Bases Amenables

Sea A una k-álgebra de dimensión infinita, donde k es un cuerpo y B una base de A. En general no es posible definir en el producto directo indizado por B una estructura de A-módulo compatible con la de A como módulo sobre sí misma. Es conocido del artículo Modules over infinite-dimensional algebras (L. M. Al-Essa, S. R. López-Permouth, N. M. Muthana) que si la base B es amenable, entonces dicha estructura queda bien definida. También se sabe que, dada una k-álgebra de dimensión infinita con una base numerable, es posible construir una nueva base que sea amenable. El objetivo de la charla está relacionado precisamente con la existencia de este tipo de bases en un álgebra cualquiera, dando respuesta a la interrogante planteada en el artículo sobre la posibilidad de encontrar una k-álgebra tal que todas sus bases sean amenables.
  • Bases Amenables
  • 2017-09-08T11:15:00-03:00
  • 2017-09-08T12:15:00-03:00
  • Sea A una k-álgebra de dimensión infinita, donde k es un cuerpo y B una base de A. En general no es posible definir en el producto directo indizado por B una estructura de A-módulo compatible con la de A como módulo sobre sí misma. Es conocido del artículo Modules over infinite-dimensional algebras (L. M. Al-Essa, S. R. López-Permouth, N. M. Muthana) que si la base B es amenable, entonces dicha estructura queda bien definida. También se sabe que, dada una k-álgebra de dimensión infinita con una base numerable, es posible construir una nueva base que sea amenable. El objetivo de la charla está relacionado precisamente con la existencia de este tipo de bases en un álgebra cualquiera, dando respuesta a la interrogante planteada en el artículo sobre la posibilidad de encontrar una k-álgebra tal que todas sus bases sean amenables.
  • Cuándo 08/09/2017 de 11:15 a 12:15 (America/Montevideo / UTC-300)
  • Dónde IMERL
  • Nombre
  • Speaker José Armando Vivero
  • Agregar evento al calendario iCal