Procesos de Ornstein--Uhlenbeck fraccionarios iterados.

En esta charla, mostraremos que componiendo operadores del tipo Ornstein Uhlenbeck (definidos en un trabajo recientemente publicado por Arratia, Cabaña y Cabaña) aplicados a un movimiento browniano fraccional, queda una combinación lineal de procesos de Ornstein--Uhlenbeck fraccionarios. Le llamaremos a estos procesos FOU(p) (FOU de orden p, siendo p el número de iteraciones realizadas). A través de la obtención de una fórmula para la densidad espectral de un FOU(p), mostraremos que siendo cada sumando un proceso de memoria larga, la combinación lineal termina siendo un proceso de memoria corta. También se verá que el exponente de Hurst del browniano fraccional, termina siendo el exponente Hölder de las trayectorias del proceso FOU(p), y por lo tanto puede ser interpretado como un parámetro que mide en algún sentido la regularidad de las trayectorias. Se mostrará que los procesos FOU(p) pueden ser utilizados para modelar tanto procesos de memoria corta como de memoria larga. Se aplicarán estos modelos a tres series de datos reales, a las cuales se les ajustarán modelos FOU(p) para distintos valores de p, y se comparará su performance a nivel predictivo con respecto a los modelos ARMA(p,q), mediante el cálculo de diversas medidas de calidad de predicciones como el índice de Willmott. Finalmente, se planteará también un procedimiento para estimar sus parámetros, que resulta ser consistente y convenientemente normalizado tiene una distribución límite gaussiana, cuya aplicación práctica aún no está estudiada.
  • Procesos de Ornstein--Uhlenbeck fraccionarios iterados.
  • 2017-11-17T10:30:00-03:00
  • 2017-11-17T11:30:00-03:00
  • En esta charla, mostraremos que componiendo operadores del tipo Ornstein Uhlenbeck (definidos en un trabajo recientemente publicado por Arratia, Cabaña y Cabaña) aplicados a un movimiento browniano fraccional, queda una combinación lineal de procesos de Ornstein--Uhlenbeck fraccionarios. Le llamaremos a estos procesos FOU(p) (FOU de orden p, siendo p el número de iteraciones realizadas). A través de la obtención de una fórmula para la densidad espectral de un FOU(p), mostraremos que siendo cada sumando un proceso de memoria larga, la combinación lineal termina siendo un proceso de memoria corta. También se verá que el exponente de Hurst del browniano fraccional, termina siendo el exponente Hölder de las trayectorias del proceso FOU(p), y por lo tanto puede ser interpretado como un parámetro que mide en algún sentido la regularidad de las trayectorias. Se mostrará que los procesos FOU(p) pueden ser utilizados para modelar tanto procesos de memoria corta como de memoria larga. Se aplicarán estos modelos a tres series de datos reales, a las cuales se les ajustarán modelos FOU(p) para distintos valores de p, y se comparará su performance a nivel predictivo con respecto a los modelos ARMA(p,q), mediante el cálculo de diversas medidas de calidad de predicciones como el índice de Willmott. Finalmente, se planteará también un procedimiento para estimar sus parámetros, que resulta ser consistente y convenientemente normalizado tiene una distribución límite gaussiana, cuya aplicación práctica aún no está estudiada.
  • Cuándo 17/11/2017 de 10:30 a 11:30 (America/Montevideo / UTC-300)
  • Dónde Salón de Seminarios. Centro de Matemática
  • Nombre
  • Speaker Juan Kalemkerian
  • Agregar evento al calendario iCal