Seminario de Álgebra y Temas Afines (2018)

Seminario de Álgebra y Temas Afines de 2018
Teor​í​a de invariantes, m​é​todos diferenciales e integrales.
02/04/2018 de 13:30 a 14:30 Salón de seminarios del CMat, Piso 14,

Describiremos brevemente los dos grandes problemas cl​á​sicos de la teor​í​a de invariantes​. El primer ​ ​ problema fundamental (nomenclatura de Hilbert) apunta a demostrar que los invariantes son finitamente generados como álgebra y el segundo problema fundamental, que las relaciones posibles entre los invariantes son generadas por un número finito de ellas. Hilbert resolvió el segundo problema completamente y en algunos casos particulares el primero (usando los métodos diferenciales) y Hurwitz otros casos del primero (usando métodos integrales). Ambos trabajaban en Konigsberg y los resultados fueron demostrados en la última década del siglo XIX. Weyl continuó la línea de trabajo de Hurwitz (pero para algunos resultados usó métodos diferenciales) y Nagata probó en 1964 que hay contraejemplos que imposibilitan la validez general del primer teorema fundamental. En caso de tener tiempo, mostraremos dos "modernizaciones" de ambos métodos (trabajo conjunto con Rittatore). Para los métodos integrales siguiendo las ideas de Mumford (1960-70) y para los diferenciales las de Cayley y Hilbert. Nos encontramos media hora antes (a las 13:00) para tomar un café.

Acciones de categorías - una mirada 2-categórica
09/04/2018 de 01:30 a 02:30

En esta charla me gustaría contarles sobre mi trabajo actual. En él estudio acciones de categorías monoidales a las categorías de representaciones de álgebras y pruebo un resultado en 2-categorías que codifica tales acciones dando una condición equivalente a ellas. También introduzco la noción de (co)quasi-bimónada en una 2-categoría y defino sus respectivas 2-categorías. Las 1-celdas sobre una 0-celda fija claramente definen categorías monoidales. A ellas agrego la estructura de (co)módulos sobre la (co)mónada subyacente en la (co)quasi-bimónada - noción que introduje en un trabajo previo - y pruebo que las categorías obtenidas son monoidales. Esto corresponde al hecho de que en categorías monoidales trenzadas las categorías de (co)representaciones de una (co)quasi-bialgebra son monoidales, pero aquí lo hago en términos 2-categóricos sin tener la trenza. Estudio acciones correspondientes de estas dos categorías monoidales y comparo los resultados específicos obtenidos con el marco general del primer resultado mencionado. Ellos presentan una generalización 2-categórica de resultados conocidos en la literatura en el contexto de módulos sobre anillos conmutativos. Por último estudio lo que en mis trabajos previos denominé "módulos de Yetter-Drinfel`d en 2-categorías", cómo ellos generan una categoría monoidal y cómo ésta actua sobre la categoría de módulos relativos provenientes de la 2-categoría base. Lo que obtengo generaliza un resultado reciente formulado en categorías monoidales trenzadas. Están invitados a tomar un café a las 13:00, previo al seminario.

Sistemas de factorización
16/04/2018 de 13:30 a 14:30 CMat, Salón de seminarios del piso 14.,

En esta charla recorremos las definiciones y algunos ejemplos de distintos tipos de sistemas de factorización en categorías (sistemas de factorización ortogonales y débiles). Varios de estos ejemplos provienen de la teoría axiomática de homotopía (categorias de modelos de Quillen). Introduciremos una noción intermedia entre las factorizaciones ortogonales y débiles de relevancia en el contexto de 2-categorías: las factorizaciones ortogonales laxas [M.M. Clementino and I. Lopez Franco, Lax factorisation systems. Adv. Math. 302 (2016)]. Los esperamos a las 13:00 para tomar un café antes del seminario

Funciones Booleanas inmunes a la correlación con aplicaciones a seguridad en tarjetas inteligentes.
26/04/2018 de 13:30 a 14:30 CMat, piso 14,

En 2002 AES se convirtió en standard para encriptado simétrico de datos, luego de un largo proceso de varios años de discusión liderado por el NIST. Hasta el día de hoy no se conocen ataques que se puedan considerar prácticos para quebrar este algoritmo. Sin embargo, se han presentado ataques laterales ("side channel attacks") basado en análisis del consumo energético del cómputo que hace al encriptar en tarjetas inteligentes. Para defenderse frente a estos ataques, Claude Carlet sugirió usar como filtros funciones Booleanas inmunes a la correlación de alto orden y de menor peso de Hamming. Este es un problema difícil dado que en su generalidad, dados n y k, no se conoce cual es este peso mínimo para el cual existe una función inmune a la correlación de orden k con n variables. Más específicamente es un problema que está relacionado con la conjetura de Hadamard. En 2010 Carrasco, Le Bars y Viola presentaron un novedoso punto de vista combinatorio para caracterizar todas las funciones inmunes a la correlación de orden 1 y además dieron una enumeración combinatoria de estas funciones y presentaron algoritmos eficientes de generación aleatoria uniforme de estas funciones. En 2014 Carlet nos planteó el problema de generalizar nuestros métodos para estudiar dicho problema, que hasta el día de hoy no ha podido ser resuelto en su totalidad por métodos alternativos. En esta charla presentaremos avances en el tema, donde esperamos dentro de poco tener resultados completos y que tengan un impacto importante en la comunidad de funciones Booleanas con aplicaciones a la criptografía. Es trabajo en conjunto con Jean Marie Le Bars, Octavio Pérez-Kempner y Francisco Castro. Como siempre, están invitados a tomar un café a las 13:00, antes del seminario.

Juegos infinitos
07/05/2018 de 01:30 a 02:30 CMat, Salón de seminarios del piso 14.,

Los juegos infinitos han servido como herramienta en varias aplicaciones en lógica, combinatoria, y otras áreas. Lo que los hace interesantes en la teoría de la computabilidad es la alta complejidad que pueden llegar a tener las estrategias para juegos relativamente simples. En esta charla, describiremos estos juegos, tal vez juguemos un poco, y explicaremos los conocimientos básicos necesarios para entender la respuesta --- dada por el autor y Richard Shore --- a la siguiente pregunta: ¿Cuánta determinación de juegos puede demostrarse sin usar objetos no numerables? Los esperamos a las 13:00 para tomar un café antes de la charla.

Estructuras nearly Frobenius en algunas familias de álgebras
14/05/2018 de 13:30 a 14:30 Piso 14 del Cmat,

Hablaré sobre un trabajo conjunto con Ana González y Gustavo Mata, donde estudiamos la existencia de estructuras nearly Frobenius en las álgebras string, las de radical cuadrado cero y las álgebras toupie. Están todos invitados a venir a las 13:00 para tomar un café antes del seminario