Coherencia dinámica de difeomorfismos parcialmente hiperbólicos isotópicos a Anosov en nilvariedades.

Un difeomorfismo $f:M \to M$ es parcialmente hiperb\'olico si existe una descomposici\'on del fibradotangente en tres subfibrados $Df$-invariantes: $TM=E^{s}\oplus E^{c}\oplus E^{u}$ tal que los vectores en$E^{s}$ y $E^{u}$ contraen vectores uniformemente a futuro y a pasado respectivamente y elcomportamiento de los vectores en el fibrado central es intermedio. El cl\'asico teorema de la variedad estable nos dice que en cada punto de la variedad $M$ existenfoliaciones $\mathcal{W}^{s}$ y $\mathcal{W}^{u}$ invariantes por $f$ y tangentes a los fibrados $E^{s}$ y $E^{u}$ respectivamente. Cuando tambi\'en existen estas foliaciones para los fibrados centro-estables ycentro-inestables decimos que el difeomorfismo $f$ es \textit{din\'amicamente coherente}. El objetivo de esta tesis es probar la coherencia din\'amica de difeomorfismos parcialmente hiperb\'olicosen ciertas clases de isotop\'ias de difeomorfismos de Anosov lineales extendiendo un resultado de T. Fisher, R. Potrie y M. Sambarino al caso de nilvariedades. (ESTA CHARLA SERÁ TAMBIÉN LA DEFENSA DE LA TESIS DE MAESTRÍA)
  • Coherencia dinámica de difeomorfismos parcialmente hiperbólicos isotópicos a Anosov en nilvariedades.
  • 2017-11-17T14:30:00-03:00
  • 2017-11-17T15:30:00-03:00
  • Un difeomorfismo $f:M \to M$ es parcialmente hiperb\'olico si existe una descomposici\'on del fibradotangente en tres subfibrados $Df$-invariantes: $TM=E^{s}\oplus E^{c}\oplus E^{u}$ tal que los vectores en$E^{s}$ y $E^{u}$ contraen vectores uniformemente a futuro y a pasado respectivamente y elcomportamiento de los vectores en el fibrado central es intermedio. El cl\'asico teorema de la variedad estable nos dice que en cada punto de la variedad $M$ existenfoliaciones $\mathcal{W}^{s}$ y $\mathcal{W}^{u}$ invariantes por $f$ y tangentes a los fibrados $E^{s}$ y $E^{u}$ respectivamente. Cuando tambi\'en existen estas foliaciones para los fibrados centro-estables ycentro-inestables decimos que el difeomorfismo $f$ es \textit{din\'amicamente coherente}. El objetivo de esta tesis es probar la coherencia din\'amica de difeomorfismos parcialmente hiperb\'olicosen ciertas clases de isotop\'ias de difeomorfismos de Anosov lineales extendiendo un resultado de T. Fisher, R. Potrie y M. Sambarino al caso de nilvariedades. (ESTA CHARLA SERÁ TAMBIÉN LA DEFENSA DE LA TESIS DE MAESTRÍA)
  • Cuándo 17/11/2017 de 14:30 a 15:30 (America/Montevideo / UTC-300)
  • Dónde IMERL
  • Speaker Luis Piñeyrua
  • Agregar evento al calendario iCal