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Abstract

We obtain the asymptotic variance, as the degree goes to infinity, of the
normalized number of real roots of a square Kostlan-Shub-Smale random
polynomial system of any size. Our main tools are the Kac-Rice formula
for the second factorial moment of the number of roots and a Hermite
expansion of this random variable.
Keywords: Kostlan-Shub-Smale ramdom polynomials, Kac-Rice formula,

Hermite expansion.
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1 Introduction

The study of the roots of random polynomials is among the most impor-
tant and popular topics in Mathematics and in some areas of Physics. For
almost a century a considerable amount of literature about this problem
has emerged from fields as probability, geometry, algebraic geometry, al-
gorithm complexity, quantum physics, etc. In spite of its rich history it is
still an extremely active field.

There are several reasons that lead to consider random polynomials
and several ways to randomize them, see Bharucha-Reid and Samband-
ham [3].

The case of algebraic polynomials Pd(t) =
∑d

j=1 ajt
j with indepen-

dent identically distributed coefficients was the first one to be extensively
studied and was completely understood during the 70s. If a1 is centered,
P(a1 = 0) = 0 and E (|a1|2+δ) < ∞ for some δ > 0, then, the asymp-
totic expectation and the asymptotic variance of the number of real roots
of Pd, as the degree d tends to infinity, are of order log(d) and, once
normalized, the number of real roots converges in distribution towards a
centered Gaussian random variable. See the books by Farahmand [7] and
Bharucha-Reid and Sambandham [3] and the references therein for the
whole picture.
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The case of systems of polynomial equations seems to be considerably
harder and has received in consequence much less attention. The results
in this direction are confined to the Shub-Smale model and some other
invariant distributions. The ensemble of Shub-Smale random polynomials
was introduced in the early 90s by Kostlan [9]. Kostlan argues that this is
the most natural distribution for a polynomial system. The exact expec-
tation was obtained in the early 90’s by geometric means, see Edelman
and Kostlan [5] for the one-dimensional case and Shub and Smale [17] for
the multi-dimensional one. In 2004, 2005 Azäıs and Wschebor [2] and
Wschebor [18] obtained by probabilistic methods the asymptotic variance
as the number of equations and variables tends to infinity. Recently, Dal-
mao [4] obtained the asymptotic variance and a CLT for the number of
zeros as the degree d goes to infinity in the case of one equation in one
variable. Letendre in [13] studied the asymptotic behavior of the volume
of random real algebraic submanifolds. His results include the finiteness
of the limit variance, when the degree tends to infinity, of the volume of
the zero sets of Kostlan-Shub-Smale systems with strictly less equations
than variables. Some results for the expectation and variance of related
models are included in [2, 11, 12].

In the present paper we prove that, as the degree goes to infinity, the
asymptotic variance of the normalized number of real roots of a Kostlan-
Shub-Smale square random system with m equations and m variables
exists in (0,∞). We use Rice Formulas [1] to show the finiteness of the
limit variance and Hermite expansions as in Kratz and León [10] to show
that it is strictly positive. Furthermore, we strongly exploit the invariance
under isometries of the distribution of the polynomials.

The reader may wonder, in view of the results mentioned above, if
the normalized number of roots satisfies a CLT when the degree of the
system tends to infinity. The answer is affirmative if m = 1 [4] but for
the time being we cannot give an answer to this question for m > 1.
The ingredients to prove a CLT for a non linear functional of a Gaussian
process are: a) to write a representation in the Itô-Wiener chaos of the
normalized functional; b) to demonstrate that each component verifies a
CLT (Fourth Moment Theorem [15], [16]) and if the functional has an
expansion involving infinitely many terms: c) to prove that the tail of the
asymptotic variance tends uniformly (w.r.t. d) to zero. In the present case
we lack a proof of c). Form = 1 the fact that the invariance by rotations is
equivalent with the stationarity allows to build a proof similar to the one
made for the number of crossings of a stationary Gaussian process. For
m > 1 we are not able to reproduce this type of demonstration due to the
difficulty of working on the sphere. In particular, the lack of tessellations
(or regular partitions) of the sphere is an issue when trying to get the
uniform negligeability of the tails.

The rest of the paper is organized as follows. Section 2 sets the prob-
lem and presents the main result. Section 3 deals with the proof and
Section 4 presents some auxiliary results as well as the explicit form of
the asymptotic variance.
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2 Main Result

Consider a square system P = 0 of m polynomial equations in m variables
with common degree d > 1. More precisely, let P = (P1, . . . , Pm) with

Pℓ(t) =
∑

|j|≤d

a
(ℓ)
j tj,

where

1. j = (j1, . . . , jm) ∈ N
m and |j| =∑m

k=1 jk;

2. a
(ℓ)
j = a

(ℓ)
j1...jm

∈ R, ℓ = 1, . . . ,m, |j| ≤ d;

3. t = (t1, . . . , tm) and tj =
∏m

k=1 t
jk
k .

We say that P has the Kostlan-Shub-Smale (KSS for short) distribu-

tion if the coefficients a
(ℓ)
j are independent centered normally distributed

random variables with variances

Var
(

a
(ℓ)
j

)

=

(

d

j

)

=
d!

j1! . . . jm!(d− |j|)! .

We are interested in the number of real roots of P that we denote by
NP

d . Shub and Smale [17] proved that E (NP
d ) = dm/2. Our main result

is the following.

Theorem 1. Let P be a KSS random polynomial system with m equa-

tions, m variables and degree d. Then, as d→ ∞ we have

lim
d→∞

Var(NP
d )

dm/2
= V 2

∞,

where 0 < V 2
∞ <∞.

An explicit expression of V 2
∞ is given in Theorem 2 in the Appendix.

3 Proof

3.1 Preliminaries

It is customary and convenient to homogenize the polynomials. That
is, to add an auxiliary variable t0 and to multiply the monomial in Pℓ

corresponding to the index j by t
d−|j|
0 . Let Y = (Y1, . . . , Ym) denote the

resulting vector of m homogeneous polynomials in m + 1 real variables
with common degree d > 1. We have,

Yℓ(t) =
∑

|j|=d

a
(ℓ)
j tj , ℓ = 1, . . . ,m,

where this time j = (j0, . . . , jm) ∈ N
m+1; |j| =∑m

k=0 jk; a
(ℓ)
j = a

(ℓ)
j0...jm

∈
R; t = (t0, . . . , tm) ∈ R

m+1 and tj =
∏m

k=0 t
jk
k .

Since Y is homogeneous, its roots consist of lines through 0 in R
m+1.

Then, it is easy to check that each root of P corresponds exactly to two
(opposite) roots of Y on the unit sphere Sm of Rm+1. Furthermore, one
can prove that the subset of homogeneous polynomials Y with roots lying
in the hyperplane t0 = 0 has Lebesgue measure zero. Then, denoting by
NY

d the number of roots of Y on Sm, we have NP
d = NY

d /2 almost surely.
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From now on we work with the homogenized version Y. Standard
multinomial formula shows that for all s, t ∈ R

m+1 we have

rd(s, t) := E (Yℓ(s)Yℓ(t)) = 〈s, t〉d ,

where 〈·, ·〉 is the usual inner product in R
m+1. As a consequence, we

see that the distribution of the system Y is invariant under the action
of the orthogonal group in R

m+1. For the ease of notation we omit the
dependence on d of Y.

In the sequel we need to consider the derivative of Yℓ, ℓ = 1, . . . ,m.
Since the parameter space is the sphere Sm, the derivative is taken in the
sense of the sphere, that is, the spherical derivative Y ′

ℓ (t) of Yℓ(t) is the
orthogonal projection of the free gradient on the tangent space t⊥ of Sm

at t. The k-th component of Y ′
ℓ (t) at a given basis of the tangent space

is denoted by Y ′
ℓk(t).

The covariances between the derivatives and between the derivatives
and the process are obtained via routine computations from the covariance
of Yℓ. In particular, the invariance under isometries is preserved after
derivation and for each t ∈ Sm Y(t) is independent from Y

′
(t).

3.2 Finiteness of the limit variance

In this section we prove that

lim
d→∞

Var(NP
d )

dm/2
<∞.

Recall that E (NP
d ) = dm/2, we write

Var
(

NP
d

)

= Var

(

NY
d

2

)

=
1

4

[

E
(

NY
d

(

NY
d −1

))

−E
2(NY

d

)]

+
dm/2

2
. (3.1)

The quantity E (NY
d (NY

d − 1)) is computed via Rice formula [1].

E (NY
d (NY

d − 1)) =

∫

(Sm)2
E [| detY′(s) detY′(t)| |Y(s) = Y(t) = 0]

· pY(s),Y(t)(0, 0)dsdt.

Here ds and dt are the m-geometric measure on Sm but we will use in
other parts ds and dt for the Lebesgue measure.

Let {e0, e1, . . . , em} be the canonical basis of Rm+1. Because of the
invariance by isometries we can assume without loss of generality that

s = e0, t = cos(ψ)e0 + sin(ψ)e1. (3.2)

For s⊥ we choose as basis {e1, . . . , em} and {sin(ψ)e0−cos(ψ)e1, e2, . . . , em}
for t⊥. Finally, take ψ = z/

√
d and use Lemma 3. Hence,

d−m/2
E (NY

d (NY
d − 1))

=
κmκm−1

(2π)m
√
d

∫

√
dπ

0

sinm−1

(

z√
d

)

dm/2

(

1− cos2d( z√
d
)
)m/2

E
(

z√
d

)

dz,

where E(z/
√
d) is the conditional expectation written for s, t as in (3.2)

and κm is the m-geometric volume of the sphere Sm.
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Now, we deal with the conditional expectation E(z/
√
d). Introduce

the following notation

A
(

z√
d

)

= −
√
d cosd−1

(

z√
d

)

sin

(

z√
d

)

;

B
(

z√
d

)

= cosd
(

z√
d

)

− (d− 1) cosd−2

(

z√
d

)

sin2

(

z√
d

)

;

C
(

z√
d

)

= cosd
(

z√
d

)

;

D
(

z√
d

)

= cosd−1

(

z√
d

)

;

and -omitting the (z/
√
d)-

σ2 = 1− A2

1− C2
, ρ =

B(1− C2)−A2C
1− C2 −A2

.

Thus, we can write the variance-covariance matrix of the vector
(

Yℓ(s), Yℓ(t),
Y ′

ℓ (s)√
d
,
Y ′

ℓ (s)√
d

)

in the following form





A11 A12 A13

A⊤
12 Im A23

A⊤
13 A⊤

23 Im



 ,

where Im is the m×m identity matrix,

A11 =

[

1 C
C 1

]

, A12 =

[

0 0 · · · 0
−A 0 · · · 0

]

, A13 =

[

A 0 · · · 0
0 0 · · · 0

]

,

and A23 = diag([B,D, . . . ,D])m×m.
Regression formulas imply that the conditional distribution of the vec-

tor
(Y ′

ℓ (s)√
d
,
Y ′

ℓ (t)√
d

)

(conditioned on Y(s) = Y(t) = 0) is centered normal
with variance-covariance matrix:

[

B11 B12

B⊤
12 B22

]

, (3.3)

with B11 = B22 = diag([σ2, 1, . . . , 1]) and B12 = diag([σ2ρ,D, . . . ,D]).
It is important to remark that if A = (A1A2 . . . Am) is a matrix with

columns vectors Aj , it holds that det(A) = Qm(A1, A2, . . . , Am) for a

certain polynomial Qm of degree m from R
m2

to R. Using representation
of Gaussian vectors from a standard one we can write

E
(

z√
d

)

=

∫

(Rm2
)2
φm2(x)φm2(y)

∣

∣

∣

∣

∣

∣

∣

∣

Qm

















σx11

x12

·
x1m









, . . . ,









σxm1

xm2

·
xmm

















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Qm

















σ(ρx11 +
√

1− ρ2y11)

Dx12 +
√
1−D2y12
·

Dx1m +
√
1−D2y1m









, . . . ,









σ(ρxm1 +
√

1− ρ2ym1)

Dxm2 +
√
1−D2ym2

·
Dxmm +

√
1−D2ymm

















∣

∣

∣

∣

∣

∣

∣

∣

dxdy,

where φm2 is the standard normal density in R
m2

. Because of the homo-
geneity of the determinant we have

E
(

z√
d

)

= σ2

∫

(Rm2
)2
Qm(x)Qm(z)φm2(x)φm2(y)dxdy =: σ2G(ρ,D),
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where z = diag([ρ,D, . . . ,D])x+diag([
√

1− ρ2,
√
1−D2, . . . ,

√
1−D2])y.

Now, we return to the expression of the variance in (3.1). We have

d−m/2Var
(

NP
d

)

=
1

4dm/2

[

E (NY
d (NY

d − 1)) − (E (NY
d ))2

]

+
1

2

=
1

2
+
κmκm−1

4(2π)m

∫

√
dπ

0

sinm−1

(

z√
d

)

d(m−1)/2

[ σ2( z√
d
)

[1− cos2d( z√
d
)]m/2

G
(

ρ
( z√

d

)

,D
( z√

d

))

−G(0, 0)

]

dz. (3.4)

The proof of the convergence of this integral is done in several steps.

In the rest of this section C denotes an unimportant constant, its value
can change from one occurence to another. It can depend on m, but recall
that m is fixed.

Step 1: Bounds for G.

• G(ρ,D) =
∫

(Rm2
)2
Qm(x)Qm(z)φm2(x)φm2(y)dxdy;

• G(0, 0) =
∫

(Rm2
)2
Qm(x)Qm(y)φm2(x)φm2(y)dxdy;

• |
√

1− ρ2 − 1| ≤ C|ρ|; |
√

1− (D)− 1| ≤ C|D|;
• |Qm(x)| ≤ C(1 + ‖x‖∞)m;

• any partial derivative of Qm(w) is a polynomial of degree m−1 and
thus it is bounded by C(1 + ‖w‖∞)m−1;

Applying that to a point between y and z, we get

|Qm(z)−Qm(y)| ≤ C(1 + ‖y‖∞ + ‖z‖∞)m−1(|ρ|+ |D|)
≤ C(1 + ‖x‖∞ + ‖y‖∞)m−1(|ρ|+ |D|),

and

|Qm(x) ·Qm(z)−Qm(x) ·Qm(y)|
≤ C(1 + ‖x‖∞)m(1 + ‖x‖∞ + ‖y‖∞)m−1(|ρ|+ |D|).

The finitude of all the moments of the supremum of Gaussian random
variables finally yields

|G(ρ,D) −G(0, 0)| ≤ C(|ρ|+ |D|).

Step 2: Point-wise convergence. It is a direct consequence of the expan-
sions of sine and cosine functions. As d tends to infinity:

1. A( z√
d
) → −z exp(−z2/2);

2. B( z√
d
) → (1− z2) exp(−z2/2);

3. C( z√
d
) and D( z√

d
) tend to exp(−z2/2);

4. σ2( z√
d
) → 1−(1+z2) exp(−z2)

1−exp(−z2)
;

5. ρ( z√
d
) → (1−z2)2(1−exp(−z2)) exp(−z2)

1−(1+z2 exp(−z2)
.
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This, in view of the continuity of the function G, implies the point-wise
convergence of the integrand in (3.4).

Step 3: Symmetrization. We have A(π − z/
√
d) = (−1)d−1A(z/

√
d),

B(π − z/
√
d) = (−1)dB(z/

√
d), C(π − z/

√
d) = (−1)dC(z/

√
d), D(π −

z/
√
d) = (−1)d−1D(z/

√
d), σ2(π − z

√
d) = σ2(z/

√
d) and ρ(π − z

√
d) =

(−1)dρ(z/
√
d). Hence, B12(π − z/

√
d) in (3.3) becomes

(

(−1)dσ2(z/
√
d)ρ(z/

√
d), (−1)d−1D(z/

√
d), . . . , (−1)d−1D(z/

√
d)
)

,

the rest being unchanged. This corresponds, for example to performing
some change of signs (depending on the parity of d) on the coordinates
of Y ′

ℓ (t). Gathering the different ℓ this may imply a change of sign in
det(Y′(t)) that plays no role because of the absolute value. As a conse-
quence

E(π − z/
√
d) = E(z/

√
d).

In conclusion, for the next step it suffices to dominate the integral in
the r.h.s of (3.4) restricted to the interval [0,

√
dπ/2].

Step 4: Domination. The following lemma gives bounds for the different
terms, its proof is given in the appendix.

Lemma 1. There exists some constant α, 0 < α ≤ 1/2 and some integer

d0 such that for z√
d
≤ π

2
and d > d0:

1. C ≤ D ≤ cosd−2( z√
d
) ≤ exp(−αz2);

2. |A| ≤ z exp(−αz2);
3. B ≤ (1 + z2) exp(−αz2);
4. for z ≥ z0, 1− C2 ≥ 1− C2 −A2 ≥ C > 0;

5. 0 ≤ 1− σ2 ≤ C exp(−2αz2);

6. |ρ| ≤ C(1 + z2)2 exp(−2αz2).

We have to find a dominant and to prove the convergence of the inte-
gral at zero and at infinity.

At zero, since the function G is bounded we have to give bounds for

d
m−1

2 sinm−1
(

z√
d

)

σ2( z√
d
)

(

1− cos2d( z√
d
)
)m/2

.

Clearly, d
m−1

2 sinm−1(z/
√
d) ≤ zm−1. Besides,

σ2
(

z√
d

)

(

1− cos2d( z√
d
)
)m

2

=
1− c2d(z)− c′2d (z)

(1− c2d(z))
m
2

+1
,

where c(z) = C(z/
√
d).

For the denominator, using Lemma 1, we have

1− c2d(z) ≥ C(1− exp(−2αz2)). (3.5)

We turn now to the numerator, let Xd(.) be a formal Gaussian stationary
process on the line with covariance cd. Hence,

1− c2d(z)− c′2d (z) = Var
(

Xd(z)|Xd(0), X
′
d(0)

)

= Var
(

Xd(z)−Xd(0)− zX ′
d(0)|Xd(0), X

′
d(0)

)

≤ Var
(

Xd(z)−Xd(0)− zX ′
d(0)

)

= z4Var
(

∫ 1

0

(1− t)X ′′
d (ut)dt

)

,
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where we used the Taylor formula with integral rest. The covariance
function cos(z/

√
d) corresponds to the spectral measure µ = 1

2

(

δ−d−1/2 +

δd−1/2

)

, see [1]. The spectral measure associated to cd(z) = cosd(z/
√
d) is

the d-th convolution of µ and a direct computation shows that its fourth
spectral moment exists and is bounded uniformly in d. As a consequence,
Var(X ′′

d (t)) is bounded uniformely in d, yielding that

1− c2d(z)− c′2d (z) ≤ Cz4. (3.6)

Using (3.5) and (3.6) we get the convergence at zero.
At infinity, define

H
(

σ2

(

z√
d

)

, C
(

z√
d

)

, ρ

(

z√
d

)

,D
(

z√
d

))

=
σ2( z√

d
)

(

1− cos2d( z√
d
)
)m/2

G

(

ρ

(

z√
d

)

,D
(

z√
d

))

dz.

Multiplication of bounded Lipchitz functions gives a Lipchitz function,
thus

∣

∣

∣

∣

H
(

σ2

(

z√
d

)

, C
(

z√
d

)

, ρ

(

z√
d

)

,D
(

z√
d

))

−H(1, 0, 0, 0)

∣

∣

∣

∣

≤ C
(

|σ2 − 1|+ |C|+ |ρ|+ |D|
)

.

The proof is achieved with Lemma 1.

3.3 Positivity of the limit variance

3.3.1 Hermite expansion of the number of real roots

We introduce the Hermite polynomials Hn(x) by H0(x) = 1, H1(x) = x
and Hn+1(x) = xHn(x)−nHn−1(x). The multi-dimensional versions are,

for multi-indexes α = (αℓ) ∈ N
m and β = (βℓ,k) ∈ N

m2

, and vectors

y = (yℓ) ∈ R
m and y′ = (y′ℓ,k) ∈ R

m2

Hα(y) =
m
∏

ℓ=1

Hαℓ(yℓ), Hβ(y
′) =

m
∏

ℓ,k=1

Hβℓ,k
(y′ℓ,k).

It is well known that the standardized Hermite polynomials { 1√
n!
Hn},

{ 1√
α!
Hα} and { 1√

β!
Hβ} form orthonormal bases of the spaces L2(R, φ1),

L2(Rm, φm) and L2(Rm2

, φm2) respectively. Here, φj stands for the stan-
dard Gaussian measure on R

j (j = 1,m,m2) and α! =
∏m

ℓ=1 αℓ!, β! =
∏m

ℓ,k=1 βℓ,k!. See [15, 16] for a general picture of Hermite polynomials.
Before stating the Hermite expansion for the normalized number of

roots of Y we need to introduce some coefficients. Let fβ (β ∈ R
m2

) be

the coefficients in the Hermite’s basis of the function f : Rm2 → R such
that f(y′) = |det(y′)|. That is f(y′) =

∑

β∈Rm2 fβHβ(y
′) with

fβ = f(β1,...,βm) =
1

β!

∫

Rm2

| det(y′)|Hβ(y
′)φm2(y

′)dy′

=
1

β1! . . .βm!

∫

Rm2

|det(y′)|
m
∏

l=1

Hβl
(y′

l)
exp− ||y′

l||
2

2

(2π)
m
2

dy′
l,
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with βl = (βl1, . . . , βlm) and y′
l = (y′l1, . . . , y

′
lm): l = 1, . . . ,m.

Parseval’s Theorem entails ||f ||22 =
∑∞

q=0

∑

|β|=q f
2
ββ! < ∞. More-

over, since the function f is even w.r.t. each column, the above coefficients
are zero whenever |βl| is odd for at least one l = 1, . . . ,m.

To introduce the next coefficients let us consider first the coefficients
in the Hermite’s basis in L2(R, φ1) for the Dirac delta δ0(x). They are
b2j = 1√

2π
(− 1

2
)j 1

j!
, and zero for odd indices [10]. Introducing now the

distribution
∏m

j=1 δ0(yj) and denoting as bα its coefficients it holds

bα =
1

[α
2
]!

m
∏

j=1

1√
2π

[

− 1

2

][
αj
2

]

or bα = 0 if at least one index αj is odd.
Since the formulas for the covariances of Hermite polynomials work in

a neater way when the underlying random variables are standardized, we
define the standardized derivative as

Y
′
ℓ(t) :=

Y ′
ℓ (t)√
d
, and Y

′
(t) := (Y

′
1(t), . . . , Y

′
m(t)),

where Y ′
ℓ (t) denotes the spherical derivative of Yℓ at t ∈ Sm. As said

above, the k-th component of Y
′
ℓ(t) in a given basis is denoted by Y

′
ℓk(t).

Proposition 1. Let the above notations prevail. We have, in the L2

sense, that

N̄d :=
NY

d − 2dm/2

2dm/4
=

∞
∑

q=1

Iq,d,

where

Iq,d =
dm/4

2

∫

Sm

∑

|γ|=q

cγHα(y)Hβ(y
′)dt,

with γ = (α,β) ∈ N
m × N

m2

and |γ| = |α|+ |β| and cγ = bαfβ.

Remark 1. Hermite polynomials’ properties imply that for q 6= q′

E (Iq,dIq′,d) = 0.

Proposition 1 is a direct consequence of the following lemma.

Lemma 2. For ε > 0 define

Nε :=

∫

Sm

|det(Y′(t))| δε(Y(t))dt,

where δε(y) :=
∏m

ℓ=1
1
2ε
1{|yℓ|<ε} and Y′ is the spherical derivative of Y.

Then,

1. For v ∈ R
m, let NY

d (v) denote the number of real roots in Sm of the

equation Y(t) = v. Then, NY
d (v) is bounded above by 2dm almost

surely.

2. Nε → NY
d almost surely and in the L2 sense as ε→ 0.

3. The random variable NY
d admits a Hermite’s expansion.

Proof. Since the paths of Y are smooth, Proposition 6.5 of [1] implies that
for every v ∈ R

m almost surely there is no point t ∈ Sm such thatY(t) = v
and the spherical gradient is singular. Using the local inversion theorem,
this implies that the roots of Y = v are isolated and by compactness they

9



are finitely many. As a consequence, NY
d (v) is well defined and a.s. finite.

Moreover, for every t ∈ R
m+1 such that Y (t) = v, ‖t‖ = 1, we have that

the set {Y ′
1 (t), . . . , Y

′
m(t), t} is almost surely linearly independent in R

m+1.
This implies that NY

d (v) is uniformly bounded by the Bézout’s number
2dm concluding 1 (see for example Milnor [14, Lemma 1, pag. 275]).

By the inverse function theorem, a.s. for every regular value v ∈ R
m,

NY
d (·) is locally constant in a neighborhood of v. Furthermore, by the

Area Formula (see Federer [8], or [1] Proposition 6.1), for small ε > 0 we
have

Nε =
1

(2ε)m

∫

[−ε,ε]m
NY

d (v) dv, a.s. (3.7)

Hence,
NY

d (0) = lim
ε→0

Nε, a.s. (3.8)

From 1. and (3.7) we have Nε ≤ 2dm a.s. Then, the convergence in (3.8)
also happens in L2.

This convergence allows us getting a Hermite’s expansion. We have

δε(y) =
∑

α∈Nm

bεαHα(y),

∣

∣

∣

∣

det

(

y′
√
d

)∣

∣

∣

∣

=
∑

β∈Nm2

fβHβ

(

y′
√
d

)

,

where bεα are the Hermite coefficients of δε(y) and the fβ have been already
defined. Furthermore, we know that limε→0 b

ε
α = bα. Now, taking limit

and regrouping terms we get as in Estrade and León [6] that

Nd = dm/2
∞
∑

q=0

∑

|α|+|β|=q

bαfβ

∫

Sm

Hα(Y(t))Hβ(Y
′
(t))dt.

This concludes the proof.

3.3.2 V∞ > 0

To prove that V∞ > 0 we use the Hermite expansion. In fact,

V 2
∞ = lim

d→∞

∞
∑

q=2

Var(Iq,d) ≥ lim
d→∞

Var(I2,d).

By Proposition 1, we have,

I2,d =
dm/4

2

∑

|γ|=2

cγ

∫

Sm

Hα(Y(t))Hβ(Y
′
(t))dt.

The coefficients vanish for any odd coefficient αℓ, βℓ,k, thus the only pos-
sibility to satisfy the condition |γ| = 2 is that only one of the coefficients
be 2 and the rest vanish. Hence,

I2,d =
dm/4

2

∫

Sm

m
∑

ℓ=1



b2b
m−1
0 f(0,...,0)H2(Yℓ(t)) +

m
∑

ℓ,k=1

bm0 f̃lk2H2(Y
′
ℓ,k(t))



dt,

where f̃lk2 = f(0,...,βlk,0,...,0), βlk = 2. By Mehler Formula, E (H2(ξ)H2(η)) =
2(E (ξη))2 ≥ 0 for jointly normal variables ξ, η. Hence,

Var(I2,d) ≥ dm/2

4

∫

(Sm)2
b22b

2m−2
0 f2

(0,...,0)(E (Y1(s)Y1(t)))
2dsdt+ o(1)

= cm

∫

Sm

〈e0, t〉2d dt+ o(1). (3.9)
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The term o(1) comes from the covariance between the two terms of the
sum. In fact, in this case

(EY1(s)Y
′
1,k(t))

2 = δ1,k

(

d1/2 〈s, t〉d−1
√

1− 〈s, t〉2
)2

,

and after the rescaling this tends to zero. Now, the integral in (3.9) is
dealt with as in Section 3.2. In fact, we already have the domination and
the point-wise limit of the integrand. Its limit is an integral on [0,∞) of
a positive function, thus, it is strictly positive.

4 Appendix

4.1 Explicit expression of the variance

For k = 1, . . . ,m let ξk, ηk be independent standard normal random vec-
tors on R

k. Let us define

• mk,j = E
(

‖ξk‖j
)

= 2j/2 Γ((j+k)/2)
Γ(k/2)

, where ‖·‖ is the Euclidean norm

on R
k;

• for k = 1, . . . ,m− 1, Mk(t) = E

[

‖ξk‖ ‖ηk + e−t2/2

(1−e−t2 )1/2
ξk‖
]

;

• for k = m, Mm(t) = E

[

‖ξm‖ ‖ηm + τ(t)

(σ4(t)−τ2(t))1/2
ξm‖

]

.

Using the method of section 12.1.2 of [1] the following result can be proved.

Theorem 2. We have

V 2
∞ =

1

2
+
κmκm−1

2(2π)m

·
∫ ∞

0

tm−1

[

σ4(t)(1− ρ2(t)

1− e−t2

]1/2
[

m
∏

k=1

Mk(t)−
m
∏

k=1

m2
k,1

]

dt.

4.2 Integration on the sphere

Lemma 3. Let H be a measurable function defined on R. Then, we have

∫

(Sm)2
H(〈s, t〉) ds dt = κmκm−1

∫ π

0

sin(ψ)m−1H(cos(ψ)) dψ

=
κmκm−1√

d

∫

√
dπ

0

sin

(

z√
d

)m−1

H
(

cos

(

z√
d

))

dz.

Proof. The proof is a direct consequence of the formula of integration over
sub-manifolds.

∫

Sm

H(〈t, e0〉)dt = κm−1

∫ π

0

sin(ψ)m−1H(cos(ψ)) dψ.

11



4.3 Proof of Lemma 1

Proof. We give the proof of 1, the other cases are similar or easier. On
[0, π/2] there exists α1, 0 < α1 < 1/2 such that

cos(ψ) ≤ 1− α1ψ
2.

Thus,

cosd−2

(

z√
d

)

≤
(

1−α1z
2

d

)d−2

≤ exp

(

−α1z
2(d− 2)

d

)

≤ exp

(

−αz2
)

,

as soon as α < α1 and d is big enough.
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