Sobre la estimación de la interpolación “en ley” de un proceso ARMA estacionario

Cuando se programó la sesión de la fecha se pensó en incorporar problemas abiertos. Desde entonces, mi intención ha sido describir problemas que no sé resolver vinculados a la estimación de los parámetros de la interpolación “en ley” de un proceso ARMA estacionario causal. En primer lugar describiremos el proceso de inmersión de un ARMA con parámetro en Z en un proceso estacionario de parámetro continuo cuyos valores en Z coinciden en ley con los del ARMA, e identificaremos los parámetros a ser estimados. Dado que es razonable utilizar la función característica empírica de las observaciones, describiremos un procedimiento sencillo basado en la transformada rápida de Fourier para pasar de la función característica a la densidad y viceversa. Finalmente analizaremos un ejemplo de estimación para el que las dificultades superan ampliamente a los logros.
  • Sobre la estimación de la interpolación “en ley” de un proceso ARMA estacionario
  • 2017-11-24T10:30:00-03:00
  • 2017-11-24T11:00:00-03:00
  • Cuando se programó la sesión de la fecha se pensó en incorporar problemas abiertos. Desde entonces, mi intención ha sido describir problemas que no sé resolver vinculados a la estimación de los parámetros de la interpolación “en ley” de un proceso ARMA estacionario causal. En primer lugar describiremos el proceso de inmersión de un ARMA con parámetro en Z en un proceso estacionario de parámetro continuo cuyos valores en Z coinciden en ley con los del ARMA, e identificaremos los parámetros a ser estimados. Dado que es razonable utilizar la función característica empírica de las observaciones, describiremos un procedimiento sencillo basado en la transformada rápida de Fourier para pasar de la función característica a la densidad y viceversa. Finalmente analizaremos un ejemplo de estimación para el que las dificultades superan ampliamente a los logros.
  • Cuándo 24/11/2017 de 10:30 a 11:00 (America/Montevideo / UTC-300)
  • Dónde Salón de Seminarios. Centro de Matemática
  • Nombre
  • Speaker Enrique Cabaña
  • Agregar evento al calendario iCal