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Abstract

We prove that the real roots of normal random homogeneous polyno-
mial systems with n 4+ 1 variables and given degrees are, in some sense,
equidistributed in the projective space P (R"*"). From this fact we com-
pute the average number of real roots of normal random polynomial sys-
tems given in the Bernstein basis.
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1 Introduction and main results

Due to a constant interest in CAGD on Bézier curves and Bernstein polynomials
the question arises to describe theirs properties in terms of their coefficients
when they are given in the Bernstein basis:

bai(z) = <Z)xk(1 —x)F 0<k<d,

in the case of univariate polynomials, and

d -
baa(T1,. .. 2n) = (a>x(1“ cxtr(l—xy — . —xy)Tlo ol < d,
for polynomials in n variables. Here o = (o, ..., ;) is a multi-integer, |a| =

ay+ ...+ ay,, and

(Z) - all...aj!(d_ a)!

is the multinomial coefficient.
In this note we are interested in the average number of real roots of such
equations or systems of equations when the coefficients are taken at random.
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Let us denote by P(4) the set of real polynomial systems in n variables, F' = (Fj),
1 <i < n, where

Fi(z1,...,xz,) = Z a,(li):c(f” L § R fCn)dif|a| .
la|<d;

Here (d) = (di,...,d,) denotes the vector of degrees, d; > 1, and deg f; < d;
for every i. The space P(4) is equipped with the Euclidean structure defined by

the norm .
n d; —
iFE=> Y (%)

i=1|a|<d;

af)

9

and the corresponding probability measure dF'. In other words, the coefficients
a&i ) of a polynomial system F' € P(g) are independent normal random variables
with mean equal to 0 and variances (il)

Define

7:R* = P (R")
by
T(T1ye vy p) =[T1, .o Ty, L — 1 — 00— Ty

Here P (R”‘H) is the projective space associated with R™*1, [y] is the class of
the vector y € R**1, 3y # 0, for the equivalence relation defining this projective
space. The (unique) orthogonally invariant probability measure in P (R”“) is
denoted by A,.

For any measurable set B in R™ we let Ng(F') the number of roots of F
lying in B, and by E (Np(F)) the average number of Np(F) for F' € P(g).

Theorem 1. 1. For any measurable set B in R™ we have
E(Np(F)) = A (7(B))Vdi ... dy.

In particular

2. E(Ngw(F)) = Vi .- dn,
3. E(Ng,(F)) =+/dy...d,/2™, where

Sp={zeR” : z;,>0andz1+...+z, <1},

4. When n =1, for any interval I = [o, 8] C R, one has

E(N;(F)) = g (arctan(28 — 1) — arctan(2a — 1)) .

This theorem is easily deduced from the next one which has its own interest
and which is a consequence of Shub-Smale [10]. The fourth assertion in theorem
1 is deduced from the first assertion but it also can be derived from Crofton’s
formula like in Edelman-Kostlan [5].



Let us denote by H 4y the space of real homogeneous polynomial systems in
n + 1 variables, F = (F;), 1 <i < n, where

_ i), an ,di—|al
FilZ1,. oy @,y Tpg1) = E ag)xll...xn”xnﬂ .
lee|<d;

(d) = (dy,...,dy) denotes the vector of degrees, d; > 1, and degF; = d; for
every i. The space H g is equipped with the Euclidean structure defined by the

o A=y s (4)

i=1 |a|<d;

al)

i

and the corresponding probability measure d.F.

The real roots of such a system consist in lines through the origin in R"*?
which are identified to points in P (R"*1). For any measurable set B C P (R"*)
we denote by N(F) the number of roots of F lying in B, and by E (Ng(F))
the average number of Ng(F) for F € Hq).

Theorem 2. For any measurable set B C P (R"‘H) we have

E (Ng(F)) = An(B)\/d1 - . dn.

The first result about the average number of real roots of polynomial equa-
tions is due to Kac [6], [7], who gives the asymptotic value

E (Ne(F)) = - logd

as d tends to infinity when the coeflicients of the degree d univariate polynomial
F in the basis of monomials are Gaussian centered independent random variables
N(0,1). But, when the variance of the k—th coefficient in the basis of monomials
is equal to () (Weyl’s distribution), the average number is equal to

E (Ng(F)) = Vd

like in the case of Bernstein polynomials (see Bogomolny-Bohias-Leboeuf [4]
and also Edelman-Kostlan [5]).

Other results of the same vein have been obtained by Shub-Smale [10] who
considered the case of homogeneous polynomial systems under Weyl’s distribu-
tion and Rojas [9] for sparse systems. A general formula for E (Ng(F')) when
the random functions F;, i = 1,...,n, are stochastically independent and their
law is centered and invariant under the orthogonal group can be found in Azais-
Wschebor [2], which includes the Shub-Smale result as a special case. The
non-centered case is considered in Armentano-Wschebor [1].

2 Proof of theorem 2

For any measurable set B C P (R”+1) let us define

pin(B) = E(N5(F)) .



We see that pu, is an orthogonally invariant measure in P (R”+1). Thus it is
equal to A\, up to a multiplicative factor. This factor is equal to v/d; ...d, as
it is easily seen from Shub-Smale [10] (see also [3] section 13.3). Therefore

E (N5(F)) = A\(B)/ds - . . dn.

3 Proof of theorem 1

Let us prove the first item. For any measurable set B C R™ we have by theorem
2 applied to B = 7(B)

M(F(B)Vdr - dy = E (Ny () (F)) = /H N, (1) (F)dF.
(d)

The map h which associates to F' € P(gy the homogeneous system F € Hq)
obtained in substituing x,+1 to the affine form (1 —z; —...—x,) is an isometry
between these two spaces so that

Noio(F)F = [ Nogo ((F))aF.
Ha) Pay
Since N, (py(h(F)) = Np(F) this last integral is equal to fp(d) Ngp(F)dF.

To complete the proof of this theorem we notice that A,(7(R"™)) = 1,
An(7(Sp)) = 1/2™, and,

B —1) — —
(o, 8]) = %/a — (1 — g — arctan(2(3 — 1) . arctan(2a 1)7

which follows from the computation of the length of the path {7(t)}iefa,5 C
P(R).
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