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Partial actions of discrete groups and related
structures

Fernando Abadie1

ABSTRACT

We give constructions of the groupoid of a partial action of a discrete group
other than the ones given in [1]. We also show that Paterson’s universal
groupoid of the inverse semigroup of a discrete group agrees with the groupoid
associated to the “universal” partial action of the group.

RESUMEN

Se dan construcciones del grupoide asociado a una acción parcial de un
grupo discreto diferentes de las presentadas en [1]. También se muestra que
el grupoide universal de Paterson del semigrupo inverso de un grupo discreto
coincide con el grupoide asociado a la acción parcial “universal” del grupo.

To Alfredo Jones

Introduction

We have shown in [1] how to associate a locally compact groupoid Gθ with
every partial action θ on a locally compact Hausdorff space. We also observed
that in the case of a topologically free partial action of a discrete group, the
corresponding groupoid is nothing but a sheaf groupoid of germs. The purpose
of the present paper is to compare this groupoid with some other groupoids
which are obtained, in the special case of discrete groups, by combining results
of Exel, Nica, Paterson and Sieben. The key step consists in passing from a
partial action of G to an action of an associated F̃–inverse semigroup, and
then to construct a groupoid via Nica’s theory ([4]). We show below that the
groupoids thus obtained coincide with ours. We also connect the work of Nica
with that of Paterson on localizations. On the other hand, Paterson shows
in [5] how to associate a “universal groupoid” with any inverse semigroup.
We will see that the universal groupoid of S(G) is the groupoid of a suitable
partial action of G.
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Suppose that G is a discrete group and θ = ({Xt}t∈G, {θt}t∈G) is a partial
action of G on a set X. This means that each Xt is a subset of X, with Xe = X
(where e is the unity element of G), θt : Xt−1 → Xt is bijective, ∀t ∈ G, and
θst is an extension of θsθt, ∀s, t ∈ G. Thus θe = idX , and θ−1

t = θt−1 , ∀t ∈ G.
If X is a topological space it is also required that each Xt is open and each θt
is a homeomorphism.

The partial action θ on the set X can be thought of as the set of morphisms
of a groupoid Gθ in the following way. The set of objects of Gθ is the space X,
and, given x, y ∈ X, the set of morphisms Gθ(x, y) from x into y is defined as
Gθ(x, y) := {(y, t, x) ∈ X × G × X : x ∈ Xt−1 and θt(x) = y}. Composition
of morphisms is given by (z, s, y)(y, t, x) = (z, st, x). The fact that θ is a
partial action ensures that Gθ is a groupoid (see [1] for details). Note that
the identity morphism at x is (x, e, x), and (y, t, x)−1 = (x, t−1, y). If X is a
locally compact Hausdorff space, we endow Gθ with the topology inherited by
the product topology on X ×G×X. It turns out that Gθ is a locally compact
Hausdorff groupoid with this topology.

1. Gθ in two steps

We briefly review some basic facts of the theory developed in [2]. The
inverse semigroup S(G) of a group G is defined by a set of generators {[t] :
t ∈ G} and the relations:

(i) [s−1][s][t] = [s−1][st],∀s, t ∈ G. (iii) [s][e] = [s], ∀s ∈ G
(ii) [s][t][t−1] = [st][t−1],∀s, t ∈ G. (iv) [e][s] = [s], ∀s ∈ G.

The semigroup S(G) is characterized by the following universal property: if S
is a semigroup and f : G→ S is a map satisfying

f(s−1)f(s)f(t) = f(s−1)f(st),∀s, t ∈ G (1)

f(s)f(t)f(t−1) = f(st)f(t−1),∀s, t ∈ G (2)
f(s)f(e) = f(s),∀s ∈ G (3)

then there is a unique homomorphism f̃ : S(G) → S such that f̃([t]) = f(t),
∀t ∈ G. In particular, there is a homomorphism ∂ : S(G) → G such that
∂([t]) = t, ∀t ∈ G. A consequence of the universal property of S(G) is that
there exists an involution ∗ : S(G) → S(G) such that [t]∗ = [t−1], ∀t ∈ G,
and

(
S(G), ∗

)
is an inverse semigroup. If t ∈ G, the element εt := [t][t−1]

belongs to the semilattice ES(G) of the idempotents of S(G). Moreover, every
σ ∈ S(G) has a standard form: there exist unique disjoint subsets {t} and
{t1, . . . , tk} of G such that σ = εt1 · · · εtk [t].
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Every inverse semigroup S has a partial order defined by: σ ≤ τ ⇐⇒
σσ∗ = τσ∗. A unital inverse semigroup S is called an F̃–inverse semigroup if
every σ ∈ S, σ 6= 0, is majorized by a unique maximal element of S. If such
condition holds for each σ ∈ S, it is said that S is an F–inverse semigroup.

Proposition 1.1 Let S(G) be the inverse semigroup of the group G. We
have:

1. If σ ∈ S(G) and t ∈ G, then ∂(σ) = t ⇐⇒ σ ≤ [t]

2. The set of maximal elements of S(G) is M = {[t] : t ∈ G}

3. S(G) is an F–inverse semigroup.

4. The maximal element that majorizes [s][t] is [st].

Proof. To prove 1. note that if ∂(σ) = t and σ = εs1 · · · εsk [s], then s = t.
Therefore σσ∗ = εs1 · · · εskεt = [t]σ∗, so σ ≤ [t]. Conversely, since homomor-
phisms of inverse semigroups are order preserving, we have ∂(σ) ≤ t whenever
σ ≤ [t], and therefore ∂(σ) = t. Now 2., 3. and 4. follow directly from 1. �

With every pair (S, α), where S is an F̃–inverse semigroup S and α a left
action of S on a space X, Nica associates a groupoid by using a procedure
comparable with the construction of the sheaf groupoid of germs (see [1, Re-
mark 2.1]). LetMS be the set of maximal elements of S. There is a partially
defined product onMS : if µ, µ′ ∈MS are such that their product µµ′ in S is
not zero, then µ ·µ′ is defined to be the unique element inMS that majorizes
µµ′. The groupoid of (S, α) is Nα := {(µ, x) : µ ∈ MS , x ∈ dom(αµ)} with
product (µ, x)(µ′, x′) = (µ ·µ′, x′) whenever αµ(x′) = x and µµ′ 6= 0, inversion
(µ, x)−1 = (µ∗, αµ(x)), and with the product topology. The reader is referred
to [4] for details.

Consider now a partial action of a discrete group G on a locally compact
Hausdorff space X. By [2, Theorem 4.2] θ induces a unique action (also called
θ) of S(G) on X, such that θt = θ[t], ∀t ∈ G. Following [4] we may associate
with

(
S(G), θ

)
a groupoid Nθ. In view of parts 2. and 4. of Proposition 1.1

and the comments above we have Nθ = {([t], x) : t ∈ G, x ∈ Xt−1}, with the
product ([s], y)([t], x) = ([st], x), for ([s], y), ([t], x) ∈ Nθ such that θ[t](x) = y.

Proposition 1.2 The groupoids Gθ and Nθ are naturally isomorphic.

Proof. It is clear that the map ψ : Gθ → Nθ given by φ(y, t, x) = ([t], x) is a
homeomorphism with inverse ([t], x) 7→ (θt(x), t, x). Moreover:

ψ
(
(z, s, y)(y, t, x)

)
= ψ(z, st, x) = ([st], x) = ([s], y)([t], x) = ψ(z, s, y)ψ(y, t, x).
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Therefore ψ is an isomorphism of locally compact groupoids. �

A partial action of the discrete group G on the C∗-algebra A is a partial
action σ = ({Dt}, {σt}) on the set A with the requirement that every Dt is an
ideal in A and every σt is an isomorphism of C∗-algebras. If A is commutative,
then every partial action σ on A is the dual of a unique partial action θ on
the spectrum X of A, that is: Dt = C0(Xt) and σt(a) = a ◦ θt−1 , ∀t ∈ G and
a ∈ Dt−1 , where Xt is an open subset of X (see [1] for details).

A covariant representation of the system (A,G, σ) on the Hilbert space H
is a pair (π, u), where π : A → B(H) is a non-degenerate representation of
A and u : G → B(H) is such that every ut is a partial isometry on H with
initial subspace π(Dt−1)H and final space π(Dt)H, such that utπ(a)ut−1 =
π(σt(a)), ∀a ∈ Dt−1 , t ∈ G, and usth = usuth, ∀h ∈ π(Dt−1 ∩ Dt−1s−1)H.
Covariant representations of (A,G, σ) are in a bijective correspondence with
non-degenerate representations of the crossed productAnσG. In one direction,
the covariant representation (π, u) on H gives rise to a representation π × u :
AnσG→ B(H) which is determined by (π×u)(atδt) = π(at)ut, where atδt is
such that at ∈ Dt, and atδt(r) = at if r = t, 0 otherwise (recall that the linear
span of such elements is dense in Anσ G).

In [6] Sieben associates an inverse semigroup Sπ,u with every covariant
representation (π, u) of the system

(
A,G, σ

)
. Such inverse semigroup is given

by Sπ,u = {(σt1 . . . σtn , ut1 . . . utn) : n ∈ N, tj ∈ G, ∀j = 1, . . . , n} with the
obvious operations.

Theorem 1.3 Let σ be a partial action of the discrete group G on the C∗-
algebra A, and suppose that (π, u) is a covariant representation of the partial
dynamical system

(
A,G, σ

)
on the Hilbert space H. Then

1. The map G → Sπ,u given by t 7→ (σt, ut) extends uniquely to a homo-
morphism S(G)→ Sπ,u, which moreover is surjective.

2. If the representation π × u : A nσ G → B(H) is faithful, then S(π,u) is
an F̃–inverse semigroup, whose maximal set is Mπ,u = {(σt, ut) : t ∈
G, σt 6= 0}.

Proof. Since σ is a partial action and u is a partial representation of G (because
(π, u) is a covariant representation), identities (1), (2) and (3) are satisfied by
the map t 7→ (σt, ut), so the existence and uniqueness of the claimed homo-
morphism is guaranteed by the universal property of S(G). The surjectivity
of such a homomorphism follows from the fact that {(σt, ut) : t ∈ G} gener-
ates Sπ,u.
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To prove the second assertion note first that ∀t1, . . . , tn ∈ G we have
that (σt1 . . . σtn , ut1 . . . utn) ≤ (σt1···tn , ut1···tn). We will show that if 0 6=
(σs, us) ≤ (σt, ut), then s = t. Now, (σs, us) ≤ (σt, ut) ⇐⇒ (idDs , usu∗s) =
(σtσs−1 , utu

∗
s). The equality of the first coordinates implies that Ds−1 ⊆ Dt−1 ,

Ds ⊆ Dt and σt(a) = σs(a), ∀a ∈ Ds−1 . The equality of the second coordi-
nates implies that the partial isometry ut agrees with us on the initial space
of the latter. Thus u∗t extends the partial isometry u∗s, so that u∗tus = u∗sus,
and therefore u∗sut = u∗sus. Identify A with the image of its universal repre-
sentation, and consider the normal extension of π (which will be still denoted
by π) to the enveloping von Neumann algebra A′′ of A. As shown in [6], if pr
is the unit element of the strong closure of Dr, then π(pr) = uru

∗
r , ∀r ∈ G.

Since Ds ⊆ Dt, we have that aδt ∈ A nσ G, for every a ∈ Ds. Therefore for
a ∈ Ds we have:

(π × u)(aδt) = π(a)ut = π(aps)ut = π(a)usu∗sut = π(a)us = (π × u)(aδs).

Since π× u is faithful and Ds 6= 0, we must have that s = t. Therefore Sπ,u is
an F̃–inverse semigroup. �

Corollary 1.4 Let X be a locally compact Hausdorff space, A = C0(X),
and σ the dual of the partial action θ on X. Suppose that (π, u) is a co-
variant representation of (A,G, σ) such that π × u is faithful. Then the map
(σt1 . . . σtn , ut1 . . . utn) 7→ θt1 . . . θtn defines a left action of Sπ,u on X, and the
corresponding Nica groupoid is isomorphic to Gθ.

Proof. By 1.3 Sπ,u is an F̃–inverse semigroup, whose maximal set is Mπ,u =
{(σt, ut) : t ∈ G, σt 6= 0}. Since θ is a partial action, it is clear that the
given map defines a left action of Sπ,u on X. By definition the corresponding
Nica groupoid is Nπ,u = {(m,x) : m ∈ Mπ,u, x ∈ dom(m)}. Therefore
Nπ,u = {(σt, ut, x) : σt 6= 0 and x ∈ Xt−1}. Moreover, it is routine to check
that the map Gθ → Nπ,u given by (y, t, x) 7→ (σt, ut, x) is an isomorphism of
locally compact groupoids. �

2. The universal groupoid of S(G)

In [5] Paterson associates a “universal groupoid” Γu with every inverse
semigroup S. The crucial property of Γu is that it determines all S–groupoids.
We refer the reader to [5] for complete information. For our purposes it will
be enough to recall a concrete form of Γu. Suppose that S is an inverse
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semigroup, and let ES be its semilattice of idempotents. A semicharacter of
ES is a non–zero homomorphism x : E → {0, 1}. Denote by XS the space of
non–zero semicharacters of ES endowed with the product topology. For σ ∈ S
consider Dσ := {x ∈ XS : x(σσ∗) = 1} and Rσ := {x ∈ XS : x(σ∗σ) = 1}.
There is a right action of S on ES given by: x 7→ x · σ, ∀x ∈ Dσ, where
x · σ(ε) := x(σεσ∗), ∀ε ∈ ES . This map is a partial homeomorphism in XS ,
with domain Dσ and range Rσ.

If ΣS := {(x, σ) : σ ∈ S, x ∈ Dσ}, there is an equivalence relation on ΣS :
(x, σ) ∼ (y, τ) ⇐⇒ x = y and there exists ε ∈ E such that x(ε) = 1 and
εσ = ετ . Denote by (x, σ) the class of (x, σ).

The underlying set of the universal groupoid of S is Γu = {(x, σ) : σ ∈
S, x ∈ Dσ}. The product of two elements (x, σ), (y, τ) ∈ Γu is defined only
if y = x · σ, and in this case we have (x, σ) (y, τ) = (x, στ). A basis for the
topology of Γu is U := {D(U, σ) : U ⊆ XS is open, σ ∈ S}, where D(U, σ) :=
{(x, σ) : x ∈ U}. The inverse of (x, σ) is (x · σ, σ∗). See [5, Theorem 4.3.1]
for details. Let us give a description of Γu for the inverse semigroup S(G) in
terms of a partial action of G.

Lemma 2.1 If (x, σ), (y, τ) ∈ ΣS(G), then (x, σ) ∼ (y, τ) ⇐⇒ x = y and
∂(σ) = ∂(τ).

Proof. It is clear that (x, σ) ∼ (y, τ)⇒ x = y and ∂(σ) = ∂(τ). Suppose now
that x = y and ∂(σ) = ∂(τ). Note that every σ ∈ S(G) satisfies σ = σσ∗[∂(σ)].
Therefore, if we let ε := σσ∗ττ∗, then x(ε) = 1, and

εσ = ττ∗σσ∗[∂(σ)] = ττ∗σσ∗[∂(τ)] = σσ∗ττ∗[∂(τ)] = ετ.

�

In [2] and [3] several C∗-algebras are successfully described and studied
in terms of invariant sets of a certain partial action. This partial action is
defined as follows. Let Ω := {ω : G → {0, 1}/ω(e) = 1} with the product
topology, where G is a discrete group. Thus Ω is a compact Hausdorff space,
which we will identify with the set {ω ⊆ G : e ∈ ω} in the obvious way. For
t ∈ G consider the compact open subset Ωt := {ω : t ∈ ω} of Ω. We have a
partial action ρ = ({ρt}, {Ωt}) of G on Ω given by ρt : Ωt−1 → Ωt such that
ρt(ω) = tω. We will show that the groupoid Gρ is naturally isomorphic to the
universal groupoid Γu of S(G).

Suppose that ω ∈ Ω and let xω : ES(G) → {0, 1} be given by xω(εt1 · · · εtk) =
χω(t1) · · ·χω(tk), ∀ε = εt1 · · · εtk ∈ ES(G), where χω is the characteristic func-
tion of ω. Then xω is a semicharacter of ES(G), and xω is non–zero because
xω([e]) = 1.
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Proposition 2.2 The map: h : Ω → XS(G) given by ω 7→ xω is a home-
omorphism, and h(Ωt) = D[t], ∀t ∈ G. Moreover, h(ρt−1ω) = h(ω) · [t],
∀t ∈ G,ω ∈ Ωt.

Proof. For x ∈ XS(G) consider ωx ⊆ G such that χωx(t) = x(εt), ∀t ∈ G.
Since x([e]) = 1, it follows that ωx ∈ Ω. It is clear that x 7→ ωx is the inverse
map of h. Note that x ∈ D[t] ⇐⇒ x(εt) = 1 ⇐⇒ t ∈ ωx ⇐⇒ ωx ∈ Ωt.
Therefore h(Ωt) = D[t], ∀t ∈ G. Since both of Ω and XS(G) are considered with
the product topologies, it is clear that h is a homeomorphism. Consider now
x ∈ D[t], and let s ∈ G. By using successively the relations defining S(G) we
have [t][s][s−1][t−1] = [ts][s−1][t−1][t][t−1] = [ts][s−1t−1][t][t−1] = εtsεt. Thus

x · [t](εs) = x([t][s][s−1][t−1]) = x(εtsεt) = x(εts)x(εt) = x(εts).

Therefore, if x ∈ D[t], s ∈ G we have s ∈ ωx·[t] ⇐⇒ x(εts) = 1 ⇐⇒
χωx(ts) = 1 ⇐⇒ ts ∈ ωx ⇐⇒ s ∈ t−1ωx. This shows that h(ρt−1(ωx)) =
h(ωx) · [t]. �

Theorem 2.3 Let Γu be the universal groupoid of the inverse semigroup S(G).
Then the map Φ : Gρ → Γu such that Φ(tω, t, ω) =

(
h(tω), [t]

)
is an isomor-

phism of locally compact groupoids, whose inverse is Ψ, given by Ψ
(
(x, σ)

)
=(

h−1(x), ∂(σ), ∂(σ)−1h−1(x)
)

Proof. Note that Ψ is well defined by Lemma 2.1. Let (tω, t, ω) ∈ Gρ. Then:

ΨΦ(tω, t, ω) = Ψ
((
h(tω), [t]

))
=

(
h−1

(
h(tω)

)
, t, t−1h−1

(
h(tω)

))
= (tω, t, ω)

Now, if (x, σ) ∈ Γu by Lemma 2.1 we have that (x, σ) = (x, [∂(σ)]). Therefore:

ΦΨ
(
(x, σ)

)
= Φ

(
h−1(x), ∂(σ), ∂(σ)−1h−1(x)

)
=

(
h
(
h−1(x)

)
, [∂(σ)]

)
= (x, σ)

Hence Φ is a bijection with inverse Ψ. Now, consider elements (stω, s, tω)
and (tω, t, ω) ∈ Gρ. Since (stω, s, tω)(tω, t, ω) = (stω, st, ω), we have that
Φ

(
(stω, s, tω)(tω, t, ω)

)
= Φ(stω, st, ω) =

(
h(stω), [st]

)
. On the other hand:

Φ(stω, s, tω)Φ(tω, t, ω) =
(
h(stω), [s]

) (
h(tω), [t]

)
=

(
h(stω), [s][t]

)
=

(
h(stω), [st]

)
.
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It follows that Φ is an isomorphism of groupoids. We show next that it is also
a homeomorphism. Consider, for t, s ∈ G, a ∈ {0, 1} the sets:

Vt,s,a := {(tω, t, ω) ∈ Gρ : χω(s) = 1} ⊆ Gρ, Ut,s,a := D(Us,a, [t]) ⊆ Γu,

where Us,a := {x ∈ XS(G) : x(εs) = 1}. The family V := {Vt,s,a : t, s ∈
G, a ∈ {0, 1}} is a subbasis for the topology of Gρ, and the family U :=
{Ut,s,a : t, s ∈ G, a ∈ {0, 1}} is a subbasis for the topology of Γu. Thus to
see that Φ is a homeomorphism it suffices to show that U = {Φ(V ) : V ∈ V}.
Now: Φ(Vt,s,a) = {(h(tω), [t]) : h(ω)(εs) = a)} = {(h(ω) · [t]∗, [t]) :

(
h(ω) ·

[t]∗
)
· [t](εs) = a)} = {(x, [t]) : x(εts) = a} = {(x, [t]) : x ∈ Uts,a} = Ut,ts,a.

Therefore Φ(V ) ∈ U , ∀V ∈ V. Since Ut,s,a = Φ(Vt,t−1s,a), we conclude that
U = {Φ(V ) : V ∈ V}. �

3. F̃–inverse semigroups and localizations

We end the paper by showing sketchily how Nica’s theory connects with
the groupoids of localizations defined by Paterson ([5, page 127]). We use
the notation of Section 1. Recall that a localization is a right action β of
an inverse semigroup S on a space X such that {dom(βσ) : σ ∈ S} is a
basis for the topology of X. Given a localization β, Paterson considers the
set Θ := {(x, σ) ∈ X × S : x ∈ dom(βσ)} with the equivalence relation
(x, σ) ∼ (y, τ) ⇐⇒ x = y and there exists ε ∈ ES such that x ∈ dom(βε) and
εσ = ετ . Then he defines the locally compact groupoid Γ(X,S) := {(x, σ) :
σ ∈ S, x ∈ dom(βσ)}, where the product is given by (x, σ) (x · σ, τ) := (x, στ)
(x · σ denotes βσ(x)), the inversion by (x, σ)

−1
:= (x · σ, σ∗), and a basis for

the topology is given by {D(U, σ) : σ ∈ S,U open subset of dom(βσ)}, where
D(U, σ) := {(x, σ) : x ∈ U}.

Suppose now that α is a (left) action of an F̃–inverse semigroup S on X,
and consider the inverse semigroup

Lα := {u ∈ PHom(X) : u is extended by some ασ},

where PHom(X) stands for the inverse semigroup of the partial homeomor-
phisms of X.

Proposition 3.1 Let S be an F̃–inverse semigroup and Sα := {(σ, u) ∈ S ×
Lα : u ≤ ασ}. Then Sα is an F̃–inverse semigroup, and MSα = {(µ, αµ) :
µ ∈MS}.
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Proof. It is clear that Sα is an inverse semigroup. Note that (σ, u) ≤
(τ, v) ⇐⇒ σ ≤ τ and u ≤ v. Thus if σ is non–zero and σ ≤ µ, with µ ∈MS ,
and if (σ, u) ≤ (τ, v), then it must be τ ≤ µ, and hence (σ, u) ≤ (τ, v) ≤ (µ, αµ),
which is obviously a maximal element. This ends the proof. � The left action

α induces a right action β of Sα on X via β(σ,u) := u∗ (β(σ,u) is the restriction
of ασ∗ to the range of u). Then β is a localization of S on X in the sense of
Paterson , and therefore it has associated a groupoid Γα. By Proposition 3.1
we can identify a class

(
x, (σ, u)

)
with a pair (x, µ), where σ ≤ µ, µ ∈ MS ,

and x ∈ dom(αµ) and then we have Γα = {(x, µ) : µ ∈ MS , x ∈ dom(βµ)},
(x, µ)(x·µ, µ′) = (x, µ·µ′), (x, µ)−1 = (x·µ, µ∗), and Γα has the product topol-
ogy. It is easily checked that the map Nα → Γα given by (µ, x) 7→ (x · µ∗, µ)
is an isomorphism of locally compact groupoids. Thus we have:

Proposition 3.2 The Nica groupoid of the action α is naturally isomorphic
to the Paterson groupoid associated with the localization induced by α.
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