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Abstract

The celebrated uniqueness’s theorem of the Schwarzschild solution by Israel,

Robinson and Bunting/Masood-ul-Alam, asserts that the only asymptotically flat

static solution of the vacuum Einstein equations with compact but non-necessarily

connected horizon is Schwarzschild. Here we extend this result by proving a classifi-

cation theorem for all (metrically complete) solutions of the static vacuum Einstein

equations with compact but non-necessarily connected horizon without making

any further assumption on the topology or the asymptotic. It is shown that any

such solution is either: (i) a Boost, (ii) a Schwarzschild black hole, or (iii) is of

Myers/Korotkin-Nicolai type, that is, it has the same topology and Kasner asymp-

totic as the Myers/Korotkin-Nicolai black holes. In a broad sense, the theorem

classifies all the static vacuum black holes in 3+1-dimensions.
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1 Introduction

The vacuum static solutions of the Einstein equations have played since early days a

fundamental role in the study of Einstein’s theory and the classification theorems have

been at the centre of the work. A fundamental result in this respect is the uniqueness

theorem of the Schwarzschild solution asserting that the Schwarzschild black holes are

the only asymptotically flat vacuum static solutions with compact but non-necessarily

connected horizon (Israel [11], Robinson et al [30], Bunting/Masood-ul-Alam [4]; for a
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1 INTRODUCTION

nice review on the history of this theorem see [5]). In this article we prove a classification

theorem that extends Schwarzschild’s uniqueness theorem to static solutions with no

specified topology or asymptotic.

To state the classification theorem we need to introduce first a setup.

Formally, a (vacuum) static data set (Σ; g,N) consists of a three manifold Σ, a

function N positive in the interior of Σ (called the lapse) and a Riemannian metric g

on Σ satisfying the vacuum static equations,

NRic = ∇∇N, (1.0.1)

∆N = 0 (1.0.2)

A static data set (Σ; g,N) gives rise to a vacuum static spacetime,

Σ = R× Σ, g = N2dt2 + g, (1.0.3)

where ∂t is the static Killing field. A static black hole data set is a static data (Σ; g,N)

such that ∂Σ = {N = 0} 6= ∅ is compact and (Σ; g) is metrically complete. In this defi-

nition no special asymptotic or global topological structure is assumed. The boundary

of Σ is non-necesarily connected and is called the horizon. The goal of this article is to

classify static black hole data sets.

The paradigmatic examples of static black holes data sets are the Schwarzschild

black holes (ΣS ; gS , NS) given by,

ΣS = R3 \B(0, 2m), gS =
1

1− 2m/r
dr2 + r2dΩ2 and NS =

√
1− 2m/r (1.0.4)

wherem > 0 is the mass andB(0, 2m) is the open ball of radius 2m(1). The Schwarzschild

black holes are of course asymptotically flat.

Figure 1: A Schwarzschild black hole. The grey region is Σ and
is diffeomorphic to R3 minus the open (black) ball B(0, 2m). The
solution is spherically symmetric and thus axisymmetric.

In this setup the uniqueness theorem of Schwarzschild can be stated as follows.

Theorem 1.0.1 (Israel-Robinson et al-Bunting/Masood-ul-Alam). The only asymptot-

(1)The spacetime (1.0.3) corresponding to (1.0.4) is just the region of exterior communication of a
Schwarzschild black hole of mass m. The horizon is the boundary ∂ΣS = {N = 0}. Restricted to
r ≥ R(t) > 2m, the Schwarzschild space models the gravitational field of any isolated but spherically
symmetric physical body of radius R(t). The object itself may be transiting a dynamical process (for
instance in a star), but the spacetime outside remains spherically symmetric and thus Schwarzschild
by Birkhoff’s theorem. If the radius R(t) goes below the threshold of 2m, no equilibrium is possible,
the body undergoes a complete gravitational collapse and a Schwarzschild black hole remains.
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ically flat static black hole data sets are the Schwarzschild black holes.

The classification theorem that we prove claims that, besides Schwarzschild, there

are only two more families of black hole static data sets: the Boosts and the data sets

of Myers/Korotkin-Nicolai type, (from now on M/KN type). Both are, of course, non

asymptotically flat.

The Boosts data sets (ΣB ; gB , NB) are given by,

ΣB = [0,∞)× T2, gB = dx2 + h, NB = x (1.0.5)

where (T2;h) is any flat two-torus and x is the coordinate in the factor [0,∞). The

origin of these data is simple as the spacetime (1.0.3) associated to the universal cover

of any Boost is the Rindle wedge of the Minkowski spacetime,

Σ = {(x, y, z, t) : |t| ≤ x}, g = −dt2 + dx2 + dy2 + dz2 (1.0.6)

and the static Killing field is the boost generator x∂t, (hence the name of the family).

Figure 2: A Boost black hole. The grey region is Σ and is diffeo-
morphic to a solid torus minus an open (black) solid torus.

Figure 3: A ’universal M/KN data’. The grey region is Σ and
is diffeomorphic to R3 minus an infinite number of (black) open
balls. The solution is axisymmetric.
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The data sets of Myers/Korotkin-Nicolai type are defined as any static black hole

data set whose topology is that of a solid three-torus minus a finite number of balls

and whose asymptotic is Kasner. Black holes with such properties were found by Myers

in [21]. They were rediscovered and further investigated by Korotkin and Nicolai in [16],

[15]. The idea of their construction is the following: use first Weyl’s method to find

a ‘periodic’ solution by superposing along an axis an infinite number of Schwarzschild

solutions separated by a same distance L. This gives the ‘universal cover solution’.

Taking suitable covers one obtains M/KN solutions with any number of holes(2). The

details of the M/KN data (ΣMKN ; gMKN , NMKN ) won’t be relevant for us but for the

sake of completeness the main features of the ‘universal data’ can be summarized as

follows (see [21], [16]). The metric and the lapse have the form,

Figure 4: A M/KN data with one hole. The grey region is Σ and
is diffeomorphic to a solid torus minus an open (black) ball. The
solution is axisymmetric.

gMKN = e−ω(e2k(dx2 + dρ2) + ρ2dφ2), NMKN = eω/2, (1.0.7)

where (x, ρ) are Weyl coordinates (ρ > 0 is the radial coordinate) and φ ∈ [0, 2π) is the

angular coordinate. The function ω is defined through the convergent series,

ω(x, ρ) = ω0(x, ρ) +

∞∑
n=1

[ω0(x+ nL, ρ) + ω0(x− nL, ρ) +
4M

nL
] (1.0.8)

where ω0(x, ρ) is,

ω0 = ln E0, E0(x, ρ) =

√
(x−M)2 + ρ2 +

√
(x+M)2 + ρ2 − 2M√

(x−M)2 + ρ2 +
√

(x+M)2 + ρ2 + 2M
(1.0.9)

and the function k(x, ρ) is found by quadratures through the equations,

kρ =
ρ

4
(ω2
ρ − ω2

x), kx =
ρ

2
ωxωρ, (1.0.10)

The metric g, the lapse N and the function k are invariant under the translations

(2)As the Schwarzschild solutions are axisymmetric, they can be superposed along an axis by Weyl’s
method. When superpossing a finite number of holes, angle deficiencies appear on the axis between
them and the solution resulting is non-smooth. This defficiency can be understood from the fact
that a repulsive force must keep the holes in equilibrium. However when infinitely many of them are
superposed along the axis, say at a distance L from each other, no extra force is needed and the angle
defficiency is no longer present. This gives a ‘periodic’ solution that can be quotiented to obtain M/KN
solutions with any number of holes.

5



1 INTRODUCTION

x→ x+L, hence periodic. The asymptotic of the solution is Kasner and has the form,

gMKN ≈ c1ρα
2/2−α(dx2 + dρ2) + c2ρ

2−αdφ2, NMKN ≈ c3ρα/2 (1.0.11)

where α = 4M/L and 0 ≤ α < 2.

Other solutions also with more than one hole can be constructed by superposing

periodically Schwarzschild holes of different masses but separated at right distances to

prevent struts. In this article the Myers/Korotkin-Nicolai data sets are defined as the

axisymmetric static black hole data sets that can be obtained using the Myers/Korotkin-

Nicolai method. The characteristics of them won’t be relevant to us (for a discussion

see [15]).

The goal of this article is therefore to prove the following classification theorem.

Theorem 1.0.2 (The classification Theorem). Any static black hole data set is either,

(I) a Schwarzschild black hole, or,

(II) a Boost, or,

(III) is of Myers/Korotkin-Nicolai type.

It could be that the M/KN data sets are the only black hole static data sets of

Myers/Korotkin-Nicolai type. We leave this as an open problem.

Vacuum static solutions with local symmetries have been investigated since early

days by Schwarzschild [], Levi-Civita [19], [18], Kasner [14], [13], Weyl [34] and many

others, (for a review see [12] and references therein), and there is a good understanding

of them. Without symmetries the problem is vast more complex. The fundamental

uniqueness theorem of Schwarzschild mentioned earlier is perhaps the first

However in 1967 Israel proved that Schwarzschild is unique among the asymptotically

flat black hole static solutions for which the lapse N can be chosen as a global harmonic

coordinate. Although the problem has no stated symmetry it does have definite bound-

ary conditions, namely that ∂Σ is a horizon and that the solution is asymptotically flat.

These conditions are enough to grant spherical symmetry and therefore uniqueness. A

relevant aspect of this work is that it makes it evident the importance of the geometry

of the level sets of the lapse in the global geometry of the solution. This will play a

role later when we discuss Kasner asymptotic in Section 7.2. The technical conditions

impossed by Israel were removed by Müller, Robinson and Seifert in [10] (’73). Later

in 1977 Robinson found a simple proof based on a remarkable integral formula [30] (the

proof required also previous work by Künzle [?]). This proved that the only asymptot-

ically flat solution with a connected compact horizon is Schwarzschild. The uniqueness

of Schwarzschild with multiple horizons was settled by Bunting/Masood-ul-Alam in

1986 [4], where it was apparent the important role of the positive mass theorem. Re-

cently other proofs of the Israel-Robinson theorem were given by the author in [24] and

by Agostiniani and Mazzieri in [1]. In [24] techniques in comparison geometry were used

and in [1] monotonic quantities along the level sets of the lapse were introduced. Some

of the arguments in this article will follow similar ideas though technically distinct.

In [3] (’00) M. Anderson carried out a general investigation of static solutions from

a general modern point of view. In particular he proved a fundamental decay estimate

for the curvature and the gradient of the logarithm of the lapse, allowing him to prove

the first uniqueness theorem of the Minkowski solution (as a static solution) without
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assuming any type of assymptotic but just geodesic completeness. Anderson’s estimate

holds too in any dimension, [29]. This was proved by importing some techniques in

comparison geometry á la Backry-Émery that were introduced by J. Case in [6] in a

context somehow related to that of static solutions of the Einstein equations. It turns

out that these techniques in comparison geometry a la Bakry-Emery play a fundamental

role in the first part of the paper as we will explain below. The global study of the lapse

function that we do is based largely upon these ideas.

1.0.1 The idea of the proof and the structure of the article

We pass now to explain the structure of the proof. This should help also the reader as

a guide to understand the main arguments behind the proofs.

Let (Σ; g,N) be a static black hole data set. The structure of the proof is indeed

simple and consists essentially of proving the following three parts,

1. Σ has only one end.

2. The horizons are weakly outermost (see Definition 2.1.3).

3. The end is asymptotically flat or asymptotically Kasner.

Once this is achieved the proof of the classification theorem is carried out using know

results. Assume 1-3 hold. First if the data is asymptotically flat then it is Schwarzschild

by the uniqueness theorem. If the data is asymptotically Kasner, then one deduces that

the data is either a Boost or is of M/KN type as follows. As the horizons are weakly

outermost then it follows from results of Galloway [], [], that either the data is a Boost

or every horizon is a totally geodesic sphere. On the other hand if the horizons are

spheres and the asymptotic is Kasner it follows from another result of Galloway [] that

Σ is diffeomorphic to an open three torus minus a finite number of open three-balls.

Finally this topology and Kasner asymptotic imply, by definition, that the data is of

M/KN type.

From this point of view above the difficult roots in proving steps 1-3. Their proofs

are entagled through the different sections, so it seems more appropriate to discuss these

sections now, making comments when necessary. The basic argument behind the proof

will be clear afterwards.

The Section 2.1 is dedicated to give the precise definitions and statements of the

article. The classification theorem is stated as Theorem 2.1.6. The section includes a

carefull discussion of the Kasner spaces, and the proof of their uniqueness statement,

which will be used throughout Section 7 when we discuss asymptotic. At the end of this

section we give a definition of Kasner asymptotic addapted to the needs of the proofs.

We will comment on it.

In Section ?? we introduce background material, including the notation, terminology

and conventions. Several of these notions have to do with ’scaling’. Scaling plays

a fundamental role in the study of ends in Section ??. In turn, the use of scaling

techniques is possible due to the scale invariance of Anderson’s decay estimates for the

curvature and for the gradient of the logarithm of the lapse, Theorem ??. We also

include some elementary material on Cheeger-Gromov-Fukaya theory of convergence

and collapse of Riemannian manifold under curvature bounds. This will be necessary

to study the asymptotic of static data sets again through scaling.

The body of the article begins in Section 4 where we discuss the geometry of static

metrics transformed by powers of the lapse, namely metrics of the form N−2εg where
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g is the static metric of the data set and ε is just a coeficient. The main reasons to

study these conformal metrics are the following. First, we will use the properties of

the family of metrics g = N−2εg with ε > 0 to prove that the manifold of a static

black hole data set has only one end, Theorem 4.4.2. This accomplishes step 1. Second,

the proof of step 2, that the horizons are weakly outermost, requires using that the

metric g = N2g is complete away from the boundary(3), Proposition 4.4.3. The proof

of that completeness is done through a careful understanding of the family of metrics

g = N−2εg for ε in a certain range, Theorem 4.3.1. Third, in Section 7 we will rely

exclusively in the conformal metric g to study the asymptotic of data sets. Again it is

necessary to grant that g is complete at infinity.

Making f = − lnN the static equations can be cast in the form,

Ric1f = 0, ∆ff = 0 (1.0.12)

where for any α the α-Bakry-Émery Ricci tensor Ricαf is defined as,

Ricαf := Ric+∇∇f − α∇f∇f, (1.0.13)

whereas the f -Laplacian of a function φ is defined as,

∆fφ := ∆φ− 〈∇f,∇φ〉 (1.0.14)

These equations are enough to deduce, via a f -Bochner formula (equation ??), that

∆|∇f |2 ≥ 2|∇f |4 (1.0.15)

Then, the short Lemma 4.2.3 shows that if Ricαf ≥ 0, α > 0, and for φ ≥ 0 we have,

∆φ ≥ cφ2 (1.0.16)

then

φ(p) ≤ η

d2(p, ∂Σ)
(1.0.17)

In particular |∇N/N |2 ≤ η/d2(p, ∂Σ), thus proving one of Anderson’s estimates.

This is the way Anderson’s estimates

|Ric|(p) ≤ η

d2(p, ∂Σ)
, |∇ lnN |2(p) ≤ η

d2(p, ∂Σ)
, (1.0.18)

were re-proved in [] (avoiding thus using some specific issues of dimension three) and

that can be easily generalised to higher dimensions.

As we show in Proposition ?? the structure of these equations is preserved under

conformal transformations by powers of the lapse, namely if g = N−2εg, then

Ric
α

f = 0, ∆ff = 0 (1.0.19)

where α = (1− 2ε− ε2)/(1 + ε)2 and f = −(1 + ε) lnN . When −1−
√

2 < ε < −1 +
√

2

then α > 0. Elaborated on the ideas above it is proved in Theorem 4.3.1 that if (Σ; g) is

metrically complete (and ∂Σ compact and N |Σ > 0) then for any ε ∈ (−1−
√

2,−1+
√

2)

(3)Namely (Σδ; g) is metrically complete where Σδ is Σ with a collar around the boundary removed.
Note that the metric g is singular at ∂Σ, so to speak about completeness we need to remove a collar
around ∂Σ.
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the space (Σ;N−2εg) is complete.

Spaces with Ricαf ≥ 0 with α > 0 but f arbitrary, have been studied in recent years

under the context of comparison geometry.

Acknowledgment

2 Main statements and definitions

2.1 Static data sets and the main Theorem

Definition 2.1.1. A static (vacuum) data set (Σ; g,N) consists of a smooth three-

manifold Σ, possibly with boundary, a smooth Riemannian metric g, and a smooth

function N , such that,

(i) (Σ; g) is metrically complete,

(ii) N is strictly positive in the interior Σ◦(= Σ \ ∂Σ) of Σ,

(iii) (g,N) satisfy the vacuum static Einstein equations,

NRic = ∇∇N, ∆N = 0 (2.1.1)

The definition is quite general. Observe in particular that Σ and ∂Σ could be

compact or non-compact. To give an example, a data set (Σ; g,N) can be simply the

data inherited on any region with smooth boundary of the Schwarzschild data. This

flexibility in the definition of static data set allows us to write statements with great

generality.

A horizon is defined as usual.

Definition 2.1.2. Let (Σ; g,N) be a static vacuum data set. A horizon is a connected

component of ∂Σ where N is identically zero.

Note that the Definition 2.1.1 doesn’t require ∂Σ to be a horizon, though the data

sets that we classify in this article are those with ∂Σ consisting of a finite set of compact

horizons (Σ is a posteriori non compact). It is known that the norm |∇N | is constant

on any horizon and different from zero. It is called the surface gravity.

It is convenient to give a name to those spaces that are the final object of study of

this article. Naturally we will call them static black hole data sets.

Definition 2.1.3. A static data set (Σ; g,N) with ∂Σ = {N = 0} and ∂Σ compact, is

called a static black hole data set.

The following definition, taken from [9], recalls the notion of weakly outermost hori-

zon.

Definition 2.1.4 (Galloway, [9]). Let (Σ; g,N) be a static black hole data set. Then, a

horizon H is said weakly outermost if there are no embedded surfaces S homologous to

H having negative outward mean curvature.

The next is the definition of data set of Korotkin-Nicolai type that we use.

Definition 2.1.5. A static data set (Σ; g,N) is of Korotkin-Nicolai type if

1. ∂Σ consist of h ≥ 1 weakly outermost (topologically) spherical horizons,

9



2 MAIN STATEMENTS AND DEFINITIONS

2. Σ is diffeomorphic to a solid three-torus minus h-open three-balls,

3. the asymptotic is Kasner.

We aim to prove

Theorem 2.1.6 (The classification Theorem). Let (Σ; g,N) be a static black hole data

set. Then, the associated space-time is either,

(I) covered by the Boost, or,

(II) is the Schwarzschild solution, or,

(III) is of Korotkin-Nicolai type.

We do not know if the only solutions of type (III) are the Korotkin-Nicolai solutions.

We state this as an open problem.

Problem 2.1.7. Prove or disprove that the only static solutions of type (III) are the

Korotkin-Nicolai solutions.

2.2 The Kasner solutions

2.2.1 Explicit form and parameters

The Kasner data, denoted by K, are R2-symmetric solutions explicitly given by

g = dx2 + x2αdy2 + x2βdz2, (2.2.1)

N = xγ (2.2.2)

with (x, y, z) varying in the manifold R+ × R× R, and where (α, β, γ) satisfy

α+ β + γ = 1 and α2 + β2 + γ2 = 1 (2.2.3)

but are otherwise arbitrary. The solutions corresponding to two different triples (α, β, γ)

and (α′, β′, γ′) are equivalent (i.e. isometric) iff α = β′, β = α′ and γ = γ′.

The metrics (2.2.1)-(2.2.2) are flat only when (α, β, γ) = (1, 0, 0), (0, 1, 0) or (0, 0, 1).

We will give to them the following names,

A : (α, β, γ) = (1, 0, 0), (2.2.4)

C : (α, β, γ) = (0, 1, 0), (2.2.5)

B : (α, β, γ) = (0, 0, 1) (2.2.6)

The solution B is the Boost.

Z-actions, Z×K→ K, are given by fixing a (non-zero) vector field X, combination

of ∂y and ∂z, and letting n × p → p + nX. The quotients are S1-symmetric static

solutions. Similarly, Z2 quotients give S1 × S1-symmetric static solutions. Z2-quotient

of the Kasner space will also be called Kasner spaces.

2.2.2 The harmonic presentation

The Kasner spaces in the harmonic presentation are

g = dx2 + x2ady2 + x2bdz2, (2.2.7)

10



2 MAIN STATEMENTS AND DEFINITIONS

C

A B

a b

g

Figure 5: The circle that defines the range of parameters α, β, γ.

U = c lnx (2.2.8)

where a, b and c satisfy

2c2 + (a− 1

2
)2 + (b− 1

2
)2 =

1

2
and a+ b = 1 (2.2.9)

Thus, the circle (2.2.3), (see Figure 5), is seen now as an ellipse in the plane a+ b = 1,

(see Figure 6). The flat solutions A,B and C are,

A : (a, b, c) = (1, 0, 0), (2.2.10)

C : (a, b, c) = (0, 1, 0), (2.2.11)

B : (a, b, c) = (1/2, 1/2, 1/2) (2.2.12)

a

g

A B
bb

C

Figure 6: The ellipse that defines the range of the parameters a, b
and c.

The Kasner solutions (2.2.7)-(2.2.8) are scale invariant. Namely, for any λ > 0,

(R+ × R2;λ2g) represents the same Kasner space as (R+ × R2; g) does. This can be

seen by making the change

x = λx, y = λ1−ay, z = λ1−bz (2.2.13)

11



2 MAIN STATEMENTS AND DEFINITIONS

that transforms (2.2.7)-(2.2.8) into

g = dx2 + x2ady2 + x2bdz2, (2.2.14)

U = c ln x− c lnλ (2.2.15)

Another way to say this is that (1−2c)t∂t+x∂x+(1−a)y∂y+(1−b)z∂z is a homothetic

Killing of the space-time. The scale invariance can of course be seen also in the original

space (R+×R2; g,N). Note that in general, the isometry that exists between (R+×R2; g)

and (R+ × R2;λ2g) does not pass to the quotient by a Z× Z-action.

2.2.3 Uniqueness

The Kasner data are the only data with a free R×R-symmetry other than Minkowski.

This is due to [?]. We give now a proof of this fact in a way that becomes useful when

we study the Kasner asymptotic later in Section 7.2.

The proof is as follows. We work in the harmonic presentation (Σ; g, U), therefore

geometric tensors are defined with respecto g. If the data set (Σ; g, U) has a free R2-

symmetry, and is not the Minkowski solution, then U can be taken as a harmonic

coordinate with range in an interval I. Then, on R2 × I we can write

g = λ2dU2 + h (2.2.16)

where λ = λ(U), and where h = h(U) is a family of flat metrics on R2. Without

loss of generality assume that U = 0 at the left end of I. Let (z1, z2) be a (flat)

coordinate system on R2×{0}. In the coordinate system (z1, z2, U) the static equation

Ricg = 2∇U∇U reduces to

∂UhAB = 2λΘAB , (2.2.17)

∂UΘAB = λ(−θΘAB + 2ΘACΘC
B), (2.2.18)

ΘABΘAB − θ2 = − 2

λ2
, (2.2.19)

where Θ is the second fundamental form of the leaves R2 × {U} and θ = Θ A
A is the

mean curvature. The static equation ∆gU = 0 reduces to

∂U

(√
|h|
λ

)
= 0 (2.2.20)

where |h| is the determinant of hAB . Hence

Γ
√
|h| = λ (2.2.21)

for a constant Γ > 0. This can be inserted in (2.2.17)-(2.2.18) to get the autonomous

system of ODE

∂UhAB = 2Γ
√
|h|ΘAB , (2.2.22)

∂UΘAB = Γ
√
|h|(−θΘAB + 2ΘACΘC

B), (2.2.23)
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3 BACKGROUND MATERIAL

The equation (2.2.19) transforms into

ΘABΘAB − θ2 = − 2

Γ2|h|
, (2.2.24)

and (it is direct to see) that it holds for all U provided it holds for U = 0 and (2.2.22)

and (2.2.23) hold for all U . The (2.2.24) is thus only a “constraint” equation. Therefore

the system (2.2.17)-(7.2.64) is solved by giving hAB(0),ΘAB(0) and Γ > 0 satisfying

(2.2.24), then running (2.2.22)-(2.2.23) and finally obtaining λ from (2.2.21).

To solve (2.2.22)-(2.2.23) first change variables from U to s, where ds = Γ
√
|h|dU .

The system (2.2.22)-(2.2.23) now reads

∂ShAB = 2ΘAB , (2.2.25)

∂SΘAB = −θΘAB + 2ΘACΘC
B , (2.2.26)

Use these equations to check that

∂sθ = −θ2, (2.2.27)

∂sΘ12 = (Θ11h
11 + Θ22h

22 − 2Θ12h
12)Θ12 (2.2.28)

Thus, θ has its own evolution equation which gives θ(S) = 1/(S + 1/θ(0)). Moreover

if we choose (z1, z2) on {U = 0} to diagonalise h(0) and Θ(0) simultaneously (i.e.

h11(0) = 1, h22 = 1, h12(0) = 0 and Θ12(0) = 0), then (2.2.28) shows that Θ12 = 0

and h12 = 0 for all s and therefore that the evolutions for h11 and h22 decouple to

independent ODEs. With this information it is straightforward to see that the solutions

to (2.2.27)-(2.2.28), which at the initial times satisfy also (2.2.24) are only the Kasner

solutions.

We will use all the previous discussion later in Section 7.2.

2.2.4 Definition of Kasner asymptotic

3 Background material

1 Manifolds. Manifolds will always be smooth (C∞). Riemannian metrics as well as

tensors will also be smooth.

2 Distance. If g is a Riemannian metric on a manifold Σ, then

dg(p, q) = inf
{
Lg(γpq) : γpq smooth curve joining p to q

}
. (3.0.1)

is a metric, where Lg is the notation we will use for length. When it is clear from the

context we will remove the sub-index g and write simply d and L.

- If C is a set and p a point then dg(C, p) = inf{dg(q, p) : q ∈ C}. Very often we take

C = ∂Σ.

- If C is a set and r > 0, then, define the open ball of “centre” C and radius r as,

Bg(C, r) = {p ∈ Σ : dg(C, p) < r} (3.0.2)

- (Σ; g) is metrically complete if the metric space (Σ; d) is complete.

13
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3 Scaling. Very often we will work with scaled metrics. To avoid a cumbersome

notation we will use often the subindex r (the scale) on scaled metrics, tensors and

other geometric objects. Precisely, let r > 0, then for the scaled metric g/r2 we use

the notation gr, namely,

gr :=
1

r2
g (3.0.3)

Similarly, dr(p, q) = dgr (p, q), 〈X,Y 〉r = 〈X,Y 〉gr , |X|r = |X|gr , and for curvatures

and related tensors too, for instance if R is the scalar curvature of g, then Rr is the

scalar curvature of gr.

This notation will be used very often and is important to keep track of it.

4 Annuli. Let (Σ; g) be a metrically complete and non-compact Riemannian manifold

with non-empty boundary ∂Σ.

- Let 0 < a < b, then we define the open annulus Ag(a, b) as

Ag(a, b) = {p ∈ Σ : a < dg(p, ∂Σ) < b} (3.0.4)

We write just A(a, b) when the Riemannian metric g is clear from the context.

- When working with scaled metrics gr, we will alternate often between the following

notations

Ar(a, b), Agr (a, b), Ag(ra, rb), (3.0.5)

(to denote the same set), depending on what is more simple to write or to read. For

instance we could write A2j (1, 2) instead of Ag2j (1, 2) or Ag(2j , 21+j).

- If C is a connected set included in Ag(a, b), then we define,

Acg(C; a, b) (3.0.6)

to denote the connected component of Ag(a, b) containing C. The set C could be for

instance a point p in which case we write Acg(p; a, b).

5 Partitions cuts and end cuts. Let (Σ; g) be a metrically complete and non-

compact Riemannian manifold with non-empty and compact boundary ∂Σ.

- To understand the asymptotic geometry of data sets, we will study the geometry of

scaled annuli. Sometimes however it will be more convenient and transparent to use

certain sub-manifolds instead of annuli. For this purpose we define partitions. A set

of compact manifolds with non-empty boundary

{Pmj,j+1, j = j0, j0 + 1, . . . , m = 1, 2, . . . ,mj}, (3.0.7)

(j0 ≥ 0), is a partition if,

(a) Pmj,j+1 ⊂ A(21+2j , 24+2j) for every j and m,

(b) ∂Pmj,j+1 ⊂ (A(21+2j , 22+2j) ∪ A(23+2j , 24+2j)) for every j and m.

(c) The union ∪j,mPmj,j+1 covers Σ \B(∂Σ, 22+2j0).

Figure ?? shows skematically a partition. The existence of partitions is easy and

done (succinctly) as follows. Let j0 ≥ 0 and let j ≥ j0. Let f : Σ → [0,∞) be

a (any) smooth function such that f ≡ 1 on {p : d(p, ∂Σ) ≤ 21+2j} and f ≡ 0 on

14
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{p : d(p, ∂Σ) ≥ 22+2j}, (4). Let x be any regular value of f in (0, 1). For each j

let Qj be the union of the connected components of Σ \ {f = x} containing at least

a component of ∂Σ. Then the manifolds Pmj,j+1, m = 1, . . . ,mj , are defined as the

connected components of Qj+1 \ Qj .

- We let ∂−Pmj,j+1 be the union of the connected components of ∂Pmj,j+1 contained in

A(21+2j , 22+2j). Similarly, we let ∂+Pmj,j+1 be the union of the connected components

of ∂Pmj,j+1 contained in A(23+2j , 24+2j).

- We let {Sjk, k = 1, . . . , kj} be the set of connected components of the manifolds

∂−Pmj,j+1 for m = 1, . . . ,mj . The set of surfaces

{Sjk, j ≥ j0, . . . , k = 1, . . . , kj} (3.0.8)

is called a partition cut.

- Suppose now that Σ has only one end. Let {Sjk, j ≥ j0 . . . , k = 1, . . . , kj} be a

partition cut. For each j one can always remove if necessary manifolds from {Sjk, k =

1, . . . , kj} and consider a subset {Sjkl , l = 1, . . . , lj} such that: if we remove all the

surfaces Sjkl , l = 1, . . . , lj , from Σ, then every connected component of ∂Σ belongs

to a bounded component of the resulting manifold, whereas if we remove all but

one of the surfaces Sjkl , then at least one connected componet of ∂Σ belongs to an

unbounded component of the resulting manifold. The set of surfaces

{Sjkl , j ≥ j0, . . . , l = 1, . . . , lj} (3.0.9)

is called an end cut.

- If an end cut {Sjkl , j ≥ j0, l = 1, . . . , lj} has lj = 1 for each j ≥ j0 then we say that

the end is a simple end cut and write simply {Sj}.

- If {Sj} is a simple end cut and j0 ≤ j < j′ we let Uj,j′ be the compact manifold

enclosed by Sj and Sj′ .

We begin stating a simple fact (easily proved arguing by contradiction). We will

use this below. Let γ be a ray and fix an integer k ≥ 2. Then, given ε > 0 there are

δ > 0 and r0 > 0 such that for any p ∈ γ with r = r(p) ≥ r0, such that the annulus

(Acr(p; 1/2, 2); gr) is δ-close in the GH-distance to the segment [1/2, 2], then there is a

neighbourhood B of Acr(p; 1/2, 2) and a finite cover B̃ such that (B̃; g̃r) is ε-close in Ck

to a T 2-symmetric flat space ([1/2, 2]×T 2; gF ). Furthermore, there is θ0 > 0 small, such

that if ε is chosen small enough and (Acr(p; 1/2, 2); gr) is δ-close in the GH-distance to

the segment [1/2, 2] and the mean curvature θF of the torus {1}×T 2 in ([1/2, 2]×T 2; gF )

is less or equal than θ0, then (Acr′(p′; 1/2, 2); gr) is 2δ/3-close in the GH-distance to the

segment [1/2, 2] where p′ is the point in γ such that r′ = r(p′) = 2r.

4 Conformal transformations by powers of the lapse

In this section we study conformal transformations of static metrics by powers of the

lapse from from a point of view á la Backry-Émery. Subsection 4.1 explains the struc-

ture of the conformal equations (Proposition ??). Subsection 4.2 proves generalised

(4)Consider a partition of unity {χi} subordinate to a cover {Bi} where the neighbourhoods Bi are
small enough that if Bi ∩{p : d(p, ∂Σ) ≤ 21+2j} 6= ∅ then Bi ∩{p : d(p, ∂Σ) ≥ 22+2j} = ∅. Then define
f =

∑
i∈I χi, where i ∈ I iff Bi ∩ {p : d(p, ∂Σi) ≤ 21+2j} 6= ∅.
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Anderson’s decay estimates for the conformally related data (Lemma ??). Section ??

shows metric completeness of the manifolds (Σ; g = N−2εg) (provided ∂Σ is compact

and N |Σ > 0), Theorem ??. In Section ?? a few important remarks are pointed out on

the conformal data (Σ;N−2εg) of a static data (Σ; g), (Proposition ??).

In section ?? we make a few important remaks on the conformal data (Σ; g = N−2εg)

4.1 Conformal metrics, the Bakry-Émery Ricci tensor and the static equa-

tions

Given a Riemannian metric g, function f and constant α, the α-Bakry-Émery Ricci

tensor Ricαf is defined as (see [33]; note that [33] uses the notation 1/N instead of α),

Ricαf := Ric+∇∇f − α∇f∇f, (4.1.1)

where the tensors Ric and ∇ on the right hand side are with respect to g. The f -

Laplacian ∆f acting on a function φ is defined as

∆fφ := ∆φ− 〈∇f,∇φ〉 (4.1.2)

where again ∆ on the right hand side are with respect to g and 〈 , 〉 = g( , ). Now

observe that letting f := − lnN , the static Einstein equations (2.1.1) read

Ric = −∇∇f +∇f∇f, ∆f − 〈∇f,∇f〉 = 0 (4.1.3)

In the notation above, this is nothing else than to say that

Ricαf = 0, ∆ff = 0 (4.1.4)

with α = 1 and f = − lnN . It is an important fact that the structure of these equations

is preserved along a one parameter family of conformal transformations. The following

calculation explains this fact.

Proposition 4.1.1. Let (Σ; g,N) be a static data set. Fixed ε define

g = N−2εg. (4.1.5)

Then,

Ric
α

f = 0, ∆ff = 0 (4.1.6)

where α = (1− 2ε− ε2)/(1 + ε)2 and f = −(1 + ε) lnN .

We used the notation Ric for Ricg and ∆ for ∆g.

Note that when ε = −1, we obtain α = +∞, f = 0 and Ric
α

f = Ric−2∇ lnN∇ lnN .

In particular we recover Ric = 2∇ lnN∇ lnN .

Proof. We prove first ∆ff = 0. Recall from standard formulae that if g = e2ψg then

for every φ we have

e−2ψ∆φ = ∆φ− 〈∇φ,∇ψ〉g (4.1.7)

Making φ = lnN and eψ = N−ε, the left hand side of (4.1.7) is equal to −|∇ lnN |2g
because ∆ lnN = −|∇ lnN |2g. Thus (4.1.7) is ∆ lnN − 〈∇ lnN,−(1 + ε)∇ lnN〉g = 0

as wished.

16



4 CONFORMAL TRANSFORMATIONS BY POWERS OF THE LAPSE

Let us prove now Ric
α

f = 0. Recall first that if g = e2ψg then

Ric = Ric− (∇∇ψ −∇ψ∇ψ)− (∆ψ + |∇ψ|2)g (4.1.8)

Choosing ψ = −ε lnN and replacing Ric by (4.1.3) then gives

Ric = (1 + ε)∇∇ lnN + (1 + ε2)∇ lnN∇ lnN − (ε+ ε2)|∇ lnN |2g (4.1.9)

Use now the usual general formula

∇iVj = ∇iVj −
[
Vj∇iψ + Vi∇jψ − (V k∇kψ)gij

]
(4.1.10)

with V j = ∇j lnN and with ψ = −ε lnN , to obtain

∇∇ lnN = ∇∇ lnN − ε
[
2∇ lnN∇ lnN − |∇ lnN |2g

]
(4.1.11)

Plugging (4.1.11) in (4.1.9) gives

Ric = (1 + ε)∇∇ lnN + (1− 2ε− ε2)∇ lnN∇ lnN (4.1.12)

which is Ric
α

f = 0 as claimed.

4.2 Conformal metrics and Anderson’s curvature decay

In [2] Anderson proved the following fundamental quadratic curvature decay for static

data sets.

Lemma 4.2.1 (Anderson, [2]). There is a constant η > 0 such that for any static data

set (Σ; g,N) we have,

|Ric|(p) ≤ η

d2(p, ∂Σ)
, |∇ lnN |2(p) ≤ η

d2(p, ∂Σ)
, (4.2.1)

for any p ∈ Σ◦.

This decay estimate is linked to a similar one for the metric g = N2g that we state

below. It was proved also by Anderson in [2]. We require N > 0 everywhere and not

only on Σ◦, to guarantee that g is regular on ∂Σ. Note that imposing N > 0 on Σ, does

not make (Σ; g = N2g) automatically metrically complete. Indeed if Σ is non-compact

then N could tend to zero over a divergent sequence of points and this may cause the

metric incompleteness of the space (Σ; g).

Lemma 4.2.2 (Anderson [2]). There is a constant η > 0 such that, for any static data

set (Σ; g,N) with N > 0 and for which (Σ; g = N2g) is metrically complete, we have

|Ricg|g(p) ≤ η

d2
g(p, ∂Σ)

, |∇ lnN |2g(p) ≤ η

d2
g(p, ∂Σ)

(4.2.2)

for any p ∈ Σ◦.

The estimates (4.2.1) and (4.2.2) are particular intances of a whole family of es-

timates for the conformal metrics g = N−2εg, with ε ranging in the interval (−1 −√
2,−1 +

√
2) which is the interval where the polynomial 1 − 2ε − ε2 is positive. We

prove the estimates below using the results in Section 4.1. As a byproduct we provide

concise proofs of Lemmas 4.2.1 and 4.2.2. This will be the goal of this section.
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We start with a lemma that to our knowledge is essentially due to J. Case [6] (though

similar techniques are well known too at least in the theory of minimal surfaces). This

lemma was first presented in [23], but due to its importance we prove it again here.

Lemma 4.2.3. Let (Σ, g) be a metrically complete Riemannian three-manifold with

Ricαf ≥ 0 for some function f and constant α > 0. Let φ be a non-negative function

such that

∆fφ ≥ cφ2 (4.2.3)

for some constant c > 0. Then, for any p ∈ Σ◦ we have

φ(p) ≤ η

d2(p, ∂Σ)
(4.2.4)

where η = (36 + 4/α)/c.

Observe that the lemma applies too to manifolds with Ric ≥ 0 as this corresponds

to the case Ricαf=0 ≥ 0 for any α > 0.

Proof. For any function χ the following general formula holds

∆f (χφ) = φ(∆fχ) + 2〈∇χ,∇φ〉+ χ∆fφ (4.2.5)

Thus, if χ ≥ 0 and if q is a local maximum of χφ on Σ◦, we have

0 ≥
[
∆f (χφ)

]∣∣∣∣
q

≥
[
φ∆fχ− 2

|∇χ|2

χ
φ+ cχφ2

]∣∣∣∣
q

(4.2.6)

where to obtain the second inequality we used (4.2.3). Let rp = d(p, ∂Σ). On B(p, rp) let

the function χ(x) be χ(x) = (r2
p−r(x)2)2. To simplify notation make r = r(x) = d(x, p).

Let q be a point in the closure of B(p, rp) where the maximum of χφ is achieved. If

φ(q) = 0, then φ = 0 and (4.2.4) holds for any η > 0. So let us assume that φ(q) > 0.

In particular p belongs to the interior of B(p, rp). By (4.2.6) we have

cr4
pφ(p) ≤ c(χφ)(q) ≤

[
2
|∇χ|2

χ
−∆fχ

]∣∣∣∣
q

(4.2.7)

=

[
4(r2

p − r2)r∆fr + 4r2
p + 20r2

]∣∣∣∣
q

(4.2.8)

But if Ricαf ≥ 0 then ∆fr ≤ (3 + 1/α)/r, (see [33] Theorem A.1; On non-smooth points

of r this equations holds in the barrier sense(5)). Using this in (4.2.7) and after a simple

computation we deduce,

φ(p) ≤ (4(3 + 1/α) + 24)

cr2
p

, (4.2.9)

which is (4.2.4).

Let us see now an application of the previous Lemma. Let (Σ; g,N) be a static data

with N > 0. Let ε be a number in (−1−
√

2,−1 +
√

2) and assume that the space (Σ;

g = N−2εg) is metrically complete. We claim that there is η(ε) > 0, such that for all

(5)This is an important property as it allows us to make analysis as if r were a smooth function,
see [22].
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p ∈ Σ◦ we have

|∇ lnN |2g(p) ≤
η(ε)

d2
g(p, ∂Σ)

(4.2.10)

Let us prove the claim. Assume first ε 6= −1. From Lemma 4.2.3 we know that Ric
α

f = 0

where f = −(1 + ε) lnN and where α = (1− 2ε− ε2)/(1 + ε)2. The factor (1− 2ε− ε2)

is greater than zero by the assumption on the range of ε. Now use the general formula

(see [6])

1

2
∆f |∇φ|2g = |∇∇φ|2g + 〈∇φ,∇(∆fφ)〉g +Ric

α

f (∇φ,∇φ) + α〈∇f,∇φ〉2g (4.2.11)

with φ = lnN , together with Ric
α

f = 0, to obtain

∆f |∇ lnN |2g ≥ 2(1− 2ε− ε2)|∇ lnN |4g (4.2.12)

and thus (4.2.10) from Lemma 4.2.3. When ε = −1 then Ric
α

f=0 ≥ 0 for any α > 0 and

∆f=0|∇ lnN |2g ≥ 4|∇ lnN |4g (4.2.13)

The claim again follows from Lemma 4.2.3.

Note that Lemma 4.2.3 provides the following explicit expression for η(ε),

η(ε) =
1

2(1− 2ε− ε2)

[
36 +

4(1 + ε)2

(1− 2ε− ε2)

]
(4.2.14)

What we just showed is a part of the generalised Anderson’s quadratic curvature

decay mentioned earlier, that we now state and prove.

Lemma 4.2.4. Let ε be a number in the interval (−1 −
√

2,−1 +
√

2). Then there is

η(ε) such that for any static data set (Σ; g,N) with N > 0 and for which (Σ; g = N−2εg)

is metrically complete, we have,

|Ric|g(p) ≤
η(ε)

d2
g(p, ∂Σ)

, |∇ lnN |2g(p) ≤
η(ε)

d2
g(p, ∂Σ)

, (4.2.15)

for any p ∈ Σ◦.

Proof. We have already shown the second estimate of (4.2.15). If ∂Σ = ∅ then N is

constant and g is flat. So let us assume that ∂Σ 6= ∅. Let p ∈ Σ◦. By scaling we can

assume without loss of generality that N(p) = 1 and dp = dg(p, ∂Σ) = 1. In this setup,

we need to prove that

|Ric|g(p) ≤ c0(ε), (4.2.16)

for c0 independent of the data.

The second estimate of (4.2.15) yields,

|∇ lnN |g(x) ≤ c1, (4.2.17)

for all x ∈ Bg(p, 1/2) and where c1 = c1(ε) is independent of the data. Therefore, as,

Ric = (1 + ε)∇∇ lnN + (1− 2ε− ε2)∇ lnN∇ lnN, (4.2.18)
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then to prove (4.2.16) it is enough to prove

|∇∇ lnN |g(p) ≤ c′0(ε) (4.2.19)

for a c′0(ε) independent of the data.

Let γ(s) be a geodesic segment joining p to x. Then we can write,

∣∣ ln N(x)

N(p)

∣∣ =
∣∣ ∫ ∇γ′ lnNds∣∣ ≤ ∫ |∇ lnN |gds ≤ c1/2 (4.2.20)

where we used (4.2.17). Because N(p) = 1, this inequality gives,

0 < c2 ≤ N(x) ≤ c3 <∞ (4.2.21)

for all x ∈ Bg(p, 1/2) and where c2 = c2(ε) and c3 = c3(ε).

Let g = N2+2εg = N2g. If ε ≥ −1 let r0 = c1+ε
2 , whereas if ε < −1 let r0 = c1+ε

3 .

Then, clearly Bg(p, r0) ⊂ Bg(p, 1/2). Moreover (4.2.17) and (4.2.21) show that for all

x ∈ Bg(p, r0) we have,

|∇ lnN |g(x) ≤ c4(ε), (4.2.22)

As Ricg = 2∇ lnN∇ lnN , we deduce that

|Ricg|g(x) ≤ c5(ε) (4.2.23)

for all x ∈ Bg(p, r0). In dimension three the Ricci tensor determines the Riemann

tensor, so,

|Rmg|g(x) ≤ c6(ε) (4.2.24)

Hence, by standard arguments, there is r1(ε) ≤ r0 such that the exponential map

exp : BTg (p, r1) → Σ, is a diffeomorphism into the image, (BTg (p, r1) is a ball in TpΣ).

Let g̃ be the lift of g to BTg (p, r1) by exp−1. We still have the bound (4.2.24) for g̃

and as the injectivity radius injg(p) is bounded from below by r1, then the harmonic

radius ih(p), which controls the geometry in C2 (see [22]), is bounded from below by

r2(ε) ≤ r1. As ∆g̃ lnN = 0, then standard elliptic estimates give

|∇g̃∇ lnN |g̃(p) ≤ c7(ε), (4.2.25)

where ∇g̃ is the covariant derivative of g̃. Finally, (4.2.21), (4.2.22), (4.2.25) and the

general formula,

∇∇ lnN = ∇g∇ lnN − (1 + ε)
[
2∇ lnN∇ lnN − |∇ lnN |2gg

]
(4.2.26)

provide the required bound (4.2.19). This completes the proof.

It is easy to check using elliptic estimates that the proof of the Lemma (4.2.4) leads

also to the estimates

|∇(k)
Ric|g(p) ≤

ηk(ε)

d2+k
g (p, ∂Σ)

, |∇(k)∇ lnN |2g(p) ≤
ηk(ε)

d2+2k
g (p, ∂Σ)

(4.2.27)

for every k ≥ 1, where ∇(k)
is ∇ applied k-times and where the positive constants η(ε),

η1(ε), η2(ε), η3(ε), . . . are independent of the data set.
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4.3 Conformal metrics and metric completeness

In this section we aim to prove that metric completeness of data sets (with N > 0 and

∂Σ compact) imply the metric completeness of the conformal spaces (Σ; g = N−2εg) for

any ε in the range (−1−
√

2,−1 +
√

2). Note that until now, when it was necessary we

have benn including the completeness of the metrics g as a hypothesis.

Theorem 4.3.1. Let ε be a number in the interval (−1−
√

2,−1 +
√

2). Let (Σ; g,N)

be a static data set with N > 0 and ∂Σ compact. Then (Σ; g = N−2εg) is metrically

complete.

We start proving a corollary to Lemma 4.2.4 that estimates N .

Corollary 4.3.2. (to Lemma 4.2.4) Let ε be a number in the interval (−1−
√

2,−1 +√
2). Let (Σ; g,N) be a static data set with N > 0 and ∂Σ compact, and for which

(Σ, g = N−2εg) is metrically complete. Then, there is c > 0 (depending on the data)

such that
1

c(1 + dg(p, ∂Σ))
√
η
≤ N(p) ≤ c(1 + dg(p, ∂Σ))

√
η (4.3.1)

for any p ∈ Σ◦, where η = η(ε) is the coefficient in the decay estimate (4.2.15) of

Lemma 4.2.4.

Proof. Let p ∈ Σ such that dp := dg(p, ∂Σ) ≥ 1. Let γ(s) be a g-geodesic segment joining

∂Σ to p and realising the g-distance between them (in particular N(γ(dp)) = N(p)).

Then we can write∣∣∣∣ ln N(γ(dp))

N(γ(1))

∣∣∣∣ =

∣∣∣∣ ∫ dp

1

∇γ′ lnNds
∣∣∣∣ ≤ ∫ dp

1

∣∣∇ lnN
∣∣ds ≤√η(ε) ln dp (4.3.2)

where to obtain the last inequality we have used (4.2.10). Therefore,

N(p) ≤ N(γ(1))d
√
η

p and N(p) ≥ N(γ(1))/d
√
η

p (4.3.3)

Thus,

md
√
η

p ≥ N(p) ≥ m/d
√
η

p (4.3.4)

where m = max{N(q) : dg(q, ∂Σ) = 1} and m = min{N(q) : dg(q, ∂Σ)}. This clearly

implies (4.3.1). Obtaining (4.3.1) for all p ∈ Σ◦, namely even for those with dp ≤ 1, is

direct due to the compactness of ∂Σ.

Proposition 4.3.3. Let ε be a number in the interval (−1−
√

2,−1+
√

2). Let (Σ; g,N)

be a static data set with N > 0 and for which (Σ, g = N−2εg) is metrically complete.

Then, for any ζ such that |ζ| ≤ 1/(2
√
η), the space (Σ;N2ζg) is metrically complete,

where η = η(ε) is the coefficient in (4.2.15).

Proof. Let us assume that Σ is non-compact otherwise there is nothing to prove. Let

ĝ = N2ζg. To prove that (Σ; ĝ) is complete, we need to show that the following holds:

for any sequence of points pi whose g-distance to ∂Σ diverges, then the ĝ-distance to

∂Σ also diverges. Equivalently, we need to prove that for any sequence of curves αi
starting at ∂Σ and ending at pi we have∫ si

0

Nζ(αi(s))ds −→∞ (4.3.5)
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where s is the g-arc length of αi counting from ∂Σ.

From (4.3.1) we get,

Nζ(p) ≥ c−|ζ|

(1 + dg(p, ∂Σ))|ζ|
√
η

(4.3.6)

for all p. But, dg(αi(s), ∂Σ) ≤ s and |ζ| ≤ 1/(2
√
η), so we deduce,

Nζ(αi(s)) ≥
c−|ζ|

(1 + s)1/2
(4.3.7)

Thus, ∫ si

0

Nζ(αi(s))ds ≥
∫ si

0

c−|ζ|

(1 + s)1/2
ds −→∞ (4.3.8)

as si →∞ as wished.

We prove now Theorem 4.3.1.

Proof of Theorem 4.3.1. Let ε ∈ (−1−
√

2,−1 +
√

2). Assume ε 6= 0 otherwise there is

nothing to prove. Let n > 0 be an integer such that for any i = 0, 1, . . . , n− 1,∣∣ ε
n

∣∣ ≤ 1

2
√
η(iε/n)

(4.3.9)

where η is the coefficient in (4.2.15). According to Proposition 4.3.3, the condition

(4.3.9) says that if gi = N−2(iε/n)g is complete then so is gi+1 = N−2ε/ngi = N−2(i+1)ε/ng

for any i = 0, 1, . . . , n − 1. Therefore, as g is complete, then so are g1, g2, g3, until

gn = N−2εg as wished.

4.4 Applications.

4.4.1 Conformal transformations of black hole metrics

Let (Σ; g,N) be a static black hole data set. We denote by Σδ the manifold resulting

after removing from Σ the g-tubular neighbourhood of ∂Σ and radius δ, i.e. Σδ =

Σ \B(∂Σ, δ). Let δ0 be small enough that ∂Σδ is always smooth and isotopic to ∂Σ for

any δ ≤ δ0.

Given ε > 0 let g = N−2εg. Let δ > 0 such that δ < δ0. The second fundamental

form Θ of ∂Σδ, (with respect to g and with respect to the inward normal to Σδ), is

Θ = N εΘ− ε∇nN
N1−ε g (4.4.1)

where Θ is the second fundamental form of ∂Σδ with respect to g and n is the inward

g-unit normal. If we let δ → 0, the function ∇nN |∂Σδ converges (on each connected

component) to a positive constant (the surface gravity) while N |∂Σδ converges to zero.

Hence if δ is small enough, the second term on the right hand side of (4.4.1) dominates

over the first, and the boundary ∂Σδ is strictly convex with respect to g.

Combining this discussion with Theorem 4.3.1 we deduce the following Proposition

that was proved for the first time in [27] and that will be used fundamentally in the

next section.
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Proposition 4.4.1. Let (Σ; g,N) be a static black hole data set. Then, for every

0 < ε < −1 +
√

2 there is 0 < δ < δ0 such that (Σδ; g = N−2εg) is metrically complete

and ∂Σδ is strictly convex (with respect to g and with respect to the inward normal).

The Riemannian spaces (Σδ; g) have a metric, as discussed earlier, that we will

denote by dδg. The strict convexity of the boundaries as well as the metric completeness

of the spaces (Σδ; g) imply two basic, albeit important, geometric facts:

(i) The distance dδg(p, q) between two points in Σδ is always realised by the length of

a geodesic segment joining p to q, and disjoint from ∂Σδ except, possibly, at the

end-points p and q.

(ii) Given a curve I embedded in Σδ and with end-points p and q, there is always a

geodesic segment minimising length in the class of curves embedded in Σδ, isotopic

to I and having the same end-points. The minimising segment is disjoint from

∂Σδ except, possibly, at the end points p and q.

These properties allow us to make analysis as if the manifold Σδ were in practice

boundaryless, and thus to import a series of results from comparison geometry, as

developed for instance in [33], without worrying about the existence of the boundary.

4.4.2 The structure of infinity

The following proposition shows that static black hole data sets have only one end and

moreover admit simple end cuts.

Proposition 4.4.2. Let (Σ; g,N) be a static black hole data set. Then Σ has only one

end. Moreover (Σ; g) admits a simple end cut.

Proof. We work with the manifolds (Σδ, g = N−2εg) from Proposition 4.4.1, with 0 <

ε < −1 +
√

2 and δ = δ(ε) ≤ δ0. We argue first in a fixed (Σδ; g) and then let ε → 0.

If iΣ > 1, i.e. if Σ has at least two ends, then Σδ has also at least two ends. Hence

Σδ, (which has convex boundary) contains a line diverging through two of them. The

presence of a line is relevant because, even having ∂Σδ 6= ∅, the geometry of (Σδ; g,N) is

such (recall the discussion in Section 4.4.1) that the Splitting Theorem as proved in [33]

applies (6). More precisely, repeating line by line the proof of Theorem 6.1 in [33], one

concludes that (see comments below after (a), (b) and (c)),

(a) there is a smooth Busemann function b+ε , (b+ in the notation of [33]), with

|∇b+ε |g = 1 and whose level sets are totally geodesic,

(b) the Ricci tensor is zero in the normal direction to the level sets, that is

Ric(∇b+ε ,−) = 0, (4.4.2)

(c) N is constant in the normal directions to the level sets, that is 〈∇b+ε ,∇N〉g = 0.

(6)Theorem 6.1 in [33] is stated for spaces with Ric0f ≥ 0 and f bounded. The boundedness of f is

required to have a Laplacian comparison for distance functions (§ [33] Theorem 1.1). No such condition

on f (hence on N , because f = −(1 + ε) lnN) is required in our case, as we have Ric
0
f = α∇f∇f with

α > 0 and a Laplacian comparison holds without further assumptions (§ [33], Theorem A.1).
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The item (a) is what is proved in Theorem 6.1 of [33] and requires no comment. The

items (b) and (c) follow instead from formula (6.11) in [33] after recalling that in our

case we have Ric
0

f = α∇f∇f , with f = −(1 + ε) lnN and α > 0.

Of course (a) implies that g locally splits. Namely, defining a coordinate x by x = b+,

one can locally write g = dx2 + h, where h is the metric inherited from g on the level

sets of x, that (under a natural identification) does not depend on x.

The conclusions (a), (b) and (c) imply a contradiction as follows. Fix a point p in

Σ◦δ0 and take a sequence εi → 0. Then, in a small but fixed neighbourhood U of p, the

sequence b+εi sub-converges to a limit function b+0 , with the same properties (a), (b),

(c) as each b+εi but now on (U ; g,N), (7). Hence (U ; g) also splits. We claim that the

Gaussian curvature κ of the level sets of b+0 in U is zero. Indeed, as: (i) the level sets

of b+0 are totally geodesic by (a), (ii) Ric(∇b+0 ,∇b
+
0 ) = 0 by (b), and (iii) the scalar

curvature R of g is zero by the static equations, then the Gauss-Codazzy equations yield

κ = 0. As (U ; g) is flat then the static solution is flat everywhere by analyticity. The

only flat solution with compact boundary is the Boost. As Boots have only one end we

reach a contradiction. Hence iΣ = 1.

Let us prove now that (Σ; g) admits simple cuts. Let {Sjk, j = 0, 1, 2, . . . , k =

1, . . . , kj} be an end cut. Suppose that kj > 1 for some j ≥ 0. If we cut Σ along Sj1
we obtain a connected manifold, say Σ′, with two new boundary components, say S ′1
and S ′2, both of which are copies of Sj1 (if cutting Σ along Sj1 results in two connected

components then kj = 1 because of how simple cuts are constructed). Consider another

copy of Σ′, denoted by Σ′′ and denote the corresponding new boundary components as

S ′′1 and S ′′2 . By gluing S ′1 to S ′′2 and S ′2 to S ′′1 we obtain a static solution (a double cover of

the original) with two ends, and one can proceed as earlier to obtain a contradiction.

4.4.3 Horizons’s types and properties

The following Proposition, about the structure of horizons, makes use of Sections 5 and

4.4.2 and a combination of results due to Galloway [?], [?].

Proposition 4.4.3. Let (Σ; g,N) be a static black hole data set. Then, either

(i) (Σ; g,N) is a Boost and therefore ∂Σ is a totally geodesic flat torus, or,

(ii) every component of ∂Σ is a totally geodesic, weakly outermost, minimal sphere.

Proof. The idea is to prove that every component H of ∂Σ is a weakly outermost. Then,

it is direct from Theorem 1.1 and 1.2 in [9] that either H is a sphere or is a torus and

if it is a torus then the whole space is a Boost. So let us prove that every component is

weakly outermost.

Let {H1, . . . ,Hh}, h ≥ 1, be the set of horizons, i.e. the connected components of

∂Σ. Assume that there is an embedded orientable surface S, homologous to one of the

H’s, (say H1), and with outer-mean curvature θS strictly negative. For reference below

define the negative constant c as

c = sup

{
θS(q)

N(q)
: q ∈ S

}
(4.4.3)

Let {Sj , j = j0, j1, . . .} be a simple end cut of (Σ; g) (Proposition 4.4.2). For each j,

let Ω(∂Σ,Sj) be the closure of the connected component of Σ \ Sj containing ∂Σ. Let

(7)The existence of the limit is easy to see because |∇b+ε |g = 1 and the level sets of b+ε are totally

geodesic, (for every ε). At every point the level set is just defined by geodesics perpendicular to ∇b+ε
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U be the closed region enclosed by H1 and S and assume that j0 is large enough that

Sj ∩ U = ∅ for all j ≥ j0. For every j ≥ j0 let Mj be the closed region enclosed by

S, H2, . . . ,Hh and Sj , that is Mj = Ω(∂Σ,Sj) \ U◦. Finally let

M̂j =Mj \ (H2 ∪ . . . ∪Hh) (4.4.4)

and note that now ∂M̂j = S ∪ Sj . On M̂j consider the optical metric g = N−2g.

The Riemannian space (M̂j ; g) is metrically complete, (roughly speaking the horizons

Hi, i ≥ 2 have been blown to infinity).

Now, for every j ≥ j0 let γj be the g-geodesic segment inside M̂j , realising the

g-distance between S and Sj . The segments γj are perpendicular to S. Also, as they

are length-minimising the g-expansion θ of the congruence of g-geodesics emanating

perpendicularly from S, remains finite all along γj . Let s ∈ [0, sj ] be the g-arc-length of

γj measured from S. Note that s is not the arc-length with respect to g, that would be

natural. We are going to use this parameterisation of γj below. Observe that sj → ∞
as j →∞.

Along γj(s) let

F (s) = θ(γj(s)) +
2

N2(γj(s))

dN(γj(s))

ds
(4.4.5)

Then, as shown by Galloway [8] (see also [20]), the function F satisfies the following

differential inequality
dF

ds
≤ −N

2
F 2 (4.4.6)

Now, a simple computation shows that F (0) = θ(0)/N(0) ≤ c < 0. But from (4.4.5) it

is easily deduced that if ∫ sj

0

N(γj(s))ds > −
2

c
(4.4.7)

then there is s∗ ∈ (0, sj) such that F (s∗) = −∞, thus θ(s∗) = −∞ and the γj
would not be g-length minimising. Thus, a contradiction is reached if we prove that∫ sj

0
N(γj(s))ds→∞. But his follows from the completness of the metric g = N2g from

Theorem 4.3.1.

4.4.4 The ball-covering property and a Harnak-type of estimates for the Lapse

Let (Σ; g,N) be a static data set. In [3], Anderson observed that as the four-metric

N2dt2 +g is Ricci-flat, then Liu’s ball-covering property holds. Namely, for any b > a >

δ > 0 there is n and r0 such that for any r ≥ r0 the annulus A(ra, rb) can be covered

by at most n balls of g-radius rδ centred in the same annulus (equivalently Ar(a, b)
can be covered by at most n balls of gr-radius δ centred in the same annulus). Hence

any two points p and q in a connected component of Ar(a, b) can be joined through a

chain, say αpq, of at most n+2 radial geodesic segments of the balls of radius δ covering

Ar(a, b). On the other hand Anderson’s estimate implies that the gr-gradient |∇ lnN |r
is uniformly bounded (i.e. independent on r) on Ar(a−δ, a+δ) and therefore uniformly

bounded over any curve αpq. Integrating |∇ lnN |r along the curves αpq and using the

bound we arrive at a relevant Harnak estimate controling uniformly (i.e. independly of

r) the quotients N(p)/N(q). The estimate is due to Anderson and is summarised in the

next Proposition (for further details see, [27]).
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Proposition 4.4.4. (Anderson, [3]) Let (Σ; g,N) be a static data set and let 0 < a < b.

Then,

1. There is r0 and η > 0, such that for any r > r0 and for any set Z inluded in a

connected component of Ar(a, b) we have,

max{N(p) : p ∈ Z} ≤ ηmin{N(p) : p ∈ Z} (4.4.8)

2. Furthermore, if ri →∞ and if Zi is a sequence of sets such that for each i the set

Zi is included in a connected component Acri(a, b) of Ari(a, b) and we have,

max{|∇ lnN |ri(p) : p ∈ Acri(a/2, 2b)} → 0 (4.4.9)

then,
max{N(p) : p ∈ Zi}
min{N(p) : p ∈ Zi}

→ 1. (4.4.10)

as i→∞.

Let (Σ; g, U) be a static data set in the harmonic presentation (assume N > 0). We

have shown that (Σ; g) is metrically complete and that |∇U |2g decays quadratically. But

as Ricg ≥ 0 Liu’s ball covering property also holds on (Σ; g). Repeating then Anderson’s

argument we arrive at the following Harnak estimate but in the harmonic presentation.

Proposition 4.4.5. Let (Σ; g, U) be a static data set and let 0 < a < b. Then,

1. There is r0 > 0 and η > 0, such that for any r > r0 and set Z included in a

connected component of Ar(a, b) we have,

max{U(q) : q ∈ Z} ≤ η + min{U(q) : q ∈ Z}, (4.4.11)

2. Furthermore, if ri →∞ and if Zi is a sequence of sets such that for each i the set

Zi is included in a connected compoent Acri(a, b) of Ari(a, b) and we have,

max{|∇U |ri(q) : q ∈ Acri(a/2, 2b)} → 0 (4.4.12)

then,

max{U(q) : q ∈ Zi} −min{U(q) : q ∈ Zi} → 0 (4.4.13)

as i→∞.

Both propositions will be used later.

4.4.5 The asymptotic of isolated systems.

Theorem 4.3.1 shows that if N > 0 and ∂Σ is compact then (Σ; g = N2g) is metrically

complete. On the other hand it was proved in [25], [26], that if Σ is diffeomorphic

to R3 minus a ball and g is complete then the space (Σ; g,N) is asymptotically flat.

Combining these two results we obtain that: if Σ minus a compact set K is diffeomoprhic

to R3 minus a closed ball then the data set (Σ; g,N) is asymptotically flat. Asymptotic

flatness is thus characterised only by the asymptotic topology of Σ.

This fact has physically interesting consequences. Following physical intuition define

a static isolated system as a static space-time (R×Σ;−N2dt2 + g), (∂Σ = ∅ and (Σ; g)
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metrically complete), for which there is a set K ⊂ Σ such that Σ \K is diffeomoprhic

to R3 minus a closed ball and such that the region R× (Σ \K) is vacuum (i.e. matter

lies only in R×K). The most obvious example of static isolated system one can think

of is that of body like a planet or a star. Then, using what we explained in the previous

paragraph, static isolated systems are always asymptotically flat. This conclusion was

reached in [27] but requiring as part of the definition of static isolated system that the

space-time is null geodesically complete at infinity. What we are showing here is that

this condition is indeed unnecessary and the completeness of the hypersurface (Σ; g) is

sufficient.

5 Global properties of the lapse

We aim to prove that the lapse N of any black hole data set is bounded away from zero

at infinity, namely that there is c > 0 such that for any divergent sequence pn we have

limN(pn) ≥ c.

Theorem 5.0.1. Let (Σ; g,N) be a static black hole data set. Then, N is bounded away

from zero at infinity.

The proof of this theorem will follow after some propositions that we state and prove

below.

Proposition 5.0.2. Let (Σδ; g) be a space as in Proposition 4.4.1, with 0 < ε < 1/4.

Let p and q be two different points in Σδ and let γ : [0, L] → Σδ be a g-geodesic

(parameterised with the arc-length s) starting at p and ending at q and minimising the

g-length in its own isotopy class. Then, for any 0 < s < t < L we have

−

√
50

[
(t− s)
s

+
(t− s)
L− t

]
≤ ln

[
N(γ(t))

N(γ(s))

]
≤

√
50

[
(t− s)
s

+
(t− s)
L− t

]
(5.0.1)

Note that in this statement, s, t−s and L− t are, respectively, the g-distances along

γ between the pairs of points (p, γ(s)), (γ(s), γ(t)) and (γ(t), q).

Proof. Let f and α be as in Proposition 4.1.1. Let γ, s and t be as in the hypothesis.

Let θ(s) be the expansion along γ of the congruence of geodesics emanating from p,

where s is the arc-length. From (4.1.6) we can write

Ric
α/2

f = Ric+∇∇f − α

2
∇f∇f =

α

2
∇f∇f (5.0.2)

where 0 < α because 0 < ε < 1/4 < −1 +
√

2. Let θf = θ − f ′ where f ′ = df(γ(s))/ds.

As shown in [33], (5.0.2) implies that,

θ′f ≤ −
1

2/α+ 3
θ2
f −

α

2
(f ′)2 = −a2θ2

f − b2
(
N ′

N

)2

(5.0.3)

where ′ = d/ds and

a2 =
1

2/α+ ε
, and b2 =

(1 + ε)2α

2
(5.0.4)

From the differential inequality θ′f ≤ −a2θ2
f we deduce,

θf (s) ≤ 1

a2s
(5.0.5)
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and also we deduce

θf (t) ≥ − 1

a2(L− t)
(5.0.6)

because if θf (s) < − 1
L−t then there exists r, with t < r < L, for which θf (r) = −∞,

and therefore θ(r) = −∞, contradicting that γ is length minimising within its isotopy

class.

Hence, we can use (5.0.5) and (5.0.6) and θ′f ≤ −b2(N ′/N)2 to deduce∣∣∣∣ ln N(t)

N(s)

∣∣∣∣2 =

∣∣∣∣ ∫ t

s

N ′

N
ds

∣∣∣∣2 ≤ (t− s)
∫ t

s

(
N ′

N

)2

ds (5.0.7)

≤ (t− s) 1

b2
(θf (s)− θf (t)) ≤ (t− s)

a2b2

(
1

s
+

1

L− t

)
(5.0.8)

which gives (5.0.1) if one observes that 1/a2b2 ≤ 50, after a short computation involving

(5.0.4), the form of α from Proposition 4.1.1, and the fact that ε < 1/4.

Proposition 5.0.3. Let (Σ; g,N) be a static black hole data set. Let S1 and S2 be two

disjoint, connected, compact, boundaryless and orientable surfaces, embedded in Σ◦. Let

W : R→ Σ◦ be a smooth embedding, intersecting S1 and S2 only once and transversely

and with W (t) diverging as t → ±∞. Then, there is p1 ∈ S1 and p2 ∈ S2 such that

N(p1) = N(p2).

Proof. We work in a manifold (Σδ; g) as in Proposition 4.4.1 and with 0 < ε < 1/4.

Assume thus that δ is small enough that (W ∪S1∪S2) ⊂ Σ◦δ . Orient W in the direction

of increasing t. Orient also S1 and S2 in such a way that the intersection number

between S and W , and between S2 and W , are both equal to one. All intersection

numbers below are defined with respect to these orientations.

Redefine the parameter t if necessary to have W (−1) ∈ S1 and W (1) ∈ S2. Then, for

every natural number m ≥ 1 let γm(s) be a g-geodesic minimising the g-length among

all the curves embedded in Σ◦δ , with end points W (−1−m) and W (1 +m) and having

non-zero intersection number with S1 and S2, (8). We denoted by s the g-arc length

starting from W (−1−m). The g-length of γm is denoted by Lm.

We want to prove that there are points p1
m := γm(s1

m) ∈ S1 and p2
m := γm(s2

m) ∈ S2,

(for some s1
m and s2

m), with |s2
m − s1

m| uniformly bounded above. Once this is done the

proof is finished as follows. As the initial and final points W (−1 −m) and W (1 + m)

get further and further away from S1 and S2, then we have s1
m → ∞, s2

m → ∞,

Lm − s2
m → ∞, and Lm − s1

m → ∞. Therefore we can rely in Proposition 5.0.2 used

with γ = γm, γ(s) = p1
m, and γ(t) = p2

m, to conclude that

lim
m→∞

|N(p1
m)−N(p2

m)| = 0 (5.0.9)

Hence, if p1 is an accumulation point of {p1
m} and p2 an accumulation point of {p2

m}
we will have N(p1) = N(p2) as desired.

(8)The existence of such geodesic is as follows. Let C be the family of all curves joining W (−1−m)
and W (1 +m) and having non-zero intersection number with S1 and S2. As the intersection number is
an isotopy-invariant, the family C is a union of isotopy classes. In each class consider a representative
minimising length inside the class (recall the discussion in Section 4.4.1). Let Ci be a sequence of such
representatives and (asymptotically) minimising length in the family C. Such sequence has a convergent
subsequence, to, say, C∞. As for i ≥ i0 with i0 big enough, Ci is isotopic to C∞ we conclude that
C∞ ∈ C as wished.
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Consider now the set of embedded curves X : [−1, 1] → Σ◦, starting at S1 and

transversely to it, ending at S2 and transversely to it, and not intersecting S1 and S2

except of course at the initial and final points. There are at most four classes of curves

X, distinguished according to the direction to which the vectors X ′(−1) and X ′(1)

point. For each non-empty class fix a representative, so there are at most four of them,

and let B be a common upper bound of their lengths.

Without loss of generality assume that each γm, as defined earlier, intersects S1 and

S2 transversely(9). Let also {γm(s1
1m), . . . , γm(s1

l1m
)} and {γm(s2

1m), . . . , γm(s2
l2m

)} be

the points of intersection of γm with S1 and S2 respectively. For each m choose any two

s1
i1m and s2

i2m consecutive, namely that the open interval

(min{s1
i1m, s

2
i2m},max{s1

i1m, s
2
i2m}) (5.0.10)

does not contain any of the elements {s1
1m, . . . , s

1
l1m

; s2
1m, . . . , s

2
l2m
}. Without loss of

generality we assume that s1
i1m < s2

i2m for all m.

To simplify notation let s1
m := s1

i1m and s2
m := s2

i2m. The curves Xm(s) := γm(s),

s ∈ [s1
m, s

2
m], can be thought (after reparameterisation) as belonging to one of the four

classes of curves X described above. For every m let then X̂m be the representative,

chosen earlier, of the class to which Xm belongs.

We compare now the length of γm with the length of a competitor curve, that we

denote by γ̂m, and that is constructed out of X̂m and γm itself. The construction of

γ̂m is better described in words. Starting from γm(0) we move forward through γm,

reach S1 at γm(s1
m), and cross it slightly. From there we move through a curve very

close to S1 and of length less than 2diam(S1) until reaching a point in X̂m. Then we

move through X̂m until a point right before S2. Finally we move through a curve very

close to S2 and of length less than 2diam(S2) until reaching a point in γm right before

γm(s2
m), from which we move through γm until reaching γm(Lm). Clearly γm has the

same intersections numbers with S1 and S2 as γm has, hence non-zero. Thus, by the

definition of γm we have,

L(γm) ≤ L(γ̂m) (5.0.11)

But we have

L(γm) = s1
m + (s2

m − s1
m) + (Lm − s2

m) (5.0.12)

and (if the construction of γ̂m is fine enough)

L(γ̂m) ≤ s1
m + 2diam(S1) + L(X̂m) + 2diam(S2) + (Lm − s2

m) (5.0.13)

Hence, as L(X̂m) ≤ B we conclude that

s2
m − s1

m ≤ B + 2diam(S1) + 2diam(S2) (5.0.14)

That is, |s2
m − s1

m| is uniformly bounded as wished.

Let us introduce the setup required for the next Proposition 5.0.4 and for the proof of

Theorem 5.0.1. Choose Σi, i = 1, . . . , iΣ ≥ 1 a set of non-compact and connected regions

of Σ◦, with compact (and smooth) boundaries, each containing only one end, and the

union covering Σ except for a connected set of compact closure, (i.e. Σ\(∪Σ◦i ) is compact

and connected). For each end Σi we consider an end cut {Sijk, j ≥ 0, k = 1, . . . , kij}.
(9)Otherwise use suitable small deformations

29



5 GLOBAL PROPERTIES OF THE LAPSE

The surfaces Sijk are considered only to serve as a ‘reference’. Their geometry plays

no role. The condition that the union of the ends Σi covers Σ except for a connected

set of compact closure will be technically relevant in the proof below. It ensures that

given any two Sijk and Si′j′k′ with either: i 6= i′ (j, k, j′, k′ any), or i = i′, j = j′ (k, k′

any), one can always find an inmersed curve W : R → Σ intersecting Sijk and Si′j′k′
only once and such that W (t) diverges as t→ ±∞. This fact follows directly from the

definition of end cut.

Proposition 5.0.4. (setup above) Let (Σ; g,N) be a static black hole data set. Then,

1. If iΣ > 1, then for any Sijk and Si′j′k′ , with i 6= i′, there are points p ∈ Sijk and

p′ ∈ Si′j′k′ such that N(p) = N(p′).

2. If iΣ = 1, then for every j with k1j > 1 and 1 ≤ k 6= k′ ≤ k1j, there are points

p ∈ S1jk and p′ ∈ S1jk′ such that N(p) = N(p′).

Proof. If iΣ > 1 then we can easily construct an embedding W : R → Σ◦ intersecting

the manifolds Sijk and Si′j′k′ only once and with W (t)→∞ as t→ ±∞. The existence

of p ∈ Sijk and p′ ∈ Si′j′k′ for which N(p) = N(p′) then follows from Proposition 5.0.3.

The case iΣ = 1 is treated in exactly the same way.

We are ready to prove Theorem 5.0.1.

Proof of Theorem 5.0.1. We use the same stup as in Proposition 5.0.4. Also we let

Sij := ∪k=kij
k=1 Sijk and given j′ > j, Ui;jj′ denotes the closed region enclosed by Sij and

Sij′ . Also, given a closed set C, we let min{N ;C} := min{N(x) : x ∈ C} and similarly

for max{N ;C}.
We want to show that N is bounded from below away from zero at every one of the

ends Σi. We distinguish two cases: iΣ > 1 and iΣ = 1.

Case iΣ > 1. Without loss of generality we prove this only for Σ1. Let us fix a

surface S2j0k0 in Σ2. By Proposition 5.0.4 we know that at every S1jk we have

0 < min{N ;S2j0k0} ≤ max{N ;S1jk} (5.0.15)

On the other hand the Harnak estimate (4.4.8) in Proposition 4.4.4 gives us

max{N ;S1jk} ≤ η′min{N ;S1jk} (5.0.16)

where η′ is independent of j and k. Combined with (5.0.15) this gives us the bound

0 < η′′ < min{N ;S1jk} (5.0.17)

where η′′ is independent of j and k. Now, recall that the manifolds U1;j,j+1, j = 0, 1, . . .

cover Σ1 up to a set of compact closure and that for each j, ∂U1;j,j+1 is the union of

the surfaces S1jk; k = 1, . . . , k1j and S1,j+1,k; k = 1, . . . , k1,j+1. Therefore by (5.0.17)

and the maximum principle we deduce,

0 < η′′ < min{N ; ∂U1;j,j+1} ≤ min{N ;U1;j,j+1} (5.0.18)

from which the lower bound for N away from zero over Σ1 follows.

Case iΣ = 1. We observe first that, as in this case Σ1 is the only end and as N = 0

on ∂Σ, then N cannot go uniformly to zero at infinity (this would violate the maximum
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principle). We prove now that, if there is a diverging sequence pl such that N(pl)→ 0,

then N must go to zero uniformly at infinity. The proof will then be finished.

As iΣ = 1 we will remove the index i = 1 everywhere from now on. For every l

let jl be such that pl ∈ Ujl,jl+1 and let Ucjl,jl+1 be the connected component of Ujl,jl+1

containing pl. By the maximum principle we have

min{N ; ∂Ucjl,jl+1} ≤ min{N ;Ucjl,jl+1} ≤ N(pl) (5.0.19)

Therefore we can extract a sequence of connected components of ∂Ucjl,jl+1, denoted by

Sjlkl (jl is either jl or jl + 1), such that

min{N ;Sjlkl} → 0 (5.0.20)

From this and (5.0.16) we obtain

max{N ;Sjlkl} → 0 (5.0.21)

Then, by Proposition 5.0.4 we have

min{N ;Sjlk} ≤ max{N ;Sjlkl} (5.0.22)

(note the difference in the subindexes k and kl) for all k = 1, . . . , kjl (it could be of

course kjl = 1). Using (5.0.16) in the left hand side of (5.0.22) and using (5.0.21) we

get

max{N ;Sjl} → 0 (5.0.23)

By the maximum principle again we deduce for any l′ > l the inequality

max{N ;Ujljl′} ≤ max{max{N ;Sjl}; max{N ;Sjl′}} (5.0.24)

Taking the limit l′ → ∞ we deduce that the supremum of N over the unbounded

connected component of Σ\Sjl is less or equal than the maximum of N over Sjl . Hence

N must tend uniformly to zero at infinity because of (5.0.23).

6 Free S1- symmetric solutions

6.1 The reduced data and the reduced equations

Let (Σ; g,N) be a static data set invariant under a free S1-action. The action induces

a foliation of Σ by S1-invariant circles. Let (Σ; g, U) be the harmonic presentation. We

will quotient the data (Σ; g, U) by the Killing field and study the reduced system.

The complete list of reduced variables and other necessary notation, is the following.

- As usual let g = N2g,

- let ξ be the Killing field generating the S1-action.

- let Λ = |ξ|g be the g-norm of ξ,

- let Ω = εgabcξ
a∇bξc be the g-twist of ξ (εg is the g-volume form and ∇ any cov.

der.),

- let U = lnN ,
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- let V = ln Λ,

- let S be the quotient manifold of Σ by the S1-action,

- let q be the quotient two-metric of g,

- let κ be the Gaussian curvature of q.

With all this at hand the following is the definition of a reduced static data set.

Definition 6.1.1. A data set (S; q, U, V ) arising from reducing a S1-invariant static

data set is a reduced static data set.

The next proposition presents the reduced equations of a reduced data set(10). The

equations involve only q, U and V , therefore the tensor Ric and the operators, ∆, ∇
and 〈 , 〉 are with respect to q.

Proposition 6.1.2. The reduced static equations of a reduced data set (S; q, U, V ) are,

Ric = ∇∇V +∇V∇V +
1

2
Ω2e−4V q + 2∇U∇U, (6.1.1)

∆V + 〈∇V,∇V 〉 =
1

2
Ω2e−4V , (6.1.2)

∆U + 〈∇U,∇V 〉 = 0. (6.1.3)

where Ω (introduced earlier) is constant. Moreover Ω is zero iff ξ is hypersurface or-

thogonal inside Σ.

Before passing to the proof let us make some comments on the reduced equations.

- When Ω = 0 the system (6.1.1)-(6.1.2) is locally equivalent to the Weyl equations

around any point where ∇Λ 6= 0. We won’t use this information however in the rest of

the article.

- The solutions to (6.1.1)-(6.1.3) are invariant under the simultaneous transforma-

tions

q → λ2q, V → V +
1

2
ln ν, U → U + µ, Ω→ ν

λ
Ω (6.1.4)

for any λ > 0, ν > 0 and µ. Namely, if we replace (q, V, U) and Ω in (6.1.1)-(6.1.3) for

(λ2q, V + 1
2 ln ν, U + µ) and νΩ/λ respectively, then the equations are still verified. We

will call them simply “scalings” and denote them by (λ, ν, µ).

- Given a solution to (6.1.1)-(6.1.2), the metric g can be recovered using the expres-

sion

g = habdx
adxb + Λ2(dϕ+ θidx

i)2 (6.1.5)

where (x1, x2) are coordinates on S and where the one form θ is found by solving

d(θidx
i) =

Ω

Λ3

√
|q|dx1 ∧ dx2 (6.1.6)

where |q| is the determinant of qij and where ∂ϕ = ξ is the original Killing field. As

ξ is the generator of a S1-action, the range of ϕ is [0, 2π). Without this information

the range of ϕ is undetermined. This is related to the fact that, locally, the reduction

procedure requires only that ξ is a non-zero Killing field. If the orbits of ξ do not close

(10)We haven’t found a reference for these equations though most likely they are given somewhere
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up in parametric time 2π, still the reduced equations (6.1.1)-(6.1.3) hold, and to recover

g using (6.1.5) and (6.1.6) the right range of ϕ needs to be provided.

This indeterminacy gives rise to two globally inequivalent ways to scale data (Σ; g, U ; ξ)

giving rise to the same reduced variables and equations. We assume that ξ 6= 0 and has

closed orbits. The first is the scaling,

g→ λ2g, ξ →
√
ν

λ
ξ (6.1.7)

the second is (recall g = qijdx
idxj + Λ2(dϕ+ θidx

i)2),

g→ λ2qijdx
idxj + νΛ2(dϕ+

λ

ν1/2
θidx

i)2, ξ → ξ (6.1.8)

In either case, the reduced variables (q, U, V ) scale in the same way (6.1.4). The two

new three-metrics are locally isometric but the new length of the orbits of the killing

field ξ do not necessarily coincide. The length of the orbits is scaled by λ in the first

case, and by
√
ν in the second case.

- As in dimension two we have Ric = κq, then (6.1.1)-(6.1.2) imply that the Gaussian

curvatures acquires the expression

κ =
3

4
Ω2e−4V + |∇U |2. (6.1.9)

In particular κ is non-negative. This will be an important property when analysing the

geometry of the reduced data.

The proof of of Proposition 6.1.2 is just computational and relies on formulae in [7].

We include it for the sake of completeness, but it can be skipped otherwise.

Proof of Proposition 6.1.2. We use calculations from [7], but the notation is different.

Precisely we use the following notation: N is the quotient of the spacetime manifold

M by the S1-action, ωa is the twist one form of the Killing field ξ in the spacetime and

λ its norm. Naturally, we have the commutative diagram

6 6

Σ M-
iΣ

S N-
iS

π π

where the π’s are the projections into the quotient spaces and the inclusions iΣ and iS
are totally geodesic, namely the second fundamental form K of Σ inM and the second

fundamental form χ of S in N , are both zero. Let n be the normal to S in N .

Equation (45) from [7] implies n(λ) = 0 and i∗Sωa = 0. Using this information inside

(18) of [7] we obtain,

∇̃a∇̃
a
λ =

ω(n)2

2λ3
(6.1.10)

where ∇̃a is the covariant derivative of the quotient metric on N . We compute

∇̃a∇̃
a
λ = −nanb∇̃a∇̃bλ+ ∆λ = 〈∇N

N
,∇λ〉+ ∆λ (6.1.11)
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where now ∆ and 〈 , 〉 are defined with respect to the quotient two-metric over S that

we denote by h. Thus

∆λ+ 〈∇N
N

,∇λ〉 =
ω(n)2

2λ3
(6.1.12)

On the other hand as N is harmonic in (Σ, g) we have

∆N + 〈∇N, ∇λ
λ
〉 = 0 (6.1.13)

where the operators are again with respect to h. Finally, the equations (26) and (30)

in [7] give

κh =
∆λ

λ
+

1

4

ω(n)2

λ4
(6.1.14)

where κh is the gaussian curvature of h. Now, q = N2h, hence

N2κ = κh −∆ lnN = κ̂− ∆N

N
+
|∇N |2

N2
(6.1.15)

where again ∆ and | | are with respect to h. Combining (6.3.14), (6.1.13) and (6.1.15)

we obtain

κ =
3

4

ω(n)2

N2λ4
+
|∇N |2

N4
(6.1.16)

Now, the spacetime expression

∂at εabcdξ
b∇cξd = Nω(n) (6.1.17)

is well known to be constant where ∇ is the spacetime covariant derivative and ε the

spacetime volume form (see [32] Theorem 7.1.1). On the other hand

Ω = Nεabcξ
a∇bξc = ∂at εabcdξ

b∇cξd (6.1.18)

where εgabc is the g-volume form. Expressing (6.1.12), (6.1.13), (6.1.16) and (6.1.18)

in terms of U, V , and expressing the Laplacians and norms in terms of q we obtain

(6.1.2)-(6.1.3). To obtain (6.1.1) use

κhhab =
∇a∇bλ
λ

+
ω(n)2

2λ4
hab +

∇a∇bN
N

(6.1.19)

taken from eqs. (20) and (25) in [7], and re-express it in terms of qab and its covariant

derivative.

6.2 Example: the reduced Kasner

The most simple examples of reduced static data sets come from reducing the Kasner

solutions through suitable Killing fields. Below we describe the reduced Kasner in detail.

Recall that the Kasner data sets (in the harmonic representation) are

g = dx2 + x2ady2 + x2bdz2, U = U1 + c lnx (6.2.1)

where c, a and b satisfy c2 + (a − 1
2 )2 = 1

4 and a + b = 1. If we reduce these metrics
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through the Killing field ξ = λ∂z we obtain the reduced data (q, U, V ),

q = dx2 + x2adϕ2, (6.2.2)

U = U1 + c lnx, (6.2.3)

V = V1 + b lnx (6.2.4)

where of course

c2 + (a− 1

2
)2 =

1

4
, a+ b = 1. (6.2.5)

and also

Ω = 0 (6.2.6)

Above we made V1 = lnλ, (note that V1 = V (1) and that U1 = U(1)). If we make this

solution periodic along ϕ and vary a, (hence b and c) and λ we obtain all the possible

reduced solutions with Ω = 0 and with a S1-symmetry (in ϕ).

More general than this we can quotient the Kasner solutions by the Killing field

ξ = λ(cosω ∂y + sinω ∂z) (6.2.7)

for any λ > 0 and ω ∈ [0, 2π), (fixed). A direct calculation shows that the reduced data

set (q, U, V ) is

q = dx2 +

[
x2

x2a cos2 ω + x2b sin2 ω

]
dϕ2, (6.2.8)

U = U1 + c lnx, (6.2.9)

V = V1 +
1

2
ln(x2a cos2 ω + x2b sin2 ω), (6.2.10)

where of course

c2 + (a− 1

2
)2 =

1

4
, a+ b = 1. (6.2.11)

and furthermore

Ω2 = 4e4V1(a− b)2 cos2 ω sin2 ω (6.2.12)

Above we made eV1 = λ, (note that V1 = V (1) and that U1 = U(1)). If we make this

solution periodic along ϕ and vary a, (hence b and c) and λ and ω, we obtain all the

possible reduced solutions with a Ω 6= 0 and with a S1-symmetry (in ϕ).

A simple computation shows that as long as Ω 6= 0 the norm Λ of the Killing field

ξ grows at least as fast as the square root of the distance to the boundary of the data

set. More precisely we have

Λ2 ≥ η|Ω|x (6.2.13)

where η does not depend on the data set. As we will see later this is indeed a general

property for the asymptotic of any reduced data set.

6.3 A subclass of the reduced Kasner: the cigars

When either (a, b) = (1, 0) or (a, b) = (0, 1) and ω /∈ {0, π/2, π, 3π/2} we obtain an

important class of solutions that we will call the cigars (motivated by their shape, see

Figure 7). Their metrics are complete in R2. After a convenient change of variables,
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the cigars are given by

U = U0, V = V0 +
1

2
ln(1 + r2) and q = 4Ω−2e4V0

(
dr2 +

r2

1 + r2
dϕ2

)
(6.3.1)

where U0 and V0 are arbitrary constants and where r is the radial coordinate from the

origin and ϕ is the polar angle ranging in [0, 2π), (note that V0 = V (r = 0)). The

asymptotic metric is q = 4Ω−2e4V0(dr2 + dϕ2), hence cylindrical of section equal to

4πΩ−1e2V0 .

Figure 7: Representation of the cigar.

As U is constant, then the lapse N is also constant and the original static solution,

(from where the data (6.3.1) is coming from), is flat. Let us explain now which quotient

of R3 gives rise to the cigars. For any positive δ we let Tδ be the translation in R3 of

magnitude δ along the z-axis and for any ϕ we let Rϕ be the rotation in R3 of angle ϕ

around the z-axis. Consider the isometric R-action I on R3 given by

I : (t)× (x, y, z) −→ TteV0
(
RtΩ(e−V0 )/2(x, y, z)

)
(6.3.2)

Now, we quotient R3 as follows: two points (x, y, z) and (x′, y′, z′) are identified iff

(x′, y′, z′) = I(2πn, (x, y, z)) for some n ∈ Z. The quotient is free S1-symmetric where

the action is by restricting I to [0, 2π). A straight forward calculation shows that the

quotient data (q, U, V ) is the cigar solution.

6.3.1 The cigars’s uniqueness

The cigars (6.3.1) are the only complete non-compact boundaryless solutions to (6.1.1)-

(6.1.3) with Ω 6= 0. To see this observe that any complete non-compact solution must

have U constant because U satisfies

|∇U |(p) ≤ η

d(p, ∂S)
(6.3.3)

and if S is complete and non-compact then d(p, ∂S) =∞ and U is constant (this decay

is direct from Anderson’s estimate; We will make another proof of it in Proposition

6.4.1). Thus, as before, the original static (Σ; g,N) solution is flat (and a S1-bundle).

It is not difficult to see that the only possibility must be a quotient of R3 as described

above. However in Proposition 6.3.2 we give an alternative proof whose technique will

be useful later when we present the cigar as the singularity model. Before and for the

sake of completeness we prove that the only complete (reduced) data set with Ω = 0 is

M or a quotient thereof.

Proposition 6.3.1. The only complete boundaryless (reduced) static data with Ω = 0

is M or a quotient thereof.

Proof. As U = U0 and Ω = 0 then ∇∇Λ = 0 (eq. (6.1.1)). This implies that Λ is linear

along geodesics. Thus, as the space is complete and Λ > 0 then Λ must be constant

and q flat. The result follows.
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Proposition 6.3.2. The only complete boundaryless (reduced) static data with Ω 6= 0

are the cigars.

Proof. The estimate (6.3.3) shows that U must be constant, i.e. U = U0. Hence, making

Λ =
√

2/Ω Λ we have

∇∇Λ =
1

Λ
3 q, κ =

3

Λ
4 (6.3.4)

The first is an equation of Killing type and can be integrated easily along geodesics. If

γ(s) is a geodesic parametrised by arc-length then we have Λ
′′

= Λ
−4

(make Λ(γ(s)) =

Λ(s)) which has the solutions

Λ
2
(s) =

1

(Λ′20 + 1/Λ
2

0)

(
1 + (Λ0Λ

′
0 + (Λ

′2
0 + 1/Λ

2

0)s)2
)

(6.3.5)

where Λ0 = Λ(0) and Λ
′
0 = Λ

′
(0). We have thus the bound

Λ
2
(s) ≥ 1

(|∇Λ0|2 + 1/Λ
2

0)
(6.3.6)

where |∇Λ0| = |∇Λ|(0). This lower bound is achieved only at s = Λ0|∇Λ0|/(|∇Λ
2

0 +

1/Λ
2

0) on the geodesic that points in the direction of least Λ′0, i.e. when it is equal to

−|∇Λ0|. Therefore at the point p where the minimum is achieved we have ∇Λ(p) = 0.

Hence, along any geodesic γ(s) emanating from p, (i.e. γ(0) = p), we have

Λ
2

= Λ
2

0

(
1 +

s2

Λ
4

0

)
(6.3.7)

Thus, near p we can write

q = ds2 + `2dϕ2 (6.3.8)

with ` = `(s) satisfying

`′′ = −κ` = − 3

Λ
4 ` (6.3.9)

and with `(0) = 0 and `′(0) = 1. The solution is

`2 =
s2(

1 + s2/Λ
4

0

) (6.3.10)

recovering (6.3.1) at least near p. It is simple to see that this q indeed represents the

metric all over S which in turn must be diffeomorphic to R2.

6.3.2 The cigars as models near high-curvature points

Lemma 6.3.3. Let (Si; pi; qi, Vi, Ui) be a pointed sequence of (reduced) static data sets

all having the same Ω 6= 0. Suppose that

dqi(pi, ∂Si) ≥ d0 > 0 (6.3.11)

and that either

κqi(pi)→∞, or |∇Vi|qi(pi)→∞ (6.3.12)
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Then, there are scalings (λ̂i, ν̂i, µ̂i) such that the scaled sequence (Si; pi; q̂i, V̂i, Ûi) con-

verges in C∞ and in the pointed sense to either a flat cylinder or a cigar with the same

Ω.

To simplify notation inside the proof, we will use the notation κi for κqi and |∇Vi|
for |∇Vi|qi , (the index “i” is from the sequence and of course does not represent a

scaling).

Proof. The proof is divided in various cases.

Case I. Suppose that |∇Vi|(pi) diverges but that κi(pi) remains uniformly bounded.

To start on we make scalings (λi, νi, µi) where

λi = |∇Vi|(pi), νi = e−2Vi(pi), µi = −Ui(pi). (6.3.13)

Let (qi, V i, U i) be the scaled variables. Observe that Ω scales to Ωi = νiΩ/λi. We have

Λi(pi) = 1, |∇Λi|(pi) = 1, (6.3.14)

where, recall, Λi = eV i . Consider now the three-dimensional static pointed data

(Σi; oi; gi, U i) whose reductions are the (Si; pi; qi, V i, U i). The oi are points in Σi pro-

jecting into the pi’s. Let ξi be the scaling of ξi. In this context the relations (6.3.14)

are

|ξi|(oi) = 1, |∇|ξi||(oi) = 1, (6.3.15)

where the norms are with respect to gi. Moreover, Ωi = νiΩ/λi → 0 because the νi are

bounded and the λi tend to infinity. Let us study now the convergence of the derivatives

(∇ ξi)(oi) of the Killings ξi at the points oi. For notational simplicity we will remove

for a moment the subindexes “i” (but we keep them in mind). For the calculation we

consider g-orthonormal basis {e1, e2, e3} around the points o, with e3(o) = ξ(o)/|ξ|(o)
and (∇eiej)(o) = 0. Then, using the relation Ω = εabcξ

a∇bξc and the Killing condition

∇aξb +∇bξa = 0, the components of ∇ ξ are computed as,

〈∇ejξ, ej〉 = 0, (6.3.16)

〈∇e1ξ, e2〉 = −〈∇e2ξ, e1〉 =
Ω

|ξ|
, (6.3.17)

〈∇e3ξ, ej〉 = −〈∇ejξ, e3〉 = −∇ej |ξ|. (6.3.18)

If furthermore e1(o) and e2(o) are chosen such that ∇e1(o)|ξ| = 0 and ∇e2(o)|ξ| = 1

then, (restoring now the indexing “i”), the components 〈∇ejξi, ek〉(oi) are either zero

or tend to zero as i goes to infinity except for 〈∇e1ξi, e3〉(oi) and 〈∇e3ξi, e1〉(oi) that

are constant and equal to one and minus one respectively.

Now we observe that

dgi(oi, ∂Σi) = λidgi(oi, ∂Σi) = λidqi(pi, ∂Si) ≥ λid0 →∞. (6.3.19)

Therefore by Anderson’s estimates, the curvature of the gi over balls of centres oi and

any fixed radius tend to zero. Hence, there are neighbourhoods Bi of oi and covers B̃i
such that the pointed sequence (B̃i; õi; gi) converges in C∞ and in the pointed sense

to the Euclidean three-space (for the cover metric we use also gi). We claim that the

lift of the Killing fields ξi to the B̃i, (that we will denote too by ξi) converge in C∞

38



6 FREE S1- SYMMETRIC SOLUTIONS

to the generator of a (non-trivial) rotation of R3. To see this recall first that for any

Killing field χ it holds ∇a∇bχc = −Rm d
bca χd. Thus, at any point x we can find ξi(x)

by integrating a second order linear ODE along a geodesic that extends from γ(0) = õi
to x, given the initial data ξi(γ(0)) and ∇γ′(0)ξi. As it was shown earlier that the data

ξi(õi) and (∇ξi)(õi) converges, hence so does ξi and the perpendicular distribution of

the limit Killing field ξ∞ is integrable because lim Ωi = 0. Thus, ξ∞ generates a rotation

in R3. As |ξ∞|(õ∞) = 1 and |∇|ξ∞||(õ∞) = 1 it must be that õ∞ is at a distance one

from the rotational axis. In coordinates (x, y, z) of R3 the limit vector field would, (for

instance), x∂y − y∂z and the limit point would be, (for instance), (1, 0, 0).

This convergence of ξi to the generator of a rotation will be used in the following to

extract a pair of relevant informations.

First we show that inside the surfaces Si there are geodesic loops `i, based at the

points pi, whose qi length tends to zero. Let us see this. For i large enough, the orbit

of the Killing ξi inside B̃i, that starts at the point õi, twists around an “axis” and come

very close to close up into a circle when it approaches again the point õi (see Figure

??). Hence, a small two-dimensional disc formed by short geodesic segments emanating

perpendicularly to ξi(õi) at õi must intersect the orbit at a nearby point õ′i. Moreover

the geodesic segment joining õi and õ′i, projects into a geodesic loop `i on Si based at

pi. The length of the loops `i clearly tend to zero as i goes to infinity.

Second, for i ≥ i0 large enough, the norm of the Killings ξi over the balls Bgi(oi, 1/2)

⊂ B̃i is bounded below by 1/4. Hence, Λi is bounded below by 1/4 over the balls

Bqi(pi, 1/2) in Si. More importantly the Gaussian curvature κi is bounded above by

100Ω
2

i also on Bqi(pi, 1/2).

From these two facts we conclude that the geometry near the points oi is collapsing

with bounded curvature. This implies that if we scale up qi to have the injectivity

radius at oi equal to one, then the new scaled spaces converge in the pointed sense to a

flat cylinder. The composition of this last scaling and the one we performed first is the

scaling (λ̂i, ν̂i, µ̂i) we were looking for.

Case II. Suppose now that both |∇Vi|(pi) and κi(pi) are diverging. If the quotient

κi(pi)/|∇Vi|2(pi) tends to zero, then we can perform a scaling (λi, νi, µi) that leaves Ω

invariant and that makes κi(pi) bounded and |∇V i|(pi) diverging. We can then repeat

the step in Case I with (qi, V i, U i) instead of (qi, Vi, Ui) to prove the Lemma in this

case too.

Assume therefore that the quotient κi(pi)/|∇Vi|2(pi) remains bounded. Perform

again a scaling (λi, νi, µi) that leaves Ω invariant and makes κi(pi) = 1 and there-

fore makes |∇V i|(pi) bounded because κi(pi)/|∇Vi|2(pi) is invariant. Note that as

dqi(pi, ∂Si)→∞, the estimate (2.2.16) impose that |∇U i| must tend uniformly to zero

over balls of centres pi and fixed but arbitrary radius. We claim that the curvature κi
remains uniformly bounded on balls of centres pi and fixed radius. Let L > 0, let x be

a point in Bqi(pi, L) and let γ(s) be a length-minimising geodesic joining pi to x. Let

Λi(s) = Λi(γ(s)). Then, the value of Λi at x is found by solving the second order ODE

Λ
′′
i =

Ω2

4Λ
3 + (|∇U |2 − 2U ′2)Λ (6.3.20)

subject to the initial data Λi(0) = Λi(γ(0)) and Λ
′
i(0) = ∇γ′(0)Λi, and evaluating at

s = dqi(x, pi). If ∇U i were identically zero then the solutions would be exactly (6.3.5)
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and we would have the bound

Λ
2

i (s) ≥
1

(Λ′i(0))2 + 1/(Λi(0))2
(6.3.21)

for all s ≥ 0. In particular, if Λi(0) is bounded below by A and |Λ′i(0)| is bounded above

by B then Λi(s) is bounded below by
√

1/(B2 + 1/A2). But as |∇U i| tends to zero

uniformly over balls or radius L, then the solutions to the ODE tend to (6.3.5) with

initial data Λi(0) and Λ
′
i(0). Now, as κi(pi) = 1 and |∇V i|(pi) is bounded, there are

constants A and B such that

Λi(0) ≤ A, and |Λ′i(0)| ≤ B (6.3.22)

no matter which the geodesic γ is. Therefore if i ≥ i0(L) is big enough then Λi(x) ≤
2
√

1/(B2 + 1/A2). Hence, κi ≥ 3Ωi(B
2 + 1/A2)2/32 everywhere on Bqi(pi, L).

The bound we proved for the curvature implies that if for a certain subsequence

the injectivity radius at the points pi tends to zero then there are finite covers that

converge to a cigar. But this is impossible because the cigars do not admit any non-

trivial quotient. Hence the injectivity radius remains bounded away from zero and the

pointed sequence (Si; pi; qi, V i, U i) must sub-converge in the pointed sense to a solution

with U constant. By uniqueness it is always a cigar and we are done.

Let us make an extra observation about a construction made inside the proof. Recall

that the spaces (B̃i, gi) converge to R3 and the Killings ξi converge to the generator of

a rotation. Let zi be points where (∇|ξi|)(zi) = 0. These points one can think that lie

in the “axis” of rotation. Naturally if we quotient the balls of centres zi and radius two

we obtain a two disc. This disc projects into a “cup” on Si containing pi (see Figure

??). In the metric qi, the “radius” of this cup (i.e. the maximum distance from a point

to the boundary) goes to zero.

The Lemma 6.3.3 provides models for the scaled geometry near points of high curva-

ture or high V -gradient, but it does not say how such points affect the unscaled geometry

nearby. This is an important information that we will need later. In rough terms, what

occurs is that at any finite distance from such a point the (unscaled) geometry becomes

one dimensional, pretty much like a cigar highly scaled down. The next Lemma 6.3.4

explains the phenomenon. In few words it explains how the geometry looks like near

geodesics that join points of high curvature or high V -gradient and the boundary of the

surfaces Si. This basic information will be sufficient to extract conclusions later.

The scaled geometry around points in such geodesics will be model essentially as

regions of the cigar whose curvature at the origin is conventionally κ0 = 3(2π)2 and

therefore whose metric is

q0 =
1

(2π)2

(
dr2 +

r2

1 + r2
dϕ2

)
(6.3.23)

where r ≥ 0. Let us describe the models more explicitly. A pointed space ({0 ≤ r ≤
40};x; q0), where x be a point in this cigar with r(x) ≤ 25, is a model of type Ci (from

“cigar”). A pointed space ({r(x)− 10 ≤ r ≤ r(x) + 10};x; q0), where x be a point with

r(x) > 25, is a model of type Cy (from “cylinder”). The Figure ?? sketches these two

types of models.
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Lemma 6.3.4. Let (Si; pi; qi, Vi, Ui) be a pointed sequence of (reduced) static data sets

all having the same Ω 6= 0 and suppose that

dqi(pi, ∂Si) ≥ d0 > 0 (6.3.24)

and that either

κqi(pi)→∞, or |∇Vi|qi(pi)→∞. (6.3.25)

For every i let γi be a geodesic segment joining pi to ∂Si and minimising the distance

between them (if ∂Si = ∅ let γi be an infinite ray). Fix a positive d1 less than d0.

Then, for every k ≥ 1, ε > 0 there exists i0 such that for any i ≥ i0 and for any

xi ∈ γi with dqi(xi, pi) ≤ d1 there exist a neighbourhood Bi of xi and a scaled metric

qi = λ
2

i qi such that (Bi;xi; qi) is ε-close in Ck to either a model space Ci or a model

space Cy.

Again to simplify notation inside the proof, we will use the notation κi for κqi and

|∇Vi| for |∇Vi|qi .

Proof. Half of the work has been done essentially already in Lemma 6.3.3 because the

geometry near points of high curvature or high V -gradient are model locally (at a right

scale) by a space Ci or a space Cy. We say this formally as follows: given ε > 0 and

k ≥ 1 there are K0 > 0 and i1 > 0 such that for any i ≥ i1 and xi ∈ γi such that

di(xi, pi) ≤ d1 and either κi(xi) ≥ K0 or |∇Vi|(xi) ≥ K0, then the conclusions of the

Lemma hold. Thus, it is left to show that the conclusions hold too for points on γi
that do not have “high” curvature or high gradient, that is for which κi(xi) ≤ K0 and

|∇Vi|(xi) ≤ K0. We prove that in what follows.

We will show that there is i2 ≥ i1 such that for any i ≥ i2 and for any xi ∈ γi such

that di(xi, pi) ≤ d1, κi(xi) ≤ K0 and |∇Vi|(xi) ≤ K0, the conclusion of the Lemma also

holds and the local model is of type Cy.

Given i, let xi be a point such that xi ∈ γi such that di(xi, pi) ≤ d1, κi(xi) ≤ K0

and |∇Vi|(xi) ≤ K0. We begin claiming that there are r0 < (d0 − d1)/2 and K1 > 0

independent of i such that κi(x) ≤ K1 for all x ∈ Bqi(xi, r0). Let r0 be any number

less than (d0− d1)/2 and let x be a point such that d(x, xi) ≤ r0. Let αi(s) be a length

minimising geodesic joining xi to x (αi(0) = xi). Denote Vi(s) := Vi(αi(s)). Let,

V̂i(s) = Vi(s)− Vi(0) (6.3.26)

Then we have,

V̂i(0) = 0, and |V̂ ′i (0)| ≤ K0 (6.3.27)

where the first equation is by the definition of V̂i(0) and the second follows by assump-

tion. On the other hand V̂i(s) satisfies the differential equation (6.1.1), namely,

V̂ ′′i + V̂i
′2 =

(1

2
Ω2e−4Vi(0)

)
e−4V̂i + (|∇U |2 − 2U ′2) (6.3.28)

where the last expression in parenthesis is evaluated of course on αi(s).

Let us make two comments on this equation. First, the coefficient Ω2e−4Vi(0)/2 is

less or equal than κi(xi) and thus less or equal than K0 by assumption. Second, the

sumand (|∇U |2− 2U ′2)(s) is uniformly bounded, say by K2 > 0, independently of s, x,

xi and i. This follows from the estimate (6.3.3) and dqi(αi(s), ∂Si) ≥ (d1 − d0)/2; This

41



6 FREE S1- SYMMETRIC SOLUTIONS

last inequality is due to,

dqi(αi(s), ∂Si) ≥ dqi(xi, ∂Si)− dqi(αi(s), xi) (6.3.29)

and the inequalities dqi(xi, ∂Si) ≥ (d1−d0) and dqi(αi(s), xi) ≤ dqi(x, xi) ≤ (d1−d0)/2.

Until now we have shown control on the ODE (6.3.28) and the initial data (6.3.27).

Therefore by standard ODE analysis, it follows that one can chose r0 small enough such

that |V̂i(s)| ≤ K1, (i.e. preventing blow up), for a K1 independent on s, x, xi and i.

This bound on Vi(x) (we removed the hat now) and the bound on |∇U |2(x) gives the

desired bound on κi(x).

We have proved a curvature bound κi(x) ≤ K1 for all x ∈ Bqi(xi, r0). Using this

bound we are going to show that the injectivity radius at xi, namely injqi(xi), tends

to zero as i tends to infinity. Indeed, if on the contrary injqi(xi) ≥ r1 > 0 for some

r1 > 0, then because the curvature is bounded on Bqi(xi, r0), there is v > 0 and

r2 ≤ min{r0, r1}/2 such that the area of the ball Bqi(xi, r2) is greater or equal than v.

As Bqi(xi, r2) ⊂ Bqi(pi, d0)) then we have

Ai(Bqi(pi, d0))

d2
0

≥ v

d2
0

(6.3.30)

On the other hand observe that by Lemma 6.3.3 the geometry near the points pi is

locally collapsing (at a right scale) to a line or to half a line. Thus, there is i3 such that

for i ≥ i3 there is δi → 0, such that the quotient

Ai(Bqi(pi, δi))

δ2
i

(6.3.31)

is less or equal than v/(2d2
0) (in fact the quotient tends to zero). But by Bishop-Gromov

the function

s→ Ai(Bqi(pi, s))

s2
(6.3.32)

is monotonically decreasing and therefore we should have

v

2d2
0

≥ Ai(Bqi(pi, d0))

d2
0

≥ v

d2
0

(6.3.33)

which is impossible. Thus the injectivity radius at xi tends to zero. Therefore the balls

Bqi(xi, r0) collapse with bounded curvature and the existence of a scaling whose limit

is a cylinder (Cy) is now direct.

The Lemma 6.3.4 gives a local model for the collapsed geometry around points on

the geodesics γi. The concatenation of the local models provide a global picture that is

sumarized in the next corollary (whose proof is now direct), see Figure ??.

Corollary 6.3.5. Let (Si; pi; qi, Vi, Ui) be a pointed sequence of (reduced) static data

sets all having the same Ω 6= 0 and suppose that

dqi(pi, ∂Si) ≥ d0 > 0 (6.3.34)

and that either

κqi(pi)→∞, or |∇Vi|qi(pi)→∞. (6.3.35)
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For every i let γi be a geodesic segment joining pi to ∂Si and minimising the distance

between them (if ∂Si = ∅ let γi be an infinite ray). Fix a positive d1 less than d0.

Then there is i0 such that for any i ≥ i0 there is a neighbourhood Bi of the ball

Bqi(pi, d1), diffeomorphic to a disc and metrically collapsing to a segment of length d1

as i goes to infinity.

6.4 Decay of the fields at infinity and asymptotic topology

We know already that the gradient of U decays quadratically at infinity. In this section

we show that also de gradient of V and the Gassian curvature κ decay quadratically.

The proof depends on whether Ω is zero or not. The case Ω = 0 is simple and relies

only on the techniques a la Bakry-Émery used earlier. As a by product we re-prove the

quadratic decay of the gradient of U , valid when Ω = 0 or not. When Ω 6= 0, the proof

requires the use of Corollary 6.3.5.

6.4.1 Case Ω = 0

Proposition 6.4.1. There is a constant η > 0 such that for every (reduced) static data

set we have

|∇U |2(p) ≤ η

d2(p, ∂S)
. (6.4.1)

Moreover when Ω = 0 we have

|∇V |2(p) ≤ η

d2(p, ∂S)
, (6.4.2)

hence also

κ(p) ≤ η

d2(p, ∂S)
. (6.4.3)

Proof. Write (6.1.1) as

Ricαf =
1

2
Ω2e−4V q + 2∇U∇U ≥ 0 (6.4.4)

with f = −V , α = 1, and recall from (6.1.3) that ∆fU = 0. Then, using (4.2.11) with

ψ = U we obtain

∆f |∇U |2 ≥ 4|∇U |4 (6.4.5)

and hence (6.4.1) by Lemma 4.2.3.

Similarly, if Ω = 0 we have ∆fV = 0 and using (4.2.11) again but with ψ = V we

obtain

∆f |∇V |2 ≥ 2|∇V |4 (6.4.6)

and hence (6.4.2) by Lemma 4.2.3.

The next proposition describes in simple form the asymptotic topology of data sets

(S; q, U, V ) when Ω = 0.

Proposition 6.4.2. Let (S; q, U, V ) be a (reduced) static data set with Ω = 0, S non-

compact and ∂S compact. Then there is a set K with compact closure, such that

S = K ∪
(
∪i=ni=1 Ei

)
(6.4.7)
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where every Ei is diffeomorphic to [0,∞)× S1.

Proof. Firs we observe that as κ ≥ 0, the ball covering property holds (indeed regardless

of whether Ω = 0 or not). Hence, S has a finite number of ends. In particular we can

write S as the union of a set with compact closure and a finite number of surfaces Ei,

i = 1, . . . , iS , each with compact boundary and containing only one end.

It is sufficient to work with the surfaces Ei, that we denote generically as E. By

Bishop-Gromov we have A(B(∂E,r))
r2 ↘ µ. The analysis depends on whether µ = 0 or

µ > 0.

Case µ = 0. Let γ be a ray from ∂E and let pi ∈ γ with r(pi) = ri = 2i, for

i = 0, 1, 2, . . .. If µ = 0, then the sequence of annuli (Acri(pi, 1/4, 4); qri) collapses

in volume (in area) with bounded curvature. As we have explained earlier, this type

of collapse is only through thin (finite) cylinders. Thus, (outside a compact set) E

is formed by an infinite concatenation of finite cylinders, (i.e. each diffeomorphic to

[0, 1]× S1).

Case µ > 0. As κ ≥ 0 and κ has quadratic decay, if µ > 0 then (E; q) is asymptotic

to a flat cone (C; qµ) where

C := R2 \ {(0, 0)}, qµ = dr2 + 4µ2r2dϕ2 (6.4.8)

(r is the radius and ϕ is the polar angle in R2). It then follows that, outside a compact

set of compact closure, E is diffeomorphic to [0,∞)× S1 as wished.

6.4.2 Case Ω 6= 0

Lemma 6.4.3. Let (S; q, U, V ) be a (reduced) static data set with Ω 6= 0, S non-compact

and ∂S compact. Then,

|∇U |2(p) ≤ η

d2(p, ∂S)
, |∇V |2(p) ≤ η

d2(p, ∂S)
, (6.4.9)

and,

κ(p) ≤ η

d2(p, ∂S)
(6.4.10)

where η > 0 is independent on the data. In particular

Λ2(p) ≥ η′Ω d(p, ∂S) (6.4.11)

where η′ > 0 is also independent on the data.

Proof. The proof requires using Corollary 6.3.5. Without loss of generality assume that

S is an end. Let γ be a ray from ∂S. For every j ≥ 0 let rj = 22j and let pj ∈ γ be

such that d(pj , ∂S) = rj .

The first goal will be to prove that κ and |∇V |2 decay quadratically along the union

of annuli ∪j≥0Acrj (pj ; 1/8, 8). This union covers γ except for a finite segment of it but a

priori may not cover the whole end. This follows after proving the quadratic curvature

decay.

Let xji be any sequence of points such that xji ∈ Acrji (pji ; 1/8, 8) for every i ≥ 0.

Each xji can be joined to pji through a continuous curve αi entirely inside the annulus

Acrji (pji ; 1/8, 8). Concatenating αi with the part of γ extending from pji to infinity,

we obtain a curve, say α̂i, extending from xji to infinity, and never entering the ball
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B(∂S, 1/8), namely, keeping at a qrj -distance of 1/8 from ∂S. We will use the existence

of this curve below to reach a contradiction.

Suppose now that either,

κ(xji)d
2(xji , ∂S)→∞, or |∇V |2(xji)d

2(xji , ∂S)→∞ (6.4.12)

We perform a sequence of scalings (λi, νi, µi) = (rji , rji , 0) leading to the new fields,

q → qi =
1

r2
ji

q, V → Vi = V +
1

2
ln rji , U → Ui = U (6.4.13)

With this scaling we obtain then a sequence of reduced data (S; qi, Vi, Ui) all having the

same Ω (recall Ω→ Ωi = (νi/λi)Ω = Ω). At the same time we have 1/8 ≤ di(xji , ∂S) ≤
8. Because of this, we can rewrite (6.4.12) as,

κi(xji)→∞, or |∇Vi|2i (xji)→∞, (6.4.14)

(where κi = κqi and |∇Vi| = |∇Vi|qi). Taking a subsequence if necessary we can assume

that di(xji , ∂S)→ d∗ (where di = dqi).

We are clearly in the hypothesis of Corollary 6.3.5. Choosing d1 (see the hypothesis

of Corollary 6.3.5) as d1 = d∗ + (d∗ − 1/8)/2, we conclude that there is a sequence

of neighbourhoods Bi containing Bi(∂S, d1) such that (Bi; qi) metrically collapses to

a segment of length d1 (where Bi = Bqi). The neighbourhood Bi essentially wraps

around a geodesic βi joining xji and ∂S and minimising the distance between them,

and “covering” the part of it at a distance less or equal than d1 from xji . Hence, for

i large enough, the boundary of the Bi is inside the ball Bi(∂S, 1/8). Therefore for i

large enough, the curve α̂i must enter Bi(∂S, 1/8) before going to infinity. We reach

thus a contradiction.

We have then that for each j, the scaled curvature κrj is bounded on each of the

annuli Acrj (pj ; 1/8, 8). Consider the areas Arj of the annuli Acrj (pj ; 1/8, 8) with respect

to qrj . If Arj tend to zero then the annuli (Acrj (pj ; 1/8, 8), qrj ) collapse with bounded

curvature and thus become thiner and thiner finite cylinders. The end S is then (except

for a set of compact closure) a concatenation of the annuli Acrj (pj ; 1/8, 8) and the

quadratic curvature decay in the whole end follows as well as the quadratic decay of

|∇V |2 follows. If instead a sequence Arji of the areas is bounded below away from zero

then, due to the Bishop-Gromov monotonicity A(B(∂S, r))/r2 ↘ and the curvature

bound, the geometry of the annuli (Acrj (pj ; 1/8, 8); qrj ) becomes more and more that of

a flat annulus. Once a piece sufficiently close to a flat annulus forms then the whole end

must be asymptotic to a flat annulus (for a detailed proof in dimension three see [26]).

Again, the quadratic decay of κ and |∇V |2 on the whole end follows.

The following version of Proposition 6.4.2 but when Ω 6= 0 is now straight forward

after Proposition 6.4.3 and the proof of Proposition 6.4.2 itself.

Proposition 6.4.4. Let (S; q, U, V ) be a (reduced) static data set with Ω 6= 0, S non-

compact and ∂S compact. Then there is a set K with compact closure, such that

S = K ∪
(
∪i=ni=1 Ei

)
(6.4.15)

where every Ei is diffeomorphic to [0,∞)× S1.
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6 FREE S1- SYMMETRIC SOLUTIONS

Taking into account the description of the asymptotic geometry of (reduced) static

ends (E; q, U, V ), (E ∼ [0,∞)×S1), we can easily find a simple end cut {`j ; j = 1, 2, . . .}.
Each `j is of course isotopic to ∂E and embedded in A(21+2j , 22+2j). Let us be a bit

more precise. Let rj = 21+2j and as usual let qrj = q/r2
j . If µ = 0 then the annuli

(Arj (1, 2); qrj ) metrically collapse to the segment [1, 2] and therefore the loops `j can

be chosen to have qrj -length tending to zero. If instead µ > 0 then the loops can be

chosen to converge to the radial circle {x = 3/2} as the annuli (Arj (1, 2); qrj ) converge

to the annulus ([1, 2]× S1; dx2 + 4µ2x2dϕ2) as explained earlier.

Let Σ be the three-manifold whose quotient by the S1-Killing field is E. Let π : Σ→
E be the projection. The tori Sj := π−1(`j) form obviously a simple cut of (Σ; g). Let

us state this in a proposition that will be recalled later.

Proposition 6.4.5. Let (Σ; g, U) be a free S1-symmetric data set such that the reduced

state (E; q, U, V ) is a reduced end. Then, E and S admit simple cuts.

The next proposition shows that U tends uniformly to a constant U∞, on any (re-

duced) static end (E; q, U, V ). The constant U∞ satisfies −∞ ≤ U∞ ≤ ∞. The propo-

sition will be used in Section 7.2.2.

Proposition 6.4.6. Let (E; q, U, V ) be a reduced end. Then, U → U∞ where the arrow

signifies uniform convergence and the constant U∞ satisfies −∞ ≤ U∞ ≤ ∞.

Proof. Note that the maximum principle is also applicable to U because (6.1.3) can be

written as div(eV∇U) = 0. We will use this several times below.

Let {`j , j = 0, 1, 2, . . .} be a simple cut of E as described above. Let rj = 21+2j .

Assume that µ = 0. Then, as said, the qrj -length of the loops `j tends to zero. At

the same time the norm |∇U |rj restricted to the loops `j remains uniformly bounded.

Therefore, by a simple integration along the `j it is deduced that,

(max{U(q) : q ∈ `j} −min{U(q) : q ∈ `j})→ 0 (6.4.16)

If instead µ > 0 then the qrj -length of the loops `j remains uniformly bounded while

the norm |∇U |rj , over the loops `j , tends to zero. So by a simple integration along the

loops `j we deduce again (6.4.16).

Now suppose that for a certain sequence pi ∈ `ji , U(pi) tends to a constant −∞ ≤
U∞ ≤ ∞. Then by (6.4.16), the maximum and the minimum of U over `ji also tend to

U∞. We use now the maximum principle to write for any i < i′

max{U(q) : q ∈ `ji ∪ `ji′} ≥max{U(q) : q ∈ Lji,ji′} ≥ (6.4.17)

≥min{U(q) : q ∈ Lji,ji′} ≥ min{U(q) : q ∈ `ji ∪ `ji′}
(6.4.18)

where Lji,j′i is the compact region enclosed by `ji and `ji′ . Letting i′ tend to infinity

we deduce,

max{max{U(q) : q ∈`ji}, U∞} ≥ max{U(q) : q ∈ Lji,∞} ≥ (6.4.19)

≥min{U(q) : q ∈ Lji,∞} ≥ min{min{U(q) : q ∈ `ji}, U∞} (6.4.20)

where Lji,∞ is the region enclosed by `ji and infinity. As the left hand side of (6.4.19)

and the right hand side of (6.4.20) tend to U∞ then U must tend also uniformly to

U∞.
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7 VOLUME GROWTH AND THE ASYMPTOTIC OF ENDS

6.5 Reduced data sets arising as collapsed limits

In this last subsection about S1-symmetric states, it is worth to discuss the geometry

of reduced data arising from scaled limit of data sets. This discussion will be recalled

later in Section 7.2.3 where we prove that the asymptotic of static black hole data sets

with subcubic volume growth is Kasner.

Let (Σ; g, U) be a data set, and let γ be a ray from ∂Σ. Let pn ∈ γ be a diver-

gent sequence of points. Suppose there are neighbourhoods Bn of Acrn(pn, 1/2, 2) such

that (Bn; grn) collapses to a two-dimensional orbifold. Having this, by a diagonal argu-

ment, one can find a subsequence of it (also indexed by n) and neighbourhoods Bn of

Acrn(pn; 1/2, 2kn), with kn →∞, and collapsing to a two-dimensional orbifold (S∞; q∞).

As the collapse is along S1-fibers (hence defining asymptotically a symmetry), we ob-

tain, in the limit, a well defined reduced data (S; q, Ū , V ) where U is obtained as the

limit of Un := U − U(pn). On smooth points the scalar curvature κ is non-negative.

Orbifold points are connical with total angles an integer fraction of 2π (2π/2, 2π/3,

2π/4, etc) hence can be thought as having also non-negative curvature (they can be

rounded off to have a smooth metric with κ ≥ 0). Therefore (S; q) has only a finite

number of ends. Note that it has at least one end containing a limit, say γ, of the ray

γ. Let us denote that end by Sγ .

We claim that every end has only a finite number of orbifold points. This is the result

of a simple application of Gauss-Bonett. Indeed, let S be an end. Let `j , j = 1, 2, 3, . . .,

be one-manfiolds embedded for each j in A(22j , 22j+3) such that `1 and `j enclose a

connected manifold Ω1j . Let O be the set of orbifold points in S. By Gauss-Bonnet we

have

−
∫
`1

kdl −
∫
`j

kdl =

∫
Ω1j\O

κdA+
∑

p∈Ω1j∩O
2π

(
i(p)− 1

i(p)

)
(6.5.1)

where k is the mean-curvature (or first variation of logarithm of length) on the one-

manifolds `j and the angle at each orbifold point p ∈ O is 2π/i(p). As the right hand side

is greater or equal than the number of orbifold points in Ω1j , that is ]{Ω1j∩O}. Thus, if

the left hand side remains bounded as j →∞ then the number of orbifold points must be

finite. To see the existence of such one-manifolds `j for which the left hand side remains

bounded just argue as follows. First note that the left hand side is scale invariant.

Second observe that as for each j the scaled annuli (A(22j , 22j+3); q22j ) in S are scaled

limits of annuli in (Σ; g), (which has quadratic curvature decay), then one can always

chose a suitable subsequence ji such that as i→∞ the annuli (A(22j , 22j+3); q22j ) either

converge of collapse to a segment. The selection of the `i is then evident.

7 Volume growth and the asymptotic of ends

The asymptotic of ends is markedly divided by the volume growth. We discuss first cubic

volume growth, which is the simplest and that implies AF. Then we discuss sub-cubic

volume growth which implies (under certain hypothesis) AK. This last case requires an

elaborated and long analysis.

7.1 Cubic volume growth and asymptotic flatness

Suppose (Σ; g, U) is a static end with cubic volume growth. Cubic volume growth,

non-negative Ricci curvature and quadratic curvature decay, implies that the end is

asymptotically conical, (i.e. the metric is asymptotic to a metric of the form dr2 +
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7 VOLUME GROWTH AND THE ASYMPTOTIC OF ENDS

a2r2dΩ2 in R3). Hence, outside an open set of compact closure, Σ is diffeomorphic to

R3 minus a ball. It was proved in [], [] (see also []) that the data is then asymptotically

flat (indeed asymptotically Schwarzschild).

7.2 Sub-cubic volume growth and Kasner asymptotic

The goal of this section will be to prove that the asymptotic of any static black hole

data set with sub-cubic volume growth is Kasner. Observe that we are dealing with

black hole data sets, and not just any end with sub-cubic volume growth. We do not

know if just sub-cubic volume growth is enough to classify the asymptotic in general.

We aim to prove the following theorem.

Theorem 7.2.1. Let (Σ; g, U) be a static black hole data set with sub-cubic volume

growth. Then the data is asymptotically Kasner.

To achieve this we provide first a necessary and sufficient condition for Kasner asymp-

totic. This is the content of Proposition 7.2.6 for which we dedicate the whole Section

7.2.1. In seccond place, we analize the asymptotic of free S1-symmetric static ends

(Σ; g, U) under the natural condition that U(p) ≤ U∞ (recall that U∞, the limit of U

at ∞, exists by Proposition 6.4.6). We dedicate Section 7.2.2 to show Theorem 7.2.7

claiming that, for such a data, either the asymptotic is Kasner or the whole data is flat.

The proof requires the results we have obtained for reduced states in section 6, as well

as the development of an interesting monotonic quantity along the leaves of the level

sets of U , that in turn will be used again in the proof of Theorem 7.2.1. Finally, Section

7.2.3 uses the results of the previous two sections to prove the desired Theorem 7.2.1.

7.2.1 Necessary and sufficient condition for KA.

We begin recalling the definition of the Ck-norms of a tensor with respect to a back-

ground metric. Let (M ; g) be a smooth Riemannian manifold. Let W be a smooth

tensor of any valence. We denote by |W |g(x) the g-norm of W at x ∈M . Given k ≥ 0,

the Ck-norm of W with respect to g is defined as

‖W‖2Ckg := sup
x∈M

{ i=k∑
i=0

|∇(i)W |2g(x)

}
where ∇(i)W = ∇ . . .∇︸ ︷︷ ︸

i-times

W (7.2.1)

Proposition 7.2.2. Let (T ;hF ) be a flat two-torus. Let W be a smooth tensor field (of

any valence), equal to zero at some point. Then for any 0 ≤ j ≤ k we have

‖W‖CjhF
≤ c(k) diamk−j

hF
(T ) ‖W‖CkhF (7.2.2)

Proof. We will prove the inequality for functions. To prove it for tensors use the expan-

sion W =
∑
fIωI , where ωI is an orthonormal and parallel basis (i.e. δII′ =< ωI , ωI′ >g

and ∇ωI = 0), and then use the result obtained for functions.

We will work in (R2; gR2) thought as the universal cover of (T ;hF ). In particular

π∗hF = gR2 . On a Cartesian coordinate system (x1, x2) we have

gR2 = dx2
1 + dx2

2 (7.2.3)
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and

‖f‖2
CjhF

= ‖f‖2
CjgR2

= sup
x∈R2

{ |I|=j∑
|I|=0

|∂If |2(x)

}
(7.2.4)

where for any multi-index I = (i1, . . . , i|I|), il ∈ {1, 2}, we denote ∂I = ∂xi1 . . . ∂xi|I| .

We will need to rely on the existence of a coordinate system (x1, x2) on which the

metric gR2 is written as

gR2 = dx2
1 + α(dx1dx2 + dx2dx1) + dx2

2, (7.2.5)

where α is a constant such that |α| ≤ 1/2, and where the directions ∂x1
and ∂x2

are

periodic of period less than 6diamhF (T ), that is, any line in the direction of either ∂x1
or

∂x2 projects into a circle in T of length less that 6diamhF (T ). For the calculations that

follow we assume that the coordinates (x1, x2) are given. We will prove their existence

at the end.

Observe that the norm (7.2.4), which is defined with respect to the metric (7.2.3)

and the norm

‖f‖2
CjgR2

= sup

{ |I|=j∑
|I|=0

|∂If |2
}
, ∂I = ∂xi1 . . . ∂xi|I| , (7.2.6)

which is defined with respect to the metric

gR2 = dx2
1 + dx2

2, (7.2.7)

are equivalent, namely c1(j)‖f‖CjgR2
≤ ‖f‖CjgR2

≤ c2(j)‖f‖CjgR2
. This is proved by

noting that the family of metrics (7.2.5) with |α| ≤ 1/2 is compact. Thus, to prove

(7.2.2) it is enough to prove

‖W‖CjgR2
≤ c(k) diamk−j

hF
(T ) ‖W‖CkgR2

(7.2.8)

We do that in what follows.

For any function ψ which is zero at some point, say (x0
1, x

0
2), we have

sup
{
|ψ|
}
≤ 12diamhF (T ) sup

{
|∂x1ψ|, |∂x2ψ|

}
(7.2.9)

This is seen by just writing

ψ(x1, x2) =

∫ x1−x0
1

0

∂x1ψ

∣∣∣∣
(x0

1+s,x0
2)

ds+

∫ x2−x0
2

0

∂x2ψ

∣∣∣∣
(x1,x0

2+s)

ds (7.2.10)

and using that |x1 − x0
1| and |x2 − x0

2| are less or equal than 6diamhF (T ). If ψ = f the

ψ has a zero by hypothesis. Moreover, for any multi-index I, (|I| ≥ 1), the function

ψ = ∂If has also a zero. To see this just fix xi, for all i 6= i1 (at any values), and observe

that the function ψ as a function of xi1 is the xi1-derivative of a periodic function. Now,

starting with ψ = f , use (7.2.9) repeatedly to obtain (7.2.8).

It remains to show the existence of the coordinates (x1, x2). In the cartesian system

(x1, x2), the balls B((4diamR2 , 0),diamR2(T )) and B((0, 4diamR2),diamR2(T )), possess

points q1 and q2 projecting (in T ) to the same point as the point q0 = (0, 0) does. Define
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the directions ∂x1 and ∂x1 as, respectively, those defined by q0, q1 and q0, q2, and finally

define the origin of the coordinates (x1, x2) to be (x1, x2) = (0, 0). It is direct to check

that the coordinates (x1, x2) thus constructed enjoy the required properties.

Proposition 7.2.3. Let (T ;h) be a Riemannian two-torus and let p ∈ T . Then there

is a unique flat metric hF , conformally related to ? and equal to ? at p. Moreover, for

any integer k ≥ 1, and reals K1 > 0 and Kk > 0 there is D(K1) > 0 (small enough)

and C(k,Kk) > 0 such that if

‖κ‖C1
h
≤ K1, ‖κ‖Ckh ≤ Kk, and diamh(T ) ≤ D (7.2.11)

then,

e−ChF ≤ h ≤ eChF (7.2.12)

and

‖h‖CkhF ≤ C. (7.2.13)

Proof. We will use that there is D(K1), (small enough), such that if diamh(T ) ≤ D(K1)

then there is a finite cover π : (T̃ ; h̃) → (T ;h), (i.e. π : T̃ → T and h̃ = π∗h), such

that, (i) diamh̃(T̃ ) ≤ 1, and (ii) injh̃(p) ≥ i0(K1) for all p ∈ T̃ . Because (T̃ ; h̃) is a

cover of (T ;h) we also have (iii) ‖κ̃‖Ck
h̃
≤ Kk. The claims, (i) and (ii), are well known

from the standard theory of diameter-collapse with bounded curvature. In simple terms

they follow easily from the fact that the exponential map exp : TpT → T restricted to a

small ball in TpT is an immersion and then finding an appropriate fundamental domain

on TpT around p that will define T̃ . We will not discuss this further, rather we will use

it from now on.

The properties (i) and (ii) imply that the geometry of (T̃ ; h̃) is controlled(11) in C2

by K1. Moreover if the geometry of (T̃ ; h̃) is controlled in C2 by K1, then the geometry

of (T̃ ; h̃) is controlled in Ck+1 by Kk. This allows us to make standard elliptic analysis

in (T̃ ; h̃) as if working in a fixed manifold.

Let φ̃ be the solution to

∆h̃φ̃ = κ̃, with

∫
T̃

φ̃ dAh̃ = 0 (7.2.14)

With such φ̃, the conformal metric h̃F = e2φ̃h̃ is flat. Multiply (7.2.14) by φ̃, integrate

and use Cauchy-Schwarz to obtain∫
T̃

|∇φ̃|2
h̃
dAh̃ ≤

( ∫
T̃

κ̃2 dAh̃
) 1

2
( ∫

T̃

φ̃2 dAh̃
) 1

2 (7.2.15)

Now, we can use the Poincaré inequality∫
T̃

φ̃2 dAh̃ ≤ I(K1)

∫
T̃

|∇φ̃|2 dAh̃ (7.2.16)

in the right hand side of (7.2.15) to obtain an upper bound on ‖∇φ̃‖L2
h̃
, (that I = I(K1)

is justified because the geometry of T̃ is controlled in C2). Such bound can be used in

(11)To be precise: A geometry is controlled in Ck by K if there is a cover of T̃ by n(K)-harmonic charts,

with Lebesgue number δ(K), such that, on each chart (x1, x2), we have (i) eK
′(K)δij ≤ h̃ij ≤ eK

′(K)δij
and (ii) ‖h̃ij‖Ck

δij

≤ K′(K). See [?].
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turn again in (7.2.16) to obtain ‖φ̃‖L2
h̃
≤ B1(K1). Using this L2-bound together with

standard elliptic estimates on (7.2.14) we obtain

‖φ̃‖Ck
h̃
≤ B2(k,Kk). (7.2.17)

As k ≥ 1, we deduce

|φ̃| ≤ B2(k,Kk), (7.2.18)

This implies that for a C1(k,Kk) > 0 we have

e−C1 h̃ ≤ h̃F ≤ eC1 h̃ (7.2.19)

Moreover the covariant derivative ∂ of h̃F is related to the covariant derivative ∇ of h̃

by

∂A = ∇A + (∇Aφ)hCB + (∇Bφ)hCA − (∇Cφ)hAB (7.2.20)

Now (7.2.17), (7.2.19) and (7.2.20) (to compute ∂(j)) imply the bound

‖φ̃‖Ck
h̃F

≤ B3(k,Kk). (7.2.21)

By the uniqueness of solutions to (7.2.14), φ̃ has to coincide with its average by the

Deck-transformations. Hence, φ̃ and h̃F descend respectively to a function φ and a flat

metric hF . As the bound (7.2.21) is local we also have

‖φ‖CkhF ≤ B3(k,Kk). (7.2.22)

Finally define φ = φ − φ(p). With this definition we have h(p) = hF (p). From the

bound |φ| ≤ B2(k,Kk) we obtain the bound |φ| ≤ 2B2(k,Kk) hence (7.2.12). Also from

|φ| ≤ 2B(k,Kk) and (7.2.22) we deduce,

‖φ‖CkhF ≤ B4(k,Kk). (7.2.23)

hence (7.2.13).

Before passing to the next crucial propositions we make a pair of geometric obser-

vations about the Kasner solutions and introduce some terminology.

On R+ × R2 consider a Kasner solution

g = dx2 + x2ady2 + x2bdz2, (7.2.24)

U = c lnx (7.2.25)

and assume that c ∈ (0, 1/2). Quotient the space by a Z× Z action to obtain a Kasner

solution on R+ × T 2. For every x let Tx be the two-torus {x} × T 2. Fixed c, there are

two possibilities for (a, b), (a−, b−) and (a+, b+) = (b−, a−). In either case, and because

c ∈ (0, 1/2), we have 0 < a < 1, 0 < b < 1. Let

a∗ = max
{
e2/(1−a), e2/(1−b)} ≥ 4 (7.2.26)

If a ≥ a∗ then

diamga(Ta) ≤ 1

e2
diamğ(T1) (7.2.27)
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where, recall former notation, ga = g/a2. To see this simply note that

1

a2 (a2ady2 + a2bdz2) = (a2a−2dy2 + a2b−2dz2) ≤ 1

e4
(dz2 + dy2) (7.2.28)

so (7.2.27) holds no matter how we quotient R2. Thus, the diameter of Ta with respect

to ga, is at least 1/e2 of the diameter of T1 with respect to g.

In the following propositions we will use the notation ρ = |∇U |, ρr = |∇U |r and

λ = 1/ρ, λr = 1/ρr. Also, given 0 < ρ∗ < 1/2 we let

a∗ = max{a∗(c) : c ∈ [ρ∗/4, ρ∗/4 + 3/8]}. (7.2.29)

The reader must keep this notation in mind.

We will also use the following definition. Let W be a tensor of any valence defined

at just one point x of a flat torus (T ;hF ). Then the hF -extension of W is the tensor

field defined by translating W to all T by its isometry group.

Proposition 7.2.4. Let (Σ; g, U) be a static end, and let γ be a ray emanating from

∂Σ. Let 0 < ρ∗ < 1/2 and let integers j∗ ≥ 0 and m∗ ≥ 1. Then, there exist positive

constants ε∗, µ∗ ≤ min{ρ∗/2, (1/2 − ρ∗)/2}, r∗, C∗, such that if at a point p ∈ γ with

r = r(p) ≥ r∗ we have,

(a) dGH
((
Acr(p; 1/2, 2); dr

)
,
(
[1/2, 2]; | . . . |

))
≤ ε∗, and,

(b) |ρr(p)− ρ∗| ≤ µ∗,

then,

(I) there is a neighbourhood Up of Acr(p; 1/(2a∗), 2a∗) foliated by level sets of U each

of which is a two-torus, and,

(II) there is a Kasner space K and a smooth diffeomorphism (into the image) φ :

U → K, preserving the toric-foliations, such that

‖φ∗gr − gK‖Cj∗gK
≤ C∗diamm∗

gK

(
φ(Tp)

)
(7.2.30)

where Tp is the level set of U containing p.

Proof.

(I) Proceeding by contradiction, assume that for any ε∗i = 1/i, δ∗i = 1/i and r∗ =

i there is pi ∈ γ with ri = r(pi) ≥ r∗i for which (a) and (b) hold but for which

the neighbourhood Up with the desired properties does not exist. But if (a) holds

and pi belongs to a ray then the space (Acri(pi; 1/(2a∗), 2a∗); dri) necesarily metrically

collapses to a segment of length 2a∗ − 1/(2a∗). Thus there are neighbourhoods Bi
of Acr(pi; 1/(2a∗), 2a∗) and covers πi : B̃i → Bi such that (B̃i; g̃ri , Ũi) converges to a

S1 × S1-symmetric state. The limit state has non-constant ρ because by (b) it must be

ρ̃ri(pi)→ ρ∗ and 0 < ρ∗ < 1/2. Hence the limit space is a Kasner space. Therefore for

i large enough the level sets of Ũ foliate B̃i and hence Bi. Thus the neighbourhoods Upi
with the desired properties exist for i large enough, which is a contradiction.

It is direct to see from the argumentation above that, after choosing ε∗ smaller if

necessary and r∗ bigger if necessary, ρr is uniformly bounded above and below away

from zero; that is, for some 0 < ρ < ρ < 1/2, the bound 0 < ρ ≤ ρr ≤ ρ holds on Up,
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for any p ∈ γ with r(p) ≥ r∗ for which (a) and (b) hold. In the proof of part (II) we

will assume that ε∗ and r∗ were chosen accordingly. As the proof progresses the values

of ε∗ and r∗ will be adjusted a few times.

Note that the estimates (4.2.27) and the uniform bound for ρr show that for any

i ≥ 0, |∇(i)ρr|r is uniformly bounded (without the need to adjust ε∗ or r∗ for each i).

Similarly for any i ≥ 0, |∇(i)λr|r is uniformly bounded.

It is natural then to introduce the following terminology that will be used through-

out the proof of (II) below. Let G be a geometric quantity defined on each of the

neighbourhoods Up (for instance G = λr). Then G is uniformly bounded if one can find

a constant C > 0 such that G ≤ C holds on Up, for any p with r(p) ≥ r∗ for which (a)

and (b) hold.

(II) Thoughout this part (II) we will be working on the neighbourhoods Up and at the

scaled geometry, namely dealing with gr rather than g. However to prevent a cumber-

some notation we will omit the subindex r everywhere. The reader should be aware of

that.

(II)-A. The trivialisation φ and the flat metric gF . Given q ∈ Up let ζq(U)

be the integral curve of the vector field∇aU , extending throughout Up and parametrised

by U . Then define φ : Up → Tp × I by φ(q) = (Tp ∩ ζq, U(q)). We will be identifying Up
with Tp × I via the diffeomorphism φ.

On Tp × I the metric g is written as

g = λ2dU2 + h (7.2.31)

where λ = 1/ρ and ? is the induced metric on the tori TU := Tp × U . Denote by D the

intrinsic covariant derivative on the TU ’s. As TU(p) will appear often we will use the

simpler notation Tp.

Let hF be the metric on Tp that is conformally related to h|Tp and that is equal to

? at p (§ Proposition 7.2.3). On Tp × I define

gF = dU2 + hF . (7.2.32)

Around any point q ∈ Tp we can consider coordinates (z1, z2) such that hF = dz2
1 +dz2

2 .

On every patch (z1, z2, U) we have gF = dU2 + dz2
1 + dz2

2 . For this reason the hF -

covariant derivative on the tori TU will be denoted by ∂A or simply ∂.

We claim that,

(i) e−C0hF ≤ h ≤ eC0hF , where C0 > 0 is uniform,

(ii) for any i ≥ 0 and l ≥ 0, |∂lU∂(i)h|hF and |∂lU∂(i)λ|hF are uniformly bounded.

Of course these uniform bounds should be understood to hold at every point of every

TU in Up.
We prove first (i). We start showing that for every i ≥ 0, |Diλ|h, |D(i)Θ|h and

|Diθ|h are uniformly bounded. Let v and w be two unit vectors tangent to a TU at one

point. A normal unit vector to TU is na = λ∇aU . Then we compute,

Θ(v, w) = 〈∇v(λ∇U), w〉 =
(
λ∇a∇bU + (∇aλ)∇bU

)
vawb (7.2.33)

By the estimates (4.2.27), |∇aU |g and |∇a∇bU |g are uniformly bounded. Similarly, as

mentioned in (I), λ and |∇λ|g are uniformly bounded. Hence |Θ|h is uniformly bounded.
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For the same reason ∇-derivatives of Θ are uniformly bounded, and therefore are the

D-derivatives because ∇ and D differ from each other in Θ. These bounds imply the

uniform bounds also for |Diλ|h and |Diθ|h.

Recall that the Gaussian curvature κ of the metric ? on a slice TU is given by

2κ = −|Θ|2 − θ2 − 2

λ2
. (7.2.34)

The previous estimates then show that for every i ≥ 0, |D(i)κ|h is also uniformly

bounded.

So far these uniform bounds hold without the need to adjust ε∗ or r∗, because they

are due essentially to the bounds (4.2.27) and the uniform bounds for ρ. In the sequel

we may need however further adjustment. Chose then ε∗ sufficiently small such that

diamh(Tp) is small enough that we can use Proposition 7.2.3 on Tp to conclude first

that

e−K0hF ≤ h
∣∣
Tp
≤ eK0hF (7.2.35)

where K0 > 0 is uniform and second that for any i ≥ 1, |∂(i)h|Tp |hF is uniformly

bounded.

Now we explain how (i) is a simple consequence of the boundedness of the second

fundamental forms. Recall that

∂Uh = 2λΘ (7.2.36)

As λ is uniformly bounded and as e−K1h ≤ Θ ≤ eK1h at every TU and for some

uniform K1 > 0, we deduce that e−K2h ≤ ∂Uh ≤ eK2h for some uniform K2 > 0. After

integration in U we obtain e−K3h|Tp ≤ h ≤ eK3h|Tp for some uniform K3 > 0, which is

equivalent to e−C0hF ≤ h ≤ eC0hF for a uniform C0 > 0 because of (7.2.35).

We turn to prove (ii). We have mentioned already that |∇λ|g is uniformly bounded.

Thus, |∂Uλ|(= |ρ2〈∇U,∇λ〉|) is uniformly bounded and so is |∂λ|hF by (7.2.35). We

prove then that |∂Uh|hF and |∂h|hF are uniformly bounded. The uniform bound for

|∂Uh|hF follows directly from the formula (7.2.36), the uniform bound of λ and of |Θ|h,

and (i). Let us turn now to prove the uniform bound for |∂h|hF . We work in coordinates.

We compute

∂U∂ChAB = 2(∂Cλ)ΘAB + 2λ∂CΘAB (7.2.37)

where we can write

∂CΘAB = DCΘAB + ΓMCAΘMB + ΓMCBΘAM (7.2.38)

with the Levi-Civita connection ΓCAB being

ΓCAB =
1

2
{∂AhMB + ∂BhAM − ∂MhAB}hMC (7.2.39)

Hence, relying on the estimates previously obtained we can write

∂U (∂ChAB) = X C′A′B′

CAB (∂C′hA′B′) + YCAB (7.2.40)

where |X C′A′B′

CAB | and |YCAB | are uniformly bounded. Using this system of first order

ODEs and the uniform bound for |∂h|Tp |hF at the initial slice Tp, we get directly the

desired uniform boundedness of |∂ChAB |.
Proving that for every i ≥ 0 and l ≥ 0, |∂lU∂(i)λ|hF and |∂lU∂(i)h|hF are uniformly
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bounded, is done by the iteration of the same arguments.

(II)-B. A ‘good’ S1 × S1-symmetric approximation ğ of g. We explain first

how to define ğ and then we explain how well it does approximate g. Let p0 be a point

in Tp where the Gaussian curvature is zero. The choice of p0 will play some role that

we will explain later. Then define

ğ = λ̆2dU2 + h̆ (7.2.41)

where λ̆ and h̆ are, at every leaf TU , simply the hF -extensions of λ(ζp0(U)) and h|ζp0 (U)

respectively. Note, in particular, that h− h̆ and λ− λ̆ are zero all over ζp0(U).

We prove now that for every i ≥ 0 and l ≥ 0 there is a uniform C > 0 such that

|∂lU∂(i)(h− h̆)|hF ≤ Cdiamm∗

hF (Tp), (7.2.42)

|∂lU∂(i)(λ− λ̆)|hF ≤ Cdiamm∗

hF (Tp) (7.2.43)

Fix i and l. In a coordinate patch (z1, z2, U) around ζp0 = p0× I, (p0 = (0, 0)), we have

h̆AB(z1, z2, U) = hAB(0, 0, U), λ̆(z1, z2, U) = λ(0, 0, U) (7.2.44)

for all (z1, z2, U). Taking ∂U -derivatives we deduce that for every l′ ≥ 0, also (∂l
′

U h̆)|TU
and (∂l

′

U λ̆)|TU are the hF -extensions of (∂l
′

Uh)|ζp0 (U) and (∂l
′

Uλ)|ζp0 (U) respectively. There-

fore ∂l
′

U (h − h̆) and ∂l
′

U (λ − λ̆) are zero at every point on ζp0(U). If we prove that in

addition for every i′ ≥ 0 and l′ ≥ 0, |∂(i′)∂l
′

U (h − h̆)|hF is uniformly bounded then the

Ci+m
∗

hF
-norm of ∂lU (h− h̆) on every TU would be uniformly bounded. We could then use

Proposition 7.2.2 at every tori TU , (in Proposition 7.2.2 use W = ∂lU (h− h̆), k = i+m∗

and j = i), to conclude (7.2.42) and (7.2.46). Let us prove then these bounds.

First, as (∂l
′

U h̆)|TU is the hF extension of (∂l
′

Uh)|ζp0 (U), then at every point q in a

torus TU we have |∂l′U h̆|hF (q) = |∂l′U h̆|hF (ζp0(U)) = |∂l′Uh|hF (ζp0(U)). But by (ii), for

every l′ ≥ 0, |∂l′Uh|hF is uniformly bounded, hence |∂l′U (h− h̆)|hF (≤ |∂l′Uh|hF + |∂l′U h̆|hF ),

is uniformly bounded.

In second place, as (∂l
′

U h̆)|TU and (∂l
′

U λ̆)|TU are the hF -extensions of (∂l
′

Uh)|ζp0 (U) and

(∂l
′

Uλ)|ζp0 (U) respectively then for any i′ ≥ 1 we have ∂(i′)∂l
′

U h̆ = 0 and ∂(i′)∂l
′

U λ̆ = 0.

Therefore,

∂lU∂
(i′)(h− h̆) = ∂lU∂

(i′)h and ∂lU∂
(i′)(λ− λ̆) = ∂lU∂

(i′)λ (7.2.45)

By the estimates (i) and (ii) in (I), the hF -norm of the right hand side of each of these

expressions is uniformly bounded. This concludes the proof of the bounds that we

claimed above.

These estimates imply now, for any i ≥ 0 and l ≥ 0, we have

|∂lU∂(i)DD(λ− λ̆)|hF ≤ Clidiamm∗

hF (Tp), (7.2.46)

where the Cli are uniform (use that D = ∂ + Γ). This is the estimate that will be used

in (II)-C.

(II)-C. The Kasner approximation gK of g. In coordinates (z1, z2, U) the static
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equations are

∂UhAB = 2λΘAB , (7.2.47)

∂UΘAB = −DADBλ+ λ(2κhAB − θΘAB + 2ΘACΘC
B), (7.2.48)

∂U

(√
|h|
λ

)
= 0, (7.2.49)

ΘABΘAB − θ2 = − 2

λ2
− 2κ, (7.2.50)

DAΘAB = DBθ, (7.2.51)

where, as earlier, θ = Θ A
A . The equation (7.2.49) is the same as ∆U = 0 and is

equivalent to

∂Uλ = λ2θ (7.2.52)

We will use this equation instead of (7.2.49).

Evaluating (7.2.47), (7.2.48), (7.2.49), (7.2.52) and (7.2.51) at ζp0(U) and (7.2.50)

at p0 we get,

∂U h̆AB = 2λ̆Θ̆AB , (7.2.53)

∂U Θ̆AB = λ̆(2κh̆AB − θ̆Θ̆AB + 2Θ̆ACΘ̆C
B) +O∞AB(diamm∗

hF (Tp)), (7.2.54)

∂U λ̆ = λ̆2θ̆, (7.2.55)(
Θ̆ABΘ̆AB − θ̆2

)∣∣∣∣
p0

= − 2

λ̆2

∣∣∣∣
p0

, (7.2.56)

∂̆AΘ̆AB = ∂B θ̆, (7.2.57)

where κ is defined as

κ =

[
− 1

λ̆2
− 1

2

(
Θ̆ABΘ̆AB − θ̆2

)]∣∣∣∣
p0

(7.2.58)

(and is not the Gaussian curvature of h̆ which is zero) and where O∞AB is

O∞AB = −DADBλ. (7.2.59)

This notation is to stress that, as was shown in (7.2.46), for any l ≥ 0 we have

|∂lUO∞AB |hF ≤ Cldiamm∗

hF (Tp) (7.2.60)

where Cl is uniform.

Consider now the metric

gK = (λK)2dU2 + hK, (7.2.61)

where λK = λK(U) and hK = hK(U) solve

∂Uh
K
AB = 2λKΘK

AB , (7.2.62)

∂UΘK
AB = λK(−θKΘK

AB + 2ΘK
ACΘKC

B ), (7.2.63)

∂Uλ
K = (λK)2θK (7.2.64)
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subject to the initial data

hKAB(0) = h̆AB(0), ΘK
AB(0) = Θ̆AB(0) and λK(0) = λ̆(0). (7.2.65)

Following the discussion in Section 6.2, we see that (λK(U), hK(U)) satisfy (2.2.17),

(2.2.18) and (7.2.64) for all U , and (2.2.19) at the initial time, hence is a Kasner solution.

Hence

0 = − 1

(λK)2
− 1

2

(
ΘK
ABΘKAB − (θK)2

)
(7.2.66)

on each TU . Thus, (7.2.63) is equivalent to

∂UΘK
AB = λK(2κK − θKΘK

AB + 2ΘK
ACΘKC

B ), (7.2.67)

where κK is the right hand side of (7.2.66) and is zero. Therefore, thought as ODE’s,

the system (7.2.53), (7.2.54), (7.2.55) is a perturbation of the system (7.2.62), (7.2.63),

(7.2.64) where the ’perturbation’ is O∞AB and should be thought as depending only on

U . Both sistems have also the same initial data. Therefore, using (7.2.59) and standard

ODE analysis we obtain

|∂lU (h̆− hK)|hF ≤ C∗l diamm∗

hF (Tp), (7.2.68)

|∂lU (λ̆− λK)| ≤ C∗l diamm∗

hF (Tp) (7.2.69)

for any l ≥ 0, where the C∗l are uniform. Now note that because ∂(i)hK = ∂(i)h̆ = 0

then for every i ≥ 1 we have

∂lU∂
(i)(h− hK) = ∂lU∂

(i)(h− h̆), (7.2.70)

∂lU∂
(i)(λ− λK) = ∂lU∂

(i)(λ− λ̆) (7.2.71)

Thus, from (7.2.42) and (7.2.43) we obtain

|∂lU∂(i)(h− hK)|hF ≤ C∗lidiamm∗

hF (Tp), (7.2.72)

|∂lU∂(i)(λ− λK)|hF ≤ C∗lidiamm∗

hF (Tp) (7.2.73)

where the C∗li are uniform.

The estimates (7.2.30) claimed in (II) are equivalent to (7.2.68),(7.2.69), (7.2.72)

and (7.2.73). This finishes the proof of the Proposition.

Proposition 7.2.5. Let (Σ; g, U) be a static end, and let γ be a ray emanating from ∂Σ.

Let 0 < ρ∗ < 1/2 and let m∗ be an integer greater or equal than one. Let ε∗, µ∗, r∗, C∗

be as in Proposition 7.2.4. Then, there exist positive δ∗, `∗ and B∗ such that for any

point p ∈ γ with r = r(p) ≥ r∗ satisfying,

(a) dGH
((
Acr(p; 1/2, 2); dr

)
,
(
[1/2, 2]; | . . . |

))
≤ ε∗,

(b) |ρr(p)− ρ∗| ≤ µ∗,

(c) |θ(p)− 1| ≤ δ∗,

(d) diamhK(φ(Tp)) ≤ `∗,

and for any point p′ ∈ γ with r′ := r(p′) = a∗r, then each of the following holds,
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(I) dGH
((
Aca∗r(p′; 1/2, 2); da∗r

)
,
(
[1/2, 2]; | . . . |

))
≤ ε∗/2,

(II) diamgK(Tp′) ≤ diamgK(Tp)/2,

(III) |θr′(p′)− 1| ≤ B∗diam2
hK

(Tp) + |θr(p)− 1|/2,

(IV) |ρr′i(p
′
i)− ρri(pi)| ≤ B∗diam2

hK
(Tpi) + |θri(pi)− 1|/2.

Proof. Proceeding by contradiction we assume that for each δ∗i = 1/i, `∗i = 1/i and

B∗i = i, there is pi ∈ γ with r(pi) ≥ r∗ satisfying (a)-(d), and there is p′i ∈ γ with

r′i = r(p′i) = a∗r(pi) such that either (I), (II), (III) or (IV) does not hold.

We prove now that for i ≥ i0 with i0 large enough, indeed all (I), (II), (III) and (IV)

must hold.

(I) As i → ∞, the metric distance between (Upi ; gri) and (Tpi × Ii; g
Ki
i ) tends to

zero and at the same time the spaces (Tpi × Ii; g
Ki
i ) collapse metrically to a segment of

length (2a∗ − 1/(2a∗)). Hence so does (Upi ; gri). As Upi contains Acri(pi; 1/(2a∗), 2a∗)

and therefore Acr′i(p
′
i; 1/2, 2), this set metrically collapses to a segment of length 2−1/2.

Hence (I) must hold for i sufficiently large.

(II) Let ci be the Kasner coefficient of the Kasner space Ki. Then by (b), for

sufficiently large i we have ci ∈ [ρ∗/4, ρ∗/4 + 3/8] hence (II) must hold by the definition

(7.2.26) of a∗.

(III) We write

|θr′i(p
′
i)− 1| ≤ |θr′i(p

′
i)− θ

Ki
a∗ (p

′
i)|+ |θ

Ki
a∗ (p

′
i)− 1| (7.2.74)

where θKia∗ (Tp′i) is the mean curvature of the slice Tp′i with respect to the Kasner metric

(1/a∗)2gKi , namely θKia∗ (Tp′i) = a∗θKi(Tp′i). Similarly, as r′i = a∗ri we have θr′i(p
′
i) =

a∗θri(p
′
i). Therefore for the first term in the right hand side of (7.2.74) we can write

|θr′i(p
′
i)− θKa∗(p′i)| = a∗|θri(p′i)− θK(p′i)| ≤ C∗1 diam2

hKi
(Tpi) (7.2.75)

where the last inequality is from (II) in Proposition 7.2.5 with m∗ = 2.

Write the Kasner metric gKi as

gKi = dx2 + x2aidϕ2
1 + x2bidϕ2

2 = (λKi)2dU2 + hKi (7.2.76)

and let x(pi) = xi and x(p′i) = x′i. Then,

θKi(pi) =
1

xi
, and θK(p′i) =

1

x′i
(7.2.77)

and,

x′i − xi =

∫
λKidU (7.2.78)

where the integral is along any integral line of ∇aU .

On the other hand the gri-length of the segment of γ between pi and p′i, is equal to

a∗ − 1. This length is equal, up to an O(diam2
hKi (Tpi)) to the gri-length of any integral

line of ∇aU between Tpi and Tp′i . So,

a∗ − 1 =

∫
λridU +O(diam2

hKi (Tpi)) (7.2.79)
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But by Proposition 7.2.4 we have |λri−λKi | ≤ O(diam2
hKi

(Tpi)). Substract (7.2.78) and

(7.2.79) to get

x′i = xi + (a∗ − 1) +O(diam2
hKi

(Tpi)) (7.2.80)

Thus

θKia∗ (p
′
i) =

a∗

xi + a∗ − 1 +O(diam2
hKi

(Tpi))
(7.2.81)

Then we calculate

|θKia∗ (p′i)− 1| =
∣∣∣∣ xi − 1 +O(diam2

hKi
(Tpi))

xi + a∗ − 1 +O(diam2
hKi

(Tpi))

∣∣∣∣ (7.2.82)

≤ 1

2

∣∣∣∣ 1

xi
− 1

∣∣∣∣+ C∗3 diam2
hKi

(Tpi) (7.2.83)

where to obtain the bound we used that xi → 1 and that a∗ ≥ 4 (see definition of a∗).

But
1

xi
= θKi(pi) = θKi(p0i) = θri(p0i) (7.2.84)

where p0i is the point over Tpi that is used in the construction of gKi in (II)-C in

Proposition 7.2.4. But again by Proposition 7.2.4 we have,

|θri(pi)− θri(p0i)| ≤ C∗4 diam2
hKi

(Tpi) (7.2.85)

and thus ∣∣∣∣ 1

xi
− 1

∣∣∣∣ = |θri(p0i)− 1| ≤ |θri(pi)− 1|+ C∗4 diam2
hKi

(Tpi) (7.2.86)

Combining now (7.2.74), (7.2.75), (7.2.82)-(7.2.83) and (7.2.86) we deduce that (III)

also holds for i suficiently large.

(IV) This follows the same arguments as in (III). Write,

|ρr′i(p
′
i)− ρri(pi)| ≤ |ρr′i(p

′
i)− ρ

Ki
a∗(p

′
i)|+ |ρKi(pi)− ρri(pi)| (7.2.87)

+ |ρKia∗(p′i)− ρKi(pi)| (7.2.88)

The two terms on the right hand side of (7.2.87) are bounded by O(diam2
hKi

(Tpi)) by

Proposition 7.2.4 with m∗ = 2. On the other hand following notation as in (III), write

UKi = ci lnx with ci → ρ∗. Then the term in (7.2.88) is equal to∣∣∣∣a∗ cix′i − ci
xi

∣∣∣∣ (7.2.89)

and using (7.2.80) we can easily manipulate this expression to obtain the bound

|xi − 1|/2 +O(diam2
hKi

(Tpi)) (7.2.90)

because a∗ ≥ 4 and ρ∗ < 1/2. Finally use (7.2.86) to bound this expression once more

and obtain (IV).

Theorem 7.2.6. (A characterisation of KA) Let (Σ; g, U) be a static end. Let γ be a ray

and suppose that there is a sequence pi ∈ γ such that ρri(pi) → ρ∗, with 0 < ρ∗ < 1/2
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and that (Acri(pi; 1/2, 2); gri) metrically collapses to a segment ([1/2, 2]; | . . . |). Then the

end is asymptotically Kasner.

Proof. For the ρ∗ given in the hypothesis and for any integer m∗ ≥ 1 let ε∗, µ∗, r∗ and

C∗ be as in Proposition 7.2.4, and let δ∗, `∗ and B∗ be as in Proposition 7.2.5. We

claim that there are µ∗∗ ≤ µ∗, δ∗∗ ≤ δ∗ and `∗∗ ≤ `∗ such that if for i big enough the

point p0 := pi is such that,

(a’) dGH
((
Acr(p0; 1/2, 2); dr

)
,
(
[1/2, 2]; | . . . |

))
≤ ε∗,

(b’) |ρr0(p0)− ρ∗| ≤ µ∗∗,

(c’) |θr0(p0)− 1| ≤ δ∗∗,

(d’) diamhK0 (φ(Tp0)) ≤ `∗∗,

then for any pn ∈ γ such that r(pn) = (a∗)nr(p0) we have

(a) dGH
((
Acrn(pn; 1/2, 2); drn

)
,
(
[1/2, 2]; | . . . |

))
≤ ε∗,

(b) |ρrn(pn)− ρ∗| ≤ µ∗,

(c) |θrn(pn)− 1| ≤ δ∗,

(d) diamhKn (φ(Tpn)) ≤ `∗2−n,

As by (d) diamhKn (φ(Tpn))→ 0 and (a) and (b) hold for all pn, then the end is asymp-

totically Kasner by Proposition 7.2.4.

To choose ε∗∗, δ∗∗ and µ∗∗ we make the following observation. If (a),(b),(c) and (d)

hold for pn, n = 0, 1, 2, 3, . . . ,m ≥ 1 then, after using the conclusions (I),(II) and (III)

in Proposition 7.2.5 m-times (each time use Prop 7.2.5 with p = pn, p′ = pn+1) one

obtains without difficulty the bounds,

diamhKm (φ(Tpm)) ≤ `∗∗

2m−1
, (7.2.91)

|θrm(pm)− 1| ≤ mB∗`∗∗

2m−1
+
δ∗∗

2m
, (7.2.92)

|ρrn(pn)− ρr0(p0)| ≤
n=m∑
n=1

(
B∗(`∗∗)2

22(n−1)
+
nB∗`∗∗

2n
+

δ∗∗

2n+1

)
(7.2.93)

With them at hand choose µ∗∗ = µ∗/4, and δ∗∗ and `∗∗ such that the right hand side

of (7.2.92) is less or equal than δ∗/2 for all m ≥ 1 and, when in (7.2.93) we consider

m = ∞ (i.e. the infinite sum), this sum is less or equal than µ∗/4. Chosed that way

it is then trivial that (a),(b),(c) and (d) in Proposition 7.2.5 indeed hold for all pn,

n = 0, 1, 2, 3, . . . ,∞.

7.2.2 The asymptotic of free S1-symmetric states

Free S1-symmetric ends have a well defined limit of U at infinity that we denoted by U∞
(Proposition 6.4.6). In this section we study free S1-symmetric ends with the property

that

U(p) ≤ U∞ (7.2.94)

for all p. We aim to prove the following theorem.
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Theorem 7.2.7. Let (Σ; g, U) be a static free S1-symmetric end such that U(p) ≤ U∞
for all p ∈ Σ. Then, either the data set is locally M (flat) or is asymptotic is a Kasner

different from A and C.

Suppose (Σ; g, U) is a data set as in the last proposition. If U(p) = U∞ at some

p ∈ Σ◦ then U is constant by the maximum principle and the data set is flat. Due to

this, from now on we are concerned with the case when U < U∞.

A large part of the proof of Theorem 7.2.7 is indeed quite general and is valid too

for a class of data sets that will show up again crucially in the next section. They are

the ?-static ends that we define below (the prefix “?” is just a notation).

The level sets of U will be denoted as follows,

U−1
∗ = {p ∈ Σ : U(p) = U∗} (7.2.95)

For instance U−1
1 = {p ∈ Σ : U(p) = U1} and so forth.

As for the critical and regular values of U , it follows from Theorem 1 in [31] that

the set of critical values of U is discrete. We will use this information below. Besides

of this, the critical set {|∇U | = 0} is well understood but this won’t be necessary here,

(see [1]).

Definition 7.2.8. Let (Σ; g, U) be a (non-necessarily free S1-symmetric) static end.

Then, we say that (Σ; g, U) is a ?-static end iff

1. the limit of U at infinity exists (denote it by U∞ ≤ ∞),

2. U < U∞ everywhere,

3. there is a regular value U0 of U , with U0 > sup{U(p) : p ∈ ∂S}, such that for any

regular value U1 ≥ U0, U−1
1 is a connected and compact surface of genus greater

than zero.

Note that ?-ends are non-flat. It is also easy to see that any two regular values U2 >

U1 greater or equal than U0, enclose a compact region Ω12, that is ∂Ω12 = U−1
1 ∪ U−1

2 .

The proof of Theorem 7.2.7 follows by from the next three propositions.

Proposition 7.2.9. Let (Σ; g, U) be a static free S1-symmetric end such that U(p) <

U∞ for all p. Then (Σ; g, U) is a ?-static end and has a simple cut {Sj}.

Proposition 7.2.10. Let (Σ; g, U) be a static free S1-symmetric end such that U(p) <

U∞ for all p. Then the end is asymptotic to a Kasner different from A and C, or has

sub-quadratic curvature decay.

Proposition 7.2.11. Let (Σ; g, U) be a ?-static end and let γ be a ray. Suppose that

the data set has a simple cut {Si}. Then the curvature does not decay sub-quadratically

along γ ∪ (∪jSj).

Proof of Theorem 7.2.7. Direct from Propositions 7.2.9, 7.2.10 and 7.2.11.

Propositions 7.2.9 and 7.2.10 concern only free S1-symmetric ends and are simple to

prove.

Proof of Proposition 7.2.9. To prove that the data is a ?-static data, we need to show

only 2 of Definition 7.2.8, items 1 and 2 are verified by hypothesis. Without loss of

generality we can assume that the quotient manifold S is diffeomorphic to S1 × [0,∞)
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(Propositions 6.4.2, 6.4.4). We work on (S; q, U, V ) in particular we think U as a

function from S into R. Clearly there is a regular value U0 such that for any regular

value U1 ≥ U0, U−1
1 is compact, that is, a collection of circles. None of such circles

can be contractible otherwise we would violate the maximum principle. But if there

are two such circles, then they enclose a compact manifold (finite cylinder) hence the

maximum principle would be also violated. Therefore U−1
1 is just diffeomoprhic to S1.

Now thinking U as a function from Σ to R, we have that U−1
1 is diffeomorphic to a

torus. The existence of a simple cut {Si} was shown in Proposition 6.4.5.

Proof of Proposition 7.2.10. We work on (S; q, U, V ). Let µ := limA(B(∂S, r))/r2. If

µ > 0 then (S; q) is asymptotic to a cone. Hence κ decays sub-quadratically and

therefore so does |∇U |2 by (6.1.9). Suppose now that µ = 0. Let γ be a ray from ∂S. If

µ = 0 then any sequence of annuli (Ari(pi; 1/2, 2); qri), with pi ∈ γ, metrically collapses

to the segment [1/2, 2]. For this reason, if |∇U |2 decays sub-quadratically along any

sequence pi ∈ γ then indeed |∇U |2 decays sub-quadratically along the end. On the

other hand if for a certain sequence pi, |∇U |2ri(pi) ≥ ρ∗ > 0 (ρ∗ a given constant),

then the end (Σ; g, U) is indeed asymptotic to a Kasner different from A and C by

Proposition 7.2.6. (There is a caveat here. Proposition 7.2.6 requires that for i large

enough, the annulus (Ari(pi; 1/2, 2); gri) (annulus in Σ) to be metrically close to the

segment [1/2, 2]. For i large enough the annulus (Ari(pi; 1/2, 2); qri) (annulus in S) is

close to the segment [1/2, 2], then, if necessary, just make a scaling as in (6.1.8), with

λi = 1, µi = 0 and with νi small enough that also the annulus (Ari(pi; 1/2, 2); gri) is

close to [1/2, 2]. Note that such scaling only changes the g-length of the S1-fibers in Σ

and so doesn’t affect the norm |∇U |2).

The proof of Proposition 7.2.11 will be carried out through several steps (Proposition

7.2.12, 7.2.13, 7.2.14, Corollary 7.2.15, and Proposition 7.2.16).

Proposition 7.2.12. Let (Σ; g, U) be a ?-static end. Let U0 be a regular value as in

Definition 7.2.8 and consider another regular value U1 ≥ U0. Then, the set of points

in U−1
0 reaching U−1

1 in time U1 − U0 under the flow of ∂U is a set of total measure in

U−1
0 and its image is a set of total measure in U−1

1 .

Proof. Denote by Ω02 the manifold enclosed by U−1
0 and U−1

2 . Let C = {p : ∇U(p) =

0} ∩Ω12 be the set of critical points in Ω◦12. The closed set of points C in U−1
1 that do

not reach U−1
2 in time U2 − U1 under the flow of ∂U = ∇iU/|∇U |2, end in a smaller

time at a point in C. Let φ(x, t) : C× [0,∞)→ Ω02 be the map generated by the flow of

the vector field ∇iU , (not the collinear field ∂U ), that is, that takes a point x in C and

moves it a time t by the flow of ∇iU (note that indeed if x ∈ C, then the orbit under

the flow of ∇iU is defined for all time). Suppose that the area of C is positive. Then

the set

C1 = {φ(x, t) : x ∈ C, 0 ≤ t ≤ 1} (7.2.96)

has positive volume V (C1). But as U is harmonic the flow of ∇iU preserves volume

and so we have V (φ(C1, t)) = V (φ(C1, 0)) for all t ≥ 0. Let ε > 0 be small enough that

V (B(C, ε) \ C) < V (C1)/2 (7.2.97)

where B(C, ε) is the ball of points at a distance less than epsilon from C. Then a

contradiction is reached by choosing t large enough that φ(C1, t) ⊂ B(C, ε) \ C because
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then it would be

V (C1) = V (φ(C1, t)) ≤ V (B(C, ε) \ C) < V (C1)/2 (7.2.98)

To show that the image of U−1
0 \ C under the flow of ∂U is a set of total measure in

U−1
1 just reverse the argument using the flow of −∂U from U−1

1 to U−1
0 .

The following function of the level sets of U , (U ≥ U0), will be central in the analysis

later,

G(U) =

∫
U−1

|∇U |2dA (7.2.99)

The function G(U) is well defined at least for regular values of U . It is also well defined

at the critical values but this won’t be needed. As mentioned before Definition 7.2.8,

critical values of U are discrete and, as we will show next, the lateral limits of G(U) at

any critical value Uc coincide (and are finite). Let us see this property. Let U2 > U1

be any two regular values with U2 > Uc > U1 ≥ U0 and let Ω12 be the region enclosed

them. As in Proposition 7.2.12 let C be the closed set of points in U−1
1 that do not

reach U−1
2 in time U2 − U1 under the flow of ∂U . For any ε > 0 small enough let R(ε)

be an open region in U−1
1 , with smooth boundary, containing C, and inside the ball

B(C, ε). Let C1(ε) = U−1
1 \ R(ε). Let Ω12(ε) be the union of the set of integral curves

(inside Ω12) of ∂U starting from points in C1(ε) and ending in U−1
2 , and let C2(ε) be the

union of the end-points in U−1
2 of these integral curves. Then the divergence theorem

gives ∫
C1(ε)

|∇U |2dA−
∫
C2(ε)

|∇U |2dA =

∫
Ω12(ε)

〈∇∇U, ∇U
|∇U |

∇U〉dV (7.2.100)

Take the limit ε→ 0 and use Proposition 7.2.12 to deduce,

G(U2)−G(U1) =

∫
Ω′12

〈∇∇U, ∇U
|∇U |

∇U〉dV (7.2.101)

where Ω′12 the union of the set of integral curves of ∂U starting from points in U−1
1 \C

and ending in U−1
2 and is equal to Ω′12 minus a set of measure zero. Observe that the

integrand is bounded. Take finally the limit U1 ↑ Uc and U ↓ Uc and note that the

volume of Ω12 tends to zero to get

lim
U1↑Uc

G(U) = lim
U2↓Uc

G(U) (7.2.102)

as claimed.

The function G(U) will be thought as defined for all U ≥ U0, continuous everywhere

and diferentiable except on a discrete set (the critical values of U). The continuity will

be used implicitly several times in what follows.

Proposition 7.2.13. Let (Σ; g, U) be a ?-static end. Let U0 be a regular value as in

Definition 7.2.8. Then for any two regular values U2 > U1 ≥ U0 we have,

G′(U2) ≥ G′(U1) (7.2.103)

where G′ = dG/dU .

Proof. Let U∗ be a regular value. Identify nearby level sets U−1 to U−1
∗ through the flow
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of ∂U := ∇iU/|∇U |2 = n/|∇U | where n is the unit normal to U−1. As U is harmonic,

the form |∇U |dA is preserved. With an abuse of notation we write |∇U |dA = |∇U∗|dA∗.
Thus

G(U) =

∫
U−1

|∇U ||∇U∗|dA∗ (7.2.104)

Therefore

G′(U) =

∫
U−1

(∇n|∇U |)
|∇U∗|
|∇U |

dA∗ =

∫
U−1

∇n|∇U |dA (7.2.105)

Let Ω12 be the region enclosed by U−1
1 and U−1

2 . Now let ε > 0 be a regular value of |∇U |
smaller than the minimum of |∇U | over U−1

1 and U−1
2 . Let E = {p ∈ Ω12 : |∇U |(p) ≤ ε}.

The divergence theorem gives us∫
U−1

2

∇n|∇U |dA =

∫
U−1

1

∇n|∇U |dA+

∫
Ω12\E◦

∆|∇U |dV +

∫
∂E

∇n|∇U |dA (7.2.106)

The last term on the right hand side is positive, and the second from last is non-

negative because ∆|∇U | ≥ 0 (use Bochner or just see [3] Lemma 3.5). The proposition

follows.

Proposition 7.2.14. Let (Σ; g, U) be a ?-static end. Let U0 be a regular value as in

Definition 7.2.8. Then, for any two regular values U2 ≥ U1 ≥ U0, we have(
G′

G

)
(U2) ≥

(
G′

G

)
(U1) (7.2.107)

where G′ = dG/dU .

Proof. First, recall that the set of critical values of U is discrete. We start proving that

for any two regular values U2 > U1 with no critical value in between, the inequality

(7.2.107) holds.

We write

g =
1

|∇U |2
dU2 + h (7.2.108)

where ? is a two-metric over the leaves U−1 between U−1
1 and U−1

2 . Denote with

a prime (′) the derivative with respect to ∂U = ∇iU/|∇U |2. We will use again the

notation λ := 1/|∇U |. Let Θ and θ be the second fundamental form and mean curvature

respectively of the leaves U−1.

Fix a leaf U−1
∗ . Identify the leaves U−1 to U−1

∗ through the flow of ∂U . As U is

harmonic we have |∇U |dA = |∇U∗|dA∗. Hence

G =

∫
U−1

|∇U |2dA =

∫
U−1

1

λ
|∇U∗|dA∗. (7.2.109)

As dA = λ|∇U∗|dA∗ and θ = (∂ndA)/dA we deduce θ = −(1/λ)′. Thus,

G′ = −
∫
U−1

θ|∇U∗|dA∗ (7.2.110)

G′′ = −
∫
U−1

θ′|∇U∗|dA∗ = −
∫
U−1

θ′

λ
dA (7.2.111)

64



7 VOLUME GROWTH AND THE ASYMPTOTIC OF ENDS

We use now that in dimension three θ′ has the standard expression,

θ′ = −∆λ− (−2κ+ trhRic+ θ2)λ (7.2.112)

to deduce,

G′′ = −4πχ+

∫
U1

( |∇λ|2
λ2

+ trhRic
)
dA+

∫
U−1

θ2dA (7.2.113)

where χ is the Euler characteristic of the leaves U−1. On the right hand side of this

expression the first two terms are non-negative. For the last term we have

∫
U−1

θ2dA =

∫
U−1

θ2λ|∇U∗|dA∗ ≥

(∫
U−1 θ|∇U∗|dA∗

)2

∫
U−1

1
λ |∇U∗|dA∗

=
G′2

G
(7.2.114)

Therefore,

G′′ ≥ G′2

G
(7.2.115)

which is equivalent to (G′/G)′ ≥ 0 from which (7.2.107) follows.

We prove now that (7.2.107) also holds when U2 > U1 are two regular values, and

between them there is only one critical value Uc. This would complete the proof of the

proposition. To see this we just compute,(
G′

G

)
(U2) ≥ lim

U→U+
c

(
G′

G

)
(U) =

(
limU→U+

c
G′(U)

G(Uc)

)
(7.2.116)

≥
(

limU→U−c G
′(U)

G(Uc)

)
= lim
U→U−c

(
G′

G

)
(U) (7.2.117)

≥
(
G′

G

)
(U1) (7.2.118)

where to pass from (7.2.116) to (7.2.117) we use Proposition 7.2.13 (note G(U) > 0 for

all U).

Corollary 7.2.15. Let (Σ; g, U) be a ?-static end. Then, there is a divergent sequence

of points pi, and constants C > 0 and D > 0 such that

|∇eCU |(pi) ≥ D (7.2.119)

Proof. From Proposition 7.2.14 we get

G(U) ≥ G(U0)e−C(U−U0) (7.2.120)

where C = −G′(U0)/G(U0). If C ≤ 0 then G(U) ≥ G(U0). But

G(U) =

∫
U−1

|∇U ||∇U0|dA0 (7.2.121)

which has a fixed integration measure |∇U0|dA0. It follows that there must be a diver-

gent sequence of points pi for which |∇U |(pi) is bounded away from zero (which is not
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the case). Thus C > 0. In this case we have

G(U)eCU ≥ G(U0)eCU0 > 0 (7.2.122)

But as

G(U)eCU =

∫
U−1

|∇eCU ||∇U0|dA0 (7.2.123)

again we conclude that there must be a divergent sequence of points pi and a constant

D > 0 for which (7.2.119) holds.

Proposition 7.2.16. Let (Σ; g, U) be a ?-static end and let γ be a ray. Suppose that

the data set has a simple cut {Si} and that the curvature decays sub-quadratically along

γ ∪ (∪jSj). Then, for any constant C > 0, |∇eCU | tends to zero at infinity.

Proof. Let γ(s) be a ray from ∂Σ and parametrized by arc-length s, (i.e. d(γ(s), ∂Σ) =

s). As we have done before, we will use the notation r(p) = d(p, ∂Σ), for p ∈ Σ. Thus

r(γ(s)) = s.

As |∇U |2 decays faster than quadratically along γ we have,

r|∇U |(r)→ 0 as r →∞, (7.2.124)

where we have denoted |∇U |(γ(r)) by |∇U |(r). Let r0 be such that for all r ≥ r0 we

have |∇U |(r) ≤ 1/(2Cr). Integrating we obtain

|U(r)− U(r0)| ≤ 1

2C
ln

r

r0
(7.2.125)

where to simplify notation we made U(r) := U(γ(r)). Thus,

eCU(r) ≤ c1r1/2 (7.2.126)

We will use this inequality below.

The ray γ intersects Sj and Sj+1. So let αj,j+1 be the segment of γ intersecting Sj
and Sj+1 only at its end points. Let rj be the number such that γ(rj) is the end point

of αj,j+1 in Sj . The connected set

Zj = Sj ∪ αj,j+1 ∪ Sj+1 (7.2.127)

is included inside A(21+2j , 24+2j). So by Proposition 4.4.5 (with Z = Zj) we deduce,

U(q) ≤ η + U(γ(rj)) (7.2.128)

for any q in Sj ∪ Sj+1, and where η does not depend on j.

Let Uj,j+1 be the compact manifold enclosed by Sj and Sj+1. By the maxumum

principle, the maximum of U on Uj,j+1 takes place at a point, say xj , in Sj ∪ Sj+1. So,

U(x) ≤ U(xj) (7.2.129)

for any x ∈ Uj,j+1. Combining this with (7.2.128) with q = xj we obtain,

eCU(x) ≤ c2eCU(γ(rj)) (7.2.130)

for any x ∈ Uj,j+1 and where the constant c2 does not depend on j.
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Now, Sj is included in A(21+2j , 22+2j) and so we have,

rj ≤ 22+2j (7.2.131)

which plugged in (7.2.126) gives

eCU(γ(rj)) ≤ c121+j (7.2.132)

Combining this bound and (7.2.130) we deduce

eCU(x) ≤ c42j (7.2.133)

for any x ∈ Uj,j+1 and where c4 does not depend on j.

On the other hand we also have ∆|∇U |2 ≥ 0 and thus the maximum of |∇U |2 over

Uj,j+1 is reached again at Sj ∪ Sj+1. From this fact we conclude that for every point

x ∈ Uj,j+1 it must be,

|∇U |(x) ≤ max{|∇U |(q) : q ∈ Sj ∪ Sj+1} ≤
c5
22j

(7.2.134)

where the constant c5 does not depend on j and where to obtain the last inequality it

was used that |∇U |(q) ≤ K/r(q) (Anderson’s estimate) and the bound r(q) ≥ 21+2j for

any q ∈ Sj ∪ Sj+1 because Sj ∪ Sj+1 is included in A(21+2j , 24+2j).

Let pj be any divergent sequence such that pj ∈ Uj,j+1 for each j. Then, using

(7.2.133) and (7.2.134) we reach,

|∇eCU |(pj) = CeCU(pj)|∇U |(pj) ≤
c6
2j

(7.2.135)

where c6 does not depend on j. Thus |∇eCU |(pj) tends to zero as j goes to infinity. As

the sequence pj is arbitrary we have proved the proposition.

7.2.3 Proof of the KA of static black hole ends

In this section we aim to prove finally Theorem 7.2.1 stating that a static black hole

data set with sub-cubic volume growth is indeed AK.

Let Σ be the manifold of a static black hole data. An embedded connected surface

S is disconnecting if Σ\S has two connected components one of which contains ∂Σ and

the other infinity. The closure of the component of Σ \ S containing ∂Σ is denoted by

Ω(∂Σ,S). For instance, the surfaces Sj of a simple cut are disconnecting.

For any disconnecting surface S we have,

max{U(p) : p ∈ Ω(∂Σ, S)} = max{U(p) : p ∈ S} (7.2.136)

by the maximum principle. We will use this simple fact in the proof of the next propo-

sition.

Proposition 7.2.17. Let (Σ; g, U) be a static black hole end with sub-cubic volume

growth. Let γ be a ray and let {Sj} be a simple cut. Then the end is either asymptotically

Kasner or the curvature decays sub-quadratically along the set γ ∪ (∪jSj).

Proof. Suppose that for every n there is a point pn ∈ γ ∪ (∪jSj) such that

|∇U |rn(pn) ≥ ρ∗ (7.2.137)

67



7 VOLUME GROWTH AND THE ASYMPTOTIC OF ENDS

for some ρ∗ > 0. If a subsequence of the annuli (Acrn(pn, 1/2, 2); grn) collapses to a

segment then γ must pass through the annuli Acrn(pn, 1/2, 2) and the end must be

asymptotically Kasner by Theorem 7.2.6. If no subsequence of these annuli metri-

cally collapses to a segment then one can find a subsequence (also indexed by n) and

neighbourhoods Bn of Acrn(pn, 1/2, 2) such that (Bn; grn) collapses to a two-dimensional

orbifold. Having this, by a diagonal argument, one can find a subsequence of it (also

indexed by n) and neighbourhoods Bkn of Acrn(pn; 1/2, 2kn), with kn →∞, and collaps-

ing to a two-dimensional orbifold (S∞; q∞). As the collapse is along S1-fibers (hence

defining asymptotically a symmetry), we obtain, in the limit, a well defined reduced

data (S; q, Ū , V ) where U is obtained as the limit of Un := U − U(pn). This data has

|∇U |q 6≡ 0 by (7.2.137) and therefore is non flat. Moreover it has at least one end

containing a limit, say γ, of the ray γ. Let us denote that end by Sγ .

As observed in Section ?? the limit orbifold has only a finite number of conic points,

therefore the basic structure of the asymptotic of the reduced data on the end Sγ is

described by Propositions ?? and ??. Furthermore U has a limit value U∞ ≤ ∞ at

infinity by Proposition ??.

We claim that we must have U ≤ U∞. Let us see this. Let jn be an integer such

that jn ≤ rn = r(pn) ≤ jn + 1. As γ intersect all the surfaces Sj , then fixed an integer

k ≥ 1, the surfaces Sjn+k “collapse into sets” in Sγ as n → ∞. The bigger k is, the

farther away the sets “collapse”. As U → U∞ over the end Sγ then one can find a

sequence kn → ∞ such that Un converges to U∞ (as n → ∞) when restricted to the

surfaces Sjn+kn . Then, by (7.2.136), we have

max{U(p) : p ∈ Ω(∂Σ, Sjn+kn)} = max{U(p) : p ∈ Sjn+kn} → U∞ (7.2.138)

and the claim follows because if U(q) ≥ U∞+ε for some ε > 0 and for some q ∈ Sγ then

there is a sequence of points qn ∈ Ω(∂Σ, Sjn+kn) with Un(qn) > U∞ + ε/2 if n ≥ n0,

that would eventually violate (7.2.138).

As (Sγ ; q, U, V ) is non-flat then it has to be AK different from the Kasner A and C

by Proposition 7.2.7. Therefore one can find a sequence kn such that the annuli

(Ac(γ(rn2kn); rn2kn−1, rn2kn+1); grn2kn ), (7.2.139)

neighbouring the points γ(rn2kn), collapse to a segment [1/2, 2] while having

|∇U |g
rn2kn

(γ(rn2kn)) ≥ ρ∗∗ (7.2.140)

for some ρ∗∗ > 0. Then the end must be asymptotically Kasner by Theorem 7.2.6. We

reach thus a contradiction. Hence, the curvature decays sub-quadratically along the set

γ ∪ (∪jSj).

Corollary 7.2.18. Let (Σ; g, U) be a static black hole data set with sub-cubic volume

growth that is not AK. Then

(max{U(p) : p ∈ Sj ∪ Sj+1} −min{U(p) : p ∈ Sj ∪ Sj+1})→ 0 (7.2.141)

where {Sj} is a simple cut.

Proof. If the data is not AK, then we deduce by Proposition 7.2.17 that for any sequence

of points pj ∈ Sj we have

|∇U |rj (pj)→ 0, (7.2.142)
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where rj = r(pj) as usual. Now, if pj ∈ Sj then 21+2j ≤ rj ≤ 24+2j , thus (7.2.142)

implies right away that,

max{|∇U |r̂j (q) : q ∈ Sj−1 ∪ Sj+2} → 0, (7.2.143)

as j → ∞, where we made r̂j = 22j . Now, as the maximum of |∇U |r̂j on Uj−1,j+2 is

reached at Sj−1 ∪ Sj+2 we conclude that,

max{|∇U |r̂j (q) : q ∈ Uj−1,j+2} → 0 (7.2.144)

as j → ∞. Observe that because Sj and Sj+1 are intersected by any ray γ ({Sj}
is a simple cut), they belong to the same connected component of A(21+2j , 24+2j) =

Ar̂j (2, 4). Denote that component by Acr̂j (2, 4). We have,

Sj ∪ Sj+1 ⊂ Acr̂j (2, 4) ⊂ Acr̂j (1/2, 2
6) ⊂ Uj−1,j+2 (7.2.145)

and remember that the by (7.2.144) the maximum of |∇U |r̂j over Acr̂j (1/2, 2
6) tends

to zero. So (7.2.141) is exactly item 2 in Proposition 4.4.5 with a = 2, b = 4 and

Zj = Sj ∪ Sj+1.

Proposition 7.2.19. Let (Σ; g, U) be a static black hole data set with sub-cubic volume

growth. Then U tends uniformly to a constant U∞ ≤ ∞ at infinity.

Proof. The claim is obviously true if the end is AK. Let us assume then that the end is

not AK. Let {Sj} be a simple cut and γ a ray. By Corollary 7.2.18 we have,

(max{U(p) : p ∈ Sj ∪ Sj+1} −min{U(p) : p ∈ Sj ∪ Sj+1})→ 0 (7.2.146)

And by the maximum principle,

max{U(p) : p ∈ Sj ∪ Sj+1} ≥ max{U(p) : p ∈ Uj,j+1} ≥ (7.2.147)

≥ min{U(p) : p ∈ Uj,j+1} ≥ min{U(p) : p ∈ Sj ∪ Sj+1} (7.2.148)

Therefore the function U is becoming more and more constant over the manifolds Uj,j+1

enclosed by Sj and Sj+1. A simple application of this fact is that if there is a sequence

of manifolds Uji,ji+1 over which U tends to infinity then U must tend to infinity over

any other sequence Uj′i,j′i+1, as if not then for some i1 < i2 the minimum of U over the

manifold Uji1 ,ji2 enclosed by Sji1 and Sji2 would not be reached at a point on either

Sji1 or Sji2 , but rather at a point on a manifold Uj,j+1 with ji1 < j and j + 1 < ji2 .

This would violate the maximum principle. For the same reason if U tends to a finite

constant over a sequence of manifolds Uj,j+1 then it must tend also to the same constant

over any other sequence.

Proposition 7.2.20. Let (Σ; g, U) be a static black hole data set with sub-cubic volume

growth. Then, there is a divergent sequence of disconnecting tori embedded in Σ and

enclosing solid tori in Σ ∪ B.

Proof. By the result of Galloway [?], it is enough to find a divergent sequence of dis-

connecting tori Ti having outwards mean curvature positive. Let us prove this.

Let {Sj} be a simple cut and let pj be for each j a point in γ ∩ Sj . If for a

subsequence pji the annuli (Acrji (pji ; 1/2, 2); grji ) collapse to a segment [1/2, 2] then
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there are neighbourhoods Bi of Acri(pji ; 1/2, 2) and finite coverings B̃i such that the

sequence (B̃i; grji ) converges to a S1 × S1-symmetric space ([1/2, 2] × T ; gF ). As by

Proposition ??

Let Ti be a sequence of embedded tori in Bi such that the coverings T̃i converge (in

C2) to the torus {1}×T on [1/2, 2]×T . Observe that as the disconnecting surfaces Sji
are embedded in Bi the tori Ti are also disconnecting. If the outwards mean curvature

of the torus {1} × T is negative, then so is the mean curvature of the torus Ti for i

suficiently large. But this is not possible because as Ric ≥ 0 any ray from Ti would

develop a focal point at a finite distance from Ti. On the other hand if the outwards

mean curvature is positive, then for i ≥ i0 with i0 large enough the tori Ti conform the

tori we are looking for. So let us suppose that the mean curvature of the torus {1}× T
is zero. Then....

Proposition 7.2.21. Let (Σ; g, U) be a static black hole data set with sub-cubic volume

growth. Then, there is a regular value U0 < U∞, such for any regular value U1 of U

with U∞ > U1 ≥ U0, U−1
1 is a compact connected surface of genus greater than zero.

Proof. Suppose on the contrary that there is a sequence of regular values Ui tending to

U∞ such that each U−1
i is a sphere. Clearly such sequence of spheres is divergent (i.e.

scapes any compact set). Also, by Proposition 7.2.20, every sphere is embedded inside a

solid torus in Σ∪B. Hence, every U−1
i bounds a ball. Thus Σ∪B must be diffeomorphic

to R3. Hence, the complement of an open set of Σ is diffeomorphic to S2 ×R+
0 and the

end must have cubic-volume growth by [28] which is against the hypothesis.

The next Corollary is direct from Propositions 7.2.19, 7.2.21.

Corollary 7.2.22. Let (Σ; g, U) be a static black hole data set with sub-cubic volume

growth. Then (Σ; g, U) is a ?-static end.

We are now ready to prove the Theorem 7.2.1.

Proof of Theorem 7.2.1. Suppose that the data is not AK. Let {Si} be a simple cut

and let γ be a ray. Then, by Proposition 7.2.17, the curvature decays sub-quadratically

along γ ∪ (∪Si). By Corollary 7.2.22 the data is ?-static and by Proposition 7.2.11 the

curvature cannot decay sub-quadratically along γ ∪ (∪Si). We obtain a contradiction.

Therefore the data is AK.

8 The classification theorem

Proof of the classification theorem 2.1.6. Let (Σ; g,N) be a static black hole data set.

By Proposition 4.4.3 we know that one of the following holds,

1. ∂Σ = H, where H is a two-torus, or,

2. ∂Σ = H1 ∪ . . . ∪Hh, h ≥ 1, where each Hj is a two-sphere, and (Σ; g) has cubic

volume growth, or,

3. ∂Σ = H1 ∪ . . . ∪ Hh, h ≥ 1, where each Hj is a two-sphere, and (Σ; g) has less

than cubic volume growth.

Then depending on whether 1, 2 or 3 holds, we can conclude the following,
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1. If ∂Σ = H, then the solution is a Boost as explained in Proposition 4.4.3.

2. In this case the state is asymptotically flat (with Schwarzschildian fall off), as

discussed in Section 7.1. By Galloway’s theorem ??, Σ is diffeomorphic to R3

minus ?-balls and the uniqueness theorem of Israel-Robinson-Bunting-Masood-

um-Alam, shows that the solution is Schwarzschild.

3. By Theorem 7.2.1 the solution is asymptotically Kasner. Moreover, by Galloway’s

theorem ??, Σ is diffeomorphic to a solid torus minus a finite number of open balls

and by Proposition 4.4.3 the horizons are weakly outermost. Thus, according to

Definition 2.1.5, (Σ; g,N) is of Korotkin-Nicolai type.
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