Secciones
Usted está aquí: Inicio Biblioteca Tesis de Grado y Posgrado Tesis de posgrado Tesis de Maestría Generalizaciones de la noción de bimonoide

Sara Vilar del Valle (2016)

Generalizaciones de la noción de bimonoide

Tesis de Maestría, Facultad de Ciencias, UdelaR - PEDECIBA.

Este trabajo trata sobre generalizaciones categóricas de la noción de k-biálgebra. La generalización primera y conocida es la de bimonoide en una categoría monoidal trenzada. Las generalizaciones que existen y de las que trata la tesis parten de una mónada (como generalización del álgebra) y toman dos posibles caminos: Eliminar la hipótesis de la existencia de una trenza en la categoría de base. Esta corriente, la de [3] y [4] y [12], trabaja en el contexto de categorías monoidales (no necesariamente trenzadas) y considera functores comonoidales que son además mónadas, con ciertas relaciones de compatibilidad entre estas estructuras. Este camino da lugar a las llamadas mónadas comonoidales; de manera dual y análoga, se pueden considerar las llamadas comónadas monoidales como otra posible generalización (que parte de una comónada como generalización de la estructura de k-coálgebra). Eliminar la hipótesis de monoidal y considerar una transformación natural que ocupa el lugar de trenza (conocida como ley distributiva). Esto fue hecho en particular en [9], [10], [11] y [14]: los autores consideran una categoría cualquiera y modelan un bimonoide a través de un functor que es a la vez mónada y comónada y donde estas estructuras conviven bajo ciertas relaciones de compatibilidad que pueden ser enunciadas a través de la ley distributiva. Este camino da lugar a las llamadas bimónadas. En ambos contextos se tiene la noción extendida que agrega una antípoda (mónada comonoidal de Hopf y bimónada de Hopf respectivamente) y se generalizan resultados conocidos de la teoría de álgebras de Hopf. No consideraremos estas nociones en el presente trabajo. Este trabajo tiene por objetivo, además de recopilar ejemplos de mónadas y comónadas, revisar estas dos corrientes de generalización, presentando las definiciones, algunos resultados importantes y algunos ejemplos.