Jornada de 3 charlas: Eduardo Marcos (USP), Charles Paquette (RMC) y Andrea Solotar (UBA)

Jornada de 3 charlas seguidas
  • When 16/03/2018 de 11:00 a 13:40 (America/Montevideo / UTC-300)
  • Where Salón de seminarios del IMERL
  • Contact
  • Speaker Eduardo Marcos, Charles Paquette y Andrea Solotar
  • Add event to calendar iCal

Hola a todos,

Este Viernes 16 de marzo de 11:00 a 13:40 tendremos tres charlas de 45 minutos en el seminario de álgebra del IMERL. Nos hablarán los profesores Eduardo Marcos (USP), Charles Paquette (RMC) y Andrea Solotar (UBA).

A continuación los títulos y abstracts de las charlas.

Dr. Eduardo Marcos - Universidad de San Pablo. 11:00 a 11:45.

Resumen: This talk is based on an ongoing, joint work, with O. Mendoza and C. Saenz
We study the cokernel of the application given by the Cartan Matrix C of a finite dimensional k-algebra. This produces a finitely generated abelian group, the Cartan group G, which is invariant under derived equivalences. We are interested in the case when G is finite. For a standardly stratified algebra, it is shown that this group is always finite and some interesting connections with the standard modules are found. As a consequence, it is got that G can be seen as a measure of how far is a standardly stratified algebra to be quasi-hereditary. Finally, it is also shown that any finite abelian group can be realized as the Cartan group of some standardly stratified algebra.


Dr. Charles Paquette - Royal Military College. Kingston, Ontario. 11:55 - 12:40.

Título: Generators in abelian categories

Resumen: It is well known that a cocomplete abelian category A with a compact projective generator has to be a module category, and vice-versa. What happens if we just assume that A has a generator? Does it have to have a projective generator (we do not know whether A has enough projective objects)? We will try to give an answer to this question and consider some applications in representation theory.

Dra. Andrea Solotar - Universidad de Buenos Aires. 12:50 - 13:35

Título: "Estructura de Gerstenhaber de una clase de álgebras biseriales especiales"
(trabajo conjunto con Van Nguyen, Joanna Meinel, Bregje Pauwels y Maria Julia

Resumen: Para cualquier número entero $ N \ geq 1 $, consideramos una clase de algebras biseriales especiales autoinyectivas $ A_N $ definidas por un carcaj con relaciones sobre un cuerpo $ k $. Estudiamos la estructura de Gerstenhaber de su anillo de cohomología de Hochschild $ HH ^ * (A_N) $. Este anillo de cohomología de Hochschild es una k-álgebra finitamente generada, (resultados de Snashall y Taillefer).