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1 Introduction.

The scalar curvature of a Riemannian three-manifold is a quantity entangled
with the notions of volume and isoperimetry. The relation is well illustrated in an
result due to Kazuo [1] that we explain next. Recall that the Yamabe invariant Yg
of a three-manifold (M, g) is defined as the infimum of the Yamabe functional

Y (ḡ) =

∫
M
Rḡdvḡ

V olg(M)
1
3
,

where ḡ varies in the conformal class [g] of g. A Yamabe metric gY is one of volume
one in [g] and of constant scalar curvature RgY equal to Yg (thus an absolute
minimum of the Yamabe functional).

Lemma 1 (Kazuo) Let gY be a Yamabe metric with scalar curvature RgY > 0.
Then, for any metric ball B(p, r) with r ≤

√
8√
RgY

, we have

V ol(B(p, r)) ≥ 10−
3
2R

3
2
gY r

3 (1)

The inequality (1) is directly related to the conformal transformation of the scalar
curvature which, if ḡ = φ4g gives R̄φ5 = −8∆φ+Rφ, and therefore

Y (ḡ) =

∫
M
R̄dvḡ

V olḡ(M)
1
3

=

∫
M

(8|∇φ|2 +Rφ2)dvg
(
∫
M
φ6dvg)

1
3

. (2)

By Aubin’s estimate Yg ≤ 6V ol(S3
1)

2
3 we see that the inequality (1) is valid for any

radius r less than the universal radius 2/(
√

3(V ol(S3
1)

1
3 ). It is worth to stress that

the estimate (1) does not make any assumption on the Ricci tensor.
The inequality (1) follows by using (2) above with suitable piece-wise linear

functions φ(r) where r(q) = dist(q, p). The formula (2) and Kazuo’s inequality
establishes a relation between the Yamabe invariant, the diameter of M (denoted
by d in what follows) and the L2-Sobolev constant of metric balls of radius d/4
which, recall, is defined by

CS(Ω)
1
2 = inf

φ/Supp(φ)⊂Ω

(
∫

Ω
|∇φ|2dvg)

1
2

(
∫

Ω
φ6dvg)

1
6

.

Indeed let gY be a Yamabe metric of volume one and positive Yamabe invari-
ant Yg = RgY . Given p, there is always q with dist(q, p) ≥ d/2. Picking that
q(p) it follows that the balls B(q, d/4) and B(p, d/4) are disjoint. By inequal-
ity (1) we have V olgY (B(q, inf{d/4,

√
8/

√
RgY })) ≥ c1(inf{d/4,

√
8/

√
RgY })3 and

thus V olgY (B(p, d/4)) ≤ 1 − c(inf{d/4,
√

8/
√
RgY })3. Therefore for any φ with

Supp(φ) ⊂ B(p, d/4) we have

RgY (1− (1− c(inf{d/4,
√

8/
√
RgY })2))(

∫
B(p,d/4)

φ6dvg)
1
3 ≤ 8

∫
B(p,d/4)

|∇φ|2dvg.
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Thus when it is positive, the Yamabe invariant of a Yamabe metric gY and its
diameter, control the Sobolev constant of metric balls of radius diam(M)/4. In
turn, the Sobolev constant constant of a region Ω gives the estimate V olg(B(p, r)) ≥
cCS(Ω)r3, for metric balls B(p, r) ⊂ Ω, in the same way as Yg gave the estimate
(1). On the other hand the isoperimetric constant J(Ω) of a domain Ω ⊂ M (see
[2]) which is defined by

J(Ω) = infΩ̄⊂Ω

Area(∂Ω̄)
V ol(Ω̄)

2
3
.

is well known [2] to control the Sobolev constant CS(Ω) from below through the
natural bound provided by the inequality∫

Ω
8|∇φ|2dvgy

(
∫

Ω
φ6dvgy )

1
3
≥ 1

8
J(Ω)2,

valid for any non-negative function φ with Supp(φ) ⊂ Ω. In turn the isoperimetric
constant gives the lower bound V olg(B(p, r)) ≥ (J(Ω)/3)3r3 for any metric ball
B(p, r) ⊂ Ω.

From the discussion above it comes to us that a useful quantity to consider
(following what is becoming standard in the literature) and that it will be used all
through is the volume radius. Let (M, g) be a Riemannian-three manifold. We do
not necessarily assume that (M, g) is complete, with or without boundary. Given
δ > 1 (fixed) define the δ-volume radius at a point {p} (to be denoted by νδ(p)), as

νδ(p) = sup{r < Rad(p)/∀B(q, s) ⊂ B(p, r),
1
δ3
w1s

3 ≤ V ol(B(p, s)) ≤ δ3w1s
3},

where Rad(p) is the radius at p and is defined as the distance from p to the boundary
of the metric completion of (M, g). The boundary of M is the metric completion
minus the set M , we will denote it as usual by ∂M . w1 is the volume of the unit
three-sphere. The volume radius of a region Ω denoted by νδ(Ω) is defined as the
infimum of νδ(p) when p varies in Ω.

Before continuing with the introduction let us introduce some terminology and
background material that we will use all through.

Let (M, g) be a non-complete Riemannian manifold, we say that (M, g) is νδ-
complete2 iff νδ(M) = 0 and Rad(pi)/νδ(pi) → ∞ when Rad(pi) → 0. The intu-
ition is that these type of manifolds are complete at the scale of νδ, namely that
when one scales the metric g by 1/νδ(pi)2 then the boundary of Mi lies further and
further away from pi as νδ(pi) → 0. Note that in the metric g̃pi = 1

νδ(pi)2
g it is

νδg̃pi
(pi) = 1
This family of manifolds comprises in particular those which are the limit of

compact Riemannian manifolds with uniformly bounded integral curvature. This
fact follows from the Yang isoperimetric inequality (with bounded curvature) [3]
(for related results see also [4]). To be more precise, let {(Mi, gi, pi)} be a sequence
of pointed Riemannian three-manifolds with

2This terminology is ours.
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1. νδ(pi) ≥ ν0 > 0,

2. The integral Lpg-curvature

‖Ric‖Lpg = (
∫
Mi

|Ric|pgdvgi)
1
p ,

with p greater than the critical power 3/2, is uniformly bounded above by Λ

3. There is a sequence of points {qi} such that distgi(qi, pi) ≤ d0 and νδgi(qi)→ 0,

then there is a subsequence of {(Mi, gi)} converging in the weak H2,p-topology to
a νδ-complete Riemannian manifold (M̄, ḡ, p). The notion of weak convergence of
Riemannian is standard in the literature and can be stated as follows. A pointed
sequence (Mi, gi, pi) converges in the weak H2,p topology to the Riemannian space
(M̄, ḡ, p̄) iff for every Γ > 0 there is i0(Γ) such that for any i > i0 there is a diffeo-
morphism ϕi : Bḡ(p,Γ) ∩ (M̄ \Bḡ(∂M̄, 1/Γ))→ Bgi(pi,Γ) ∩ (Mi \Bgi(∂Mi, 1/Γ))
such that ϕ∗gi converges weekly in H2,p (with respect to the inner product defined
by ḡ) to ḡ over the region Bḡ(p,Γ) ∩ (M̄ \Bḡ(∂M̄, 1/Γ)).

Given a domain Ω on a νδ-complete Riemannian manifold (M, g), we say that
Ω is δ-collapsed in volume radius or simply δ-collapsed iff it is νδ(Ω) = 0. If the
integral Lpg-curvature is finite then any νδ-complete Riemannian manifold is also
νδ
′
-complete for any δ′ > δ. As we will be concerned with Riemannian manifolds

with uniformly bounded Lpg-curvature we will work with a fixed δ all through.
More in general, we say that a sequence of domains {Ωi} on a sequence of

compact manifolds {(Mi, gi)} collapses if for any δ > 0 (a fixed δ during this article)
νδ(Ωi) → 0. When the integral Lpg curvature is bounded above then (tubular
neighborhoods of a fixed radius) collapsed sets are also isoperimetrically collapsed,
namely that their isoperimetric constant is zero.

Finally, we will adopt the standard terminology for ε-thin and ε-thick regions.
We will say that Ω ⊂ M is ε-thin (thick) if νδ(Ω) ≤ (>)ε (strictly speaking we
would need to include the parameter δ in the definition, but as it will be not be of
interest to us to vary it, we will forget any mention when talking about thick and
thin regions).

These definitions can be seen at work in the Examples 1 and 2 that are discussed
later.

Let us continue now with the introduction. The relation between the scalar
curvature and the volume radius on metrics of non-negative scalar curvature but
non-necessarily Yamabe is, in general, difficult to establish. The situation however
changes if one assumes a priori information on the Lp-norm of the Ricci tensor.
For instance it is straightforward to prove that the volume radius and the Yamabe
invariant on compact three-manifolds with positive scalar curvature control each
other (from below and away from zero) if one assumes an a priori upper bound on
the Lp (p > 3/2) norm of the Ricci tensor. The main goal of this article is to
prove that an upper bound on the p-integral norm of Ricci and a positive lower
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bound on the scalar curvature strongly influences the volume radius and therefore
the Yamabe invariant if one assumes an a priori knowledge of the volume radius at
one point. We will prove

Theorem 1 Let M be a compact three-manifold and suppose that R ≥ R0 > 0.
Let o be an arbitrary point in M . Then, for any δ > 1 and p > 3/2 we have
diam(M) ≤ diam(‖Ric‖Lpg , R0, ν

δ(o)) and νδ(q) ≥ ν(‖Ric‖Lpg , R0, ν
δ(o)) for any

point q in M .

The a priori control control on the volume radius at one point is indeed a necessary
condition. Consider for instance M = S2 × S1 with the metrics gl = l2dθ2 + h1

where θ is the angle on the S1 factor, l is its length and h1 is the round metric in S2

of Gaussian curvature equal to one. As l → 0 there is uniform collapse, while the
integral (Lpg) curvature remains uniformly bounded above and the scalar curvature
is, for any l, equal to one.

Theorem 1 imply in particular the next compactness Corollary

Corollary 1 The space of compact Riemannian three-manifolds (M, g) with scalar
curvature R ≥ R0 > 0, ‖Ric‖Lpg ≤ Λ and νδ(o) ≥ ν0 > 0 is precompact in the weak
H2-topology.

It is well known that the volume radius νδ(q) at a point q is controlled from
below by the volume radius νδ(o) at some other point o, the distance dist(o, q) and
a lower bound on the Ricci curvature (and therefore also by an L∞g -bound on Ric).
This is a direct consequence of the standard Bishop-Gromov volume comparison.
Thus the condition R ≥ R0 > 0 is not necessary if in Corollary 1 we replace the
upper bound on ‖Ric‖Lpg by an upper bound on ‖Ric‖L∞g . But, of course it is not
true in general that νδ(q) is controlled from below by νδ(o), dist(q, o) and ‖Ric‖Lpg
without assuming a lower bound on the scalar curvature as the classical examples
below (due to D.Yang [3]) show3.

Example 1 Let gε = dx2 + (ε+x2)4(dθ2
1 +dθ2

2) be a family of metrics on [−1, 1]×
S1 × S1. When ε→ 0 the volume radius at the central torus {x = 0} collapses to
zero, while the volume radius at any point in the torus {x = 1} remains uniformly
bounded below. The integral curvature ‖Ric‖L2

g
remains uniformly bounded above

but the scalar curvature diverges to minus infinity at the central torus.

Example 2 Let gε = dr2 + r2dθ2
2 + (ε + r2)4dθ2

1 be a family of metrics in the
manifold D2×S1 where D2 is the two-dimensional unit disc. As ε→ 0 the volume
radius at the central circle {r = 0} collapses to zero, while the radius at any point
in the torus {r = 1} remains uniformly bounded below. The integral curvature
‖Ric‖L2

g
remains uniformly bounded above but the scalar curvature at the central

circle diverges to negative infinity.
3One can interpret that, to many effects, the failure of the volume comparison under integral

bounds on the curvature can be well remedied by assuming a positive lower bound on the scalar

curvature. This fact can be seen as another reflection of the entanglement between volume and

scalar curvature.
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There are various properties in these two examples that are characteristic to
any process of isoperimetric collapse with bounded integral curvature. We discuss
some of them in the next two paraphs.

Looked at the central torus (Example 1) or central circle (Exmaple 2), the
family of scaled metrics (1/ε2)gε converge to the flat space S1 × S1 × R (with the
product metric) or S1×R2 (with the product metric) respectively. As was explained
before, a sequence of pointed spaces (Mi, gi, pi) with ‖Ric‖Lpgi (p > 3/2) uniformly
bounded and νδ(pi)→ 0, can be rescaled to obtain a non-trivial complete flat limit,
having at the limit point p, at least one length minimizing (geodesic) loop of length
one. That the limit is flat follows from the fact that the power p we consider is
above the critical scaling p = 3/2.

In general, as the two previous examples show, the (very) thin regions (with
bounded integral curvature) are enclosed by a set of disjoint two-tori. It is true on
the other hand that given a set of embedded solid tori on a compact three-manifold
one can always find a sequence of metrics collapsing the interior regions of the tori
while keeping the integral Lpg-curvature uniformly bounded above. Thus there are
no topological restrictions for the phenomenon of collapse with bounded integral
curvature on any manifold.

These observations will be conceptually important in the proof of Theorem 1.

I the next paragraphs we will describe the main ideas underlying the Proof of
Theorem 1 and at the same time we will explain the contents of the different partial
results that add up to give its proof.

The idea underlying the proof of Theorem 1 is simple but requires some intro-
duction. We will follow an argument by contradiction which will come out of the
next two main steps:

1. Understand the topology of the very collapsed regions on manifolds having
an a priori (uniformly fixed) upper bound on the Lpg-Ricci curvature and an
a priori (uniformly fixed) positive lower bound on the scalar curvature.

2. Use this knowledge to prove that, on these very collapsed regions, there are
stable minimal tubes (∼ S1× [−1, 1]), with diameter bounded above, joining
small and large geodesic loops. Show that such tubes do not exist using size
relations of stable minimal surfaces (see below).

These two steps are carried out through several Propositions and Corollaries.
(Step 1). In Proposition 3 we prove that the thin region can always be de-

composed into regions which are one collapsed (where the scaled geometry, as in
Example 2, has one collapsed (S1) fiber), two collapsed (where the scaled geome-
try, as in Example 1, has two collapsed (S1) fibers), or regions lying somewhat in
between of the previous two that we shall call pseudocusps. In topological terms,
Proposition 3 shows explicitly the well known fact that thin regions have the struc-
ture of a graph manifold, namely they are the union along two-tori of a finite set
of S1 fibrations over two-surfaces. The topology of thin regions is further explored
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in the central Lemma 2 where information on its π1 and π2 homotopy groups is
provided. None of Proposition 3 or Lemma 2 indeed depend on the positive lower
bound of the scalar curvature. When this condition is considered a further sim-
plification arises on the topology of thin regions (the simplification is possible too
when R is non-negative). Indeed in Proposition 4 we are able to rule out some
crucial tori joining the different sectors of the graph manifold (the thin regions).
This will allow us to classify, in Corollary 2, the three types of collapsed ends of
a limit manifold (M̄, ḡ, ō) (of a sequence of pointed manifolds {(Mi, gi, oi)} with
Rgi ≥ R0 > 0, ‖Ricgi‖Lpgi ≤ Λ and νδ(oi) ≥ ν0 > 0)).

(Step 2). The topological properties of these three types of ends are central
to prove that, at each one of them, small and large closed curves (indeed almost
geodesic loops) can be joined through area minimizing tubes. Thus the Plateau
problem with this kind of boundary is solvable through a tube. The existence
of such surfaces is then ruled out using general size relations4 on stable minimal
surfaces originally due (in full generality) to Castillon [6]. Let us see this argument
in the Examples 1 and 2. In Example 1 the limit manifold (as ε → 0) is M̄ =
T 2 × [−1, 0) ∪ T 2 × (0, 1] and the limit metric is ḡ = dx2 + x8(dθ2

1 + dθ2
2). In this

case the stable minimal tube [x̄, 1] × {θ̄1} × S1, where x̄ is positive and close to
zero and θ̄1 is a fixed angle (in the first factor S1 of T 2) joins a small closed curve
(almost a geodesic loop) with a large closed curve. Similarly in Example 2 the limit
manifold is M̄ = (D2−{(0, 0)})×S1 and the limit metric is ḡ = dr2+r2dθ2

1 +r8dθ2
2.

The stable minimal tube [r̄, 1] × {θ̄1} × S1, where r̄ is positive and close to zero
and θ̄1 is a fixed polar angle in the two-disc D2 also joins a small and a large
closed curve (almost geodesic loops). For what was said in the paragraph after the
Examples 1 and 2 it is clear that when the limit metrics are scaled by one over the
length squared of the small boundary component of the tubes then they look more
and more like the flat tube [0,∞) × S1 (with the flat product metric). The key
point is that size relations rule out stable surfaces with these characteristics. Let
us explain this point in more detail. We will use the following argument (and won’t
be repeated) in the Proof of Theorem 1. Will be refer it there as the property of
non-collapse at a finite distance for stable minimal surfaces.

Consider a Riemannian surface (S, h) diffeomorphic to the tube [−1, 1] × S1.
Suppose that the stability inequality∫

S
|∇f |2 + κf2dA ≥ 0, (3)

holds, where f , in H1
g , vanishes on the boundary of S. κ is the Gaussian curvature

of S. Such inequality arises for instance if S is a stable minimal tube inside a
three-manifold with non-negative scalar curvature. Consider now a smooth loop L
embedded in S and isotopic to any one of the two loops L1 and L2 that form the
boundary of S. Let L1 and L2 be the distances from L to L1 and L2 respectively
and let A1 be the area of the set of points at a distance less or equal than L1 form L

4The terminology Size Relations is due to us [5].
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in the component that contains L1 (and similarly for A2). Finally let l = length(L),
l1 = length(L1) and l2 = length(L2). It follows from [6] (see also [5] for related
results in the context of this article), using the stability inequality (3), that the
following size relation holds

2l(
1
L1

+
1
L2

) ≥ A1

L2
1

+
A2

L2
2

. (4)

Note that the expression is scale invariant. A direct consequence of this geometric
relation is: there are no sequences {Si} of stable minimal tubes satisfying

1. Area(Si) ≥ A0 > 0,

2. diam(Si) ≤ L0,

3. l1,i → 0,

4. The pointed scaled spaces (Si, 1
l21,i
hi, pi), where pi ∈ L1,i, converge to the flat

tube [0,∞)× S1.

Note that the stable tubes that were considered for the Examples 1 and 2 satisfy
(if we let x̄ and r̄ go to zero) precisely the properties above. To see the claim take
any increasing and diverging sequence {di} and consider the loop L̄i at a distance
equal to di from L1,i in the metric 1

l21,i
hi. Suppose too that {di} was chosen in such

a way when hi is scaled as in item 4 the region enclosed by L1,i and L̄i is closer
and closer (globally) to the tube [0, di] × S1. Now if we chose as Li the loop at
a distance di/2 from L1,i, it follows from the scale invariance of the expression 4
that li(1/L1,i + 1/L2,i)→ 0. But the right hand side of (4) is bounded below by a
positive number which is a contradiction.

In Propositions 7 and 8 we prove that the area minimizing (stable) tubes con-
sidered at each one of the limit ends, would look (when the metric is scaled by
one of over the length squared of the smallest) as the flat tube [0,∞) × S1, if the
smallest end of the tube is chosen sufficiently small. In this way one can construct
a sequence of stable loops satisfying item 4 in the list above. If one consider this
sequence then the condition in item 1 is not difficult to have if the largest loop is
set fixed or set to vary in a fixed boundary. The main point where the condition
R ≥ R0 > 0 is used is to guarantee that the the diameter of the tubes is bounded
above and therefore that the condition in item 3 holds. In fact the diameter can
be estimated from above by a numeric constant times 1/

√
R0. This well known

estimate has its roots in the work of Fischer-Colbrie [7] and a clear proof can be
found in [8].

Once these two propositions are proved we have all what is needed to carry up
the two main steps. The proof by contradiction of Theorem 1 is then closed up.

The present article originated in an effort to study the problem of the evolution
of the volume radius in the Constant Mean Curvature or Maximal gauges in General
Relativity. Recall that if Σ ⊂M is a space-like hypersurface on an Einstein (Ric =
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0) Lorentzian four-manifold (M,g) then the energy constraint gives Rg = |K|2g−k2

where Rg is the scalar curvature of the three-metric g in Σ and K its second
fundamental form (k = trgK). Thus as R ≥ R0 = −k2, we have that in the CMC
gauge the scalar curvature is a priori bounded below by −k2, while in the Maximal
gauge (k = 0) it is bounded below by zero. Theorem 1 does not apply directly to
any of these two scenarios, however the following conjecture, if valid, would extend
the conclusions of Theorem 1 to the cases where R0 is zero or negative and therefore
applicable to General Relativity [5].

Conjecture 1 Let (M, g) be a compact5 Riemannian three-manifold with R ≥ R0

and let p be a number greater than 3/2. Then

1. If R0 > 0 then νδ(q) is controlled from below by ‖Ric‖Lpg and νδ(p). Therefore
V olg(M) is controlled from below and above by them too.

2. If R0 = 0 then νδ(q) is controlled from below by ‖Ric‖Lpg , νδ(p) and V olg(M).

3. If R0 < 0 then νδ(q) is controlled from below by ‖Ric‖Lpg , νδ(p), V olg(M)
and dist(q, p).

The Einstein CMC or Maximal flow is one example of a geometric flow where
one would like to have an a priori relation between the integral curvature and
the volume radius. The wish is in essence due to the hyperbolic character of the
Einstein equations and thus the necessity of using integral norms to control the
flow. The quest of the a priori relation is also present in some elliptic problems,
typically when one is interested in minimizing an (integral) action of the curvature.

From an analytic viewpoint Theorem 1 claims that (say p = 2)R0(> 0), ‖Ric‖L2
g

and νδ(o) control the usual H2-Sobolev norm of the metric g in harmonic coordi-
nates, whose size, or harmonic radius, is controlled by them too. This is a direct
consequence of the well know (local) fact [9] that at any point p in a Riemannian
manifold (M, g) the intrinsic quantities νδ(p) and ‖Ric‖L2

g(Bg(p,νδ(p))) control the
H2-harmonic radius at p, where the harmonic radius is defined as the supremum
of the radius r > 0 for which there is a harmonic coordinate chart {x} covering
Bg(p, r) and satisfying

3
4
δjk ≤ gjk ≤

4
3
δjk, (5)

r(
∑

|I|=2,j,k

∫
B(p,r)

| ∂
I

∂xI
gjk|2dvx) ≤ 1, (6)

where in the sum above I is the multindex I = (α1, α2, α3), and as usual ∂I/∂xI =
(∂x1)α1(∂x2)α2(∂x3)α3 . Both expressions above are invariant under the simultane-
ous scaling g̃ = λ2g, x̃µ = λxµ and r̃ = λr. Any harmonic chart {x} satisfying the
conditions 5 and 6 will be called a canonical harmonic chart.

5It is not difficult to adapt item 2 below to the Asymptotically Flat setting.

9



Thus Theorem 1 claims that the usual coordinate-dependent H2-Sobolev norms
are controlled all over M by the intrinsic quantities R0, ‖Ric‖L2

g
and νδ(o).

Finally it worth to remark that the crucial upper estimate on the diameter of
the stable tubes has been used (for discs instead of tubes) by Schoen and Yau in
the context of General Relativity in [10].

Acknowledgments: I would like to thank Lars Andersson and Jan Metzger, for
their constant interest and support on the present work.

1.1 Some terminology.

Because we will be dealing with metrics which are scaled from a single metric,
it will be important to us to be manifestly clear to which scaling or metric we
are referring to. For this reason we are forced to include very often a sub-index
indicating the metric from which geometric quantities are calculated. For instance
metrics balls with center in a set C and radius r with respect to a metric g will
be denoted often by Bg(C, r). Similarly, the distance between two sets (typically
points) C and C ′ in the metric g will be denoted by distg(C,C ′). The Lpg-norm of
a tensor T over a domain Ω is defined and denoted by

‖T‖Lpg(Ω) = (
∫

Ω

|T |pdvg)
1
p .

2 Proof of Theorem 1.

2.1 Flat three-manifolds.

If a compact three-manifold M is flat then it is finitely covered by a flat torus,
moreover there are only ten diffeomorphism-types. If instead the manifold M is
complete but non-compact then it has a soul, that means a compact, flat and totally
geodesic submanifold S such that M is isometric to its normal bundle. If the soul
S is a torus (and M is orientable) then M is the metric product of a flat torus (the
soul) and R. If the soul is S = S1 (and say of length one) then M is isometric to
a flat manifold F = R3/Z where Z acts on R3 by a translation of magnitude one
along the z-axis composed with a rotation of angle α (between −π and π along the
(x, y)-plane. This last category of flat three-manifolds is indeed rich in complexity.
We will denote such spaces by F (α, 1) and if the translation along the z-axis is by
an amount h then by F (α, h).

Example 3 Consider for instance a flat manifold which is obtained in this way
with α = 2π/p, p a natural number and h = 1/p. In this way the soul (the fiber
at the origin) has length one over p and the torus at a distance of p/(2π) from it
gets closer and closer as p goes to infinity to the torus S1 × S1 with the factors S1

orthogonal and of length one. This pseudo-cusp (that in this example is the region
at a distance p/(2π) from the soul) is an interesting example showing that there
are flat three-manifolds with some regions very collapsed and some other not at
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all. When p goes to infinity then the pseudo-cusp approaches the metric product
S1 × S1 × [0,∞) and its volume (counted from the soul to the torus at distance
d = p/(2π)) increases therefore to infinity. Pseudo-cusps (see later for a precise
definition) will play an important role in the elucidation of the global topology of
collapsed regions on three-manifolds with bounded integral curvature.

When it comes to deal with F (α, h) (α > 0) spaces it will be important to us
to understand the relation between the length of length minimizing geodesic loops
based at a point p and the distance from p to the soul of F . We present now a first
proposition that gives some information on this relation.

Proposition 1 Consider the set of F (α, 1) spaces. Then for any d > 0 there is a
natural n(d) and numbers 0 ≤ n1 ≤, . . . ,≤ nm ≤ n(d) such that for any α between
−π and π there is n(α) (a number in the list before) for which the torus lying at
a distance d from the soul in the metric 1

n(α)2 g has a closed loop of length between
one and two. Any other closed loop has length greater or equal than 1/n(α).

Proof:
We identify angles between −π and π in the unit circle with the points in it. For

any α in [−π, π] find the least n such that the rotation Rnα of the point (x, y) =
(1, 0) lies in the interval (−1/d, 1/d) and choose and interval (α− φ(α), α+ φ(α))
such that the rotation Rnβ of (1, 0) is also in the interval (−1/d, 1/d) for any
β ∈ (α − φ(α), α + φ(α)). The set of those intervals cover the closed set [−π, π].
Find a finite subcover {(α1 − φ1, α1 + φ1), . . . , (αm − φm, αm + φm)}. Therefore
for each interval there is a number n(αj), we denote by n(d) the greatest of them.
Suppose that the rotation (giving rise to the flat manifold) is of angle α. If α
belongs to the interval αi + φi, αi − φi) let ni be the corresponding natural. Then
consider the point (nid, 0). After rotation by Rnα its z-component is ni and on
the (x, y)-plane it lies at a distance at most ni from (nid, 0) along the circle of
radius nid. The initial and final points (in R3) therefore join through a segment of
magnitude at least ni and at most

√
2ni. After scaling the metric by 1/n2

i we get
a loop of length between one and two and at distance d from the soul. To see that
any other loop must a have a length greater or equal than 1/ni observe that the
process of sliding it to the soul is length-decreasing.

2

The simple proposition below, shows in particular that in any F (α, h) space
we have lim l(pi)/d(pi) → 0 for any sequence of points {pi} such that d(pi) → ∞.
Before stating the proposition let us introduce some notation. Let l(p) be the length
of the shortest geodesic loop based at p in a F (α, h)-space. Then denote by g̃p the
scaled metric g̃p = 1

l(p)2 gF . Naturally the shortest geodesic loop considered before
has length one in the metric g̃p. Let d(p) be the distance from p to the soul of F
in the metric gF .

Proposition 2 Consider a space (F (α, h), gF ). Suppose that for a point p with
d(p) = d we have l(p) = 1 (which by symmetry implies that any p with d(p) = d

has l(p) = 1). Then
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1. There is h(d) such that 0 < h(d) ≤ h ≤ 1. Thus the set of spaces F (α, h)
with the property above is compact.

2. For any d̄ there is d̃ such that for any point q with distgF (q, Soul) ≥ d̃ it is
distg̃q (q, Soul) ≥ d̄.

3. For any sequence of points qi such that distgF (qi, Soul(F )) → ∞ the limit
space of the pointed space {F (α, h), g̃qi , qi)} is either the metric product S1×
R2 or a product T 2 × R where the factor T 2 has a flat metric.

Proof:
Item 1. For each possible angle α find the least n(α) such that the rotation

Rn(α)α of the point (x, y) = (d, 0) lies in the interval between (−1/4d, 1/4d). Also
for any α find φ(α) such that for any β ∈ (α−φ(α), α+φ(α)) the rotation Rn(α)β of
the point (x, y) = (1, 0) lies again in the interval (−1/4d, 1/4d). Let {(α1−φ1, α1−
φ1), . . . , (αn − φn, αn + φn)} be cover of [−π, π]. Let m = max{n(α1), . . . , n(αn)}.
Then if h < 1/m the shortest geodesic loop at p must have length less than one
which is not possible.

Item 2. Suppose the claim is not true. Then there is d̄ such that for any d̃ = n

there is qn having dist(qn, Soul) ≥ n and distg̃qn (q, Soul) ≤ d̄. But then it must be
l(qn) → ∞ and thus the Soul in the scaled metric (1/l(qn)2)gF must have length
less than 1/l(qn) which, for sufficiently high n, contradicts item 1.

2

Item 3. To prove this item note that the torus which lies at a distance equal to
dist(qi, Soul) from the soul converges into a flat and totally geodesic two manifold
in the limit space. If it is S1×R then the limit space is S1×R2 while if it is a flat
torus T 2 (with a flat metric) then the limit space is the product T 2 × R.

Example 4 Consider a flat three-manifold which is obtained by a rotation by
an angle 2π/p, p a (fixed) positive integer and translation by one along the z-
axis. Again we will denote it by F (2π/p, 1). Consider the points (x, 0, 0). When
x ∼ 0 the shortest geodesic loop based at (x, 0, 0) is homotopic to the central fiber
({(0, 0, z), z ∈ [0, 1]}) and its length is close to one. However when x goes to infinity
then the shortest loop homotopic to the central fiber and based at (x, 0, 0) increases
its length to infinity. Instead the loop {(x, 0, z), z ∈ [0, p]} keeps its length equal to
p as x goes to infinity and is the only simple geodesic loop based at (x, 0, 0) whose
length remains bounded. Thus the pointed spaces {F (2π/p, 1), (1/p2)gF , (x, 0, 0)}
converge, as x→∞, to the metric product S1 × R2.

Example 5 We obtain the same convergence as in the previous example for the
pointed spaces {(F (2π/p, 1), (1/2)gF , (p/(2π), 0, 0))} where now the points depend
on on the natural number p (and therefore on the metric). This time however the
shortest geodesic loop approaching S1 is the loop
{((p/(2π) cos(2π/p), (p/2π) sin(2π/p), 1)− (p/2π, 0, 0))θ + (p/2π, 0, 0)θ ∈ [0, 1]}.

12



Examples 4 and 5 show in particular that convergence to a single flat space can
be in many different fashions. Note that in these three examples the limit carries
some topology. What Proposition 2 shows is that any pointed sequence
{(F (αi, 1), gFi , {pi})} with the distance from pi to the soul of F (αi, 1) going to
infinity can be rescaled to converge to T 2 × R or S1 × R2.

Remark 1 Consider a torus T 2 lying at a definite but arbitrary distance from the
soul (S1) in a F (α, h)-space and consider the solid torus D enclosed by T 2. Then
the inclusion i : T 2 → D induces a map on π1 whose kernel is precisely represented
by the circle which is the intersection of T 2 with the plane (x, y). Therefore a closed
curve in T 2 in the kernel of the inclusion will have length greater or equal than 2π
times the distance from T 2 to the soul. Thus if that distance is large and a loop in
T 2 has length one then it cannot lie in the kernel of the inclusion and must project
non-trivially into the central fiber. This fact will be of central importance later.

2.2 Sectioning the thin parts of the manifold M .

Let us start by explaining how to break thin regions into parts which are one-
collapsed (and that will be called region (c)), two-collapsed (that will be called
region (b)) and those lying somewhat in between of them that we shall call pseudo-
cusps (or region (a)). From now on assume that ‖Ric‖Lpg ≤ Λ.

We are going to work with three parameters d, ε and ε̄, and we need to impose
some conditions on them that we will call adjustments. The adjustments are made
in order to guarantee that basic properties of flat manifolds that will be useful
to decompose and understand the topology of the thin region also hold in balls
B 1
νδ(p)2

g(p, d) centered at any point p with νδ(p) ≤ ε̄. Namely to most of purposes

these balls can be thought as flat.

Adjustment 1 Given d > 0 and ε > 0 we can find ε̄(d, ε,Λ) > 0 (from now on
we will forget writing the Λ-dependence) such that for any p with νδ(p) ≤ ε̄ there is
a complete and flat manifold (F (p), gF (p)), that we shall call an associated space,
such that B 1

(νδ(p))2
g(p, d) is ε-close in the strong H2-topology to a ball BgF (q, d) in

F .

In what follows we will work not with the scaled metric 1
(νδ(p))2

g but instead
with the metric g̃p(q) = 1

l21

1
(νδ(p))2

g(q) where l1 is the length of the shortest geodesic

loop L1 at p in the metric 1
(νδ(p))2

g. Of course in the metric g̃ it is length(L1) = 1.
Note that g̃p = (1/lengthg(L1))2g. We will assume therefore that ε̄ was chosen in
such a way that Bg̃p(p, d) is ε-close in the strong H2-topology to BgF (q, d) in F and
recall that this means that there exists a diffeomorphism ϕp : BgF (q, d)→ Bg̃p(p, d)
with ‖ϕ∗pg̃p−gF ‖H2

gF
≤ ε. We will keep the notation (F (p), gF (p)) for the associated

spaces and ϕp for the diffeomorphism between the metric balls.
As said if a point is very collapsed then there is, at the point, a length minimizing

loop L1. The sets of points in M for which l(p) = lengthg(L1) ≤ ε̄ will be called the
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ε̄-thin part and denoted by Mε̄ (we will keep the notation l(p)). Defined like this,
it may happen that the boundary of Mε̄ is somehow rough as we have control on
length(L1) only in C0. To avoid this slight inconvenience we will find a substitute
for ∂Mε̄ with more desirable properties. Still, we will denote the new region as Mε̄.

Adjustment 2 Fix a number K much greater than one (say for instance K = 10
but the actual value is not important). Now, given the ε in the Adjustment 1, find
d(K, ε) and ε̄(d, ε,K) such that for any p in Mε̄ for which:

1. Any (F (p), gF (p)) associated to g̃p at p does not have a soul S1 at a distance
less or equal than d/2 and,

2. there is a second closed loop L2 at p not homotopic to L1 (the shortest) with
length(L2) ≤ K,

then the metric g̃p is, in Bg̃p(p, d/4), ε-close in the strong H2-topology to the flat
(product) metric gF = dx2 + h (h flat in T 2) in a ball of radius d/4 in the flat
manifold F = T 2 × R.

In the following we will make use of a convenient metric g∗(p) = (1/νδ(p))2g(p).
Note that g∗(q) is C0-close to (1/νδ(p))2g(q) if q varies in a neighborhood of p in
the metric (1/νδ(p))2g(q).

Let p be a point as in the Adjustment 2. A torus near p in the metric g∗ will
be called a K-torus if it is the image under ϕp of a torus C1-close to the torus
that passes through ϕ−1

p (p) in F (p) and that lies at a constant distance from the
soul, if the soul is S1, or simply C1-close to the leaf T 2 in F = T 2 ×R that passes
through ϕ−1(p), if the soul is T 2. How close in C1 is not important. We include
this condition to provide some flexibility in the choice of the torus but as we said
it has not particular relevance. The terminology K-torus naturally arises from the
fact that one such torus has one shortest geodesic loop of length close to one and
a second geodesic loop (following the first in length) whose length lies in a range
close to the range [1,K]. Note that if a flat torus has one shortest geodesic loop of
length one and another geodesic loop (following the first in length) of length in the
range [1,K] then the angle that they form cannot be arbitrarily small and there is
a lower bound (depending on K) for it. In this sense K-torus are non-degenerate.

A further adjustment is required. Observe first the following elementary prop-
erty of area minimizing (connected) surfaces S on a manifold F = T 2 × R: if
∂S ∈ T 2 × [d/4,∞) then S does not enter T 2 × (−∞, 1]. With this in mind we
make the following adjustment.

Adjustment 3 Lower ε (and for each value of ε find d(ε) and ε̄(d, ε) satisfying
Adjustments 1 and 2) such that if p be a point as in the Adjustment 2 and T 2 a
K-torus through p, then for any component of Bg̃p(p, d/2) \ T 2 one can deform
(see below) g in Bg∗(T 2, 1) in such a way that T 2 is mean convex and for any area
minimizing (connected) surface S with S ⊂ Bg∗(T 2, d/2), it is S ∩Bg∗(T 2, 1) = ∅.
In particular S does not enter where g was modified.
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We explain now a way in which the metric g can be modified. Consider g̃p and as in
Adjustment 2 a diffeomorphism ζ : Bg∗(p, d/4) → T 2 × R such that ζ∗g̃p is ε-close
in the H2-Topology to the product metric gF in the flat space F = T 2 ×R. Say x
is the coordinate in the R factor and consider a function ξ(x) such that ξ(x) = 1 if
x ∈ [0, 1/2), ξ is decreasing and ξ(x) = 0 if x > 3/4. Then, a first modification of
g will be (1/l(p)2)ζ∗(ξgF + (1− ξ)ζ∗g̃p). The desired modification of g to be mean
convex is then easily obtained.

Adjustment 4 Given the ε and d from the previous Adjustments we lower now ε̄

(we do not need to alter ε and d again) until the following is true. For any p such
that the associated space is F (p) = F (α, h) with α > 1/2d then for any point q at
a distance less or equal than one in the metric g∗ from

ϕp(Bg̃p(Soul(F (p)), dist(Soul(F (p)), ϕ−1
p (p))),

it is
ϕp(Bg̃p(Soul(F (p)), dist(Soul(F (p)), ϕ−1

p (p))) ⊂

ϕq(Bg̃q (Soul(F (q)), dist(Soul(F (q)), ϕ−1
q (q)) + 1)).

We are ready to define the three types of elementary sectors for the thin parts.

Definition 1 Assume M is a compact three-manifold with ‖Ric‖Lpg ≤ Λ and d, ε̄
and ε are chosen as above.

1. A point p ∈Mε̄ is a point of type (a) iff there is an associated space (F (p), gF (p))
of the form F (p) = F (α, h), with the soul S1 at a distance less or equal than
d/2 from p and α > 1/(2d). If the associated F (α, h) spaces have their souls
at a distance less or equal than d/2 but instead α ≤ 1/(2d) then the point p
is of type (c).

2. A point p ∈ Mε̄ is a point of type (b) iff it is not of type (a) or (c) as
defined above and there is a second closed length minimizing loop L2 at p,
non-homotopic with the shortest L1 and having length(L2) ≤ K.

3. A point p ∈Mε̄ is a point of type (c) iff it is not of type (a) or type (b).

In practice we will denote points of type (a) as defined above as (d, a)-points.
Similarly points of type (b) as defined above will be denoted as (K, d, b)-points and
equally for (K, d, c)-points.

The following proposition explains how the ε̄-thin parts of M gets divided into
regions of types (a), (b) or (c) along embedded tori (see Figure 1). Just to note, the
points of type (a) will be (d+1, a)-points and those of type (b) will be (K+1, d, b).

Proposition 3 Given a compact three-manifold M with ‖Ric‖Lpg ≤ Λ and d, ε̄
and ε fixed following Adjustments 1-4, then there is a set of embedded tori (that
we shall call elementary tori) separating Mε̄ into a set of connected regions (that
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we shall call elmentary regions) made of points of types (a), (b) and (c) only. The
elementary tori are either components of ∂Mε̄ (which may be K-tori) or K-tori.
Two different regions of the same type do not share a boundary component.

Figure 1: Separation of the ε-thin part ofM . The regions of type (b) are represented
as thin tubes, the regions of type (a) (the pseudo-cusps) are represented by small
cusps and the regions of type (c) by thicker regions.

Proof: (of Proposition 3)
Take for now Mε̄ to be the region consisting of those points p where l(p) < ε̄.

At the end of the present construction we will explain (sketchily) how to redefine
the boundary of Mε̄ to make it somehow more clearly-defined.

The first task is to delimit the region that will consist of points of type (K +
1, d, b). Consider the region Mε̄ intersected with the 1-neighborhood, in the metric
g∗, of the set of points which are of type (K, d, b). Consider its connected compo-
nents, there are a finite number of them, say U1, . . . , Un. Consider U1 and enclose
the set of points of type (K, d) inside it with two tori which are K-well sized (it
is straightforward to see that this is possible to do). The resulting region is home-
morphic T 2 × [−1, 1], call it Ũ1. Consider now U2. If Ũ1 ∩ U2 6= ∅ then enclose
the set of points of type (K, d, b) inside Ũ1 ∪ U2 with two K-well sized tori. If not
just enclose the set of points of type (K, d, b) inside U2 by two K-well sized tori in
the same way that was done for U1 and making sure one does not intersects Ū1.
Proceed like this for the other components. In this way we obtain a set of open
regions, each one homeomorphic to T 2× [−1, 1] and (obviously) foliated by K-well
sized tori. Note that inside these components there can be points which are of type
(K + 1, d, b) (the value K + 1 is somehow arbitrary as some definite value above K
would be enough). Denote such region as (b).
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We now define the region (a) or the set of pseudo-cusps. Consider the set
of points of type (d, a) in Mε̄ and not in the region (b). Pick one, say p, and
consider the flat space (F (p), gF (p)) associated to g̃p. Using the same notation ϕp
as was used before for the diffeomorphism between the spaces, consider the set
ϕp(BgF (p)(Soul(F (p)), dist(Soul(F (p)), p)))) in M . Now consider the set of points
at a distance less or equal than one from from it in the metric g∗.

(Case 1) If the set intersects the (b)-region then there is a K-torus (one of
the boundaries of a component of (b)) which encloses a region (a pseudo-cusp)
containing the original (d, a)-point. Fix that region and leave the torus as its
boundary (or, following the terminology, as an elementary K-torus).

(Case 2) Suppose we are not in Case 1. If in the set there are points, say a point
q, whose associated space is F (α, h) with distgF (q)(q, Soul) ≤ d/2 and α ≤ 1/2d
then forget analyzing again the (d, a) points lying in the region
ϕp(BgF (p)(Soul(F (p)), distgF (p)(Soul(F (p), p))).

(Case 3) Suppose we are not in Cases 1 and 2. If in the set there are no points of
type (d, a) then fix ϕp(BgF (p)(Soul(F (p)), distgF (Soul(F (p), p))) as a pseudo-cusp.

(Case 4) Suppose we are not in Cases 1, 2 and 3. If in the set there are instead
points of type (d, a) then start the analysis again from Case 1 to the set
ϕq(BgF (q)(Soul(F (q)), distgF (q)(Soul(F (q)), q) + 1)) (this is where Adjustment 4 is
used).

If one follows the analysis in Cases 1-4 (for the point p) then at the end of it one
obtains either: (i) a pseudo-cup if the analysis stops in Cases 1 or 3 or (ii) a region
containing the point p if the analysis stops in Case 2. In whatever alternative the
(d, a)-points belonging either to the pseudo-cusps (Cases 1 and 3), or the region
containing p (Case 2) are not be analyzed again and we proceed with the analysis
for the other (d, a)-points in Mε̄ and not in (b). It is important to note that the
pseudo-cusps defined in this way are disjoint from each other. To see this note first
that the pseudo-cusps arising from Case 1 are separated by the (b)-regions from
the rest. The pseudo-cusps arising from Case 3 are seen to be disjoint from the
rest (of those coming out from Case 3) for the following reason. Suppose P is a
pseudo-cusp arising in Case 3. That means that there are no points from the region
(b) and (d, a)-points in the 1-neighborhood in the metric g∗ of P . But if another
pseudo-cusp P̄ (arising from Case 3) intersects P , that means that there is a point,
say q, not in P , such that the set ϕq(BgF (q)(q, distgF (q)(Soul(F (q)), q))) intersects
P . Thus it must also intersect the set of points (not in P ) at a distance less or equal
than one from P in the metric g∗. If ε̄ is small enough (as we will assume) that
would imply that in this set there are points of type (d, a) which is not possible.

It remains still to explain how to redefine the boundary of Mε̄. In general, even
at the scale of the volume radius, ∂Mε̄ can be rather irregular set for the fact that,
even in canonical harmonic coordinates with respect to g̃p (at every p), we have a
priori control on l(q) (q close to p) only in Cα. Later on we would have to modify
the metric g in a 1-neighborhood of Mε̄, in such a way that the new metric has
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some well defined properties (these properties are written down as Conditions 1
and 2 right after Proposition 5). It is thus necessary to get rid of the irregularity
of ∂Mε̄ and take instead of ∂Mε̄ another smooth two-manifold, somehow close to it
and in such a way that its geometry is controlled at the scale of the volume radius.
Although it is more or less clear that this can be done, it is still necessary to explain
sketchily the construction. But because it has few to do with the rest of the article
and it is essentially a technical aspect of it, we will give only a rapid description
in the next paragraphs (this is the only part of the article where a non thorough
discussion is given).

A new boundary for the thin region. Denote Cε̄ = (c) ∩ Mε̄ and consider
Bg∗(Cε̄, 5). For any p in Cε̄ and using canonical harmonic coordinates {x}p with
respect to g̃p, it is possible to construct a smooth kernel ϕp(x, y) (with support in
the chart) and smooth out the function l(q) (to get lS(q)) and the metric g̃p(q) (to
get g̃p,S(q)). Near p, and with respect to the harmonic coordinates {x}p, the metric
(1/lS(q)2)g̃p,S(q) is controlled in C2. One can do this procedure systematically to
get a smoothed out metric in Bg∗(Cε̄, 5) that we will denote by g∗S .

Using the length minimizing geodesic loops at every point in Bg∗(Cε̄, 4), it is
possible to define a S1-fibration and using the metric g∗S one can define, in a natural
way, a U(1)-action over such fibration. Use then the U(1)-bundle to average g∗S
and get a U(1)-symmetric smooth metric g∗U .

If we quotient the fibration by the action of U(1) we get a surface Σ, and by
projecting g∗U we get a smooth metric h on Σ (this construction can be done, if d
is big enough and ε̄ small enough, in such a way that h gets close to flat). The
projection will be denoted by Π. Consider in Σ the set Bh(Π(Cε̄), 4). Now consider
a maximal set of disjoint balls {B1, . . . , Bm}, each of radius one with respect to the
metric h and lying inside Bh(Π(Cε̄), 4) (namely there exists no ball B disjoint from
Bi, i = 1, . . . ,m and inside Bh(Π(Cε̄), 4). Let {c1, . . . , cm} be their centers. Now,
two different centers ci and cj will be joined through a length minimizing segment
(geodesic) iff: (i) the distance between them in the metric h is less or equal than
9/2 and (ii) the segment does not intersects any ball other than Bi and Bj . Now,
(if h is sufficiently flat) it is not difficult to see that the set of segments satisfy that

1. A segment cannot intersect more than two other segments,

2. Because every ball Bi lies inside a ball Bh(c, 4) (with c in Π(Cε̄)) then there
are always cj and ck such that the pairs {ci, ck}, {ci, cj} and {cj , ck} are joined
through a geodesic segment and thus forming a geodesic triangle {ci, cj , ck}
inside Bh(Π(Cε̄), 4).

We will consider the union of all these (solid) geodesic triangles. It may be
that this set touches a boundary component of the regions (a) and (b) but without
covering it. In this case eliminate from the union all the triangles that touch that
component. The union of the solid triangles that are left will be denoted by ∆ (see
the triangles with dashed sides in Figure 2).

18



Figure 2: An illustration on how to modify the boundary of the thin region.

Note that if a point c in Π(Cε̄) has disth(p, ∂Bh(Π(Cε̄), 4)) ≥ 8 then Bh(c, 4) ⊂
∆. This implies in particular that Mε̄/2 ⊂ ∆ ∪ (a) ∪ (b).

Let ci be a center that is in ∂∆. Let αi be a solid angle that is delimited by
two segments (say si1 and si2). αi is bounded below by an angle not far from π/6.
Now join the middle points of si1 and si2 by a smooth curve tangent to si1 and
si2 at the their middle points and that rounds the vertex at ci (see the bold curves
in Figure 2). In this way we are modifying ∂∆ to a set of smooth curves, each
one with a curvature (with respect to h) very much controlled. Eliminate all those
curves that may lie inside one of the (a) or (b) regions. The pre-image under Π
of the resulting set of curves is the new boundary of the thin region that we were
looking for.

2

Remark 2 It is now direct to check that the pseudo-cusps constructed in this way
are isolated and have the following essential property. Suppose P is a pseudo-
cusp enclosed by a torus T 2 = ∂P . Let p be a point in T 2 and consider the
metric g̃p. Then there is an associated flat space (FP , gFP ) and a diffeomorphism
ϕP : BgFP (Soul(FP ), d′) → P such that ‖ϕ∗g̃p − gFP ‖H2

gFp

≤ 2ε where, most

importantly, d′ ∼ d/2. In particular, according to the Remark 1, if the distance
d/2 is big enough (as we will assume) then the shortest loop based at any point in
the boundary T 2 is not contractible inside the pseudo-cusp and must wrap around
the central fiber a non-zero number of times.
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2.3 Positive scalar curvature and the topological

classification of the thin regions.

The next proposition explains the nature of the topology of Mε̄ (see Figure 3).

Proposition 4 Let M be a compact three-manifold. Assume that ‖Ric‖Lpg ≤ Λ
and that R ≥ R0 > 0. Then there are ε̄(Λ, R0, ν

δ(o)) and ε̄′(Λ, R0, ν
δ(o)), with

ε̄′ < ε̄, such that

1. If two elementary K-tori in Mε̄′ can be joined through a curve that intersects
them only once and that starts at one of them and ends in ∂Mε̄ then the two
tori enclose a region diffeomorphic to T 2 × [−1, 1].

2. An elementary K-torus in Mε̄′ cannot be joined through a curve that intersects
it only once and which starts and ends at ∂Mε̄.

Figure 3: An illustration of the three types of ends (Case 1,2, and 3 in Corollary
2) in a (hypothetical) limit where there is collapse with bounded curvature and
R ≥ R0 > 0.

A consequence of this Proposition we have the Corollary.

Corollary 2 Let M̄ be a limit of a sequence of pointed spaces {(Mi, gi, oi)} such
that for each i we have the uniform bounds Rgi ≥ R0 > 0, ‖Ric‖gi ≤ Λ and
νgi(o) ≥ ν0 > 0. Then, with the same procedure as in Proposition 3, we can cut
M̄ε̄′ along elementary tori such that each connected component with zero (global)
volume radius is either,

1. A two-collapsed region foliated by K-torus.
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2. A one-collapsed region, possibly containing pseudo-cusps and whose bound-
aries consist of K-tori or components of ∂Mε̄′ .

3. A hybrid region, which alternates two-collapsed regions diffeomorphic to T 2×
[−1, 1] (as in item 1) and one-collapsed regions also diffemorphic to T 2 ×
[−1, 1] which have K-tori at each one of their ends.

Proof (of Corollary 2):
Note first that for each i, the decomposition of Mi,ε̄′ is constructed by first

defining Mi,ε̄′ (in the same way as in Mε̄ was defined in Proposition 3) and then
intersecting it with the elementary regions of the decomposition of Mε̄. Consider
the decomposition of M̄ε̄′ which is the limit of the decompositions of Mi,ε̄′ . The set
of elementary K-tori of that decomposition is partitioned as follows: two tori are
equivalent iff they can be joined to ∂M̄ε̄ through a curve that intersects them only
once. It is direct from Proposition 4 that this is actually an equivalence relation.
Note that in each one of such classes, the curve that joins them (only once) gives
them a natural order. Note too that according to Proposition 4 any elementary
K-torus separates M̄ε̄′ into two connected components. Now, if an equivalence
class has an infinite number of elements then we have two possibilities: either (I)
the set of consecutive tori in the class which enclose a region with νδ = 0 is finite
or (II) such set of pairs of tori is infinite. In case (I) we get finite number of ends
of type as in item 2 and one end of type as in item 3. In case (II) we get only an
infinite number of ends of type as in item 2. Remove now the regions enclosed by
the K-tori lying in everyone of the equivalence classes having an infinite number of
elements and consider all the equivalence classes of K-tori (having a finite number
of K-tori) which are left.

Given one of such classes consider the first of the tori (where the curve joining
them starts), remove it and consider the component not containing the point ō. If
it has νδ = 0 then it is of type (b) or (c), possibly, in this last case, with components
of type (a) (pseudo-cusps) (it cannot be only of type (a) otherwise it would not be
νδ = 0). If it is of type (b) then it defines an end as in item 1, if it is of type (c)
(possibly with components of type (a)) then it defines an end as in item 2. Remove
now all these regions, namely all the regions enclosed by the K-tori. There may be
still left some tori of the decomposition of M̄ε̄′ which are not K-tori. Any connected
component enclosed by them and not containing the point {o} which has νδ = 0
cannot be or contain a (b)-region and therefore must define an end as in item 2.

2

To Prove Proposition 4 we need to stablish first a fundamental topogical Lemma
and a Proposition on the regularity of area minimizing (minimal) surfaces on man-
ifolds where there is a priori control on the Lpg-norm of Ricci.

Lemma 2 (Main topological Lemma) Let Π : M∗ → S∗ be a S1-fibration over
a compact surface S∗ with boundary consisting of the curves {`1, . . . , `m}, m ≥ 2
(thus M∗ has toric boundary). Consider a set of solid tori {D1, . . . , Dn}, n ≤ m−2
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(Di ∼ D2×S1, i = 1, . . . , n) and a set of homeomorphisms ϕi : Π−1(`i)→ ∂Di, i =
1, . . . , n, such that the S1 fibers in Π−1(`i) represent (under ϕ) a non-trivial element
in π1(Di). Denote by M the manifold that follows under this indentification. Then,

1. For i = n + 1, . . . ,m, the inclusion i : Π−1(`i) → M induces a one-to-one
map in π1.

2. Any embedded two-sphere in M bounds a three-ball.

3. And embedded projective two-space lies in a three-ball.

4. Let N be an oriented three-manifold made out of a collection of manifolds
{M1, . . . ,Mj} of the type considered in item 1, by identifying some of the
boundaries of the Mi by toral automorphisms. We will assume ∂N has at
least two connected components. Let T 2 be one of the components of ∂Mi for
some i = 1, . . . , j. Then the inclusion i : T 2 → N induces a one-to one map
in π1.

Proof:
Item 1. Let ` be a non-trivial loop in Π−1(`i) where i ∈ {n + 1, . . . ,m}. Let

ϕ : D2 → M be such that ϕ : ∂D2 → ` homeomorphically. Deform ϕ if necessary
to intersect ∂M∗ transversely. Then, ϕ−1(∂M∗) is a set of closed curves in D2.
Consider the set of those curves C1, . . . , Ck that are not enclosed by any other curve
except ∂D2. The region that ∂D2, C1, . . . , Ck enclose in D2 is mapped into S∗. By
collapsing every component of ∂S∗ except `i into a point we get a map from D2

into a compact surface with a connected boundary and such that its image avoids
at least one point (we can always make this because n ≤ m − 2). This image is
always retractable (in the quotient S∗/∼ of S∗) into `i. This already shows that
the curve Π(∂D2) has to be retractable in `i, and thus if a loop ` in ϕ−1(`i) is
contractible in M it must homotopic to the fiber S1. We start below the proof that
the fiber S1 is a non-trivial element in π1(M).

A usefull retracted space. Consider S1 × [−1, 1]. Consider a gf -folded map f

from S1 × {−1} into S1. Now two points A and B in S1 × [−1, 1] are identified
if A and B belong to S1 × {−1} and have the same image under f . Denote such
space by Tgf . Now consider k of them Tgf1 , . . . , Tgfk and identify the boundaries
S1×{1} of each of them to each other in the natural way. We will call such space an
Rf1,...,fn-retracted space (or simply an R-retraction). Note that the curve S1×{1}
is non-contractible.

Consider now a domain Π−1(Ω) in M containing D1, . . . , Dn where Ω is a do-
main in S∗/∼ homeomorphic to the open disc D2. We claim that Ω is retractable
into an R-retracted space. To see this observe that the solid tori D1, . . . , Dn can
be seen as topological spaces in the following way. Let ` be a closed geodesic in
the torus ∂Di homotopic to the S1 fiber in Π−1(`i). By parallel translation we
can foliate ∂Di by closed geodesics isotopic to each other, and by contracting them
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towards the central fiber ((x, y, z)→ (λx, λy, z), λ < 1) {o}×S1 (o is the center of
D2) we get a foliation of Di \ ({o}×S1) by curves which are closed geodesic of the
tori lying at a constant distance from the central fiber. Note that any two of such
curves, one of which is a contraction towards the central fiber of the other, have the
same projection into the central fiber {o}×S1. Thus we can think Di \ ({o}×S1)
as [−1, 0) × ∂Di. If we add a last slice {0} × ∂Di to [−1, 0) × ∂Di then we can
think the solid torus Di as [−1, 0]× ∂Di/∼ where two points are identified iff they
belong to {0}× ∂Di and they have the same projection (as points in ∂Di) into the
central fiber {o} × S1. It is now direct that each solid torus Di is retractable into
a Tgfi space where gfi is the number of times the S1 fiber of ∂Di in M wraps into
the central fiber of the solid torus {o} × S1. Therefore Π−1(Ω) retracts into an
R-retracted space.

Consider now a map ϕ : D2 → M such that ϕ(∂D2) is homotopic in Π−1(`i)
to the fiber S1. Then, as we proved above, Ω = Π(ϕ(Int(D2))) is homeomorphic
to an open disc in S∗/∼. Π−1(Ω) is retractable into a R-retractable space with the
fiber S1 retracted into a non-trivial element of the π1 of the retracted space, which
is a contradiction. This finishes item 1.

Item (2). Consider an embedding ϕ : S2 →M . Denote the central fibers of the
solid tori D1, . . . , Dn by C1, . . . , Cn.

By deforming ϕ if necessary assume that ϕ(S2) intersects the central fibers
transversely. Let {o} be a point in S2 whose image under ϕ does not lie in any
of the central fibers. Let L0 denote the constant map from S1 into {o}. Now
find and embedded curve L1 in S2 based at {o} such that it encloses (in one of
the components that it separates in S2) the points ϕ−1(C1) but not (in the same
component) the points ϕ−1(Ci), i = 2, . . . , n. Denote such component by [L0,L1].
In S2 \ [L0,L1] consider an embedded curve, based at {o} such that it encloses (in
one of the components that it separates) in S2 \ [L0,L1] the points ϕ−1(C2) but
not (in the same component) the points ϕ−1(Ci), i = 3, . . . , n. Proceed like this to
find a set of curves {L0, . . . ,L1} based at {o} and such that the region [Li−1,Li]
contains the points ϕ−1(Ci) but not the points ϕ−1(Cj), i 6= j. One can take the
last curve Ln not an embedded curve but actually the constant curve {o}.

The image of [L0,L1) lies in a region in M : (i) containing C1, but not containing
Ci, i = 2, . . . , n, (ii) not containing the image of [L1,Ln), and (iii) topologically a
solid torus. By passing to the universal cover of that region we deduce that there
is an isotopy

ϕ̄1 : S2 × [0,
1
n

]→M

with ϕ̄1(p, t) = ϕ(p) if p ∈ [L1,Ln), ϕ̄1([L0,L1) × {1/n}) ∩ C1 = ∅ and ϕ̄1(L1 ×
{1/n}) contractible in M \ (C1 ∪ . . . ∪ Cn). Similarly, the image of [L1,L2) under
ϕ lies in a region in M : (i) containing C2, but not containing Ci, i 6= 2, (ii) not
containg ϕ̄1([L0,L1) ∪ [L2,Ln) × {1/n}), (iii) topologically the solid torus. By
passing to the universal cover of that region we deduce that there is an isotopy

ϕ̄2 : S2 × [
1
n
,

2
n

]→M
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such that ϕ̄2(p, t) = ϕ̄1(p, 1/n) if p ∈ [L0,L1)∪[L2,Ln), ϕ̄2([L1,L2]×{2/n})∩C2 =
∅ and ϕ̄2(L2×{2/n}) contractible in M \(C1∪ . . .∪Cn). Continuing in this way we
get an isotopy ϕ̄n : S2× [0, 1]→M such that ϕ̄n(S2×{1})∩ (C1 ∪ . . . Cn) = ∅ and
such that ϕ̄n(S2 × {1}) is contained in a region topologically D2 × S1. It follows
that ϕ̄n(S2 × {1}) must enclose a ball in M (pass to the universal cover of the
region homemorphic to D2 × S1 and contract in the vertical direction).

Item 3. Let ϕ : P 2 → M be an embedding form the two-projective space
P 2 into M . The proof of this item follows the same idea as the proof of the
previous item. The procedure differs in the fact that now we enclose the points
ϕ−1(Ci), i = 1, . . . , n by a set of closed curves {ξ1, . . . , ξj} based at a same point
{o} whose image under ϕ does not lie in any of the central fibers. Note that there
are closed curves in P 2 which do not separate it into two connected components.
The curves ξi are chosen in such a way that they do separate P 2 into two connected
components and one of them, the one containing ϕ−1(Ci) but not ϕ−1(Ch), h 6= i,
is homeomorphic to the two dimensional disc. Following now the same procedure
as in item 2 we can find an isotopy

ϕ̄ : P 2 × [0, 1]→M

with ϕ̄(p, 0) = ϕ(p) and ϕ̄(P 2 × {1}) ∩ (C1 ∪ . . . ∪ Cn) = ∅. The claim follows.
Item 4 Let i : T 2 → N be the inclusion as in the statement of item 4. Let `

be a non-trivial (in π1(T 2)) closed curve and consider a map ϕ : D2 → N such
that ϕ : ∂D2 → ` homeomorphically. Deform ϕ if necessary to have its image
intersecting ∂Mi, i = 1, . . . , j transversely. Consider the closed curves ϕ−1(∂Mi),
i = 1, . . . , j in D2. From them pick one that does not enclose any other of these
curves. Observe that the image under ϕ of the region enclosed by it lies in one and
only one of the pieces Mi, say Mf . By item 1 one can deform ϕ in such a way that
the image of a small neighborhood of the region (not touching the other curves)
does not intersects Mf . Continue like this until getting a map from D2 into N

whose image lies in only one of the pieces Mi and apply item 1.
2

We need to understand now the regularity of area minimizing minimal surfaces
inside the thin regions. Standard regularity [11] results do not apply directly as
we are assuming only control in ‖Ric‖Lpg . However enough information can be
obtained through a standard blow up procedure. We begin with a preliminary
definition. Let {x} be a canonical harmonic chart (see Conditions 5 and 6 given
in the introduction), then the W (α)-set of {x} is defined as the set of {x, y, z} for
which z/(

√
x2 + y2 ≤ α (α > 0). The α-Lipschitz radius at a point p in a minimal

surface S embedded in M (to be denoted by Lα(p)) is defined as the supremum of
the radius less than the harmonic radius rh(p) of the manifold M at the point p
and such that there is a canonic harmonic coordinate chart for which the connected
component of S ∩B(p, r) containing p lies in B(p, r) ∩W (α).

Proposition 5 Let N be a compact three-manifold with ‖Ric‖Lpg ≤ Λ. Let S be a
embedded compact minimal surfaces which is area minimizing in its isotopy class.
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Then there are ε̄(Λ, δ, α) and C(Λ, δ, α) such that Lα(p)/νδ(p) ≥ C for an p in S
with νδ(p) ≤ ε̄.

Proof:
Assume on the contrary that there is a sequence {(Ni, gi),Si, pi}, such that

Lα(pi)/rh(pi)→ 0,

as i→∞. Blow up the metrics gi by 1/Lα(p)2 and find a convergent sub-sequence
of Si into an immersed surface S in R3 with Lα(p) = 1 where p = lim pi. Note
that because each Si is area minimizing in its isotopy class so is S at least for
isotopies with compact support. The standard regularity theory [12] shows that S
is smooth and stable. Schoen’s intrinsic estimate [13] for the second fundamental
form of stable surfaces show that S is flat and therefore a plane (note that S
cannot be compact otherwise an shrinking homothety would decrease its area).
This contradicts the fact that the α-Lipschitz radius is one at p.

2

In practice we will need the estimates in Proposition 5 but for manifolds with
boundary. These manifolds will be, in fact, regions N of the manifold M where
the metric h that we will consider on N is, near ∂N , a suitable deformation of the
metric g. Let us consider now the metric properties that we will require of (N,h).
Consider the metrics h̃(q) = (1/νδ(p))2h(q) and h∗(p) = (1/νδ(p))2h(p) (note the
evaluations). We will assume that

1. (Condition 1) For every p in the 1-neighborhood of ∂N , with respect to the
metric h∗, we have

‖Richp‖2C0
h̃p

(Bh̃p (p,1)) + ‖∇h̃pRichp‖2C0
h̃p

(Bh∗ (p,1)) ≤ Λ1. (7)

2. (Condition 2) For every r ∈ [0, 1/3] the set ∂Bh∗(∂N, r) is mean convex.

Under this assumptions we can follow the same argument as in Proposition 5 to
prove that, given α > 0 then for any minimal surface S ⊂ N which is area min-
imizing in its isotopy class, there exist ε(Λ,Λ1, δ, α) and C(Λ,Λ1, δ, α) such that
Lα(p)/νδ(p) ≥ C for any p in S with νδ(p) ≤ ε.

Remark 3 Let S ⊂ N be a manifold and minimal surface as considered above.
Then there is A0(ε̄) such that for any p in S with νδ(p) ≤ ε̄ then Area(S) ≥
A0(νδ(p))2.

Later in the article we will deal with stable minimal tubes (∼ S1×[−1, 1]) which
are surfaces with boundary. Therefore we need to get similar Lipschitz estimates as
in Proposition 5 but for these type of surfaces. The particular properties that the
stable minimal tubes will have will be subordinated to their construction. Therefore
let us explain first the construction that will give us the stable minimal surfaces
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with boundary and after that let us explain how to obtain the required Lipschitz
estimates. Let (N,h) be a three-manifold with boundary with the properties 1 and
2 above. Assume that we have B1 and B2 two different components of ∂N . Let also
C1 and C2 be two embedded closed curves in B1 and B2 respectively which are not
null homotopic in N and which can be joined by an embedded tube S1 × [−1, 1].

It is well know that the free boundary Plateau problem can be solved in the class
of all embedded tubes joining C1 to C2 (if, as we assumed, C1 and C2 are not null
homotopic inside N , see [14]6 Theorem 1). Let S be one of such embedded stable
minimal surfaces. The condition 1 above for the metric h together with standard
estimates for the second fundamental form for stable surfaces show that if p is a
point in S at a distance between 1/3 and 2/3 from ∂N with respect to the metric
h∗, then the norm of the second fundamental form H of S at p and with respect
to the metric h̃p is bounded above by a numeric constant. These estimates for the
second fundamental form on Bh∗(∂N, 2/3) \ Bh∗(∂N, 1/3) give already Lipschitz
estimates inside this region. Once these Lipschitz estimates are guaranteed one
gets Lipschitz estimates by just reproducing the same argument as in Proposition
5 but to the region N \Bh∗(∂N, 1/2). Thus one gets

Proposition 6 Let (N,h) be a three-manifold with boundary. Assume that (N,h)
satisfy conditions 1 and 2 above. Assume that ‖Ric‖Lpg ≤ Λ. Let S be a minimal
surface in N which is area minimizing in its isotopy class and with ∂S ⊂ ∂N . Then
for any α > 0 there are ε̄(Λ1,Λ, α, δ) > 0 and C(Λ,Λ1, α, δ) > 0 such that for any
p in S ∩ (N \Bh∗(∂N, 1/2)) and with νδ(p) ≤ ε̄ it is Lα(p)/νδ(p) ≥ C.

Remark 4 Let S be a surface as in the Proposition above. Then, there are A0(ε̄)
such that for any p in S ∩ (N \ Bh∗(∂N, 1/2)) with νδ(p) ≤ ε̄ it is Area(S) ≥
A0(νδ(p))2.

Proof (of Proposition 4):
Assume that ε̄(Λ, α) has been chosen to satisfy Proposition 5 and less than the

ε̄ that was fixed before. Let ε̄′ be such that any K-torus in Mε̄′ has area less than
(A0ε̄

2)/2. Consider two elementary tori T 2
1 and T 2

2 in Mε̄′ that are joined by a curve
starting at T 2

1 passing through T 2
2 and ending at ∂Mε̄, and, intersecting also the

tori only once. Consider the connected region formed by all the elementary sectors
touching the curve, denote it by R. The boundary of R consists of elementary tori
some of which may be K-tori and some of which may be not (and therefore lying
in the boundary of Mε̄).

We deform now the metric g at the boundary of the region. If a boundary com-
ponent is a K-torus then deform it following Adjustment 3. If instead a boundary
component is a component of ∂Mε̄ then we deform g to satisfy Conditions 1 and 2
(and therefore Remark 3.

Consider now the torus T 2
2 . If it is isotopic to T 2

1 there is nothing to prove. Thus
we have to prove that it is impossible that T 2

2 is not isotopic to T 2
1 . We first note

6In [14] the manifold N is assumed to be strictly convex, but this can be substituted by just

mean convex.
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that there is a positive lower bound for the areas of the surfaces isotopic to T 2
2 in the

region R. To see that we use a theorem due to Schoen and Yau [15] saying that if
the inclusion i : T 2

2 → R induces a one-to-one homomorphism in π1 then there is a
minimal surface which minimizes the area functional among all the maps from T 2 in
R inducing the same homomorphism in π1. Thus one can take as the positive lower
bound the area of such surface. Define Ā the limit of A(T 2) where T 2 varies in the
set of all tori isotopic to T 2

2 . Now, a theorem due to Meeks-Simon-Yau [16] shows
that there is a finite set of (non-necessarily oriented) compact minimal surfaces
{S1, . . . ,SJ} with total area Ā and multiplicities n1, . . . , nJ , which are the measure
theoretical limit of an isotopy of S. We claim that J = 1, n1 = 1 and that that the
limit is isotopic to T 2

2 . Indeed following [16], there is a sequence of γ-reductions
S̃k <γ S̃k−1 <γ . . . <γ T 2

2 of T 2
2 such that S̃k is isotopic to n1S1 + . . . + nJSJ

(see Remark (3.27) in [16]). Topologically, a γ-reduction of a surface S consists of
excising a strip (∼ S1 × [0, 1]) and gluing back two discs (say D1 and D2) in such
a way that these two discs, together with the strip, bound an open ball which does
not intersects S. By Lemma 2 the inclusion i : T 2

2 →M induces a one-to-one map
in π1, therefore one of the boundaries of the strip (there are two and are isotopic in
S) has to bound a disc (say D) in S. Now, D, together with the disc that among
D1 or D2 has the same boundary as D, form a surface homeomorphic to the two-
sphere. By Lemma 2 such sphere bounds a three-ball. Thus a γ-reduction of a
surface isotopic to T 2

2 produces as an outcome a sphere and a torus, with the torus
isotopic to T 2

2 . Again by Lemma 2 the sphere must be isotopically contractible to
a point and will not count in the limit.

On the other hand [16] the limit S1 ∼ T 2
2 (where ∼ here mean equivalence up

to isotopy) is stable, but stable surfaces with genus greater than zero do not exist
on manifolds with a positive lower bound on the scalar curvature. The proof of
Proposition 4 would then be finished if we can show that S1 does not enters the
region near the boundary of R where the metric was deformed. Note first that T 2

2 is
not isotopic to any of the K-torus not in ∂Mε̄ that may form part of the boundary
of the region R. If this were the case then such torus has to be T 2

1 which we have
assumed is not (note for that, that the curve joining T 2

1 , T 2
2 and ∂Mε̄ intersects T 2

2

only once, and therefore has intersection number one). Thus by Adjustment 3 S1

cannot enter the region where the metric g was deformed near any K-torus in the
boundary of R. If instead S gets close enough to ∂Mε̄ that it touches the region
near ∂Mε̄ where g was modified, then according to Remark 3 the area of S1 would
be greater than the area of T 2

2 which is impossible.
2

2.4 Stable minimal tubes and the final argument in the

proof of Theorem 1.

We need one more result. What we shall show is that if one of the boundary
curves of a stable minimal tube (joining two small curves, almost geodesic loops)
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is very collapsed an lies in a region which is essentially one-collapsed (Proposition
7) or two collapsed (Proposition 8), then (at the right scale) the tube is close to a
flat tube. As mentioned in the introduction, this result is necessary in order to use
size relations on stable minimal surfaces to prevent three-dimensional collapse.

In order to simplify notation let D(r) = B((0, 0), r) in R2. On (R2 \D(1))×S1

consider the coordinates (r, θ, φ) where (r, θ) are polar coordinates in R2 and φ is
the arc length in the factor S1. Let l(θ0, r0) be the ray l(θ0, ro) = {(t, θ, φ)/1 ≤ r ≤
r0, θ = θ0, φ = 0}. On (R2\D(1))×S1 consider the metric g = r2dθ2+dr2+f(r)2dθ2

1

where f : [1,∞) → [1, 2] is such that f(r) = 1 when r ≥ 2, f(1) = 2, f ′(1) = −4,
f is decreasing and smooth. With this function f , the boundary (∂D(1))× S1 has
mean curvature equal to one in the outward direction. Consider now a minimal
surface S given by the embedding ϕ : [1,∞)×S1 → (R2\D(1))×S1 with ϕ({1}×S1)
a curve in (∂D(1)) × S1 and isotopic to the factor S1. Suppose that S minimizes
area among isotopies of compact support, i.e.: for every domain Ω of compact
closure and homotopy ϕ̄ : [0, 1] × [1,∞) × S1 → (R2 \ D(1)) × S1 leaving Ωc ∩ S
invariant we have Ω ∩ ϕ(t,S) ≥ Ω ∩ S. Under this setup we will prove below that
outside (D(2) \D(1))× S1, S is the metric product of the ray l(θ) and S1.

Proposition 7 The surface S considered in the paragraph above is the metric prod-
uct of a ray l(θ) and S1.

Proof:
We note first the following direct comparison. Let S be an embedded surface

isotopic to l(r, θ) × S1 in (D(r) \ D(1)) × S1, then Area(S) ≤ Area(l(r, θ) × S1)
(just project S along θ into l(r, θ) × S1). Another comparison we will use is this.
Let C be an embedded curve in (∂D(r)) × S1 isotopic to S1 and consider the
circle {(r, 0)} × S1. These two curves enclose a region in (∂D(r)) × S1 whose
area is less than 2πr. An important consequence of these two comparisons is
the following. Let ϕ : [1,∞) × S1 be the embedding defining S. Consider the
composition r ◦ ϕ and a regular value r0 > 2. Then (r ◦ ϕ)−1(r0) consists of a set
of closed curves in (1,∞)× S1 only one of which (say C) is isotopic to the factor
S1 and is closest to {1} × S1. Consider the region Γ enclosed by it and {1} × S1,
then Area(ϕ(Γ)) ≤ Area(l(r0)× S1) + 2πr0 ≤ 2(r0 − 1) + rπr0. It follows that the
area of the projection of ϕ([1, r0] × S1) into the (x, y)-plane has the same upper
bound.

Indeed one can show that there is no curve in the region enclosed by C and
{1} × S1. To see this assume that there is another curve C1 bounding a disc ∆̃.
If C1 encloses some other curves {C2, . . . , CJ} then consider the region ∆ enclosed
by {C1, C2, . . . , CJ}, if not consider the disc ∆̃(= ∆). The region ∆ gets mapped
into a piece of S in (R2 \D(r0)) × S1. We claim that such piece has area greater
than the region ∆̄ enclosed by ϕ(C1) in (∂D(r0)) × S1. The claim follows from
two facts: (i) the projection from ϕ(∆) into (∂D(r0)) × S1 along radial geodesics
(i.e. perpendicular to (∂D(r0))× S1) is area decreasing and that the projection of
ϕ(∆) covers the full ∆̄, and (ii) ∆̄ is isotopic to ϕ(∆̃) through an isotopy leaving
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invariant ϕ(([1,∞)× S1) \ ∆̃). Thus there are no curves between C and {1} × S1.
Denote the region enclosed by them as Γr0 .

For any n > 2 consider a regular value r0 of r ◦ ϕ in [n, n + 1) and consider
the cover of (D(r0) \D(1))×S1 where the S1 factor has been unwrapped n-times.
Denote it by U(n, r0). Consider the lift Sn of S and the lift ϕ(Γr0)n of ϕ(Γr0).
From the observation above it follows that the area of the connected component of
Sn ∩ U(n, r0) is less or equal than cn2 for some numeric c (i.e. quadratic growth).
From standard estimates for the decay of the second fundamental form of S and
the quadratic area growth shown before [11], it follows that the sequence of surfaces
{ϕ(Γr0)} converges (as n diverges) on the scaled spaces {U(n, r0), ( 1

n2 )g} to a sur-
face S∞ which is scale invariant and whose projection into the (x, y)-plane has at
most linear (in r) area growth7. It follows that the projection must be a set of lines
thourgh the origin with measure zero (otherwise, as the projection is scale invariant,
if it were not a set of lines with measure zero, it would have quadratic area growth).
We do not get from here that the projection of S is a single line as we want. To
conclude that we observe that the projection of ϕ(Γr0) ∩ ((∂D(r0))× S1) into the
(x, y)-plane, as connected, is concentrating on a narrowing set of angles (θ1

n, θ
2
n)

(where θ is the arc length of the projection of (∂U(n, r0)) into the (x, y)-plane and
in the metric (1/n2)g). Following the same comparison as in the beginning, the
surface ϕ(Γr0) must therefore be enclosed in the region between l(θ1

n) × S1 and
l(θ2

n)× S1. As |θ1
n − θ2

n| → 0, it follows that S must be as we claimed.
2

The same argument also shows that

Proposition 8 An embedded minimal surface ϕ : [0,∞)× S1 → T 2 × [0,∞), with
ϕ({0}× S1) an embedded and non-contractible curve in T 2 ×{0}, minimizing area
among isotopic variations of compact support, must be the product of a geodesic
loop (in the same isotopy class as the curve) in T 2 and [0,∞).

We proceed now to close the argument by contradiction of the proof of Theorem
1.

Proof (of Theorem 1):
Suppose that the claim of Theorem 1 is false and there is a pointed sequence

{(Mi, gi, oi)} with νδ → 0, νδgi(oi) ≥ ν0, ‖Ricgi‖Lpgi ≤ Λ and Rgi ≥ R0 > 0. Extract
a limit space {(M̄, ḡ, ō)}. We are going to consider on it the ends that follow from
Corollary 2.

If an end is of the type as in item 1 or item3 of Corollary 2 then proceed as
follows. Pick a sequence {T 2

i }i=∞i=1 of K-tori in the end whose sizes go to zero, i.e.
the length of its shortest geodesic loop goes to zero. Consider the region enclosed
by T 2

1 and T 2
n that we know is diffemorphic to T 2×[−1, 1] and denote it by [T 2

1 , T
2
n ].

Let {pn} be a sequence of points in T 2
n and let {(Fn, gFn)} be the sequence of

associated spaces. We know there is no S1-soul in Fn at a distance d/2 from pn

7The limit surface may degenerate at the origin but this is not a problem.
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(in the metric gFn). But the same must be for any d′ > d and for n sufficiently
large for otherwise there would be a pseudo-cusp (of size d′/2) closing the end and
this is impossible. Thus (Fn, gFn) converges to a product T 2 ×R. Deform now the
metric ḡ only inside a 1-neighborhood in the metric ḡ∗ of T 2

1 and T 2
n , to a smooth

metric ḡD in such a way that

1. satisfy Conditions 1 and 2,

2. the metric ˜̄gD,pn where pn ∈ `n converges strongly in H2,p to a product metric
in T 2 × [0,∞) (for some flat metric in the first factor),

3. the metric ˜̄gD,pn where pn ∈ `n converges strongly in C2 inside Bḡ∗(T 2
n , 1/2)

(of course with the same flat metric in the first factor as in the previous item).

Let `n be the shortest geodesic loop of T 2
n . Consider the class of all embedded

tubes φ([0, 1] × S1) → [T 2
1 , T

2
n ] such that φ({0} × S1) is isotopic to `n in T 2

n and
φ({1} × S1) is a closed curve in T 2

1 . Let Sn be an embedded surface that has
minimal area in the class. The surfaces Sn, inside (([T 2

n , T
2
1 ], ˜̄gD,pn)) thus converge

to a stable surface in the flat product T 2 × [0,∞) which by Proposition 8 must be
a flat tube, i.e. limSn = S1 × [0,∞). Consider the surfaces S̄n which, for given n,
are simply the domains of Sn made of points where the metric ḡ was not deformed
(and therefore at those points we have R ≥ R0 > 0). Note that these surfaces are
stable and by Remark 4 their area is uniformly bounded below. The non-collapse
at a finite distance property of stable surfaces (given at the introduction) applied
to the surfaces S̄n now shows that such a sequence of surfaces does not exists, thus
ruling out the ends of type as in items 1 and 3 of Corollary 2.

The analysis of the other types of ends follows the same principle, we discuss
them next. Suppose instead an end is of type as in item 2 of Corollary 2. We claim
that there is a sequence {pi} such that l(pi) → 0 and a sequence of associated
spaces {(Fpi , gpi , pi)} converging either to a metric product of the form T 2 × R or
S1 × R2 (with some flat metric on the factor T 2 which necessarily does not makes
it a K-torus). To see this, note that if not then for any d′ > d there exists ε̃(d′)
such that for every q in the set {p inside the given end/l(p) ≤ ε̃(d′)} there is an
associated space (Fq, gq) having a soul at a distance less or equal than d′/2 and
α > 1/(2d′). Now given a sequence {pi} with l(pi) → 0 one can do the same
construction of pseudo-cusps as in Proposition 3 but inside the region Mε̃ (and
stopping when reaching ∂Mε̃) to conclude that each point pi lies in a d′-pseudo-
cusp (surrounded by a torus touching ∂Mε̃) and thus contradicting the fact that
νδ(pi)→ 0. We will work from now on with the sequence {pi}.

The analysis of the ends as in item 2 is slightly different than the analysis as in
the items 1 and 3. Instead, in this case, we have to work directly with the spaces
Mi. The reason is the following. In cases as in items 1 and 3 we were able to
define the region [T 2

1 , T
2
n ], which (although with boundary) is complete and allows

us to define the stable surfaces Sn. For ends as in item 2 we cannot define suitable
sub-domains (with boundary) that would allow us to find stable surfaces to which
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we could apply the size relations. This inconvenience is solved if we incorporate the
spaces Mi. The procedure is as follows. Find a subsequence {(Mji , gji)} in such
a way that the pointed spaces {(Mji , g̃ji,pi , pi)} converge to the metric product
T 2 × R or S1 × R2 (strictly speaking the sequence {pi} is not the same as the one
considered before).

We have thus two situations, let us consider first the case when the limit of
{(Mji , g̃ji,pi , pi)} is T 2 × R. Consider a sequence of tori T 2

i containing the points
pi and converging to a leaf T 2 in the limit space T 2 × R. Let R be the end to
which the sequence pik belongs. Let B be one boundary component of R. Let Ri
be the elementary component to which pi belongs. If there is a sub-sequence ik
such that the tori T 2

ik
separate Rik into two connected components then we restrict

to that subsequence. Denote them by R1,ik and R1,ik . Suppose that R1,ik are
the components having a sub-domains converging to R. Let Bik be a boundary
component converging to B. Now we are going to deform the metrics gik to smooth
metrics in the 1-neighborhood in the metric g∗ik around the boundary components
of R1,ik . Deform gik to a metric gD,ik such that

1. at the torus T 2
ik

(a) satisfy Conditions 1 and 2,

(b) the metrics g̃D,ik converge strongly in H2,p to the flat metric in T 2 ×
[0,∞),

(c) the metrics g̃D,ik converge strongly in the C2 topology, insideBg∗ik (T 2
ik
, 1),

to the (of course same) flat metric in T 2 × R.

2. if the boundary component is a K-tori, deform it according to the Adjustment
3. If the boundary component is instead a component of Mik,ε̄′ deform it
according to Conditions 1 and 2.

Let `ik be a sequence of length minimizing loops in T 2
ik

based at pik . Consider
the class of embedded surfaces φik : S1 × [0, 1] → R1,ik such that φik(S1 × {0})
lies in T 2

ik
and is isotopic to `ik , and φik(S1 × {1}) is a smooth curve in Bik . Let

Sik be an embedded surface of minimal area. We consider again the surfaces S̄ik
which for each ik is simply the sub-domain in Sik which consists of those points
on which the metric gik was not modified. As the surfaces Sik cannot get close to
the K-tori in the boundary of R1,ik (except Bik if it is a K-torus), such points are
either those in Bg∗ik

(T 2
ik
, 1) or in Bg∗ik

(∂Mik,ε̄′ , 1). Thus from Remark 4 we know
that the areas of S̄ik are uniformly bounded below and by Proposition 8 they get
closer and closet to flat tubes at T 2

ik
(and at the right scale). The non-collapse at

a finite distance property of stable surfaces rule out the existence of these kind of
surfaces.

If instead the tori T 2
i do not separate Ri then we remove T 2

i thus adding two
new boundaries to Ri diffeomorphic to it. We proceed in the same way as in the
previous case. The only thing to note is that the surfaces S̄i cannot touch the
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region near the second copy of T 2
i where the metric gi was modified, for the same

reason that they do not get close to boundary components which are K-tori.
We discuss now the possibility when the limit space obtained at pi is of the

form R2 × S1. For each pi pick a Si fiber through it. Remove the balls Bg∗i (S1
i , 1)

and in the region Bg∗i (S1
i , 3) \ Bg∗i (S1

i , 1) deform the metric g∗i to have the metric
r2dθ2 + dr2 + f(r)2dθ2

1 as was considered in Proposition 7. Let `i be the shortest
geodesic loop at ∂Bg∗i (S1

i , 1) which is isotopic (in Mi) to S1
i . Again we consider an

area minimizing tube Si joining a curve isotopic to `i with a curve in Bi. As i→∞
we have that by Proposition 3 the surfaces Si approach a metric product of a ray
times S1 in (R2 \D2)× S1 (with the metric r2dθ2 + dr2 + f(r)2dθ2

1). If, as before,
we restrict to the stable surfaces S̄i we reach again an impossibility as these kind
of surfaces are ruled out by the non-collapse at a finite distance property of stable
surfaces.

2
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