Flujos que conmutan en dimensión 3

Un teorema famoso de E.LIMA dice que para toda acción C^1 de R^k en una superficie cuya característica de Euler no es nula, existe un punto fijo global. Equivelntemente, k campos de vectores que conmutan en una superficie tienen un cero en común. En esta charla contaré una estrategia global que elaboramos junto con C.Bonatti (UB, Dijon) y B.Santiago (UFF, Niteroi) para resolver el caso de 2 campos de vectores de clase C^3 que conmutan en una variedad de dimensión 3, y enunciaré nuestros recientes avances.
  • Flujos que conmutan en dimensión 3
  • 2017-10-20T14:30:00-03:00
  • 2017-10-20T15:30:00-03:00
  • Un teorema famoso de E.LIMA dice que para toda acción C^1 de R^k en una superficie cuya característica de Euler no es nula, existe un punto fijo global. Equivelntemente, k campos de vectores que conmutan en una superficie tienen un cero en común. En esta charla contaré una estrategia global que elaboramos junto con C.Bonatti (UB, Dijon) y B.Santiago (UFF, Niteroi) para resolver el caso de 2 campos de vectores de clase C^3 que conmutan en una variedad de dimensión 3, y enunciaré nuestros recientes avances.
  • Cuándo 20/10/2017 de 14:30 a 15:30 (America/Montevideo / UTC-300)
  • Speaker Sebastien Alvarez
  • Agregar evento al calendario iCal