \tau}$ has bidegree $\left(d, d^{2}-\ell^{2}-m\right)$ for $0 \leq \ell<d-1$ and $0 \leq m \leq 2 d-2$.

Proof. We identify \mathbb{P}^{2} with the plane $\{w=0\} \subset \mathbb{P}^{3}$. Fix a point $p_{0} \in \mathbb{P}^{2}$.
To prove (a) we first choose g vanishing along a line $o p_{0}$ with order $d-1$ and being general with respect to this condition: for example, if $p_{0}=(0: 1: 0: 0)$ we take
$g=w A+B$ with

$$
A=A_{d-1}(y, z), B=x B_{d-1}(y, z)+B_{d}(y, z),
$$

where A_{i}, B_{i} are general homogeneous polynomials of degree i. Hence $A=0$ defines the union of $d-1$ distinct lines in \mathbb{P}^{2} passing through p_{0} and $B=0$ defines an irreducible degree d curve with an ordinary singular point of multiplicity $d-1$ at p_{0}.

Notice that, by construction, in the open set $\mathbb{P}^{2}-\left\{p_{0}\right\}$ the curves $A=0$ and $B=0$ intersect at $d(d-1)-(d-1)^{2}=d-1$ points; in particular, if $m \leq d-1$, there exist m points p_{1}, \ldots, p_{m} satisfying $A\left(p_{i}\right)=B\left(p_{i}\right)=0$ for $1 \leq i \leq m$. Therefore, we consider m such points and choose $p_{m+1}, \ldots, p_{2 d-2}$ with $A\left(p_{j}\right) \neq 0, B\left(p_{j}\right)=0$, for all $j=m+1, \ldots, 2 d-2$, and in order that $p_{0}, p_{1}, \ldots, p_{2 d-2}$ satisfy the condition quoted above. Let τ be the plane Cremona transformation associated to these points.

Now consider a general member in the linear system defining $T_{g, \tau}$, that is a degree d irreducible surface, S say, with equation of the form

$$
a g+a_{1} t_{1}+a_{2} t_{2}+a_{3} t_{3}=0,
$$

where $a, a_{1}, a_{2}, a_{3} \in \mathbb{C}$ are general. Therefore S has an ordinary singularity of multiplicity $d-1$ at the generic point of the line $o p_{0}$ and is smooth at the generic point of the line $o p_{i}$ for $1 \leq i \leq m$. If S^{\prime} is another general member of that linear system, then there exists a rational irreducible curve Γ of degree $e=\operatorname{deg}\left(T_{g, \tau}^{-1}\right)$ such that the intersection scheme $S \cap S^{\prime}$ is supported on

$$
\Gamma \cup\left(\cup_{i=0}^{m} o p_{i}\right)
$$

where

$$
\operatorname{mult}_{\Gamma}\left(S, S^{\prime}\right)=1 ; \operatorname{mult}_{o p_{0}}\left(S, S^{\prime}\right)=(d-1)^{2} ; \operatorname{mult}_{o p_{i}}\left(S, S^{\prime}\right)=1, i=1, \ldots, m
$$

We conclude $e=d^{2}-(d-1)^{2}-m=2 d-1-m$, which proves the assertion (a).
To prove (b) we work analogously but by choosing $g=w A+B$ with

$$
A=\sum_{i=\ell}^{d-1} x^{d-1-i} A_{i}(y, z), B=\sum_{j=\ell}^{d} x^{d-j} B_{j}(y, z)
$$

where A_{i}, B_{i} are general homogeneous polynomials of degree i. Since $\ell \leq d-2$ there exist points $p_{1}, \ldots, p_{2 d-2}$ such that $A\left(p_{i}\right)=B\left(p_{i}\right)=0$ for $1 \leq i \leq m$ and $A\left(p_{j}\right) \neq 0 B\left(p_{j}\right)=0$ for $j=m+1, \ldots, 2 d-2$: indeed, in the open set $\mathbb{P}^{2}-\left\{p_{0}\right\}$, the curves $A=0$ and $B=0$ intersect at $d(d-1)-\ell^{2} \geq d(d-1)-(d-2)^{2}=3 d-4$ points.

Theorem 3. There exist Cremona transformations of bidegree (d, e) for $d \leq e \leq d^{2}$.
Proof. By using part (a) of Lemma 2 we obtain Cremona transformations of bidegrees (d, e) for $d \leq e \leq 2 d-1$.

Now we suppose $\ell<d-1$ and think of $e=d^{2}-\ell^{2}-m$ as a function $e(\ell, m)$ depending on ℓ and m; to complete the proof it suffices to prove that the image of this function contains $\left\{2 d, 2 d+1, \ldots, d^{2}\right\}$.

We note that $e(d-2,2 d-2)=2 d-2$ and $e(0,0)=d^{2}$; in other words, the part (b) of Lemma 2 implies there are Cremona transformations of bidegrees $(d, 2 d-2)$ and $\left(d, d^{2}\right)$. On the other hand $e(\ell, 0)-e(\ell-1,2 d-2)=2(d-\ell)-1>0$. Since $e(\ell, m)$ decreases with m, we easily obtain the result.

For $d=2$ the Theorem gives transformations of bidegrees $(2,2),(2,3),(2,4)$, for $d=3$ it gives transformations of bidegrees $(3,3),(3,4), \ldots,(3,9)$, and son on. By symmetry we deduce

Corollary 4. There exist Cremona transformations of bidegree (d, e) for $\sqrt{d} \leq e \leq d^{2}$.
Remark 5. The inequalities $\sqrt{d} \leq e \leq d^{2}$ are the unique obstructions to the degree of the inverse of a Cremona transformation of degree d in \mathbb{P}^{3}.

References

[Alb2000] M. Alberich-Carramiñana, Geometry of the plan Cremona maps, Lectures Notes in Math. 1769, Springer (2000).
[dJo1864] E. de Jonquières, Mèmoire sur les figures isographiques et sur un mode uniforme de génération des courbes à courbure d'un ordre quelconque au moyen de deux faisceaux correspondants de droites, Nouvelles annales de mathématiques 2e série, tome 3 (1864), p. 97-111.
[Pa2000-2] I. Pan, Sur les multidegrés des transformations de Cremona, C. R. Acad. Sci. Paris, t. 330, Série I, pp. 297-300, 2000.
[Pa2000-1] I. Pan, Les transformations de Cremona stellaires, Proced. of AMS, 129, N. 5 (2000), pp.12571262.

E-mail address: ivan@cmat.edu.uy

[^0]: ${ }^{1}$ Partially supported by the Agencia Nacional de Investigadores of Uruguay

