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Abstract. This article is divided in two parts. In the first part
we review some recent results concerning the expected number of
real roots of random system of polynomial equations. In the sec-
ond part we deal with a different problem, namely, the distribution
of the roots of certain complex random polynomials. We discuss
a recent result in this direction, which shows that the associated
points in the sphere (via the stereographic projection) are surpris-
ingly well-suited with respect to the minimal logarithmic energy
on the sphere.

1. Introduction

Let us consider a system of m polynomial equations in m unknowns
over a field K,

fi(x) :=
∑
‖j‖≤di

a
(i)
j x

j (i = 1, . . . ,m).(1)

The notation in (1) is the following: x := (x1, . . . , xm) denotes a point
in Km, j := (j1, . . . , jm) a multi-index of non-negative integers, ‖j‖ =∑m

h=1 jh, x
j = xj1 · · ·xjm , a

(i)
j = a

(i)
j1,...,jm

, and di is the degree of the
polynomial fi.

We are interested in the solutions of the system of equations

(2) fi(x) = 0 (i = 1, . . . ,m),

lying in some subset V of Km. Throughout this review we are mainly
concerned with the case K = R or K = C.

If we choose at random the coefficients {a(i)j }, then the solution of the
system (2) becomes a random subset of Km. This is the main object
of this review.

In the first part of this paper we focus on the real case. The main
problem we consider is that of understanding N f (V ): the number of
solutions lying in the Borel subset V of Rm.
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In the second part we deal with a different problem: How are the
roots of complex polynomials distributed?

This article is organized as follows:
In Section 2 we start with some historical remarks on random polyno-
mials. After that we move to the case of random systems of equations.
We mention some recent results for centered Gaussian distributions.
In Section 2.1 we consider the non-centered case, which has also been
called “smooth-analysis” in the last years. That is, we start with a fixed
(non-random) polynomial system, then we perturb it with a polyno-
mial noise, and we ask what can be said about the number of roots of
the perturbed system. In Section 2.2 we review a result which com-
putes the expected number of roots of a random system of polynomial
equations expressed in a different basis, namely, the Bernstein basis.
Finally in Section 3 we focus on the complex case. We discuss a recent
result concerning the distribution of points in the sphere associated
with roots of random complex polynomials.

This review follows the talk given by the author in the colloquium
which was held the inauguration of the Franco-Uruguayan Institute of
Mathematics, in Punta del Este, Uruguay, on December 2009.

2. The Number of Real Roots of Random Polynomials

The study of the expectation of the number of real roots of a random
polynomial started in the thirties with the work of Block and Polya
[7]. Further investigations were made by Littlewood and Offord [14].
However, the first sharp result is due to M. Kac (see Kac[11, 12]), who
gives the asymptotic value

E
(
N f (R)

)
≈ 2

π
log d, as d→ +∞,

when the coefficients of the degree d univariate polynomial f are Gauss-
ian centered independent random variables N(0, 1) (see the book by
Bharucha–Reid and Sambandham [6]).

The first important result in the study of real roots of random system
of polynomial equations is due to Shub and Smale [20] in 1992, where
the authors computed the expectation of N f (Rm) when the coefficients
are Gaussian centered independent random variables having variances:

E
[
(a

(i)
j )2

]
=

di!

j1! · · · jm! (di − ‖j‖)!
.(3)

Their result was

E
(
N f (Rm)

)
=
√
d1 · · · dm,(4)
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that is, the square root of the Bézout number associated to the sys-
tem. The proof is based on a double fibration manipulation of the
co-area formula. Some extensions of their work, including new re-
sults for one polynomial in one variable, can be found in Edelman–
Kostlan[10]. There are also other extensions to multi-homogeneous
systems in McLennan[16], and, partially, to sparse systems in Rojas[17]
and Malajovich–Rojas[15]. A similar question for the number of critical
points of real-valued polynomial random functions has been considered
in Dedieu–Malajovich[9].

The probability law of the Shub–Smale model defined in (3) has
the simplifying property of being invariant under the action of the
orthogonal group in Rm. In Kostlan[13] one can find the classification
of all Gaussian probability distributions over the coefficients with this
geometric invariant property.

In 2005, Azäıs and Wschebor gave a new and deep insight to this
problem. The key point is using the Rice formula for random Gauss-
ian fields (cf. Azäıs–Wschebor[5]). This formula allows one to extend
the Shub–Smale result to other probability distributions over the coef-
ficients. A general formula for E(N f (V )) when the random functions
fi (i = 1, . . . ,m) are stochastically independent and their law is cen-
tered and invariant under the orthogonal group on Rm can be found
in Azäıs–Wschebor[4]. This includes the Shub–Smale formula (4) as
a special case. Moreover, Rice formula appears to be the instrument
to consider a major problem in the subject which is to find the as-
ymptotic distribution of N f (V ) (under some normalization). The only
published results of which the author is aware concern asymptotic vari-
ances as m→ +∞. (See Wschebor[25] for a detailed description in this
direction and a simpler proof of Shub–Smale result).

2.1. Non-centered Systems. The aim of this section is to remove
the hypothesis that the coefficients have zero expectation.

One way to look at this problem is to start with a non-random system
of equations (the “signal”)

Pi(x) = 0 (i = 1, . . . ,m),(5)

perturb it with a polynomial noise Xi(x) (i = 1, . . . ,m), that is, con-
sider

Pi(x) +Xi(x) = 0 (i = 1, . . . ,m),

and ask what one can say about the number of roots of the new system,
or, how much the noise modifies the number of roots of the determin-
istic part. (For short, we denote N f = N f (Rm)).
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Roughly speaking, we prove in Theorem 1 that if the relation signal
over noise is neither too big nor too small, in a sense that will be made
precise later on, there exist positive constants C, θ, where 0 < θ < 1,
such that

E(NP+X) ≤ C θmE(NX).(6)

Inequality (6) becomes of interest if the starting non-random system
(5) has a large number of roots, possibly infinite, and m is large. In
this situation, the effect of adding polynomial noise is a reduction at
a geometric rate of the expected number of roots, as compared to the
centered case in which all the Pi’s are identically zero.

For simplicity we assume that the polynomial noise X has the Shub-
Smale distribution. However, one should keep in mind that the re-
sult can be extended to other orthogonally invariant distributions (cf.
Armentano–Wschebor[2]).

Before the statement of Theorem 1 below, we need to introduce some
additional notations.

In this simplified situation, one only needs hypotheses concerning
the relation between the signal P and the Shub-Smale noise X, which
roughly speaking should neither be too small nor too big.

Since X has the Shub-Smale distribution, from (3) we get

Var(Xi(x)) = (1 + ‖x‖2)di , ∀x ∈ Rm, (i = 1, . . . ,m).

Define

H(Pi) := sup
x∈Rm

{
(1 + ‖x‖) ·

∥∥∥∥∇( Pi
(1 + ‖x‖2)di/2

)
(x)

∥∥∥∥} ,
K(Pi) := sup

x∈Rm\{0}

{
(1 + ‖x‖2) ·

∣∣∣∣ ∂∂ρ
(

Pi
(1 + ‖x‖2)di/2

)
(x)

∣∣∣∣} ,
for i = 1, . . . ,m, where ‖ · ‖ is the Euclidean norm, and ∂

∂ρ
denotes the

derivative in the direction defined by x
‖x‖ , at each point x 6= 0.

For r > 0, put:

L(Pi, r) := inf
‖x‖≥r

Pi(x)2

(1 + ‖x‖2)di
(i = 1, . . . ,m).

One can check by means of elementary computations that for each P
as above, one has

H(P ) <∞, K(P ) <∞.
With these notations, we introduce the following hypotheses on the
systems as m grows:



RANDOM POLYNOMIALS 5

H1)

Am =
1

m
·
m∑
i=1

H2(Pi)

i
= o(1) as m→ +∞(7a)

Bm =
1

m
·
m∑
i=1

K2(Pi)

i
= o(1) as m→ +∞.(7b)

H2) There exist positive constants r0, ` such that if r ≥ r0:

L(Pi, r) ≥ ` for all i = 1, . . . ,m.

Theorem 1. Under the hypotheses H1) and H2), one has

E(NP+X) ≤ C θmE(NX),(8)

where C, θ are positive constants, 0 < θ < 1.

2.1.1. Remarks on the statement of Theorem 1.

• It is obvious that our problem does not depend on the order in
which the equations

Pi(x) +Xi(x) = 0 (i = 1, . . . ,m)

appear. However, conditions (7a) and (7b) in hypothesis H3)
do depend on the order. One can state them by saying that
there exists an order i = 1, . . . ,m on the equations, such that
(7a) and (7b) hold true.
• Condition H1) can be interpreted as a bound on the quotient

signal over noise. In fact, it concerns the gradient of this quo-
tient. In (7b) the radial derivative appears, which happens to
decrease faster as ‖x‖ → ∞ than the other components of the
gradient.

Clearly, if H(Pi), K(Pi) are bounded by fixed constants, (7a)
and (7b) are verified. Also, some of them may grow asm→ +∞
provided (7a) and (7b) remain satisfied.
• Hypothesis H2) goes – in some sense – in the opposite direction:

For large values of ‖x‖ we need a lower bound of the relation
signal over noise.
• A result of the type of Theorem 1 can not be obtained without

putting some restrictions on the relation signal over noise. In
fact, consider the system

Pi(x) + σXi(x) = 0 (i = 1, . . . ,m),(9)

where σ is a positive real parameter. If we let σ → +∞, the
relation signal over noise tends to zero and the expected number
of roots will tend to E(NX). On the other hand, if σ ↓ 0, E(NX)
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can have different behaviours. For example, if P is a “regular”
system, the expected value of the number of roots of (9) tends
to the number of roots of Pi(x) = 0, (i = 1, . . . ,m), which may
be much bigger than E(NX). In this case, the relation signal
over noise tends to infinity.
• As it was mentioned before we can extend Theorem 1 to other

orthogonally invariant distributions. However, for the general
version we need to add more hypotheses.

In the next paragraphs we are going to give two simple examples.
For the proof of Theorem 1 and more examples with different noises

see Armentano–Wschebor[2].

2.1.2. Some Examples. We assume that the degrees di are uniformly
bounded.

For the first example, let

Pi(x) = ‖x‖di − rdi ,
where di is even and r is positive and remains bounded as m varies.
Then, one has:

∂

∂ρ

(
Pi

(1 + ‖x‖2)di/2

)
(x) =

di ‖x‖di−1 + di r
di ‖x‖

(1 + ‖x‖2)
di
2
+1

≤ di(1 + rdi)

(1 + ‖x‖2)3/2

∇
(

Pi
(1 + ‖x‖2)di/2

)
(x) =

di ‖x‖di−2 + di r
di

(1 + ‖x‖2)
di
2
+1

x

which implies∥∥∥∥∇( Pi
(1 + ‖x‖2)di/2

)
(x)

∥∥∥∥ ≤ di(1 + rdi)

(1 + ‖x‖2)3/2
.

Again, since the degrees d1, . . . , dm are bounded by a constant that
does not depend on m, H1) follows. H2) also holds under the same
hypothesis.

Notice that an interest in this choice of the Pi’s lies in the fact that
obviously the system Pi(x) = 0 (i = 1, . . . ,m) has an infinite number
of roots (all points in the sphere of radius r centered at the origin are
solutions), but the expected number of roots of the perturbed system
is geometrically smaller than the Shub–Smale expectation, when m is
large.

Our second example is the following: Let T be a polynomial of degree
d in one variable that has d distinct real roots. Define:

Pi(x1, . . . , xm) = T (xi) (i = 1, . . . ,m).
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One can easily check that the system verifies our hypotheses, so that
there exist C, θ positive constants, 0 < θ < 1 such that

E(NP+X) ≤ C θmdm/2,

where we have used the Shub–Smale formula when the degrees are all
the same. On the other hand, it is clear that NP = dm so that the
diminishing effect of the noise on the number of roots can be observed.
A number of variations of these examples for P can be constructed,
but we will not pursue the subject here.

2.2. Other Polynomial Basis. Up to now all probability measures
were introduced in a particular basis, namely, the monomial basis
{xj}‖j‖≤d. However, in many situations, polynomial systems are ex-
pressed in different basis, for example, orthogonal polynomials, har-
monic polynomials,Bernstein polynomials, etc. So, it is a natural ques-
tion to ask: What can be said about N f (V ) when the randomization is
performed in a different basis?

For the case of random orthogonal polynomials see Barucha-Reid
and Sambandham[6], and Edelman–Kostlan[10] for random harmonic
polynomials.

In this section following Armentano–Dedieu[3] we give an answer
to the average number of real roots of a random system of equations
expresed in the Bernstein basis. Let us be more precise:

The Bernstein basis is given by:

bd,k(x) =

(
d

k

)
xk(1− x)d−k, 0 ≤ k ≤ d,

in the case of univariate polynomials, and

bd,j(x1, . . . , xm) =

(
d

j

)
xj11 . . . x

jm
m (1− x1 − . . .− xm)d−‖j‖, ‖j‖ ≤ d,

for polynomials inm variables, where j = (j1, . . . , jm) is a multi-integer,
and

(
d
j

)
is the multinomial coefficient.

Let us consider the set of real polynomial systems in m variables,

fi(x1, . . . , xm) =
∑
‖j‖≤di

a
(i)
j bd,j(x1, . . . , xm) (i = 1, . . . ,m).

Take the coefficients a
(i)
j to be independent Gaussian standard random

variables.
Define

τ : Rm → P
(
Rm+1

)
by

τ(x1, . . . , xm) = [x1, . . . , xm, 1− x1 − . . .− xm].
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Here P (Rm+1) is the projective space associated with Rm+1, [y] is the
class of the vector y ∈ Rm+1, y 6= 0, for the equivalence relation defining
this projective space. The (unique) orthogonally invariant probability
measure in P (Rm+1) is denoted by λm.

With the above notation the following theorem holds:

Theorem 2. (1) For any Borel set V in Rm we have

E
(
N f (V )

)
= λm(τ(V ))

√
d1 . . . dm.

In particular
(2) E

(
N f
)

=
√
d1 . . . dm,

(3) E
(
N f (∆m)

)
=
√
d1 . . . dm/2

m, where

∆m = {x ∈ Rm : xi ≥ 0 and x1 + . . .+ xm ≤ 1} ,

(4) When m = 1, for any interval I = [α, β] ⊂ R, one has

E
(
N f (I)

)
=

√
d

π
(arctan(2β − 1)− arctan(2α− 1)) .

The fourth assertion in Theorem 2 is deduced from the first assertion
but it also can be derived from Crofton’s formula (see for example
Edelman–Kostlan[10]).

For the proof of Theorem 2 see Armentano–Dedieu[3]

3. Distribution of Complex Roots of Random Polynomials

In this part we will see that points in the sphere associated with
roots of Shub–Smale complex analogue random polynomials via the
stereographic projection, are surprisingly well-suited with respect to
the minimal logarithmic energy on the sphere. That is, they provide
a fairly good approximation to a classical minimization problem over
the sphere, namely, the Elliptic Fekete points problem.

Next paragraphs follows closely Armentano–Beltrán–Shub[1], where
one can find proofs and more detailed references.

Given x1, . . . , xN ∈ S2 = {x ∈ R3 : ‖x‖ = 1}, let

(10) V (x1, . . . , xN) = ln
∏

1≤i<j≤N

1

‖xi − xj‖
= −

∑
1≤i<j≤N

ln ‖xi − xj‖

be the logarithmic energy of the N -tuple x1, . . . , xN . Let

VN = min
x1,...,xN∈S2

V (x1, . . . , xN)

denote the minimum of this function. N -tuples minimizing the quan-
tity (10) are usually called Elliptic Fekete Points. The problem of
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finding (or even approximate) such optimal configurations is a classical
problem (see White[23] for its origins).

During the last decades this problem has attracted much attention,
and the number of papers concerning it has grown amazingly. The
reader may see Kuijlaars-Saff[19] for a nice survey.

In the list of Smale’s problems for the XXI Century [22], problem
number 7 reads:

Can one find x1, . . . , xN ∈ S2 such that

(11) V (x1, . . . , xN)− VN ≤ c lnN,

c a universal constant?
More precisely, Smale demands a real number algorithm in the sense

of Blum–Cucker–Shub–Smale[8] that with input N returns a N -tuple
x1, . . . , xN satisfying equation (11), and such that the running time is
polynomial on N .

One of the main difficulties when dealing with this problem is that
the value of VN is not even known up to logarithmic precision. In
Rakhmanov–Saff–Zhou[18] the authors proved that if one defines CN
by

(12) VN = −N
2

4
ln

(
4

e

)
− N lnN

4
+ CNN,

then,

−0.112768770... ≤ lim inf
N→∞

CN ≤ lim sup
N→∞

CN ≤ −0.0234973...

Let X1, . . . , XN be independent random variables with common uni-
form distribution over the sphere. One can easily show that the ex-
pected value of the function V (X1, . . . , XN) in this case is,

(13) E(V (X1, . . . , XN)) = −N
2

4
ln

(
4

e

)
+
N

4
ln

(
4

e

)
.

Thus, this random choice of points in the sphere with independent
uniform distribution already provides a reasonable approach to the
minimal value VN , accurate to the order of O(N lnN).

On one side, this probability distribution has an important property,
namely, invariance under the action of the orthogonal group on the
sphere. However, on the other hand this probability distribution lacks
on correlation between points. More precisely, in order to obtain well-
suited configurations one needs some kind of repelling property between
points, and in this direction independence is not favorable. Hence,
it is a natural question whether other handy orthogonally invariant
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probability distributions may yield better expected values. Here is
where complex random polynomials comes into account.

Given z ∈ C, let

ẑ :=
(z, 1)

1 + |z|2
∈ C× R ∼= R3

be the associated points in the Riemann Sphere, i.e. the sphere of
radius 1/2 centered at (0, 0, 1/2). Finally, let

X = 2ẑ − (0, 0, 1) ∈ S2

be the associated points in the unit sphere.
Given a polynomial f in one complex variable of degree N , we con-

sider the mapping
f 7→ V (X1, . . . , XN),

where Xi (i = 1, . . . , N) are the associated roots of f in the unit sphere.
Notice that this map is well defined in the sense that it does not depend
on the way we choose to order the roots.

Theorem 3. Let f(z) =
∑N

k=0 akz
k be a complex random polynomial,

such that the coefficients ak are independent complex random variables,
such that the real and imaginary parts of ak are independent (real)
Gaussian random variables centered at 0 with variance

(
N
k

)
. Then,

with the notations above,

E (V (X1, . . . , XN)) = −N
2

4
ln

(
4

e

)
− N lnN

4
+
N

4
ln

4

e
.

Comparing Theorem 3 with equations (12) and (13), we see that the
value of V is surpringsingly small at points coming from the solution
set of this random polynomials. More precisely, necessarily many ran-
dom realizations of the coefficients will produce values of V below the
average and very close to VN , possibly close enough to satisfy equation
(11).

Notice that, taking the homogeneous counterpart of f , Theorem 3
can be restated for random homogeneous polynomials and consider-
ing its complex projective solutions, under the identification of IP(C2)
with the Riemann sphere. In this fashion, the induced probability
distribution over the space of homogeneous polynomials in two com-
plex variables corresponds to the classical unitarily invariant Hermitian
structure of the respective space (see Blum–Cucker–Shub–Smale[8]).
Therefore, the probability distribution of the roots in IP(C2) is invari-
ant under the action of the unitary group.

It is not difficult to prove that the unitary group action over IP(C2)
correspond to the special orthogonal group of the unit sphere. Hence,
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the distribution of the associated random roots on the sphere is orthog-
onally invariant. Thus, Theorem 3 is another geometric confirmation
of the repelling property of the roots of this Gaussian random polyno-
mials.

For a proof of Theorem 3 and a more detailed discussion on this
account see Armentano–Beltrán–Shub[1]. See also Shub–Smale[21].
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[4] Azäıs J.-M and Wschebor M., On the Roots of a Random System of
Equations. The Theorem of Shub and Smale and Some Extensions, Found.
Comput. Math., (2005), 125-144.
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Centro de Matemática, Universidad de la República. Montevideo,
Uruguay


