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Abstract
We introduce the notion of general K = −1 Friedman–Lemaı̂tre (compact)
cosmologies and the notion of averaged evolution by means of an averaging
map. We then analyze the Friedman–Lemaı̂tre equations and the role of
gravitational energy on the universe evolution. We distinguish two asymptotic
behaviors: radiative and mass gap. We discuss the averaging problem
in cosmology for them through precise definitions. We then describe in
quantitative detail the radiative case, stressing on precise estimations on the
evolution of the gravitational energy and its effect in the universe’s deceleration.
Also in the radiative case, we present a smoothing property which tells that
the long-time H 3 × H 2 stability of the flat K = −1 Friedman–Lemaı̂tre (FL)
models implies Hi+1 × Hi stability independently of how big the initial state
was in Hi+1 × Hi , i.e. there is long-time smoothing of the spacetime1. Finally
we discuss the existence of initial ‘big-bang’ states of large gravitational energy,
showing that there is no mathematical restriction to assume it to be low at the
beginning of time.

PACS numbers: 04.20.−q, 02.40.−k

1. Introduction

An implicit assumption of the Friedman–Lemaı̂tre cosmologies as models of the actual
universe is that, because matter distribution at large scales (visible or not) appears to be
‘to a good extent’ homogeneous and isotropic, the large scale evolution of the universe should
be modeled as driven ‘to a good extent’ by an exactly homogeneous and isotropic material
distribution. The assumption, now known as the averaging problem in cosmology, needs
quantitative approval or disproval (see [1]). Phrasing the problem in a question one asks: is

1 The word smoothing here is referring to the decay toward zero of the spacetime Bel–Robinson curvatures (and
therefore of the derivatives), and not to a gain in Sobolev regularity as in usual PDE terminology.
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the large scale evolution affected by the small scale structure? The reason of the difficulty
lies evidently in the nonlinearity of the Einstein equation. An averaged source of matter does
not give rise necessarily to the average of the original solution. We will discuss this and
other issues from the perspective of general cosmological models, i.e. the study of arbitrary
solutions of the Einstein equation in the Hubble gauge (constant mean curvature (CMC) gauge)
provided with a set of Friedman–Lemaı̂tre equations giving the cosmological interpretation to
the framework.

The standard K = −1 FL cosmology describes the universe history by the evolution
of the energy and pressure densities of the different type of matter present. Starting from a
‘big-bang’ where the densities and the spacetime curvature blow up, the universe evolution
is described as eternally expanding, with decaying densities and spacetime curvature at a
particular pace according to their matter type. Such a description is analytically possible due
to the homogeneity and isotropy of the space which reduce the Einstein equations into a set of
ordinary differential equations, the so-called Friedman–Lemaı̂tre equations. We will deal here
with compact cosmologies, i.e. spacetimes with compact Cauchy surfaces of hyperbolic type.
When speaking about homogeneity and isotropy of a compact cosmology we will refer to
those properties in the universal cover solution. In its formal terms the geometric structure of

the spacetime is described by a metric of the form g = −dτ 2 + a2(τ )
/
V

2
3

H gH on a 4-manifold
R × �, where � is a compact hyperbolic manifold, i.e. a manifold admitting a metric of
constant negative sectional curvature and where VH is the volume of � endowed with the
unique hyperbolic metric (the one with sectional curvature equal to negative one). If the
densities of energy and pressure of the material fields are ρ(τ) and p(τ) the FL equations are

H2 = 8πGρ

3
− KV

2
3

H

a2
, (1)

a′′

a
= −4πG(ρ + 3p)

3
, (2)

where H = a′/a is the Hubble parameter and G is the gravitational constant. These equations
must be complemented with an equation of state p(ρ). An obvious observation about
these models is that they do not have any pure gravitational degree of freedom besides the
gravitational field generated by the matter present. This fact is seen by making ρ = p = 0
and observing that in that case the solutions are flat. We call these flat solutions flat cones as
they can be obtained as quotients of a future light cone in Minkowski spacetime. For non-
homogeneous and isotropic solutions there is no way to define which part of the gravitational
field is generated and which part is free, as those properties (if anything) would be potentially
defined only in special solutions or in asymptotic regimes. There are simply two fields
interacting, gravitation and matter. In this sense, the gravitational field adds a new degree of
freedom to general cosmological models which needs to be quantitatively described.

We have found that a satisfactory way to analyze arbitrary solutions to the Einstein
equations in light of the questions raised by cosmology and those raised by the FL models
themselves, is to introduce the notion of the general cosmological model: an arbitrary solution
to the Einstein equations in the Hubble gauge, provided with a set of Friedman–Lemaı̂tre
equations giving its interpretative cosmological meaning. Unlike the FL models where the
FL equations are enough to describe the evolution, in general cosmological models one must
rely on the full Einstein equations to predict the behavior of the terms involved in the general
FL equations and therefore interpret the solutions in cosmological terms. One purpose of
the paper is to start a rigorous analysis of the general FL equations using the full Einstein
equations.
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An arbitrary solution g on a spacetime manifold R × � where � is a compact hyperbolic
manifold, is in the Hubble gauge if the mean extrinsic curvature k of the equal time Cauchy
surfaces is constant. The foliation R × � is called the CMC foliation. It is well known to
be unique, intrinsically defined, and with the mean curvature k varying monotonically on it,
in particular k or H (as we will see the Hubble parameter is H = −k

3 ) can be taken as a time
variable. It is important to remark that unlike other gauges, the Hubble gauge is intrinsic, i.e.
it is implicitly given by the solution. Let us write the metric as

g = −(N)2 dk2 + X∗ × dk + dk ⊗ X∗ + g, (3)

where N is the lapse function, X is the shift vector and g is a spatial 3-metric on �. To write
the general FL equations one defines the radius a(k) at the time k as a(k) = V (k)

1
3 and the

proper time τ(k) at the time k through (see [2] for a related approach)

dτ

dk
=

∫
N dvg

V
. (4)

With these definitions the FL equations (deduced from the Einstein equations, see
subsection 3.1) are

(1) First FL equation: H2 = −
∫
�
NR dvg

6V
+

∫
�
N (16πGρ + |K̂|2) dvg

6V
, (5)

(2) Second FL equation:
a′′

a
= − ∫

�
N (4πG(ρ + 3p) + |K̂|2) dvg

3V
, (6)

where N = N

N̄
(bar denotes volume average) and has average equal to 1. The derivatives

denoted with a prime are proper time derivatives, i.e. ′ = d
dτ

. K̂ is the traceless part of
the second fundamental form K. Compared with the second FL equation (2) in a perfect FL
cosmology we observe the appearance of the weight term N which inexorably couples matter
to gravitation and a purely gravitational term of |K̂|2 which is essential and represents the
additional gravitational degree of freedom mentioned before. A particular solution is a FL
model iff K̂ = 0 and N = 1.

In light of general cosmological models, a fundamental question is to quantify the
evolution of the different terms that appear in the FL equations. It is important to realize
that the ultimate goal would be to understand the FL equations for solutions which are realistic
at small scales, i.e. at the natural scale of the flow. This is a difficult problem; however,
we will argue that we can have an starting point if precise assumptions are made. Namely,
in subsection 3.5 we will introduce assumption (C), a precise quantitative hypothesis on the
behavior of arbitrary solutions at late times, from which we will make explicit estimations
of the different terms involved in the FL equations. Assumption (C) is a close relative of
the weak cosmic censorship conjecture of Penrose, conjecture stated in an asymptotically flat
context. In rough terms, assumption (C) precisely describes a family of solutions and divides
it in two classes: radiation and mass gap. A radiative solution is an ideal solution in which
no sort of compact object emerges along evolution, i.e. universes filled only with radiation.
We will study this case in detail, although only for gravitational radiation. The technique may
be applied to other radiative contexts as well. In this case the gravitational field can safely be
isolated from the rest, and one can safely interpret |K̂|2

16πG
= ρG = pG as the effective energy

and pressure densities of gravitational radiation. These densities are quantitatively studied
along with the decay of N to 1. The estimates are given in theorem 1 (see statement below)
which in addition give estimates on the Bel–Robinson energies Qi . Altogether theorem 1
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provides a detailed structure of the radiative solutions and is one of the main result of this
paper.

Theorem 1 (Expansive smoothing and energy estimates). Let � be a compact and rigid
hyperbolic manifold. There is an ε > 0 such that the Einstein CMC flow of a cosmologically
scaled initial state (i.e. with H = 1) (g,K) with V − Vinf � ε and Ẽ1 � ε has the following
long-time properties (take t = 1

H ):

(1) The limit limt→∞t3Q0 is finite and greater than zero.
(2) There are ni � 0 such that limt→∞ t2i+3

(ln t)ni
Qi � ∞ for i � 1.

(3) For given γ > 0,
∫ ∞
t

∫
�

|K̂|2 dvg

u
du � Ct−(2+γ ).

(4) |K̂|2 � Ct−4 pointwise (not volume averaged).

In particular, the cosmologically scaled flow of a Hi × Hi−1 state (for any i � 1) as in the
hypothesis above converges in Hi ×Hi−1 to the canonical flat cone state (g,K) = (gH ,−gH ).

Theorem 1 is in PDE terminology a small data statement. The small data condition is stated
as saying that the reduced volume V = H3V is ε-close to its infimum and the first Bel–
Robinson energy E1 ε-close to zero. These two conditions can be seen to be equivalent [3]
to the statement that the initial data (g,K) is close in the Sobolev space H 3 × H 2 to the flat
cone state (gH ,−gH ), where gH is the unique hyperbolic metric (up to diffeomorphism). A
hyperbolic manifold is called rigid if it does not admit traceless Codazzi tensors (see [6] for
a discussion). The topological condition of rigidity is important to get the precise estimates
above. It is possible to get estimates in the non-rigid case but they are different, in particular
those on the gravitational energy. The importance of rigidity is that it allows the control of
the H 2 norm of harmonic metrics with respect to the hyperbolic metric (spatial gauge) only
by their Ricci tensor.

The estimates in theorem 1 are compatible with what one would expect is a radiative
behavior. According to the standard FL models an exact radiative behavior would imply a
pointwise decay on the gravitational energy density of the form

|K̂|2
16πG

≈ 1

t4
(7)

The estimate in items 3 and 4 in theorem 1 says that in some averaged sense the global
gravitational energy decays with a rate between the radiative t−1 and the faster t−2. It would
be interesting to improve (if possible) the estimate from below in item 3.

In rough terms the mass gap solutions can be described as those for which after a
sufficiently long time there appear a finite set of isolated stationary solutions separating from
each other and with radiation in between. This qualitative description is made quantitative
in assumption (C). We analyze the averaging problem for these mass gap solutions. A
convenient setup for the analysis is to define the notion of averaged space, a Lorentzian
manifold constructed out the averaged parameters a(k) and τ(k) of the original solution. The
averaging problem can be stated as asking to which extent the averaged space is close to a FL
model. A remarkable consequence of applying assumption (C) is that the second FL equation
is estimated as

a′′

a
= −4πG(M̄ADM + ρ̄ + ρ̄G + 3(p̄ + p̄G))

3
+ O(t−(3+ε)), (8)

where M̄ADM is the volume average of the ADM masses of the emerging stationary solutions,
and ρ̄, ρ̄G, p̄, p̄G are the volume averages of the densities of energy and pressure of material
and gravitational radiation, respectively, filling the space in between. However one must
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remark that despite how the satisfactory equation (8) may look, it is based on an idealized
assumption and on its a priori estimates which so far need to be justified. Also the quantitative
description they provide is only asymptotically in time, and not throughout the full evolution.

A quantity underlying all the averaging formalism is the so-called reduced volume [9],
defined above as V = H3V . It decreases monotonically, and is bounded below by the
topological invariant VH . It has been used in [3] to show the long-time geometrization of the
Einstein flow under curvature bounds. Here it is manifested throughout the paper in different
forms. Its monotonicity is shown to be equivalent to the universe’s deceleration and is used to
get the estimate in item 3 in theorem 1. We will introduce and use an equivalent quantity that
we will call the global CMC energy defined as

ECMC = 1

4πGH
(V − Vinf). (9)

Rather remarkably, the CMC energy is shown to express the full ADM energy of the
time-asymptotic evolution only in terms of the total volume, the Hubble parameter and the
topological invariant Vinf .

The contents and sections are organized as follows. In section 2, we introduce the
main equations for the Einstein-CMC flow as well as Bel–Robinson energies and their main
formulae. In section 3, we introduce the averaged cosmological parameters and the Friedman–
Lemaı̂tre equations. The treatment has no restriction on the sort of matter. We introduce
the Newtonian gravitational potential φ, its Poisson-like equation and reformulate the FL
equation with it in subsection 3.2. As it turns out the Newtonian potential is the main field to
estimate when the purpose is to estimate the universe deceleration and the Hubble parameter
as a function of red shift z. In subsection 3.3, we introduce the CMC global energy and
relate it in subsection 3.4 with the ADM energy in the weak-field limit, analysis extended in
subsection 3.5 to arbitrary solutions under assumption (C). In subsection 3.6, we discuss
the averaging problem on the light of assumption (C) for the mass gap regime. We will
use the CMC energy to estimate the gravitational energy in section 4. Also in section 4 we
prove the main estimates of theorem 1. The technique may be thought of as estimating the
gravitational field through a Taylor expansion (in time) of the zero-order Bel–Robinson tensor
and is a natural extension of the analysis in [6]. In section 5, we construct ‘big-bang’ states
of high gravitational energy showing that there is no mathematical reason to assume a low
gravitational energy at the initial ‘big-bang’ state. The dynamics of those states even in short
times is a completely open problem, in particular it is not known whether the initial rate of
expansion with respect to proper time is of matter, radiation or of a type like neither of them.
In section 6, we give an account of the main points of the paper.

2. The CMC flow equations and the Bel–Robinson energies

2.1. The CMC flow

In this section, we consider the formal setup of the Einstein CMC flow equations. A detailed
account can be found in [3]. Consider � a compact hyperbolic 3-manifold. A cosmological
solution to the Einstein equations with compact Cauchy surface � is formally a Lorentz
metric g on a 4-manifold of the form I × � (where I is an interval) and where the equal
time hypersufaces �t are spacelike, i.e. the induced metric is Riemannian. If the mean
extrinsic curvature (k = trgK) is constant on each slice of the foliation {�t } then we say that
the cosmological solution is in the (temporal) CMC-gauge. When the spatial topology is a
hyperbolic manifold the mean curvature k cannot be zero (due to the energy constraint and the
fact that � does not accept metrics of non-negative scalar curvature) and it can be proved to be

5
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strictly monotonic over a unique and connected interval. For a 3-manifold of hyperbolic type
in particular it is conjectured that the CMC foliation has a range of k equal to I = (−∞, 0),
i.e. from a ‘big-bang’ when H → ∞ toward an infinitely expanding universe when H → 0.
Say ∂t = NT + X where T is the unit normal to the slices and t = k. Write the 4-metric as

g = −N2 dt2 + X∗ ⊗ dt + dt ⊗ X∗ + g, (10)

where g is the spatial three-dimensional metric. N is called the lapse and measures the rate
of proper time with k (locally). X is called the shift vector field and can be chosen freely but
compatible with the regularity. For a discussion of the initial-value formulation in the CMC
gauge we refer the reader to [3]. We call the path (g,N,X)(k) the CMC flow. A CMC state is
a pair position-normal velocity (g,K) (where K is the second fundamental form and is equal
to K = − 1

2LT g) with k = trgK constant. Thus the CMC flow gives rise to a flow of position
and velocities (g,K)(k). With this notation the Einstein equations

Ricc − 1
2 Rg = 8πGT (11)

can be seen as the CMC flow equations (taking t = k)

(1) Hamilton–Jacobi equations

g′ = −2NK + LXg, (12)

K ′ = −∇2N + N(Ricc + kK − 2K ◦ K) + LXK − 8πGN

(
T − trgT

2
g
)

. (13)

(2) Constraint equations (energy and momentum respectively)

R − |K|2 + k2 = 16πGρ. (14)

∇ · K = −8πGJ, (15)

(3) Lapse equation (deduced from equations above)

−	N + (4πG(ρ + 3p) + |K|2)N = 1. (16)

The T-term in the right-hand side of equation (13) must be thought to be restricted to �.
Also as usual ρ = T(T , T ), J = T(T , .) and p = (Tab)(g

ab)

3 is the average of the principal
pressures. In equation (15), ∇ · K = ∇aKab is the divergence and in equation (13) it is
(K ◦ K)ab = KacK

c
b. Finally the speed of light was taken to be c = 1.

2.2. The Bel–Robinson energy and the spacetime curvature

We will measure the L2 norm of the spacetime curvature relative to the CMC gauge. We will
also need to measure the L2 norm of their time derivatives relative to the normal direction
to the CMC foliation. There is a remarkable way to introduce them and it is by means of
Weyl fields. Although we would not discuss Weyl fields in detail as there are very accurate
references on the subject [6, 7], we will mention the most used properties here and briefly
elaborate on their conceptual importance as variables controlling the gravitational field.

Definition 1. A Weyl field is a traceless (4, 0) spacetime tensor satisfying the symmetries of
the curvature tensor Rm. We will denote them by Wabcd or simply W.

The Riemann tensor of a vacuum solution to the Einstein equations is a Weyl field that we
will denote as Rm = W0. Let T be the normal field (future pointing) to the CMC foliation.
Then ∇i

T W0 = Wi are Weyl fields. Together with the volume radius [3] and the L2 norm

6
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of the second fundamental form K they are an important set of variables that control the
gravitational field (i.e. the metric g relative to the foliation), see [3]. A central advantage for
taking them as variables is that they enjoy remarkable algebraic properties that simplify the
spacetime algebra considerably. We discuss the main formulae below. Given a Weyl tensor W
define the left and right duals ∗Wabcd = 1

2εablmWlm
cd and W∗

abcd = Wab
lm 1

2εlmcd . Both are
Weyl tensors, ∗W = W∗ and ∗(∗W) = −W. Define the current J (W) and its dual J ∗(W) as

∇aWabcd = Jabc(W), (17)

∇aW∗
abcd = J ∗

abc(W). (18)

For the Riemann tensor in a vacuum solution to the Einstein equation we have J = J ∗ = 0
due to the Bianchi equations. This is a central fact that will be of fundamental importance
latter. We also have

∇[aWbc]de = 1
3εf abcJ

∗f

de (W), (19)

∇[aW∗
bc]de = 1

3εf abcJ
f

de(W). (20)

The L2 norm with respect to the foliation will be defined through the Bel–Robinson tensor.
Given a Weyl field W its Bel–Robinson tensor is

Qabcd(W) = WalcmW l m
b d + W∗

alcmW∗ l m
b d . (21)

It is symmetric and traceless in all pair of indices and for any pair of timelike vectors T1 and
T2,Q(T1, T1, T2, T2) is positive if W 	= 0 [7]. In particular we define the L2 norm of W with
respect to the foliation as Q(T, T , T , T ). It is seen to be the L2 norm of the electric and
magnetic fields of W defined through

Eab(W) = WacbdT
cT d, (22)

Bab(W) =∗ WacbdT
cT d, (23)

i.e. Q(T, T , T , T ) = |E|2 + |B|2. They are symmetric, traceless and null on the T direction.
For the Riemann tensor in particular we have

Eab(W0) = Riccab + kKab − KacKc
b (24)

and

εab
lBlc(W0) = ∇aKbc − ∇bKac. (25)

The following formulae provide the components of a Weyl field with respect to the CMC
foliation in terms of the electric and magnetic fields (i, j, k, l are spatial indices)

WijkT = −εij
mBmk(W), ∗WijkT = εij

mEmk(W), (26)

Wijkl = εijmεklnE
mn(W), ∗Wijkl = εijmεklnB

mn(W). (27)

The divergence formula

∇aQ(W)abcd = W m n
b d J (W)mcn + W m n

b c J (W)mdn (28)

+∗ Wm n
b d J ∗(W)mcn +∗ Wm n

b c J ∗(W)mcn, (29)

and therefore

∇αQ(W)αT T T = 2Eij (W)J (W)iTj + 2BijJ ∗(W)iTj (30)

7
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gives the Gauss equation

∂
∫
�

Q(T , T , T , T ) dvg

∂t
= −

∫
�

2NEij (W)J (W)iTj + 2NBijJ ∗(W)iTj + 3NQabT T �ab dvg,

(31)

where �ab = ∇aTb is the deformation tensor and plays a fundamental role in the tensor
algebra. In terms of the electric and magnetic fields the components of QabT T are written as

QiT T T = 2(E ∧ B)i, (32)

QijT T = −(E × E)ij − (B × B)ij + 1
3 (|E|2 + |B|2)gij . (33)

Controlling J and J ∗ in L2 and � in H 2 is enough to control the L2 norm of the Weyl field.
The following formulae are essential when it comes to getting Sobolev estimates of the Weyl
field:

div E(W)a = (K ∧ B(W))a + JT aT (W), (34)

div B(W)a = −(K ∧ E(W)) + J ∗
T aT (W), (35)

curl Bab(W) = E(∇T W)ab + 3
2 (E(W) × K)ab − 1

2kEab(W) + JaT b(W), (36)

curl Eab(W) = B(∇T W)ab + 3
2 (B(W) × K)ab − 1

2kB(W)ab + J ∗
aT b(W), (37)

where the operations ∧,× are defined as

(A × B)ab = εa
cdεb

ef AceBdf + 1
3 (A − B)gab − 1

3 (trA)(trB)gab, (38)

(A ∧ B)a = εa
bcAb

dBdc. (39)

Equations (34)–(37) above are an example of the so-called elliptic Hodge systems [7]. In
particular under basic regularity of the background metric they make it possible to get elliptic
estimates.

2.3. Scaling.

Scaling is the operation allowing us to speak like we’re ‘looking at the system at a particular
scale’. It is a different operation than coordinate scaling, as scaling a solution does change the
solution but scaling coordinate systems does not. Both transformations are however important
when used simultaneously.

Definition 2. Given a solution g to the Einstein equations, we call λ2g the solution g at the
scale of 1

λ
and we call λ the scale factor.

We say that a CMC state (g,K) is cosmologically scaled (or normalized) if k = −3 or the
same H = 1 as we will see the Hubble parameter H is equal to −k

3 . Given a state (g,K)

that gives rise to a global solution g we can scale it as k2

9 g to transform the original state

(g,K)(k) into a cosmologically normalized state
(

k2

9 g, −k
3 K

)
. Therefore a state (g,K) has a

cosmological scale of 3
−k

= 1
H . Say (g,K)(k) is a CMC state, and say U is some spacetime

tensor constructed out of g that we are looking at the k-slice. The corresponding values of
U on the same slice when we cosmologically scale the state (g,K) will be denoted with a
tilde (either above or next to it) say Ũ or U∼. Thus g̃ = k2

9 g and K̃ = −k
3 K . In a CMC

8
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flow (g,K)(k), we can cosmologically scale the solution g at every k thus getting a flow
of normalized states (g̃, K̃)(k). In the flat cone case the cosmologically scaled flow is just
(gH ,−gH )(k) and what we will call stability of the flat cone will be the stability of the
cosmologically scaled solutions. In general a spacetime tensor will scale as λsU for some
weight s, therefore Ũ will be just Ũ = (−k

3

)s
U . We will indistinctly use −k

3 or H as the scale
factor λ. The following table shows how some main tensors transform when g → λ2g,

g λ2g

g λ2g

K λK

k k
λ

N λ2N

φ φ

Wi λ−i+2Wi

Qi λ−(2i+1)Qi

where φ is the Newtonian potential defined below.

3. Averaged evolution

3.1. Averaged cosmological parameters and the averaging map

We define the geometric parameters, a(k) (universe’s radius), τ(k) (proper time) and H(k)

(Hubble parameter) in volume average. All those parameters reduce to the standard FL
parameters when the solution is homogeneous and isotropic.

Definition 3. Given an arbitrary CMC solution we define the universe’s radius at an instant

of time k as a(k) = V
1
3

g(k). The volume-averaged proper time τ(k) is defined through

dτ

dk
=

∫
�

N dvg

V
. (40)

Recalling that in the FL models the Hubble parameter is defined as H = 1
a

da
dτ

we compute

H = 1

V
1
3

dV
1
3

dτ
= 1

V
1
3

dV
1
3

dk

dk

dτ
= 1

V
1
3

1

3
V − 2

3

(∫
�

−Nk dvg

)
V∫

�
N dvg

= −k

3
. (41)

Thus in arbitrary solutions H = −k
3 . This expression is valid also locally in the following

sense: define the cube of the local radius as the volume element dvg(k), then the local Hubble
parameter is one third the logarithmic derivative of the volume element with respect to the
proper time in the normal direction to the CMC slice k. A direct computation gives for the
local Hubble parameter H = 1

3dvg

dvg

dτ
= −k

3 .
The Friedman–Lemaı̂tre equations take the form

(1) First FL equation: H2 = −
∫
�

R dvg

6V
+

∫
�
(16πGρ + |K̂|2) dvg

6V
, (42)

(2) Second FL equation:
a′′

a
= − ∫

�
N (4πG(ρ + 3p) + |K̂|2) dvg

3V
. (43)

9
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Where N = N

N̄
(bar denotes volume average) and has average equal to one. The derivatives

denoted with a prime are proper time derivatives, i.e. ′ = d
dτ

. The first FL equation is just the
volume average of the energy constraint

16πρ = R − |K̂|2 + 2
3k2. (44)

Observe that to make it look closer to the second FL equation, we can multiply the energy
constraint before integrating by N and integrate thereafter to get

H2 =
∫
�
NR dvg

6V
+

∫
�
N (16πGρ + |K̂|2) dvg

6V
. (45)

To obtain the second FL equation we observe that(
a′

a

)′
= a′′

a
−

(
a′

a

)2

= a′′

a
− H2 (46)

and (
a′

a

)′
= dH

dτ
= −1

3

dk

dτ
= − V

3
∫
�

N dvg

. (47)

On the other hand integrating the Lapse equation (16) we get∫
�

N(4πG(ρ + 3p) + |K̂|2) dvg = V − 3H2
∫

�

N dvg. (48)

Equations (46)–(48) together give equation (43).
Let us restate the standard K = −1 FL models on the light of the description given above

for arbitrary solutions. If the solution is g = −dτ 2 + a(τ)2gH on a manifold R × � then

a(τ) = (
V
VH

) 1
3 where VH is the volume of � with the hyperbolic metric gH and V is the

volume with the metric a(τ)2gH . Our choice of radius for arbitrary solutions has been instead
a(τ) = V

1
3 , we will make this choice in equations (49) and (50). We also recall that in the

standard FL models the energy density and pressures are a function only of τ and for that
reason they coincide with their volume averages. Taking these facts into account the standard
FL equations are

(1)

H2 =
∫
�
(16πGρ) dvg

6V
− KV

2
3

H

a2
. (49)

(2)

a′′

a
= − ∫

�
(4πG(ρ + 3p) dvg

3V
. (50)

Observe that in the FL equation (42) instead of the curvature term −KV
2
3

H /a2 we have the term

−
∫
�

R dvg

6V
= −

(∫
�

R dvg

6V
1
3

)
1

a2
, (51)

where the first factor in the last term of the previous equations is scale invariant and therefore

equal to V
2
3

H for any metric scaled from the hyperbolic metric (so is close to it for any metric
scaled from a metric close to a hyperbolic metric).

In order to establish a mathematical definition of the averaging problem in cosmology
we define the averaging map from arbitrary CMC solutions into Lorentzian manifolds in the
following way.

10
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Definition 4. Given an arbitrary CMC solution g on R × � with � a compact hyperbolic
manifold define the volume-averaged solution as the Lorentzian space (R × �,A(g)) with
A(g) = ḡ = −dτ 2 + a(τ)2

V
2
3

H

gH , where τ and a(τ) are the averaged proper time and radius

as given in definition 3. gH is the unique (up to diffeomorphism) hyperbolic metric that �

accepts.

It is essential in the definition above that, due to Mostow’s rigidity, there is one hyperbolic
metric up to diffeomorphism in a given hyperbolic manifold. That makes the definition of
A(g) unambiguous.

In rough terms the averaging problem for arbitrary solutions can be stated as to whether
the averaged space A(g) is ‘asymptotically in time close’ to an exact K = −1 FL solution
with the ‘averaged energy density and pressures’ ‘asymptotically in time close’ to the energy
density and pressures of the exact FL model. One may also replace ‘asymptotically in time
close’ simply by ‘close’ all along evolution. Physically that would be a better question to ask.
This definition however faces various indefiniteness, we comment on them below.

(1) The first is to give a precise meaning to ‘averaged energy and pressures’ for arbitrary
solutions. We can safely say what they are for the material fields, as material fields
possess densities of pressures and energy, but it is not known what they are for the
gravitational field, and presumably they cannot be isolated as densities. The old question
on how to define the gravitational energy which shows up throughout general relativity
is also present here. A consensual definition of energy is the total ADM energy, a global
term comprising the energetic content of a global system. Despite how satisfactory the
expression is, it is defined in asymptotically flat spacetimes and not in the context of
cosmological solutions. We will argue in subsection 3.6 on the validity of the averaging
problem, at least asymptotically in time, if it is assumed to be a compact and extended
relative of the weak cosmic censorship conjecture of Penrose, a conjecture stated for
asymptotically flat spacetimes. Indeed we will analyze the averaging problem under the
assumption that, under a particular model for matter at natural scales (the small structure),
it happens that, generically, cosmological solutions evolve into a finite set (however large
it may be) of asymptotically flat stationary solutions separating from each other, with
gravitational radiation in between and if in addition we compute the ‘averaged energy
density’ as the volume average of the ADM energies of the stationary solutions plus
the volume-average energy of the gravitational radiation in between. Both terms, as we
shall see, can safely be computed. We will call the assumption above assumption (C).
The extent to which this idealized assumption would be applicable to the actual universe
in which we live at present times is not under consideration here. However I would
like to point out one aspect that immediately jumps out and that it would have to be
addressed with care. Assuming that galaxies conform the individual stationary solutions,
there is the issue to establish, due to the large dark halos extended over diameters many
times their visible diameters, where (if anywhere), and how far, the individual galaxies
(including their halos) become asymptotically flat. This lack of asymptotic flatness on
large neighborhoods around the visible galaxy is manifested in the well-known flat rotation
curves of stars with large orbital radius.

(2) A second problem in the rough definition of the averaging problem given above is to
specify the equation of state of the exact FL solution from the original solution at natural
scales. In light of assumption (C) there are two situations possible, a radiative regime,
of universes filled only with gravitational radiation, and a massive regime, of universes
where in addition to radiation there are massive compact objects (the stationary solutions).

11
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Both regimes, that we will call radiation and mass gap, respectively, deserve different
technical analysis. We will discuss the radiation regime in rigorous detail in section 4.
The analysis of the mass gap regime is done in subsection 3.5. Although rigorously
deduced from the assumption (C), it lacks a precise determination on the decay of the
radiation term. We will return to this point later.

(3) A third problem is to define in a quantitative manner the notion of ‘closeness’ between
the averaged space and the exact FL solution. Precisely, we have to specify the scale in
which the solutions are compared and a law for the asymptotic relation between them.

3.2. The Friedman–Lemaı̂tre equations and the Newtonian potential

A remarkable fact about the averaging formalism is that the second FL equation can be written
only in terms of the volume average of the Newtonian potential φ̄ and consequently a(τ),H(τ )

and z(τ ) are determined only from φ̄.

Definition 5. Define the Newtonian potential φ as φ = Nk2

3 − 1. It satisfies the Poisson
equation (Lapse equation)

	φ = (4πG(ρ + 3p) + |K̂|2) + (4πG(ρ + 3p) + |K̂|2 + 3H 2)φ, (52)

or making e = 4πG(ρ + 3p) + |K̂|2
	φ = e + (e + 3H 2)φ. (53)

From the maximum principle it is seen that −1 � φ � 0. Observe too that φ is an absolute
potential, i.e. there is no ambiguity in the level of energy in its definition (as can be deduced
from the unicity of solutions in equation (52)) and observe also that it is scale invariant. As
defined here the Newtonian potential of course coincides with the usual Newtonian potential
in the weak-field Newtonian regime (when p ≈ 0 and K ≈ 0). Compare also equation (52)
with the usual Poisson equation in Newtonian dynamics

	φ = 4πGρ. (54)

Equation (52) is fundamental to understand the dynamics of the gravitational field in general
and its analysis extracts among other things the time at which Newtonian dynamics appears,
i.e. when is it that gravitation gets ruled by classical Newtonian potentials at large scales. A
straightforward calculation gives

a′′

a
= H2 φ̄

1 + φ̄
(55)

or
H′

H2
= −1

1 + φ̄
, (56)

where φ̄ is the volume average of φ. This equation can be used to get an equation for H as

a function of red shift 1 + z = V
1
3

V (z)
1
3

(V is the present volume and V (z) is the volume at the

corresponding red shift). The relation is
d lnH

d ln(1 + z)
= 1

1 + φ̄
. (57)

One also obtains
d ln(1 + z)

dτ
= −H. (58)

Of course an estimation of φ̄ as a function of τ , z or H is needed to make use of the equations
above.

12
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3.3. The CMC energy

We would like to define a formal quantity on CMC states on a compact manifold � analogous
to the total ADM mass of asymptotically flat spacetimes. Restate the first FL equation (49) in
the form

1 −
(
Vinf

V

) 2
3

= 
m, (59)

where we have defined Vinf as the absolute infimum of the reduced volume V = H3V (g,K)

among the set of all CMC states (g,K). It is known [3, 9] that if � is hyperbolic Vinf = VH .

m is defined as usual as 
m = 8πGρ

3H2 . Thus the density of mass ρ and the Hubble parameter
H determine the deviation of the reduced volume from its absolute infimum. If 8πGρ

3H 2 ∼ 0 we
get in particular the approximation

M ≈ 1

4πGH
(V − Vinf). (60)

This remarkable equation expresses the total mass M in terms only of H,G, the total volume
V and the topological invariant VH . As we shall see in section 3.5 it holds too, asymptotically
in time, for general models under assumption (C). Inspired on it and equation (60) we define
the total CMC energy as

Definition 6. Define the CMC global energy as

ECMC = 1

4πGH
(V − Vinf). (61)

3.4. The ADM limit of the CMC energy: radiation

Recall that the Hessian of the ADM energy around the flat Minkowski spacetime state g = gE

and K = 0 (gE is the Euclidean metric) is (see for instance [8])

8πGδ(2)EADM = 1

4

∫
R

3
|∇g′

T T |2 dv +
∫

R
3
|K ′

T T |2 dv + 8πG

∫
R

3
δ(2)ρ dv, (62)

where T T means transverse-traceless with respect to the flat metric gE . The Hessian of the
reduced volume V was calculated in [9]. We include below a calculation of the Hessian of
the CMC energy (61) based on their analysis for the sake of completeness and clarity. The
Hessian of the CMC energy in the limit when k → 0 is locally the same as equation (62), the
precise expression is

8πGδ(2)ECMC =
∫

�

|K ′
T T |2 dvg +

1

4

∫
�

|∇g′
T T |2 dvg − H2

2

∫
�

|g′
T T |2 dvg + 8πG

∫
�

δ(2)ρ dvg,

(63)

where the background state is
(

9
k2 gH , 3

k
gH

)
. We thus see the local vanishing of the third

term on the right-hand side when H → 0. Observe that the kinetic term |K̂|2
16πG

deduced
from expression (63) (there is an extra factor of a half when we read the energy from
its Hessian) is consistent with the first and second FL equations in the radiation regime,
where the densities of gravitational energy and pressure are unequivocally identified with
ρG = pG = |K̂|2

16πG
. Note however that the first term in (63) does not form part of the effective

densities of gravitational energy and pressure in equation (47) and therefore does not influence
the universe’s deceleration, instead it is part of the curvature term in the first FL equation.
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The calculation of the Hessian is as follows. In terms of conformal variables, a state
(g,K) is written as

gab = ϕ4gY,ab, (64)

Kab = ϕ−10K̂ab
Y +

k

3
ϕ−4gab

Y . (65)

where gY is a Yamabe metric of constant scalar curvature RY = −6 k2

9 and K̂Y is a transverse
traceless tensor with respect to gY . The conformal factor ϕ must satisfy the Lichnerowicz
equation

	ϕ +
k2

12
(ϕ − ϕ5) +

|K̂Y |2Y
8

ϕ−7 + 2πGρϕ5 = 0. (66)

We will take derivatives along a path (g,K)(λ) with (g,K)(0) = (
9
k2 gH , 3

k
gH

)
, which in turn

can be seen as a path (gY ,KY , ϕ)(λ). Note that ϕ(0) = 1. Recalling the derivative of the
Laplacian [10]

−(	′)f = 〈∇2f, g′〉 − 〈∇f, δh〉 − 1
2 〈∇f, dtrgg

′〉, (67)

the first derivative at λ = 0 of the Lichnerowicz equation is (we are assuming δ(1)ρ = 0)

	ϕ′ − k2

3
ϕ′ = 0, (68)

which shows that ϕ′(0) = 0 identically. Using that fact we get

V ′′(0) =
( ∫

�

ϕ6 dvg

)′′
= 6

∫
�

ϕ′′ dvg(0) +
∫

�

dv′′
gY

. (69)

Integrating the Lichnerowicz equation and differentiating the integral equation twice gives

8k2

3

∫
�

ϕ′′ dvg(0) = 2
∫

�

|K̂ ′
Y |2 dvg(0) + 16πG

∫
�

δ(2)ρ dvg(0), (70)

from which we get

6
∫

�

ϕ′′ dvg(0) = 9

2k2

∫
�

|K̂ ′|2 dvg(0) +
9

2k2
8πG

∫
�

δ(2)ρ dvg(0). (71)

Now let us compute the second term in equation (69). First we note that

dv′′
gY

=
(

trgY
g′′

Y

2
− |g′

Y |2
2

+

(
trgg′

2

)2)
dvgY

. (72)

To compute trgY
g′′

Y we will use the variation formula for the scalar curvature. As the metrics
gY are Yamabe of scalar curvature −6 k2

9 the derivative in λ of RY is zero pointwise, precisely
[10]

R′ = −	(trgY
g′

Y ) + δδg′
Y − 〈Ric, g′〉 = 0. (73)

Integrating we get∫
�

〈Ric, g′
Y 〉 dvgY

= 0, (74)

for all λ. Differentiating again at λ = 0 we get∫
�

(〈Ric′, g′
Y 〉 + 〈Ric, g′′

Y 〉 + (Ricab)
(
g′

Y,cd

)(
gac

Y

)′(
gbd

Y

)
+ (Ricab)

(
g′

Y,cd

)(
gac

Y

)(
gbd

Y

)′)
dvg(0).

(75)
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The Ricci curvature at λ = 0 is Ric = −2k2

9 gH . Also the functional derivative of Ricci is

Ric′ = 1
2	Lg′ − δ∗(δg′) − 1

2∇∇(trgg
′). (76)

Observe that from equation (73) we have trg(0)g
′(0) = 0. 	L is the Lichnerowicz Laplacian

and has the expression [10]

	LTab = ∇∗∇Tab +
(
RicacT

c
b + RicbcT

c
a

) − (RmacbdT
cd + RmbcadT

dc). (77)

Using both facts and also that g′ is taken to be transverse we get from equation (75) that∫
�

trgY
g′′

Y dvg(0) = 2
∫

�

|g′
Y |2 dvg(0) +

9

4k2

∫
�

〈g′
y,	Lg′

Y 〉 dvg(0). (78)

To compute the Lichnerowicz Laplacian we remember that the sectional curvature of g(0) is
− k2

9 , therefore

	Lg′
Y = ∇∗∇g′

Y − 6k2

9
g′

Y , (79)

at λ = 0. Using the previous equation in equation (78), we get the result of equation (63) after
putting together equations (72), (70), (69).

3.5. The long-time ADM limit of the CMC energy: radiation and mass gap

In this subsection, we will introduce assumption (C) and show how, under that assumption, the
CMC energy converges asymptotically in time to the sum of the ADM masses of the emerging
stationary solutions plus a radiative term of the radiation in between. The analysis will lead
us to argue in subsection 3.6 on the validity of the averaging problem in cosmology under
assumption (C) and asymptotically in time. First we recall the definition of asymptotically flat
stationary solution.

Definition 7 ([11], p 16). A maximal (k = 0) initial data set (g,K,N,X) is a stationary
asymptotically flat data iff

(1) (a) g00 = −(
1 − 2M

r

)
+ O(r−2),

(b) gij = (1 + O(r−1))δij + O(r−2),

(c) g0i = −εijk
4Sj

r3 xk + O(r−3).

(2) It satisfies the stationary vacuum Einstein equations ġ = K̇ = 0.

Now we state the definition of assumption (C). A schematic representation of a spacetime
(at a given time) satisfying assumption (C) is given in figure 1.

Definition 8. A long-time CMC solution satisfies the assumption (C) iff:

(1) (Emergence of isolated stationary solutions) after a sufficiently large time there is a finite
set of pairs of two-spheres (inner and outer) with constant mean curvatures 2/L0 and
2/L(t) respectively, varying continuously in time (t = 1/H) such that, inside the annulus
in between, the unscaled flow (g,K,N,X) decays in the C1 norm into a stationary
solution (g0,K0, N0, X0). At the outer spheres, |∇φ − ∇φ0| � C

L(t)2t1+ε .
(2) (The inside of the inner spheres) after a sufficiently long time the volume of the inside of

the inner spheres grows no faster than t1−ε .
(3) (Emergence of the radiative region) after a sufficiently long time the cosmologically

normalized flow (g̃, K̃, Ñ, X̃), decays uniformly in C1, over the exterior region to the
outer spheres into the flat cone state (gH ,−gH , 1/3, 0).

(4) (Boundedness of the CMC energy) dE
dt

� C
t2+ε → 0.
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Figure 1. A schematic representation of the cosmological scale of a universe satisfying assumption
(C) after a sufficiently long time. The emerging stationary solutions are represented with a galactic
symbol enclosed in a dashed circle representing the outer spheres. The tails coming out from the
inside of the emerging stationary solutions represent the large tubes developing inside possible
black holes.

Some remarks are in order. The interior radius L0 is fixed. The exterior radius L(t) grows
monotonically but less than t: limt→∞ L(t)

t
= 0, in such a way that at cosmological scales

the outer spheres get smaller and smaller in size. Similarly, the rate at which the solution
over the annulus decays into the stationary solution and the rate at which the solution on the
exterior region decays into the flat cone solution are left unspecified here. Item four is a global
condition that complements the absence of explicit decaying rates in assumption (C). In the
CMC flow, the interior regions of black holes are expected to evolve as tubes of increasingly
large size, and therefore increasing volume. Item two gives a bound on its growth in the
case they form. We want to stress that all these conditions are tentative and are not intended
to be conjectural. Neither do we conjecture a sort of assumption (C) to hold generically.
The introduction of assumption (C), we believe, provides a starting point in the study of the
averaging problem directly from the small structure of exact solutions. All these problems
are, however, difficult problems in the field. Section 4 is an attempt to clarify these issues in
pure radiative solutions.

Now let us see how the CMC energy behaves under assumption (C). The second FL
equation in terms of the CMC energy is

dECMC

dσ
= −

∫
�

(
(ρ + 3p) +

|K̂|2
4πG

)
(1 + φ) dvg + ECMC = 3H2

∫
�

φ dvg + ECMC, (80)

where σ = − ln −k is the logarithmic time. From item 4 and equation (80) the CMC energy
converges to the term −3H2

∫
�

φ dvg with a difference bounded by C/t1+ε . Now let us
separate the region of integration into the inside of the outer spheres and its outside. Using
the Poisson equation (52) we get

ECMC =
∫

Sout

〈∇φ, nout〉 dA + 3H2
∫


int

φ dvg

+
∫


ext

(
(ρ + 3p) +

|K̂|2
4πG

)
(1 + φ) dvg + O(t−(1+ε)), (81)

where 
int is the interior of the outer spheres and 
ext its exterior. Due to item 2 in assumption
(C), the second term on the right-hand side of equation (81) is an O(t−(1+ε)). The boundary
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term approaches with an error O(t−(1+ε)) to the sum of the ADM masses of the emerging
stationary solutions. We can identify the third term on the right-hand side of equation (81) is
the radiative term because by item 3 φ → 0 pointwise on 
ext and the radiation terms from
matter and gravitation decouple. Thus we get

ECMC ≈ M + R, (82)

the total ADM mass plus the radiation energy. This is the same equation as (60) with the
additional radiative term. A remark has to be said about the radiative term. In an asymptotically
flat context the ADM energy is a conserved quantity, therefore the radiative contribution to
energy measured as the difference between the asymptotically Bondi energy and the ADM
energy would be a definite nonzero amount. In other words there is a definite amount of
radiative energy that forms part of the ADM energy. In our context, that amount would form
part of the radiative term R. Further work is needed to show that, indeed there may exist a
non-vanishing residual radiative energy in the R term.

We will use the total CMC energy in section 4 to give a rigorous estimation of the
gravitational energy in the long time for radiative solutions.

3.6. The averaging problem in cosmology

We will discuss here the implications of assumption (C) for the averaging problem in
cosmology. Noting that N = 1+φ

1+φ̄
we rewrite the second FL equation in the form

a′′

a
= − ∫

�
(4πG(ρ + 3p) + |K̂|2)(1 + φ) dvg

3(1 + φ̄)V
= H2 φ̄

1 + φ̄
, (83)

with

φ̄ = − ∫
�
(4πG(ρ + 3p) + |K̂|2)(1 + φ) dvg

3H2V
. (84)

The integrand is the same as in equation (80); therefore, we can decompose the integration
as we did in equation (81). Note that if in equation (80) we write 3H2

∫
�

φ dvg = −3tVφ̄, we
get because of item 4 in assumption (C) and the fact that the reduced volume is monotonically
decreasing and bounded below by VH that φ̄ = ECMC

−3tV + O(t−(2+ε)) = O(1/t). This gives the
estimation that the factor 1 + φ̄ in the denominator of equation (83) behaves as 1 + O(t−1). All
together this gives

1

a

d2a

dτ 2
= − 4πG(M̄ADM + R̄)

3 − 4πGH−2(M̄ADM + R̄)
+ O(t−(4+ε)) = −4πG(M̄ADM + R̄)

3
+ O(t−(3+ε)),

(85)

where M̄ADM is the volume average of the sum of the ADM masses of the emerging stationary
solutions, and R̄ = ρ̄rad + 3p̄rad + ρ̄G + 3p̄G where ρ̄rad, p̄rad and ρ̄G, p̄G are the volume
average of the energy and pressure densities of material and gravitational radiation,
respectively. Equation (85) is a differential equation in τ , however the estimate on its right-
hand side is in terms of t = 1/H. We thus complement this equation with a differential
equation for τ as a function of t. From the defining equation of τ we get the equation

dτ

dt
= 1 + φ̄ = 1 − 4πG

3
t2(M̄ADM + R̄). (86)

Equations (85) and (86) are the main equations for the averaging problem under assumption
(C) and asymptotically in time. We remark that still the Einstein equations have to be used in
full, to provide an estimation of the radiative term R̄. The following section intends to provide
these estimates in the case MADM = 0, i.e. a purely radiative solution.
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4. Long-time smoothing and estimates on the gravitational energy: radiation

We will use the notation Hs for the Sobolev space with s derivatives and Hs
gH

for the Sobolev
space where the norms and covariant derivatives are calculated via gH (see [3]). We will prove
here theorem 1. The proof is a natural extension of the analysis in [6].

Theorem 2 (Expansive smoothing and energy estimates). Let � be a compact and rigid
hyperbolic manifold. There is an ε > 0 such that the Einstein CMC flow of a cosmologically
scaled initial state (i.e. with H = 1) (g,K) with V − Vinf � ε and Ẽ1 � ε has the following
long-time properties (take t = 1

H ):

(1) The limit limt→∞t3Q0 is finite and greater than zero.
(2) There are ni � 0 such that limt→∞ t2i+3

(ln t)ni
Qi � ∞ for i � 1.

(3) For given γ > 0,
∫ ∞
t

∫
�

|K̂|2 dvg

u
du � Ct−(2+γ ).

(4) |K̂|2 � Ct−4 pointwise (not volume averaged).

In particular the cosmologically scaled flow of a Hi × Hi−1 state (for any i � 1) as in the
hypothesis above converges in Hi ×Hi−1 to the canonical flat cone state (g,K) = (gH ,−gH ).

Proof of theorem 1. We start by recalling a result from [6] that will be useful to prove items
1 and 2 in theorem 1.

Lemma 1. Let � be a compact and rigid hyperbolic manifold. There are C and ε0 such that
if a cosmologically normalized CMC state (g,K), where g is harmonic with respect to gH ,
is ε-close to (gH ,−gH ) in the H 3

gH
× H 2

gH
topology, with ε � ε0 then there is a constant C

(dependent on ε0) such that

C−1Ẽ1 �
(‖g − gH‖2

H 3
gH

+ ‖K + gH‖2
H 2

gH

)
� CẼ1. (87)

We get therefore the elliptic estimate for the Newtonian potential φ = N̂ = k2N
3 − 1 from the

lapse equation

‖N̂‖H 2
gH

� C‖K̂‖H 2
gH

‖K̂‖L2
gH

� CẼ1 (88)

and

‖N̂‖H 3
gH

� C‖K̂‖H 2
gH

‖K̂‖H 1
gH

� CẼ1. (89)

To extract conclusions on the decay of the Sobolev norms of the cosmologically
normalized states we will make use of the fact proved in [3] that under the conditions of
the last lemma, ε0 and Ẽi−1 controls the difference of the states in Hi

gH
× Hi−1

gH
with respect to

the background state (gH ,−gH ) states at zero, i.e. the derivatives tend to zero in L2
gH

as ε0 and
Ẽi tend to zero. Item 1. The Gauss equation gives the following inequality for the evolution
of the first-order cosmologically normalized Bel–Robinson energy [6]:

dẼ1

dσ
� −2Ẽ1 + CẼ

3
2

1 , (90)

with c as a constant greater than zero. It follows therefore that Ẽ1 decays faster than the
solution x(σ ) to the following ordinary differential equation and same initial condition:

x ′ = −2x + cx
3
2 . (91)

This is a Bernoulli type of equation that can be solved by making the change of variables
v = x− 1

2 which gives the differential equation

v′ = v − c

2
, (92)
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having the solution v = 1
2 + Aeσ . This implies that

x = x(σ0) e−2(σ−σ0)(
c
2 (e−(σ−σ0) − 1)x(σ0)

1
2 + 1

)2 , (93)

which results in the following decay of Ẽ1

Ẽ1 � Ẽ1(σ0) e−2(σ−σ0)(
c
2 (e−(σ−σ0) − 1)Ẽ1(σ0)

1
2 + 1

)2 . (94)

Observe that if σ0 is big enough then we get the bound

Ẽ1 � Ẽ1(σ0) e−2(σ−σ0)

4
. (95)

Now we prove item 1 in theorem 1. From the Gauss equation and lemma 1 and the above
estimate for Ẽ1 we get an evolution equation for Q̃0 of the form

dQ̃0

dσ
= −2Q̃0 + h(σ), (96)

where h(σ) is a function which is bounded in absolute value by

|h(σ)| � CẼ
3
2

1 (σ0) e−3(σ−σ0). (97)

Therefore we get the following expression for Q̃0:

Q̃0 = e−2(σ−σ0)

(
Q̃0(σ0) + e−2σ0

∫ σ

σ0

h(u) e2u du

)
, (98)

Clearly the integral in h has a limit when σ → ∞. If the term in parentheses on the right-hand
side has a limit different than zero then we are done, as then

lim
σ→∞

Q̃0

e−2σ
> 0. (99)

Let us see that the limit cannot be zero. If that happens then we have for all σ

Q̃0(σ ) = −e−2σ

∫ ∞

σ

h(u) e2u du. (100)

The integral is negative for all σ (Q̃0 is positive) and goes to zero as σ → ∞. Then there is a
diverging sequence {σi} such that for all σ � σi we have

−
∫ ∞

σ

h(u) e2u du � −
∫ ∞

σi

h(u) e2u du (101)

making then

Q̃0(σ ) � Q̃0(σi) e−2(σ−σi ), (102)

for all σ � σi . Using again the Gauss equation, lemma 1 and the estimate above we get an
evolution equation for Q̃0(σ ) of the same form as in equation (96) with h instead bounded in
absolute value by CẼ1(σi)

1
2 Q̃0(σi) e−3(σ−σi ). It thus gives an expression for Q̃0 of the form

Q̃0(σ ) = Q̃0(σi) e−2(σ−σi )

(
1 + e−2σi

∫ σ

σi

h(u) e2u

Q̃0(σi)
du

)
. (103)

To see that limσ→∞ Q̃0 e2σ > 0 we note the following bound for the integral term in the
equation (103):∣∣∣∣e−2σi

∫ ∞

σi

h(u) e2u

Q̃0(σi)
du

∣∣∣∣ � CẼ1(σi)
1
2 , (104)
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which tends to zero as σi → ∞. This is a contradiction, thus the limit must be positive.
Item 2. Now we prove item 2. By induction we will be able to get an equation for Ẽi (σ ) of
the form

Q̃′
i = −(2 + h′(σ ))Q̃i + h(σ)Q̃

1
2
i , (105)

where h′(σ ) and h(σ) are functions bounded in absolute value by C ′σn′
e−σ and Cσn e−σ for

some C ′, C and n′, n constants. It follows after making the change of variable v = Q̃
1
2
i that

Q̃i can be bounded by an expression of the form

Q̃i � Cσ 2(n+1) e−2σ , (106)

for some constant C.

Lemma 2. Suppose that a solution to the CMC flow (g,K) has

Q̃j (σ ) � Cjσ
nj e−2σ , (107)

for j = 0, . . . , i � 1, then Q̃i+1 satisfies an equation of the form (105) and therefore satisfies
an asymptotic of the form (107) for j = i + 1.

Proof. We start with the differential inequality for Q̃i . Make β = −3
k

. Then Qi(k) =
λ(2i−1)Qi(k), and therefore

dQ̃i

dσ
= 3

β

dQ̃i

dk
= 3

β

(
(2i + 1)

β2i+2

3
Qi + β2i+1 dQi

dk

)
. (108)

A useful trick for the calculations that follow is to write

β2i+1 dQi

dk
= β

dQi(β
−2g)

d(βk)
, (109)

where β inside the derivative on the right-hand side is taken constant equal to its value at the
time of differentiation. Thus we are calculating the k-derivative of the cosmologically scaled
solution at k = −3. Putting all this together we get

dQ̃i

dσ
= (2i + 1)Q̃i + 3

dQi(β
−2g)

d(βk)
. (110)

We are going to study the derivatives dQi

dk
of perturbation of the canonical flat cone state

(gH ,−gH ) at k = −3. From the Gauss equation we have

dQ(i)

dk
= −3

∫
σ

NQ(i)abT T �ab dvg −
∫

�

2N
(
Eab

(i)J(i)aT b + Bab
(i)J

∗
(i)aT b

)
dvg, (111)

therefore

3β2i+1 dQi

dk
= −9

∫
σ

ÑQ̃(i)abT̃ T̃ �̃ab dvg̃ −
∫

�

6Ñ
(
Ẽab

i J̃ (i)aT̃ b + B̃ab
i J̃ ∗

(i)aT̃ b

)
dvg̃. (112)

We will say that a term is an O(σ ) if it can be bounded in absolute value by a term of the form
Cσn e−σ for some natural number n. Let us start by analyzing the first term on the right-hand
side of equation (111). Making

�̂ab = �ab +
k

3
(gab + TaTb), N̂ = N − 3

k2
, (113)

we get

−9
∫

�

ÑQabT T
˜̂�

ab

dvg̃ − 3Q̃i − 9
∫

�

˜̂NQ̃i dvg̃. (114)
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Using lemma 1 and the estimate on Ẽ1 above we get the term

−3Q̃i + O(σ )Q̃i . (115)

Now we estimate the second term in equation (111), and therefore we need estimates of J̃ and
J̃ ∗. We will do the calculations only for J , those for J ∗ proceed in exactly the same way. We
note first the following inductive formula for J :

J (Wi )abc = �̂de∇eW(i−1)dabc − k

3
W(i)dabcT

d + T ∗ Rm ∗ Wi−1 + ∇T J (Wi )abc, (116)

where * is some tensorial multiplication whose particular form is not important to our purposes.
We can write the formula above symbolically as

J (Wi ) = �̂ ∗ ∇Wi−1 − k

3
Wi ∗ T − k

3
J (Wi−1) + T ∗ Rm ∗ Wi−1 + ∇T J (Wi−1). (117)

Now, inducting the fifth term on the first, second, third and fourth gives the following terms,
respectively:

(1)
j=i−1∑
j=0

∇j

T (�̂ ∗ ∇Wi−1−j ) (118)

(2)
j=i−1∑
j=0

∇j

T

(−k

3
∗ T ∗ Wi−j

)
, (119)

(3)
i−2∑
j=0

∇j

T

(−k

3
J (Wi−(j+1))

)
, (120)

(4)
i−1∑
j=0

∇j

T (T ∗ Rm ∗ Wi−1−j ). (121)

The only terms that are not going to count as O(σ ) or O(σ )Q̃
1
2
i are those coming from the

expression 2 and when the ∇T derivative applies only to the Wi−j giving

−k

3
iWi ∗ T (122)

When we take into account this and a similar term arising from a formula for J ∗ and plug
them into equation (111) we get a contribution of the form

−2iQ̃i . (123)

As said above and as we will explain in a moment all other terms are going to count as O(σ ) or

O(σ )Q̃
1
2
i therefore we would get, putting equations (110), (115) and the last estimate together

dQ̃i

dσ
= −(2 + O(σ ))Q̃i + O(σ )Q̃

1
2
i , (124)

as we wanted in the induction. To discuss the other terms then we start by recalling some
propositions from [3] restated in a different form for the convenience of the paper.

Lemma 3. Let (g,K) be a CMC flow on a rigid hyperbolic manifold �. Suppose that the
initial cosmological state is ε-close to the standard flat cone state (gH ,−gH ) as in lemma 1
then (all derivatives below are taken at k = −3)
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(1)
∥∥∇i

T �
∥∥

H
j
gH

, i � 1, j = 0, 1, 2 (125)

are controlled by Ei+j−1.

(2) (‖∇Wi )‖L2
gH

+ ‖Wi‖L2
gH

) � C
(‖Wi+1‖L2

gH
+ ‖Wi‖L2

gH
+ ‖J (Wi )‖L2

gH

)
(126)

i � 0.

Lemma 4. ∇h
T J (Wi ) has an expression of the form

∇h
T J (Wi ) =

∑ (∇m1
T �

)n1 ∗ · · · ∗ (∇ms

T �
)ns ∗ �l ∗ ∇Wk (127)

+
∑ (∇m̃1

T �
)ñ1 ∗ · · · ∗ (∇m̃s

T �
)ñs ∗ �l̃ ∗ ∇q

T (T ∗ Rm ∗ Wk̃) (128)

where the first sum is among the set k � i + h − 1,m1 � · · · � ms � 1 and
∑

j nj (1 + mj) +
l + k = i + h, while the second is among the set m̃1 � · · · � m̃s � 1 and

∑
j ñj (1 + m̃j ) +

k̃ + l̃ + q = i + h − 1.

Now we prove the following lemma.

Lemma 5. Let (g,K) be a CMC solution. Suppose for a given value of i there are ni and Ci

such that Ẽi � Ciσ
ni e−2σ = O(σ ) then

(1) there are n′
i and C ′

i such that ‖J̃ (Wi )‖2
L2

gH

� C ′
iσ

n′
i e−2σ = O(σ ).

(2) There are n′
ij and C ′

ij such that
∥∥(∇j

T J (Wi−j )
)∼∥∥2

L2
gH

� C ′
ij σ

n′
ij e−2σ = O(σ ) for j � i.

Proof. Proceed by induction in i. Observe that all the factors involving � and its time
derivatives in formula (127) (with h = 0) are controlled by Ẽi in H 2

gH
by lemma 3. The

norms ‖(∇Wk)
∼‖L2

gH
are controlled using inequality (126). The second kind of terms in

equation (128) are controlled as follows. The factors involving � and its time derivatives are
controlled again in H 2

gH
by Ẽi . The other factors can be seen as

(∇q

T (T ∗ Rm ∗ Wk̃)
)∼ =

∑
q1+q2+q3=q

(∇q1
T T

)∼ ∗ (∇q2
T Rm

)∼ ∗ (∇q3
T Wk̃

)∼
, (129)

=
∑

q1+q2+q3=q

(∇q1
T T

)∼ ∗ (
W̃q2

) ∗ (
W̃q3+k̃

)
, (130)

with q � i − 1. Now Sobolev embeddings give∥∥W̃q2 ∗ W̃k̃+q3

∥∥
L2

gH

� C
(∥∥W̃q3

∥∥
H 1

gH

∥∥W̃k̃+q3

∥∥
H 1

gH

)
, (131)

where the factors on the right are controlled by lemma 3. The factors (∇T T )∼ are controlled
in H 2

gH
by lemma 3. Finally the proof of part 2 is the same as above after using formulae

(127), (128). �

The terms in 2–4 on the induction formula for J other than those already considered

in equation (123) are easily seen to be bounded by O(σ ) or O(σ )Q̃
1
2
i by the same kind of

arguments as in lemma 5. To bound the terms in 1 in the same way we need the following
form of ∇j

T ∇Wk:

∇j

T ∇Wi =
∑ (∇m1

T �
)n1 ∗ · · · ∗ (∇ms

T �
)ns ∗ �l ∗ ∇Wk (132)
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+
∑ (∇m̃1

T �
)ñ1 ∗ · · · ∗ (∇m̃s

T �
)ñs ∗ �l̃ ∗ ∇q

T (T ∗ Rm ∗ Wk̃), (133)

where the first sum is among the set m1 � · · · � ms � 1 and
∑

j nj (1 + mj) + l + k = i + j ,
while the second is among the set m̃1 � · · · � m̃s � 1 and

∑
j ñj (1+m̃j )+ k̃+ l̃+q = i +j −1,

which can be easily proved by induction by using equation

∇T ∇Wi = ∇Wi+1 + � ∗ ∇Wi + T ∗ Rm ∗ Wi . (134)

This finishes the induction in lemma 2. �

Items 3 and 4. The estimate from above in item 4 comes from lemma 1. The item 3 or the
estimate from below is more involved, the argument is as follows.

Lemma 6. For any ε > 0 there is a ball B(gH ,−gH )(δ) of cosmologically scaled states in
H 3 × H 2 such that∥∥Ñ − 1

3

∥∥
L∞ � ε (135)

and

4πGHECMC � 1

4 + ε

∫
�

| ˆ̃K|2 dvg̃. (136)

We can prove item 3 by making use of lemma 6. First, the derivative of the reduced
volume V = H3V in logarithmic time is

dV
dσ

= −3
∫

�

Ñ | ˆ̃K|2 dvg̃. (137)

If we integrate it from σ to ∞ and use lemma 6 above we get the following inequality:

1

4 + ε

∫
�

| ˆ̃K|2 dvg̃ � 4πGHECMC = 3
∫ ∞

σ

( ∫
�

Ñ | ˆ̃K|2 dvg̃

)
dσ

� (1 + ε)

∫ ∞

σ

( ∫
�

| ˆ̃K|2 dvg̃

)
dσ. (138)

Making U = ∫ ∞
σ

( ∫
�

| ˆ̃K|2 dvg̃

)
dσ the inequality (138) is written as

U ′ � −(4 + ε)(1 + ε)U, (139)

which after integration gives the left-hand side inequality in item 3.

Proof of lemma 6. First we note that the estimate for Ñ − 1
3 is deduced from lemma 1. For

the second estimate it may be deduced from the calculation of the Hessian of the energy that
we did before, however we will follow a direct estimate from the Lichnerowicz equation. We
argue as follows. Say g = φ4gY where gY is the unique metric in the conformal class of g

having scalar curvature −6. Then φ satisfies

−	φ + 3
4 (φ5 − φ) = 1

8φ−3| ˆ̃K|2Y . (140)

The maximum principle gives φ � 1. Making φ̄ = φ − 1 rewrite equation (140) as

−	φ̄ + 3
4φ(φ3 + φ2 + φ + 1)φ̄ = | ˆ̃K|2Y

8φ3
. (141)

At the point where φ or φ̄ is maximum we have

φ̄ � 1

12

| ˆ̃K|2φ4

φ3 + φ2 + φ + 1
� | ˆ̃K|2φ

12
, (142)
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which gives if ‖K̂‖L∞
g

is small

‖φ̄‖L∞ �
‖K̂‖2

L∞
g

12 − ‖K̂‖2
L∞

g

. (143)

Also note that

−σ(�) � −6V
2
3

Y , (144)

which gives

0 �
∫

�

(φ6 − 1) dvY � V − VH . (145)

Writing φ6 − 1 = (φ − 1)(φ5 + φ4 + φ3 + φ2 + φ + 1) we get

6
∫

�

(φ − 1) dvgY
� V − VH . (146)

Integrating equation (140) we get

6
∫

�

(φ5 − φ) dvgY
=

∫
�

φ−3| ˆ̃K|2Y dvgY
. (147)

Under the assumptions we have and using equation (143) we can get from equation (147)
above the inequality

6(4 + ε)

∫
�

(φ − 1) dvgY
�

∫
�

φ−2| ˆ̃K|2Y dvgY
=

∫
�

| ˆ̃K|2 dvg, (148)

which together with equation (81) gives the inequality

(4 + ε)(V − VH ) �
∫

�

| ˆ̃K|2 dvg (149)

as desired.
This finishes theorem 1. �

5. States of arbitrarily large gravitational energy

We will construct a one parameter family of states (gλ,Kλ) such that

(1) kλ = k0 fixed,
(2) Volgλ

→λ→∞ ∞ and ‖K̂λ‖L2
gλ

→λ→∞ ∞,
(3) The ‘big-bang’ family of states, i.e. the volume-one normalized family of states above has

−kλ → ∞, (150)

Volgλ
(�) = 1, (151)

lim
λ→∞

‖K̂λ‖L2
gλ

= ∞. (152)

As has been argued above, these states represent a one parameter family of states with arbitrarily
large gravitational energy. The construction is as follows. Pick the hyperbolic metric gH and a
nonzero transverse traceless tensor K̂ with respect to it. According to the conformal method it
is possible to find a solution to the constraint of the form (gλ,Kλ) = (ϕ4gH , λ2ϕ−2K̂ −ϕ4gH )

(the mean curvature being k = k0 = −3 and one parameter family of states as above with
arbitrary k0 can be obtained by scaling), by solving the elliptic equation

	ϕ = −3

4
ϕ − λ4

8
|K̂|2gH

ϕ−7 +
3

4
ϕ5. (153)
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Now we prove items 2. Multiplying equation (153) by ϕ and integrating we get

λ4

8

∫
�

|K̂|2gH
ϕ−6 dvgH

=
∫

�

|∇ϕ|2 +
3

4
(ϕ6 − ϕ2) dvgH

. (154)

Note that the left-hand side is 1
8‖K̂λ‖2

L2
gλ

. If the left-hand side does not diverge as λ → ∞ then

the right-hand side remains bounded in particular the H 1
gH

norm of ϕ remains bounded.

Pick an open set 
 where |K̂|gH
� ε > 0. Then as ϕ is bounded in H 1 we have

Vol{x ∈ 
/ϕ(x) < n} → Vol(
) as n → ∞ uniformly in λ. Then for some n we
have Vol{x ∈ 
/ϕ(x) < n} > Vol(
)

2 uniformly in λ, and so the left-hand side is bigger than
λ4

16n6 ε
2Vol(
) which diverges when λ → ∞ which is a contradiction. This proves item 2, to

prove item 3 we argue as follows. The L2 norm of K̂λ of the volume one states are

λ4
∫
�

|K̂|2ϕ−6dvgH( ∫
�

ϕ6 dvgH

) 1
3

=
∫
�

|∇ϕ|2 + 3
4 (ϕ6 − ϕ2) dvgH( ∫

�
ϕ6 dvgH

) 1
3

. (155)

We have that an upper bound on the left-hand side in the last equation implies an upper bound
for the H 1 norm of ϕ, for if not we have

∫
�

ϕ6 dvgH
→ ∞ which would make the numerator of

the right-hand side diverging in λ, but we know
∫
�

ϕ6 dvgH
diverges which is a contradiction.

6. Summary and open questions

We have introduced the notion of general K = −1 cosmological model as a formal definition
allowing to study cosmological notions in arbitrary solutions of the Einstein equations. This
gave us a framework to study general cosmological solutions in a cosmological language.
The approach may be applicable to models other than general K = −1 cosmological
models, i.e. models with different spatial topologies. Thinking on the averaging problem
in cosmology we have defined volume-averaged cosmological parameters and an averaging
map: a correspondence between arbitrary solutions and homogeneous and isotropic Lorentzian
spaces. Those concepts allowed us to give a precise mathematical formulation of the averaging
problem in cosmology. In another section and aiming at the start of a rigorous analysis of
cosmological evolution from the solutions at the natural scale (i.e. including the small scale),
we have introduced assumption (C) which precisely describes a certain class of solutions.
Those solutions are divided into two main subclasses: radiative and mass gap. We have given
a detailed description of the full structure of the radiative solutions. We have also analyzed
the averaging problem in cosmology in precise quantitative terms for mass gap solutions. The
attempt may be considered as a first step toward the ideal goal of attacking the averaging
problem in cosmology directly from the solutions at the small scale. Finally we constructed
initial ‘big-bang’ states of arbitrarily large gravitational energy, showing that, a priori there is
no mathematical restriction to assume the gravitational energy to be low at the beginnings of
time.

There are several questions and avenues of research left open in the present paper, of
varying difficulty however. For instance one may want to see in action the formalism
of general cosmological models in cosmological solutions with Cauchy surfaces of non-
hyperbolic topology. Also and perhaps more important is to obtain rigorous results that may
or may not support assumption (C). Any rigorous result of that sort would put the study of the
averaging problem in cosmology from the small scale on a firm basis. Analyzing the validity
of assumption (C) from the Einstein equations is a very difficult problem. A central point is to
study the spatial asymptotic of stationary solutions that may emerge in time. Is an emerging
stationary solution necessarily spatially asymptotically flat in the long time? If the answer is
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affirmative one may be in a better position to prove the a priori estimates in assumption (C).
The answer may instead be negative and that would open a new avenue of research. Finally
the analysis of the validity of the averaging problem in cosmology from assumption (C) was
only asymptotic in time, and therefore of non-obvious applicability. An interesting question
is to study the validity of the analysis but in finite times.
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