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Abstract

The celebrated uniqueness’s theorem of the Schwarzschild solution by Israel,

Robinson et al, and Bunting/Masood-ul-Alam, asserts that the only asymptoti-

cally flat static solution of the vacuum Einstein equations with compact but non-

necessarily connected horizon is Schwarzschild. Between this article and its sequel

we extend this result by proving a classification theorem for all (metrically com-

plete) solutions of the static vacuum Einstein equations with compact but non-

necessarily connected horizon without making any further assumption on the topol-

ogy or the asymptotic. It is shown that any such solution is either: (i) a Boost,

(ii) a Schwarzschild black hole, or (iii) is of Myers/Korotkin-Nicolai type, that is, it

has the same topology and Kasner asymptotic as the Myers/Korotkin-Nicolai black

holes. In a broad sense, the theorem classifies all the static vacuum black holes in

3+1-dimensions.

In this Part I we use introduce techniques in conformal geometry and comparison

geometry á la Bakry-Émery to prove, among other things, that vacuum static black

holes have only one end, and, furthermore, that the lapse is bounded away from zero

at infinity. The techniques have interest in themselves and could be applied in other

contexts as well, for instance to study higher-dimensional static black holes.
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1 Introduction

The vacuum static solutions of the Einstein equations have played since early days a

fundamental role in the study of Einstein’s theory and the classification theorems have

been at the center of the work. In this context, the celebrated uniqueness theorem of the

Schwarzschild solution asserts that the Schwarzschild black holes are the only asymptot-

ically flat vacuum static solutions with compact but non-necessarily connected horizon

(Israel [16], Robinson et al [37], Bunting/Masood-ul-Alam [9]; for a review on the history

of this theorem see [10]). Between this article and its sequel Part II [31], it is proved

a classification theorem extending Schwarzschild’s uniqueness theorem to vacuum static

solutions having compact but non-necessarily connected horizon without making further

assumptions on their topology or asymptotic.

Static solutions appear in many contexts. In Riemannian geometry they model for

instance the blow up of singularities forming along sequences of Yamabe metrics [4], [2], [3],

and provide interesting examples of Ricci-flat Riemannian metrics with a warped S1-

factor [6]. In physics they are crucial for example in the study of mass, quasi-local

mass and initial data sets [8], [7], [17], or in the exploration of certain high-dimensional

theories [29]. A classification theorem can be relevant in any of these contexts.

Stated below is the classification theorem that we shall prove. The objects to classify

are static black hole data sets that condensate the notion of static black hole at the

initial data level(1). The definition and the discussion of the three main families in the

theorem is given right after the statement of the theorem. Full technical details can be

found in the background subsection 2.1. Previous work and references related to these

articles are discussed at the end of this section. For better clarity the proof’s structure of

(1)which is the viewpoint adopted in these articles. We classify static black hole spacetimes having a
Cauchy hypersurface orthogonal to the static Killing field. The problem of classifying static spacetimes
without such condition is not treated here, see for instance [28].
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the classification theorem is explained separately in the next subsection 1.1. A detailed

account of the contents of this Part I is given in subsection 1.2.

Theorem 1.0.1 (The classification Theorem). Any static black hole data set is either,

(I) A Schwarzschild black hole, or,

(II) a Boost, or,

(III) is of Myers/Korotkin-Nicolai type.

Formally, a (vacuum) static data set (Σ; g,N) consists of an orientable three-manifold

Σ, a function N called the lapse and positive in the interior Σ◦ = Σ \ ∂Σ of Σ, and a

Riemannian metric g on Σ satisfying the vacuum static equations,

NRic = ∇∇N, ∆N = 0 (1.0.1)

A static data set (Σ; g,N) gives rise to a vacuum static spacetime (Ric = 0),

Σ = R× Σ, g = N2dt2 + g, (1.0.2)

where ∂t is the static Killing field. Conversely, a static spacetime of the form (1.0.2), gives

rise to a static data set (Σ; g,N). Throughout this article we will work with static data

sets rather than their associated spacetimes.

A static black hole data set is defined as a static data (Σ; g,N) such that ∂Σ = {N =

0} 6= ∅ is compact and (Σ; g) is metrically complete. In this definition no special asymp-

totic or global topological structure is assumed. The boundary of Σ is non-necessarily

connected and is called the horizon. Without further justification, we will say that the

spacetime of a static black hole data set is a ‘black hole spacetime’, (2). We stress that

all the analysis in these articles is carried only on static data sets, leaving the spacetime

picture aside.

Let us discuss now the families (I), (II) and (III) of static black hole data sets.

The Schwarzschild static black hole data sets are spherically symmetric and asymp-

totically flat, and are given explicitly by,

Σ = R3 \B(0, 2m), g =
1

1− 2m/r
dr2 + r2dΩ2 and N =

√
1− 2m/r (1.0.3)

where m > 0 is the mass and B(0, 2m) is the open ball of radius 2m, (3). The family is

parameterised by the mass m > 0. It is of course the paradigmatic family of static black

hole data sets.

The flat static data

Σ = [0,∞)× R2; g = dx2 + dy2 + dz2, N = x, (1.0.4)

is called the Boost. The spacetime (1.0.2) associated to (1.0.4) is the Rindle-wedge of

the Minkowski spacetime and the static Killing field is the boost generator x∂t, hence

(2)Indeed the outer-communication region.
(3)The spacetime (1.0.2) corresponding to (1.0.3) is just the region of exterior communication of a

Schwarzschild black hole of mass m. The horizon is the boundary ∂Σ = {N = 0}. Restricted to
r ≥ R(t) > 2m, the Schwarzschild space models the gravitational field of any isolated but spherically
symmetric physical body of radius R(t). The object itself may be transiting a dynamical process (for
instance in a star), but the spacetime outside remains spherically symmetric and thus Schwarzschild by
Birkhoff’s theorem. If the radius R(t) goes below the threshold of 2m, no equilibrium is possible, the
body undergoes a complete gravitational collapse and a Schwarzschild black hole remains.
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Figure 1: A Schwarzschild black hole. The grey region is Σ and
is diffeomorphic to R3 minus the open (black) ball B(0, 2m). The
solution is spherically symmetric and thus axisymmetric.

the name. The quotients of the Boost by any Z2 group of isometries generated by two

translations along the factor R2, are data of the form,

Σ = [0,∞)× T2, g = dx2 + h, N = x (1.0.5)

where h is a flat metric on the two-torus T2 = S1 × S1. As the lapse N is zero on the

boundary of Σ, these are static black hole data sets. They define the Boost family in the

classification theorem, and is parametrised by the set of flat two-tori.

Other relevant examples of static data sets are the Kasner data sets (a complete

discussion is given in subsection 2.5 of Part II),

Σ = (0,∞)× R2; g = dx2 + x2αdy2 + x2βdz2, N = xγ , (1.0.6)

where y and z are coordinates on each of the factors R of R2, and α, β and γ are any

numbers satisfying,

α+ β + γ = 1, α2 + β2 + γ2 = 1 (1.0.7)

(see Figure 2). The Kasner space (α, β, γ) = (0, 0, 1) is the Boost(4) and is the Kasner

B

A C
α β

γ

Figure 2: The circle that defines the range of the Kasner parameters
α, β, γ.

data with faster growth of the lapse (linear). The Kasner spaces (1, 0, 0) and (0, 1, 0), that

(4)One must add indeed the set {0} × R2.
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have constant lapse and are therefore flat, are denoted respectively by the letters A and

C.

As with the Boost, one can quotient a general Kasner data to obtain data of the form,

Σ = (0,∞)× T2, g = dx2 + h(x), N = xγ (1.0.8)

where, h(x) is a certain path of flat metrics on T2. This is the Kasner family and is

parametrised by the set of possible Kasner triples (α, β, γ) (a circle) times the set of flat

two-tori up to isometry. The Myers/Korotkin-Nicolai data sets, that we describe a few

lines below, are asymptotic to them. Finally, we denote also by A, B, C, to the quotients

of the spaces A, B, C respectively.

Figure 3: A Boost black hole. The grey region is Σ and is diffeomor-
phic to a solid torus minus an open (black) solid torus.

Let us see the last family in the classification theorem, namely the static black hole

data sets of Myers/Korotkin-Nicolai type. A static black hole data set is said to be of

Myers/Korotkin-Nicolai type if its topology is that of a solid three-torus minus a finite

number of balls and is asymptotic to a Kasner space (1.0.8), (see Definition 2.1.5). Black

holes with such properties were found by Myers in [29] and were rediscovered and further

investigated by Korotkin and Nicolai in [23], [22]. Myers and Korotkin/Nicolai’s construc-

tion used first Weyl’s method to find a ‘periodic’ static solution by superposing along a

common axis an infinite number of Schwarzschild solutions separated by the same dis-

tance L (see Figure 4). Simple quotients give then the desired solutions with any number

of holes (see Figure 5), (5).

The details of such data sets (Σ; g,N) are mainly irrelevant to us but for the sake of

completeness the main features of the data in the universal cover space can be summarised

as follows (see [29], [23]). The metric and the lapse have the form,

g = e−ω(e2k(dx2 + dρ2) + ρ2dφ2), N = eω/2, (1.0.9)

where (x, ρ) are Weyl coordinates (ρ > 0 is the radial coordinate) and φ ∈ [0, 2π) is the

angular coordinate. The function ω is defined through the convergent series,

ω(x, ρ) = ω0(x, ρ) +

∞∑
n=1

[ω0(x+ nL, ρ) + ω0(x− nL, ρ) +
4M

nL
] (1.0.10)

(5)As the Schwarzschild solutions are axisymmetric, they can be superposed along an axis by Weyl’s
method. When superposing a finite number of holes, angle deficiencies appear on the axis between them
and the solution resulting is non-smooth. This deficiency can be understood from the fact that a repulsive
force must keep the holes in equilibrium. However when infinitely many of them are superposed along the
axis, say at a distance L from each other, no extra force is needed and the angle deficiency is no longer
present. This gives a ‘periodic’ solution that can be quotient to obtain M/KN solutions with any number
of holes.
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Figure 4: A ’universal M/KN data’. The grey region is Σ and is
diffeomorphic to R3 minus an infinite number of (black) open balls.
The solution is axisymmetric.

Figure 5: A M/KN data with one hole. The grey region is Σ and
is diffeomorphic to a solid torus minus an open (black) ball. The
solution is axisymmetric.

where ω0(x, ρ) is,

ω0 = ln E0, E0(x, ρ) =

√
(x−M)2 + ρ2 +

√
(x+M)2 + ρ2 − 2M√

(x−M)2 + ρ2 +
√

(x+M)2 + ρ2 + 2M
(1.0.11)

and the function k(x, ρ) is found by quadratures through the equations,

kρ =
ρ

4
(ω2
ρ − ω2

x), kx =
ρ

2
ωxωρ, (1.0.12)

The metric g, the lapse N and the function k are invariant under the translations x →
x+ L, hence periodic. The asymptotic of the solution is Kasner and has the form,

g ≈ c1ρα
2/2−α(dx2 + dρ2) + c2ρ

2−αdφ2, N ≈ c3ρα/2 (1.0.13)

where α = 4M/L and so 0 < α < 2. Note that the range of α excludes the Kasner spaces

A, B and C, and clearly those with γ < 0 for which N → 0 at infinity. Therefore the

asymptotic of such static black hole data sets is Kasner but different from A, B, C and
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from those Kasner with γ < 0. This fact was not incorporated as part of the definition

of static black hole data set of M/KN type. It will be shown however in Part II that

the Kasner asymptotic of a black hole of M/KN type is indeed different from A and C,

although we cannot exclude the possibility of being asymptotic to B. Of course by the

maximum principle, the Kasner asymptotic cannot be one with γ < 0 (if so then it must

be N = 0 on Σ because N = 0 on ∂Σ and N → 0 at infinity). We leave it as an open

problem to prove that the only static black hole data sets asymptotic to a Boost are in

fact the Boosts.

The construction of Myers/Korotkin-Nicolai that we briefly described above can be

generalised to allow a periodic superposition of Schwarzschild holes of different masses

provided they are kept separated from each other at the right distances. The outcome,

(after quotient), are static black hole data sets of M/KN type different from the ones just

described. To embrace all the possibilities we define the Myers/Korotkin-Nicolai data sets

as any axisymmetric static black hole data set obtained using Myers/Korotkin-Nicolai’s

method. It could be that such data sets are the only black hole static data sets of M/KN

type. We leave this as an open problem (see Problem 2.1.9). Note that the precise global

geometry of the M/KN data sets won’t be discussed in this article and won’t play a role

(for a discussion see [22]) as we will deal only with data sets of M/KN-type that are

defined by abstracting the main geometric features of the M/KN data sets.

The proof of the classification theorem is divided between Part I (this article) and Part

II (its sequel), and each article has a clear and distinct motivation. The main purpose of

this Part I, that we elaborate in detail in the subsections 1.1 and 1.2 below, is to study

global properties of the lapse of static black hole data sets and its implications on the

global geometry. Part II discusses, on one side, S1-symmetric static data sets and, on

the other side, provides a detailed study of the asymptotic of static ends. Part I uses

techniques in conformal geometry and comparison geometry á la Bakry Émery, whereas

Part II uses techniques in standard comparison geometry and convergence and collapse

of Riemannian manifolds. Several sections inside each part are new and have their own

interest going behind the main purpose of these articles. To make it more clear, the

proof’s structure of the classification theorem is explained separately in subsection 1.1

below.

These articles continue in a sense our work on static solutions in [32], [36], [33], and [34].

In particular, in [33] and [34] it was shown that asymptotic flatness in Schwarzschild’s

uniqueness theorem can be replaced (still preserving uniqueness) by the metric complete-

ness of (Σ; g) plus the condition that, outside a compact set, Σ is diffeomorphic to R3

minus a ball. Without any topological hypothesis Schwarzschild’s uniqueness of course

fails. Thus [33] and [34] prove a classification theorem somehow in between Schwarzschild’s

uniqueness theorem and the classification Theorem 1.0.1. We do not know of any attempt

in the literature pointing to a general classification theorem of static vacuum black holes,

except, perhaps, a conjecture stated by Anderson in [4] (Conjecture 6.2), that appears

to be incomplete. Still, vacuum static solutions have been deeply investigated along the

years, so to conclude this introduction let us recall former developments that are related

technically or conceptually to this work. We point out connections when it is appropriate.

Vacuum static solutions with symmetries have been investigated since early days by

Schwarzschild [19], Levi-Civita [26], [25], Kasner [21], [20], Weyl [39] and many others,

and there is an advanced understanding of them (for a review see [18] and references

therein). Understanding static solutions without any a priori symmetry is vast more
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complex. Schwarzschild’s uniqueness theorem was perhaps the first general classification

theorem although it demands global assumptions. Israel’s seminal work required that

the lapse N can be chosen as a global coordinate and therefore required a connected

spherical horizon. This technical global condition on the lapse was removed later by

Müller, Robinson and Seifert in [15], but keeping the hypothesis of a connected horizon.

A simpler proof of their result was found later by Robinson by means of a remarkable

integral formula [37] (the proof used also previous work by Künzle [24]). Altogether, this

proved that the only asymptotically flat solution with a connected compact horizon is

Schwarzschild. The analysis of the geometry of the level sets of the lapse function that

play a fundamental role in [16] and [37] and in other works on static solutions as well, will

be also relevant here when we study Kasner asymptotic in subsection 4.2 of Part II. We

will follow however different techniques. Other proofs of the Israel-Robinson theorem were

given more recently by the author in [32] and by Agostiniani and Mazzieri in [1]. In [32]

techniques in comparison geometry were used and in [1] monotonic quantities along the

level sets of the lapse were introduced. Some of the arguments in this article will follow

similar ideas though technically distinct. The uniqueness of Schwarzschild even when

multiple horizons are in principle allowed was settled by Bunting/Masood-ul-Alam [9],

using the positive mass theorem.

As mentioned earlier, there seems to be no previous attempt in the literature to classify

static black holes data sets that are not asymptotically flat, except perhaps, the conjec-

ture in [4]. Connected to that work, Anderson performed a general study of static and

stationary solutions in [6] and [5] respectively, obtaining a fundamental decay estimate

for the curvature and the gradient of the logarithm of the lapse. Among other things, this

establishes the first uniqueness theorem of the Minkowski solution (as a static solution)

without assuming any type of asymptotic but just geodesic completeness. In [36] it was

shown that Anderson’s estimate holds too in any dimension by importing techniques in

comparison geometry á la Backry-Émery that were introduced by J. Case in [11] in a

context somehow related to that of static solutions. These new techniques in comparison

geometry a la Bakry-Emery play a fundamental role in this Part I as we will explain

below. The global study of the lapse function that we do is based largely upon these

ideas.

1.1 The proof’s structure of the classification theorem

The proof of the classification theorem is divided in three steps. Say (Σ; g,N) is a static

black hole data set. Then the proof requires proving that,

1. Σ has only one end.

2. The horizons are weakly outermost (see Definition 2.1.3).

3. The end is asymptotically flat or asymptotically Kasner.

Once this is achieved the proof of the classification theorem is direct from known results.

Indeed, assume 1-3 hold. If the data is asymptotically flat, it follows that it must be

Schwarzschild by the uniqueness theorem. If the data is asymptotically Kasner, then it is

deduced that it is either a Boost or is of M/KN type as follows. First, by step 2 the horizons

are weakly outermost, and thus by Schoen-Galloway [14] and Galloway [13], either the

data is a Boost or every horizon is a totally geodesic sphere. Let us assume the data is not

a Boost. If the Kasner asymptotic is different from B, then, as any constant x-coordinate

torus of any Kasner space different from B has positive outwards mean curvature (from
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(1.0.6) the mean curvature is θ = (α+β)/x with α+β > 0 if (α, β, γ) 6= (0, 0, 1)), we can

clearly find (using the fast decay into the Kasner space) a two-torus T separating Σ into

two manifolds, Σ1 and Σ2, with Σ2 diffeomorphic to [0,∞)×T and Σ1 a compact manifold

whose boundary consist of T , of positive outwards mean curvature, and a finite number

of spherical-horizons. It then follows from Galloway’s [12] that Σ1 is diffeomorphic to a

solid three-torus minus a finite number of open three-balls(6). Hence, Σ is diffeomorphic

to an open three-torus minus a finite number of open three-balls. This type of topology

and the Kasner asymptotic imply, by definition, that the data is of M/KN type. If the

Kasner asymptotic is B, then there are no obvious embedded tori T of positive outwards

mean curvature, but it will be proved that there are in fact tori T separating Σ in Σ1 and

Σ2 as before, but having area strictly less than the asymptotic area of the ‘transversal’

tori over the end. This is enough to repeat Galloway’s argument and conclude that indeed

Σ has the desired topology.

The main motivation of this article (Part I) is to prove the steps 1, 2. We do that in

section 3. The proof of step 3 is done in section 4 of Part II and requires using section 3 of

Part II at some particular instances. Part II uses Part I as follows. Until subsection 4.2.3,

it is either not used, or it is used only that if ∂Σ is compact, then the metric g is complete

at infinity. This is shown in Theorem 3.3.1 of subsection 3.3 of Part I. Subsection 4.2.4,

proving the Kasner asymptotic of static black hole ends with sub-cubic volume growth,

uses the completeness of g at infinity, and steps 1 and 2.

We pass now to discuss the structure of the different sections of this article and the

main points behind the various proofs.

1.2 The contents and the structure of this article (Part I)

Section 2 contains the background material, including notation and terminology. Subsec-

tion 2.1 contains the main definitions, as the one of static black hole data set or Kasner

asymptotic, and states again the classification theorem as Theorem 1.0.1. Subsection 2.2

defines annuli and partitions cuts, that are useful to study asymptotic properties.

The body of the article begins in section 3 where we discuss the properties of metrics

g conformally related to a static metric g by powers of the lapse, namely g = N−2εg

where ε is just a constant. The reasons why we study these conformal metrics are mainly

the following. First, we will use the metrics g = N−2εg with ε > 0 to accomplish step 1

(of subsection 1.1), that is, proving that static black hole data sets have only one end,

Theorem 3.4.2. Second, the proof of step 2, that the horizons of black hole data sets are

weakly outermost, requires proving in particular the metric completeness of g = N2g (i.e.

ε = −1) away from the boundary(7). This is done in Proposition 3.4.3 again using the

metrics g = N−2εg with ε in a certain range, Theorem 3.3.1. Third, in section 4 of Part

II, and because of its nice properties, we will use mainly g to study the asymptotic of

black hole data sets. Once more, it is necessary to grant that g is complete at infinity.

The results of Section 3, in particular the investigation of the conformal metrics g, rely

in casting the static equations in a framework á la Bakry-Émery, and then using some

(6)Galloway’s results precisely asserts that if a static data set (Σ;N, g) is such that Σ is compact and
∂Σ consists of a convex sphere plus h horizons, then Σ is diffeomorphic to a closed three-ball minus
h-open three-balls. If instead of having a convex spherical component of ∂Σ there is a convex toroidal
component, the one can use Galloway’s argumentation (without any substantial change) to show that Σ
is diffeomorphic to a closed solid three-torus minus a finite number of open three-balls.
(7)Namely (Σδ; g) is metrically complete where Σδ is Σ with a collar around the boundary removed.

Note that the metric g is singular at ∂Σ, so to speak about completeness we need to remove a collar
around ∂Σ.
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general properties of these spaces in a suitable way. Let us make this more precise. Using

f = − lnN instead of the variable N , the static equations read,

Ric1f = 0, ∆ff = 0 (1.2.1)

where for any α the α-Bakry-Émery Ricci tensor Ricαf is,

Ricαf := Ric+∇∇f − α∇f∇f, (1.2.2)

whereas the f -Laplacian ∆fφ of a function φ is,

∆fφ := ∆φ− 〈∇f,∇φ〉 (1.2.3)

If instead of g and f = − lnN we use the variables g = N−2εg and f = −(1 + ε) lnN ,

then the static equations are,

Ric
α

f = 0, ∆ff = 0 (1.2.4)

where α = (1− 2ε− ε2)/(1 + ε)2. The constant α is positive for ε in the range −1−
√

2 <

ε < −1 +
√

2. The equations (1.2.1) and (1.2.4) share the same structure (only the α is

different), and is the right way to present these equations to apply techniques á la Bakry-

Émery. Spaces having Ricαf ≥ 0 with α > 0, have been studied in recent years under

the context of comparison geometry (see [38] and references therein). The crucial fact is

that several well known results that hold for spaces with Ric ≥ 0 hold too for spaces with

Ricαf ≥ 0, α > 0, no matter the form of f . Thus, one can obtain geometric information

without assuming any a priori knowledge on N . In turn, that information is then used to

prove properties of N .

The detailed contents of Section 3 are as follows. Subsection 3.1 explains the structure

of the conformal equations, Proposition 3.1.1. Subsection 3.2 proves the crucial Lemma

3.2.3 (essentially due to Case) and from it it is obtained a generalised Anderson’s decay

estimate for the conformally related data, Lemma 3.2.4. These estimates are used in

subsection 3.3 to show the metric completeness of the manifolds (Σ; g = N−2εg) for

−1 −
√

2 < ε < −1 +
√

2 (provided ∂Σ is compact, N |Σ > 0 and (Σ; g) is metrically

complete), Theorem 3.3.1. Until here the results are on general non-necessarily black hole

data sets. Subsection 3.4 contains important applications to particular situations. First,

in subsection 3.4.1 remarks are pointed out on the conformal data (Σ;N−2εg) of the data

(Σ; g) of a static black hole data set, Proposition 3.4.1. It is particularly stressed here

that, when ε > 0 is small, the manifold (Σ;N−2εg) is still metrically complete, while

the boundary becomes strictly convex (indeed the boundary of Σ minus a small collar

around ∂Σ). Then, in subsection 3.4.2 it is proved using the previous subsection and

a generalised splitting theorem á la Backry-Émery that static black hole data sets have

only one end, Proposition 3.4.2. This accomplishes step 1. In subsection 3.4.3 it is proved

using the completeness at infinity of (Σ;N2g = g) that either black hole data sets are

boosts, or every horizon component is a sphere and weakly outermost. This accomplishes

step 2. Finally in subsection 3.4.4 it is proved that static isolated systems in GR are

asymptotically flat. This application is independent of the rest of the article.

Section 4 proves that the lapse on static black hole data sets is bounded away from

zero at infinity. This result is not used per-se in the proof of the classification theorem,

although it provides an alternative proof that the metric g on static black hole ends is

complete at infinity. The section 4 relies on techniques introduced in the previous section
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3 and in a sense can be seen as another application. It could be useful and interesting in

other contexts as well, for instance to investigate higher dimensional black hole data sets.
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of the Einstein Equations’ (Tübingen, 2016), to Piotr Chrusciel for inviting me to the

meeting in ‘Geometry and Relativity’ (Vienna, 2017) and to Helmut Friedrich for the very

kind invitation to visit the Albert Einstein Institute (Max Planck Institute, Potsdam,

2017). This work has been largely discussed at them. Finally my gratefulness to the

support received from the Mathethamical Center at the Universidad de la República,

Uruguay.

2 Background material

2.1 Static data sets and the main Theorem

Manifolds will always be smooth (C∞). Riemannian metrics as well as tensors will also

be smooth. If g is a Riemannian metric on a manifold Σ, then

dg(p, q) = inf
{
Lg(γpq) : γpq smooth curve joining p to q

}
, (2.1.1)

is a metric, where Lg is the notation we will use for length (when it is clear from the context

we will remove the sub-index g and write simply d and L). A Riemannian manifold (Σ; g)

is metrically complete if the metric space (Σ; d) is complete.

Definition 2.1.1 (Static data set). A static (vacuum) data set (Σ; g,N) consists of

an orientable three-manifold Σ, possibly with boundary, a Riemannian metric g, and a

function N , such that,

(i) N is strictly positive in the interior Σ◦(= Σ \ ∂Σ) of Σ,

(ii) (g,N) satisfy the vacuum static Einstein equations,

NRic = ∇∇N, ∆N = 0 (2.1.2)

The definition is quite general. Observe in particular that Σ and ∂Σ could be compact

or non-compact. To give an example, a data set (Σ; g,N) can be simply the data inherited

on any region of the Schwarzschild data. This flexibility in the definition of static data

set allows us to write statements with great generality.

A horizon is defined as usual.

Definition 2.1.2 (Horizons). Let (Σ; g,N) be a static vacuum data set. A horizon is a

connected component of ∂Σ where N is identically zero.

Note that the Definition 2.1.1 doesn’t require ∂Σ to be a horizon, though the data

sets that we classify in this article are those with ∂Σ consisting of a finite set of compact

horizons (Σ is a posteriori non compact). It is known that the norm |∇N | is constant on

any horizon and different from zero. It is called the surface gravity.

It is convenient to give a name to those spaces that are the final object of study of

this article. Naturally we will call them static black hole data sets.
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Definition 2.1.3 (Static black hole data sets). A metrically complete static data set

(Σ; g,N) with ∂Σ = {N = 0} and ∂Σ compact, is called a static black hole data set.

The following definition, taken from [13], recalls the notion of weakly outermost hori-

zon.

Definition 2.1.4 (Galloway, [13]). Let (Σ; g,N) be a static black hole data set. Then, a

horizon H is said weakly outermost if there are no embedded surfaces S homologous to H

having negative outwards mean curvature.

The following is the definition of Kasner asymptotic. It requires a decay into a back-

ground Kasner space faster than any inverse power of the distance. The definition follows

the intuitive notion and it is written in the coordinates of the background Kasner, very

much in the way AF is written in Schwarzschildian coordinates.

Definition 2.1.5 (Kasner asymptotic). A data set (Σ; g,N) is asymptotic to a Kasner

data (ΣK; gK, NK), ΣK = (0,∞) × T2, if for any m ≥ 1 and n ≥ 0 there is C > 0, a

bounded set K ⊂ Σ and a diffeomorphism into the image φ : Σ \K → ΣK such that,

|∂I(φ∗g)ij − ∂IgKij | ≤
C

xm
(2.1.3)

|∂I(φ∗N)− ∂INK| ≤ C

xm
(2.1.4)

for any multi-index I = (i1, i2, i3) with |I| = i1 + i2 + i3 ≤ n, where, if x, y and z are the

coordinates in the Kasner space, then ∂I = ∂i1x ∂
i2
y ∂

i3
z .

The next is the definition of data set of Myers/Korotkin-Nicolai type that we use.

Definition 2.1.6 (Black holes of M/KN type). A static-black hole data set (Σ; g,N) is

of Myers/Korotkin-Nicolai type if

1. ∂Σ consist of h ≥ 1 weakly outermost (topologically) spherical horizons,

2. Σ is diffeomorphic to a solid three-torus minus h-open three-balls,

3. the asymptotic is Kasner.

It is worth to restate now the main classification theorem that we shall prove

Theorem 2.1.7 (The classification Theorem). Any static black hole data set is either,

(I) a Schwarzschild black hole, or,

(II) a Boost, or,

(III) is of Myers/Korotkin-Nicolai type.

As an outcome of the proof (see Part II) it will be shown that the Kasner asymptotic

of the static black holes of type (III), that is of M/KN type, is different from the Kasner

A and C (of course, as explained earlier, it can’t be asymptotic to a Kasner with γ < 0

by the maximum principle). We leave it as an open problem to prove that the only static

black hole data sets asymptotic to B are the Boosts.

Problem 2.1.8. Prove that the Boosts are the only static black hole data sets asymptotic

to a Boost.
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It is also not known if the only static vacuum black holes of type (III) are the

Myers/Korotkin-Nicolai static black holes. We state this as an open problem.

Problem 2.1.9. Prove (or disprove) that the only static vacuum black holes of type (III)

are the Myers/Korotkin-Nicolai black holes.

On a large part of the article we will use the variables (g, U) with g = N2g and

U = lnN , instead of the natural variables (g,N). The data (Σ; g, U) is the harmonic

presentation of the data (Σ; g,N). The static equations in these variables are,

Ricg = 2∇U∇U, ∆gU = 0 (2.1.5)

and therefore the map U : (Σ; g)→ R is harmonic, (hence the name).

2.2 Metric balls, annuli and partitions

1 Metric balls. If C is a set and p a point then dg(C, p) = inf{dg(q, p) : q ∈ C}. Very

often we take C = ∂Σ. If C is a set and r > 0, then, define the open ball of ‘center’ C

and radius r as,

Bg(C, r) = {p ∈ Σ : dg(C, p) < r} (2.2.1)

2 Annuli. Let (Σ; g) be a metrically complete and non-compact Riemannian manifold

with non-empty boundary ∂Σ.

- Let 0 < a < b, then we define the open annulus Ag(a, b) as

Ag(a, b) = {p ∈ Σ : a < dg(p, ∂Σ) < b} (2.2.2)

We write just A(a, b) when the Riemannian metric g is clear from the context.

- If C is a connected set included in Ag(a, b), then we write,

Acg(C; a, b) (2.2.3)

to denote the connected component of Ag(a, b) containing C. The set C could be for

instance a point p in which case we write Acg(p; a, b).

3 Partitions cuts and end cuts. To understand the asymptotic geometry of data

sets, we will study the geometry of scaled annuli. Sometimes however it will be more

convenient and transparent to use certain three-sub-manifolds (i.e. regions with bound-

ary) instead of annuli. For this purpose we define partitions, partition cuts, end cuts,

and simple end cuts.

Assumption: Below we assume that (Σ; g) is a metrically complete and non-compact

Riemannian manifold with non-empty and compact boundary ∂Σ.

Definition 2.2.1 (Partitions). A set of connected compact three-submanifolds of Σ,

{Pmj,j+1, j = j0, j0 + 1, . . . ; m = 1, 2, . . . ,mj ≥ 1}, (2.2.4)

(j0 ≥ 0), is a partition if,

(a) Pmj,j+1 ⊂ A(21+2j , 24+2j) for every j and m.

(b) ∂Pmj,j+1 ⊂ (A(21+2j , 22+2j) ∪ A(23+2j , 24+2j)) for every j and m.
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j,j+1
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Σ

3+2j    4+2j

1+2j    2+2j

Figure 6: The figure shows the annuli A(21+2j , 22+2j),
A(23+2j , 24+2j) and the two components, for m = 1, 2 of Pmj,j+1.

(c) The union ∪j,mPmj,j+1 covers Σ \B(∂Σ, 22+2j0).

Figure 6 shows schematically a partition. The existence of partitions is done (succinctly)

as follows. Let j0 ≥ 0 and let j ≥ j0. Let f : Σ → [0,∞) be a (any) smooth function

such that f ≡ 1 on {p : d(p, ∂Σ) ≤ 21+2j} and f ≡ 0 on {p : d(p, ∂Σ) ≥ 22+2j},
(8). Let x be any regular value of f in (0, 1). For each j ≥ j0 let Qj be the compact

manifold obtained recursively as the union of the closure of the connected components

of Σ \ {f = x} containing at least a component of ∂Σ. Then the manifolds Pmj,j+1,

m = 1, . . . ,mj , are defined as the connected components of Qj+1 \ Q◦j .

We let ∂−Pmj,j+1 be the union of the connected components of ∂Pmj,j+1 contained in

A(21+2j , 22+2j). Similarly, we let ∂+Pmj,j+1 be the union of the connected components

of ∂Pmj,j+1 contained in A(23+2j , 24+2j).

Definition 2.2.2 (Partition cuts). If P is a partition, then for each j we let

{Sjk, k = 1, . . . , kj} (2.2.5)

be the set of connected components of the manifolds ∂−Pmj,j+1 for m = 1, . . . ,mj. The

set of surfaces {Sjk, j ≥ j0, . . . , k = 1, . . . , kj} is called a partition cut.

Definition 2.2.3 (End cuts). Say Σ has only one end. Then, a subset, {Sjkl , l =

1, . . . , lj} of a partition cut {Sjk, k = 1, . . . , kj} is called an end cut if when we remove

all the surfaces Sjkl , l = 1, . . . , lj, from Σ, then every connected component of ∂Σ

(8)Consider a partition of unity {χi} subordinate to a cover {Bi} where the neighbourhoods Bi are
small enough that if Bi ∩ {p : d(p, ∂Σ) ≤ 21+2j} 6= ∅ then Bi ∩ {p : d(p, ∂Σ) ≥ 22+2j} = ∅. Then define
f =

∑
i∈I χi, where i ∈ I iff Bi ∩ {p : d(p, ∂Σi) ≤ 21+2j} 6= ∅.
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belongs to a bounded component of the resulting manifold, whereas if we remove all but

one of the surfaces Sjkl , then at least one connected component of ∂Σ belongs to an

unbounded component of the resulting manifold.

If Σ has only one end, then one can always remove if necessary manifolds from a

partition cut {Sjk, k = 1, . . . , kj} to obtain an end cut.

Definition 2.2.4 (Simple end cuts). Say Σ has only one end. If an end cut {Sjkl , j ≥
j0, l = 1, . . . , lj} has lj = 1 for each j ≥ j0 then we say that the end is a simple end cut

and write simply {Sj}.

If {Sj} is a simple end cut and j0 ≤ j < j′ we let Uj,j′ be the compact manifold enclosed

by Sj and Sj′ . This notation will be used very often.

2.3 A Harnak-type of estimate for the Lapse

Let (Σ; g,N) be a metrically complete static data set with ∂Σ compact. In [6], Anderson

observed that, as the four-metric N2dt2 +g is Ricci-flat, then Liu’s ball-covering property

holds [27] (the compactness of ∂Σ is necessary here because Liu’s theorem is for manifolds

with non-negative Ricci curvature outside a compact set). Namely, for any b > a > δ > 0

there is n and r0 such that for any r ≥ r0 the annulus A(ra, rb) can be covered by at

most n balls of g-radius rδ centred in the same annulus. Hence any two points p and q

in a connected component of A(ra, rb) can be joined through a chain, say αpq, of at most

n + 2 radial geodesic segments of the balls of radius δ covering A(ra, rb). On the other

hand Anderson’s estimate (see subsection 3.2) implies that the g-gradient |∇ lnN |r is

bounded by C/r. Integrating |∇ lnN | along the curves αpq and using Anderson’s bound

we arrive at a relevant Harnak estimate controlling uniformly the quotients N(p)/N(q).

The estimate is due to Anderson and is summarised in the next Proposition (for further

details see, [35]).

Proposition 2.3.1. (Anderson, [6]) Let (Σ; g,N) be a metrically complete static data set

with ∂Σ compact and let 0 < a < b. Then, there is r0 and η > 0, such that for any r > r0

and for any set Z included in a connected component of A(a, b) we have,

max{N(p) : p ∈ Z} ≤ ηmin{N(p) : p ∈ Z} (2.3.1)

3 Conformal transformations by powers of the lapse

In this section we study conformal transformations of static metrics by powers of the lapse

from the point of view á la Backry-Émery. The contents are the following.

Subsection 3.1 explains the structure of the conformal equations, Proposition 3.1.1.

Subsection 3.2 proves Lemma 3.2.3 and from it its is obtained a generalised Anderson’s

decay estimate for the conformally related data, Lemma 3.2.4. These estimates are used

in subsection 3.3 to show the metric completeness of the manifolds (Σ; g = N−2εg) for

−1 −
√

2 < ε < −1 +
√

2 (provided ∂Σ is compact and N |Σ > 0 and (Σ; g) is metrically

complete), Theorem 3.3.1. Subsection 3.4 contains important applications. First, in sub-

section 3.4.1 a few important remarks are pointed out on the conformal data (Σ;N−2εg)

of a static data (Σ; g), Proposition 3.4.1. It is particularly stressed here that when ε > 0

is small, the manifold (Σ;N−2εg) is still metrically complete, while the boundary becomes

strictly convex (indeed the boundary of Σ minus a small collar around ∂Σ). In subsection
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3.4.2 it is proved using the previous subsection and a generalised splitting theorem á la

Backry-Émery that static black hole data sets have only one end, Proposition 3.4.2. In

subsection 3.4.3 it is proved using the completeness at infinity of (Σ;N2g = g) that either

black holes data sets are boosts, or every horizon component is a sphere and is weakly

outermost. Finally in subsection 3.4.4 it is proved that static isolated systems in GR are

asymptotically flat. This application is independent of the rest of the article.

3.1 Conformal metrics, the Bakry-Émery Ricci tensor and the static equa-

tions

Given a Riemannian metric g, function f and constant α, the α-Bakry-Émery Ricci tensor

Ricαf is defined as (see [38]; note that [38] uses the notation 1/N instead of α),

Ricαf := Ric+∇∇f − α∇f∇f, (3.1.1)

where the tensors Ric and ∇ on the right hand side are with respect to g. The f -Laplacian

∆f acting on a function φ is defined as

∆fφ := ∆φ− 〈∇f,∇φ〉 (3.1.2)

where again ∆ on the right hand side are with respect to g and 〈 , 〉 = g( , ). Now observe

that letting f := − lnN , the static Einstein equations (2.1.2) read

Ric = −∇∇f +∇f∇f, ∆f − 〈∇f,∇f〉 = 0 (3.1.3)

In the notation above, this is nothing else than to say that

Ricαf = 0, ∆ff = 0 (3.1.4)

with α = 1 and f = − lnN . It is an important fact that the structure of these equations

is preserved along a one parameter family of conformal transformations. The following

calculation explains this fact.

Proposition 3.1.1. Let (Σ; g,N) be a static data set. Fixed ε define

g = N−2εg. (3.1.5)

Then,

Ric
α

f = 0, ∆ff = 0 (3.1.6)

where α = (1− 2ε− ε2)/(1 + ε)2 and f = −(1 + ε) lnN .

We used the notation Ric for Ricg and ∆ for ∆g.

Note that when ε = −1, we obtain α = +∞, f = 0 and Ric
α

f = Ric− 2∇ lnN∇ lnN .

In particular we recover Ric = 2∇ lnN∇ lnN .

Proof. We prove first ∆ff = 0. Recall from standard formulae that if g = e2ψg then for

every φ we have

e−2ψ∆φ = ∆φ− 〈∇φ,∇ψ〉g (3.1.7)

Making φ = lnN and eψ = N−ε, the left hand side of (3.1.7) is equal to −|∇ lnN |2g
because ∆ lnN = −|∇ lnN |2g. Thus (3.1.7) is ∆ lnN − 〈∇ lnN,−(1 + ε)∇ lnN〉g = 0 as

wished.
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Let us prove now Ric
α

f = 0. Recall first that if g = e2ψg then

Ric = Ric− (∇∇ψ −∇ψ∇ψ)− (∆ψ + |∇ψ|2)g (3.1.8)

Choosing ψ = −ε lnN and replacing Ric by (3.1.3) then gives

Ric = (1 + ε)∇∇ lnN + (1 + ε2)∇ lnN∇ lnN − (ε+ ε2)|∇ lnN |2g (3.1.9)

Use now the usual general formula

∇iVj = ∇iVj −
[
Vj∇iψ + Vi∇jψ − (V k∇kψ)gij

]
(3.1.10)

with V j = ∇j lnN and with ψ = −ε lnN , to obtain

∇∇ lnN = ∇∇ lnN − ε
[
2∇ lnN∇ lnN − |∇ lnN |2g

]
(3.1.11)

Plugging (3.1.11) in (3.1.9) gives

Ric = (1 + ε)∇∇ lnN + (1− 2ε− ε2)∇ lnN∇ lnN (3.1.12)

which is Ric
α

f = 0 as claimed.

3.2 Conformal metrics and Anderson’s curvature decay

In [5] Anderson proved the following fundamental quadratic curvature decay for static

data sets.

Lemma 3.2.1 (Anderson, [5]). There is a constant η > 0 such that for any metrically

complete static data set (Σ; g,N) we have,

|Ric|(p) ≤ η

d2(p, ∂Σ)
, |∇ lnN |2(p) ≤ η

d2(p, ∂Σ)
, (3.2.1)

for any p ∈ Σ◦.

This decay estimate is linked to a similar one for the metric g = N2g that we state

below. It was proved also by Anderson in [5]. We require N > 0 everywhere and not only

on Σ◦, to guarantee that g is regular on ∂Σ. Note that imposing N > 0 on Σ, does not

make (Σ; g = N2g) automatically metrically complete. Indeed if Σ is non-compact then

N could tend to zero over a divergent sequence of points and this may cause the metric

incompleteness of the space (Σ; g).

Lemma 3.2.2 (Anderson [5]). There is a constant η > 0 such that, for any static data

set (Σ; g,N) with N > 0 and for which (Σ; g = N2g) is metrically complete, we have

|Ricg|g(p) ≤ η

d2
g(p, ∂Σ)

, |∇ lnN |2g(p) ≤ η

d2
g(p, ∂Σ)

(3.2.2)

for any p ∈ Σ◦.

The estimates (3.2.1) and (3.2.2) are particular instances of a whole family of estimates

for the conformal metrics g = N−2εg, with ε ranging in the interval (−1−
√

2,−1 +
√

2)

which is the interval where the polynomial 1− 2ε− ε2 is positive. We prove the estimates

below using the results in Section 3.1. As a byproduct we provide concise proofs of

Lemmas 3.2.1 and 3.2.2. This will be the goal of this section.
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We start with a lemma that to our knowledge is essentially due to J. Case [11] (though

similar techniques are well known too at least in the theory of minimal surfaces). This

lemma was first presented in [36], but due to its importance we prove it again here.

Lemma 3.2.3. Let (Σ, g) be a metrically complete Riemannian three-manifold with Ricαf ≥
0 for some function f and constant α > 0. Let φ be a non-negative function such that

∆fφ ≥ cφ2 (3.2.3)

for some constant c > 0. Then, for any p ∈ Σ◦ we have

φ(p) ≤ η

d2(p, ∂Σ)
(3.2.4)

where η = (36 + 4/α)/c.

Observe that the lemma applies too to manifolds with Ric ≥ 0 as this corresponds to

the case Ricαf=0 ≥ 0 for any α > 0.

Proof. For any function χ the following general formula holds

∆f (χφ) = φ(∆fχ) + 2〈∇χ,∇φ〉+ χ∆fφ (3.2.5)

Thus, if χ ≥ 0 and if q is a local maximum of χφ on Σ◦, we have

0 ≥
[
∆f (χφ)

]∣∣∣∣
q

≥
[
φ∆fχ− 2

|∇χ|2

χ
φ+ cχφ2

]∣∣∣∣
q

(3.2.6)

where to obtain the second inequality we used (3.2.3). Let rp = d(p, ∂Σ). On B(p, rp) let

the function χ(x) be χ(x) = (r2
p − r(x)2)2. To simplify notation make r = r(x) = d(x, p).

Let q be a point in the closure of B(p, rp) where the maximum of χφ is achieved. If

φ(q) = 0, then φ = 0 and (3.2.4) holds for any η > 0. So let us assume that φ(q) > 0. In

particular p belongs to the interior of B(p, rp). By (3.2.6) we have

cr4
pφ(p) ≤ c(χφ)(q) ≤

[
2
|∇χ|2

χ
−∆fχ

]∣∣∣∣
q

(3.2.7)

=

[
4(r2

p − r2)r∆fr + 4r2
p + 20r2

]∣∣∣∣
q

(3.2.8)

But if Ricαf ≥ 0 then ∆fr ≤ (3 + 1/α)/r, (see [38] Theorem A.1; On non-smooth points

of r this equations holds in the barrier sense(9)). Using this in (3.2.7) and after a simple

computation we deduce,

φ(p) ≤ (4(3 + 1/α) + 24)

cr2
p

, (3.2.9)

which is (3.2.4).

Let us see now an application of the previous Lemma. Let (Σ; g,N) be a static data

with N > 0. Let ε be a number in (−1 −
√

2,−1 +
√

2) and assume that the space (Σ;

g = N−2εg) is metrically complete. We claim that there is η(ε) > 0, such that for all

p ∈ Σ◦ we have

|∇ lnN |2g(p) ≤
η(ε)

d2
g(p, ∂Σ)

(3.2.10)

(9)This is an important property as it allows us to make analysis as if r were a smooth function, see [30].
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Let us prove the claim. Assume first ε 6= −1. From Lemma 3.2.3 we know that Ric
α

f = 0

where f = −(1 + ε) lnN and where α = (1 − 2ε − ε2)/(1 + ε)2. The factor (1 − 2ε − ε2)

is greater than zero by the assumption on the range of ε. Now use the general formula

(see [11])

1

2
∆f |∇φ|2g = |∇∇φ|2g + 〈∇φ,∇(∆fφ)〉g +Ric

α

f (∇φ,∇φ) + α〈∇f,∇φ〉2g (3.2.11)

with φ = lnN , together with Ric
α

f = 0, to obtain

∆f |∇ lnN |2g ≥ 2(1− 2ε− ε2)|∇ lnN |4g (3.2.12)

and thus (3.2.10) from Lemma 3.2.3. When ε = −1 then Ric
α

f=0 ≥ 0 for any α > 0 and

∆f=0|∇ lnN |2g ≥ 4|∇ lnN |4g (3.2.13)

The claim again follows from Lemma 3.2.3.

Note that Lemma 3.2.3 provides the following explicit expression for η(ε),

η(ε) =
1

2(1− 2ε− ε2)

[
36 +

4(1 + ε)2

(1− 2ε− ε2)

]
(3.2.14)

What we just showed is a part of the generalised Anderson’s quadratic curvature decay

mentioned earlier, that we now state and prove.

Lemma 3.2.4. Let ε be a number in the interval (−1−
√

2,−1 +
√

2). Then there is η(ε)

such that for any static data set (Σ; g,N) with N > 0 and for which (Σ; g = N−2εg) is

metrically complete, we have,

|Ric|g(p) ≤
η(ε)

d2
g(p, ∂Σ)

, |∇ lnN |2g(p) ≤
η(ε)

d2
g(p, ∂Σ)

, (3.2.15)

for any p ∈ Σ◦.

Proof. We have already shown the second estimate of (3.2.15). If ∂Σ = ∅ then N is

constant and g is flat. So let us assume that ∂Σ 6= ∅. Let p ∈ Σ◦. By scaling we can

assume without loss of generality that N(p) = 1 and dp = dg(p, ∂Σ) = 1. In this setup,

we need to prove that

|Ric|g(p) ≤ c0(ε), (3.2.16)

for c0 independent of the data.

The second estimate of (3.2.15) yields,

|∇ lnN |g(x) ≤ c1, (3.2.17)

for all x ∈ Bg(p, 1/2) and where c1 = c1(ε) is independent of the data. Therefore, as,

Ric = (1 + ε)∇∇ lnN + (1− 2ε− ε2)∇ lnN∇ lnN, (3.2.18)

then to prove (3.2.16) it is enough to prove

|∇∇ lnN |g(p) ≤ c′0(ε) (3.2.19)

for a c′0(ε) independent of the data.
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Let γ(s) be a geodesic segment joining p to x. Then we can write,

∣∣ ln N(x)

N(p)

∣∣ =
∣∣ ∫ ∇γ′ lnNds

∣∣ ≤ ∫ |∇ lnN |gds ≤ c1/2 (3.2.20)

where we used (3.2.17). Because N(p) = 1, this inequality gives,

0 < c2 ≤ N(x) ≤ c3 <∞ (3.2.21)

for all x ∈ Bg(p, 1/2) and where c2 = c2(ε) and c3 = c3(ε).

Let g = N2+2εg = N2g. If ε ≥ −1 let r0 = c1+ε
2 , whereas if ε < −1 let r0 = c1+ε

3 .

Then, clearly Bg(p, r0) ⊂ Bg(p, 1/2). Moreover (3.2.17) and (3.2.21) show that for all

x ∈ Bg(p, r0) we have,

|∇ lnN |g(x) ≤ c4(ε), (3.2.22)

As Ricg = 2∇ lnN∇ lnN , we deduce that

|Ricg|g(x) ≤ c5(ε) (3.2.23)

for all x ∈ Bg(p, r0). In dimension three the Ricci tensor determines the Riemann tensor,

so,

|Rmg|g(x) ≤ c6(ε) (3.2.24)

Hence, by standard arguments, there is r1(ε) ≤ r0 such that the exponential map exp :

BTg (p, r1) → Σ, is a diffeomorphism into the image, (BTg (p, r1) is a ball in TpΣ). Let g̃

be the lift of g to BTg (p, r1) by exp−1. We still have the bound (3.2.24) for g̃ and as the

injectivity radius injg(p) is bounded from below by r1, then the harmonic radius ih(p),

which controls the geometry in C2 (see [30]), is bounded from below by r2(ε) ≤ r1. As

∆g̃ lnN = 0, then standard elliptic estimates give

|∇g̃∇ lnN |g̃(p) ≤ c7(ε), (3.2.25)

where ∇g̃ is the covariant derivative of g̃. Finally, (3.2.21), (3.2.22), (3.2.25) and the

general formula,

∇∇ lnN = ∇g∇ lnN − (1 + ε)
[
2∇ lnN∇ lnN − |∇ lnN |2gg

]
(3.2.26)

provide the required bound (3.2.19). This completes the proof.

It is easy to check using elliptic estimates that the proof of the Lemma (3.2.4) leads

also to the estimates

|∇(k)
Ric|g(p) ≤

ηk(ε)

d2+k
g (p, ∂Σ)

, |∇(k)∇ lnN |2g(p) ≤
ηk(ε)

d2+2k
g (p, ∂Σ)

(3.2.27)

for every k ≥ 1, where ∇(k)
is ∇ applied k-times and where the positive constants η(ε),

η1(ε), η2(ε), η3(ε), . . . are independent of the data set.

3.3 Conformal metrics and metric completeness

In this section we aim to prove that metric completeness of data sets (with N > 0 and

∂Σ compact) imply the metric completeness of the conformal spaces (Σ; g = N−2εg) for
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any ε in the range (−1 −
√

2,−1 +
√

2). Note that until now, when it was necessary we

have been including the completeness of the metrics g as a hypothesis.

Theorem 3.3.1. Let ε be a number in the interval (−1−
√

2,−1 +
√

2). Let (Σ; g,N) be

a metrically complete static data set with N > 0 and ∂Σ compact. Then (Σ; g = N−2εg)

is metrically complete.

We start proving a corollary to Lemma 3.2.4 that estimates N .

Corollary 3.3.2. (to Lemma 3.2.4) Let ε be a number in the interval (−1−
√

2,−1+
√

2).

Let (Σ; g,N) be a static data set with N > 0 and ∂Σ compact, and for which (Σ, g =

N−2εg) is metrically complete. Then, there is c > 0 (depending on the data) such that

1

c(1 + dg(p, ∂Σ))
√
η
≤ N(p) ≤ c(1 + dg(p, ∂Σ))

√
η (3.3.1)

for any p ∈ Σ◦, where η = η(ε) is the coefficient in the decay estimate (3.2.15) of Lemma

3.2.4.

Proof. Let p ∈ Σ such that dp := dg(p, ∂Σ) ≥ 1 (if it exists). Let γ(s) be a g-

geodesic segment joining ∂Σ to p and realising the g-distance between them (in particular

N(γ(dp)) = N(p)). Then we can write∣∣∣∣ ln N(γ(dp))

N(γ(1))

∣∣∣∣ =

∣∣∣∣ ∫ dp

1

∇γ′ lnNds

∣∣∣∣ ≤ ∫ dp

1

∣∣∇ lnN
∣∣ds ≤√η(ε) ln dp (3.3.2)

where to obtain the last inequality we have used (3.2.10). Therefore,

N(p) ≤ N(γ(1))d
√
η

p and N(p) ≥ N(γ(1))/d
√
η

p (3.3.3)

Thus,

md
√
η

p ≥ N(p) ≥ m/d
√
η

p (3.3.4)

where m = max{N(q) : dg(q, ∂Σ) = 1} and m = min{N(q) : dg(q, ∂Σ)}. This clearly

implies (3.3.1). Obtaining (3.3.1) for all p ∈ Σ◦, namely even for those with dp ≤ 1, is

direct due to the compactness of ∂Σ.

Proposition 3.3.3. Let ε be a number in the interval (−1−
√

2,−1 +
√

2). Let (Σ; g,N)

be a static data set with N > 0 and for which (Σ, g = N−2εg) is metrically complete.

Then, for any ζ such that |ζ| ≤ 1/(2
√
η), the space (Σ;N2ζg) is metrically complete,

where η = η(ε) is the coefficient in (3.2.15).

Proof. Let us assume that Σ is non-compact otherwise there is nothing to prove. Let

ĝ = N2ζg. To prove that (Σ; ĝ) is complete, we need to show that the following holds:

for any sequence of points pi whose g-distance to ∂Σ diverges, then the ĝ-distance to ∂Σ

also diverges. Equivalently, we need to prove that for any sequence of curves αi starting

at ∂Σ and ending at pi we have ∫ si

0

Nζ(αi(s))ds −→∞ (3.3.5)

where s is the g-arc length of αi counting from ∂Σ.
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From (3.3.1) we get,

Nζ(p) ≥ c−|ζ|

(1 + dg(p, ∂Σ))|ζ|
√
η

(3.3.6)

for all p. But, dg(αi(s), ∂Σ) ≤ s and |ζ| ≤ 1/(2
√
η), so we deduce,

Nζ(αi(s)) ≥
c−|ζ|

(1 + s)1/2
(3.3.7)

Thus, ∫ si

0

Nζ(αi(s))ds ≥
∫ si

0

c−|ζ|

(1 + s)1/2
ds −→∞ (3.3.8)

as si →∞ as wished.

We prove now Theorem 3.3.1.

Proof of Theorem 3.3.1. Let ε ∈ (−1 −
√

2,−1 +
√

2). Assume ε 6= 0 otherwise there is

nothing to prove. Let n > 0 be an integer such that for any i = 0, 1, . . . , n− 1,∣∣ ε
n

∣∣ ≤ 1

2
√
η(iε/n)

(3.3.9)

where η is the coefficient in (3.2.15). According to Proposition 3.3.3, the condition (3.3.9)

says that if gi = N−2(iε/n)g is complete then so is gi+1 = N−2ε/ngi = N−2(i+1)ε/ng for

any i = 0, 1, . . . , n−1. Therefore, as g is complete, then so are g1, g2, g3, until gn = N−2εg

as wished.

3.4 Applications

3.4.1 Conformal transformations of black hole metrics

Let (Σ; g,N) be a static black hole data set. We denote by Σδ the manifold resulting after

removing from Σ the g-tubular neighbourhood of ∂Σ and radius δ, i.e. Σδ = Σ\B(∂Σ, δ).

Let δ0 be small enough that ∂Σδ is always smooth and isotopic to ∂Σ for any δ ≤ δ0.

Given ε > 0 let g = N−2εg. Let δ > 0 such that δ < δ0. The second fundamental form

Θ of ∂Σδ, (with respect to g and with respect to the inward normal to Σδ), is

Θ = N εΘ− ε∇nN
N1−ε g (3.4.1)

where Θ is the second fundamental form of ∂Σδ with respect to g and n is the inward

g-unit normal. If we let δ → 0, the function ∇nN |∂Σδ converges (on each connected

component) to a positive constant (the surface gravity) while N |∂Σδ converges to zero.

Hence if δ is small enough, the second term on the right hand side of (3.4.1) dominates

over the first, and the boundary ∂Σδ is strictly convex with respect to g.

Combining this discussion with Theorem 3.3.1 we deduce the following Proposition

that was proved for the first time in [35] and that will be used fundamentally in the next

section.

Proposition 3.4.1. Let (Σ; g,N) be a static black hole data set. Then, for every 0 < ε <

−1 +
√

2 there is 0 < δ < δ0 such that (Σδ; g = N−2εg) is metrically complete and ∂Σδ is

strictly convex (with respect to g and with respect to the inward normal).
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The Riemannian spaces (Σδ; g) have a metric, as discussed earlier, that we will denote

by dδg. The strict convexity of the boundaries as well as the metric completeness of the

spaces (Σδ; g) imply two basic, albeit important, geometric facts:

(i) The distance dδg(p, q) between two points in Σδ is always realised by the length of

a geodesic segment joining p to q, and disjoint from ∂Σδ except, possibly, at the

end-points p and q.

(ii) Given a curve I embedded in Σδ and with end-points p and q, there is always a

geodesic segment minimising length in the class of curves embedded in Σδ, isotopic

to I and having the same end-points. The minimising segment is disjoint from ∂Σδ
except, possibly, at the end points p and q.

These properties allow us to make analysis as if the manifold Σδ were in practice

boundary-less, and thus to import a series of results from comparison geometry, as devel-

oped for instance in [38], without worrying about the existence of the boundary.

3.4.2 The structure of infinity

The following proposition shows that static black hole data sets have only one end and

moreover admit simple end cuts.

Proposition 3.4.2. Let (Σ; g,N) be a static black hole data set. Then Σ has only one

end. Moreover (Σ; g) admits a simple end cut.

Proof. We work with the manifolds (Σδ, g = N−2εg) from Proposition 3.4.1, with 0 < ε <

−1+
√

2 and δ = δ(ε) ≤ δ0. We argue first in a fixed (Σδ; g) and then let ε→ 0. If iΣ > 1,

i.e. if Σ has at least two ends, then Σδ has also at least two ends. Hence Σδ, (which has

convex boundary) contains a line diverging through two of them. The presence of a line

is relevant because, even having ∂Σδ 6= ∅, the geometry of (Σδ; g,N) is such (recall the

discussion in Section 3.4.1) that the Splitting Theorem as proved in [38] applies (10). More

precisely, repeating line by line the proof of Theorem 6.1 in [38], one concludes that (see

comments below after (a), (b) and (c)),

(a) there is a smooth Busemann function b+ε , (b+ in the notation of [38]), with

|∇b+ε |g = 1 and whose level sets are totally geodesic,

(b) the Ricci tensor is zero in the normal direction to the level sets, that is

Ric(∇b+ε ,−) = 0, (3.4.2)

(c) N is constant in the normal directions to the level sets, that is 〈∇b+ε ,∇N〉g = 0.

The item (a) is what is proved in Theorem 6.1 of [38] and requires no comment. The

items (b) and (c) follow instead from formula (6.11) in [38] after recalling that in our case

we have Ric
0

f = α∇f∇f , with f = −(1 + ε) lnN and α > 0.

Of course (a) implies that g locally splits. Namely, defining a coordinate x by x = b+,

one can locally write g = dx2 +h, where h is the metric inherited from g on the level sets

of x, that (under a natural identification) does not depend on x.

(10)Theorem 6.1 in [38] is stated for spaces with Ric0f ≥ 0 and f bounded. The boundedness of f is

required to have a Laplacian comparison for distance functions (§ [38] Theorem 1.1). No such condition

on f (hence on N , because f = −(1 + ε) lnN) is required in our case, as we have Ric
0
f = α∇f∇f with

α > 0 and a Laplacian comparison holds without further assumptions (§ [38], Theorem A.1).

23



The conclusions (a), (b) and (c) imply a contradiction as follows. Fix a point p in

Σ◦δ0 and take a sequence εi → 0. Then, in a small but fixed neighbourhood U of p, the

sequence b+εi sub-converges to a limit function b+0 , with the same properties (a), (b), (c) as

each b+εi but now on (U ; g,N), (11). Hence (U ; g) also splits. We claim that the Gaussian

curvature κ of the level sets of b+0 in U is zero. Indeed, as: (i) the level sets of b+0 are

totally geodesic by (a), (ii) Ric(∇b+0 ,∇b
+
0 ) = 0 by (b), and (iii) the scalar curvature R

of g is zero by the static equations, then the Gauss-Codazzy equations yield κ = 0. As

(U ; g) is flat then the static solution is flat everywhere by analyticity. The only flat static

black hole data set with compact boundary is the Boost. As Boosts have only one end

we reach a contradiction. Hence iΣ = 1.

Let us prove now that (Σ; g) admits simple cuts. Let {Sjk, j = 0, 1, 2, . . . , k =

1, . . . , kj} be an end cut. Suppose that kj > 1 for some j ≥ 0. If we cut Σ along

Sj1 we obtain a connected manifold, say Σ′, with two new boundary components, say S ′1
and S ′2, both of which are copies of Sj1 (if cutting Σ along Sj1 results in two connected

components then kj = 1 because of how simple cuts are constructed). Consider another

copy of Σ′, denoted by Σ′′ and denote the corresponding new boundary components as S ′′1
and S ′′2 . By gluing S ′1 to S ′′2 and S ′2 to S ′′1 we obtain a static solution (a double cover of

the original) with two ends, and one can proceed as earlier to obtain a contradiction.

3.4.3 Horizons’s types and properties

The following Proposition, about the structure of horizons, uses the completeness at

infinity of g and a pair of results due to Galloway [13], [12].

Proposition 3.4.3. Let (Σ; g,N) be a static black hole data set. Then, either

(i) (Σ; g,N) is a Boost and therefore ∂Σ is a totally geodesic flat torus, or,

(ii) every component of ∂Σ is a totally geodesic, weakly outermost, minimal sphere.

Proof. The idea is to prove that every component H of ∂Σ is a weakly outermost. Then,

it is direct from Theorem 1.1 and 1.2 in [13] that either H is a sphere or is a torus and

if it is a torus then the whole space is a Boost. So let us prove that every component is

weakly outermost.

Let {H1, . . . ,Hh}, h ≥ 1, be the set of horizons, i.e. the connected components of ∂Σ.

Assume that there is an embedded orientable surface S, homologous to one of the H’s,

(say H1), and with outer-mean curvature θS strictly negative. For reference below define

the negative constant c as

c = sup

{
θS(q)

N(q)
: q ∈ S

}
(3.4.3)

Let {Sj , j = j0, j1, . . .} be a simple end cut of (Σ; g) (Proposition 3.4.2). For each j,

let Ω(∂Σ,Sj) be the closure of the connected component of Σ \ Sj containing ∂Σ. Let

U be the closed region enclosed by H1 and S and assume that j0 is large enough that

Sj ∩ U = ∅ for all j ≥ j0. For every j ≥ j0 let Mj be the closed region enclosed by

S, H2, . . . ,Hh and Sj , that is Mj = Ω(∂Σ,Sj) \ U◦. Finally let

M̂j =Mj \ (H2 ∪ . . . ∪Hh) (3.4.4)

(11)The existence of the limit is easy to see because |∇b+ε |g = 1 and the level sets of b+ε are totally

geodesic, (for every ε). At every point the level set is just defined by geodesics perpendicular to ∇b+ε
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and note that now ∂M̂j = S ∪ Sj . On M̂j consider the optical metric g = N−2g.

The Riemannian space (M̂j ; g) is metrically complete, (roughly speaking the horizons

Hi, i ≥ 2 have been blown to infinity).

Now, for every j ≥ j0 let γj be the g-geodesic segment inside M̂j , realising the g-

distance between S and Sj . The segments γj are perpendicular to S. Also, as they are

length-minimising the g-expansion θ of the congruence of g-geodesics emanating perpen-

dicularly from S, remains finite all along γj . Let s ∈ [0, sj ] be the g-arc-length of γj
measured from S. Note that s is not the arc-length with respect to g, that would be

natural. We are going to use this parameterisation of γj below. Observe that sj →∞ as

j →∞.

Along γj(s) let

F (s) = θ(γj(s)) +
2

N2(γj(s))

dN(γj(s))

ds
(3.4.5)

Then, as shown by Galloway [12] (see also [28]), the function F satisfies the following

differential inequality
dF

ds
≤ −N

2
F 2 (3.4.6)

Now, a simple computation shows that F (0) = θ(0)/N(0) ≤ c < 0. But from (3.4.5) it is

easily deduced that if ∫ sj

0

N(γj(s))ds > −
2

c
(3.4.7)

then there is s∗ ∈ (0, sj) such that F (s∗) = −∞, thus θ(s∗) = −∞ and the γj would not be

g-length minimising. Thus, a contradiction is reached if we prove that
∫ sj

0
N(γj(s))ds→

∞. But his follows from the completeness of the metric g = N2g from Theorem 3.3.1.

3.4.4 The asymptotic of isolated systems.

Theorem 3.3.1 shows that if N > 0 and ∂Σ is compact then (Σ; g = N2g) is metrically

complete. On the other hand it was proved in [33], [34], that if Σ is diffeomorphic to R3

minus a ball and g is complete then the space (Σ; g,N) is asymptotically flat. Combining

these two results we obtain that: if Σ minus a compact set K is diffeomorphic to R3

minus a closed ball then the data set (Σ; g,N) is asymptotically flat. Asymptotic flatness

is thus characterised only by the asymptotic topology of Σ.

This fact has physically interesting consequences. Following physical intuition define

a static isolated system as a static space-time (R × Σ;−N2dt2 + g), (∂Σ = ∅ and (Σ; g)

metrically complete), for which there is a set K ⊂ Σ such that Σ \ K is diffeomorphic

to R3 minus a closed ball and such that the region R × (Σ \K) is vacuum (i.e. matter

lies only in R ×K). The most obvious example of static isolated system one can think

of is that of body like a planet or a star. Then, using what we explained in the previous

paragraph, static isolated systems are always asymptotically flat. This conclusion was

reached in [35] but requiring as part of the definition of static isolated system that the

space-time is null geodesically complete at infinity. What we are showing here is that

this condition is indeed unnecessary and the completeness of the hypersurface (Σ; g) is

sufficient.
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4 Global properties of the lapse

We aim to prove that the lapse N of any black hole data set is bounded away from zero

at infinity, namely that there is c > 0 such that for any divergent sequence pn we have

limN(pn) ≥ c.

Theorem 4.0.1. Let (Σ; g,N) be a static black hole data set. Then, N is bounded away

from zero at infinity.

The proof of this theorem will follow after some propositions that we state and prove

below.

Proposition 4.0.2. Let (Σδ; g) be a space as in Proposition 3.4.1, with 0 < ε < 1/4. Let

p and q be two different points in Σδ and let γ : [0, L]→ Σδ be a g-geodesic (parameterised

with the arc-length s) starting at p and ending at q and minimising the g-length in its

own isotopy class (with fixed end points). Then, for any 0 < s < t < L we have

−

√
50

[
(t− s)
s

+
(t− s)
L− t

]
≤ ln

[
N(γ(t))

N(γ(s))

]
≤

√
50

[
(t− s)
s

+
(t− s)
L− t

]
(4.0.1)

Note that in this statement, s, t− s and L− t are, respectively, the g-distances along

γ between the pairs of points (p, γ(s)), (γ(s), γ(t)) and (γ(t), q).

Proof. Let f and α be as in Proposition 3.1.1. Let γ, s and t be as in the hypothesis. Let

θ(s) be the expansion along γ of the congruence of geodesics emanating from p, where s

is the arc-length. From (3.1.6) we can write

Ric
α/2

f = Ric+∇∇f − α

2
∇f∇f =

α

2
∇f∇f (4.0.2)

where 0 < α because 0 < ε < 1/4 < −1 +
√

2. Let θf = θ − f ′ where f ′ = df(γ(s))/ds.

As shown in [38], (4.0.2) implies that,

θ′f ≤ −
1

2/α+ 3
θ2
f −

α

2
(f ′)2 = −a2θ2

f − b2
(
N ′

N

)2

(4.0.3)

where ′ = d/ds and

a2 =
1

2/α+ ε
, and b2 =

(1 + ε)2α

2
(4.0.4)

From the differential inequality θ′f ≤ −a2θ2
f we deduce,

θf (s) ≤ 1

a2s
(4.0.5)

and also we deduce

θf (t) ≥ − 1

a2(L− t)
(4.0.6)

because if θf (s) < − 1
L−t then there exists r, with t < r < L, for which θf (r) = −∞, and

therefore θ(r) = −∞, contradicting that γ is length minimising within its isotopy class.

Hence, we can use (4.0.5) and (4.0.6) and θ′f ≤ −b2(N ′/N)2 to deduce∣∣∣∣ ln N(t)

N(s)

∣∣∣∣2 =

∣∣∣∣ ∫ t

s

N ′

N
ds

∣∣∣∣2 ≤ (t− s)
∫ t

s

(
N ′

N

)2

ds (4.0.7)
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≤ (t− s) 1

b2
(θf (s)− θf (t)) ≤ (t− s)

a2b2

(
1

s
+

1

L− t

)
(4.0.8)

which gives (4.0.1) if one observes that 1/a2b2 ≤ 50, after a short computation involving

(4.0.4), the form of α from Proposition 3.1.1, and the fact that ε < 1/4.

Proposition 4.0.3. Let (Σ; g,N) be a static black hole data set. Let S1 and S2 be two

disjoint, connected, compact, boundary-less and orientable surfaces, embedded in Σ◦. Let

W : R → Σ◦ be a smooth embedding, intersecting S1 and S2 only once and transversely

and with W (t) diverging as t → ±∞. Then, there is p1 ∈ S1 and p2 ∈ S2 such that

N(p1) = N(p2).

Proof. We work in a manifold (Σδ; g) as in Proposition 3.4.1 and with 0 < ε < 1/4.

Assume thus that δ is small enough that (W ∪ S1 ∪ S2) ⊂ Σ◦δ . Orient W in the direction

of increasing t. Orient also S1 and S2 in such a way that the intersection number between

S and W , and between S2 and W , are both equal to one. All intersection numbers below

are defined with respect to these orientations.

Redefine the parameter t if necessary to have W (−1) ∈ S1 and W (1) ∈ S2. Then, for

every natural number m ≥ 1 let γm(s) be a g-geodesic minimising the g-length among

all the curves embedded in Σ◦δ , with end points W (−1 −m) and W (1 + m) and having

non-zero intersection number with S1 and S2, (12). We denoted by s the g-arc length

starting from W (−1−m). The g-length of γm is denoted by Lm.

We want to prove that there are points p1
m := γm(s1

m) ∈ S1 and p2
m := γm(s2

m) ∈ S2,

(for some s1
m and s2

m), with |s2
m−s1

m| uniformly bounded above. Once this is done the proof

is finished as follows. As the initial and final points W (−1−m) and W (1+m) get further

and further away from S1 and S2, then we have s1
m →∞, s2

m →∞, Lm − s2
m →∞, and

Lm − s1
m →∞. Therefore we can rely in Proposition 4.0.2 used with γ = γm, γ(s) = p1

m,

and γ(t) = p2
m, to conclude that

lim
m→∞

|N(p1
m)−N(p2

m)| = 0 (4.0.9)

Hence, if p1 is an accumulation point of {p1
m} and p2 an accumulation point of {p2

m} we

will have N(p1) = N(p2) as desired.

Consider now the set of embedded curves X : [−1, 1] → Σ◦, starting at S1 and

transversely to it, ending at S2 and transversely to it, and not intersecting S1 and S2

except of course at the initial and final points. There are at most four classes of curves

X, distinguished according to the direction to which the vectors X ′(−1) and X ′(1) point.

For each non-empty class fix a representative, so there are at most four of them, and let

B be a common upper bound of their lengths.

Without loss of generality assume that each γm, as defined earlier, intersects S1 and

S2 transversely(13). Let also {γm(s1
1m), . . . , γm(s1

l1m
)} and {γm(s2

1m), . . . , γm(s2
l2m

)} be

the points of intersection of γm with S1 and S2 respectively. For each m choose any two

(12)The existence of such geodesic is as follows. Let C be the family of all curves joining W (−1 −m)
and W (1 +m) and having non-zero intersection number with S1 and S2. As the intersection number is
an isotopy-invariant, the family C is a union of isotopy classes. In each class consider a representative
minimising length inside the class (recall the discussion in Section 3.4.1). Let Ci be a sequence of such
representatives and (asymptotically) minimising length in the family C. Such sequence has a convergent
subsequence, to, say, C∞. As for i ≥ i0 with i0 big enough, Ci is isotopic to C∞ we conclude that
C∞ ∈ C as wished.
(13)Otherwise use suitable small deformations
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s1
i1m and s2

i2m consecutive, namely that the open interval

(min{s1
i1m, s

2
i2m},max{s1

i1m, s
2
i2m}) (4.0.10)

does not contain any of the elements {s1
1m, . . . , s

1
l1m

; s2
1m, . . . , s

2
l2m
}. Without loss of gen-

erality we assume that s1
i1m < s2

i2m for all m.

To simplify notation let s1
m := s1

i1m and s2
m := s2

i2m. The curves Xm(s) := γm(s),

s ∈ [s1
m, s

2
m], can be thought (after reparameterisation) as belonging to one of the four

classes of curves X described above. For every m let then X̂m be the representative,

chosen earlier, of the class to which Xm belongs.

We compare now the length of γm with the length of a competitor curve, that we

denote by γ̂m, and that is constructed out of X̂m and γm itself. The construction of γ̂m
is better described in words. Starting from γm(0) we move forward through γm, reach S1

at γm(s1
m), and cross it slightly. From there we move through a curve very close to S1

and of length less than 2diam(S1) until reaching a point in X̂m. Then we move through

X̂m until a point right before S2. Finally we move through a curve very close to S2 and

of length less than 2diam(S2) until reaching a point in γm right before γm(s2
m), from

which we move through γm until reaching γm(Lm). Clearly γm has the same intersection

numbers with S1 and S2 as γm has, hence non-zero. Thus, by the definition of γm we

have,

L(γm) ≤ L(γ̂m) (4.0.11)

But we have

L(γm) = s1
m + (s2

m − s1
m) + (Lm − s2

m) (4.0.12)

and (if the construction of γ̂m is fine enough)

L(γ̂m) ≤ s1
m + 2diam(S1) + L(X̂m) + 2diam(S2) + (Lm − s2

m) (4.0.13)

Hence, as L(X̂m) ≤ B we conclude that

s2
m − s1

m ≤ B + 2diam(S1) + 2diam(S2) (4.0.14)

That is, |s2
m − s1

m| is uniformly bounded as wished.

Let us introduce the setup required for the next Proposition 4.0.4 and for the proof of

Theorem 4.0.1. Although it was proved earlier that static black hole data sets have only

one end, below we will work as if the manifold could have more than one end. The reason

for this is that the framework below is valid in higher dimensions, and this could help to

investigate whether higher dimensional vacuum static black holes have also only one end.

The proof of this fact that we gave earlier holds only in dimension three.

Choose Σi, i = 1, . . . , iΣ ≥ 1 a set of non-compact and connected regions of Σ◦, with

compact (and smooth) boundaries, each containing only one end, and the union covering

Σ except for a connected set of compact closure, (i.e. Σ\(∪Σ◦i ) is compact and connected).

For each end Σi we consider an end cut {Sijk, j ≥ 0, k = 1, . . . , kij}.
The surfaces Sijk are considered only to serve as a ‘reference’. Their geometry plays

no role. The condition that the union of the ends Σi covers Σ except for a connected set

of compact closure will be technically relevant in the proof below. It ensures that given

any two Sijk and Si′j′k′ with either: i 6= i′ (j, k, j′, k′ any), or i = i′, j = j′ (k, k′ any),

one can always find an immersed curve W : R→ Σ intersecting Sijk and Si′j′k′ only once

and such that W (t) diverges as t→ ±∞. This fact follows directly from the definition of
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end cut.

Proposition 4.0.4. (setup above) Let (Σ; g,N) be a static black hole data set. Then,

1. If iΣ > 1, then for any Sijk and Si′j′k′ , with i 6= i′, there are points p ∈ Sijk and

p′ ∈ Si′j′k′ such that N(p) = N(p′).

2. If iΣ = 1, then for every j with k1j > 1 and 1 ≤ k 6= k′ ≤ k1j, there are points

p ∈ S1jk and p′ ∈ S1jk′ such that N(p) = N(p′).

Proof. If iΣ > 1 then we can easily construct an embedding W : R→ Σ◦ intersecting the

manifolds Sijk and Si′j′k′ only once and with W (t) → ∞ as t → ±∞. The existence of

p ∈ Sijk and p′ ∈ Si′j′k′ for which N(p) = N(p′) then follows from Proposition 4.0.3. The

case iΣ = 1 is treated in exactly the same way.

We are ready to prove Theorem 4.0.1.

Proof of Theorem 4.0.1. We use the same setup as in Proposition 4.0.4. Also we let

Sij := ∪k=kij
k=1 Sijk and given j′ > j, Ui;jj′ denotes the closed region enclosed by Sij and

Sij′ . Also, given a closed set C, we let min{N ;C} := min{N(x) : x ∈ C} and similarly

for max{N ;C}.
We want to show that N is bounded from below away from zero at every one of the

ends Σi. We distinguish two cases: iΣ > 1 and iΣ = 1.

Case iΣ > 1. Without loss of generality we prove this only for Σ1. Let us fix a surface

S2j0k0 in Σ2. By Proposition 4.0.4 we know that at every S1jk we have

0 < min{N ;S2j0k0} ≤ max{N ;S1jk} (4.0.15)

On the other hand the Harnak estimate (2.3.1) in Proposition 2.3.1 gives us

max{N ;S1jk} ≤ η′min{N ;S1jk} (4.0.16)

where η′ is independent of j and k. Combined with (4.0.15) this gives us the bound

0 < η′′ < min{N ;S1jk} (4.0.17)

where η′′ is independent of j and k. Now, recall that the manifolds U1;j,j+1, j = 0, 1, . . .

cover Σ1 up to a set of compact closure and that for each j, ∂U1;j,j+1 is the union of the

surfaces S1jk; k = 1, . . . , k1j and S1,j+1,k; k = 1, . . . , k1,j+1. Therefore by (4.0.17) and the

maximum principle we deduce,

0 < η′′ < min{N ; ∂U1;j,j+1} ≤ min{N ;U1;j,j+1} (4.0.18)

from which the lower bound for N away from zero over Σ1 follows.

Case iΣ = 1. We observe first that, as in this case Σ1 is the only end and as N = 0

on ∂Σ, then N cannot go uniformly to zero at infinity (this would violate the maximum

principle). We prove now that, if there is a diverging sequence pl such that N(pl) → 0,

then N must go to zero uniformly at infinity. The proof will then be finished.

As iΣ = 1 we will remove the index i = 1 everywhere from now on. For every l let jl be

such that pl ∈ Ujl,jl+1 and let Ucjl,jl+1 be the connected component of Ujl,jl+1 containing

pl. By the maximum principle we have

min{N ; ∂Ucjl,jl+1} ≤ min{N ;Ucjl,jl+1} ≤ N(pl) (4.0.19)
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Therefore we can extract a sequence of connected components of ∂Ucjl,jl+1, denoted by

Sjlkl (jl is either jl or jl + 1), such that

min{N ;Sjlkl} → 0 (4.0.20)

From this and (4.0.16) we obtain

max{N ;Sjlkl} → 0 (4.0.21)

Then, by Proposition 4.0.4 we have

min{N ;Sjlk} ≤ max{N ;Sjlkl} (4.0.22)

(note the difference in the subindexes k and kl) for all k = 1, . . . , kjl (it could be of course

kjl = 1). Using (4.0.16) in the left hand side of (4.0.22) and using (4.0.21) we get

max{N ;Sjl} → 0 (4.0.23)

By the maximum principle again we deduce for any l′ > l the inequality

max{N ;Ujljl′} ≤ max{max{N ;Sjl}; max{N ;Sjl′}} (4.0.24)

Taking the limit l′ →∞ we deduce that the supremum ofN over the unbounded connected

component of Σ \ Sjl is less or equal than the maximum of N over Sjl . Hence N must

tend uniformly to zero at infinity because of (4.0.23).
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