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Abstract

This thesis aims to make a contribution to the study of a somehow large

class of partially hyperbolic diffeomorphisms denoted as discretized Anosov

flows.

This class is shown to comprise whole connected components of partially

hyperbolic diffeomorphisms with one dimensional center in any dimension.

Several general properties of discretized Anosov flows are proven. These

properties include dynamical coherence, uniqueness of invariant foliations,

plaque expansivity and unique integrability of the center bundle. In par-

ticular, this permits to establish the equivalence with other similar notion

appearing on the literature.

A characterization of discretized Anosov flows is given under some general

circumstances: the class is shown to coincide with the partially hyperbolic

diffeomorphisms that individually fix each leaf of a one-dimensional center

foliation.

Regarding further dynamical properties, a result on uniqueness of attrac-

tor is shown.

Several of this results are also seen to happen for the related class of

partially hyperbolic diffeomorphisms admitting a uniformly compact center

foliation.



Résumé

Cette thèse a pour but de contribuer à l’étude d’une classe assez large

de difféomorphismes partiellement hyperboliques dénommés flots d’Anosov

discrétisés.

On montre que, en toute dimension, cette classe est constituée de com-

posantes connexes entières de l’ensemble des difféomorphismes partiellement

hyperboliques avec fibré central unidimensionnel.

Plusieurs propriétés générales des flots d’Anosov discrétisés sont prouvées.

Ces propriétés comprennent la cohérence dynamique, l’unicité des feuilletages

invariantes, la expansivité par plaques et l’intégrablité unique du fibré cen-

tral. En particulier, cela permet d’établir l’équivalence avec d’autres notions

similaires apparaissant dans la littérature.

Une caractérisation des flots d’Anosov discrétisés est donnée dans cer-

taines circonstances générales : on montre que la classe cöıncide avec les

difféomorphismes partiellement hyperboliques qui fixent individuellement cha-

cune des feuilles d’une feuilletage central unidimensionnel.

En ce qui concerne d’autres propriétés dynamiques, on montre un résultat

sur l’unicité de l’attracteur.

Une bonne partie de ces résultats s’appliquent également à la classe des

difféomorphismes partiellement hyperboliques admettant une feuilletage cen-

tral uniformément compacte.



Resumen

Esta tesis tiene como objetivo realizar un aporte al estudio de una clase

relativamente amplia de difeomorfismos parcialmente hiperbólicos denomida-

dos flujos de Anosov discretizados.

Se demuestra que esta clase comprende componentes conexas enteras

de difeomorfirmos parcialmente hiperbólicos con central unidimensional en

cualquier dimensión ambiente.

Varias propiedades generales de los flujos de Anosov discretizados son

demostradas. Entre ellas coherencia dinámica, unicidad de foliaciones invari-

antes, expansividad por placas e integrabilidad única del fibrado central. En

particular, esto permite establecer la equivalencia con otras nociones similares

que aparecen en la literatura.

Una caracterización de los flujos de Anosov discretizados es obtenida bajo

ciertas condiciones generales: se muestra que la clase de flujos de Anosov dis-

retizados coincide con la de los parcialmente hiperbólicos que dejan invariante

cada hoja de una foliación central unidimensional.

En cuanto a otras propiedades dinámicas, un resultado sobre unicidad de

atractores es demostrado.

Varios de estos resultados son obtenidos igualmente para la clase de difeo-

morfismos parcialmente hiperbólicos que admiten una foliación central uni-

formemente compacta.
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Chapter 1

Introduction and

presentation of results

1.1 Introduction (English)

1.1.1 Differentiable dynamics, hyperbolicity and partial hy-

perbolicity

The classical theory of dynamical systems deals with the asymptotic behavior

of systems that evolve in time with respect to a prescribed deterministic rule

governing its evolution.

In the case of differentiable dynamics, this rule is typically given by a

diffeomorphism f : M Ñ M in the case of a discrete dynamical system, or

by an ordinary differential equation 9X � F pXq defining a flow Xt :M ÑM

in the case of a continuous dynamical system.

A paradigmatic example of these systems presenting a global form of

rich and chaotic behavior is given by Anosov systems (also called globally

uniformly hyperbolic systems). The study of this type of systems traces back

at least to the pioneering work of D.V. Anosov and S. Smale (see [A67] and

[S67]).

Roughly speaking, a diffeomorphism f : M Ñ M is called an Anosov

diffeomorphism if the tangent bundle admits an f -invariant decomposition

TM � Es `Eu such that vectors in Es and Eu are uniformly contracted by

forward and backward iterates of f , respectively.

A flow without singularities Xt : M Ñ M is called an Anosov flow if it

preserves an invariant decomposition TM � Es`Ec`Eu such that vectors

in Es and Eu are uniformly contracted by forward and backward iterates of

Xt, respectively, and the bundle Ec is the direction tangent to the flow Xt.

A natural extension of uniformly hyperbolic systems is given by the notion
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of partial hyperbolicity.

Definition. A diffeomorphism f : M Ñ M on a closed Riemannian mani-

fold M is called partially hyperbolic if there exists a Df -invariant continuous

decomposition of the tangent bundle TM into three non-trivial subbundles

TM � Es ` Ec ` Eu

such that vectors in Es and Eu are uniformly contracted by forward and

backward iterates of f , respectively, and vectors in Ec experience an inter-

mediate behavior. See Chapter 2 for a precise definition.

The definition of partially hyperbolic diffeomorphisms traces back at least

to [BP74] and [HPS77]. It is worth mentioning that many other definitions

of partial hyperbolicity exist. Typically, all of these notions involve some

kind of invariant decomposition of the tangent space (of the whole manifold

or an invariant part of it) into subbundles satisfying some sort of dominated

behavior. Plus, in most of the cases, with at least one of the subbundles being

uniformly expanded or contracted. See for example [CP15] as a reference.

As it is also the case for Anosov systems, partial hyperbolicity is a C1

open property that can be checked in finite iterates (as a consequence of the

cone criterion, for instance). Moreover, it appears naturally in the study

of robust dynamical properties. That is, properties that remain unchanged

by small perturbations of the system. This is the case in at least two rev-

elant scenarios: robust transitivity and stable ergodicity. See for example

[BPSW01], [CHHU18] and [HP18].

Partially hyperbolic diffeomorphisms constitute a rich class of dynamical

systems with enough rigidity so that a certain ‘classification’ goal may be

sought:

Problem. Develop a framework for classifying (at least in dimension 3) par-

tially hyperbolic diffeomorphisms. Determine which dynamical properties can

occur for these systems and identify which ones of them are robust. Explore

the interaction between partially hyperbolic diffeomorphisms and the geome-

try and topology of the underlying manifold, in particular determining which

manifolds and isotopy classes admit partially hyperbolic systems.

One way to approach this problem is to study the invariant structures

preserved by these kind of maps such as the invariant foliations that nat-

urally arise on them. One can expect to obtain topological or dynamical

consequences from the behavior of these invariant structures, and viceversa.

In dimension 3, the classification problem has been particularly pursued.

The classical examples of partially hyperbolic diffeomorphisms in dimension

3 are:

8



� Deformations of Anosov diffeomorphisms.

� Partially hyperbolic skew-products.

� Perturbations of time one maps of Anosov flows.

Briefly, the first class consists of partially hyperbolic diffeomorphisms

homotopic to an Anosov map. The second one, of partially hyperbolic diffeo-

morphisms such that Ec integrates to an invariant foliation Wc by compact

leaves that induces a fiber bundle structure in M (see Section 1.1.6). And

the third one, diffeomorphisms that are sufficiently close to the time 1 map

of an Anosov flow.

Despite having been conjectured to account for every partially hyperbolic

system in dimension 3 (see Pujal’s conjecture in [BW05]), the list of classical

examples have been recently joined by new types of examples that challenge

the classification enterprise. In [HHU16] the first non-dynamically coherent

examples where built. Later in [BPP16], [BGP16] and [BGHP17] new striking

examples emerged. See also [BFP20].

In higher dimension, one way to approach the study is to restrict to the

case where dimpEcq � 1. Under this assumption the above list of classical

examples is essentially the same (one should only add the possibility of taking

product with an Anosov diffeomorphism).

The class of discretized Anosov flows is conceived as a natural extension

of the third type of classical examples. The main goal of this thesis is to

establish several general properties for this class of systems in any dimension.

1.1.2 Discretized Anosov flows

We denote by PHpMq the set of partially hyperbolic diffeomorphism in M

and by PHc�1pMq the ones such that dimpEcq � 1.

Definition 1.1.1. We say that f P PHc�1pMq is a discretized Anosov flow

if there exist an orientable foliation Wc whose leaves are C1 submanifolds

tangent to Ec and a continuous function τ :M Ñ R¡0 such that

fpxq � φcτpxqpxq

for every x PM , where φct :M ÑM denotes a unit speed flow whose orbits

are the leaves of Wc.

The prototypical example of a discretized Anosov flow is the time 1 map

of an Anosov flow and all its sufficiently small C1-perturbations. The latter

is a consequence of [HPS77] and will be revisited in this text.
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The term discretized Anosov flow was coined in [BFFP19] and derives

from the fact that the flow φct needs to be a topological Anosov flow (see Def-

inition 3.7.1). Hence f can be thought of as a discretization of the topological

Anosov flow φct .

Discretized Anosov flows have been profusely studied in the litterature,

though not always under the same name. For example, in [BD96] the first

examples of robustly transitive diffeomorphisms isotopic to the identity were

obtained. These examples are constructed arbitrary close to the time 1 map

on any Anosov flow. In particular, they are discretized Anosov flows.

Regarding stable ergodicity, in [GPS94] it was shown that time 1 maps of

geodesic flows in closed surfaces of constant negative curvature are C2 stably

ergodic. These were the first non-Anosov examples of stably ergodic diffeo-

morphis constructed in the litterature. Again, these examples are discretized

Anosov flows (as well as their perturbations).

In [BW05] discretized Anosov flows and partially hyperbolic skew-products

were shown to be quite ubiquitous among (dynamically coherent) partially

hyperbolic diffeomorphisms in dimension 3. This led to the consolidation of

the classical examples in dimension 3.

More recently, in [BFFP19] discretized Anosov where shown to account

for every dynamically coherent homotopic to the identity partially hyper-

bolic diffeomorphism of many 3-manifolds. And in [FP22] (see also [FP21])

that in most 3-manifolds discretized Anosov flows are accessible and ergodic

whenever they preserve a volume form.

Other recent dynamical results involving discretized Anosov flows are

[AVW15]’s rigidity results, [BFT20] regarding measures of maximal entropy,

[DWX21] and [BG21] on centralizers rigidity for partially hyperbolic diffeo-

morphisms, and the ‘invariant principle’ shown in [CP22].

One feature that has proven to be quite useful in the treatment of partially

hyperbolic diffeomorphisms is the presence of invariant foliations tangent to

the invariant subbundles. In [HPS77] it was shown that the bundles Es and

Eu uniquely integrate to f -invariant foliations Ws and Wu, respectively.

In contrast, the bundles Es`Ec and Es`Ec may or may not be integrable.

Whenever they integrate to f -invariant foliations (Wcs andWcu, respectively)

the map f is called dynamically coherent. If this is the case then Wc :�WcsX

Wcu (the foliation given by the connected components of the intersection of

Wcs leaves and Wcu leaves) gives rise to an f -invariant foliation tangent to

the center bundle Ec.

Recall that the non-wandering set Ωpfq of f is the set of points x in

M such that for every neighborhood U of x there exists N ¡ 0 such that

fN pUq X U � H.

On our first theorem we state some general properties satisfied by every

10



discretized Anosov flow:

Theorem. Let f be a discretized Anosov flow. Let φct and Wc denote the

flow and center foliation appearing in the definition of f , respectively. Then:

1. (Topological Anosov flow). The flow φct is a topological Anosov flow

(see Definition 3.7.1).

2. (Dynamical coherence). The map f is dynamically coherent, admitting

a center-stable foliation Wcs and a center-unstable foliation Wcu such

that Wc �Wcs XWcu.

3. (Uniqueness of cs and cu foliations). The foliations Wcs and Wcu are

the only f -invariant foliations tangent to Es`Ec and Ec`Eu, respec-

tively.

4. (Completeness of leaves). The leaves of Wcs and Wcu satisfy that

Wcspxq �
�
yPWcpxqW

spyq and Wcupxq �
�
yPWcpxqW

upyq for every

x PM .

5. (Topology of leaves) The leaves of Wcs and Wcu are homeomorphic to

either planes or cylinders (see definitions in Section 3.7). The former

contain no compact center leaves while the latter contain exactly one.

It is worth pointing out that in dimension 3 the above theorem was mostly

known. Indeed, once (2) is proven then (1), (4) and (5) follow from [BW05,

Theorem 2]. In addition, once (1) is proven then (2) has already appeared in

[BFP20, Proposition G.2] and (3) follows from [BFFP19] (see [BG21, Lemma

1.1]). Our goal is to synthesize the theory in dimension 3 and to generalize

it to higher dimensions where lesser has been stated.

In [BFFP19], [BFP20], [BG21] and [GM22] a map f P PHc�1pMq is

called a ‘discretized Anosov flow’ if it satisfies that there exist a topological

Anosov flow φt :M ÑM and a continuous function τ :M Ñ R¡0 such that

fpxq � φτpxqpxq for every x in M .

In [BFT20] a diffeomorphism f P PHc�1pMq is called ‘flow-type’ if it

satisfies Definition 1.1.1 and in addition is dynamically coherent and admits

at least one compact leaf of Wc.

Similar yet not a priori identical notions where also studied in [BW05],

[BG09] and [BG10].

The question regarding the relationship between these notions arised nat-

urally. The above theorem (add also Proposition 3.7.3 item (4) stated in

Section 3.7) shows that all these definitions are equivalent and refer to the

same class of partially hyperbolic systems:
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Corollary. The definition of discretized Anosov flow given in [BFFP19],

[BFP20], [BG21] and [GM22], and the definition of flow-type partially hy-

perbolic diffeomorphism in [BFT20], are all equivalent to Definition 1.1.1.

Moreover, the class of partially hyperbolic diffeomorphisms studied in

[BW05, Theorem 2.], [BG09] and [BG10] are also discretized Anosov flows

as in Definition 1.1.1.

1.1.3 Global stability

The next result shows that discretized Anosov flows constitute a somehow

large class of partially hyperbolic diffeomorphisms with one-dimensional cen-

ter:

Theorem. The set of discretized Anosov flows is a C1 open and closed subset

of PHc�1pMq.

In other words, the class of discretized Anosov flows comprises whole

connected components of PHc�1pMq.

Recall that two pairs of partially hyperbolic diffeomorphisms and invari-

ant center foliations pf,Wc
f q and pg,W

c
gq are said to be leaf-conjugate if there

exists a homeomorphism h : M Ñ M taking leaves of Wc
f to leaves of Wc

g

and such that h � fpW q � g � hpW q for every leaf W P Wc
f . Leaf-conjugacy

gives sense to a classification framework for (dynamically coherent) partially

hyperbolic diffeomorphism modulo its center behavior (two systems being

considered equivalent whenever they are leaf-conjugate).

The proof of the above theorem shows also that leaf-conjugacy is pre-

served along connected components of discretized Anosov flows:

Corollary. Two discretized Anosov flows in the same C1 connected compo-

nent of PHc�1pMq are leaf-conjugate.

It is worth mentioning the background context for the above statements.

A classical result from [HPS77] gives conditions for the stability of normally

hyperbolic foliations (that is, foliations that are tangent to a center bundle):

Theorem (Hirsch-Pugh-Shub). Suppose f P PHpMq admits an f -invariant

center foliation Wc
f . If pf,Wc

f q is plaque expansive then there exists a C1

neighborhood Upfq of f so that every g P Upfq admits a g-invariant center

foliation Wc
g such that pf,Wc

f q and pg,W
c
gq are leaf-conjugate.

A pair pf,Wcq is called plaque expansive (or δ-plaque expansive) if there

exists δ ¡ 0 so that every pair of sequences pxnqnPZ and pynqnPZ satisfying

that xn�1 P Wc
δpfpxnqq, yn�1 P Wc

δpfpynqq and dpxn, ynq   δ for every n P Z

must also satisfy y0 P Wc
locpx0q. This condition is shown in [HPS77] to be
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satisfied whenever Wc is a C1 foliation or f acts by isometries on Wc (as it

is the case for the time 1 map of an Anosov flow).

To show the C1 openness and closeness of discretized Anosov flows a

certain ‘uniform version’ of the above stability theorem is needed:

Theorem. Suppose f0 P PHc�1pMq. For every δ ¡ 0 there exists a C1

neighborhood Upf0q of f0 such that, if some f P Upf0q admits a center folia-

tion Wc
f so that pf,Wc

f q is δ-plaque expansive, then every g P Upf0q admits

a g-invariant center foliation Wc
g such that pf,Wc

f q and pg,Wc
gq are leaf-

conjugate.

The key ‘uniform’ part in the above theorem is that the size of Upf0q is

fixed beforehand. Then if pfnqn is a sequence in PHc�1pMq converging to f0
it is enough to show that a pair pfN ,W

c
fN
q is δ-plaque expansive for some

fN P Upf0q to induce a center foliation Wc
f0

for f0, which in addition satisfies

that pf0,W
c
f0
q is leaf-conjugate to pfN ,W

c
fN
q (and in fact leaf-conjugate to a

pair pf,Wc
f q for every f P Upf0q).

A similar uniform stability theorem was originally noted in [BFP20] in

a different but related context (for C1 leaf-immersions and branching folia-

tions). In [BFP20] the C1 open and closeness of the class of collapsed Anosov

flows in dimension 3 is shown. The C1 openess and closeness of discretized

Anosov flows in dimension 3 essentially follows from [BFP20] once the equiv-

alence between the definitions of discretized Anosov flow given in [BFP20]

and Definition 1.1.1 has been shown (see Chapter 5 for more details).

The fact that leaf-conjugacy persists among connected components of

discretized Anosov flows can be seen as a ‘global stability’ result where a

plaque expansive system pf,Wcq induces leaf-conjugacy among its whole C1

partially hyperbolic connected component.

This has also been shown to be true in [FPS14] whenever f is a hy-

perbolic linear automorphism of the torus Tn (seen as a partially hyper-

bolic diffeomorphism), and generalized in [Pi19] for linear Anosov automor-

phisms on nilmanifolds. Moreover, we show (see Section 1.1.6 below) that

this phenomenon also happens for partially hyperbolic skew-products with

one-dimensional center.

It is natural to ask whether this is true in general:

Question. Suppose f P PHpMq admits an f -invariant center foliation Wc

such that pf,Wcq is plaque expansive. Does every g in the C1 partially hy-

perbolic connected component of f admits a g-invariant center foliation Wc
g

such that pg,Wc
gq is plaque expansive and leaf-conjugate to pf,Wcq?

Since discretized Anosov flows constitute entire connected components of

PHc�1pMq many other natural questions arise. One may ask which are the
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properties that are preserved in whole connected components and which ones

are not. Which connected components contain the time 1 map of an Anosov

flow, how different are the ones that do not, etc.

As mentioned above, one such property that is preserved among con-

nected components of discretized Anosov flows is leaf-conjugacy. Another

one is the unique integrability of the center bundle. That is, the property

that modulo reparametrizations there exists a unique local C1 curve tangent

to Ec through every point of M (see Section 5.4 for more details on this

definition):

Proposition. Suppose f is a discretized Anosov flow such that Ecf is uniquely

integrable. Then Ecg is uniquely integrable for every g in the same C1 con-

nected component of PHc�1pMq as f .

In particular, every discretized Anosov flow in the same connected com-

ponent of the time 1 map of an Anosov flow has a uniquely integrable center

bundle.

In Example 5.4.3 an example of a discretized Anosov flow f such that Ec

is not uniquely integrable is given. This is obtained by a simple modification

of a construction given in [HHU16] that leads to a 2-torus tangent to Es`Ec

entirely made of points of non-unique integrability for Ec. The center flow

φct on this example is orbit equivalent to the suspension of a linear Anosov

diffeomorphism A : T2 Ñ T2 on the 2-torus, yet by the proposition above

the map f is not in the same connected component as the time 1 map of the

suspension of A. One concludes the following.

Corollary. There exists C1 connected components of discretized Anosov flows

that do not contain the time 1 map of an Anosov flow.

Still, these connected components seem a priori very particular. The

following question emerge naturally.

Question. Suppose f is a discretized Anosov flow. Does any of the following

conditions: i) f is transitive, ii) Ecf is uniquely integrable or iii) φct is not

orbit equivalent to a suspension flow; implies that f lies in the same connected

component of PHc�1pMq than the time 1 map of an Anosov flow?

1.1.4 Center fixing characterization

A characterization of discretized Anosov flows, which also serves as an alter-

native definition for the class, is the following:

Proposition. Suppose f P PHc�1pMq. The following are equivalent:

(i) The map f is a discretized Anosov flow.
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(ii) There exists a center foliation Wc and a constant L ¡ 0 such that

fpxq PWc
Lpxq for every x PM .

It is natural to ask whether the bounded displacement hypothesis in (ii)

is needed. That is, whether discretized Anosov flows can be characterized as

the class of partially hyperbolic diffeomorphisms individually fixing each leaf

of a one-dimensional center foliation:

Question. Suppose f P PHc�1pMq admits a center foliation Wc such that

fpW q �W for every leaf W PWc. Is f a discretized Anosov flow?

A positive answer to this question is given whenever f is transitive and

dynamically coherent:

Theorem. Suppose f P PHc�1pMq is a transitive dynamically coherent map

such that fpW q �W for every leafW in the center foliation Wc �WcsXWcu.

Then f is a discretized Anosov flow.

In fact, the above theorem is true if one replaces the hypohtesis ‘f tran-

sitive’ with the more general ‘Wc transitive’. See Chapter 6 for more details.

1.1.5 Uniqueness of attractor

The results presented in this section are the product of a joint work with N.

Guelman (see [GM22]).

Exploring further on the dynamical properties of discretized Anosov flows

we focus our attention on the problem of finiteness and uniqueness of quasi-

attractors and quasi-repellers.

Given a map f : M Ñ M one denotes by Rpfq � M the chain recurrent

set of f . That is, the union of all points x P M such that there exists a

non-trivial ϵ-pseudo orbit from x to x for every ϵ ¡ 0. It coincides with

the complement of all points contained in a wandering region of the form

UzfpUq for some open set U such that fpUq � U . One considers Rpfq

divided in equivalent classes, called chain recurrence classes. These classes

are given by the relation x � y if and only if for every ϵ ¡ 0 there exist a

non-trivial ϵ-pseudo orbit from x to y, and from y to x.

A quasi-attractor is a chain recurrence class A for which there exists a base

of neighborhoods tUiui (i.e. A � Ui and A �
�
i Ui) such that fpUiq � Ui for

every i. Every homeomorphism in a compact metric space admits at least

one quasi-attractor. See [CP15] for a reference.

Since quasi-attractors are pairwise disjoint compact sets saturated by

Wu-leaves, each one of them contains at least one minimal set for the fo-

liation Wu. We call a minimal set of Wu a minimal unstable laminations.
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Thus, uniqueness (resp. finiteness) of minimal unstable laminations implies

uniqueness (resp. finiteness) of quasi-attractors.

Finiteness of minimal unstable laminations is shown in [CPS17] for a

C1-open and dense subset of partially hyperbolic diffeomorphisms with one-

dimensional center. Here we aim to a more global (non-perturbative) study

involving uniqueness/finiteness results for whole classes of examples.

Discretized Anosov flows with arbitrary number of attractors and repellers

can be constructed by perturbing the time 1 map of an Anosov diffeomor-

phism’s suspension φt :M ÑM . AsM fibers over the circle and φ1 preserves

fibers one can perturb φ1 so that it becomes Morse-Smale or even a dynam-

ics with infinitely many quasi-attractors in the base (see Example 7.2.1 for

details).

Recall that two flows are said to be orbit equivalent whenever there exists

a homeomorphism taking orbits of one into orbits of the other and preserving

its orientation. We obtain:

Theorem. Let f be a discretized Anosov flow and let φct be the center flow

of f . Suppose φct is transitive and not orbit equivalent to a suspension. Then

f has a unique minimal unstable lamination.

Corollary. Any f as in the previous theorem has at most one quasi-attractor.

It is worth pointing out that we look at minimal unstable laminations

and quasi-attractors but the results have obvious analogous statements for

minimal stable laminations and quasi-repellers.

Note that the above statements apply to every f P PHc�1pMq in the

same connected component of PHc�1pMq than the time 1 map of a transitive

Anosov flow φt : M Ñ M that is not orbit equivalent to a suspension flow.

This includes, for example, the time 1 map of any geodesic flow in the unitary

tangent bundle of a closed surface of negative curvature.

The non-wandering set of the topological Anosov flow φct obtained as the

center flow of a discretized Anosov flow admits the same type of spectral

decomposition

Ωpφctq � Λ1 Y . . .Y ΛN

into basic pieces tΛiu1¤i¤N as is the case for classical Anosov flows. See

Lemma 7.4.2.

In case φct is not transitive the problem of uniqueness and finiteness re-

duces to study the behavior of φct in restriction to its attracting basic pieces.

We obtain:

Theorem. Let f be a discretized Anosov flow. Suppose Λ is an attracting

basic piece of the center flow φct . If φct |Λ : ΛÑ Λ is not orbit equivalent to a

suspension then Λ contains a unique minimal unstable lamination of f .
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Corollary. Let f be a discretized Anosov flow. Suppose that all the attracting

basic pieces Λ1, . . . , Λk of φct satisfy that φct |Λi : Λi Ñ Λi is not orbit equiv-

alent to a suspension. Then f has exactly k minimal unstable laminations

(and exactly k quasi-attractors). Moreover, each one of them is contained in

one of the attracting basic pieces Λ1, . . . , Λk.

In addition to the above statements concerning discretized Anosov flows, a

result on uniqueness of attractors is also shown for certain partially hyperbolic

skew-products. See Theorem 7.1.5.

1.1.6 Partially hyperbolic skew-products, uniformly compact

center foliations and quasi-isometrically center action

The center foliation of a partially hyperbolic diffeomorphism is said to be

uniformly compact if its leaves are compact and their volume is uniformly

bounded in M . In particular, this includes partially hyperbolic skew-products

(also called fibered partially hyperbolic diffeomorphism) where the center fo-

liation induces a fiber bundle structure on M :

Definition 1.1.2. We say that f P PHpMq is a partially hyperbolic skew-

product if there exists a continuous fiber bundle π : M Ñ B whose fibers

are C1 compact submanifold tangent to Ec forming an f -invariant center

foliation Wc.

An analogous statement to the C1 openess and closeness of discretized

Anosov flows is satisfied for this class of systems:

Theorem. The set of diffeomorphisms in PHc�1pMq admitting an invari-

ant uniformly compact center foliation form a C1 open and closed subset of

PHc�1pMq.

Again, the above theorem shows that the diffeomorphisms in PHc�1pMq

admitting an invariant uniformly compact center foliation comprise whole

connected components of PHc�1pMq. Moreover, two maps in the same con-

nected component need also be leaf-conjugate (see Corollary 5.1.4).

A key property for discretized Anosov flows turns out to be that bounded

segments inside Wc-leaves do not get arbitrarily long for past or future it-

erates of f . This property sets an essential bridge between the class of dis-

cretized Anosov flows and that of partially hyperbolic systems admitting a

uniformly compact center foliation.

Definition 1.1.3. Suppose f P PHpMq admits an f -invariant center foliation

Wc. We say that f acts quasi-isometrically on Wc if there exist constants

l, L ¡ 0 such that

fnpWc
l pxqq �Wc

Lpf
npxqq
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for every x in M and n P Z.

It is immediate to check that the above property is satisfied by every

discretized Anosov flow as well as by systems admitting a uniformly compact

center foliation (see Remark 3.4.2 and Remark 3.4.3). We obtain that some

properties shown for discretized Anosov flows extend to systems acting quasi-

isometrically on a center foliation:

Theorem. Suppose f P PHc�1pMq acts quasi-isometrically on an f -invariant

center foliation Wc. Then the following properties hold:

1. (Dynamical coherence). The map f is dynamically coherent. Moreover,

it admits a center-stable foliation Wcs and a center-unstable foliation

Wcu such that Wc �Wcs XWcu.

2. (Uniqueness of foliations). The foliations Wcs and Wcu are the only

f -invariant foliations tangent to Es ` Ec and Ec ` Eu, respectively.

3. (Completeness of leaves). The leaves of Wcs and Wcu satisfy that

Wcspxq �
�
yPWcpxqW

spyq and Wcupxq �
�
yPWcpxqW

upyq for every

x PM .

Item (1) of the above theorem was shown in [BB16, Theorem 1] for sys-

tems admitting a uniformly compact center (and for any center dimension).

Nevertheless, the proof given in this text is independent.

Item (2) shows that Wc is the only f -invariant center foliation where f

acts quasi-isometrically. For uniformly compact center foliations this gives

a partial answer to [BB16, Question 8.4.] (the general question is for any

center dimension).

An analogous result on unique integrablity of the center bundle is also

satisfied in this context:

Proposition. Suppose f P PHc�1pMq admits a uniformly compact center

foliation such that Ec is uniquely integrable. Then every systems in the same

C1 connected component of f in PHc�1pMq has a uniquely integrable center

bundle.

In particular, the above proposition shows that if f � A� Id : N �S1 Ñ

N � S1 is the product of an Anosov diffeomorphism A : N Ñ N and the

identity map on the circe Id : S1 Ñ S1, then the center bundle is uniquely

integrable for every system in the same C1 connected component as f in

PHc�1pN � S1q.
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1.2 Introduction (Français)

1.2.1 Dynamique différentiable, hyperbolicité et hyperbol-

icité partielle

La théorie classique des systèmes dynamiques étudie le comportement asymp-

totique de systèmes évoluant dans le temps par rapport à une règle déterministe

prescrite qui gouverne leur évolution.

Dans le cas de dynamiques différentiables, cette règle est typiquement

donnée par un difféomorphisme f : M Ñ M dans le cas d’un système

dynamique discret, ou par une équation différentielle ordinaire 9X � F pXq

définissant un flot Xt :M ÑM dans le cas d’un système dynamique continu.

Un exemple paradigmatique de ces systèmes présentant une comporte-

ment global riche et chaotique est donné par les systèmes deAnosov (également

appelés systèmes globalement uniformement hyperboliques). L’étude de ce

type de systèmes remonte au moins aux travaux pionniers de D.V. Anosov

et S. Smale (voir [A67] et [S67]).

En termes succincts, un difféomorphisme f :M ÑM est appelé difféomor-

phisme d’Anosov si le fibré tangente admet une décomposition f -invariante

TM � Es ` Eu, telle que les vecteurs dans Es et Eu sont uniformément

contractés par les itérations futures et passées de f , respectivement.

Un flotXt :M ÑM sans singularité est appelé flot d’Anosov s’il préserve

une décomposition invariante par la différentielle du flot TM � Es`Ec`Eu,

telle que les vecteurs dans Es et Eu sont uniformément contractés par des

itérés positifs et négatifs de Xt, respectivement, et le fibré Ec est la direction

tangente au flot Xt.

Une extension naturelle des systèmes uniformément hyperboliques est

donnée par la notion d’hyperbolicité partielle.

Definition. Un difféomorphisme f :M ÑM sur une variété Riemannienne

ferméeM est appelé partiellement hyperbolique s’il existe une décomposition

continue et invariante par Df du fibré tangente TM en trois sous-fibrés non

triviaux

TM � Es ` Ec ` Eu

telles que les vecteurs dans Es et Eu sont uniformément contractés par

les itérations futures et passées de f , respectivement, et les vecteurs dans

Ec subissent un comportement intermédiaire. Voir le chapitre 2 pour une

définition précise.

La définition des difféomorphismes partiellement hyperboliques remonte

au moins à [BP74] et [HPS77]. Il est bon de mentionner qu’il existe de nom-

breuses autres définitions de l’hyperbolicité partielle. Typiquement, toutes ces
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notions impliquent une certaine décomposition invariante de l’espace tangent

(de la variété entière ou d’une partie invariante de celle-ci) en sous-fibrés sat-

isfaisant une forme de domination. De plus, dans la plupart des cas, on

demande qu’au moins un des sous-fibrés soit uniformément dilatée ou con-

tractée. Voir par exemple [CP15] comme référence.

Tout comme dans le cas des systèmes d’Anosov, l’hyperbolicité partielle

est une propriété C1 ouverte qui peut être vérifiée en un nombre fini d’itérations

(comme conséquence du critère de champs de cônes, par exemple). De plus,

elle apparâıt naturellement dans l’étude des propriétés dynamiques robustes,

autrement dit, des propriétés qui restent inchangées face à de petites pertur-

bations du système. Cela est le cas dans au moins deux scénarios significatifs

: la transitivité robuste et l’ergodicité stable. Voir, par exemple, [BPSW01],

[CHHU18] et [HP18].

Les difféomorphismes partiellement hyperboliques constituent une classe

riche de systèmes dynamiques avec une rigidité suffisante pour qu’un certain

type de ‘classification’ puisse être attendu :

Problème. Développer un contexte de classification (au moins en dimen-

sion 3) pour les difféomorphismes partiellement hyperboliques. Déterminer

quelles propriétés dynamiques peuvent être données pour ces systèmes et iden-

tifier ceux qui sont robustes. Explorer l’interaction entre les difféomorphismes

partiellement hyperboliques et la géométrie et la topologie de la variété sous-

jacente, en particulier déterminer quelles variétés et classes d’isotopie ad-

mettent des systèmes partiellement hyperboliques.

Une façon d’aborder ce problème est d’étudier les structures invariantes

préservées par de telles applications, telles que les feuilletages invariants qui

y apparaissent naturellement. On peut espérer obtenir des conséquences

topologiques ou dynamiques du comportement de ces structures invariantes,

et vice versa.

En dimension 3, le problème de la classification a été particulièrement

étudié. Les exemples classiques de difféomorphismes partiellement hyper-

boliques en dimension 3 sont :

� Las deformations des difféomorphismes d’Anosov.

� Les produits fibrés partiellement hyperboliques.

� Las perturbations du temp 1 d’un flot d’Anosov.

Succinctement, la première classe comprend les difféomorphismes par-

tiellement hyperboliques homotopes à un difféomorphisme d’Anosov, la sec-

onde les difféomorphismes partiellement hyperboliques tels que Ec s’intègre
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en un feuilletage invariant Wc par feuilles compactes qui induit une structure

de fibré sur M (voir la Section 1.1.6), et la troisième, les difféomorphismes

suffisamment proches du temps 1 d’un flot d’Anosov.

Bien que la liste précédente ait été conjecturée comme couvrant tous

les systèmes partiellement hyperboliques de dimension 3 (voir la conjecture

de Pujals dans [BW05]), la liste des exemples classiques a récemment été

complété par de nouveaux types d’exemples qui défient leur tentatives de

classification. Dans [HHU16], les premiers exemples non-dynamiquement

cohérents ont été construits. Plus tard, dans [BPP16], [BGP16] et [BGHP17],

de nouveaux exemples surprenants sont apparus. Voir également [BFP20].

En dimension supérieure, une façon d’aborder l’étude est de se limiter

au cas où dimpEcq � 1. Sous cette hypothèse, la liste d’exemples classiques

mentionnée auparavant est essentiellement la même (il suffit d’ajouter la

possibilité de réaliser un produit avec un difféomorphisme d’Anosov).

La classe des flots d’Anosov discrétisés est conçue comme une extension

naturelle du troisième type d’exemples classiques. L’objectif principal de

cette thèse est d’établir plusieurs propriétés générales pour cette classe de

systèmes en toute dimension.

1.2.2 Flots d’Anosov discrétisés

On désignera par PHpMq l’ensemble des difféomorphismes partiellement hy-

perboliques sur M et par PHc�1pMq ceux tels que dimpEcq � 1.

Definition 1.2.1. On dit que f P PHc�1pMq est un flot d’Anosov discrétisé

s’il existe un feuilletage orientable Wc dont les feuilles sont des sous-variétés

C1 de M tangentes à Ec, et une fonction continue τ :M Ñ R¡0 telle que

fpxq � φcτpxqpxq

pour chaque x PM , où φct :M ÑM désigne un flot de vitesse unitaire dont

les orbites sont les feuilles de Wc.

L’exemple prototypique d’un flot d’Anosov discrétisé est le temps 1 d’un

flot d’Anosov et toutes ses perturbations C1 suffisamment petites. Ce dernier

point est une conséquence de [HPS77] et sera revu dans ce texte.

Le terme flot d’Anosov discrétisé a été introduit dans [BFFP19] et découle

du fait que le flot φct est nécessairement un flot d’Anosov topologique (voir la

Définition 3.7.1). Autrement dit, f peut être considéré comme une discrétisation

du flot d’Anosov topologique φct .

Les flots d’Anosov discrétisés ont été largement étudiés dans la littérature,

mais pas toujours sous le même nom. Un de ces cas est celui de [BD96] où

les premiers exemples de difféomorphismes robustement transitifs isotopiques
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à l’identité ont été produits. Ces exemples sont construits arbitrairement

proches du temps 1 de tout flot d’Anosov. En particulier, ce sont des flots

d’Anosov discrétisés.

En ce qui concerne l’ergodicité stable, il est démontré dans dans [GPS94]

que les temps 1 de flots géodésiques sur des surfaces fermées de courbure

négative constante sont C2 stablement ergodiques. Ceux-ci ont été les pre-

miers exemples de difféomorphismes stablement ergodiques non-Anosov con-

struits dans la littérature. Encore une fois, ces exemples sont des flots

d’Anosov discrétisés (ainsi que leurs perturbations).

Dans [BW05], il a été montré que les flots d’Anosov discrétisés et les

produits fibrés partiellement hyperboliques sont assez abondants parmi les

difféomorphismes partiellement hyperboliques (dynamiquement cohérents)

en dimension 3. Cela a conduit à la consolidation des exemples classiques en

dimension 3.

Plus récemment, il a été montré dans [BFFP19] que les flots d’Anosov

discrétisés représentent tous les difféomorphismes partiellement hyperboliques

dynamiquement cohérents dans de nombreuses 3-variétés. Et dans [FP22]

(voir aussi [FP21]) que dans la plupart des 3-variétés les flots d’Anosov

discrétisés sont accessibles et ceux qui préservent une forme de volume sont

ergodiques.

D’autres résultats dynamiques récents concernant des flots d’Anosov dis-

crétisés sont les résultats de rigidité de [AVW15], [BFT20] sur les mesures

d’entropie maximale, [DWX21] et [BG21] relatifs à la rigidité des centralisa-

teurs, et le ‘principe d’invariance’ démontré dans [CP22].

Une caractéristique qui s’est avérée très utile dans l’étude des difféomor-

phismes partiellement hyperboliques est la présence de feuilletages invariants

tangents aux sous-fibrés invariants. Dans [HPS77], il a été montré que les fi-

brations Es et Eu sont uniquement intégrables à des feuilletages f -invariantes

Ws et Wu, respectivement.

Par contraste, les fibrés Es`Ec et Es`Ec peuvent ou non être intégrables.

Lorsqu’ils s’intègrent en des feuilletages f -invariants (notés Wcs et Wcu, re-

spectivement), le difféomorphisme f est qualifié de dynamiquement cohérent.

Lorsque c’est le cas, alors le feuilletage Wc :� Wcs X Wcu (formé par les

composantes connexes de l’intersection des feuilles de Wcs et de Wcu) donne

lieu à un feuilletage f -invariant tangent au fibré central Ec.

Rappelons que l’ensemble non errant Ωpfq de f est l’ensemble des points

x dans M tels que pour tout voisinage U de x il existe N ¡ 0 tel que

fN pUq X U � H.

Dans ce premier théorème, on établit quelques propriétés générales satis-

faites par tout flot d’Anosov discrétisé :
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Théorème. Soit f un flot d’Anosov discrétisé. Soit φct et Wc le flot et

le feuilletage central apparaissant dans la définition de f , respectivement.

Alors :

1. (Flot d’Anosov topologique). Le flot φct est un flot d’Anosov topologique

(voir la Définition 3.7.1).

2. (Cohérence dynamique). La fonction f est dynamiquement cohérente,

admettant un feuilletage centre stable Wcs et un feuilletage centre in-

stable Wcu tels que Wc �Wcs XWcu.

3. (Unicité des feuilletages cs et cu). Les feuilletages Wcs et Wcu sont

les uniques feuilletages f -invariants tangents à Es ` Ec et Ec ` Eu,

respectivement.

4. (Complétude des feuilles). Les feuilles de Wcs et Wcu satisfont Wcspxq ��
yPWcpxqW

spyq et Wcupxq �
�
yPWcpxqW

upyq pour tout x PM .

5. (Topologie des feuilles) Les feuilles de Wcs et Wcu sont homéomorphes

à des plans ou des cylindres. Les premiers ne contiennent aucune feuille

centrale compacte, alors que les deuxièmes en contiennent exactement

une.

Il est bon de noter qu’en dimension 3, le théorème ci-dessus était en

grande partie connu. En effet, une fois que (2) est prouvé, alors (1), (4)

et (5) découlent de [BW05, Theorem 2]. D’autre part, une fois que (1) est

prouvé, alors (2) est déjà apparu dans [BFP20, Proposition G.2] et (3) découle

de [BFFP19] (voir [BG21, Lemma 1.1]). Notre objectif a été de synthétiser

la théorie en dimension 3 et de la généraliser aux dimensions supérieures où

moins de résultats avaient été établis dans la littérature.

[BFFP19], [BFP20], [BG21] et [GM22] appellent ‘flot d’Anosov discrétisé’

toute difféomorphisme f P PHc�1pMq telle qu’il existe un flot d’Anosov

topologique φt : M Ñ M et une fonction continue τ : M Ñ R¡0 tels que

fpxq � φτpxqpxq pour tout x PM .

Dans [BFT20], un difféomorphisme f P PHc�1pMq est appelé ‘diffeo-

morphisme de type flot’ s’il satisfaite la Définition 1.2.1 et s’il est aussi dy-

namiquement cohérent et admet au moins une feuille compacte dans Wc.

Des notions similaires mais a priori non identiques ont également été

étudiées dans [BW05], [BG09] et [BG10].

Le problème de la relation entre ces notions s’est posé naturellement.

Avec le théorème précédent (et aussi la Proposition 3.7.3 item (4) énoncé

dans la Section 3.7) on obtient que toutes ces définitions sont équivalentes et

se réfèrent à la même classe de systèmes partiellement hyperboliques :
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Corollaire. La définition de flot d’Anosov discrétisé qui se trouve dans

[BFFP19], [BFP20], [BG21] et [GM22], et la définition de difféomorphisme

partiellement hyperbolique de type flot dans [BFT20], sont équivalentes à la

définition 1.1.1.

De plus, la classe des difféomorphismes partiellement hyperboliques étudiés

dans [BW05, Théorème 2.], [BG09] et [BG10] sont également des flots d’Anosov

discrétisés comme dans la définition 1.1.1.

1.2.3 Stabilité globale

Le résultat suivant montre que les flots d’Anosov discrétisés constituent,

d’une certaine manière, une large classe de difféomorphismes partiellement

hyperboliques à centre unidimensionnel :

Théorème. L’ensemble des flots d’Anosov discrétisés est un sous-ensemble

C1 ouvert et fermé de PHc�1pMq.

Autrement dit, la classe des flots d’Anosov discrétisés constitue des com-

posantes connexes entières de PHc�1pMq.

Deux difféomorphismes partiellement hyperboliques et feuilletages cen-

traux invariants respectifs pf,Wc
f q et pg,W

c
gq sont dits conjugués par feuilles

s’il existe un homéomorphisme h : M Ñ M qui envoie les feuilles de Wc
f

sur les feuilles de Wc
g de telle sorte que h � fpW q � g � hpW q pour chaque

feuille W P Wc
f . La conjugaison par les feuilles donne sens à une façon

de classer les difféomorphismes partiellement hyperboliques (dynamiquement

cohérents) modulo le comportement central : deux systèmes sont considérés

comme équivalents s’ils sont conjugués par les feuilles.

La preuve du théorème précédent montre également que la conjugaison

par feuilles est préservée le long des composantes connexes des flots d’Anosov

discrétisés :

Corollaire. Deux flots d’Anosov discrétisés dans la même composante con-

nexe C1 de PHc�1pMq sont conjugués par feuilles.

Il vaut la peine de mentionner le contexte dans lequel s’inscrivent les

énoncés précédents.

Un résultat classique de [HPS77] donne des conditions pour la stabilité des

feuilletages normalement hyperboliques (c’est-à-dire des feuilletages qui sont

tangents au fibré central d’un difféomorphisme partiellement hyperbolique) :

Théorème (Hirsch-Pugh-Shub). Supposons que f P PHpMq admet un feuil-

letage central f -invariant Wc
f . Si la paire pf,Wc

f q est expansive par plaques,

alors il existe Upfq un voisinage C1 de f qui satisfait que chaque g P Upfq

admet une feuilletage central g-invariant Wc
g tel que pf,Wc

f q et pg,W
c
gq sont

conjugués par feuilles.
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Une paire pf,Wcq est appelé expansive par plaques (ou δ-expansive par

plaques) s’il existe δ ¡ 0 tel que toute paire de séquences pxnqmathbbZ et

pynqmathbbZ satisfaisant xn�1 PWc
δpfpxnqq, yn�1 PWc

δpfpynqq et dpxn, ynq   δ

pour chaque n P Z satisfait également que y0 P Wc
locpx0q. [HPS77] montre

que cette condition est satisfaite chaque fois que Wc est une feuilletage C1

ou lorsque f est une isométrie entre chaque feuille W de Wc et son image

fpW q (ceci est le cas pour le temps 1 d’un flot d’Anosov, par exemple).

Afin de prouver la propriété C1 ouverte et fermée des flots d’Anosov

discrétisés, on se sert d’une certaine ‘version uniforme’ du théorème de sta-

bilité précédent :

Théorème. Supposons que f0 P PHc�1pMq. Pour chaque δ ¡ 0 il existe un

C1 voisinage Upf0q de f0 tel que, si un certain f P Upf0q admet un feuilletage

central Wc
f tel que pf,Wc

f q est δ-expansive par plaques, alors chaque g P Upf0q

admet un feuilletage central g-invariante Wc
g telle que pf,Wc

f q et pg,W
c
gq sont

conjugués par feuilles.

La partie ‘uniforme’ du théorème précédent porte sur la taille de Upf0q,

fixée à l’avance. Par conséquence, si pfnqn est une suite dans PHc�1pMq con-

vergeant vers f0, il suffit de montrer qu’une paire pfN ,W
c
fN
q est δ-expansive

par plaques pour un certain fN P Upf0q pour induire un feuilletage central

Wc
f0

pour f0, qui satisfait ensuite que pf0,W
c
f0
q est conjuguée par feuilles à

pfN ,W
c
fN
q (et en effet conjuguée par feuilles à une paire pf,Wc

f q pour tout

f P Upf0q).

Un théorème de stabilité uniforme similaire a été observé originellement

dans [BFP20] dans un contexte différent mais voisin (pour les immersions

C1 par feuilles et pour les feuilletages branchés). [BFP20] en déduit qu’une

classe de difféomorphismes appelé des flots d’Anosov effondrés a la propriété

d’être C1 ouverte et fermée. La propriété C1 ouverte et fermée des flots

d’Anosov discrétisés en dimension 3 est essentiellement déduite de [BFP20]

(voir le Chapitre 5 pour plus de détails).

Le fait que la conjugaison par feuilles persiste parmi les composantes con-

nexes des flots d’Anosov discrétisés peut être considéré comme un résultat

de ‘stabilité globale’ où une paire expansive par plaques pf,Wcq induit con-

jugaison par feuilles dans toute sa composante connexe C1 de systèmes par-

tiellement hyperboliques.

Ce phénomène a également été observé dans [FPS14] pour tout automor-

phisme linéaire hyperbolique f sur le tore Tn (vu comme un difféomorphisme

partiellement hyperbolique), et a été généralisé dans [Pi19] pour des automor-

phismes linéaires hyperboliques dans des nilvariétés. De plus, il est montré

dans ce texte (voir Section 1.1.6) que ce comportement se produit également
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pour les produits fibrés partiellement hyperboliques avec une centrale unidi-

mensionnelle.

Il est naturel de se demander si cela est vrai en général :

Question. Supposons que f P PHpMq admet un feuilletage central f -invariant

Wc tel que pf,Wcq est expansive par plaques. Est-ce que chaque g dans

la même composante connexe des diffeomorphismes C1 partiellement hyper-

bolique que f admet un feuilletage central g-invariant Wc
g tel que pg,Wc

gq est

expansive par plaques et conjugué par feuilles à pf,Wcq ?

Puisque les flots d’Anosov discrétisés constituent des composantes con-

nexes entières de PHc�1pMq, plusieurs autres questions naturelles peuvent

être posées. On peut se demander quelles propriétés sont préservées dans la

totalité de la composante connexe et lesquelles ne le sont pas. Quelles com-

posantes connexes contiennent le temps 1 d’un flot d’Anosov, quelles sont les

différences entre celles qui ne le contiennent pas, etc.

Comme mentionné antérieurement, une des propriétés qui est conservée

à travers les composantes connexes des flots d’Anosov discrétisés est la con-

jugaison par feuilles. Une autre est l’intégrabilité unique du fibré central,

c’est à dire la propriété selon laquelle, a reparamétrisation près, il existe une

unique courbe C1 locale tangente à Ec passant par chaque point de M (voir

la Section 1.1.6 pour plus de détails sur cette définition) :

Proposition. Soit f un flot d’Anosov discrétisé tel que Ecf est uniquement

intégrable. Alors Ecg est uniquement intégrable pour tout g dans la même C1

composante connexe de PHc�1pMq que f .

En particulier, tout flot d’Anosov discrétisé dans la même composante

connexe que le temps 1 d’un flot d’Anosov a un fibré central uniquement

intégrable.

Dans l’Exemple 5.4.3, on donne un exemple d’un flot d’Anosov discrétisé

f tel que Ec n’est pas uniquement intégrable. Ceci est obtenu à partir d’une

simple modification d’une construction donnée dans [HHU16] conduisant à

un 2-tore tangent à Es ` Ec entièrement composé de points d’intégrabilité

non-unique pour Ec. Le flot central φct dans cet exemple est orbitalement

équivalent à la suspension d’un difféomorphisme linéaire d’Anosov A : T2 Ñ

T2 sur le 2-tore, cependant par la proposition ci-dessus la fonction f n’est

pas dans la même composante connexe que le temps 1 de la suspension de

A. On obtient la conclusion suivante.

Corollaire. Il existe des composantes connexes de flots d’Anosov discrétisés

qui ne contiennent pas le temps 1 d’un flot d’Anosov.

Ces composantes connexes semblent encore très particulières. La question

suivante se pose naturellement.
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Question. Si l’une des conditions suivantes est remplie : (i) f est transitif,

(ii) Ecf est uniquement intégrable ou (iii) φct n’est pas orbitalement équivalent

à un flot de suspension ; alors est-ce-que f se trouve dans la même com-

posante connexe de PHc�1pMq que le temps 1 d’un flot d’Anosov ?

1.2.4 Feuilles centrales fixes

Une caractérisation des flots d’Anosov discrétisés, qui sert également de

définition alternative pour la classe, est la suivante :

Proposition. Soit f P PHc�1pMq. Ces affirmations sont équivalentes :

(i) Le difféomorphisme f est un flot d’Anosov discrétisé.

(ii) Il existe un feuilletage central W c et une constante L ¡ 0 tels que

fpxq PWc
Lpxq pour tout x PM .

Il est naturel de se demander si l’hypothèse de déplacement limité dans

(ii) est nécessaire. Plus précisément, on cherche à savoir si les flots d’Anosov

discrétisés peuvent être caractérisés comme la classe des difféomorphismes

partiellement hyperboliques qui fixent individuellement chaque feuille d’un

feuilletage central unidimensionnel :

Question. Supposons que f dans PHc�1pMq admet un feuilletage central

Wc tel que fpW q � W pour chaque feuille W dansWc. Est-ce que f est un

flot d’Anosov discrétisé ?

Une réponse affirmative à cette question est obtenue lorsque f est transitif

et dynamiquement cohérent :

Théorème. Soit f P PHc�1pMq transitif et dynamiquement cohérent tel que

fpW q � W pour chaque feuille W du feuilletage central Wc � W cs XWcu.

Alors f est un flot d’Anosov discrétisé.

En fait, le théorème précédent est vrai si on remplace l’hypothèse ‘f

transitif’ par la plus générale ‘Wc transitif’. Pour plus de détails, voir le

Chapitre 6.

1.2.5 Unicité de l’attracteur

Les résultats présentés dans cette section sont le produit d’un travail en

collaboration avec N. Guelman (voir [GM22]).

En s’intéressant à d’autres propriétés dynamiques des flots d’Anosov

discrétisés, on examine le problème de la finitude et de l’unicité des quasi-

attracteurs et quasi-répulseurs.
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Étant donné une application f : M Ñ M , on désigne par Rpfq � M

l’ensemble récurrent par châınes de f , c’est-à-dire, l’ensemble des points x

de M tels qu’il existe une ϵ-pseudo orbite non triviale de x à x pour tout

ϵ ¡ 0. Cet ensemble cöıncide avec le complément des points qui appartiennent

à une certain région piégeante de la forme UzfpUq pour un ouvert U tel que

fpUq � U . On considère Rpfq divisé en classes d’équivalence appelées classes

de récurrence de châıne. Ces classes sont données par la relation x � y si et

seulement si pour chaque ϵ ¡ 0 il existe une ϵ-pseudo orbite non triviale de

x à y, et une autre de y à x.

Un quasi-attracteur est une classe de récurrence par châınes A pour laque-

lle il existe une base de voisinages tUiui (c’est-à-dire que A � Ui et A �
�
i Ui)

telle que fpUiq � Ui pour chaque i. Tout homéomorphisme sur un espace

métrique compact admet au moins un quasi-attracteur. Voir [CP15] pour

une référence.

Puisque les quasi-attracteurs sont des ensembles compacts disjoints deux

à deux saturés par des feuilles de Wu, chacun d’eux contient au moins un

ensemble minimal pour le feuilletage Wu. Une union compacte de feuilles

de Wu, minimal pour l’inclusion, est appelée lamination instable minimale.

Ainsi, l’unicité (resp. la finitude) des laminations instables minimales im-

plique l’unicité (resp. la finitude) des quasi-attracteurs.

La finitude des laminations instables minimales est obtenue dans [CPS17]

pour un sous-ensemble C1-ouvert et dense des difféomorphismes partielle-

ment hyperboliques de fibré central unidimensionnel. Ici, on se propose

de poursuivre une étude plus globale (non-perturbative) comprenant des

résultats d’unicité/finitude pour des classes entières d’exemples.

Les flots d’Anosov discrétisés avec un nombre arbitraire d’attracteurs et

de répulseurs peuvent être construits en perturbant le temps 1 de la suspen-

sion φt : M Ñ M d’un difféomorphisme d’Anosov. Puisque M fibre sur le

cercle et que φ1 préserve les fibres, il est possible de perturber φ1 pour qu’il

préserve toujours les fibres mais devienne Morse-Smale ou qu’il possède une

infinité de quasi-attracteurs pour la dynamique dans la base (voir l’Exemple

7.2.1 pour les détails).

Rappelons que deux flots sont dits orbitalement équivalents s’il existe

un homéomorphisme qui envoie les orbites de l’un en orbites de l’autre en

préservant leur orientation. On obtient le résultat suivant :

Théorème. Soit f un flot d’Anosov discrétisé et soit φct le flot central de f .

Supposons que φct soit transitif et non orbitalement équivalent à une suspen-

sion. Alors f a une unique lamination instable minimale.

Corollaire. es difféomorphismes comme dans le théorème précédent ont au

plus un quasi-attracteur.
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Il convient de noter que les énoncés ci-dessus sont formulés pour des lami-

nations minimales instables et des quasi-attracteurs mais que, naturellement,

les mêmes énoncés ont des analogues pour des laminations minimales stables

et des quasi-répulseurs.

Il est à noter que les résultats précédents s’appliquent à tout f P PHc�1pMq

dans la même composante connexe de PHc�1pMq que le temps 1 d’un flot

d’Anosov transitif φt :M ÑM qui n’est pas orbitalement équivalent à un flot

de suspension. Cela inclut, par exemple, tout temps 1 d’un flot géodésique

sur le fibré tangente unitaire d’une surface fermée à courbure négative.

L’ensemble non errant du flot d’Anosov topologique φct obtenu comme le

flot central d’un flot d’Anosov discrétisé admet le même type de décomposition

spectrale

Ωpφctq � Λ1 Y . . .Y ΛN

en pièces basiques tΛiu1¤i¤N que les flots d’Anosov classiques. Voir le Lemme

7.4.2.

Dans le cas où φct n’est pas transitif, le problème d’unicité et de finitude

se réduit à l’étude du comportement de φct en restriction à ses pièces basiques

de type attracteurs. On obtient :

Théorème. Soit f un flot d’Anosov discrétisé. Supposons que Λ est une

pièce basique de type attracteur du flot central φct . Si φct |Λ n’est pas orbitale-

ment équivalent à une suspension alors Λ contient une unique lamination

instable minimale pour f .

Corollaire. Soit f un flot d’Anosov discrétisé. Supposons que toutes les

pièces basiques attracteur Λ1, . . . , Λk de φct satisfont que φct |Λi n’est pas

orbitalement équivalent à une suspension. Alors f a exactement k lamina-

tions instables minimales (et exactement k quasi-attracteurs). De plus, cha-

cune des laminations instables minimales est contenue dans l’une des pièces

basiques de type attracteur Λ1, . . . , Λk.

Il est bon de mentionner enfin que, en plus des résultats ci-dessus pour

les flots d’Anosov discrétisés, des conclusions similaires d’unicité de quasi-

attracteur sont obtenues pour certains produits fibrés partiellement hyper-

boliques. Voir le Théorème 7.1.5.

1.2.6 Produits fibrés partiellement hyperboliques, feuilletages

centraux uniformément compacts et action quasi-isomé-

trique dans le central

Le feuilletage central d’un difféomorphisme partiellement hyperbolique est

dit uniformément compact si ses feuilles sont compactes et si le volume de
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chaque feuille est uniformément borné dans M . En particulier, ceci est le cas

du feuilletage central des produits fibrés partiellement hyperboliques induisant

une structure fibrée dans M :

Definition 1.2.2. On dit que f P PHpMq est un produit fibré partiellement

hyperbolique s’il existe un espace fibré continu π :M Ñ B dont les fibres sont

des sous-variétés compactes C1 tangentes à Ec qui forment un feuilletage

central Wc invariant par f .

Un résultat analogue à la propriété C1 ouverte et fermée des flots d’Anosov

discrétisés est valable pour cette classe de systèmes :

Théorème. L’ensemble des difféomorphismes dans PHc�1pMq qui admet-

tent un feuilletage central invariant uniformément compact est un sous-ensem-

ble C1 ouvert et fermé de PHc�1pMq.

A nouveau, le théorème précédent montre que les applications dans PHc�1pMq

qui admettent un feuilletage central invariant uniformément compact con-

stituent des composantes connexes entières de PHc�1pMq. De plus, deux

applications dans la même composante connexe sont conjuguées par feuilles

(voir Corollaire 5.1.4).

Une propriété clé des flots d’Anosov discrétisés s’avère être que les seg-

ments bornés dans les feuilles de Wc ne deviennent pas arbitrairement longs

par les itérations passées ou futures de f . Cette propriété établit un pont

essentiel entre la classe des flots d’Anosov discrétisés et celle des systèmes

partiellement hyperboliques admettant un feuilletage central uniformément

compact.

Definition 1.2.3. Supposons que f dans PHpMq admet un feuilletage cen-

tral f -invariant Wc. On dit que f agit quasi-isométriquement sur Wc s’il

existe des constantes l, L ¡ 0 telles que

fnpWc
l pxqq �Wc

Lpf
npxqq

pour chaque x PM et n P Z.

Il est immédiat de constater que la propriété précédente est satisfaite

pour tout flot d’Anosov discrétisé, ainsi que pour tout système admettant un

feuilletage central uniformément compact (voir Remarque 3.4.2 et Remarque

3.4.3). On obtient que certaines propriétés démontrées pour les flots d’Anosov

discrétisés s’étendent automatiquement aux systèmes agissant de manière

quasi-isométrique sur un feuilletage central :

Théorème. Supposons que f P PHc�1pMq agit de manière quasi-isométrique

sur le feuilletage central f -invariant Wc. Les propriétés suivantes sont alors

satisfaites :

30



1. (Cohérence dynamique). Le difféomorphisme f est dynamiquement

cohérent. De plus, il admet un feuilletage centre stable Wcs et un feuil-

letage centre instable Wcu tels que Wc �Wcs XWcu.

2. (Unicité des feuilletages). Les feuilletages Wcs et Wcu sont les uniques

feuilletages f -invariants tangents à Es`Ec et Ec`Eu, respectivement.

3. (Complétude des feuilles). Les feuilles de Wcs et Wcu satisfont Wcspxq ��
yPWcpxqW

spyq et Wcupxq �
�
yPWcpxqW

upyq pour chaque x PM .

Il est bon de mentionner que le point (1) du théorème ci-dessus a été

prouvé dans [BB16, Theorem 1] pour les systèmes admettant un feuilletage

central uniformément compact (et pour toute dimension centrale). Cepen-

dant, la preuve donnée dans ce texte est indépendante.

Le point (2) montre que Wc est le seul feuilletage central f -invariant

où f agit de manière quasi-isométrique. Pour des feuilletages centraux uni-

formément compacts, cela donne une réponse partielle à la question [BB16,

Question 8.4.] (la question générale est posée pour toute dimension centrale).

Un résultat analogue sur l’intégrabilité unique du fibré central est également

valable dans ce contexte :

Proposition. Supposons que f dans PHc�1pMq admet un feuilletage central

uniformément compact tel que Ec est uniquement intégrable. Alors, chaque

application dans la même composante connexe C1 de f dans PHc�1pMq a un

fibré central uniquement intégrable.

Notamment, la proposition précédente montre que si f � A � Id : N �

S1 Ñ N � S1 est le produit d’un difféomorphisme d’Anosov A : N Ñ N et

de la fonction d’identité sur le cercle Id : S1 Ñ S1, alors le fibré central est

uniquement intégrable pour chaque application dans la même C1 composante

connexe que f dans PHc�1pN � S1q.

1.3 Introducción (Español)

1.3.1 Dinámica diferenciable, hiperbolicidad e hiperbolicidad

parcial

La teoŕıa clásica de sistemas dinámicos estudia el comportamiento asintótico

de sistemas que evolucionan en el tiempo con respecto a una regla determin-

ista prescrita que gobierna su evolución.

En el caso de dinámicas diferenciables, esta regla viene dada t́ıpicamente

por un difeomorfismo f :M ÑM en el caso de un sistema dinámico discreto,

o por una ecuación diferencial ordinaria 9X � F pXq que define un flujo Xt :

M ÑM en el caso de un sistema dinámico continuo.
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Un ejemplo paradigmático de estos sistemas que presentan una forma

global de comportamiento rica y caótica viene dado por los sistemas de

Anosov (también llamados sistemas hiperbólicos globalmente uniformes). El

estudio de este tipo de sistemas se remonta al menos a los trabajos pioneros

de D.V. Anosov y S. Smale (véase [A67] y [S67]).

A grandes rasgos, un difeomorfismo f : M Ñ M se denomina difeo-

morfismo de Anosov si el fibrado tangente admite una descomposición f -

invariante TM � Es ` Eu, de forma tal que los vectores en Es y Eu son

uniformemente contráıdos por iterados futuros y pasados de f , respectiva-

mente.

Un flujo sin singularidades Xt : M Ñ M se denomina flujo de Anosov

si preserva una descomposición invariante por el diferencial del flujo TM �

Es `Ec `Eu, de forma tal que los vectores en Es y Eu son uniformemente

contráıdos por iterados positivos y negativos de Xt, respectivamente, y el

fibrado Ec es la dirección tangente al flujo Xt.

Una extensión natural de los sistemas uniformemente hiperbólicos está

dada por la noción de hiperbolicidad parcial.

Definición. Un difeomorfismo f : M Ñ M en una variedad Riemanniana

cerradaM se denomina parcialmente hiperbólico si existe una descomposición

continua y Df invariante del fibrado tangente TM en tres subfibrados no

triviales

TM � Es ` Ec ` Eu

de forma tal que los vectores en Es y Eu son contráıdos uniformemente

por iterados futuros y pasados de f , respectivamente, y los vectores en Ec

experimentan un comportamiento intermedio. Ver el caṕıtulo 2 para una

definición precisa.

La definición de difeomorfismo parcialmente hiperbólico se remonta al

menos a [BP74] y [HPS77]. Vale la pena mencionar que existen muchas otras

definiciones de hiperbolicidad parcial. T́ıpicamente, todas estas nociones im-

plican algún tipo de descomposición invariante del espacio tangente (de toda

la variedad o de una parte invariante de ella) en subfibrados que satisfacen

algún tipo de dominación. Además, en la mayoŕıa de los casos, con al menos

uno de los subfibrados uniformemente expandido o contráıdo. Véase por

ejemplo [CP15] como referencia.

Al igual que en el caso de sistemas de Anosov, la hiperbolicidad par-

cial es una propiedad abierta C1 que puede comprobarse en finitos iterados

(como consecuencia del criterio de conos, por ejemplo). Además, aparece

de forma natural en el estudio de propiedades dinámicas robustas. Es decir,

propiedades que permanecen inalteradas ante pequeñas perturbaciones del
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sistema. Este es el caso en al menos dos escenarios relevantes: transitivi-

dad robusta y ergodicidad estable. Ver, por ejemplo, [BPSW01], [CHHU18] y

[HP18].

Los difeomorfismos parcialmente hiperbólicos constituyen una rica clase

de sistemas dinámicos con suficiente rigidez para que un cierto tipo de ‘clasi-

ficación’ pueda ser esperado:

Problema. Desarrollar un contexto de clasificación (al menos en dimensión

3) para los difeomorfismos parcialmente hiperbólicos. Determinar qué propiedades

dinámicas pueden darse para estos sistemas e identificar cuáles de ellas son

robustas. Explorar la interacción entre los difeomorfismos parcialmente hiperbólicos

y la geometŕıa y topoloǵıa de la variedad subyacente, en particular deter-

minar qué variedades y clases de isotoṕıa admiten sistemas parcialmente

hiperbólicos.

Una manera de abordar este problema es estudiar las estructuras invari-

antes preservadas por este tipo de mapas, como las foliaciones invariantes

que aparecen naturalmente en ellos. Uno podŕıa esperar obtener consecuen-

cias topológicas o dinámicas del comportamiento de estas estructuras invari-

antes, y viceversa.

En dimensión 3, el problema de clasificación ha sido particularmente

tratado. Los ejemplos clásicos de difeomorfismos parcialmente hiperbólicos

en dimensión 3 son:

� Deformaciones de difeomorfismos de Anosov

� Productos fibrados parcialmente hiperbólicos

� Perturbaciones del tiempo 1 de un flujo de Anosov

Brevemente, la primera clase consiste en difeomorfismos parcialmente

hiperbólicos homotópicos a un mapa de Anosov. La segunda, difeomorfismos

parcialmente hiperbólicos tales que Ec integra a una foliación invariante Wc

por hojas compactas que induce una estructura de fibrado enM (ver Sección

1.1.6). Y la tercera, difeomorfismos suficientemente próximos al tiempo 1 de

un flujo de Anosov.

A pesar de haberse conjeturado que la lista anterior cubŕıa todos los sis-

temas parcialmente hiperbólicos de dimensión 3 (ver la conjetura de Pujals en

[BW05]), a la lista de ejemplos clásicos se le han unido recientemente nuevos

tipos de ejemplos que desaf́ıan la tentativa de clasificación. En [HHU16] se

construyeron los primeros ejemplos no dinámicamente coherentes. Más tarde,

en [BPP16], [BGP16] y [BGHP17] nuevos ejemplos sorprendentes emergieron.

Ver también [BFP20].
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En dimensión mayor, una forma de abordar el estudio es restringirse al

caso en que dimpEcq � 1. Bajo este supuesto la lista anterior de ejemplos

clásicos es esencialmente la misma (sólo hay que añadir la posibilidad de

tomar producto con un difeomorfismo de Anosov).

La clase de flujos de Anosov discretizados es concebida como una ex-

tensión natural del tercer tipo de ejemplos clásicos. El objetivo principal

de esta tesis es establecer diversas propiedades generales para esta clase de

sistemas en cualquier dimensión.

1.3.2 Flujos de Anosov discretizados

Denotamos por PHpMq al conjunto de difeomorfismos parcialmente hiperbólicos

en M y por PHc�1pMq a aquellos tales que dimpEcq � 1.

Definición 1.3.1. Decimos que f P PHc�1pMq es un flujo de Anosov dis-

cretizado si existe una foliación orientable Wc cuyas hojas son C1 subvar-

iedades de M tangentes a Ec, y una función continua τ : M Ñ R¡0 tal

que

fpxq � φcτpxqpxq

para cada x P M , donde φct : M Ñ M denota un flujo de velocidad unitaria

cuyas órbitas son las hojas de Wc.

El ejemplo protot́ıpico de un flujo de Anosov discretizado es el tiempo 1 de

un flujo de Anosov y todas sus perturbaciones C1 suficientemente pequeñas.

Esto último es una consecuencia de [HPS77] y será revisado en este texto.

El término “flujo de Anosov discretizado” fue acuñado en [BFFP19] y

se deriva del hecho de que el flujo φct es necesariamente un flujo de Anosov

topológico (ver la Definición 3.7.1). Es decir, f puede considerarse como una

discretización del flujo de Anosov topológico φct .

Los flujos de Anosov discretizados han sido profusamente estudiados en

la literatura, aunque no siempre bajo el mismo nombre. Un ejemplo de ello es

[BD96] donde se obtuvieron los primeros ejemplos de difeomorfismos robus-

tamente transitivos isotópicos a la identidad. Estos ejemplos se construyen

arbitrariamente cerca del tiempo 1 de cualquier flujo de Anosov. En partic-

ular, son flujos de Anosov discretizados.

En cuanto a la ergodicidad estable, en [GPS94] se demostró que los

tiempo 1 de flujos geodésicos en superficies cerradas de curvatura negativa

constante son C2 establemente ergódicos. Estos fueron los primeros ejemplos

no Anosov de difeomorfismoos establemente ergódicos construidos en la liter-

atura. También en este caso estos ejemplos son flujos de Anosov discretizados

(aśı como sus perturbados).
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En [BW05] se demostró que los flujos de Anosov discretizados y los pro-

ductos fibrados parcialmente hiperbólicos son particularmente ub́ıcuos entre

los difeomorfismos parcialmente hiperbólicos (dinámicamente coherentes) en

dimensión 3. Esto condujo a la consolidación de los ejemplos clásicos en

dimensión 3.

Más recientemente, en [BFFP19] se demostró que los flujos de Anosov

discretizados representan todos lo difeomorfismos parcialmente hiperbólicos

dinámicamente coherentes en numerosas 3-variedades. Y en [FP22] (ver

también [FP21]) que en la mayoŕıa de las 3-variedades los flujos de Anosov

discretizados son accesibles y ergódicos siempre que preserven una forma de

volumen.

Otros resultados dinámicos recientes que involucran flujos de Anosov dis-

cretizados son los resultados de rigidez obtenidos en [AVW15], [BFT20] sobre

medicalssidas de entroṕıa maximal, [DWX21] y [BG21] respecto a rigidez de

centralizadores, y el ‘principio de invarianza’ obtenido en [CP22].

Una caracteŕıstica que ha demostrado ser muy útil en el estudio de difeo-

morfismos parcialmente hiperbólicos es la presencia de foliaciones invariantes

tangentes a los subfibrados invariantes. En [HPS77] se demostró que los fi-

brados Es y Eu son únicamente integrables a foliaciones f -invariantes Ws y

Wu, respectivamente.

En contraste, los fibrados Es`Ec y Es`Ec pueden o no ser integrables.

Siempre que integran en foliaciones f -invariantes (Wcs y Wcu, respectiva-

mente) el mapa f se denomina dinámicamente coherente. Si este es el caso

entonces Wc :� Wcs XWcu (la foliación dada por las componentes conexas

de la intersección de las hojas de Wcs y Wcu) da lugar a una foliación f -

invariante tangente al fibrado central Ec.

Recordemos que el conjunto no errante Ωpfq de f es el conjunto de puntos

x enM tal que para cada entorno U de x existeN ¡ 0 tal que fN pUqXU � H.

En nuestro primer teorema establecemos algunas propiedades generales

satisfechas por todo flujo de Anosov discretizado:

Teorema. Sea f un flujo de Anosov discretizado. Sean φct y Wc el flujo

y la foliación central que aparecen en la definición de f , respectivamente.

Entonces:

1. (Flujo de Anosov topológico). El flujo φct es un flujo de Anosov topológico

(ver Definición 3.7.1).

2. (Coherencia dinámica). El mapa f es dinámicamente coherente, admi-

tiendo una foliación centro estable Wcs y una foliación centro inestable

Wcu tales que Wc �Wcs XWcu.
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3. (Unicidad de las foliaciones cs y cu). Las foliaciones Wcs y Wcu son

las únicas foliaciones f -invariantes tangentes a Es ` Ec y Ec ` Eu,

respectivamente.

4. (Completitud de las hojas). Las hojas de Wcs y Wcu cumplen que

Wcspxq �
�
yPWcpxqW

spyq y Wcupxq �
�
yPWcpxqW

upyq para todo x P

M .

5. (Topoloǵıa de las hojas) Las hojas de Wcs y Wcu son homeomorfas a

planos o cilindros. Las primeras no contienen hojas centrales compactas

mientras que las segundas contienen exactamente una.

Cabe señalar que en dimensión 3 el teorema anterior era conocido en su

mayor parte. En efecto, una vez demostrado (2) entonces (1), (4) y (5) se

deducen de [BW05, Teorema 2]. Por otro lado, una vez que (1) es demostrado

entonces (2) ya ha aparecido en [BFP20, Proposición G.2] y (3) se sigue de

[BFFP19] (ver [BG21, Lemma 1.1]). Nuestro objetivo ha sido sintetizar la

teoŕıa en dimensión 3 y generalizarla a dimensiones superiores donde menos

resultados hab́ıan sido establecidos en la literatura.

En [BFFP19], [BFP20], [BG21] y [GM22] se denomina ‘flujo de Anosov

discretizado’ a todo mapa f P PHc�1pMq tal que existe un flujo de Anosov

topológico φt : M Ñ M y una función continua τ : M Ñ R¡0 tales que

fpxq � φτpxqpxq para toda x en M .

En [BFT20] un difeomorfismo f P PHc�1pMq se denomina ‘tipo flujo’ si

satisface la Definición 1.3.1 y además es dinámicamente coherente y admite

al menos una hoja compacta de Wc.

Nociones similares pero no a priori idénticas fueron estudiadas también

en [BW05], [BG09] y [BG10].

El problema respecto a la relación entre estas nociones se planteaba de

forma natural. Con el teorema anterior (añadir también la Proposición 3.7.3

ı́tem (4) enunciada en la Sección 3.7) se obtiene que todas estas defini-

ciones son equivalentes y refieren a la misma clase de sistemas parcialmente

hiperbólicos:

Corolario. La definición de flujo discretizado de Anosov dada en [BFFP19],

[BFP20], [BG21] y [GM22], y la definición de difeomorfismo parcialmente

hiperbólico de tipo flujo en [BFT20], son equivalentes a la Definición 1.1.1.

Además, la clase de difeomorfismos parcialmente hiperbólicos estudiados

en [BW05, Teorema 2.], [BG09] y [BG10] son también flujos discretizados

de Anosov como en la Definición 1.1.1.
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1.3.3 Estabilidad global

El siguiente resultado muestra que los flujos de Anosov discretizados con-

stituyen, en cierto forma, una clase amplia de difeomorfismos parcialmente

hiperbólicos con central unidimensional:

Teorema. El conjunto de flujos de Anosov discretizados es un subconjunto

C1 abierto y cerrado de PHc�1pMq.

En otras palabras, la clase de flujos de Anosov discretizados constituye

componentes conexas enteras de PHc�1pMq.

Dos difeomorfismos parcialmente hiperbólicos y respectivas foliaciones

centrales invariantes pf,Wc
f q y pg,Wc

gq se denominan conjugados por hojas

si existe un homeomorfismo h : M Ñ M que lleva hojas de Wc
f en hojas de

Wc
g de forma tal que h�fpW q � g�hpW q para cada hojaW PWc

f . La conju-

gación por hojas da sentido una manera de clasificar los difeomorfismos par-

cialmente hiperbólicos (dinámicamente coherentes) módulo comportamiento

central: dos sistemas se consideran equivalentes si son conjugados por hojas.

La demostración del teorema anterior muestra además que la conjugación

por hojas es preservada a lo largo de las componentes conexas de flujos de

Anosov discretizados:

Corolario. Dos flujos de Anosov discretizados en la misma componente

conexa C1 de PHc�1pMq son conjugados por hojas.

Vale la pena mencionar el contexto de fondo para los enunciados men-

cionados anteriormente.

Un resultado clásico de [HPS77] da condiciones para la estabilidad de

foliaciones normalmente hiperbólicas (es decir, foliaciones que son tangentes

al fibrado central de un difeomorfismo parcialmente hiperbólico):

Teorema (Hirsch-Pugh-Shub). Supongamos que f P PHpMq admite una

foliación central f -invariante Wc
f . Si el par pf,Wc

f q es expansivo por placas

entonces existe Upfq un entorno C1 de f que satisface que todo g P Upfq

admite una foliación central g-invariante Wc
g tal que pf,Wc

f q y pg,Wc
gq son

conjugados por hojas.

Un par pf,Wcq se denomina expansivo por placas (o δ-expansivo por pla-

cas) si existe δ ¡ 0 tal que todo par de sucesione pxnqnPZ y pynqnPZ que

satisfacen xn�1 P Wc
δpfpxnqq, yn�1 P Wc

δpfpynqq y dpxn, ynq   δ para cada

n P Z también satisface que y0 P Wc
locpx0q. En [HPS77] se demuestra que

esta condición se cumple siempre que Wc sea una foliación C1 o en caso que

f sea una isometŕıa entre cada hoja W de Wc y su imagen fpW q (este es el

caso para el tiempo 1 de un flujo de Anosov, por ejemplo).
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Para demostrar la propiedad C1 abierta y cerrada de los flujos de Anosov

discretizados de Anosov se necesita una cierta ‘versión uniforme’ del teorema

de estabilidad anterior:

Teorema. Supongamos f0 P PHc�1pMq. Para cada δ ¡ 0 existe un C1 en-

torno Upf0q de f0 tal que, si algún f P Upf0q admite una foliación central Wc
f

tal que pf,Wc
f q es δ-expansivo por placas, entonces cada g P Upf0q admite una

foliación central g-invariante Wc
g tal que pf,Wc

f q y pg,Wc
gq son conjugados

por hojas.

La parte ‘uniforme’ clave en el teorema anterior es que el tamaño de Upf0q

está fijado de antemano. Entonces si pfnqn es una sucesión en PHc�1pMq

convergente a f0 basta con demostrar que un par pfN ,W
c
fN
q es δ-expansivo

por placas para algún fN P Upf0q para inducir una foliación central Wc
f0

para

f0, que además satisface que pf0,W
c
f0
q es conjugado por hojas a pfN ,W

c
fN
q

(y de hecho conjugado por hojas a un par pf,Wc
f q para toda f P Upf0q).

Un teorema de estabilidad uniforme similar fue observado originalmente

en [BFP20] en un contexto diferente pero relacionado (para C1 inmersiones

por hojas y foliaciones ramificadas). En [BFP20] se muestra la propiedad

C1 abierta y cerrada de la clase de flujos de Anosov colapsados en dimensión

3. La propiedad C1 abierta y cerrada de los flujos de Anosov discretizados

en dimensión 3 se deduce esencialmente de [BFP20] (ver el Caṕıtulo 5 para

más detalles).

El hecho de que la conjugación por hojas persista dentro de las compo-

nentes conexas de flujos de Anosov discretizados puede verse como un resul-

tado de ‘estabilidad global’ donde un sistema expansivo por placas pf,Wcq

induce conjugación por hojas en toda su C1 componente conexa de parcial-

mente hiperbólicos.

Este fenómeno también ha sido observado en [FPS14] para todo auto-

morfismo lineal hiperbólico f en toro Tn (visto como un difeomorfismo par-

cialmente hiperbólico), y ha sido generalizado en [Pi19] para automorfismos

lineales de hiperbólicos en nilvariedad. Más aún, se demuestra en este texto

(ver Sección 1.1.6) que este comportamiento también ocurre para productos

fibrados parcialmente hiperbólicos con central unidimensional.

Es natural preguntarse si esto es cierto en general:

Pregunta. Supongamos que f P PHpMq admite una foliación central f -

invariante Wc tal que pf,Wcq es expansivo por placas. ¿Cada g en la misma

C1 componente conexa de parcialmente hiperbólicos que f admite una fo-

liación central g-invariante Wc
g tal que pg,Wc

gq es expansivo por placas y

conjugado por hojas a pf,Wcq?

Puesto que los flujos de Anosov discretizados constituyen componentes

conexas enteras de PHc�1pMq muchas otras preguntas naturales pueden ser
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planteadas. Uno puede preguntarse cuáles son las propiedades que se conser-

van en componentes conexas enteras y cuáles no. Qué componentes conexas

contienen el tiempo 1 de un flujo de Anosov, qué diferencias hay entre las

que no lo contienen, etc.

Como fue mencionado anteriormente, una de las propiedades que es con-

servada a lo largo de las componentes conexas de los flujos de Anosov dis-

cretizados es la conjugación por hojas. Otra de ellas es la integrabilidad única

del fibrado central. Es decir, la propiedad de que módulo reparametrizaciones

existe una única curva local C1 tangente a Ec por cada punto de M (ver la

Sección 1.1.6 para más detalles sobre esta definición):

Proposición. Sea f un flujo de Anosov discretizado tal que Ecf es únicamente

integrable. Entonces Ecg es únicamente integrable para toda g en la misma

componente conexa C1 de PHc�1pMq que f .

En particular, todo flujo de Anosov discretizado en la misma componente

conexa que el tiempo 1 de un flujo de Anosov tiene fibrado central únicamente

integrable.

En el Ejemplo 5.4.3 se da un ejemplo de un flujo de Anosov discretizado f

tal que Ec no es únicamente integrable. Esto se obtiene a partir de una modi-

ficación simple de una construcción dada en [HHU16] que conduce a un 2-toro

tangente a Es `Ec enteramente compuesto por puntos de integrabilidad no

única para Ec. El flujo central φct en este ejemplo es orbitalmente equivalente

a la suspensión de un difeomorfismo lineal de Anosov A : T2 Ñ T2 en el 2-

toro, sin embargo por la proposición anterior el mapa f no está en la misma

componente conexa que el tiempo 1 de la suspensión de A. Se concluye lo

siguiente.

Corollary. Existen componentes conexas de flujos de Anosov discretizados

que no contienen el tiempo 1 de un flujo de Anosov.

Con todo, estas componentes conexas parecen aún muy particulares. La

siguiente pregunta surge de forma natural.

Pregunta. Sea f un flujo de Anosov discretizado. ¿Alguna de las siguientes

condiciones: i) f es transitivo, ii) Ecf es únicamente integrable o iii) φct no

es orbitalmente equivalente a un flujo suspensión; implica que f se encuentra

en la misma componente conexa de PHc�1pMq que el tiempo 1 de un flujo

de Anosov?

1.3.4 Caracertización por hojas centrales fijas

Una caracterización de los flujos de Anosov discretizados, que también sirve

como definición alternativa para la clase, es la siguiente:
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Proposición. Sea f P PHc�1pMq. Los siguientes afirmaciones son equiva-

lentes:

(i) El mapa f es un flujo de Anosov discretizado.

(ii) Existe una foliación central Wc y una constante L ¡ 0 tales que fpxq P

Wc
Lpxq para todo x PM .

Es natural preguntarse si la hipótesis de desplazamiento acotado en (ii)

es necesaria. Es decir, si los flujos de Anosov discretizados pueden carac-

terizarse como la clase de difeomorfismos parcialmente hiperbólicos que fijan

individualmente cada hoja de una foliación central unidimensional:

Pregunta. Supongamos que f en PHc�1pMq admite una foliación central

Wc tal que fpW q � W para cada hoja W P Wc. ¿Es f un flujo de Anosov

discretizado?

Una respuesta afirmativa a esta pregunta se obtiene siempre que f sea

transitivo y dinámicamente coherente:

Teorema. Sea f P PHc�1pMq transitivo y dinámicamente coherente tal que

fpW q � W para cada hoja W en la foliación central Wc � Wcs X Wcu.

Entonces f es un flujo de Anosov discretizado.

De hecho, el teorema anterior es cierto si se sustituye la hipótesis ‘f

transitivo’ por la más general ‘Wc transitiva’. Para más detalles, ver el

Caṕıtulo 6.

1.3.5 Unicidad de atractores

Los resultados presentados en esta sección son el producto de un trabajo en

colaboración con N. Guelman (ver [GM22]).

Profundizando en las propiedades dinámicas de los flujos de Anosov dis-

cretizados, centramos nuestra atención en el problema de la finitud y unicidad

de cuasi-atractores y cuasi-repulsores.

Dado un mapa f : M Ñ M se denota por Rpfq � M al conjunto recur-

rente por cadenas de f . Es decir, la unión de todos los puntos x en M tal

que existe una ϵ-pseudo órbita no trivial de x a x para todo ϵ ¡ 0. Este

conjunto coincide con el complemento de los puntos que pertenecen a alguna

región atrapante de la forma UzfpUq para cierto abierto U tal que fpUq � U .

Se considera Rpfq dividido en clases de equivalencia denominadas clases de

recurrencia por cadenas. Estas clases vienen dadas por la relación x � y si y

sólo si para cada ϵ ¡ 0 existe una ϵ-pseudo órbita no trivial de x a y, y otra

de y a x.
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Un cuasi-atractor es una clase de recurrencia por cadenas A para la que

existe una base de entornos tUiui (es decir, A � Ui y A �
�
i Ui) tal que

fpUiq � Ui para cada i. Todo homeomorfismo en un espacio métrico com-

pacto admite al menos un cuasi-atractor. Ver [CP15] para una referencia.

Dado que los cuasi-atractores son conjuntos compactos disjuntos dos a

dos y saturados por hojas de Wu, cada uno de ellos contiene al menos un

conjunto minimal para la foliación Wu. Llamamos a un conjunto minimal

para Wu de laminación inestable minimal. Aśı, la unicidad (resp. finitud)

de las laminaciones inestables minimales implica la unicidad (resp. finitud)

de los cuasi-atractores.

Finitud de laminaciones inestables minimales se obtiene en [CPS17] para

un subconjunto C1-abierto y denso de los difeomorfismos parcialmente hiperbólicos

de central unidimensional. Aqúı pretendemos un estudio más global (no per-

turbativo) que implique resultados de unicidad/finitud para clases enteras de

ejemplos.

Flujos de Anosov discretizados con un número arbitrario de atractores

y repulsores pueden construirse perturbando el tiempo 1 de la suspensión

φt : M Ñ M de un difeomorfismo de Anosov. Puesto que M fibra sobre

el ćırculo y φ1 preserva las fibras es posible perturbar φ1 de modo que aún

lleve fibras en fibras pero que se convierta en Morse-Smale o incluso en una

dinámica con infinitos cuasi-atractores en la base (ver el Ejemplo 7.2.1 para

más detalles).

Recordar que dos flujos se dicen orbitalmente equivalentes si existe un

homeomorfismo que lleva órbitas de uno en órbitas del otro preservando su

orientación. Se obtiene el siguiente resultado:

Teorema. Sea f un flujo de Anosov discretizado y sea φct el flujo central

de f . Supongamos que φct es transitivo y no orbitalmente equivalente a una

suspensión. Entonces f tiene una única laminación minimal inestable.

Corolario. Todo f como en el teorema anterior tiene a lo sumo un cuasi-

atractor.

Vale la pena señalar que los enunciados anteriores están formulados para

laminaciones minimales inestables y cuasi-atractores pero que, naturalmente,

los mismos tienen enunciados análogos para laminaciones minimales estables

y cuasi-repulsores.

Notar que los resultados anteriores aplica para todo f P PHc�1pMq en

la misma componente conexa de PHc�1pMq que el tiempo 1 de un flujo de

Anosov transitivo φt :M ÑM que no sea orbitalmente equivalente a un flujo

suspensión. Esto incluye, por ejemplo, todo tiempo 1 de un flujo geodésico en

el fibrado tangente unitario de una superficie cerrada de curvatura negativa.
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El conjunto no errante del flujo de Anosov topológico φct obtenido como

flujo central de un flujo de Anosov discretizado admite el mismo tipo de

descomposición espectral

Ωpφctq � Λ1 Y . . .Y ΛN

en piezas básicas tΛiu1¤i¤N como es el caso para flujos de Anosov clásicos.

Ver el Lema 7.4.2.

En el caso de que φct no sea transitivo el problema de unicidad y finitud se

reduce a estudiar el comportamiento de φct en restricción a sus piezas básicas

atractoras. Obtenemos:

Teorema. Sea f un flujo de Anosov discretizado. Supongamos que Λ es

una pieza básica atractora del flujo central φct . Si φct |Λ : Λ Ñ Λ no es

orbitalmente equivalente a una suspensión entonces Λ contiene una única

laminación minimal inestable para f .

Corolario. Sea f un flujo de Anosov discretizado. Supongamos que to-

das las piezas básicas atractoras Λ1, . . . , Λk de φct satisfacen que φct |Λi :

Λi Ñ Λi no es orbitalmente equivalente a una suspensión. Entonces f tiene

exactamente k laminaciones minimales inestables (y exactamente k cuasi-

atractores). Además, cada una de las laminaciones minimales inestables está

contenida en una de las piezas básicas atractoras Λ1, . . . , Λk.

Vale la pena mencionar por último que, además de los enunciados men-

cionados anteriormente para flujos de Anosov discretizados, resultados sim-

ilares de unicidad de cuasi-atractores son obtenidos para ciertos productos

fibrados parcialmente hiperbólicos. Ver Teorema 7.1.5.

1.3.6 Productos fibrados parcialmente hiperbólicos, foliaciones

centrales uniformemente compactas y acción cuasi-isométrica

en la central

La foliación central de un difeomorfismo parcialmente hiperbólico se denom-

ina uniformemente compacta si sus hojas son compactas y el volumen de cada

hoja está uniformemente acotado en M . En particular, este es el caso para

la foliación central de los productos fibrados parcialmente hiperbólicos donde

la misma induce una estructura de fibrado en M :

Definición 1.3.2. Decimos que f P PHpMq es un producto fibrado parcial-

mente hiperbólico si existe un fibrado continuo π : M Ñ B cuyas fibras son

C1 subvariedades compactas tangentes a Ec que forman una foliación central

f -invariante Wc.
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Un resultado análogo a la propiedad C1 abierta y cerrada de los flujos de

Anosov discretizados se cumple para esta clase de sistemas:

Teorema. El conjunto de difeomorfismos en PHc�1pMq que admiten una

foliación central invariante uniformemente compacta es un subconjunto C1

abierto y cerrado de PHc�1pMq.

Nuevamente, el teorema anterior muestra que los mapas en PHc�1pMq

que admiten una foliación central invariante uniformemente compacta con-

stituyen componentes conexas enteras de PHc�1pMq. Por otra parte, dos

mapas en la misma componente conexa también son conjugados por hojas

(ver Corolario 5.1.4).

Una propiedad clave para los flujos de Anosov discretizados resulta ser que

los segmentos acotados dentro de hojas de Wc no se hacen arbitrariamente

largos para iterados pasados o futuros de f . Esta propiedad establece un

puente esencial entre la clase de flujos de Anosov discretizados y la de sistemas

parcialmente hiperbólicos que admiten una foliación central uniformemente

compacta.

Definición 1.3.3. Supongamos que f en PHpMq admite una foliación cen-

tral f -invariante Wc. Decimos que f actúa cuasi-isométricamente en Wc si

existen constantes l, L ¡ 0 tales que

fnpWc
l pxqq �Wc

Lpf
npxqq

para cada x en M y n P Z.

Es inmediato comprobar que la propiedad anterior es satisfecha por todo

flujo de Anosov discretizado, aśı como por todo sistema que admiten una

foliación central uniformemente compacta (ver Observación 3.4.2 y Obser-

vación 3.4.3). Obtenemos que algunas propiedades mostradas para flujos de

Anosov discretizados se extienden automáticamente a sistemas que actúan

cuasi-isométricamente sobre una foliación central:

Teorema. Supongamos que f P PHc�1pMq actúa cuasi-isométricamente en

la foliación central f -invariante Wc. Entonces se cumplen las siguientes

propiedades:

1. (Coherencia dinámica). El mapa f es dinámicamente coherente. Además,

admite una foliación centro estable Wcs y una foliación centro inestable

Wcu tales que Wc �Wcs XWcu.

2. (Unicidad de las foliaciones). Las foliaciones Wcs y Wcu son las únicas

foliaciones f -invariantes tangentes a Es ` Ec y Ec ` Eu, respectiva-

mente.
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3. (Completitud de las hojas). Las hojas de Wcs y Wcu cumplen que

Wcspxq �
�
yPWcpxqW

spyq y Wcupxq �
�
yPWcpxqW

upyq para todo x P

M .

Vale la pena mencionar que el punto (1) del teorema anterior fue de-

mostrado en [BB16, Theorem 1] para sistemas que admiten un central uni-

formemente compacto (y para cualquier dimensión central). Sin embargo, la

prueba dada en este texto es independiente.

El punto (2) muestra que Wc es la única foliación central f -invariante

donde f actúa cuasi-isométricamente. Para foliaciones centrales uniforme-

mente compactas esto da una respuesta parcial a la pregunta [BB16, Question

8.4.] (la pregunta general es para cualquier dimensión central).

Un resultado análogo sobre integrabilidad única del fibrado central también

se cumple en este contexto:

Proposición. Supongamos que f P PHc�1pMq admite una foliación central

uniformemente compacta tal que Ec es únicamente integrable. Entonces cada

sistema en la misma C1 componente conexa de f en PHc�1pMq tiene fibrado

central únicamente integrable.

En particular, la proposición anterior muestra que si f � A � Id : N �

S1 Ñ N � S1 es el producto de un difeomorfismo de Anosov A : N Ñ N

y el mapa identidad en el ćırculo Id : S1 Ñ S1, entonces el fibrado central

es únicamente integrable para cada sistema en la misma componente conexa

C1 que f en PHc�1pN � S1q.
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Chapter 2

Preliminaries

Partially hyperbolic diffeomorphisms. A C1-diffeomorphism f : M Ñ

M in a closed Riemannian manifold M is called partially hyperbolic if it

preserves a continuous splitting TM � Es`Ec`Eu, with non-trivial stable

bundle Es and unstable bundle Eu, such that for some positive integer ℓ ¡ 0

it satisfies

}Df ℓxv
s}   1

2}v
s}, }Df�ℓx vu}   1

2}v
u} and

}Df ℓxv
s}   }Df ℓxv

c}   }Df ℓxv
u}

for every x P M and unit vectors vσ P Eσpxq for σ P ts, c, uu. Modulo

changing the constant ℓ ¡ 0, the property of being partially hyperbolic is

independent of the Riemannian metric in M .

Invariant manifolds. If f is a partially hyperbolic diffeomorphism it is

known since [HPS77] that the bundles Es and Eu uniquely integrate to f -

invariant foliations. We denote these foliations as Ws and Wu, respectively.

It is a well-known fact that the leaves of Ws and Wu are homeomorphic to

RdimpEsq and RdimpEuq, respectively.

The bundles Es`Ec and Ec`Eu may or may not be integrable. Whenever

they integrate to f -invariant foliations (Wcs and Wcu, respectively) we say

that f is dynamically coherent. If this is the case then Wc � Wcs XWcu is

an f -invariant foliation whose leaves are tangent to Ec.

Notations. Whenever a foliation Wσ tangent to Eσ is well defined for

σ P ts, c, u, cs, cuu we will denote by Wσ
δ pxq the ball of radius δ ¡ 0 and

center x inside the leaf Wσpxq with respect to the intrinsic metric induced

by the Riemannian metric in M . In this context, if A is any subset of M

we will denote by WσpAq the saturation of A by Wσ-leaves, that is, the set�
yPAWσpyq. We will also denote by Wσ

δ pAq the set
�
yPAWσ

δ pyq.

For every σ P ts, c, u, cs, cuu an invariant foliation Wσ has, by definition,

C1 leaves that are tangent to the continuous bundle Eσ. From this type
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of regularity it is immediate to check the following property that we will

implicitly use several times along the text: For every R ¡ 0 and ϵ ¡ 0 there

exists δ ¡ 0 such that if dpx, yq   δ then dHpW
σ
Rpxq,W

σ
Rpyqq   ϵ, where dH

denotes the Hausdorff distance among subsets of M .

Invariant cone fields. We say that C is a continuous cone field in the

Riemannian manifold M if there exists a continuous splitting TM � E ` F

such that for every x P M the cone Cpxq � TxM is given by Cpxq � tv �

vE � vF P TxM : }vE}E ¥ }vF }F u for some continuous norms } � }E and } � }F
in E and F , respectively (not necessarily the ones induced by the underlying

Riemannian metric). In this context we say that C has dimension dimpEq.

We define the interior of the cone by intCpxq � tv � vE � vF P TxM :

}vE}E ¡ }vF }F u Y t0u for every x PM .

We say that C is f -invariant if for some N ¡ 0 one has DfNCpxq �

intCpfN pxqq for every x P M . If this is the case, we say that C is uniformly

expanded by f if }fN pvq} ¡ }v} for every v P Czt0u.

If f : M Ñ M is a partially hyperbolic diffeomorphism one can check

that there exists Cu and Ccu continuous cone fields of dimension dimpEuq

and dimpEcuq, respectively, that are f -invariant and such that Eu is uni-

formly expanded by f and Eupxq �
�
n¥0Df

npCupf�npxqq and Ecupxq ��
n¥0Df

npCcupf�npxqq for every x PM . Analogously for f�1-invariant cone

fields Cs and Ccs.

In fact, the cone criterion gives us a kind of reciprocal of the above: A

C1 diffeomorphism f :M ÑM is partially hyperbolic whenever there exists

an f -invariant cone field Cu uniformly expanded by f and a f�1-invariant

cone field Cs uniformly expanded by f�1. As a consequence, it is immediate

to check that PHpMq is C1 open in Diff1pMq. See for example [CP15].

Continuous flows. We say that a map φ : M � R Ñ M is a continuous

flow if it is continuous and satisfies that x ÞÑ φpx, tq is a homeomorphism

for every t P R and φpx, t � t1q � φpφpx, tq, t1q for every x P M and t, t1 P R.

As is usual, we denote a continuous flow as above by φt : M Ñ M and the

point φpx, tq by φtpxq for every x PM and t P R.

Anosov flows and topological Anosov flows. A C1 flow φt : M Ñ M

(that is, such that px, tq ÞÑ φtpxq is a C1 map) is called an Anosov flow if

there exists a continuous Dφt-invariant splitting TM � Es ` Ec ` Eu such

that Ec is the bundle generated by Bφt

Bt |t�0 and such that for some t0 � 0

the map f � φt0 is a partially hyperbolic diffeomorphism with respect to the

decomposition TM � Es`Ec`Eu. If φt is an Anosov flow it is immediate to

check that g � φt1 is a partially hyperbolic diffeomorphism for every t1 � 0.

The definition of topological Anosov flow that will be treated in this text

is given in Definition 3.7.1.
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Stable saturation of center curves. The following will be used several

times along the text.

Lemma 2.0.1. Suppose f P PHc�1pMq. There exists δ ¡ 0 such that for

every C1 arc η �M tangent to Ec with lengthpηq   δ the set Ws
δpηq is a C1

submanifold tangent to Es ` Ec.

A proof of the above lemma can be found in [BBI04, Proposition 3.4.] (it

is stated for absolute partially hyperbolic diffeomorphism but the proof does

not use this fact). See also [HPS77, Theorem 6.1] and [BB16, Remark 4.7.].

Quasi-attractors and minimal unstable laminations. We say that

A �M is a minimal unstable lamination if it is a minimal set of the foliation

Wu. That is, if it is a Wu-saturated compact set such that Wupxq � A for

every x P A. Minimal unstable laminations are minimal, with respect to

the inclusion, among non-empty compact Wu-saturated sets. Note that in

this definition of minimal unstable lamination we are not asking for it to be

f -invariant.

Given ϵ ¡ 0, a ϵ-pseudo orbit for f is a sequence pxnqnPZ such that

dpxn�1, fpxnqq   ϵ for every n. The chain recurrent set of f , denoted by

Rpfq �M , is the union of all points x PM such that there exists a non-trivial

ϵ-pseudo orbit from x to x for every ϵ ¡ 0. It coincides with the complement

of all points contained in a wandering region of the form UzfpUq for some

open set U such that fpUq � U .

One considers Rpfq divided in equivalent classes, called chain recurrence

classes, given by the relation x � y if and only if there exists a non-trivial

ϵ-pseudo orbit from x to y and another from y to x for every ϵ ¡ 0.

A quasi-attractor is a chain recurrence class A for which there exists

a basis of neighborhoods tUiui (i.e. A � Ui and A �
�
i Ui) such that

fpUiq � Ui for every i. Quasi-attractors always exists for homeomorphisms

in compact metric spaces. A good reference for the notions of chain recurrence

classes and quasi-attractors is [CP15].
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Chapter 3

Discretized Anosov flows

3.1 Introduction

In this chapter we prove several general properties of discretized Anosov flows

and establish the equivalence with other a priori different notions appearing

in the literature. In particular, we cover the statements given in Section 1.1.2

of the introduction.

3.2 Definition and first properties

Definition 3.2.1. We say that f P PHc�1pMq is a discretized Anosov flow if

there exist a continuous flow φct :M ÑM , with
Bφc

t
Bt |t�0 a continuous vector

field without singularities, and a continuous function τ :M Ñ R satisfying

fpxq � φcτpxqpxq

for every x PM .

Note that Definition 3.2.1 is slightly more general than the one given in

the introduction since it does not ask for φct to generate a center foliation or to

be parametrized by arc-length. The former is derived as a consequence in the

next proposition while the latter can always be achieved by reparametrizing

the flow φct as seen in Remark 3.2.3.

Moreover, in contrast with the definition given in [BFFP19], we do not

ask for φct to be a topological Anosov flow (see Definition 3.7.1). This is

derived as a consequence in Proposition 3.7.2.

Proposition 3.2.2. If f is a discretized Anosov flow then:

(i) The vector field
Bφc

t
Bt |t�0 generates the bundle Ec and the flow lines of

φct form a center foliation Wc whose leaves are fixed by f .
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(ii) The function τ has no zero and is C1 restricted to each leaf of Wc.

Proof. Let F be the one-dimensional bundle generated by
Bφc

t
Bt |t�0. In order to

show (i) let us see that F � Ec. This has essentially been done for dimpMq �

3 in [BFFP19, Proposition G.2.] and the arguments are equally valid in any

dimension. We will briefly reproduce them for the sake of completeness.

We claim first that it is enough to show that F is never contained in

Es nor Eu. Indeed, if F pxq is not contained in Espxq nor Eupxq for every

x P M then the angle formed by F and Es is bounded away from zero by a

positive constant independent of the point inM . As a consequence, for every

x P M the subspace DfnpF pf�npxqqq gets arbitrarily close to Ecupxq as n

tends to �8. As F is Df -invariant (see justification below) we deduce that

F pxq needs to be contained in Ecupxq. Arguing analogously for backwards

iterates using the never-zero angle between F and Eu one obtains that F pxq

has to be contained in Ecspxq for every x inM . We conclude that F coincides

everywhere with Ec � Ecs X Ecu.

The bundle F needs to be Df -invariant as every small piece of φct -orbit

through a point x PM is sent by f to a C1 curve that is a reparametrization

of a small piece of φct -orbit through fpxq. Thus F pfpxqq that is generated by
Bφc

t
Bt |t�0pfpxqq coincides with DfF pfpxqq that is generated by

Bfφc
t

Bt |t�0pxq.

It remains to see now that F is never contained in Es nor Eu. Without

loss of generality suppose by contradiction that F pxq is contained in Eupxq

for some x. Note that F pf�npxqq is then contained in Eupf�npxqq for every

n ¥ 0.

Let Cu be a continuous f -invariant unstable cone field such thatDfNCu �

intCu for some N ¡ 0 and
�
n¥0Df

npCupf�nyqq � Eupyq for every y P M

(see the preliminaries for more details). Since for every n ¥ 0 a piece of

φct -orbit containing f�npxq is tangent to Cu we obtain in the limit with n

that at least a piece η of φct -orbit containing x is contained in Wupxq.

As τ :M Ñ R¡0 is continuous it has some positive upper bound so there

exists L ¡ 0 such that every forward iterate of η has length less than L.

This contradicts the fact that f expands uniformly the length of any C1 arc

tangent to Eu. This end the proof of F pxq � Ecpxq for every x PM .

It follows that the flow lines of φct are tangent to Ec and consequently

they form a center foliation Wc whose leaves are fixed by f . Property (i) is

settled.

Since f is C1 and preserves the bundle Ec it is immediate to check that

the function τ needs to be C1 restricted to each leaf of Wc. In order to end

(ii) it remains to show that τ has no zeros. For this we will use a similar

argument as in [BG09, Lema 1.2.] or [BFP20, Proposition 5.14.].

Let us suppose by contradiction that τpxq � 0 for some x P M and
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consider U a small φct flow box neighborhood of x. By the continuity of f

there exists ϵ ¡ 0 such that B2ϵpxq � U and fpB2ϵpxqq � U .

We claim that ϵ can be considered small enough so that y and fpyq need

to lie in the same φct -plaque of U for every y P Bϵpxq. Indeed, let l ¡ 0 be a

constant smaller than the distance between Bϵpxq and MzU and let C ¡ 0

be a constant larger than }
Bφc

t
Bt |t�0pyq} for every y PM . By the continuity of

τ we can consider ϵ small enough so that τpyqC   l for every y P Bϵpxq. It

follows that the center arc ry, fpyqsc from y to fpyq along φct needs to have

length less that l for every y P Bϵpxq. Hence, ry, fpyqsc needs to be contained

in U for every y P Bϵpxq and this proves the claim.

As f contracts distances insideWs-leaves for large enough forward iterates

there exists δ ¡ 0 such that Ws
δpxq and fnpWs

δpxqq for every n ¥ 0 are

contained in Bϵpxq. Moreover, for every y P Ws
δpxqztxu the sequence fnpyq

tends to x. This contradicts the fact that by the previous claim every point

in tfnpyqun¥0 must lie in the same φct -plaque of U than y (which is at positive

distance from x).

Note that because of (ii) in the previous proposition one can always as-

sume that τ is positive (modulo inverting the time of φct if needed).

The next remark shows that Definition 3.2.1 can be seen as independent

of reparametrizations of the flow φct . In particular, one can always assume

that φct has been parametrized by arc-length.

Remark 3.2.3. Suppose f is a discretized Anosov flow such that fpxq �

φcτpxqpxq for every x P M as in Definition 3.2.1. Let α : M Ñ R¡0 be a

continuous function. If φ̃t is the reparametrization of φct generated by the

continuous vector field α
Bφc

t
Bt |t�0 then there exists τ̃ : M Ñ M continuous

such that fpxq � φ̃τ̃pxqpxq for every x PM .

Proof. Let Wc be the foliation by flow lines of φct . As
Bφc

t
Bt |t�0pxq � 0 for

every x P M then α
Bφc

t
Bt |t�0 is a continuous vector field without singularities

restricted to each leaf of Wc. It follows that it uniquely integrates inside each

leaf of the one-dimensional foliation Wc. The flow φ̃t : M Ñ M obtained in

this way has the same flow lines as φct .

Moreover, there exists r : M � R Ñ R continuous such that φctpxq �

φ̃rpx,tqpxq for every x P M and t P R. Then τ̃pxq � rpx, τpxqq satisfies that

fpxq � φ̃τ̃pxqpxq.

As a consequence of Proposition 3.2.2 and Remark 3.2.3 one obtains:

Corollary 3.2.4. Definition 1.1.1 and Definition 3.2.1 are equivalent.
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3.3 Fixed center foliation and bounded displace-

ment along center

As pointed out in Proposition 3.2.2, an immediate consequence of Definition

3.2.1 is that discretized Anosov flows fix the leaves of a one dimensional center

foliation Wc. In Chapter 6 we will see that this is enough for charecterizing

discretized Anosov flows under some general circumstances.

For the moment, we can show that center fixing property charaterizes

discretized Anosov flows provided a uniformly bounded displacement along

center leaves is satisfied. We point out that item (ii) in the following propo-

sition can be seen as an alternative definition for discretized Anosov flows.

Proposition 3.3.1. Suppose f P PHc�1pMq. The following are equivalent:

(i) The map f is a discretized Anosov flow.

(ii) There exists a center foliation Wc and a constant L ¡ 0 such that

fpxq PWc
Lpxq for every x PM .

Proof. Suppose f is a discretized Anosov flow. Let φct be the flow appearing

in the definition of f such that fpxq � φcτpxqpxq for every x PM . Proposition

3.2.2 shows that f fixes the leaves of the center foliation Wc given by the

flow lines of φct . If T ¡ 0 denotes an upper bound for τ and C ¡ 0 an upper

bound for y ÞÑ }
Bφc

t
Bt |t�0pyq} it follows that fpxq P Wc

TCpxq for every x in M .

Thus (i) implies (ii).

Let us see that (ii) implies (i). Suppose that there exists L ¡ 0 such

that fpxq P Wc
Lpxq for every x PM . In particular, fpW q � W for every leaf

W PWc.

Note first that, by transverse hyperbolicity, every compact leaf of Wc

of length less than 2L can not be accumulated by compact leaves of Wc of

length less that 2L. Then the number of compact leaves of length less than

2L needs to be finite.

Let U �M denote the union of leaves of Wc with length larger or equal to

2L. For every x P U let rx, fpxqsc denote the center segment in Wc
Lpxq joining

x with fpxq. It is immediate to check that rx, fpxqsc varies continuously in

the Hausdorff topology for every x in U .

Essentially the same argument used to show (ii) in Proposition 3.2.2 shows

that f has no fixed points in U : If x is a fixed point of f consider Uϵpxq � U a

small foliation box neighborhood of Wc containing x such that Wc
LpyqXUϵpxq

has only one connected component for every y P Uϵpxq. For δ ¡ 0 small

enough, if y PWs
δpxqztxu then f

npyq P Uϵpxq for every n ¥ 0 and limn f
npyq �

x. However, fnpyq P Wc
Lpf

n�1pyqq and fnpyq P Uϵ implies that fnpyq must

lie in the center plaque Wc
Lpyq X Uϵpxq for every n ¥ 0. This gives us a
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contradiction with limn f
npyq � x and ends the proof that f has no fixed

points in U .

As f has no fixed points in U then for every x P U we can define Xcpxq

to be the unit vector in Ecpxq pointing inwards to the segment rx, fpxqsc. As

rx, fpxqsc varies continuously with x in U it follows that Xc is a continuous

vector field in U .

Let φt : U Ñ U be the flow whose orbits are the leaves of Wc in U

and such that Bφt

Bt |t�0 is equal to Xc. Let us define τpxq to be the length

of rx, fpxqsc for every x in U . Clearly fpxq � φcτpxqpxq for every x P U . It

remains to see that Xc, φct and τ , which are a priori defined only in U , extend

well to M . That is, that they extend well to the union of compact center

leaves of length less than 2L.

Let η be a compact center leaf of length less than 2L. For every x P

η consider Vx a small Wc-box neighborhood containing x so that if Vx X

Vy � H then Wc|VxYVy is orientable. We can suppose that for every x

the neighborhood Vx is small enough so that it is disjoint from every other

compact center leaf of length less than 2L.

Consider V be the neighborhood of η that is the union of the elements of

tVxuxPη. It follows that Wc|V is orientable since any orientation given to η

can be extended to an orientation on each Vx and this orientations coincide in

VxXVy whenever VxXVy � H. Then, as the set UXV is connected, it follows

that the orientation induced byXc inWc|U can be extended toWc|UXV . Now

that the a priori orientation issue has been ruled out, it follows immediately

that Xc and φct extend continuously to η.

It remains to extend τ continuously to η so that fpxq � φcτpxqpxq for

every x P η. To this end, for every x in η let us denote by rx, fpxqsc the

center segment from x to fpxq such that Xcpxq points inwards in rx, fpxqsc.

Note that it may be the case that if xn Ñ x with pxnqn � U then rxn, fpxnqsc
‘turns around’ η many times so that rxn, fpxnqsc accumulates in the Hausdorff

topology to η instead of rx, fpxqsc
However, since Wc is a continuous foliation tangent to a continuous sub-

bundle there exists ϵ ¡ 0 such that if dpy, xq   ϵ then φctpyq is in Vφc
t pxq

for

every t P r0, Ls and x P η. It follows that the ‘number of turns’ (measured, for

example, as the number of connected component of rxn, fpxnqsc X Vx minus

1) needs to be constant for xn close enough to x. As this integer number

varies continuously with x in η it has to be a constant N independent of the

point x. Hence by defining τ in η as

τpxq � lengthrx, fpxqsc �N length η

it follows that τ extends continuously to η.
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By doing the above for every center leaf η of length less than 2L it follows

that τ is well defined and continuous in M , and that

fpxq � φcτpxqpxq

is satisfied for every x PM . This settles piiq implies piq.

3.4 Dynamical coherence and quasi-isometrical ac-

tion on the center foliation

A key property for discretized Anosov flows turns out to be that segments

inside Wc do not get arbitrarily long for past and future iterates of f . We

will use this fact to show that every discretized Anosov flow is dynamically

coherent.

It is worth noting that this property sets an essential bridge between the

class of discretized Anosov flows and that of partially hyperbolic systems

admitting a uniformly compact center foliation.

The following definition is valid for any center dimension.

Definition 3.4.1. A partially hyperbolic diffeomorphism f admitting an f -

invariant center foliation Wc is said to act quasi-isometrically on Wc if there

exist constants l, L ¡ 0 such that

fnpWc
l pxqq �Wc

Lpf
npxqq

for every x in M and n P Z.

The following is immediate to check.

Remark 3.4.2. Every discretized Anosov flow acts quasi-isometrically on the

center foliation Wc given by the flow lines of the flow φct as in Definition 3.2.1.

Indeed, since fpxq � φcτpxqpxq for every x PM then f acts quasi-isometrically

on Wc with constants l � min }
Bφc

t
Bt |t�0}.min τ and L � max }

Bφc
t

Bt |t�0}.max τ .

Remark 3.4.3. Every partially hyperbolic diffeomorphism admitting an in-

variant uniformly compact center foliationWc acts quasi-isometrically onWc.

Indeed, it is enough to show that under these circumstances the diameter of

every center leaf is bounded and then set L ¡ 0 larger than this bound.

To show that the diameter of every leaf of Wc is bounded one can argue

as follows. Let δ, ϵ ¡ 0 be such that for every x P M the set Wc
δpxq has

volume less than ϵ. Suppose by contradiction that there exist center leaves

with arbitrarily large diameter. It follows that for every N ¡ 0 one can

find N points in the same center leaf such that any two points are separated
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more than 2δ. Then the volume of the center leaf containing these points is

larger that Nϵ. This contradicts the fact that center leaves have a uniformly

bounded volume.

By Remark 3.4.2 the next proposition shows that discretized Anosov flows

and partially hyperbolic skew-products are dynamically coherent. Moreover,

it shows that the stable and unstable saturations of center leaves are complete

subsets of Wcs and Wcu leaves, respectively.

Proposition 3.4.4 (Dynamical coherence). Suppose f P PHc�1pMq acts

quasi-isometrically on a center foliation Wc. Then f is dynamically coherent,

admitting center-stable foliation Wcs and center-unstable foliation Wcu such

that Wc � Wcs X Wcu. Moreover, Wcspxq � WspWcpxqq and Wcupxq �

WupWcpxqq for every x PM .

Proposition 3.4.4 will be derived from the following lemma that may be

of independent interest.

Lemma 3.4.5. Suppose f P PHc�DpMq for some D ¡ 0 admits an invariant

center foliation Wc. Let y be a point in Wspxq for some x PM and suppose

η � Wcpyq is a C1 curve through y such that tlengthpfnηqun¥0 is bounded.

Then η is contained in WspWcpxqq.

Proof. Let x P M , y P Wspxq and η : r0, 1s Ñ Wcpyq be a C1 curve with

ηp0q � y. Suppose that tlengthpfnηqun¥0u is bounded by some constant

L ¡ 0.

Let δ ¡ 0 be as in Lemma 2.0.1 so that Ws
δpW

c
δpzqq is a C

1 submanifold

tangent to Es `Ec for every z PM . Recall that the bundles Es, Ec and Eu

vary continuously in M . By taking δ small enough we can ensure that for

every z and z1 in M such that dpz, z1q   δ
2 the sets Wu

δ pz
1q and Ws

δpW
c
δpzqq

intersect, and that this intersection takes place in a unique point.

We claim that there exists a constant δ1 ¡ 0 such that if dpz, z1q   δ1

and γ : r0, 1s Ñ Wcpz1q is a curve of length at most L with γp0q � z1 then

there exists a continuous curve Hsuγ : r0, 1s Ñ Wcpzq such that Wu
δ pγptqq X

Ws
δpH

suγptqq � H for every t P r0, 1s and Hsuγp0q P Wc
δpzq. Note that if

this claim is true then Hsuγ is a particular choice of continuation by center

holonomy of γ along Wcpzq that is uniquely determined by the properties

Wu
δ pγptqq XWs

δpH
suγptqq � H for every t P r0, 1s and Hsuγp0q PWc

δpzq.

Let us prove the claim. As Wc is a foliation tangent to a continuous

bundle we can consider δ1 ¡ 0 so that whenever z and z1 are points in M

satisfying dpz, z1q   δ1 and γ : r0, 1s Ñ Wcpz1q is a curve of length at most

L with γp0q � z1, then there exists a continuous curve Hγ : r0, 1s Ñ Wcpzq

with Hγp0q � z and dpγptq, Hγptqq ¤ δ
2 for every t P r0, 1s.
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The curve Hγ is an auxiliary curve used to define Hsuγ. Indeed, we

can consider P uptq as the intersection point of Wu
δ pγptqq and Ws

δpW
c
δpHγptqqq

for every t P r0, 1s. Then Hsuγptq can be defined as the unique point in

Wc
δpHγptqq such that P uptq is contained in Ws

δpH
suγptqq. This proves the

claim.

Let N ¡ 0 be such that dpfnpxq, fnpyqq   δ1 for every n ¥ N . For

simplicity, let γ denote the curve fN � η. Then Hsupfn � γq is well defined

for every n ¥ 0. Moreover, as f preserves Ws, Wc and Wu-leaves, the special

choice ofHsu gives us the following invariance: the curveHsupfn�γq coincides

with the curve fn �Hsuγ for every n ¥ 0.

In particular, fnpP uptqq lies in Wu
δ pf

n � γptqq for every t P r0, 1s and

n ¥ 0. Iterating n times backwards yields that P uptq lies in Wu
Cp1{2qn{ℓδ

pγptqq

for some constants ℓ P Z� and C ¡ 0 given by the partial hyperbolicity of f .

It follows that P uptq � γptq for every t P r0, 1s. That is, fN �η is contained

in WspWcpfN pxqq. Then η is contained in WspWcpxqq.

Proof of Proposition 3.4.4. Suppose f P PHc�1pMq acts quasi-isometrically

on a center foliation Wc.

Given x P M and y P WspWcpxqq let us see first that Wcpyq is contained

in WspWcpxqq. Indeed, as f acts quasi-isometrically on Wc for every l ¡ 0

there exists L ¡ 0 such every f -iterate of Wc
l pyq is bounded in length by L.

By Lemma 3.4.5 it follows that Wc
l pyq �WspWcpxqq. Since this happens for

every l ¡ 0 it follows that Wcpyq �WspWcpxqq.

By Lemma 2.0.1 for every x P M the set WspWcpxqq is a C1 injectively

immersed submanifold tangent to Es ` Ec. As WspWcpxqq is saturated by

Ws and Wc leaves it follows that its intrinsic metric is complete and that, if

y PWspWcpxqq, then WspWcpyqq �WspWcpxqq.

Then tWspWcpxqquxPM defines a partition of M whose elements are the

leaves of an f -invariant foliation tangent to Es`Ec and subfoliated by leaves

of Ws and Wc. Thus a center-stable invariant foliation Wcs whose leaves are

complete (meaning that Wcspxq � WspWcpxqq for every x P M). The same

arguments show that the sets tWupWcpxqquxPM define an invariant center-

unstable foliation with complete leaves.

Note that acting quasi-isometrically on a center foliation is preserved

under finite lifts and finite powers. One can build other examples of quasi-

isometrically center actions as follows:

Example 3.4.6. Let φt :M ÑM be an Anosov flow, π : N ÑM be a finite

cover of M and φ̃t : N Ñ N be the lift of φt to N . Note that φ̃t is also an

Anosov flow in N . One can define f : N Ñ N as the composition of the time

1 map of φ̃t with a non-trivial deck transformation of order k ¡ 1. It follows
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that f is a partially hyperbolic diffeomorphism acting quasi-isometrically on

the center (in fact, isometrically) that is not a discretized Anosov flow or

a partially hyperbolic skew-product, but such that the power g � fk is a

discretized Anosov flow.

A construction from [BPP16] gives an example of a system f P PHc�1pM
3q

acting quasi-isometrically on an f -invariant center foliation Wc such that fk

is not a discretized Anosov for every k � 0 nor Wc is uniformly compact.

This is done via a h-transversality surgery over the time 1 map of a non-

transitive Anosov flow. One can easily check from its construction that this

example is not transitive.

One more type of examples of partially hyperbolic diffeomorphisms acting

quasi-isometrically on a center foliation can be constructed by taking the

product f � A :M �N ÑM �N of a discretized Anosov flow f :M ÑM

and an Anosov map A : N Ñ N .

In view of the above known examples of quasi-isometrically center actions

we may ask the following:

Question 3.4.7. Suppose f P PHc�1pMq acts quasi-isometrically on a center

foliation Wc. If Wc is transitive (i.e. has a dense leaf) then does there exists

k P Z� such that fk is a discretized Anosov flow?

Remark 3.4.8 (Relation with the notion of ‘neutral center’). In [Z17] and

[BZ20] the notions of partially hyperbolic diffeomorphisms that are neu-

tral along center and topologically neutral along center were introduced. In

[BZ20] a positive answer to Question 3.4.7 in dimension 3 is obtained for

these class of systems.

A partially hyperbolic diffeomorphism f is called neutral along center if

there exists C ¡ 1 satisfying 1{C   ||Dfn|Ecpxq||   C for any x P M and

n P Z. And is called topologically neutral along center if for any ϵ ¡ 0 there

exists δ ¡ 0 so that any C1 center curve σ of length bounded by δ has all its

images fnpσq, n P Z, bounded in length by ϵ. One easily checks that if f is

neutral, then it is topologically neutral.

By [RHRHU07, Corollary 7.6] topologically neutral systems admit a cen-

ter foliation and it is immediate that the they act quasi-isometrically on

it. However, acting quasi-isometrically on a center foliation is strictly more

general. It is easy to see that being topologically neutral along center for-

bids the existence of a hyperbolic periodic point. In particular, every dis-

cretized Anosov flow with a hyperbolic periodic point is an example of a

quasi-isometrically action on Wc that is not topologically neutral along cen-

ter. This includes Examples 7.2.1 and 7.2.2.
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3.5 Uniqueness of cs and cu foliations

The goal of this section is to show uniqueness of invariant center-stable and

center-unstable foliation for discretized Anosov flows, and more generally for

partially hyperbolic systems acting quasi-isometrically on a one-dimensional

center foliation:

Proposition 3.5.1. Suppose f P PHc�1pMq acts quasi-isometrically on an

f -invariant center foliation Wc. Let Wcs and Wcu be the foliations given

by Proposition 3.4.4. Then Wcs and Wcu are the only f -invariant foliations

tangent to Es ` Ec and Ec ` Eu, respectively.

We will rely on the following lemma.

Lemma 3.5.2. Suppose f P PHpMq admits an f -invariant center-stable

foliation Wcs. If η is a C1 curve that is not contained in a leaf of Wcs then

limnÑ�8 lengthpfn � ηq � 8.

Proof. Let δ ¡ 0 be a constant as in Lemma 2.0.1. As the invariant bundles

vary continuously inM we can suppose that δ is small enough so that at scale

δ the invariant bundles are nearly constant (more precisely, one can consider

for example a constant δ � δpfq ¡ 0 and a metric in M as in Lemma 4.2.1).

In particular, δ ¡ 0 is such that for every 0   δ1 ¤ δ, if x, y P M satisfy

dpx, yq   δ1, then Wσ
2δ1pxq and Wσ

2δ1pyq intersect and the intersection point is

unique for every pσ, σ1q P tpcs, uq, pcu, squ.

Suppose η is a C1 curve that is not contained in a leaf of Wcs. Let us

see that that limnÑ�8 lengthpfn � ηq � 8. Note that it is enough to show

this for lengthpηq   δ{4 since otherwise one can divide η is finite pieces of

length less than δ{4 and argue from there. Then, suppose from now on that

lengthpηq   δ{4.

Let x be a point in η. For every y PWu
δ{4pxq let D

cspyq be the intersection

of Wcs
δ pyq with Wu

δ pW
cs
δ{4pxqq. It follows that D :�

�
yPWu

δ{4
pxqD

cspyq is an

open subset ofM that is subfoliated by u-plaques and cs-plaques. The latter

being the plaques tDcspyquyPWu
δ{4

pxq. Analogously fnpDq is subfoliated by

u-plaques and the cs-plaques tfnDcspyquyPWu
δ{4

pxq for every n ¡ 0.

Note that, since lengthpηq   δ{4 then η is contained in D. Informally,

forwards iterates of f will separate indefinitely the cs-plaques of D. If η is

not contained in a unique cs-plaque this will force the length of η to increase

indefinitely.

We will work with the intrinsic metric in D and in its forward iterates

tfnDun¡0. Given Dcspyq and Dcspy1q two different cs-plaques in D let us

denote dupD
cspyq,Dcspy1qq the infimum length among all unstable arcs inside

u-plaques of D joining Dcspyq and Dcspy1q. Analogously for every fnD.
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Note that, as backwards iterates of f contract distances uniformly inside

Wu-leaves, then for every pair of disjoint cs-plaques Dcspyq and Dcspy1q in D

there exists N ¡ 0 such that dupf
nDcspyq, fnDcspy1qq ¡ 2δ for every n ¥ N .

Moreover, we claim that if for some n ¡ 0 one has that the distance

dupf
nDcspyq, fnDcspy1qq is greater that δ and Wu

δ pf
nDcspyq is contained in

fnD then in the intrinsic metric of fnD every point of Dcspyq is at distance

greater than δ{2 from every other point in fnDcspy1q. Indeed, by contradic-

tion, if z P fnDcspyq and z1 P fnDcspy1q are at distance less than δ{2 and

Wu
δ pf

nDcspyqq � fnD then Wu
δ pzq intersects Wcs

δ pz
1q and this intersection

point needs to be a point in fnDcspy1q since Wu
δ pzq is contained in fnDcspy1q.

It follows that dupf
nDcspyq, fnDcspy1qq   δ and we get to a contradiction.

This proves the claim.

Finally, given any constant L ¡ 0, let K ¡ 0 be an integer larger than

L{2δ. As η is not contained in Wcspxq then there exist K different cs-plaques

in D intersecting η. Let us denote them as Dcspy1q, . . . , D
cspyKq. There

exists N ¡ 0 such that dupf
nDcspyiq, f

nDcspyjqq ¡ 2δ for every n ¥ N and

i � j.

Moreover, for every 1 ¤ i ¤ K there exist ϵi such that Wu
ϵipD

cspyiqq

is contained in D. By taking N larger, if needed, one can ensure that

Wu
δ pf

nDcspyiqq is contained in fnD for every n ¥ N .

It follows that lengthpfn � ηq ¡ L for every n ¥ N since fn � η must

contain at least K disjoint subsegments of length at least δ{2, each one of

them corresponding to an intersection of fn � η with fnDcspyiq for every

1 ¤ i ¤ K.

Remark 3.5.3. From Lemma 3.5.2 one can easily justify that every f P

PHpMq admitting an f -invariant center-stable foliation Wcs satisfies that

the leaves of Wcs are saturated by leaves of Ws.

Indeed, for every x PM and y PWspxq one can join x and y by a C1 curve

η contained in Wspxq. Since η gets contracted uniformly by forward iterates

of f it follows that η must be contained in Wcspxq. Then Wspxq �Wcspxq.

Proof of Proposition 3.5.1. Suppose f P PHc�1pMq acts quasi-isometrically

on an f -invariant center foliation Wc. By Proposition 3.4.4 there exist f -

invariant foliations Wcs and Wcu whose leaves are characterized as Wcspxq �

WspWcpxqq and Wcupxq �WupWcpxqq for every x PM .

Suppose Wcs
1 is an f -invariant center-stable foliation. As f acts quasi-

isometrically inWc then by Lemma 3.5.2 the leafWcpyq needs to be contained

in Wcs
1 pxq for every x P M and y P Wcs

1 pxq. Moreover, as pointed out in

Remark 3.5.3 the leaf Wspyq must also be contained in Wcs
1 pxq for every

y P Wcs
1 pxq. It follows that Wcspxq � WspWcpxqq needs to be a subset of

Wcs
1 pxq for every x PM .
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For the intrinsic leaf metric induced by the Riemannian metric inM each

leaf ofWcs andWcs
1 is a complete metric space. This imply that the boundary

of Wcspxq in Wcs
1 pxq needs to be empty. We conclude that Wcspxq �Wcs

1 pxq

for every x PM .

Analogously for f -invariant center-unstable foliations.

3.6 Center flow and flow center foliation

Suppose f is a discretized Anosov flow of the form fpxq � φcτpxqpxq as in

Definition 3.2.1. By Proposition 3.2.2 the flow lines of φct : M Ñ M form a

center foliation Wc whose leaves are fixed by f .

By Remark 3.4.2, Proposition 3.4.4 and Proposition 3.5.1 we can deduce

the following characterization of Wc.

Remark 3.6.1. The foliation Wc is:

� The only foliation tangent to Ec that is the intersection of f -invariant

foliations Wcs and Wcu.

� The only f -invariant foliation tangent to Ec such that f acts quasi-

isometrically on it.

Moreover, if f is of the form fpxq � ϕcρpxqpxq for every x P M as in

Definition 3.2.1, for some other flow ϕct : M Ñ M and continuous function

ρ :M Ñ R, then ϕct needs to be a reparametrization of ϕct . That is:

Remark 3.6.2. The flow φct : M Ñ M is, modulo reparametrizations, the

only flow satisfying Definition 3.2.1.

In light of the above remarks, we will designate from now on Wc as the

flow center foliation of f . And the flow φct :M ÑM as the center flow of f .

In view of Remark 3.2.3, if not otherwise stated we may implicitly assume

from now on that the center flow φct :M ÑM is parametrized by arc-length.

It would be interesting to know if, in general, the flow center foliation of

a discretized Anosov is the only f -invariant center foliation. Or at least if it

is the only center foliation whose leaves are individually fixed by f . We do

not have a general proof for either of this statements.

3.7 Topological Anosov flows

Definition 3.7.1. We say that a flow φt : M Ñ M is a topological Anosov

flow if it is a continuous flow, with Bφt

Bt |t�0 a continuous vector field without

singularities, such that it preserves two topologically transverse continuous

foliations Fws and Fwu satisfying the following:
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(i) The foliation Fws X Fwu is the foliation given by the orbits of φt.

(ii) Given x in M and y P Fwspxq (resp. y P Fwupxq) there exists an

increasing continuous reparametrization h : R Ñ R satisfying that

dpφtpxq, φhptqpyqq Ñ 0 as tÑ �8 (resp. tÑ �8).

(iii) There exists ϵ ¡ 0 such that for every x P M and y P Fwsϵ pxq (resp.

y P Fwuϵ pxq), with y not in the same orbit as x, and for every increasing

continuous reparametrization h : R Ñ R with hp0q � 0, there exists

t ¤ 0 (resp. t ¥ 0) such that dpφtpxq, φhptqpyqq ¡ ϵ.

It is worth noting that Definition 3.7.1 is a priori more restrictive than

other definitions of topological Anosov flows appearing in the literature since

we are asking for Bφt

Bt |t�0 to be a continuous vector field.

It has been a long standing problem to determine whether in general every

topological Anosov flow is orbit equivalent to an Anosov flow. Just recently

in [Sh21] every transitive topological Anosov flow in dimension 3 (for a more

general definition of topological Anosov flow that covers Definition 3.2.1) has

been shown to be orbit equivalent to a smooth Anosov flow.

The following is the main goal of this section.

Proposition 3.7.2. Let f be a discretized Anosov flow and φct be the center

flow of f . Then φct :M ÑM is a topological Anosov flow.

Proof. The map f is of the form fpxq � φcτpxqpxq for some τ : M Ñ R

continuous. By Proposition 3.2.2 the function τ has constant sign. Without

loss of generality we can assume that τ is positive, otherwise we can argue

analogously using f�1 instead of f .

The flow φct is a continuous flow with
Bφc

t
Bt |t�0 a continuous vector field. By

Proposition 3.4.4 the map f is dynamically coherent with center-stable folia-

tion Wcs and center-unstable foliation Wcu such that Wc �WcsXWcu is the

flow center foliation of f . Hence property (i) in the definition of topological

Anosov flow is immediately satisfied for Fws �Wcs and Fwu �Wcu.

Let us see property (ii). Suppose x and y are points in M such that

y belongs to Wcspxq. By Proposition 3.4.4 the leaf Wcspxq coincides with

WspWcpxqq. Then y belongs to Wspzq for some z PWcpxq.

Let us assume first that z � x. Consider γy : R Ñ M the continuous

curve in Wcpyq such that γyp0q � y and γyptq P Wspφctpxqq for every t. The

curve γy is the transport by center holonomy of y along stable transversals

with respect to the φct -orbit of x.

The key property to note is that γypτpxqq � fpyq for every y PWspxq. In

fact, more generally, if y1 � γyptq for some t P R then one has that

fpy1q � γypτpφ
c
tpxqqq. (3.7.1)
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This property follows immediately from the continuity of τ and local product

structure of the foliations Wc and Ws restricted to Wcspxq. For more details,

one can see Section 3.9 for a precise characterization of discretized Anosov

flows in terms of center holonomy.

Let R ¡ 0 denote a constant such that γyptq P Ws
Rpφ

c
tpxqq for every t P

r0, τpxqs. This constant exists since the stable distance dspγyptq, φ
c
tpxqq varies

continuously with t. Then, as f contracts distances uniformly inside stable

leaves, it follows from (3.7.1) that limtÑ�8 dpγyptq, φ
c
tpxqq � 0. Defining

hy : R Ñ R as the increasing reparametrization such that φchyptqpyq � γyptq

for every t we obtain (ii) for the case z � x.

If z is different from x consider some t0 ¡ 0 and h : p�8, t0s Ñ R con-

tinuous and increasing so that hp0q � 0 and y1 � φchpt0qpyq lies in Wspx1q

for x1 � φct0pxq. Defining as above hy1 : R Ñ R so that φchy1 ptq
py1q �

φctpx
1q for every t, then the function h can be extended to h : R Ñ R by

the formula hptq � hpt0q � hy1pt � t0q for every t ¡ t0. It follows that

limtÑ�8 dpφ
c
tpxq, φ

c
hptqpyqq � 0 as above.

In the case y lies in Wcupxq one argues analogously for φct -past iterations.

This settles property (ii).

Finally, let us see property (iii). As the bundles Ec and Eu vary con-

tinuously there exists a small constant ϵ ¡ 0 such that for every z and z1

satisfying z1 P Wcu
ϵ pzq it follows that Wc

2ϵpz
1q and Wu

2ϵpzq intersect and that

this intersection point is unique.

Let x and y be points in M such that y P Wcu
ϵ pxq. Suppose that h :

R Ñ R is an increasing continuous reparametrization with hp0q � 0 such

that dpφctpxq, φ
c
hptqpyqq ¤ ϵ for every t ¥ 0. Let y1 denote the intersection

Wc
2ϵpyq and Wu

2ϵpxq and let γy1ptq � Wc
2ϵpφ

c
hptqpyqq X Wu

2ϵpφ
c
tpxqq for every

t ¥ 0. The curve γy1 is no other than the transport by center holonomy of

y1 along unstable transversals with respect to the φct -orbit of x. In analogy

with (3.7.1) is follows that fpy1q � γy1pτpxqq, so fpy1q lies in Wu
2ϵpfpxqq.

Inductively, fnpy1q lies in Wu
2ϵpf

npxqq for every n ¡ 0. Iterating n times

backwards and taking limit with n we conclude that y1 needs to coincide

with x. Then y lies in Wc
2ϵpxq and, in particular, lies in the φct -orbit of x.

In the case x and y are points such that y P Wcs
ϵ pxq one can argue anal-

ogously for past iterates of f and φct . Property (iii) is settled.

Let us end this section with a statement showing that some classical prop-

erties of Anosov flows are satisfied (by means of the same type of arguments)

by the topological Anosov flows arising as center foliations of discretized

Anosov flows. Some of these properties will be needed later in the text. For

the sake of completeness we will sketch their proofs.

We say that a leaf of a foliation of dimension d ¡ 0 is a plane if it is
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homeomorphic to Rd, and that it is a cylinder if it is homeomorphic to a

fiber bundle over the circle whose fibers are homeomorphic to Rd�1. We say

that two foliations W and W1 have global product structure if Wpxq and W1pyq

intersect for every pair x and y, and this intersection is a unique point.

Proposition 3.7.3. Suppose f is a discretized Anosov flow. Let φct : M Ñ

M and Wc be the center flow and flow center foliation of f , respectively. Let

Wcs and Wcu denote the center-stable and center-unstable foliations such that

Wc �Wcs XWcu. Then:

1. Every leaf of Wcs and Wcu is a plane or a cylinder.

2. If a leaf Wcspxq is a plane then Wc and Ws restricted to Wcspxq have

global product structure. Analogously for Wcu-leaves.

3. If a leaf Wcspxq is a cylinder then Wc restricted to Wcspxq contains a

unique compact leaf L and the omega limit set under φct of every point

y in Wcspxq is L. Analogously for Wcu-leaves and alpha limit sets.

4. There exists at least one compact leaf of Wc.

Proof. Let x be a point inM . For every y PWspxq we can define γy : RÑM

as the continuous curve in Wcpyq such that γyp0q � y and γyptq PWspφctpxqq

for every t. The curve γy is a transport by center holonomy of y with respect

to the φct -orbit of x. As in the previous proposition, note the key property:

γypτpxqq � fpyq for every y PWspxq.

If x is a periodic point for φct of period tx ¡ 0 let us denote Hpyq PWspxq

to the point γyptxq for every y P Wspxq. For some N ¡ 0 large enough

HN : Wspxq ÑWspxq is a contraction with x the unique fixed point. In this

case Wcs is a cylinder and it is immediate to check that the φct -omega limit

of every point in Wcspxq is the orbit of x.

If x is not periodic for φct but some point y in Wspxq is periodic then

we can argue as above and conclude that Wcspxq is a cylinder and that the

φct -omega limit of every point in Wcspxq is the orbit of y.

If none of the points in Wspxq is periodic for φct then for every y PWspxq

the point γyptq lies in Wspxq if and only if t � 0, otherwise a contraction

HN : Wspxq Ñ Wspxq as above can be constructed and some φct -periodic

point in Wspxq should be found. It follows that
�
yPWspxq γyptq � Wspφctpxqq

for every t and, since Wcspxq �WspWcpxqq by Proposition 3.4.4, then Wcspxq

is a plane and Wc and Ws have a global product structure inside Wcspxq.

Properties (1), (2) and (3) are settled. Let us see that φct must have at

least one periodic orbit and this will settle the last property.

For some x in M let z be a point in the φct -omega limit of x. Consider D

a small C1 disc transverse to Wc and containing z in its interior. Let D be
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such that the leaves of Wcs and Wcu intersect D in C1 discs. For every z1 P D

let wspz1q and wupz1q denote the connected components of Wcupz1q XD and

Wcspz1q XD containing z1, respectively.

Let D1 � D be such that if z1, z2 P D1 then wspz1q X wupz2q � H and

wupz1q X wspz2q � H. For every z1 P D1 let πupz1q denote the point in wspzq

such that wupz1q X wspzq � πupz1q.

Let tx ¡ 0 be a time such that φctxpxq lies in D
1 close to z and let Tx ¡ tx

be a large enough time so that φcTxpxq lies also in D1, is close to z and the

Poincaré return map P from wspφctxpxqq to D
1 is well defined. Then πu � P

needs to be a contraction if Tx is large enough. Let z1 denote the fixed point

of this contraction. It follows that P pz1q lies in wupz1q so there exists some

positive time tz1 close to Tx � tx such that φctz1 pz
1q lies in Wupz1q. By (3) it

follows that Wcupz1q has to be a cylinder leaf and, as a consequence, it has

to contain a periodic orbit for φct .

3.8 Equivalence with other definitions

Discretized Anosov flows have been richly studied in the literature, though

not always under this name. Without trying to be exhaustive, it is worth

establishing that many of these classes studied before are in fact discretized

Anosov flows as in Definition 3.2.1. This is one of the primary goals of this

chapter.

In [BFFP19], [BFP20], [BG21] and [GM22] a map f P PHc�1pMq was

called a ‘discretized Anosov flow’ if it satisfied the following: there exist a

topological Anosov flow φt :M ÑM and a continuous function τ :M Ñ R¡0

such that fpxq � φτpxqpxq for every x in M .

As a direct consequence of Proposition 3.7.2 and Proposition 3.2.2 item

(ii) we obtain:

Corollary 3.8.1. The definition of discretized Anosov flow given in [BFP20],

[BFFP19], [BG21] and [GM22] is equivalent with Definition 3.2.1.

It is worth noting the following two other classes of systems studied before

that are also discretized Anosov flows.

Remark 3.8.2. Partially hyperbolic diffeomorphisms on 3-manifolds were

investigated in the seminal article [BW05]. The statement of [BW05, The-

orem 2. items 1. and 2.] can be paraphrased as the following criterion for

detecting discretized Anosov flows (in particular, using Proposition 3.3.1 to

conclude):

Suppose f P PHc�1pM
3q is transitive and dynamically coherent with in-

variant foliations Wcs, Wcu and Wc � Wcs XWcu. Then fn is a discretized
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Anosov flow for some n ¡ 0 if and only if there exists a periodic compact leaf

η PWc and every center leaf through Ws
locpηq is also periodic by f .

Remark 3.8.3. In [BG09] and [BG10] diffeomorphisms in PHc�1pMq that

are Axiom A and admit a center foliation tangent to an Anosov vector field

Xc were studied. In [BG09] it is shown that these systems can be written

as fpxq � Xc
τpxqpxq for some τ : M Ñ R� continuous. It follows that, in

particular, they are all discretized Anosov flows.

Finally, we can establish the equivalence with the notion of flow-type par-

tially hyperbolic diffemorphism. In [BFT20] a diffeomorphism f P PHc�1pMq

is called flow-type if it is dynamically coherent with orientable center foliation

Wc � Wcs XWcu admitting a compact leaf and such that f can be written

as fpxq � φcτpxqpxq for every x PM , where φct is a flow of unit positive speed

along the leaves of Wc and τ :M Ñ R¡0 is some continuous function.

As a consequence of what we have seen so far we get the following:

Corollary 3.8.4. The definition of flow-type partially hyperbolic diffeomor-

phism as given in [BFT20] is equivalent with Definition 3.2.1 of a discretized

Anosov flow.

Proof. It is immediate to check that every flow-type partially hyperbolic

diffemorphism is a discretized Anosov flow as in Definition 3.2.1.

Conversely, suppose f is a discretized Anosov flow and let φct and Wc

denote the center flow and flow center foliation of f , respectively. Propo-

sition 3.4.4 shows that every discretized Anosov is dynamically coherent

with center-stable foliation Wcs and center-unstable foliation Wcu such that

Wc � Wcs X Wcu. Moreover, modulo reparametrization and inverting the

time of φct , Proposition 3.2.2 and Remark 3.2.3 show that f can be writ-

ten down as fpxq � φcτpxqpxq where φct is parametrized by arc-length and

τ : M Ñ R is continuous and positive. Finally, Proposition 3.7.3 shows

that Wc has a compact leaf. One concludes that f is a flow-type partially

hyperbolic diffeomorphism.

3.9 Characterization in terms of center holonomy

Let us end this chapter by pointing out a characterization of discretized

Anosov flows in terms of center holonomy maps.

Recall the definition of a holonomy map for a foliation:

Remark 3.9.1 (Holonomy map along a curve). Suppose W is a foliation

with C1 leaves tangent to a continuous subbundle in the compact Riemannian

manifold M . The construction that follows is standard to check.
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Suppose x in M , y in Wpxq and γ : r0, 1s Ñ Wpxq a C1 curve such that

γp0q � x and γp1q � y. Suppose Dx and Dy are C1 discs transverse to W,

containing x and y, respectively. Let δ ¡ 0 be a constant such that every

ball in M of radius 2δ is contained in a foliation box neighborhood of W.

Every small enough C1 disc D1
x � Dx containing x has the property

that for every z P D1
x there exists a C1 curve γz : r0, 1s Ñ Wpzq such that

γzp0q � z, γzp1q P Dy and dpγptq, γzptqq   δ for every t P r0, 1s. Moreover,

the point γzp1q in Dy is independent of the choice of such a γz. In particular,

there exists a well defined holonomy map along γ

H : D1
x Ñ Dy

given by Hpzq � γzp1q for every z P D
1
x.

Furthermore, one can chose the curves γz so that z ÞÑ γz varies continu-

ously in the C1 topology as z varies continuously in D1
x.

The following characterizes discretized Anosov flows in terms of center

holonomy:

Proposition 3.9.2. Suppose f P PHc�1pMq. The following are equivalent:

(i) The map f is a discretized Anosov flow.

(ii) The bundle Ec integrates to an f -invariant foliation Wc such that for

every x PM there exist:

� A curve γ : r0, 1s ÑWcpxq with γp0q � x and γp1q � fpxq,

� A C1 disc D transverse to Wc with x P D such that the Wc holon-

omy map H along γ is well defined from D to fpDq and satisfies

Hpyq � fpyq

for every y P D.

Proof. Suppose that f is a discretized Anosov flow. By Definition 3.2.1,

Proposition 3.2.2 and Remark 3.2.3 the map f can be written down as fpxq �

φcτpxqpxq, where τ :M Ñ R¡0 is continuous and φct :M ÑM is a unit speed

flow whose flow lines coincide with the leaves of the flow center foliation Wc

of f .

Given x PM let γ : r0, 1s ÑWcpxq be the reparametrization of the piece

of φct orbit from x to fpxq so that }BγtBt } �
1

τpxq for every t P r0, 1s. Let Dx be

a C1 disc containing x and transverse to Wc. Then fpDxq contains fpxq and

is also a C1 disc transverse to Wc.
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Let δ ¡ 0 be a constant such that every ball of radius 2δ is contained in a

foliation box neighborhood of Wc. As in Remark 3.9.1, let D1
x � Dx be such

that x P D1
x and the holonomy map along γ

H : D1
x Ñ fpDxq

is well defined.

For every z P D1
x let γz : r0, 1s Ñ Wc denote the piece of φct orbit from z

to fpzq reparametrized so that }
Bpγyqt
Bt } � 1

τpyq for every t P r0, 1s.

We can assume that D1
x is small enough so that dpγzptq, γptqq   δ for

every z P D1
x and t P r0, 1s. It follows that fpzq � γzp1q for every z P D1

x.

This shows that (i) implies (ii).

Conversely, suppose that (ii) is satisfied. In particular, f individually

fixes each leaf of Wc. Given x PM let γ and D be as in (ii). Let us see that

locally in a neighborhood of x the condition fpwq P Wc
Lpwq is satisfied for

some L ¡ 0.

Let δ ¡ 0 be such that every ball of radius 2δ is contained in a foliation box

neighborhood of Wc. As in Remark 3.9.1 let D1 � D be a C1 disc containing

x so that its closure is a subset of D and such that for every y P D1 a C1

holonomy curve γy : r0, 1s Ñ Wcpyq with the following properties is well

defined: γyp0q � y, γyp1q � fpyq and dpγptq, γyptqq   δ for every t P r0, 1s.

Moreover, the curves γy can be considered so that y ÞÑ γy varies contin-

uously with y. Then y ÞÑ lengthpγyq varies continuously and as consequence

there exists K ¡ 0 a constant larger than supyPD1 lengthpγyq.

Let U be a foliation box neighborhood of Wc obtained as
�
zPfpD1qW

c
ϵ1pzq

for some small ϵ1 ¡ 0. Let ϵ2 ¡ 0 be such that fpWc
ϵ2pyqq is a subset of

Wc
ϵ1pfpyqq for every y P D

1 and let U 1 be the neighborhood
�
yPD1 Wc

ϵ2pyq. It

follows that fpwq lies in Wc
K�ϵ1�ϵ2

pwq for every w P U 1.

Let us rename U 1 as Ux and K�ϵ1�ϵ2 as Lx to highlight the dependence

on the point x. We conclude that for every x P M there exists a neighbor-

hood Ux and a constant Lx so that fpwq P Wc
Lx
pyq for every w P Ux. By

taking a finite subcover tUxiuiPI of the cover tUxuxPM of M it follows that

fpwq P Wc
Lpwq for every w P M and L � maxxPI Lxi . Then (i) follows as a

consequence of Proposition 3.3.1.
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Chapter 4

Continuation of normally

hyperbolic foliations revisited

4.1 Introduction

In this chapter we revisit the stability of normally hyperbolic foliations of

[HPS77] (see also [PSW12]). The main goal is to show Theorem 4.2.3 which

guarantees that, in a certain sense, the continuation of a normally hyperbolic

foliation can be carried out along sets of uniform size in PHc�1pMq. The im-

mediate antecedent for this result is [BFP20, Theorem 4.1] (see also [BFP20,

Section 4.1] and [BFP20, Appendix B]).

Everything in this chapter is independent from the previous one.

4.2 Statements

From now on throughout this chapter letM be a closed (compact and without

boundary) Riemannian manifold.

Suppose C1 and C2 are continuous cone fields in M of complementary

dimension. Given constants ϵ, δ ¡ 0 we will say that the metric in M and

the cone fields pC1,C2q are ϵ-nearly euclidean at scale δ if for every x P M

the exponential map expx : TxM Ñ M restricted to Bδp0q � TxM is a

diffeomorphism onto its image Bδpxq � M satisfying that, if one identifies

TxM isometrically with the euclidean space Rn by a linear map A : TxM Ñ

Rn, then ��}Apexp�x vyq} � 1
��   ϵ

and ��>�Apexp�x v1yq, Apexp�x v2y1q�� π

2

��   ϵπ

for every y, y1 P Bδpxq, every unit vector vy in TyM and every unit vectors
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v1y P C1pyq and v2y1 P C2py1q; where in this context, if y � expxpzq and

v P TyM , then exp�x v denotes the vector in TzpTxMq � TxM that is sent to

v by the differential of expx at z.

Informally, for ϵ ¡ 0 small the property of being ϵ-nearly euclidean at

scale δ indicates that in restriction to balls of radius δ the metric is close to

being euclidean and the cone fields are fairly narrow, almost constant and

almost pairwise orthogonal.

Lemma 4.2.1. Suppose f0 P PHc�DpMq for some D ¡ 0. There exists a

Riemannian metric in M , a constant δpf0q ¡ 0 and for every δ with 0   δ ¤

δpf0q a C
1-neighborhood Uδpf0q � PHc�DpMq of f0 such that:

(P1) There exists a constant κ ¡ 1 such that maxt}Dfx}, }Df
�1
x }u   κ for

every x PM and every f P Uδpf0q.

(P2) There exists a constant 0   λ   1 such that }Df |Espxq}   λ and

}Df�1|Eupxq}   λ for every x PM and every f P Uδpf0q.

(P3) There exist continuous cone fields Cs, Ccs, Cu and Ccu on M such that

for every f P Uδpf0q and x PM :

1. The dimension of Cσ is equal to dimpEσq and the bundle Eσf pxq is

contained in Cσpxq for every x PM and σ P ts, cs, u, cuu.

2. The cones Cs and Ccs are f�1-invariant and satisfy Eσf pxq ��
n¥0Df

�nCσfnpxq for every x PM and σ P ts, csu.

3. The cones Cu and Ccu are f -invariant and satisfy that Eσf pxq ��
n¥0Df

nCσf�npxq for every x PM and σ P tu, cuu.

(P4) The metric and the cone fields pCs,Ccuq and pCcs,Cuq are 1
16 -nearly

euclidean at scale 20δ.

(P5) The C0 distance d0pf, gq is smaller than δ
64κ2

p1 � λ � λ2 � . . .q�1 and

smaller than 1
10pλ

�1 � 1q for every f, g P Uδpf0q.

Proof. Let us start by considering U a C1 open neighborhood of f0 contained

in PHc�DpMq. If U is small enough then property (P1) is automatically

satisfied for some constant κ ¡ 1.

By [Gou07] there exists a constant 0   λ   1 and an adapted metric g1
in M such that f0 satisfies }Df0|Espxq}   λ and }Df0

�1|Eupxq}   λ for every

x PM .

Let g2 be the metric that makes the subbundles Esf0 , E
c
f0

and Euf0 pairwise

orthogonal and coincides with g1 in restriction to each of them. Note that

since the invariant bundles of f0 vary a priori only continuously with respect
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to the point in M we can not guarantee that g1 has better regularity than

continuous. Nevertheless, if we consider g a C8 metric close enough to g2 we

can ensure that }Df0|Espxq}   λ and }Df0
�1|Eupxq}   λ is still satisfied for

every x P M and that the pairwise angles between the subbundles Esf0 , E
c
f0

and Euf0 lie in pπ{2� π{64, π{2� π{64q.

Since the invariant bundles vary continuously in the C1 topology we can

shrink U, if necessary, so that (P2) is satisfied for every f P U with respect

to the same constant λ and such that the pairwise angles between the sub-

bundles Esf , E
c
f and Euf also lie in pπ{2� π{64, π{2� π{64q for every f P U.

In order to obtain (P3) and (P4) let C̄s, C̄cs, C̄u and C̄cu be invariant

cone fields, given by the partial hyperbolicity of f0, satisfying that Eσf0pxq ��
n¥0Df

�n
0 C̄σfn0 pxq

for every x P M and σ P ts, csu, and that Eσf0pxq ��
n¥0Df

n
0 C̄

σ
f�n
0 pxq

for every x PM and σ P tu, cuu.

Let us define Csx � Df�N0 C̄s
fN0 pxq

, Cux � DfN0 C̄u
f�N
0 pxq

, Ccux � DfN0 C̄cu
f�N
0 pxq

and Ccsx � Df�N0 C̄cs
fN0 pxq

for N ¡ 0 large enough so that the angle between

every vector of Cσx and Eσf0pxq is less than π{64, for every x P M and every

σ P ts, u, cs, cuu.

By shrinking U even more in the C1 topology, if necessary, one obtains

that (1), (2) and (3) of property (P3) need to be fulfilled by every f P U.

Moreover, it is not difficult to check that for every x P M there exists

δx ¡ 0 such that for every z P Bδxpxq the exponential map expz : TzM ÑM

restricted to Bδxp0q � TzM is a diffeomorphism onto its image Bδxpzq � M

and, if one identifies isometrically TzM with euclidean Rn by a linear map

A : TzM Ñ Rn, then ��}Apexp�x vyq} � 1
��   1

16

and ��>�Apexp�x vσy q, Apexp�x vσ1y1 q�� π

2

��   π

16

for every y, y1 P Bδxpzq, every unit vector vy in TyM and every unit vectors

vσy P Cσy and vσ
1

y1 P Cσ
1

y1 for every pair pσ, σ1q P tps, cuq, pcs, uqu.

By taking a finite subcover tBδxi pxiqu1¤i¤k of M it follows that δpf0q �
1
20 mintδxiu1¤i¤k guarantees that property (P4) is satisfied by every f P U

for δ � δpf0q.

Given 0   δ ¤ δpf0q, properties (P1),. . . , (P4) are still fulfilled for every

f P U. It is enough now to shrink U in the C0 topology even more, if

necessary, to a neighborhood Uδpf0q so that property (P5) is satisfied for

every f, g P Uδpf0q.

Remark 4.2.2. It is worth pointing out that, according to the order in which

each property of Lemma 4.2.1 was proven, it follows that modulo shrinking
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δpf0q one can consider the metric in M and the cone fields Cs, Ccs, Cu and

Ccu so that pCs,Ccuq and pCcs,Cuq are ϵ1-nearly euclidean at scale δ1 for any

prescribed ϵ1 � ϵpλ, κq ¡ 0 and δ1pλ, κq ¡ 0 depending on the constants κ

and λ of property (P1) and (P2), respectively. This will be used in Section

5.2 where a narrower version of property (P4) is needed.

Suppose E is a continuous subbundle of TM . If N is a connected man-

ifold of dimension dimpEq we say that η : N Ñ M is a complete C1 im-

mersion tangent to E if η is a (not necessarily injective) C1 map such that

DxηpTxNq � Epηpxqq for every x P N and such that the pull-back metric in

N is complete. Moreover, if L �M denotes the image of η we say that L is

a complete C1 immersed submanifold tangent to E.

Theorem 4.2.3. (Uniform continuation of normally hyperbolic foliations).

Suppose f0 P PHc�1pMq. Consider a metric in M and a constant δpf0q ¡ 0

as in Lemma 4.2.1. Then for every δ with 0   δ ¤ δpf0q a C
1 neighborhood

Uδpf0q as in Lemma 4.2.1 satisfies the following properties.

For every pair f and g in Uδpf0q, if W
c is an f -invariant center foliation,

then there exists

� A map h :M ÑM continuous, surjective and δ-close to identity,

� A homeomorphism ρ : M Ñ M so that for every leaf L P Wc, one has

that ρpLq � L and the map ρ|L : LÑ L is a C1 diffeomorphism that is

δ-close to the identity on L,

such that

1. For every leaf L PWc the set hpLq is a complete C1 immersed subman-

ifold tangent to Ecg. Furthermore, the map h|L : LÑM is C1 with re-

spect to the inner differentiable structure of L, the derivative Dph|Lq|Ec
f

varies continuously in M and satisfies Dph|LqxpE
c
f pxqq � Ecgphpxqq and

1
2   }Dph|Lqx|Ec

f pxq
}   2 for every x P L.

2. The equation h � ρ � fpxq � g � hpxq is satisfied for every x P M . In

particular, h � fpLq � g � hpLq for every L PWc.

From the proof of Theorem 4.2.3 we will also derive the following.

Theorem 4.2.4 (Uniform continuation of complete C1 center immersions).

Suppose f0 P PHc�1pMq. Consider a metric in M and a constant δpf0q ¡ 0

as in Lemma 4.2.1. Then for every δ with 0   δ ¤ δpf0q a C
1 neighborhood

Uδpf0q as in Lemma 4.2.1 satisfies the following properties.
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If f and g are maps in Uδpf0q then for every η : R Ñ M a complete

C1 immersion tangent to Ecf there exists a sequence tγn : R Ñ MunPZ of

complete C1 immersions tangent to Ecg such that

dpfn � ηptq, γnptqq   δ (4.2.1)

and

γn�1 is a reparametrization of g � γn (4.2.2)

for every t P R and n P Z.

Moreover, if tγ1n : RÑMunPZ is another sequence of complete C1 immer-

sions tangent to Ecg satisfying (4.2.1) and (4.2.2), then γ1n is a reparametriza-

tion of γn for every n P Z.

4.3 Plaque expansivity and leaf-conjugacies

It is worth noting in this section some consequences of Theorem 4.2.3 before

getting into its proof.

Remark 4.3.1. (Leaf-conjugacy) Note that if h is injective then hpWcq is a

g-invariant center foliation and h is a homeomorphism taking leaves of Wc

into leaves of g such that

h � fpLq � g � hpLq

for every L in Wc. That is, pf,Wc
f q and pg,W

c
gq are leaf-conjugate.

As detailed in Lemma 4.3.3 below, a sufficient condition for h to be in-

jective is given by the following property. Note that by metric in M we will

always mean a Riemannian metric in M .

Definition 4.3.2. Suppose f P PHpMq admits an f -invariant center foliation

Wc. Assume that a metric in M has been fixed. We say that pf,Wcq is δ-

plaque expansive if every pair of δ-pseudo orbits pxnqn and pynqn satisfying

� xn�1 PWc
δpfpxnqq for every n P Z

� yn�1 PWc
δpfpynqq for every n P Z,

� dpxn, ynq   2δ for every n P Z,

also satisfy y0 PWc
3δpx0q.

Lemma 4.3.3. In the context of Theorem 4.2.3, if f P Uδpf0q is δ-plaque

expansive then h is a homeomorphism and pf,Wcq and pg, hpWcqq are leaf-

conjugate.
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Proof. Suppose hpx0q � hpy0q � z0 for some x0, y0 P M . The orbit of z0 by

g defines two δ-pseudo orbits for f with ‘jumps’ in Wc-plaques as follows.

Since h�ρ�f � g�h then x1 � ρpfpx0qq and y1 � ρpfpy0qq, and inductively

xn�1 � ρpfpxnqq and yn�1 � ρpfpynqq for every n P Z, satisfy

gnpz0q � hpxnq � hpynq

for every n P Z.

As h and ρ are δ-close to the identity, the sequences pxnqnPZ and pynqnPZ
satisfy xn�1 PWc

δpfpxnqq, yn�1 PWc
δpfpynqq and dpxn, ynq   2δ.

If f is δ-plaque expansive the above implies that y0 belongs to Wc
3δpx0q.

By (1) in Theorem 4.2.3 and property (P4) in Lemma 4.2.1 the image by h

of Wc
3δpx0q is a C1 arc tangent to Ecg and h restricted to Wc

3δpx0q is a C1

diffeomorphism over its image. As y0 belongs to Wc
3δpx0q and hpx0q � hpy0q

it follows that x0 � y0.

This proves the global injectivity of h. By Remark 4.3.1 one concludes

that pf,Wc
f q and pg, hpW

cqq are leaf-conjugate.

It is important to note that, in contrast with the usual definition of

plaque-expansivity (as given in the introduction and below), the notion of

δ-plaque expansivity is sensible to the metric one chooses for M .

Note also that, for δ ¡ 0 small, if pf,Wcq is δ-plaque expansive with

respect to some metric, then pf,Wcq is δ1-plaque expansive with respect to

the same metric for every 0   δ1 ¤ δ.

Recall that pf,Wcq is called plaque expansive if for some metric and some

δ ¡ 0 every pair of sequences pxnqnPZ and pynqnPZ satisfying that xn�1 P

Wc
δpfpxnqq, yn�1 P Wc

δpfpynqq and dpxn, ynq   δ for every n P Z must also

satisfy y0 PWc
locpx0q. Note that here W

c
locpxq should be understood as Wc

ϵpxq

for some small ϵ ¡ 0 independent of x PM .

It is immediate to check that:

Remark 4.3.4. If pf,Wcq is δ-plaque expansive with respect to some metric

then pf,Wcq is plaque expansive.

Proof. It is enough to consider 0   δ1 ¤ δ so that Wc
δpxq �Wc

locpxq for every

x P M . Then pf,Wcq being δ1-plaque expansive automatically implies that

pf,Wcq is plaque expansive.

Conversely, the following is also satisfied.

Lemma 4.3.5. Suppose pf,Wcq is a plaque expansive system in M . Given

a metric in M there exists δ ¡ 0 such that pf,Wcq is δ-plaque expansive with

respect to that metric.
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Proof. Suppose pf,Wcq is plaque expansive. Then for some metric in M

and some small ϵ ¡ 0 there exists δ ¡ 0 such that every pair of sequences

pxnqnPZ and pynqnPZ satisfying xn�1 P Wc
δpfpxnqq, yn�1 P Wc

ϵpfpynqq and

dpxn, ynq   δ for every n P Z must also satisfy y0 PWc
ϵpx0q. Note that δ ¡ 0

can be considered as small as wanted so that the previous property remains

to be true. At first, let δ be smaller than ϵ.

Suppose we consider another metric in M and let us denote by d1 the

distance induced by this new metric (in contrast with d for the first one). As

M is a compact manifold there exists C ¥ 1 such that 1
C d

1px, yq ¤ dpx, yq ¤

Cd1px, yq for every x, y PM .

Let dc and d1c denote the distances inside center leaves with respect to

d and d1, respectively. Note that we can consider C so that it also satisfies
1
C d

1
cpx, yq ¤ dCpx, yq ¤ Cd1cpx, yq for every x and y in the same center leaf.

Finally, suppose δ smaller, if needed, so that for every 0   δ1 ¤ Cδ if

d1cpx, yq   Cδ and d1px, yq   δ1 then d1cpx, yq   p3{2qδ1.

Under this conditions it is immediate to check that f needs to be δ
C -

plaque expansive with respect to the new metric. Indeed, let pxnqnPZ and

pynqnPZ be such that d1cpxn�1, fpxnqq   δ{C, d1cpyn�1, fpynqq   δ{C and

d1pxn, ynq   2δ{C for every n P Z. It follows that dcpxn�1, fpxnqq   δ,

dcpyn�1, fpynqq   δ and dpxn, ynq   2δ for every n P Z. Then y0 lies in

Wc
ϵpx0q. Since Wc

ϵpx0q is a subset of Wc
δpx0q then dcpx0, y0q   δ. Which

in turns implies d1cpx0, y0q   Cδ. As d1px0, y0q   2δ{C then from the last

constraint imposed to δ it follows that d1cpx0, y0q   3δ{C.

Note that from the proof of the previous lemma one can also deduce the

following.

Lemma 4.3.6. Consider two distinct metrics inM . Given δ ¡ 0 there exists

C ¡ 0 such that, if pf,Wcq is Cδ-plaque expansive with respect to the first

metric, then pf,Wcq is δ-plaque expansive with respect to the second one.

Recall that in the introduction a simplified version of Theorem 4.2.3 was

stated:

Theorem 4.3.7. Suppose f0 P PHc�1pMq. There is a constant δ ¡ 0 and

a C1 neighborhood Upf0q of f0 such that, if some f P Upf0q admits a center

foliation Wc
f so that pf,Wc

f q is δ-plaque expansive, then every g P Upf0q

admits a g-invariant center foliation Wc
g such that pf,Wc

f q and pg,Wc
gq are

leaf-conjugate.

As a corollary of the discussion above one obtains:

Corollary 4.3.8. Theorem 4.3.7 follows from Theorem 4.2.3.
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Proof. The statement of Theorem 4.3.7 presupposes a metric in M . In par-

allel, let us consider δpf0q ¡ 0 and the metric in M as in Lemma 4.2.1.

Let C ¡ 0 be as in Lemma 4.3.6 so that, if pf,Wcq is δpf0qC-plaque expan-

sive with respect to the first metric, then pf,Wcq is δpf0q-plaque expansive

with respect to the second one. It is enough to consider now δ :� δpf0qC and

U :� Uδpf0qpf0q. The rest follows by Theorem 4.2.3.

We recover also the classical stability statement for normally hyperbolic

foliations (see [HPS77, Theorem 7.1]):

Corollary 4.3.9. Suppose pf,Wcq is a plaque expansive system in PHc�1pMq.

There exists a neighborhood U � PHc�1pMq of f such that every g P U ad-

mits a g-invariant center foliation Wc
g such that pg,Wc

gq is plaque expansive

and leaf conjugate to pf,Wcq.

Proof. Let pf,Wcq be a plaque expansive system in PHc�1pMq. For f � f0
consider the metric in M and the constant δpfq ¡ 0 given by Lemma 4.2.1.

By Lemma 4.3.5 there exists δ ¡ 0 such that pf,Wcq is δ-plaque expansive

(with respect to the metric we have just fixed). We can suppose that δ is

smaller than δpfq.

Let δ1 ¡ 0 be such that 3δ1   δ. Let Uδ1pfq be the C1 neighborhood of f

given by Lemma 4.2.1 (for f � f0). If g is a system in Uδ1pfq then by Lemma

4.3.3 the map h given by Theorem 4.2.3 is a homeomorphism and pf,Wcq

and pg, hpWcqq are leaf conjugate. Let Wc,g denote hpWcq.

Always with respect to the metric in M given by Lemma 4.3.5 sup-

pose that px1nqnPZ and py1nqnPZ are δ1 pseudo-orbits for g so that x1n�1 P

W
c,g
δ1 pgpx

1
nqq, y

1
n�1 P W

c,g
δ1 pgpynqq and dpx

1
n, y

1
nq   2δ1 for every n P Z. Let us

see that y10 must lie in W
c,g
3δ1px

1
0q.

Consider xn � h�1px1nq and yn � h�1py1nq for every n P Z. Let ρ be

the map given by Theorem 4.2.3. As ρ � fpxnq � h�1 � gpx1nq and ρ is δ1

close to the identity it follows that h�1 � gpx1nq lies in Wc
δ1pfpxnqq. Moreover,

as 1{2   }Dh|Ec}   2 and x1n�1 P W
c,g
δ1 pgpx

1
nqq then h�1 � gpx1nq lies in

Wc
2δ1pxn�1q. It follows that

xn�1 PWc
3δ1pfpxnqq

for every n P Z. Analogously for pynqnPZ.

Moreover, as dph�1px1nq, x
1
nq   δ1 and dph�1py1nq, y

1
nq   δ1 because h is

δ1-close to the identity, then dpx1n, y
1
nq   2δ1 implies

dpxn, ynq   4δ1

for every n P Z.
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As 3δ1   δ and 4δ1   2δ it follows from the δ-plaque expansivity of pf,Wcq

that y0 needs to lie in Wc
3δpx0q. Then x10 needs to lie in Wc

6δpx
1
0q because of

1{2   }Dh|Ec}   2. Since dpx10, y
1
0q   2δ1 and because at scale 20δpfq the

center bundles are almost constant (property (P4) in Lemma 4.2.1) it follows

that y10 needs to lie in W
c,g
3δ1px

1
0q.

This shows that pg,Wc,gq is δ1-plaque expansive. Then pg,Wc,gq is plaque

expansive.

Remark 4.3.10. Note that from the proof of the previous corollary the

following statement can also be deduced: If pf,Wcq in PHc�1pMq is plaque

expansive and a metric as in Lemma 4.2.1 (for f0 � f) has been fixed, then

the C1 neighborhood U � PHc�1pMq of f given by Corollary 4.3.9 can be

chosen so that there exists δ1 ¡ 0 such that pg,Wc
gq is δ

1-plaque expansive for

every g P U (with respect to the metric that has been fixed).

Remark 4.3.11. Suppose f0 P PHc�1pMq is the limit of a sequence fn in

PHc�1pMq such that pfn,W
c
fn
q is plaque expansive for some invariant center

manifold Wc
fn
. Consider a metric in M , a constant δpf0q ¡ 0 and, for every

0   δ ¤ δpf0q, a neighborhood Uδpf0q as in Lemma 4.2.1.

As pfn,W
c
fn
q is δ1-plaque expansive for every small enough δ1 ¡ 0 we

can consider δn ¡ 0 the largest constant such that pfn,W
c
fn
q is δ1-plaque

expansive for every δ1 P p0, δnq.

A key point worth noting is that, a priori, we can not rule out that

for every 0   δ ¤ δpf0q and fn P Uδpf0q the constant δn may be smaller

than δ. Thus a priori we can not conclude that f0 has to admit a center

foliation and that there exists a leaf-conjugacy with some pfn,W
c
fn
q. To show

the C1 openness and closeness of discretized Anosov flows and of partially

hyperbolic skew-products with one-dimensional center (Theorem 5.1.1 and

Theorem 5.1.3 in the next chapter) an extra argument will be needed.

4.4 Stability of unique integrability for plaque ex-

pansive systems

It is also worth noting the following consequences of Theorem 4.2.3 and The-

orem 4.2.4.

Lemma 4.4.1. In the context of Theorem 4.2.3 and Theorem 4.2.4 suppose

0   δ ¤ δ0pf0q and f, g P Uδpf0q. If Ecf is uniquely integrable then for every

C1 curve γ tangent to Ecg there exists L PWc
f such that γ � hpLq.

Proof. Suppose γ : p0, 1q Ñ M is a C1 curve tangent to Ecg. By a little

abuse of notation we denote both the curve and its image by γ. By Peano’s
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existence theorem we can extend γ, if needed, and redefine its domain so that

γ : R Ñ M is a complete C1 immersion tangent to Ecg. Let us see that γ

needs to be contained in hpLq for some leaf L PWc.

By Theorem 4.2.4 (with the names of f and g, and the etas and gammas,

interchanged) there exists a sequence ηn : RÑM of complete C1 immersions

tangent to Ecf such that ηn�1 is a reparametrization of f � ηn for every n P Z

and

dpgn � γptq, ηnptqq   δ (4.4.1)

for every t P R and n P Z.

Since Ecf is uniquely integrable the key observation to note is that each

ηn needs to be the C1 parametrization of a leaf of Wc (as these are the only

C1 curves tangent to Ecf ). If L denote the leaf of Wc
f whose parametrization

is η0 : RÑM , let us see that γ must be contained in the continuation hpLq

of L.

On the one hand, as ηn�1 is a reparametrization of f � ηn then (4.4.1)

implies that gn � γ can be reparametrized to a C1 curve γn satisfying that

dpfn � η0ptq, γnptqq   δ

for every t P R and n P Z. It is immediate to check that, in addition, the

curve γn�1 is a reparametrization of g � γn for every n P Z.

On the other hand, since h � fnpLq � gn � hpLq for every n P Z and

h is δ-close to the identity the curves γ1n :� h � ηn satisfy that γ1n�1 is a

reparametrization of g � γ1n for every n P Z and

dpfn � η0ptq, γ
1
nptqq   δ

for every t P R and n P Z.

By the uniqueness part of Theorem 4.2.4 (for f and g not interchanged)

it follows that γ is a reparametrization of h�η0. In particular, γ is contained

in hpLq for L PWc
f the image of η0.

As an immediate consequence of Lemma 4.4.1 one gets the following.

Corollary 4.4.2. In the context of Theorem 4.2.3, if h is a homeomorphism

and Ecf is uniquely integrable then Ecg is uniquely integrable.

Proof. If h is a homeomorphism then hpWc
f q is a center foliation for g. If γ

is a C1 curve tangent to Ecg then by Lemma 4.4.1 it has to be contained in

a leaf of hpWc
f q. We conclude that through every point of M there exists a

unique C1 curve tangent to Ecg, modulo reparametrizations.
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As a consequence of the previous corollary one can show the following

proposition.

Proposition 4.4.3. Let pf,Wcq be a plaque expansive system in PHc�1pMq.

There exists a C1 neighborhood U � PHc�1pMq of f such that, if Ecg is

uniquely integrable for some g P U, then Ecg1 is uniquely integrable for every

g1 P U.

Proof. Suppose pf,Wcq is a plaque expansive system in PHc�1pMq. Consider

δpfq ¡ 0 and a metric in M as in Lemma 4.2.1 for f0 � f .

Consider U � PHc�1pMq a C1 neighborhood of f and δ1 ¡ 0 given by

Corollary 4.3.9 and Remark 4.3.10 so that every g P U is δ1-plaque expansive.

We can suppose without loss of generality that δ1 ¤ δpfq. Consider

Uδ1pfq � PHc�1pMq the C1 neighborhood of f given by Lemma 4.2.1 with

respect to the metric already fixed. Consider U1 � Uδ1pfqXU. Let us see that

if U1 contains a systems with uniquely integrable center bundle then every

system in U1 has this property.

Suppose Ecg is uniquely integrable for some g P U1 and let Wc
g denote the

corresponding center foliation for g. As U1 � Uδ1pfq then for g1 P U1 we can

consider h : M Ñ M given by Theorem 4.2.3 so that hpLq is a complete

C1 immersion tangent to Ecg1 for every L P Wc
g. Since pg,Wc

gq is δ1-plaque

expansive then h needs to be a homeomorphism (Lemma 4.3.3). By Corollary

4.4.2 we conclude that Ecg1 has to be uniquely integrable.

4.5 Proof of Theorem 4.2.3

From now on throughout this subsection let us fix a metric in M , a C1 open

set Uδpf0q and a pair of partially hyperbolic diffeomorphisms f, g P Uδpf0q as

in the hypothesis of Theorem 4.2.3. Let Cσ denote the invariant cone fields

given by Lemma 4.2.1 for every σ P ts, u, cs, cuu. Note that f and g satisfy

properties (P1),. . . , (P5) from Lemma 4.2.1. We will refer to properties

(P1),. . . , (P5) implicitly referring to the ones from Lemma 4.2.1.

Informally, for every leaf L of Wc we will consider UpLq an ‘unfolded’

δ-wide tubular neighborhood of L (see next subsection for the formal con-

struction) and a manifold V pLq which is the disjoint union of the manifolds

UpfnpLqq for every integer n. As f and g are C0 close enough we will be

able to ‘lift’ the map g to V pLq in a neighborhood of
�
n f

nL, sending points

of each connected component UpfnLq to the ‘next’ connected component

Upfn�1Lq. By ‘transverse hyperbolicity’ and the constraints imposed by

Lemma 4.2.1 there will exists a non empty set L1 in UpLq whose points are

exactly those ones whose g orbit remains in V pLq for every backwards and

forwards iterate. We will call L1 the continuation of L.
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The set of points in UpLq whose whole g backwards orbit remains in V pLq

will be obtained as the limit set in n of the ‘cu-strips’ Wu
δ pf

�nLq iterated n

times forwards by g. As Wu
δ pf

�nLq is tangent to the cu-cone and g contracts

uniformly this cone for positive iterates then the limit set would be a C1

submanifold tangent to Ecg `Eug . The same argument shows that the points

whose g forwards orbit is well defined in V pLq is a C1 strip tangent Esg `E
c
g.

Hence L1, the intersection of both sets, would be tangent to Ecg.

Once the continuation of every center leaf has been constructed it will

remain to define the maps h and ρ that coherently identify each leaf L with

it continuation L1 so that the identity h � ρ � f � g � h holds.

Part 1: Good cover of every center leaf

For every leaf L of Wc let us consider the set which is the disjoint union of the

balls tBδpxquxPL. Namely
�
xPLtpy, xq : y P Bδpxqu. On this set let us identify

two points py, xq and py1, x1q if and only if y � y1 and x1 P L4δpxq. (Recall

the notation Lrpxq for the points in the leaf L at intrinsic distance less than

r from x). We denote by UpLq the space obtained after this identification.

The space UpLq has a natural differential structure and a projection

π : UpLq Ñ M , defined explicitly by πpy, xq � x, which is a local dif-

feomorphism at any point. Moreover, UpLq can be given the structure of

abstract Riemannian manifold by taking pull-back of the structure in M by

the restrictions of π to the sets Bδpxq.

As informally stated before, let V pLq be the manifold which is the disjoint

union of the manifolds UpfnpLqq for every integer n. Note that in the case L

is fixed by f then V pLq has only one connected component. Otherwise V pLq

has countable connected components, namely tUpfnLqunPZ. Note also that

the projection π : V pLq Ñ M is well defined as it is well defined on each

connected component.

For every ϵ   δ let us denote by UϵpLq the subset of UpLq given by the

points at distance less than ϵ from L. That is, UϵpLq �
�
xPLBϵpxq � UpLq.

Accordingly let VϵpLq be the subset of V pLq whose connected components

are tUϵpf
nLqunPZ.

Recall that the C0 distance d0pf, gq is smaller than δ2
2 by property (P5).

Recall also that by property (P1) there exists a constant κ ¡ 1 satisfying

that maxt}Dg1x}, }Dg
1�1
x }u   κ for every g1 P Uδ. Let us fix from now on

δ1 �
δ
2κ .

Claim 4.5.1. For every leaf L of Wc the maps f and g lift to maps

f, g : Vδ1pLq Ñ V pLq
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such that the connected component Uδ1pf
nLq is sent by f and by g inside

Uδpf
n�1Lq, and is sent by f�1 and g�1 inside Uδpf

n�1Lq, for every n P Z.

Proof. First of all, note that f lifts directly to
�
nPZ f

nL � Vδ1pLq.

For y P Uδ1pf
nLq let x be a point in fnL � Uδ1pf

nLq such that dpx, yq  

δ1. Let us denote y1 � πpyq and x1 � πpxq. Since y1 P Bδ1px
1q then

dpfpy1q, fpx1qq   κδ1. Moreover, as f and g are δ
2 -close by property (P5)

then dpfpy1q, gpy1qq   δ{2. We conclude that fpy1q and gpy1q lie Bδpfpx
1qq as

δ1 � δ{2   δ.

As π is bijective from Bδpfpx
1qq to Bδpfpxqq then fpyq and gpyq can be

lifted to Bδpfpxqq to points fpy1q and gpy1q, respectively. In this way, it is

easy to check that f and g are well defined C1 maps from Vδ1pLq Ñ V pLq.

The proof of the theorem is going to show that hpLq, the continuation

of L, will be the projection by π of set of points in Uδ1pLq whose g orbit in

V pLq is well defined for every future and past iterate (see Remark 4.5.5).

Notations. We will denote by Eσ and Eσ,g the f -invariant and g-invariant

bundles in M , respectively, for every σ P ts, c, u, cs, cuu. Analogously for

the f and g-invariant foliations Wσ and Wσ,g. Note that we can lift these

bundles and leaves to V pLq. Let us denote these lifted bundles as Ẽσ and

Ẽσ,g, and the lifted foliations as W̃σ and W̃σ,g, respectively. Note that they

are (locally) invariant wherever f and g are well defined. The same for the

f and g-invariant cone-fields Cσ lifting to cone-fields C̃σ.

Part 2: Graph transform for cu-strips

Let us fix from now on the constant δ2 ¡ 0 such that δ2 �
δ1
2 � δ

4κ .

For every leaf L of Wc and every ϵ ¤ δ2 let us define U suϵ pLq in UpLq as

U suϵ pLq � W̃s,g
ϵ pW̃u

ϵ pLqq.

Note that the unstable plaques are considered with respect to f and the

stable plaques with respect to g. This is not essential but will make some

arguments simpler.

Recall that by Lemma 2.0.1 the sets W̃u
ϵ pLq are C

1 submanifolds tangent

to Ẽcu. These sets are what we call cu-strips. As the g stable local manifolds

W̃
s,g
ϵ pxq are transverse to W̃u

ϵ pLq for every x P W̃u
ϵ pLq it is easy to check that

U suϵ pLq is an open subset of UpLq.

Note that U suϵ pLq is a subset of U2ϵpLq since every point in U suϵ pLq can

be joined to a point in L by a concatenation of an g-stable and an f -unstable

arc of lengths less than ϵ. Moreover, by property (P4) it follows that Uϵ{2pLq

is contained in U suϵ pLq.
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Let us define V su
ϵ pLq as the subset of Vδ1pLq which is the union of the

sets U suϵ pfnLq for every integer n. And let us define

πs : V su
δ2 pLq Ñ

¤
nPZ

W̃u
δ2pf

nLq

the projection along local stable g-plaques.

Let δ3 ¡ 0 be the constant δ3 �
δ2
4κ . Recall that the C0 distance d0pf, gq

is smaller than δ2
2 by (P5). By the same arguments as in Claim 4.5.1, the

image by g of U2δ3pf
nLq is a subset of Uδ2pf

n�1Lq for every n P Z. Since

U suδ3 pf
n�1Lq is contained in U2δ3pf

nLq then:

Remark 4.5.2. The map g from V su
δ3
pLq to V su

δ2
pLq is well defined.

Let us consider the set of continuous functions

ΠcupLq � tξ :
¤
nPZ

W̃u
δ3pf

nLq Ñ V su
δ2 pLq such that πs � ξ � idu.

Note that if V pLq has many connected components then ξ P ΠcupLq is given

by functions ξ|
W̃u

δ3
pfnLq : W̃

u
δ3
pfnLq Ñ U suδ2 pf

nLq for each n P Z.

Given two maps ξ, ξ1 in ΠcupLq we can define a distance between them

dpξ, ξ1q � sup dspξpxq, ξ
1pxqq

where ds denotes the distance inside the plaque W̃
s,g
δ2
pxq and the supremum

is taken over all x in
�
nPZ W̃

u
δ3
pfnLq.

The zero-section is the function ξ0 in ΠcupLq defined by ξ0pxq � x for

every x. For every ξ in ΠcupLq we denote by graphpξq the set which is the

image of ξ. For simplicity, let us denote from now on by δ1 the C0 distance

d0pf, gq.

Claim 4.5.3 (Graph transform).

1. The image by g of graphpξ0q induces a new map gξ0 in ΠcupLq such

that graphpgξ0q � g graphpξ0q and dpξ0, gξ0q   2δ1.

2. Moreover, for every ξ in ΠcupLq such that dpξ0, ξq   δ3 the image by

g of graphpξq induces a new map gξ in ΠcupLq such that graphpgξq �

g graphpξq and dpξ0, gξq   2δ1 � λdpξ0, ξq.

3. Finally, for every ξ, ξ1 in ΠcupLq with dpξ, ξ0q   δ3 and dpξ1, ξ0q   δ3
we have dpgξ, gξ1q   λdpξ, ξ1q.

Proof. Let us start by looking at the image by g of the zero section ξ0. Recall

that graphpξ0q is the union in n P Z of the C1 submanifolds W̃u
δ3
pfnLq. Let
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n be any fixed integer. Let us see that the image by πs � g of W̃u
δ3
pfnLq

covers W̃u
δ3
pfn�1Lq, and that πs � g restricted to W̃u

δ3
pfnLq is injective. As a

consequence the map gξ0 at any point y P W̃u
δ3
pfn�1Lq will be unambiguously

defined as the unique point in the image by g of W̃u
δ3
pfnLq whose projection

by πs is y. It will be clear from the construction that gξ0pyq defined in this

way will vary continuously with y.

Note that by property (P2) the set W̃u
λ�1δ3

pfn�1Lq is contained in the

image by f of W̃u
δ3
pfnLq. Thus for every y P W̃u

λ�1δ3
pfn�1Lq there exists y1

in W̃u
δ3
pfnLq such that fpy1q � y.

As W̃u
δ3
pfnLq is a C1 submanifold tangent to the cone field C̃cu it follows

that its image by g is also a C1 submanifold tangent to C̃cu. By property

(P4) it follows that πs � g has to be injective restricted to W̃u
δ3
pfnLq.

Since fpy1q and gpy1q are at distance less than δ1 � d0pf, gq then again by

property (P4) it follows that W̃s,g
2δ1pgpy

1qq and W̃cu
2δ1pyq intersect. In particular

πs � gpy1q and y need to be at distance less than 2δ1 for the intrinsic metric

of W̃u
δ2
pfn�1Lq. We conclude that πs � g � f�1 is a well defined continuous

and injective function from W̃u
λ�1δ3

pfn�1Lq to W̃u
δ2
pfn�1Lq that is 2δ1-close

to the identity.

For every y P W̃u
δ3
pfn�1Lq the ball of radius 10δ1 in W̃u

δ2
pfn�1Lq is con-

tained in W̃u
λ�1δ3

pfnLq by property (P5). By a standard topology argument

using that πs �g �f is 2δ1-close to the identity we obtain that y needs to be in

the image of this ball. So the image by πs�g of W̃
u
δ3
pfnLq covers W̃u

δ3
pfn�1Lq

as we wanted to prove. This settles (1).

In order to see (2) suppose ξ is not the zero section but dpξ0, ξq   δ3.

For simplicity let d denote dpξ0, ξq. For every w in W̃u
δ3
pfnLq the point ξpwq

lies in W̃
s,g
d pwq so g � ξpwq needs to lie in W̃

s,g
λd pgpwqq. Moreover, as seen

before, the point gpwq lies in W
s,g
2δ1pπ

s � gpwqq. It follows that g � ξpwq lies in

W
s,g
2δ1�λdpπ

s � gpwqq.

As the image of πs � g � ξ coincides with that of πs � g it follows that

graph g�ξ defines a function gξ in ΠcupLq such that dpξ0, gξq   2δ1�λdpξ0, ξq.

This proves (2).

Finally, (3) follows immediately from the previous arguments.

Notations. Let us denote gpgξ0q by g2ξ0 and, inductively, gpgnξ0q by gn�1ξ0

for every n ¡ 0.

From (1) and (2) of the previous claim it follows that dpξ0, gξ0q   2δ1,

then dpξ0, g2ξ0q   2δ1 � λ2δ1 � 2δ1p1� λq, and inductively

dpξ0, gnξ0q   2δ1p1� λ� . . .� λn�1q

for every n ¡ 0. Note that gnξ0 P ΠcupLq is well defined for every n ¡ 0 since
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δ1 � d0pf, gq satisfies δ
1p1� λ� . . .q   δ

64κ2
  δ3{2 by property (P5).

Moreover, by (3) of the previous claim it follows from dpξ0, gξ0q   2δ1

that dpgξ0, g2ξ0q   2δ1λ, and inductively

dpgnξ0, gn�1ξ0q   2δ1λn

for every n ¡ 0.

Hence we obtain a well defined limit function ξ8 P ΠcupLq given by

ξ8pxq :� lim
n
gnξ0pxq

for every x P
�
nPZ W̃

u
δ3
pfnLq. Clearly ξ8 satisfies dpξ0, ξ8q ¤ 2δ1p1 � λ �

. . .q   δ3{2.

Moreover, note that gξ8 � ξ8 since the image by g of gnξ0pxq coincides

with gn�1ξ0pπs � fpxqq and the image by g of limn g
nξ0pxq coincides with

limn g
n�1ξ0pπs � fpxqq. In particular

graph gξ8 � gpgraph ξ8q.

As g�1 expands g-stable arcs uniformly then the points in graphpξ8q are

precisely the points in Vδ3pLq whose g backwards orbit is well defined for

every past iterate in Vδ3pLq.

Claim 4.5.4. The set graph ξ8 is a C1-submanifold tangent to Ẽcug .

Proof. We will make a local argument near every x in L. Let us consider

the local exponential map expx : Bcu
δ � Bs

δ � TxM Ñ M where Bcu
δ and Bs

δ

denote the balls of center x and radius δ in Ẽcupxq and Ẽspxq, respectively.

Let Ẽcu and C̃cu denote the pull-back by expx of the bundle Ẽcug and the

cone field C̃cu.

Let Sn � Bcu
δ � Bs

δ denote the preimage by expx of graph gnξ0 for every

n ¡ 0. Since graph gnξ0 is a C1 submanifold tangent to the cone field DgnCcu

then by property (P4) there exists ϵ ¡ 0 small enough so that the sets

tzu � Bs
δp0q intersects Sn and this intersection point is a unique point for

every z P Bcu
ϵ .

This defines C1 functions

ψn : Bcu
ϵ Ñ Bs

δ

for every n ¡ 0 given by ψnpzq :� ptzu �Bs
δq X Sn.

For every z P Bcu
ϵ it is immediate to check that the limit ψ8pzq :�

limn ψnpzq exists and defines a function ψ8 : Bcu
ϵ Ñ Bs

δ . Moreover, by

property (P3)(3) the sequence DpψnqzpẼ
cupxqq needs to converge uniformly
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to Ẽcupψ8pzqq for z P B
cu
ϵ .

We obtain that ψ8 is of class C1 and that Dzψ8pẼ
cupxqq is equal to

Ẽcug pψ8pzqq for every z P B
cu
ϵ by the following standard fact from multivari-

able calculus that is a consequence of Arzelà-Ascoli’s theorem:

If ψn : U � Rd1 Ñ Rd2 is a sequence of C1 maps defined in an

open subset U � Rd1 such that:

� The limit ψ8pxq :� limn ψnpxq exists for every x P U .

� The limit Apxq :� limnDxψn given by the rule pApxqqij �

limnpDxψnqij exists for every x P U , varies continuously

with x and supxPU }Dxψn �Apxq}
n
ÝÑ 0.

Then ψ8 : U � Rd1 Ñ Rd2 is a C1 map and Dxψ8pxq � Apxq for

every x P U .

This proves that graph ξ8 is a C1-submanifold tangent to Ẽcug .

Part 3: Construction of h and ρ

For every leaf L of Wc we have constructed a limit map ξ8 in ΠcupLq such

that dpξ0, ξ8q   δ3{2. As this limit map corresponds to a limit graph for cu-

strips let us rename it as ξ8cu. And let us also rename by ξ0cu the zero-section

ξ0.

Analogously as before one can define neighborhoods U suδ3 pf
nLq for every

n P Z, a map πu, a family of maps ΠcspLq and a limit map ξ8cs for cs-strips

satisfying analogous properties than the cu ones (interchanging the roles of

g and g�1).

Following Claim 4.5.4 we obtain that the intersection

graphpξcsq X graphpξcuq

defines a C1 manifold in V pLq that is g-invariant and tangent to Ẽcg. Let us

denote by L1 the connected component of this intersection that lies in UpLq,

and in general let us denote by pfnLq1 the one that lies in UpfnLq.

Remark 4.5.5. Note that from the properties of ξ8cs and ξ8cu (see, in partic-

ular, the discussion before Claim 4.5.4) the points in L1 are characterized as

the points in V pLq for which its g-orbit is well defined for every future and

past iterate.

The projection πpL1q in M is going to be hpLq, the continuation of L.

Let us see how we can construct h : M Ñ M and ρ : M Ñ M so that the

properties detailed in the statement of the theorem are verified.
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For every L in Wc let us start by defining a map h1 from L to L1 in UpLq.

For every x P L we define h1pxq P L
1 by

h1pxq :� ξ8cs � π
u � ξ8cupxq.

In other words, h1pxq is the unique point in L1 satisfying that W̃
s,g
δ3
pxq and

W̃
u,g
δ3
ph1pxqq intersect. As L1 is tangent to Ẽc,g then W̃

u,g
δ3
pL1q is tangent to

Ẽcu,g by Lemma 2.0.1. This justifies why the intersection of W̃u,g
δ3
pL1q with

W̃
s,g
δ3
pxq is a unique point.

It is immediate that h1 is continuous. Moreover, by property (P4) it is

easy to check that for every x, y P L:

dLpx, yq � δ3 implies δ3{2   dL1ph1pxq, h1pyqq   2δ3 (4.5.1)

In particular, h1 continuous and (4.5.1) imply that h1 from L to L1 is also

surjective.

Let us see now what happens when we iterate by g. Since g graphpξcsq �

graphpξcsq and g
�1 graphpξcuq � graphpξcuq it follows that

gL1 � pfLq1.

Given x in L the point h1pxq lies in L
1 and the point fpxq lies in fL. Then

g � h1pxq and h1 � fpxq both lie in gL1 � pfLq1. We want to justify that the

distance between g � h1pxq and h1 � fpxq inside pfLq
1 needs to be small.

Indeed, note first that dpfpxq, gpxqq ¤ δ1 (recall that δ1 denotes d0pf, gq).

Then, on the one hand h1 � fpxq is given as the unique point in pfLq1 such

that W̃
s,g
δ3
pfpxqq and W̃

u,g
δ3
ph1 � fpxqq intersect. On the other hand, h1pxq is

given as the unique point in L1 such that W̃s,g
δ3
pxq and W̃

u,g
δ3
ph1pxqq intersect,

and then by the g-invariance of the foliations Ws,g and Wcu,g one obtains

that W̃s,g
δ3
pgpxqq intersects W̃u,g

δ3
pg � h1pxqq. That is, g � h1pxq is given as the

unique point (unique by the same reasons a before) such that W̃s,g
δ3
pgpxqq and

W̃
u,g
δ3
pg � h1pxqq intersect.

By property (P4) one can derive the following two properties. If two

points z and w satisfy dpz, wq ¤ δ1 then W̃
s,g
δ3
pzq and W̃

s,g
δ3
pwq are at Hausdorff

distance less than 3δ1

2 . And if two points w and z lie in pfLq1 at distance not

smaller than 2δ1 then W̃
u,g
δ3
pzq and W̃

u,g
δ3
pwq are Hausdorff distance greater

than 3δ1

2 .

By applying the two properties above together with the properties that

dpfpxq, gpxqq ¤ δ1, that W̃s,g
δ3
pfpxqq has no trivial intersection with W̃

u,g
δ3
ph1 �

fpxqq and that W̃
s,g
δ3
pgpxqq has no trivial intersection with W̃

u,g
δ3
pg � h1pxqq ,

one obtains that

g � h1pxq P pfLq
1
2δ1ph1 � fpxqq (4.5.2)
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for every x P L.

A priori h1 from L to L1 may not be injective. However, by a ‘regulating’

process we can rely on h1 to construct the desired C1 diffeomorphism h from

L to L1. Let γ : R Ñ L and γ1 : R Ñ L1 be parametrizations by arc-length

and let Ψ1 : RÑ R denote the map

Ψ1ptq � γ1�1 � h1 � γptq.

We can assume that L and L1 are parametrized with the same orientation,

that is, such that limtÑ�8Ψ1ptq � �8. Note that by (4.5.1) it follows that

δ3
2
  Ψ1pt� δ3q �Ψ1ptq   2δ3

for every t P R. If we define Ψ : RÑ R as

Ψptq �
1

δ3

» t� δ3
2

t�
δ3
2

Ψ1psq ds

it follows that the derivative DΨptq exists everywhere, varies continuously

with t and satisfies 1
2   DΨptq   2. Defining h as

hpxq � γ1 �Ψ � γ�1pxq

for every x P L we conclude that h|L : L Ñ L1 is a C1 diffeomorphism

satisfying
1

2
  }Dhpvcq}   2

for every unit vector vc in Ẽc.

Moreover by (4.5.1) it follows that

hpxq P L12δ3ph1pxqq

for every x P L. Since g � h1pxq lies in pfLq12δ1ph1 � fpxqq by (4.5.2) and

2δ1 � 2δ3   δ then

g � hpxq P pfLq1δph � fpxqq

for every x P L.

If we define ρ : LÑ L as

ρpxq � h�1 � g � h � f�1pxq

it follows that ρ is a C1 diffeomorphism that is δ-close to the identity and
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satisfies

h � ρ � fpxq � g � hpxq

for every x P L.

It remains to ‘descend’ h and ρ to M . By a little abuse of notation let

us denote by h and ρ the maps in M given by π � h � π�1 and π � ρ � π�1,

respectively.

All the properties claimed for h and ρ are immediately satisfied except

maybe for the ones contained in the following two claims which may require

further justification.

Claim 4.5.6. The map h :M ÑM is continuous, surjective and δ-close to

the identity.

Proof. It is easy to check that h is δ-close to the identity: Since W̃
s,g
δ3
pxq

and W̃
u,g
δ3
ph1pxqq intersect for every x it follows that h1 is 2δ3 close to the

identity. Since hpxq lies in L2δ3ph1pxqq we conclude that h is 4δ3   δ close to

the identity in M .

The remaining of the proof is devoted to show that h is continuous. The

surjectivity of h is a direct consequence of h continuous and δ-close to the

identity.

Note first that h1 also descends naturally to h1 : M ÑM and that if h1
is continuous in M then h will also be continuous as the regulating process

has to preserve continuity. So we will show the continuity of h1.

The map h1 has been defined by means of maps ξ8cs, π
u and ξ8cu depending

on the ‘unfolded’ tubular neighborhoods UpLq for each leaf L P Wc. These

neighborhoods are a priori disjoint for different leaves of Wc. We need to

somehow merge them in M to be able to compare them.

For every x PM let Lpxq denote the leaf of Wc through x. Let us define

the map ξ8cu,x : Wu
δ3
pLδ3pxqq �M ÑM as the map such that ξ8cu|W̃u

δ3
pLδ3

pxqq in

U suδ3 pLpxqq is a lift of it. Analogously we define the map ξ8cs,x : Ws
δ3
pLδ3pxqq Ñ

M for every x PM .

Let πux : Bδ3{2pxq Ñ Ws
δ3
pLδ3pxqq be such that πuxpzq is the intersection

of W
u,g
δ3
pzq with Ws

δ3
pLδ3pxqq for every z P Bδ3{2pxq. Again, πu|Bδ3{2

pxq in

U suδ3 pLpxqq is a lift of πux .

For every x PM we have

h1pxq � ξ8cs,x � π
u
x � ξ

8
cu,xpxq.

Let us see that if xn
n
ÝÑ x then

ξ8cs,xn � π
u
xn � ξ

8
cu,xnpxnq

n
ÝÑ ξ8cs,x � π

u
x � ξ

8
cu,xpxq.
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It will be enough to show that:

1. If xn
n
ÝÑ x and yn

n
ÝÑ y then πuxnpynq

n
ÝÑ πuxpyq.

2. If xn
n
ÝÑ x and zn

n
ÝÑ z with zn P Wu

δ3
pWc

δ3
pxnqq and z P Wu

δ3
pWc

δ3
pxqq,

then ξ8cu,xnpznq
n
ÝÑ ξ8cu,xpzq. Analogous property hold for cs maps.

Let us see first why (1) and (2) are enough for proving h1 continuous.

Indeed, if xn
n
ÝÑ x in M then by (2) for xn � zn and x � z it follows that

ξ8cu,xnpxnq
n
ÝÑ ξ8cu,xpxq. Then π

u
xn � ξ

8
cu,xnpxnq converges with n to πux � ξ

8
cu,xpxq

by (1). And again by (2) for cs maps with zn � πuxn � ξ
8
cu,xnpxnq and z �

πux � ξ
8
cu,xpxq we conclude that ξ8cs,xn � π

u
xn � ξ

8
cu,xnpxnq converges with n to

ξ8cs,x � π
u
x � ξ

8
cu,xpxq.

The proof of (1) is immediate by the regularity of the foliations Wu,g and

Wcs.

The remaining is devoted to showing (2). Informally, the key property

we will use is that, by the regularity of Wc, for every R ¡ 0 and µ ¡ 0 the

sets LRpxq and LRpxnq are at Hausdorff distance less than µ for every large

enough n. This will enable us to ‘lift’ to UpLpxqq long pieces of the leaf Lpxnq

and to ‘see’ in UpLpxqq the first iterates of the cu graph transform for Lpxnq.

Suppose from now on xn
n
ÝÑ x and zn

n
ÝÑ z with zn P Wu

δ3
pWc

δ3
pxnqq and

z P Wu
δ3
pWc

δ3
pxqq. Given ϵ ¡ 0 let us see that dpξ8cu,xnpznq, ξ

8
cu,xpzqq   ϵ for

every n large enough. The proof for cs maps is analogous.

Let us assume without loss of generality that ϵ   δ3{2. Recall the inclu-

sions Uδ3{2pLpyqq � U suδ3 pLpyqq � U su2δ3pLpyqq � Uδ2pLpyqq for every y PM .

For every n large enough the point xn lies in Bδ3{2pxq �M so we can lift

it to Bδ3{2pxq � Uδ3{2pLpxqq. For simplicity, let us call these lifts of xn with

the same name, xn.

For every y PM recall that W̃u
δ3
pLpyqq denotes the cu-strip in U suδ3 pLpyqq.

For every R ¡ 0 let W̃u
δ3
pLRpyqq denote the ‘truncated’ cu-strip that is the set�

zPLRpyq
W̃u
δ3
pzq. By the regularity of the foliations Wc and Wu the following

is immediate to check:

Remark 4.5.7. Suppose R ¡ 0 and µ ¡ 0. For every xn close enough to

x the projection to M of the truncated cu-strip W̃u
δ3
pLRpxnqq can be lifted

to be a subset of U su2δ3pLpxqq that is at Hausdorff distance less than µ from

W̃u
δ3
pLRpxqq and such that xn lifts close to x in U su2δ3pLpxqq.

Recall that for every y PM the map ξ8cu in ΠcupLpyqq is defined as a limit

of the maps gkξ0cu for ξ0cu the zero-section in ΠcupLpyqq. Let us denote the

zero section as ξ0cu,y and the maps gkξ0 as ξkcu,y to highlight the dependence

on the point y.
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Recall that by Claim 4.5.3 it follows that

d
�
ξkcu,y, ξ

8
cu,y

�
  2δ1pλk � λk�1 � . . .q

for every k ¡ 0. Hence for every µ ¡ 0 there exists K ¡ 0 independent of y

such that

d
�
ξkcu,y, ξ

8
cu,y

�
  µ

for every k ¥ K.

Let K0 ¡ 0 be such that

2δ1pλK0 � λK0�1 � . . .q   ϵ{6. (4.5.3)

For every w P M and z P W̃u
δ3
pLpwqq let z�1 denote the point in the

cu-strip of f�1Lpzq such that gpz�1q � ξ1cu,wpzq. Analogously, let z
�k be the

point in the cu-strip of f�kLpwq such that gkpz�kq � ξkcu,wpzq. From the

construction of ξkw it follows that z�k�1 is contained in W̃cu
2δ1pf

�1pw�kqq for

δ1 � d0pf, gq. That is, pz�kqk¥0 is a backwards 2δ1-pseudo orbit for f with

jumps in local cu-plaques.

Recall that the maximal expansion possible for df�1 is given by a constant

κ ¡ 1. It follows that, independently of w, for every K ¡ 0 there exists a

constant RpKq ¡ 0 (in terms of κ and δ1) such that z�k lies in the truncated

cu-strip W̃u
δ3
pLRpKqpf

�kpwqqq for every k P t0, . . . ,Ku. This is satisfied for

every w PM and z P W̃u
δ3
pLpwqq.

Let N ¡ 0 be such that, by Remark 4.5.7 for R0 � RpK0q and µ0 �

δ3{100, the truncated cu-strip W̃u
δ3
pLR0pf

�kpxnqqq can be projected toM and

then lifted to U su2δ3pLpf
�kpxqqq so that it gets at Hausdorff distance less than

µ0 from W̃u
δ3
pLR0pf

�kpxqqq for every k P t0, . . . ,K0u and every n ¥ N . For

simplicity, let us call these projection-lifts to U su2δ3pLpf
�kpxqqq of the truncated

cu-strips W̃u
δ3
pLR0pf

�kpxnqqq with the same name W̃u
δ3
pLR0pf

�kpxnqqq.

It follows that the maps ξ8cu,xn can also be lifted to U su2δ3pLpxqq for every

n ¥ N . The domains of such maps being contained in the truncated cu-strips

W̃u
δ3
pLR0pxnqq. Analogously, the maps ξ8cu,zn can be lifted to U su2δ3pLpxqq with

domain contained in W̃u
δ3
pLR0pznqq. Again, for simplicity let us call these

lifted maps with the same names ξ8cu,xn and ξ8cu,zn .

We have to show that dpξ8cu,xnpznq, ξ
8
cu,xpzqq   ϵ is satisfied in U su2δ3pLpxqq

for every n ¥ N .

Note that, modulo taking N larger, for every n ¥ N the set W̃
s,g
δ3
pznq

intersects W̃u
δ3
pLpxqq and that this intersection point is unique. Let us call it

wn.

As zn
n
ÝÑ z then wn

n
ÝÑ z. Since ξ8cu,x is continuous in W̃u

δ3
pLpxqq it

follows that d
�
ξ8cu,xpzq, ξ

8
cu,xpwnq

�
  ϵ{2 for every n ¥ N , by taking N larger
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if needed. It remains to show that d
�
ξ8cu,xnpznq, ξ

8
cu,xpwnq

�
  ϵ{2 for every

n ¥ N .

The points z�kn are well defined points in U su2δ3pf
�kLpxqq satisfying that

gkpz�kn q � ξkcu,xnpznq for every k P t0, . . . ,K0u. The points w�kn are well

defined points in U su2δ3pf
�kLpxqq satisfying that gkpw�kn q � ξkcu,xpwnq for every

k P t0, . . . ,K0u. The key point to note is that the above implies

w�kn P W̃
s,g
4δ3
pz�kn q (4.5.4)

for every k P t0, . . . ,K0u and n ¥ N . This is because, as wn lies in W̃
s,g
δ3
pznq,

then ξkcu,xnpznq and ξ
k
cu,xpwnq lie in the same W̃s,g-plaque of U su2δ3pLpxqq. Then

z�1
n and w�1

n , which are two points in U su2δ3pf
�1Lpxqq satisfying that gpz�1

n q

and gpw�1
n q are in the same Ws,g plaque of U su2δ3pLpxqq, need to lie in the

same Ws,g plaque too. Inductively, z�kn and w�kn need to lie in the same

W̃s,g-plaque of U su2δ3pf
�kLpxqq. As all of these W̃s,g-plaques have diameter

less than 4δ3 then (4.5.4) follows.

For k � K0 in (4.5.4) it follows that w�K0
n lies in W̃

s,g
4δ3
pz�K0
n q. Then

gK0pz�K0
n q lies in W̃

s,g

4δ3λK0
pgK0pz�K0

n qq. Recall that gK0pz�K0
n q � ξK0

cu,xnpznq

and gK0pw�K0
n q � ξK0

cu,xpwnq. Using (4.5.3) and the fact that 2δ1   4δ3 by

property (P5) it follows that

dpξK0
cu,xnpznq, ξ

K0
cu,xpwnqq   ϵ{6

for every n ¥ N .

Again by (4.5.3) it follows that

dpξK0
cu,xpzq, ξ

8
cu,xpwnqq   ϵ{6 and dpξK0

cu,xnpznq, ξ
8
cu,xnpznqq   ϵ{6

for every n ¥ N .

By triangular inequality (two times) we conclude that

d
�
ξ8cu,xpznq, ξ

8
cu,xpwnq

�
  ϵ{2

for every n ¥ N .

This shows that h is continuous and ends the proof of the claim.

Claim 4.5.8. The map ρ :M ÑM is a homeomorphism.

Proof. Recall that we have already seen that ρpLq � L and ρ|L : L Ñ L

is injective and δ-close to the identity for every leaf L P Wc. And that

h � ρ � f � g � h is satisfied.

It remains to show that ρ is continuous as ρ continuous, injective and δ

close to the identity implies ρ homeomorphism.
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Suppose xn
n
ÝÑ x in M . Let us see that ρ � fpxnq

n
ÝÑ ρ � fpxq. As f is

continuous this implies ρ continuous.

As xn
n
ÝÑ x then g � hpxnq

n
ÝÑ g � hpxq by the continuity of h and g. Since

h � ρ � f � g � h it follows that h � ρ � fpxnq has limit h � ρ � fpxq.

As xn
n
ÝÑ x and ρ � fpxnq lies in Wc

δpfpxnqq for every n it follows that

every accumulation point of the sequence ρ � fpxnq must lie in Wc
δpρ � fpxqq.

Because of 1
2   }Dh|Ec}   2 the map h is injective restricted to Wc

δpρ�fpxqq.

Hence the only way that h � ρ � fpxnq has limit h � ρ � fpxq is that ρ � fpxnq

converges to ρ � fpxq. This shows the continuity of ρ and ends the proof of

the claim and of Theorem 4.2.3.

4.6 Proof of Theorem 4.2.4: Continuation of com-

plete C1 center immersions

Suppose η : R Ñ M is a complete C1 immersion tangent to Ecf as in the

hypothesis of Theorem 4.2.4. As in the proof of Theorem 4.2.3 one can

construct an abstract manifold Upηq, informally an ‘unfolded neighborhood’

of η, given as the disjoint union of the sets tBδpηptqqutPR with the points in

Bδpηptqq and Bδpηpsqq identified if and only if the piece of η-orbit from ηptq to

ηpsq has length less than 4δ. Then in Upηq there exists a natural projection

π : Upηq ÑM which is a local diffeomorphism at any point and Upηq can be

given the structure of abstract Riemannian manifold by taking pull-back of

the structure in M by the restrictions of π : Upηq Ñ M to the sets Bδpηptqq

for t P R.

Analogously as for Theorem 4.2.3 one can construct a manifold V pηq

whose connected components are Upfn � ηq for every n P Z, so that g can

be ‘lifted’ to V pηq (sending points from one connected component Upfn � ηq

to the next one Upfn�1 � ηq for every n P Z) so that the graph transform

method (Lemma 4.5.3) can be performed in V pηq.

One obtains the existence of a sequence γn : R Ñ M of complete C1

immersions tangent to Ecg satisfying (4.2.1) and (4.2.2) of Theorem 4.2.4 by

exactly the same arguments already seen for the continuation of Wc-leaves

in the proof of Theorem 4.2.3.

For the uniqueness part of Theorem 4.2.3, modulo reparametrizations,

note that by the same arguments showing that the continuation hpLq of a

center leaf L is characterized as the only points in UpLq for which its g orbit

is well defined for every backwards and forwards iterate (see Remark 4.5.5) it

follows that the image of every lift of γ0 to Upηq coincides with the points in

Upηq whose g-orbit is well defined in V pηq for every backwards and forwards

iterate (in particular, there exits a unique lift).
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Then if γ1n : R Ñ M is another sequence of complete C1 immersions

tangent to Ecg satisfying (4.2.1) and (4.2.2) one deduces that the lift of γ10
to Upηq has to have the same image as the lift of γ0. It follows that γ10 is a

reparametrization of γ0 and, by (4.2.2), that γ1n is a reparametrization of γn
for every n P Z.
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Chapter 5

Global stability

5.1 Introduction

Recall that PHc�1pMq denotes the set of partially hyperbolic diffeomorphisms

with one-dimensional center in the closed manifold M . The set PHc�1pMq

is an open subset of Diff1pMq for the C1 topology.

The main goal of this chapter is to show that discretized Anosov flows

constitute a C1 open and closed class of diffeomorphisms in PHc�1pMq. As

a consequence, it also follows that leaf-conjugacy is preserved among whole

connected components of discretized Anosov flows.

Theorem 5.1.1. The set of discretized Anosov flows is a C1 open and closed

subset of PHc�1pMq.

Corollary 5.1.2. Two discretized Anosov flows in the same C1 connected

component of PHc�1pMq are leaf-conjugate.

Recall that an f -invariant center foliation Wc is called uniformly compact

if every leaf of Wc is compact and the leaf volume function x ÞÑ volpWcpxqq

is bounded in M . Analogous statements are shown to happen for these type

of systems:

Theorem 5.1.3. The set of diffeomorphisms in PHc�1pMq admitting an in-

variant uniformly compact center foliation form a C1 open and closed subset

of PHc�1pMq.

Corollary 5.1.4. Suppose f P PHc�1pMq admits an invariant uniformly

compact center foliation Wc
f and g P PHc�1pMq lies in the same C1 con-

nected component of PHc�1pMq as f . Then g admits an invariant uniformly

compact center foliation Wc
g such that pf,Wc

f q and pg,W
c
gq are leaf-conjugate.

The main example of a uniformly compact center foliation is given by

the center foliation Wc of a partially hyperbolic skew-product. In this case
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the leaves of Wc are the fibers of a fiber bundle structure in M and the leaf-

volume function is, in fact, continuous. It follows immediately from Corollary

5.1.4 that partially hyperbolic skew-products with one-dimensional center

constitute a C1 open and closed class in PHc�1pMq.

Finally, in the last section of this chapter we show that unique integrabil-

ity of the center bundle is also preserved among whole connected components

of discretized Anosov flows and of partially hyperbolic diffeomorphisms ad-

mitting a uniformly compact center foliation.

By constructing an example of a discretized Anosov flow with non-uniquely

integrable center bundle (see Example 5.4.3) it follows that there exists C1

connected components of discretized Anosov flows that do not contain the

time 1 map of an Anosov flow.

5.2 Global stability of discretized Anosov flows

As shown below, Theorem 5.1.1 and Corollary 5.1.2 are immediate conse-

quences of the following.

Proposition 5.2.1. For every f0 P PHc�1pMq there exists a C1-neighborhood

U of f0 such that, if f P U is a discretized Anosov flow, then every g P U is

also a discretized Anosov flow.

Moreover, if Wc
f and Wc

g denote the flow center foliations of f and g,

respectively, then pf,Wc
f q is plaque expansive and pf,Wc

f q and pg,Wc
gq are

leaf-conjugate.

Let us first mention how Theorem 5.1.1 follows from Proposition 5.2.1.

Proof of Theorem 5.1.1 assuming Proposition 5.2.1. Suppose f0 is a discretized

Anosov flow. By Proposition 5.1.1 there exists a neighborhood U of f0 such

that every element of U is a discretized Anosov flow. This proves the open

property.

Suppose now that pfnq is a sequence of discretized Anosov flows converg-

ing to f0 P PHc�1pMq. Let U be as in Proposition 5.2.1. For some large N

the map fN lies in U and, as a consequence, f0 is also a discretized Anosov

flow. This proves the closed property.

Let us see now how Corollary 5.1.2 is also immediate from Proposition

5.2.1.

Proof of Corollary 5.1.2 assuming Proposition 5.2.1. Suppose f and g are

discretized Anosov flows in the same C1 connected component of PHc�1pMq.

Let Wc
f and Wc

g denote their flow center foliations, respectively.
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Let tftutPr0,1s be a path in PHc�1pMq joining f0 � f with f1 � g. For

every ft let Upftq be a C1 neighborhood as in Proposition 5.2.1. By taking a

finite cover of tftutPr0,1s by open sets Upftq one can argue inductively to show

that pf,Wc
f q and pg,W

c
gq are leaf-conjugate.

The rest of the section is devoted to prove Proposition 5.2.1. We will

crucially use Theorem 4.2.3 and Lemma 4.3.3 from Chapter 4. And we will

assume familiarity with the terminology used in Section 4.3.

5.2.1 Uniform plaque expansivity for discretized Anosov flows

The notion of δ-plaque expansivity was introduced in Definition 4.3.2. For

every neighborhood Uδpf0q as in Lemma 4.2.1 we will consider a subset of

Uδpf0q satisfying a stronger version of property (P4). This will allow us to

show in Proposition 5.2.4 that any discretized Anosov on this new neighbor-

hood has to be δ-plaque expansive.

As discussed in Remark 4.2.2, the next lemma can be derived from the

proof of Lemma 4.2.1.

Lemma 5.2.2. In the setting of Lemma 4.2.1, one can furthermore require

that the following reinforcement of property (P4) is satisfied:

(P4’) The metric and the cone fields pCs,Ccuq and pCcs,Cuq are p1�λq
1000 -nearly

euclidean at scale κ20δ.

It is immediate to check the following consequence from (P4’).

Lemma 5.2.3. Suppose f0 P PHc�1pMq. Consider a metric inM , a constant

0   λ   1 and a C1-neighborhood Uδpf0q � PHc�1pMq of f0 as in Lemma

5.2.2. Then for every

� map f P Uδpf0q,

� pair of points x PM and x1 PWs
f pxq with dspx, x

1q � 10δ,

� pair of C1 curves η and η1 of length less than 20δ, tangent to CcsX Ccu

with x P η and x1 P η1,

it follows that

dpη, η1q ¡ λp10δq,

where dpη, η1q denotes the infimum distance between points in η and η1.

The following is the goal of this subsection.
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Proposition 5.2.4 (Uniform plaque expansivity for discretized Anosov flows).

Suppose f0 P PHc�1pMq. Consider a metric in M and a C1 neighborhood

Uδpf0q � PHc�1pMq of f0 as in Lemma 5.2.2. If f is a discretized Anosov

flow in Uδpf0q and Wc is the flow center foliation of f then pf,Wcq is δ-plaque

expansive.

Proof of Proposition 5.2.4. By Definition 3.2.1, Proposition 3.2.2 and Re-

mark 3.2.3 the map f can be written down as fpxq � φcτpxqpxq for τ : M Ñ

R¡0 continuous and φct : M Ñ M a unit speed flow whose flow lines are the

flow center foliation Wc of f .

The following is a key claim showing that, even taking into account pos-

sible ‘backwards jumps’, every δ-pseudo orbit ‘advances forward’ in the di-

rection of the flow. Roughly speaking this allows us to bring into play the

expansivity of the topological Anosov flow φct to obtain expansivity for pairs

of δ-pseudo orbits belonging to different center leaves.

Claim 5.2.5. The function τ is always larger than 10δ.

Proof. Suppose by contradiction that τpxq   10δ for some x PM .

For every y P Ws
11δpxq let γy : r0, 1s Ñ Wcpyq be the constant speed

reparametrization of the piece of φct -orbit from y to fpyq. Note that by the

continuity of τ the length of γy varies continuously with y.

By property (P4’) the image of γy needs to be a segment from Ws
11δpxq

to Ws
12δpfpxqq, contained in B20δpxq and whose length does not surpass 12δ.

In particular, the image of γy is contained in Wc
20δpyq for every y PWs

11δpxq.

Let us fix y0 in Ws
11δpxq such that dspx, y0q � 10δ. It follows that γy0 is

a curve joining y0 to fpy0q, where dpfpxq, fpy0qq ¤ dspfpxq, fpy0qq   λp10δq.

By Lemma 5.2.3 the sets Wc
20δpxq and Wc

20δpy0q must be at distance

greater than λ10δ. However, we have just shown that fpxq P Wc
20δpxq and

fpy0q PWc
20δpy0q are at distance less than λ10δ. This gives us a contradiction

and proves Claim 5.2.5. See Figure 5.1 for a schematic idea of the argument

used.

Recall that by Proposition 3.4.4 the discretized Anosov flow f is dynam-

ically coherent with center-stable foliation Wcs and center-unstable foliation

Wcu such that Wc �Wcs XWcu. As stated in the next claim, dynamical co-

herence let us obtain δ-plaque expansivity by checking 2δ-plaque expansivity

inside Wcs and Wcu leaves.

Claim 5.2.6. Suppose the following statement is true: For every pxnqn¥0

and pynqn¥0 forward 2δ-pseudo orbits such that xn�1 P Wc
2δpfpxnqq, yn�1 P

Wc
2δpfpynqq and yn PWcu

4δpxnq for every n ¥ 0, then y0 PWc
8δpx0q.
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Figure 5.1: At small scale the bundles Eσ, σ P ts, c, uu, are nearly parallel
and pairwise disjoint for every f near f0. Hence τ must be greater than
10δ to be able to ‘see’ the contraction of rate λ P p0, 1q. As a consequence,
if δ1   10δ then every pair of δ1-pseudo orbits for f advance in the same
direction as the center flow and therefore should eventually separate because
of the expansivity of the center flow.

Suppose that is also true the analogous statement for backwards 2δ-pseudo

orbits inside Wcs leaves. Then pf,Wcq is δ-plaque expansive.

Proof. Let pxnqn and pynqn be a pair of δ-pseudo orbits satisfying xn�1 P

Wc
δpfpxnqq, yn�1 PWc

δpfpynqq and dpxn, ynq   2δ for every n P Z. Let us see

that y0 PWc
3δpx0q.

All along the proof of the claim we will implicitly use that, by property

(P4’), at scale κ20δ the invariant bundles are nearly pairwise orthogonal. It

will be clear on each case that what is stated follows directly from property

(P4’). And we will implicitly use that by dynamical coherence cs (resp cu)

discs are subfoliated by c and s (resp u) discs and that cs and cu discs

intersect in c discs.

As dpxn, ynq   2δ one can consider y1n the intersection of Ws
3δpynq with

Wcu
3δpxnq.

Moreover, y1n P Wcu
3δpxnq implies fpy1nq P Wcu

κ3δpfpxnqq and y
1
n P Ws

3δpynq

implies fpy1nq P Ws
κ3δpfpynqq. It follows that fpy1nq is the intersection point

of Ws
κ3δpfpynqq with Wcu

κ3δpfpxnqq.

The point xn�1 lies in Wc
δpfpxnqq � Wcu

κ3δpfpxnqq and the point y1n�1 is

given by the intersection of Ws
3δpyn�1q with Wcu

3δpxn�1q � Wcu
κ3δpfpxnqq. We

obtain that fpy1nq and y1n�1 are both contained in Wcu
κ3δpfpxnqq. And both

contained in Ws
κ3δpW

c
δpfpynqq since yn�1 P Wc

δpfpynqq. It follows that fpy1nq

and y1n�1, which lie in the intersection of Ws
κ3δpW

c
δpfpynqq �Wcspfpy0qq and

Wcu
κ3δpfpxnqq, are in the same local center manifold. Since yn�1 PWc

δpfpynqq
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it follows that y1n�1 PWc
2δpfpy

1
nqq.

Then py1nqn¥0 is a forward 2δ-pseudo orbit with jumps in center plaques,

as well as pxnqn¥0, and they satisfy y1n P Wcu
3δpxnq for every n ¥ 0. By the

assumption of the statement it follows that y10 lies Wc
8δpx0q. Which in turns

imply y0 PWcs
11δpx0q as y

1
0 PWc

3δpy0q.

By defining analogously py2nqn¤0 a backward 2δ-pseudo orbit as the in-

tersection of Wu
3δpynq with Wcs

3δpxnq for every n ¤ 0 we conclude that y0 lies

Wcu
11δpx0q. It follows that y0 � y10 � y20 , and then that y0 lies in Wc

8δpx0q. As

we are at scale κ20δ then dpx0, y0q   2δ and y0 PWc
8δpx0q imply that y0 lies

in Wc
3δpx0q. This proves Claim 5.2.6.

Suppose pxnqn¥0 and pynqn¥0 are two forward 2δ-pseudo orbits such that

xn�1 P Wc
2δpfpxnqq, yn�1 P Wc

2δpfpynqq and yn P Wcu
4δpxnq for every n ¥ 0.

Let us see that y0 needs to lie in Wc
8δpx0q. It will be clear that in a simi-

lar fashion one can show the analogous statement for backwards 2δ-pseudo

orbits if y0 is a point in Wcs
4δpx0q. By Claim 5.2.6 this will end the proof of

Proposition 5.2.4.

Suppose by contradiction that y0 does not belong to Wc
8δpx0q. As yn P

Wcu
4δpxnq we can consider x1n P Wc

5δpxnq such that yn P Wu
5δpx

1
nq for every

n ¥ 0. It follows that yn � x1n for every n ¥ 0.

Note that y0 PWu
5δpx

1
0q implies that dupf

�npy0q, f
�npx10qq tends to 0 with

n. Since tf�npy0qun¥0 are points in Wcpy0q and tf
�npx10qun¥0 are points in

Wcpx0q it follows thatW
cpx0q andWcpy0q can not be both compact leaves. As

the conditions for pxnqn¥0 and pynqn¥0 are symmetric let us assume without

loss of generality that Wcpx0q is not compact.

For every pair of different points z, z1 P Wcpx0q let rz, z1sc and rz, z1qc
denote the closed and half-open center segments from z to z1 inside Wcpx0q,

respectively.

Let Kn be the sequence such that x1n lies in
�
fKnpx0q, f

Kn�1px0q
�
c
for

every n ¥ 0. By Claim 5.2.5 it follows that Kn
n
ÝÑ �8.

For every n the point x1n is a point in rfKnpx0q, f
Kn�1px0qsc. Hence

f�Knpx1nq is a point in rx0, fpx0qsc. Moreover, since yn lies in Wu
5δpx

1
nq it

follows that f�Knpynq lies in Wu
λKn5δ

pf�Knpx1nqq. And as yn � x1n, then

f�Knpynq is not contained in rx0, fpx0qsc. It follows that

f�Knpynq PWu
λKn5δprx0, fpx0qscqzrx0, fpx0qsc (5.2.1)

for every n.

As λ is a constant in p0, 1q the sequence λ�Kn5δ tends to 0 with n. And

since Wcpy0q contains yn for every n and is an invariant leaf by f it follows

that f�Knpynq is a sequence contained inWcpy0q. Hence if the following claim
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is true one gets a contradiction with (5.2.1), ending the proof of Proposition

5.2.4.

Claim 5.2.7. There exists ϵ ¡ 0 such that Wu
ϵ prx0, fpx0qscqzrx0, fpx0qsc is

disjoint from Wcpy0q.

Proof. Note that a priori one can not rule out that Wcpx0q and Wcpy0q may

be the same leaf. That is why we will show that Wcpy0q is disjoint from

Wu
ϵ prx0, fpx0qscqzrx0, fpx0qsc and not simply disjoint from Wu

ϵ prx0, fpx0qscq.

Recall from Proposition 3.7.3 the topological description of the center-

unstable leaves of a discretized Anosov flow in terms of planes leaves, cylinder

leaves, etc.

If Wcupx0q is a plane leaf the claim follows straightforwardly from Propo-

sition 3.7.3 since in that case the foliations Wu and Wc need to have a global

product structure inside Wcupx0q.

If Wcupx0q is a cylinder leaf then Proposition 3.7.3 shows that the alpha-

limit of y0 by the center flow φct coincides with the unique compact leaf L

of Wc contained in Wcupx0q. Moreover, as Wcpx0q is not compact, then

L �Wcpx0q.

In case Wcpy0q coincides with L it is enough to consider ϵ ¡ 0 smaller

than the Hausdorff distance between the compact and disjoints sets Wcpy0q

and rx0, fpx0qsc.

In case Wcpy0q does not coincide with L then Wcpy0q is not compact and

it is immediate to check that the omega-limit of y0 in the intrinsic metric

of Wcupx0q needs to be empty. This follows from the fact that for every

R ¡ 0 the point fnpy0q can not be contained in Wu
RpLq for arbitrarily large

n ¡ 0. Indeed, if fnpy0q lies in Wu
RpLq for arbitrarily large n ¡ 0 then

y0 � f�n � fnpy0q, which is not contained in L, would be at arbitrarily small

distance from the compact leaf L getting to a contradiction.

It follows that for some T ¡ 0 the set Wcpy0qzW
c
T px0q is at positive

distance from the compact set rx0, fpx0qsc in the intrinsic metric of Wcupx0q.

Say d ¡ 0.

If Wc
T py0q is disjoint from rx0, fpx0qsc it is enough to consider d ¡ ϵ ¡

0 so that ϵ is smaller than the Hausdorff distance between Wc
T py0q and

rx0, fpx0qsc.

If Wc
T py0q is not disjoint from rx0, fpx0qsc then for some x1, x2 P Wcpx0q

satisfying rx0, fpx0qsc � px1, x2qc the center segment rx1, x2sc needs to be

contained in Wc
T py0q since the endpoints of Wc

T py0q are far from rx0, fpx0qsc.

It is enough to consider in this case d ¡ ϵ ¡ 0 so that ϵ is smaller than the

Hausdorff distance between Wc
T px0qzpx1, x2qc and rx0, fpx0qsc.

This proves Claim 5.2.7 and ends the proof of Proposition 5.2.4.
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5.2.2 Proof of Proposition 5.2.1

Suppose f0 P PHc�1pMq. Consider a metric in M , a constant δpf0q ¡ 0 and,

for some 0   δ ¤ δpf0q, a C
1 neighborhood Uδpf0q � PHc�1pMq of f0 as in

Lemma 5.2.2.

Suppose f and g are maps in Uδpf0q such that f is a discretized Anosov

flow. Let us see that g needs to be also a discretized Anosov flow.

Suppose f is of the form fpxq � φcτpxqpxq and let Wc denote the flow

center foliation whose leaves are the flow lines of φct .

Let h :M ÑM and ρ :M ÑM be as in Theorem 4.2.3. By Proposition

5.2.4 the system pf,Wcq is δ-plaque expansive (in particular it is plaque

expansive, see Remark 4.3.4). By Remark 4.3.1 and Lemma 4.3.3 it follows

that h is a homeomorphism and that hpWcq �Wc
g is a g-center foliation such

that pf,Wcq and pg,Wc
gq are leaf conjugate. In particular, gpW 1q � W 1 for

every leaf W 1 PWc
g.

By Proposition 3.3.1 there exists L ¡ 0 such that fpxq PWc
Lpxq for every

x P M . By Theorem 4.2.3 the maps h and ρ satisfy 1
2   }Dh|Ec

f
}   2 and

h � ρ � f � g �h. Moreover, ρpW q �W and ρ is a δ-close to the identity map

inside W for every leaf W PWc. Then gpxq PWc
g,2pL�δqpxq for every x PM .

By denoting L1 � 2pL � δq we obtain that g individually fixes each leaf

of the center foliation Wc
g satisfying

gpxq PWc
g,L1pxq

for every x P M . By Proposition 3.3.1 we conclude that g is a discretized

Anosov flow. Moreover, it is immediate to check from the proof of Proposition

3.3.1 that Wc
g needs to be the flow center foliation of g. This ends the proof

of Proposition 5.2.1.

5.3 Global stability of uniformly compact center

foliations

By means of the same type of arguments already used in Section 5.2 for

the case of discretized Anosov flows, Theorem 5.1.3 and Corollary 5.1.4 are

proven once we show the following.

Proposition 5.3.1. Suppose f0 P PHc�1pMq. There exists a C1-neighborhood

U � PHc�1pMq of f0 such that, if f P U admits a uniformly compact center

foliation, then every g P U also admits a uniformly compact center foliation.

Moreover, if Wc
f and Wc

g denote the uniformly compact center foliations

of f and g, respectively, then pf,Wc
f q and pg,W

c
gq are leaf-conjugate.
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Proof. Suppose f0 P PHc�1pMq. Consider a metric in M , a constant δpf0q ¡

0 and a C1 neighborhood Uδ0pf0q � PHc�1pMq of f0 as in Lemma 5.2.2.

Suppose there exists f in Uδ0pf0q admitting a uniformly compact center

foliation Wc
f . Let us see that every g P Uδ0pf0q admits a uniformly compact

center foliation Wc
g such that pf,Wc

f q and pg,Wc
gq are leaf-conjugate. By

Lemma 4.3.3 it is enough to show that pf,Wcq is δ plaque-expansive as in

Definition 4.3.2.

By Proposition 3.4.4 (see also [BB16, Theorem 1]) the map f is dy-

namically coherent admitting f -invariant foliations Wcs and Wcu such that

Wc �Wcs XWcu.

Note that, as it was shown in Claim 5.2.6 during the proof of Proposition

5.2.4, in order to show that pf,Wcq is δ-plaque expansive it is enough to

show that the following property is satisfied (together with its analogous

version for backwards orbits and cs-leaves): if pxnqn¥0 and pynqn¥0 are two

forward 2δ-pseudo orbits such that xn�1 P Wc
2δpfpxnqq, yn�1 P Wc

2δpfpynqq

and yn PWcu
4δpxnq for every n ¥ 0, then y0 PWc

8δpx0q.

Suppose by contradiction that in the context above the point y0 does not

belong to Wc
8δpx0q. Again, as in the proof of Proposition 5.2.4 the fact that

yn lies in Wcu
4δpxnq allows us to consider x1n PWc

5δpxnq such that yn PWu
5δpx

1
nq

for every n ¥ 0. As y0 RWc
8δpx0q it follows that yn � x1n for every n ¥ 0.

By defining wn � f�npx1nq and zn � f�npynq we obtain that wn and

zn are points contained in Wcpx0q and Wcpy0q, respectively, satisfying that

limnÑ�8 dpwn, znq � 0. By considering w8 an accumulation point of pwnqn¥0

and Upw8q a smallWc-foliation box neighborhood of w8 we obtain that there

exists a subsequence pznk
qk¥0 tending to w8 such that each znk

corresponds

to a different center plaque in Upw8q. As pznk
q � Wcpy0q and Wcpy0q is

compact we get to a contradiction since Wcpy0q cannot contain infinitely

many disjoint plaques of Upw8q.

Let us end this section with a small parenthesis. Whether there exists f

in PHpMq admitting a compact center foliation with non uniformly bounded

volume of leaves is still unknown. Partial non-existence results have been

given in [C15], [G12] and [DMM20] (not exclusively for the one-dimensional

center scenario).

Assuming one-dimensional center it is worth noting that the second part

of the proof of Proposition 5.3.1 only uses that Wc is compact and that f

is dynamically coherent. Moreover, by Theorem 4.2.3 (1), whenever h is a

homeomorphism the volume of a compact center leaf L and its continuation

hpLq differ at most by a constant factor depending only on the C1 neigh-

borhood Uδpf0qpf0q. Thus the following statement follows from the proof of

Proposition 5.3.1.
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Proposition 5.3.2. Suppose f P PHc�1pMq is a dynamically coherent sys-

tem admitting f -invariant foliations Wcs and Wcu such that Wc �WcsXWcu

is a non-uniformly compact center foliation.

There exists a C1 neighborhood U � PHc�1pMq of f satisfying that every

g P U admits a non-uniformly compact center foliation Wc
g such that pf,Wcq

and pg,Wc
gq are leaf-conjugate.

Proposition 5.3.2 could potentially be useful for bringing into play pertur-

bative techniques to the existence problem of non-uniformly compact center

foliations with one-dimensional center.

5.4 Unique integrability of the center bundle

Given f P PHc�1pMq it follows from Peano’s existence theorem that through

every point of M there exists at least one local C1 curve tangent to Ec.

We say that Ec is uniquely integrable if through every point of M there

exists a unique C1 local curve tangent to Ec modulo reparametrizations.

That is, if for every η : p�δ, δq ÑM and γ : p�ϵ, ϵq ÑM a pair of C1 curves

tangent to Ec with ηp0q � γp0q there exists δ1 ¡ 0 such that ηp�δ1, δ1q is a

subset of γp�ϵ, ϵq.

It turns out that unique integrability of the center bundle persists along

whole connected components of discretized Anosov flows and of systems ad-

mitting a uniformly compact center foliation (at least for one-dimensional

center):

Proposition 5.4.1. Suppose f P PHc�1pMq is a discretized Anosov flow

or admits a uniformly compact center foliation. If Ec is uniquely integrable

then every every diffeomorphism in the same C1 connected component of f

in PHc�1pMq has a uniquely integrable center bundle.

Proof. Suppose tftutPr0,1s � PHc�1pMq is a C1 path of partially hyperbolic

diffeomorphisms joining f0 � f with f1 � g.

Suppose first that f0 is a discretized Anosov flow such that Ecf0 is uniquely

integrable. Let us see that Ecf1 is also uniquely integrable.

By Theorem 5.1.1 every ft is a discretized Anosov flow. By Proposition

5.2.1, if Wc
ft

denotes the flow center foliation ft then pft,W
c
ft
q is plaque

expansive. By Proposition 4.4.3 there exists a C1 neighborhood Upftq �

PHc�1pMq of ft such that, if Upftq contains a system with uniquely integrable

center bundle, then every system in Upftq has a uniquely integrable center

bundle. As Ecf0 is uniquely integrable, the above implies that Ecf1 is also

uniquely integrable.
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In case f0 is a system admitting a uniformly compact center foliation the

argument is analogous using Theorem 5.1.3 and Proposition 5.3.1 in the place

of Theorem 5.1.1 and Proposition 5.2.1.

Corollary 5.4.2. Every discretized Anosov flow in the same C1 connected

component of PHc�1pMq as the time 1 map of an Anosov flow has a uniquely

integrable center bundle.

Proof. Let φt : M Ñ M be an Anosov flow. We can approximate Bφt

Bt |t�0

by a C8 vector field X so that, if Xt denotes the flow generated by X,

then f :� φ1 and g :� X1 are C1-close (in particular, such that they are

in the same C1 partially hyperbolic connected component). Since g is a

discretized Anosov flow with uniquely integrable center bundle (because X

is C8) it follows that f and every systems in the C1 connected component

of PHc�1pMq containing f has a uniquely integrable center bundle.

In [HHU16] two types of partially hyperbolic diffeomorphisms in T3 are

built. Ones which are non-dynamically coherent and ones which are dynam-

ically coherent but such that Ec is not uniquely integrable. The following

sketches how a discretized Anosov flow with non-uniquely integrable cen-

ter bundle can be obtained as a simple modification of the second type of

examples.

Example 5.4.3 (Example of a discretized Anosov flow with non-uniquely

integrable center bundle). We will start by giving a brief description a dy-

namically coherent example from [HHU16]. For more details see [HHU16]

itself.

The aforementioned partially hyperbolic diffeomorphism f : T3 Ñ T3 can

be considered homotopic to A� Id, where T3 is identified with T2 � S1 and

A : T2 Ñ T2 is a linear hyperbolic automorphism with eigenvalues 0   λ   1

and 1{λ.

Denote by EsA the contracting eigenspace of A and by es a unit vector in

EsA. And identify S1 with R{2Z. Then the map f can be taken to be of the

form

fpx, θq � pAx� vpθqes,Ψpθqq

for suitable v : S1 Ñ R and Ψ : S1 Ñ S1 such that v is positive in p�1, 0q �

S1 and negative in p0, 1q � S1, and Ψ is a Morse-Smale map with �1 and 0

as only fixed points that in addition satisfy Ψ1p0q   λ   1   Ψ1p�1q   1{λ.

The sets T2 � t�1u and T2 � t0u are two invariant tori that are fixed by

f , with f acting as A on each of them. The torus T2 � t0u is a cu-torus (it

is saturated by Wc and Wu-leaves) and the torus T2 � t�1u is a repelling

su-torus (it is saturated by Ws and Wu-leaves).
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The construction given by [HHU16] shows the following. The map f ad-

mits an f -invariant foliation by circles Wc. Each of these circles is homotopic

to a horizontal circle and intersects in a unique point each torus T2 � θ for

every θ P S1. Thus f is a partially hyperbolic skew-product where Wc is a

foliation by circles that gives to M a structure of fiber bundle.

Moreover, it can be seen that the bundle Ec is uniquely integrable outside

of the cu-torus T2�t0u. However, remarkably, through each point of T2�t0u

there exists more than one local C1 curve tangent to Ec. Namely, through

each point y of T2�t0u one can consider the center arc corresponding to the

leaf Wcpyq, but also all the center arcs that are a concatenation of a piece of

arc of Wc, a center arc through y contained in the cu torus T2 � t0u and a

third piece of Wc arc. See Figure 5.2.

c

c

Wc

c

T3

cu� torus

Figure 5.2:

The simple modification of the example proceeds as follows. Let F :

T2 � R Ñ T2 � R be the lift of f such that F px,�1q � pAx,�1q for every

x P T2. It is immediate to check that F commutes with the elements of the

group Γ � tpx, θ̃q ÞÑ pAnx, θ̃ � 2nqunPZ. Indeed, if γ : T2 � R Ñ T2 � R

denotes the generator of Γ given by γpx, θ̃q � pAx, θ̃ � 2q, then it is enough

to show that F � γ � γ � F in restriction to T2 � t�1u. One the one hand

one has F � γpx,�1q � F pAx, θ̃ � 2q � pA2x, θ̃ � 2 since F commutes with

px, θ̃q ÞÑ px, θ̃ � 2q.

As a consequence, F descends to a partially hyperbolic diffeomorphism

g : N Ñ N in N � pT2 � Rq{Γ.

Let W̃c denote the lift of Wc to T2�R and Wc
g the descended one to N . It

follows that Wc
g is a g-invariant center foliation for g. Since F pW̃cpx,�1qq �

W̃cpAx,�1q for every x P T2 the leaves of Wc
g are individually fixed by g

(that is, gpW q �W for every W PWc
g).

Moreover, for every z P N the point gpzq lies in Wc
g,Lpzq for L ¡ 0 any
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constant larger than the maximum length of a leaf in Wc. By Proposition

3.3.1 it follows that g is a discretized Anosov flow.

Finally, the property of non-unique integrability of the center bundle is

preserved along the cu�torus that is the projection of T2 � t0u to N since

this is a local property that is preserved by lifts and quotients. Hence Ecg is

not uniquely integrable.

From Corollary 5.4.2 it is immediate to conclude the following.

Corollary 5.4.4. The C1 connected component of PHc�1pMq containing the

discretized Anosov flow given by Example 5.4.3 does not contain the time 1

map of an Anosov flow.

The conclusion is that unique integrability versus non-unique integrabil-

ity of the center bundle provides a way for distinguishing between different

connected components of discretized Anosov flows and of partially hyperbolic

systems in general. The following questions arise naturally.

Question 5.4.5. Is it possible to connect (via a C1-path of discretized Anosov

flows) every discretized Anosov flow with uniquely integrable center bundle to

the time 1 map of an Anosov flow? Are there examples of discretized Anosov

flows with a non uniquely integrable center bundle which are transitive or

such that the center flow is not orbit equivalent to a suspension flow?

More generally, one may ask whether there exist examples of C1-connected

components of partially hyperbolic diffeomorphisms containing both systems

with uniquely integrable and non-uniquely integrable center bundle.

One can put the above into an even more general framework. For every

f P PHc�1pMq one can consider all the C1 curves tangent to the center

bundle Ecf . This gives rise to a kind of branched center foliation in M . One

may ask whether the structure of this normally hyperbolic branched foliation

is preserved:

Question 5.4.6. Suppose f, g P PHc�1pMq lie in the same C1 connected

component of PHc�1pMq. Does there exist a homeomorphism h : M Ñ M

such that for every C1 curve η : p0, 1q Ñ M tangent to Ecf the curve h � η :

p0, 1q ÑM is (or can be reparametrized to be) a C1 curve tangent to Ecg?

It is worth noting [BFP20, Question 2.] for a similar question in the

context of collapsed Anosov flow and [HPS77, Section 7.] for other related

questions.
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Chapter 6

Center fixing characterization

6.1 Introduction

The following question motivates this chapter. It is worth noting [G12, Ques-

tion 1.3.] where a similar question has been posed.

Question 6.1.1. Suppose f P PHc�1pMq admits a center foliation Wc such

that fpW q �W for every leaf W PWc. Is f a discretized Anosov flow?

We will give a positive answer to Question 6.1.1 in two cases: 1) whenever

Wc has a dense leaf and f is dynamically coherent and 2) whenever f is

transitive and dimpMq � 3.

Recall that a partially hyperbolic diffeomorphism f is dynamically coher-

ent if there exists f -invariant foliations Wcs and Wcu tangent to Es ` Ec

and Ec ` Eu, respectively. We say that f is a dynamically coherent center

fixing map if the center foliation Wc � Wcs XWcu (given by the connected

components of the intersection between Wcs-leaves and Wcu-leaves) satisfies

that fpW q �W for every leaf W PWc. Note that by Proposition 3.4.4 every

discretized Anosov flow is a dynamically coherent center fixing map.

We say that Wc is transitive if it has a dense leaf. The following is the

main goal of this chapter.

Theorem 6.1.2. Suppose f P PHc�1pMq is a dynamically coherent center

fixing map such that Wc is transitive. Then f is a discretized Anosov flow.

Because of the center fixing property one can replace the hypothesis ‘Wc

transitive’ by ‘f transitive’ in the above theorem. See Remark 6.7.5.

Furthermore, in dimension 3 we can show that the dynamical coherent

hypothesis is not needed provided f is transitive. For this, we will give a

dynamical coherence criterion for maps that are center fixing or admit a

compact center foliation in dimension 3 (Proposition 6.8.1 below).
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The aforementioned criterion combined with [DMM20] (also [G12]), [B13]

and Theorem 6.1.2 (or [BW05]) allows us to give a statement characterizing

both discretized Anosov flows and partially hyperbolic skew-products in di-

mension 3:

Theorem 6.1.3. Suppose f P PHc�1pM
3q is transitive and admits an f -

invariant center foliation Wc.

1. If fpW q �W for every W PWc then f is a discretized Anosov flow.

2. If W is compact for every W P Wc then, modulo double cover, f is a

partially hyperbolic skew-product.

The proof of Theorem 6.1.2 will take place up until Section 6.7. The proof

of Theorem 6.1.3 is left to Section 6.8.

6.2 Outline of the proof of Theorem 6.1.2

Let us see in this section an outline of the proof of Theorem 6.1.2. It is worth

pointing out that an starting point for this proof is an unpublished strategy

proposed by A. Gogolev and R. Potrie.

One begins by defining ρ : M Ñ R¥0 the center displacement function

that measures the distance from x to fpxq inside Wcpxq for every x in M .

By Proposition 3.3.1 it is enough to show that ρ is bounded in M . This will

be the goal for the remaining of the proof.

In some sense, the demonstration progresses then by showing an increas-

ingly number of properties that every discretized Anosov flow must satisfy.

Until one reaches no other possibility than f being a discretized Anosov flow.

Since it is enough to show the theorem in the case that Wc is orientable

(Lemma 6.3.3), one can define the center flow φct : M Ñ M as one of the

two flows by arc-length whose orbits are the leaves of Wc.

By showing that ρ is a lower semicontinuous function (Proposition 6.3.7)

one obtains that there exists a residual subset Y � M that is saturated

by leaves of Wc and such that every point on it is a continuity point for ρ

(Proposition 6.3.11). This marks the end of Section 6.3.

In Section 6.4 one shows first that there is no self-recurrence of the center

foliation inside leaves of Wcs and Wcu (Proposition 6.4.4). Then this is

used to obtain the key property that the center flow φct is an expansive flow

(Proposition 6.4.7). And it allows us to show that the function f has no fixed

points in non-compact leaves of Wc (Proposition 6.4.8).

Modulo inverting the time of φct , a connection argument in Y gives that

fpxq and φc1pxq must lie in the same connected component of Wcpxqzx for
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every x P Y . That is, forward iterates of f and φct move points in the same

direction inside Wc leaves (Lemma 6.4.10).

Combined with classical arguments from expansive systems, the above al-

lows us to construct local stable and unstable sets for φct of uniform size inside

stable and unstable leaves of f , respectively, at any point of M (Proposition

6.5.2). This is the main goal of Section 6.5.

In Section 6.6 the local stable and unstable sets of φct are used to show

that ρ must be continuous at every point x such that Wcpxq is not compact

(Proposition 6.6.1 via the key Lemma 6.6.7).

The remaining of the proof, developed in Section 6.7, is devoted to show

that the continuity of ρ in the union of non-compact leaves of Wc (whose

complement is a countable union of compact leaves of Wc by Lemma 6.3.1)

implies that ρ is bounded in M . As was already mentioned, one then con-

cludes from this that f must be a discretized Anosov flow as a consequence

of Proposition 3.3.1.

6.3 Center flow and the center displacement func-

tion

This section initiates the proof of Theorem 6.1.2 which will take place up to

Section 6.7.

Let us suppose from now on that f P PHc�1pMq admits f -invariant foli-

ations Wcs and Wcu such that Wc �WcsXWcu satisfies that fpW q �W for

every W PWc. Let us suppose also that Wc has a dense leaf. The goal is to

show that f must be a discretized Anosov flow.

There are two types of leaves of Wc. The compact ones, that we will call

circles, and the non compact ones, that we will call lines. As shown in the

next lemma, most of the leaves of Wc are lines.

Lemma 6.3.1. For every L ¡ 0 the number of circle leaves of Wc whose

length is less than L is finite. In particular, the set tW PWc :W is compactu

has at most countably many elements.

Proof. The proof of this lemma is immediate by transverse hyperbolicity in

a neighborhood of each compact center leaf of Wc (every such leaf is an

f -invariant compact submanifold that is normally hyperbolic).

Suppose by contradiction that for some L0 ¡ 0 there exists an infinite

number tWcpxnqun¥0 of distinct circle leaves of Wc whose length is less than

L0.

Modulo subsequence one can suppose that the sequence pxnqn has limit

x PM and that the sequence of lengths
�
lengthWcpxnq

�
n
converges to some
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constant L1 ¡ 0. It follows that Wcpxq is compact and that lengthpWcpxqq ¤

L1.

Let ϵ ¡ 0 be a small constant so that Ws
ϵpyq X Ws

ϵpzq � H for every

y, z P Wcpxq such that y � z. And small enough so that Wu
ϵ pyq XWu

ϵ pzq �

H for every y, z P Ws
ϵpW

cpxqq such that y � z. Let κ ¡ 0 be such that

maxt||Dfx||, ||Df
�1
x ||u   κ for every x PM . Let U :�Wu

κ�1ϵpW
s
κ�1ϵpW

cpxqqq.

Note that fpUq � U and that f�1pUq � U . Since f contracts indefinitely

stable and unstable discs for forwards and backwards iterates, respectively,

it follows that Wcpxq �
�
kPZ f

kpUq.

For every n large enough the leafWcpxnq is contained in U . It follows from

fpWcpxnqq � Wcpxnq that W
cpxnq �

�
kPZ f

kpUq. That is, Wcpxnq � Wcpxq

for every n large enough. This gives us a contradiction.

The next two lemmas will allow us to reduce the problem to the case

where Wc is orientable and f preserves the orientation of its leaves. Recall

that f is being supposed to be a dynamically coherent center fixing map.

Then:

Lemma 6.3.2. If fn is a discretized Anosov flow for some n ¡ 1 then f is

a discretized Anosov flow.

Proof. Suppose that fn is a discretized Anosov flow for some n ¡ 1.

Note first that, by Proposition 3.2.2 item (i), if W is a leaf of Wc that is

not compact then fn has no fixed points in W . As a consequence, f has no

fixed points in W either. In particular, f preserves the orientation of W .

By Proposition 3.3.1 there exists L ¡ 0 such that fnpxq PWc
Lpxq for every

x PM . Note that, ifW cpxq is not compact, then the fact that f preserves the

orientation of W cpxq implies that fpxq lies in the center interval rx, fnpxqs

joining x with fnpxq. In particular, fpxq PWc
Lpxq for every x PM such that

Wcpxq is compact.

By Lemma 6.3.1 there are at most countably many compact leaves of

Wc. Given x in a compact leaf W of Wc one can consider a sequence xn
converging to x so that Wcpxnq is not compact for every n. As fpxnq belongs

to Wc
Lpxnq for every n and the sequence fpxnq tends to fpxq one obtains that

fpxq must lie in Wc
Lpxq.

We have shown that fpxq PWc
Lpxq for every x PM . By Proposition 3.3.1

we conclude that f is a discretized Anosov flow.

The above lemma has the following immediate consequence:

Lemma 6.3.3. To show that f is a discretized Anosov flow we can assume

that the foliation Wc is orientable and that f preserves the orientation of

Wc-leaves.
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Proof. Consider a double cover M̃ ofM so that Wc lifts to an orientable foli-

ation W̃c. Let f̃ : M̃ Ñ M̃ be a lift of f . A priori f̃ may not individually fix

every leaf of W̃c. However, f̃2 does. Moreover, f̃4 preserves the orientations

of these leaves.

Let g :� f̃4 and suppose that g is a discretized Anosov flow. It follows

from Proposition 3.3.1 that there exists L ¡ 0 so that gpxq lies in W̃c
Lpx̃q for

every x̃ P M̃ . Then f4pxq lies in Wc
Lpxq for every x PM . It follows that f4 is

a discretized Anosov flow. By Lemma 6.3.2, f itself is a discretized Anosov

flow. This concludes the proof.

By Lemma 6.3.3 we can assume, and we will do so from now on, that the

foliation Wc is orientable and that f preserves the orientation of Wc leaves.

In particular, this allows us to consider the following:

Definition 6.3.4 (Center flow). Let φct : M Ñ M be a flow by arc-length

whose orbits are the leaves of Wc.

We will also work with the following function:

Definition 6.3.5 (Center displacement function). Let us define ρ : M Ñ R

to be

ρpxq :� dcpx, fpxqq

for every x PM .

Remark 6.3.6. It is immediate from Proposition 3.3.1 that if ρ is bounded

then f is a discretized Anosov flow.

Recall that a real valued function F in M is called lower semicontinuous

if for every sequence xn converging to x one has that lim infn F pxnq ¥ F pxq.

Proposition 6.3.7. The function ρ is lower semicontinuous.

Proof. Suppose pxnq is a sequence converging to x. In case lim infn ρpxnq �

�8 then there is nothing to proof. Otherwise, one can consider a subsequence

so that the limit inferior is in fact a limit. By a slight abuse of notation let

us denote this subsequence also pxnq.

For every n let γn : r0, 1s Ñ Wcpxnq denote a C1 curve parametrized by

arc-length so that lengthpγnq � ρpxnq. The sequence 9γnp0q accumulates in a

unitary vector vc in E
cpxq. Up to taking a subsequence (in case �vc is also

an accumulation point), let us suppose that 9γnp0q converges to vc.

Let γ : r0, 1s ÑWcpxq denote the C1 curve parametrized by arc-length so

that 9γp0q � vc. It follows that γn converges with n to γ in the C1 topology.

In particular, lengthpγnq converges to lengthpγq.
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Since γnp1q converges with n to γp1q and γnp1q � fpxnq for every n it

follows that γp1q � fpxq. As γ is a C1 curve in Wcpxq joining x to fpxq it

follows that ρpxq ¤ lengthpγq. Since lengthpγnq � ρpxnq converges with n to

lengthpγq we obtain that ρpxq ¤ limn ρpxnq as desired.

Remark 6.3.8. It is worth noting that we can not expect to show that, in

general, ρ has to be continuous at every point of M . For example, if f is

the time 1 map of an Anosov flow φt : M Ñ M that is parametrized by

arc-length, then ρ will only be continuous in the complement of the set of

periodic orbits of period smaller than 2.

Definition 6.3.9. Let us denote by X � M the set of continuity points of

ρ in M . Namely

X � tx PM | ρ is continuous at xu.

Let us denote by Y � X the set of continuity points x such that Wcpxq

is a line. Namely

Y � tx P X |Wcpxq is a lineu.

Remark 6.3.10. By the semicontinuity of ρ it follows from classical ar-

guments (see for example Lemma 7.3.3) that X is a residual subset of M

(meaning that it is a countable intersection of open and dense subsets ofM).

Recall that a topological space is locally path connected if every point has

a local basis made of path connected open sets.

Proposition 6.3.11. The set Y is residual in M , saturated by leaves of Wc

and locally path connected.

Proof. By Lemma 6.3.1 the set tW P Wc : W is compactu has countably

many elements. Moreover, each of these elements is a nowhere dense subset of

M . Since X is residual in M it follows that Y � Xz
��

WPWc,W is compactW
�

is also residual in M .

Let us see now that Y is saturated by leaves of Wc. Fix δ ¡ 0. The goal

will be to see that Wc
δpxq is a subset of Y for every x P Y .

Let x P Y . The leaf Wcpxq is a line. Let rx, fpxqsc denote the segment

joining x with fpxq insideWcpxq. Let U be an openWc-tubular neighborhood

of rx, fpxqsc. More precisely, U is the image of a certain homeomorphism over

its image Ψ : RdimpMq�1 � R Ñ M such that Ψpp � Rq is contained in a leaf

of Wc for every p P RdimpMq�1 and rx, fpxqsc � Ψp0� Rq.

The open tubular neighborhood U can be considered ‘long and thin’

enough, and a ball Bϵxpxq � U for some ϵx ¡ 0 considered small enough,

so that for every y P Bϵxpxq one has that
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(i) Wc
ρpxq�2δpyq is contained in a center plaque of U ,

(ii) fpWc
2δpyqq is contained in a center plaque of U and

(iii) |ρpyq � ρpxq|   δ.

We claim first that every point in Bϵxpxq is a continuity point of ρ. Indeed,

for every y P Bϵxpxq it follows from (iii) that the set Wc
ρpyq�δpyq is a subset

of Wc
ρpxq�2δpyq. By (i) the set Wc

ρpxq�2δpyq is contained in a center plaque of

U , and fpyq lies in Wc
ρpyq�δpyq by definition of ρ, so y and fpyq must lie in

the same center plaque of U .

For every y P Bϵxpxq let ry, fpyqsc be the center segment in U joining y

with fpyq. Since Wc
ρpyq�δpyq � U it follows that ρpyq � lengthry, fpyqsc for

every y P Bϵxpxq.

Given a sequence pynq in Bϵxpxq converging to y P Bϵxpxq, the center

plaque of U containing yn approaches the one containing y. Since fpynq tends

to fpyq it follows that ryn, fpynqsc converges to ry, fpyqsc in the Hausdorff

topology. Then ρpynq converges to ρpyq. This proves the claim.

Suppose now that z is a point in Wc
δpxq and pznq is a sequence converging

to z. Let pxnq be a sequence converging to x so that zn belongs to Wc
δpxnq

for every n. For every n large enough the point xn lies in Bϵxpxq, so xn and

fpxnq lie in the same center plaque of U as it was seen above.

Modulo dropping the first iterates of the sequence suppose without loss

of generality that xn lies in Bϵxpxq for every n. Then by (i) and (ii) one has

that Wc
δpxnq � U and fpWc

δpxnqq � U for every n.

Since rxn, fpxnqsc is contained in a center plaque of U it follows that

Wc
δpxnqY rxn, fpxnqscY fpW

c
δpxnqq is a center segment that is also contained

in the same center plaque of U . Since zn lies Wc
δpxnq and fpznq lies in

fpWc
δpxnqq one obtains that zn and fpznq also lie in the same center plaque

of U for every n.

Let rzn, fpznqsc denote the center segment in U joining zn with fpznq for

every n. Since xn lies in Bϵxpxq we have shown above that Wc
ρpxnq�δ

pxnq is

contained in a center plaque of U . So zn P Wc
δpxnq implies that Wc

ρpznq
pznq

is contained in the same center plaque of U . This shows that ρpznq is equal

to the length of rzn, fpznqsc for every n.

As above, the sequence rzn, fpznqsc needs to converge to rz, fpzqsc in the

Hausdorff topology. One obtains that ρpznq converges to ρpzq. That is, z is

a continuity point of ρ.

We have shown that for every x P Y the set Wc
δpxq is a subset of Y for

some uniform δ ¡ 0. We conclude that Y is saturated by leaves of Wc.

Locally, the set Y is an open subset ofM minus, at most, countably many

center plaques corresponding to circle leaves of Wc. It is immediate from this
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that Y is locally path connected.

6.4 Expansivity of the center flow and u-recurrent

points

6.4.1 There are no s or u-recurrent points

The goal of this subsection is to show that a certain ‘bad’ type of points,

denoted as s and u-recurrent points, can not occur.

Let us start by pointing out the following lemmas.

Lemma 6.4.1. There are at most finitely many line leaves of Wc having

fixed points. Moreover, in every such a leaf the fixed points lie in a bounded

interval of the leaf.

Proof. Given x P M let Ux be a small Wc foliation box neighborhood of x.

By transverse hyperbolicity (see for example Lemma 6.3.1 for more details)

the set Ux contains at most one center plaque Ix such that fpIxq X Ix � H.

Consider a finite subcover tUx1 , . . . , UxN u of M . Every fixed point of f must

lie in Ix1 Y . . .Y IxN . This proves the lemma.

Lemma 6.4.2. Two distinct circle leaves of Wc can not intersect the same

leaf of Ws. And every circle leaf of Wc intersects every leaf of Ws in at most

one point.

Proof. Suppose by contradiction that two distinct circle leaves W,W 1 P Wc

intersect the same leaf of Ws in points x P W and y P W 1. By iterating

forwards one obtains that dpfnpxq, fnpyqq tends to zero. By the center fixing

property fnpxq and fnpyq are points in W and W 1, respectively, for every

n. This contradicts the fact that the disjoint compact sets W and W 1 are at

positive distance from each other.

Given a circle leaf W PWc there exists δ ¡ 0 such that
�
xPW Ws

δpxqztxu

is disjoint from W , otherwise W would not be compact. If one supposes,

by contradiction, that W intersects the same leaf of Ws in two different

points x and y then dpfnpxq, fnpyqq will be smaller than δ for some large

enough n ¡ 0. Since fnpxq and fnpyq are points in W this contradicts that

Ws
δpf

npxqqztfnpxqu is disjoint from W .

Notation. From now on, given x P M and y P Wcpxq such that Wcpxq is a

line let px, yqc denote the open center segment from x to y inside Wcpxq. In

case Wcpxq is a circle let px, yqc denote the center segment joining x and y,

and containing φctpxq for every small enough positive t.
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Moreover, in case Wcpxq is a line let px,�8qc and px,�8qc denote the

connected component ofWcpxqzx containing negative and positive φct -iterates

of x, respectively.

Analogously let us define the closed rx, ysc and half-open rx, yqc and px, ysc
center segments.

Definition 6.4.3. We say that a point x in M is a s-recurrent point if for

some ϵ ¡ 0 there exists a sequence pynq so that yn PWcpxqXpWs
ϵpxqztxuq for

every n and pynq converges to x. Analogously we define u-recurrent points.

It follows immediately from the definition of s and u-recurrent points that

circle leaves of Wc do not contain any of them. Let us see that line leaves of

Wc do not contain them either.

Proposition 6.4.4. There are no s or u-recurrent points in M .

Proof. Let us see that there are no u-recurrent points in M . To show that

there are no s-recurrent points the reasoning is analogous.

Suppose by contradiction that x is a u-recurrent point. There exists ϵ ¡ 0

and yn PWcpxq X pWu
ϵ pxqztxuq such that yn

n
ÝÑ x.

As Wcpxq is a line it follows that yn Ñ 8 in Wcpxq, meaning that for

every R ¡ 0 the points yn do not lie in Wc
Rpxq for every n large enough.

Modulo subsequence, suppose without loss of generality that yn tends to �8

inWcpxq. It will be clear from the proof that if yn tends to �8 the arguments

are analogous.

By Lemma 6.4.1 there exists p PWcpxq the ‘last’ fixed point of f in Wcpxq

(if any fixed point exists) so that pp,�8qc has no fixed points. In case Wcpxq

has no fixed points of f let p � �8. Note that being a u-recurrent point

is clearly a Wc-saturated property. We can assume then, without loss of

generality, that x lies in pp,�8qc.

Note that the half-open center segment rx, fpxqqc is a fundamental domain

for f restricted to pp,�8qc. So there exists xn P rx, fpxqqc and kn P Z such

that yn � fknpxnq for every n. Note that either kn Ñ �8 or kn Ñ �8 as n

tends to �8.

Consider Wu
δ prf

�1pxq, f2pxqscq for some δ ¡ 0 small so that Wu
δ pwq X

Wu
δ pw

1q � H for every w,w1 P rf�1pxq, f2pxqsc such that w � w1. For δ1 ¡ 0

small enough let Hc : Wu
δ1pxq Ñ Wu

δ pfpxqq be a center holonomy map so

that rz,Hcpzqsc is a center segment in Wu
δ prx, fpxqscq for every z P Wu

δ1pxq.

Note that δ1 ¡ 0 can be considered small enough so that fprz,Hcpzqscq lies

in Wu
δ prfpxq, f

2pxqscq and f
�1prz,Hcpzqscq lies in Wu

δ prf
�1pxq, xscq for every

z P Wu
δ1pxq. And small enough so that for every z P Wu

δ1pxq the center

segment Iz from Wu
δ pf

�1pxqq to Wu
δ pfpxqq containing z and contained in

Wu
δ prf

�1pxq, f2pxqscq is well defined. Let U be the set
�
zPWu

δ1
pxq Iz. Note that
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U is a foliation box neighborhood for the foliations Wc and Wu restricted to

Wcupxq.

In U consider πu : U Ñ Wu
δ1pxq the projection along centers so that

πupIzq � z for every z PWu
δ1pxq. And for every n let Hc

n : Wu
δ1pxq ÑWu

δ pxnq

be such that Hc
npzq is the intersection of Iz with Wu

δ pxnq for every z PWu
δ1pxq.

Let δ2 ¡ 0 be such that Wu
δ2pzq is contained in U for every z in the

segment rf�1pxq, f2pxqsc. In particular, for every n the inverse map pHc
nq
�1

is well defined from Wu
δ2pxnq to Wu

δ1pxq.

Consider N large enough so that yN lies in Wu
δ1pxq. And so that f�|kN |

contracts distances enough so that Wu
δ1pwq is sent inside W

u
δ2{2pf

�|kN |pwqq for

every w PM .

In case kN ¡ 0 the map pHc
N q

�1 � f�kN is a continuous map that sends

Wu
δ1pxq strictly inside itself. In case kN   0 then fkN � Hc

N is a continuous

map that sends Wu
δ1pxq strictly inside itself. Covering both scenarios at the

same time, let z0 denote the fixed point of this map. In the first case f�kN pz0q

lies in Iz0 and in the second case fkN pz0q lies in Iz0 . In both cases f2pz0q and

f�2pz0q do not lie in Iz0 . This implies that Wcpz0q must be compact because

f |Wcpz0q : W
cpz0q ÑWcpz0q is an orientation preserving homeomorphism and

in case Wcpz0q is a line the fact that f2pz0q and f�2pz0q do not lie in Iz0
would imply that fnpz0q does not lie in Iz0 either for every |n| ¥ 2.

Consider now δ1 ¡ 0 so thatWu
δ1
prf�1pxq, f2pxqscq is disjoint fromWcpz0q.

One can replicate the argument above to obtain z1 inWu
δ11
pxq, for some δ11 ¡ 0,

so that Wcpz1q is compact.

AsWcpz0q andWcpz1q are two distinct compact leaves ofWc that intersect

the same Wu-leaf we get to a contradiction with Lemma 6.4.2.

6.4.2 The center flow is expansive

The goal of this subsection is to show that φct :M ÑM is an expansive flow.

Definition 6.4.5. Given a non-singular flow ϕt : X Ñ X in a metric spaceX

and a constant ϵ ¡ 0 the flow ϕt is said to be ϵ-expansive if for every x, y P X

and h : RÑ R an increasing homeomorphism with hp0q � 0 satisfying

dpϕtpxq, ϕhptqpyqq   ϵ @t P R

one has that y lies in a piece η of the ϕt-orbit of x satisfying η � Bϵpxq.

Remark 6.4.6. Let us fix from now on ϵ0 ¡ 0 a small constant so that

at scale 10ϵ0 one has local product structure and almost constant invariant

bundles. To be more precise, one can fix a metric in M and consider ϵ0 to

be equal to δpf0q as given by Lemma 4.2.1.
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In particular, ϵ0 and the metric in M are such that if dpx, yq � ϵ for

some 0   ϵ ¤ ϵ0 then Wσ
2ϵpxq intersect W

σ1
2ϵpyq, and this intersection point is

unique, for every pσ, σ1q P tps, cuq, pcs, uqu.

Recall that φct : M Ñ M denotes a unit speed flow whose orbits are the

leaves of Wc.

Proposition 6.4.7. The flow φct is ϵ0-expansive.

Proof. We claim first that, by dynamical coherence, it is enough to show that

φct is 2ϵ0-expansive in restriction to Wcu and Wcs leaves for their intrinsic

topology.

Let us show the claim. Assume that φct is 2ϵ0-expansive in restriction to

Wcu and Wcs leaves and suppose that x and y are two points in M such that

there exists h : RÑ R an increasing homeomorphism satisfying hp0q � 0 and

dpϕtpxq, ϕhptqpyqq   ϵ0 for every t P R. It follows that Wu
2ϵ0
pϕhptqpyqq must

intersect Wcs
2ϵ0
pϕtpxqq for every t P R, and this intersection point is unique.

Let ycs :� Wu
2ϵ0
pyq X Wcs

2ϵ0
pxq. It follows that there exists an increas-

ing homeomorphisms hcs : R Ñ R satisfying that hcsp0q � 0 and that

dcspϕtpxq, ϕhcsptqpycsqq   2ϵ0 for every t P R, where dcs denotes the in-

trinsic distance in Wcs leaves and where ϕhcsptqpycsq is the intersection of

Wu
2ϵ0
pϕhptqpyqq and Wcs

2ϵ0
pϕtpxqq for every t P R.

Since φct is 2ϵ0-expansive inside Wcs leaves it follows that ycs must lie in

a local piece of φct -orbit of x. Analogously, using that φct is 2ϵ0-expansive

inside Wcu leaves it follows that the point ycu :�Ws
2ϵ0
pyq XWcu

2ϵ0
pxq lies also

in a local piece of φct -orbit of x. As a consequence of both facts, y itself must

lie in a local piece of φct -orbit of x. This shows the claim.

Let us see that φct is 2ϵ0-expansive inside Wcu leaves. For Wcs leaves the

reasoning is analogous. Consider x P M , y P Wcupxq and h : R Ñ R an

increasing homeomorphism such that hp0q � 0 and dcupφ
c
tpxq, φ

c
hptqpyqq   2ϵ0

for every t P R. Let yu denote the intersection ofWc
4ϵ0
pyq withWu

4ϵ0
pxq. There

exists hu : R Ñ R an increasing homeomorphism satisfying that hup0q � 0

and φchuptqpyuq equal to the intersection of Wc
4ϵ0
pφchptqpyqq with Wu

4ϵ0
pφctpxqq

for every t P R. If we show that yu � x then we show that y lies in a local

piece of the φct -orbit of x.

For simplicity in the notation, let us rename y � yu and h � hu. Suppose

by contradiction that x � y. As a consequence, the point φchptqpyq lies in

Wu
4ϵ0
pφctpxqqzφ

c
tpxq for every t P R.

Let N ¡ 0 be such that f�N contracts distances inside Wu leaves. For

every n ¥ N there exists tn P R so that φctnpxq � fnpxq. One obtains that

zn :� f�npφchptnqpyqq is a sequence in Wcpyq X Wu
4ϵ0
pxqzx converging to x.

Analogously, there exists t1n P R so that fnpyq � φchpt1nq
pyq for every n ¥ N
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and then wn :� f�npφct1npxqq is a sequence in Wcpxq XWu
4ϵ0
pyqzy converging

to y.

Let δn ¡ 0 be such that Wu
δn
pznq is a subset of Wu

4ϵ0
pxqzx for every n ¥ N .

Consider a compact center segment ry, znsc in Wcpyq joining y with zn. For

each n, by taking wkn close enough to y one can construct a center segment

rwkn , w
1
nsc close enough to ry, znsc so that w1n lies in Wu

δn
pznq.

Since zn converges to x then w1n converges to x as well. Moreover, w1n
lies in Wcpxq XWu

4ϵ0
pxq for every n and is different from x since Wu

δn
pznq is

disjoint from txu. One obtains that x is a u-recurrent point. By Proposition

6.4.4 this gives us a contradiction.

6.4.3 No fixed points in lines of Wc

Another consequence of the non-existence of s and u-recurrent points is the

following statement (which is the only goal of this subsection).

Proposition 6.4.8. If x is a fixed point of f then Wcpxq is compact.

Proof. Suppose by contradiction that x is a fixed point in a leaf C PWc that

is not compact. Recall that px,�8qc denotes the connected component of

Wcpxqztxu containing positive iterates of x by φct . By Lemma 6.4.1 we can

suppose, without loss of generality, that px,�8qc has no fixed points of f .

Since f preserves the orientations of Wc leaves it follows that px,�8qc is

invariant by f . As a consequence, either for every y P px,�8qc the sequence

fnpyq tends to x as n tends to �8 or for every y P px,�8qc it tends to x

as n tends to �8. Suppose without loss of generality the later, otherwise

the argument is analogous with WspCq in the place of WupCq and f�1 in the

place of f .

The proof now continuous with a series of claims.

Claim 1. The leaf Wupxq intersects C only in x.

Proof. Suppose by contradiction that y is a point in pWupxqztxuq X C. Since

f contracts distances indefinitely on Wu leaves and x is fixed by f it follows

that the sequence f�npyq tends to x inside Wupxq as n tends to �8. By

the center fixing property f�npyq lies in C for every n. One obtains that x is

a u-recurrent point and this contradicts Proposition 6.4.4. This proves the

first claim.

Claim 2. The interval ry, fpyqsc is not contained in WupCq for every y P

Wupxqzx.
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Proof. Suppose by contradiction that ry, fpyqsc is contained in WupCq for

some y P Wupxqzx. Let γ : r0, 1s Ñ ry, fpyqsc be a homeomorphism over its

image such that γp0q � y and γp1q � fpyq. One can consider puγ : r0, 1s Ñ C

the unique continuous curve such that puγp0q � x and γptq P Wuppuγptqq

for every t P r0, 1s. The curve puγ can be seen as a projection by unstable

holonomy of γ to C.

On the one hand, it is immediate to check that puγ from r0, 1s to C is a

local homeomorphism. Thus a homeomorphism over its image since C is a

line. In particular, puγp1q needs to be different from x. On the other hand, y

lies in Wupxq and, as x is fixed by f , the point fpyq lies also in Wupxq. As a

consequence, puγp1q lies in WupxqXC and by the previous claim this implies

that puγp1q � x. Since also puγp0q � x one gets to a contradiction with the

injectivity of puγ. This shows the second claim.

It follows from the previous claim that for every y P Wupxqzx the supre-

mum ty :� suptt | φcspyq P WupCq @s P r0, tqu is finite. Indeed, if Wcpyq is

compact or Wcpyq is a line such that φc1pyq and fpyq lie in the same con-

nected component of Wcpyqzy the existence of ty finite follows directly from

ry, fpyqsc not contained in WupCq. In the case that Wcpyq is a line such

that φc1pyq and fpyq lie in different connected components of Wcpyqzy the

existence of ty finite follows directly from the fact that rf�1pyq, ysc, which is

equal to f�1
�
pry, fpyqsc

�
, is not contained in WupCq because ry, fpyqsc is not

contained in WupCq and WupCq is f -invariant.

Let BcuW
upCq denote the boundary of WupCq as a subset of WcupCq.

It follows that φctypyq lies in BcuW
upCq for every y P Wupxqzx. Let pc :

Wupxqztxu Ñ BcuW
upCq denote the map pcpyq :� φctypyq. Note that, since

WupCq is saturated by Wu leaves, then BcuW
upCq is the union of Wu leaves.

Fix from now on y0 P Wupxqztxu and x0 :� pcpy0q. We will see in the

following claim that pc needs to be a homeomorphism from the connected

component of Wupxqztxu containing y0 to the leaf Wupx0q.

If this third claim is true and dimpEuq ¥ 2 we get to an immediate

contradiction since Wupxqztxu is homeomorphic to RdimpEuqzt0u and Wupx0q

homeomorphic to RdimpEuq. And if this third claim is true and dimpEuq � 1

a contradiction arrives as follows: Note that pc � fpyq � f � pcpyq for every

y P Wupxqztxu. As a consequence, Wupx0q is invariant by f2 since the

connected component of Wupxqztxu containing y0 is invariant by f2. Since

f�2 induces a contraction on Wupx0q it follows that W
upx0q has a fixed point

p P Wupx0q for f
2. As a consequence, q :� ppcq�1ppq is a fixed point of f2

in Wupxqztxu. We get to a contradiction since x and q would be two fixed

points of f2 in the same leaf of Wu.

It remains to show the following claim.
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Claim 3. The map pc is a homeomorphism from the connected component

of Wupxqztxu containing y0 to the leaf Wupx0q.

Proof. Let us see first that pc is injective. Indeed, suppose by contradiction

that there exists y, y1 P Wupxqztxu such that pcpyq � pcpyq and y � y1. Sup-

pose without loss of generality that y1 P py,�8qc. Let γy,y1 : r0, 1s Ñ py, y1qc
be a homeomorphism over its image such that γy,y1p0q � y and γy,y1p1q � y1.

As above, one can consider puγy,y1 : r0, 1s Ñ C the continuous curve such

that puγy,y1p0q � x and γy,y1ptq PWuppγy,y1ptqq for every t P r0, 1s. The curve

puγy,y1 is a local homeomorphism, thus a homemomorphism over its image.

But puγy,y1p0q � puγy,y1p1q by the first claim. This gives us a contradiction

and shows that pc is injective.

The continuity of pc and ppcq�1 is immediate from the regularity of Wc.

Moreover, for every y P Wupxqztxu there exists ϵ ¡ 0 such that pcpWu
ϵ pyqq

is sent by pc to a neighborhood of pcpyq in Wupyq. As a consequence the

connected component of Wupxqztxu containing y0 has it image by pc inside

Wupx0q.

It remains to show that pc is surjective over Wcpx0q. Let γ : r0, 1s Ñ

rx0, y0sc be a homeomorphism over its image such that γp0q � x0 and γp1q �

y0. As before, one can consider puγ : r0, 1s Ñ C the continuous curve such

that puγp0q � x and γptq PWuppγptqq for every t P r0, 1s. The curve puγ is a

local homeomorphism. In particular the image of puγ lies in rx,�8qc.

Suppose x1 P Wupx0q. Let us see that x1 is in the image of pc. The

center segment py0, x0qc is a subset of WupCq. By unstable holonomy inside

WupCq one can see that there exists z1 in Wc
locpx1q such that pz1, x1qc is

contained in WupCq. And such that for some z P px0, y0qc one has that

Wupzq X pz1, x1qc � H. Let w denote a point in this intersection. It follows

from the previous paragraph that WupwqX rx,�8qc � H. Let w1 be a point

on this intersection.

Let U be a small foliation box of the foliation Wc restricted to Wcupxq

such that x lies in U and U � WupCq. Recall that for every y P rx,�8qc
the sequence f�npyq tends to x as n tends to �8. Then, for N ¡ 0 large

enough f�N pw1q lies in U . And since f�1 contracts distances in Wu leaves

and w P Wupw1q then N can be considered large enough so that f�N pw1q

also lies in U .

Let w2 P Wu
locpxq be such that rw2, f�N pw1qsc is a center segment in a

plaque of U . It follows that pw2, f�N pw1qscYrf
�N pw1q, f�N px1qqc is a center

segment contained in WupCq joining w2 with f�N px1q. Namely, the center

segment pw2, f�N px1qqc. That is, f
�N px1q lies in the image of pc. It follows

from pc � f � f � pc that x1 itself is in the image of pc. This shows that

pc is surjective over Wupx0q. This ends the proof of the third claim and of
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Proposition 6.4.8.

6.4.4 Coherent behavior of f and φct in Y

Informally, this subsection shows in Lemma 6.4.10 that, modulo inverting the

time of φct , forwards interates of f and φct displace points of Y in the same

direction along the leaves of Wc.

Remark 6.4.9. Note that, since Wc has a dense leaf then φct :M ÑM is a

transitive flow. It follows by classical arguments 1 that there exists a residual

subset of points in M whose backwards and forwards orbit by φct is dense in

M .

Since the intersection of two residual sets in M is non empty and the

subset Y � M is residual by Proposition 6.3.11 then there exists a point in

Y whose backwards and forwards orbit by φct is dense in M .

Suppose x0 P Y . It follows from Proposition 6.4.8 that fpx0q lies in one

of the two connected components of Wcpx0qzx0. Modulo inverting the time

of φct :M ÑM let us suppose from now on that φc1px0q and fpx0q lie in the

same connected component of Wcpx0qzx0.

Recall that by Proposition 6.3.11 the set Y � M is a residual, Wc-

saturated and locally path connected subset of M . The transitive hypothesis

on Wc combined with Proposition 6.3.11 allows us to make connection argu-

ment to obtain the following.

Lemma 6.4.10. For every x P Y the points fpxq and φc1pxq lie in the same

connected component of Wcpxqzx.

Proof. Let x be any point in Y . Since Y contains a dense leaf L of Wc it

follows that we can join x with x0 by a curve γ � Y . Indeed, such a curve

γ can be constructed as the concantenation of a local curve γ1 � Y joining

x with a point y P L, a curve γ2 contained in L joining y with another point

z P L, and a local curve γ3 � Y joining x0 with z.

By Proposition 6.4.8 the function ρ has no zero in γ. Since ρ|γ : γ Ñ R is

continuous and ρpx0q ¡ 0 it follows that ρpxq ¡ 0. That is, fpxq and φ1pxq

lie in the same connected component of Wcpxqztxu.

1Indeed, given a countable base of M by open sets tUnun¥0 it follows from the transi-
tivity of φc

t that Vn �
�

t¤0 φ
c
tpUnq is open and dense for every n ¥ 0. Then

�
n¥0 Vn is a

residual subset of M whose points have a forwards dense φc
t -orbit.
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6.5 Uniform size of stable and unstable sets of φct

The goal of this section is to show Proposition 6.5.2 (stated below) relating

local stable and unstable leaves of f with local stable and unstable sets of

φct .

Definition 6.5.1. Given ϵ ¡ 0 and x PM let us consider Sϵpxq the forwards

ϵ-stable set of x for the flow φct , that is, the set of points y P M such that

there exists a homeomorphism h : r0,�8q Ñ r0,�8q satisfying

dpφctpxq, φ
c
hptqpyqq ¤ ϵ,

for every t ¥ 0. Analogously we define Uϵpxq the backwards ϵ-stable set of x.

Proposition 6.5.2 (Uniform size of stable and unstable sets). For every

ϵ ¡ 0 there exists δ ¡ 0 such that for every x P M one has Ws
δpxq � Sϵpxq

and Wu
δ pxq � Uϵpxq.

The proof of Proposition 6.5.2 is done in incremental stages of generality.

First, Lemma 6.5.3 for points in Y and a point-dependent δ. Second, Lemma

6.5.6 for points in Y and uniform δ along backwards or forwards orbits of φct .

Finally, Proposition 6.5.2 for any point in M and uniform δ via passing to

the limit.

Lemma 6.5.3. Suppose x P Y . For every ϵ ¡ there exists δ ¡ 0 such that

Ws
δpxq � Sϵpxq and Wu

δ pxq � Uϵpxq.

Proof. Suppose ϵ ¡ 0. Let us see that there exists δ ¡ 0 such that Ws
δpxq �

Sϵpxq. To show that there exists δ ¡ 0 so that Wu
δ pxq is contained in Uϵpxq

one argues analogously.

Let δ1 ¡ 0 be such that for every z and z1 in the center segment rx, fpxqsc
joining x with fpxq one has that Ws

δ1pzq XWs
δ1pz

1q � H if z � z1. Let us

consider δ1 ¡ 0 small enough so that fnpWs
δ1pzqq is contained in Ws

ϵpf
npzqq

for every z P rx, fpxqsc and n ¥ 0.

Since x is a point in Y then ρ is continuous in x. One can consider δ ¡ 0

small enough so that for every y PWs
δpxq one has that ry, fpyqsc is a subset of

Ws
δ1prx, fpxqscq. Then rfnpyq, fn�1pyqsc is a subset of Ws

ϵprf
npxq, fn�1pxqscq

for every n ¡ 0.

Given y P Ws
δpxq one can consider h0 from I0 :� r0, ρpxqs � R to R an

increasing homeomorphism over its image such that h0p0q � 0 and φh0ptqpyq

lies in Ws
ϵpφ

c
tpxqq for every t P I0. Then one can consider h1 from I1 :�

rρpxq, ρpxq� ρpfpxqqs � R to R so that h0pρpxqq � h1pρpxqq and φ
c
h1ptq

pyq lies

in Ws
ϵpφtpxqq for every t P I1. And inductively, for every n ¡ 0, a function

hn defined in In :� rρpxq � . . . � ρpfn�1pxqq, ρpxq � . . . � ρpfnpxqqs so that
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hn�1 and hn take the same value in ρpxq � . . . � ρpfn�1pxqq and such that

φchnptqpyq lies in Ws
ϵpφtpxqq for every t P In.

By Proposition 6.4.8 it follows that r0,�8q �
�
n¥0 In. Since hn and

hn�1 coincide in In X In�1 for every n ¥ 0 it follows that h : r0,�8q Ñ

r0,�8q defined as hpxq � hnpxq for every x P In is a well defined homeomor-

phism over its image. Moreover, by Proposition 6.4.8 and Lemma 6.4.10 the

image of t ÞÑ φchptqpyq, namely ry, fpyqsc Y rfpyq, f2pyqsc Y . . ., needs to be

equal to ry,�8qc. This shows that h is surjective, thus a homeomorphism.

One concludes that dpφctpxq, φ
c
hptqpyqq ¤ ϵ for every t ¥ 0, for h : r0,�8q Ñ

r0,�8q the homeomorphism constructed above. That is, y lies in Sϵpxq.

The next one is a technical lemma that will be used in this section. For

simplicity, from now on whenever we refer to the stable distance dspx, yq

between two points x, y P M we will implicitly mean that both points lie in

the same leaf of Ws. Recall the constant ϵ0 ¡ 0 from Remark 6.4.6.

Lemma 6.5.4. Let ϵ ¡ 0 be a constant such that ϵ ¤ ϵ0 and I � R be an

interval containing 0. Suppose that pxnq and pynq are two sequences in M

such that there exist increasing and continuous maps hn : I Ñ R satisfying

that hnp0q � 0 and dspφ
c
tpxnq, φ

c
hnptq

pynqq ¤ ϵ for every t P I.

If xn
n
ÝÑ x and yn

n
ÝÑ y then there exists h : I Ñ R increasing and

continuous such that hp0q � 0 and dspφ
c
tpxq, φ

c
hptqpyqq ¤ ϵ for every t P I.

Moreover, such a map h : I Ñ R is unique and is given by hptq � limn hnptq

for every t P I.

Proof. Note that, by taking t � 0, one gets that xn lies in Wspynq and

dspxn, ynq ¤ ϵ for every n. As a consequence, y lies in Wspxq and dspx, yq ¤ ϵ.

Let us suppose first that I � ra, bs for some a, b P R such that a ¤ 0 ¤ b.

Let T� denote the supremum of the points s P r0, bs such that there exists

hs : r0, ss Ñ R increasing and continuous satisfying that hsp0q � 0 and

dspφ
c
tpxq, φ

c
hsptq

pyqq ¤ 2ϵ for every t P r0, ss.

Note that, since dspx, yq ¤ ϵ, then T� ¡ 0. Moreover, note that if

s P r0, T�q then the increasing and continuous map hs as above is unique.

And that if s1 P r0, T�q and s ¤ s1 then hs1 coincides with hs in r0, ss.

We claim that T� needs to be a maximum. Indeed, one can define h :

r0, T�s Ñ R increasing and continuous as hptq � hsptq for every t P r0, T�q

and every s P r0, T�q so that t   s, and define hpT�q as limt hptq for t P

r0, T�q. Then if psnq is a sequence in r0, T�q converging to T� one has that

dspφ
c
snpxq, φ

c
hsn psnq

pyqq ¤ ϵ for every n implies that dspφ
c
T�pxq, φ

c
hpT�qpyqq ¤

ϵ.

Moreover, note that if we show that dspφ
c
tpxq, φ

c
hptqpyqq ¤ ϵ for every t P

r0, T�s then T� � b. This is because, if T�   b and dspφ
c
T�pxq, φ

c
hpT�qpyqq ¤
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ϵ, then one can extend h to an interval strictly larger that r0, T�s, and still

contained in I, so that dspφ
c
tpxq, φ

c
hsptq

pyqq ¤ 2ϵ for every t on this interval,

contradicting that T� is a maximum.

Note that the continuity of φct implies that limn φ
c
tpxnq � φctpxq for every

t P r0, T�s. We claim that limn φ
c
hnptq

pynq � φchptqpyq and dspφ
c
tpxq, φ

c
hptqpyqq ¤

ϵ for every t P r0, T�s.

Indeed, let us start by fixing t P r0, ϵ0sX r0, T
�s. The sequence φchnptqpynq

lies in B2ϵ0pxq for every n large enough. Let w be an accumulation point

of this sequence. It follows from dspφ
c
tpxnq, φ

c
hnptq

pynqq ¤ ϵ ¤ ϵ0 for every

n that dspφ
c
tpxq, wq ¤ ϵ0. Moreover, since t P r0, ϵ0s then φchnptqpynq lies

in Wc
2ϵ0
pynq. And since the sequence pynq converges to y then Wc

2ϵ0
pynq

converges to Wc
2ϵ0
pyq in the Hausdorff topology. One obtains that w lies in

the intersection of Wc
2ϵ0
pyq and Ws

2ϵ0
pφctpxqq.

Since at scale 10ϵ0 this intersection can only happen in one point (recall

the definition of ϵ0 in Remark 6.4.6) it follows that w is unique, independently

of the subsequence. That is, limn φ
c
hnptq

pynq � w. Moreover, since φchptqpyq lies

in the intersection of Wc
2ϵ0
pyq and Ws

2ϵ0
pφctpxqq it follows that w � φchptqpyq.

This shows that limn φ
c
hnptq

pynq � φchptqpyq and dspφ
c
tpxq, φ

c
hptqpyqq ¤ ϵ0 for

every t P r0, ϵ0s.

One argues analogously to show that for every t P rϵ0, 2ϵ0s X r0, T�s one

has that limn φ
c
hnptq

pynq � φchptqpyq and dspφ
c
tpxq, φ

c
hptqpyqq ¤ ϵ0. Inductively

one obtains that this happens for every t P r0, T�s. This shows the claim.

Analogously, via auxiliary T� P ra, 0s and showing that T� � a one

can extend h to h : ra, bs Ñ R increasing and continuous satisfying that

limn φ
c
hnptq

pynq � φchptqpyq and dspφ
c
tpxq, φ

c
hptqpyqq ¤ ϵ0 for every t P ra, bs.

By construction, such a h : I Ñ R is unique and it follows from the limit

limn φ
c
hnptq

pynq � φchptqpyq and the continuity of φct that limn hnptq � hptq for

every t P ra, bs. This shows the lemma for I closed and bounded.

In case I � R is another type of interval it is enough to write I as

the increasing union of closed bounded intervals Ik. For such Ik there ex-

ists hpkq : Ik Ñ R increasing and continuous such that hpkqp0q � 0 and

dspφ
c
tpxq, φ

c
hpkqptq

pyqq ¤ ϵ for every t P Ik. Since h
pkqptq � limn hnptq for every

t P Ik then h : I Ñ R is well defined by hptq :� limn hnptq and satisfies that

dspφ
c
tpxq, φ

c
hpkqptq

pyqq ¤ ϵ for every t P I.

The next one is a classical argument from expansive systems, though

adapted to our context for simplicity. Recall that, by Proposition 6.4.7, the

flow φct is ϵ0-expansive.

Lemma 6.5.5. There is no pair of sequences pxnq and pynq in M such that:

1. The point yn lies in Ws
δn
pxnq for some sequence δn

n
ÝÑ 0.
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2. There exist homeomorphisms hn : r0,�8q Ñ r0,�8q such that φchnptqpynq

lies in Wspφctpxnqq and

dspφ
c
tpxnq, φ

c
hnptq

pynqq ¤ ϵ0 (6.5.1)

for every t P r0,�8q.

3. There exists δ ¡ 0 and tn P r0,�8q such that

dspφ
c
tnpxnq, φ

c
hnptnq

pynqq � δ (6.5.2)

for every n.

Analogously for u in the place of s and p�8, 0s in the place of r0,�8q.

Proof. Suppose by contradiction that such a pair of sequences exists. Up to

taking a subsequence suppose that the sequence zn :� φctnpxnq converges to

a point z8 and that the sequence wn :� φchnptnqpynq converges to a point w8.

Since wn P Wspznq and dspzn, wnq � δ for every n it follows that w8 P

Wspz8q and dspz8, w8q � δ. In particular, w8 is different from z8 and does

not lie in Wc
ϵ0pz8q. To get to a contradiction, let us see that the φct -orbit of

z8 and w8 do not ϵ0-separate, contradicting the expansivity of φct .

For every n let gn : r�tn,�8q Ñ R be the increasing and continuous

map given by gnptq � hnpt� tnq � hnptnq for every t P r�tn,�8q. We claim

that φcgnptqpwnq lies in Wspφctpznqq and that dspφ
c
tpznq, φ

c
gnptq

pwnqq ¤ ϵ0 for

every t P r�tn,�8q. Indeed, note that hnptnq is the time it takes yn to get

to wn by the flow φct . It follows that, for every t P r�tn,�8q, one has that

φcgnptqpwnq � φchnpt�tnq � φ
c
�hnptnq

pwnq � φchnpt�tnqpynq. Since φct�tnpxnq �

φctpznq then dspφ
c
tpznq, φ

c
gnptq

pwnqq ¤ ϵ0 for every t P r�tn,�8q by (6.5.1).

This proves the claim.

Since δn
n
ÝÑ 0 it follows that tn tends to �8. Let T ¡ 0. There exists

N such that tn ¡ T for every n ¥ N . Let Hn : r�T,�8q Ñ R, for every

n ¥ N , be the increasing and continuous map given by the restriction of gn
to r�T,�8q.

By Lemma 6.5.4 for I � r�T,�8q it follows that there exists hT :

r�T,�8q Ñ R increasing and continuous such that hp0q � 0 and such that

dspφ
c
tpz8q, φ

c
hT ptq

pw8qq ¤ ϵ0 for every t P r�T,�8q.

Moreover, Lemma 6.5.4 tells us that hT ptq is equal to limnHnptq for every

t P r�T,�8q. This shows that if one performs the above construction for

another T 1 ¡ 0 such that T 1 ¡ T then the map hT 1 coincides with hT in

r�T,8q. As a consequence, there exists a well defined increasing and con-

tinuous map h : R Ñ R (given by hptq � hT ptq for every T ¡ 0 such that

t ¥ �T ) such that hp0q � 0 and such that dspφ
c
tpz8q, φ

c
hptqpw8qq ¤ ϵ0 for
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every t P R. This contradicts that the flow φct is ϵ0-expansive by Proposition

6.4.7.

Using the previous lemmas one can show the following.

Lemma 6.5.6. Suppose x P Y . For every ϵ ¡ 0 there exists δ ¡ 0 such that

Ws
δpφtpxqq � Sϵpφtpxqq for every t ¤ 0 and Wu

δ pφtpxqq � Uϵpφtpxqq for every

t ¥ 0.

Proof. Suppose ϵ ¡ 0. Given x P Y , let us see that there exists δ ¡ 0 such

that Ws
δpφ

c
tpxqq is contained in Sϵpφ

c
tpxqq for every t ¤ 0. To show that there

exists δ ¡ 0 so that Wu
δ pφ

c
tpxqq is contained in Uϵpφ

c
tpxqq for every t ¥ 0 one

can argue analogously.

Suppose by contradiction that there exists δn ¡ 0 converging to 0 with

n and Tn ¥ 0 so that the point xn :� φc�Tnpxq satisfies that Ws
δn
pxnq is not

contained in Sϵpxnq. Let zn P Ws
δn
pxnq be such that zn is not in Sϵpxnq.

Without loss of generality, let us assume that ϵ ¤ ϵ0.

Since x P Y it follows from Lemma 6.5.3 that there exists δx ¡ 0 such

that Ws
δx
pxq � Sϵpxq. Let δ ¡ 0 be a constant such that δ   δx.

For every n let γn � Ws
δn
pxnq be an arc (embedding of r0, 1s) joining

xn with zn. Let us fix for the points in γn the following order: two points

w,w1 P γn satisfy that w ¤γn w
1 if and only if w lies in the subsegment of γn

joining xn with w1.

By the continuity of the flow φct , every w P γn close enough to xn sat-

isfies the following property (called property pPq from now on): There ex-

ists hw : r0, Tns Ñ R increasing and continuous such that hwp0q � 0 and

dspφ
c
tpxnq, φ

c
hwptq

pwqq ¤ δ for every t P r0, Tns.

We claim that property pPq is a closed property in γn. Indeed, suppose

that pwkq is a sequence in γn converging to w P γn and that every point

in wk satisfies property pPq. Then by Lemma 6.5.4 (applied to the pair of

sequences in k which are the constant sequence xn and the sequence pwkq) it

follows that there exists hw : r0, Tns Ñ R increasing and continuous so that

w satisfies property pPq. This proves the claim.

Moreover, given w P γn that satisfies property pPq, one has that in par-

ticular dspφ
c
Tn
pxnq, φ

c
hwpTnq

pwqq ¤ δ. Then from δ   δx and Ws
δx
pxq � Sϵpxq

it follows that hn : r0, Tns Ñ R can be extended to hw : r0,�8q Ñ R so that

dspφ
c
tpxnq, φ

c
hwptq

pwqq ¤ ϵ for every t P r0,�8q.

Let yn P γn be the maximum (with respect to the fixed order in γn) of

the w1 in γn such that every w in the subsegment of γn joining xn with w1

satisfies property pPq. Note that yn is a maximum since property pPq is close
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in γn. Moreover, note that since zn is not in Sϵpxnq then by the remark made

in the last paragraph it follows that yn � zn.

Finally, note that, again by the continuity of the flow φct , if w P γn
satisfies property pPq and dspφ

c
tpxnq, φ

c
hwptq

pwqq is strictly less than δ for

every t P r0, Tns then every w1 in a neighborhood of w in γn satisifies property

pPq. As a consequence, it follows from yn being a maximum that for some

tn P r0, Tns one has that dspφ
c
tnpxnq, φ

c
hnptnq

pynqq � δ.

We have found two sequences pxnq and pynq as in the hypothesis of Lemma

6.5.5. This gives us a contradiction.

Proof of Proposition 6.5.2. Suppose ϵ ¡ 0. Let x̄ be a point in Y such that

its backwards and forwards orbit by φct is dense in M (as pointed out in

Remark 6.4.9 the transitivity of φct guarantees this).

By Lemma 6.5.6 there exists δ ¡ 0 such that Ws
δpyq � Sϵpyq for every y in

the φct -backwards orbit of x̄ andWu
δ pyq � Uϵpyq for every y in the φct -forwards

orbit of x̄.

Let x be a point in M . Let us see that Ws
δpxq � Sϵpxq. To show that

Wu
δ pxq � Uϵpxq the reasoning is analogous.

Since the backwards orbit by φct of x̄ is dense in M there exists tn
n
ÝÑ �8

so that yn :� φtnpx̄q converges to x. Let x
1 be a point in Ws

δpxq. There exists

y1n PWs
δpynq converging to x1.

As Ws
δpynq is a subset of Sϵpynq then for every y1n there exists a homeo-

morphism hn : r0,�8q Ñ r0,�8q such that

dspφ
c
tpynq, φ

c
hnptq

py1nq ¤ ϵ

for every t P r0,�8q.

By Lemma 6.5.4 for I :� r0,�8q the functions hn converge pointwise to

an increasing and continuous map h : r0,�8q Ñ R satisfying that

dspφ
c
tpxq, φ

c
hptqpx

1qq ¤ ϵ

for every t P r0,�8q. That is, x1 lies in Sϵpxq. This shows thatW
s
δpxq � Sϵpxq

as wanted.

Remark 6.5.7. It is worth mentioning that the proofs of Lemma 6.4.10 and

Proposition 6.5.2 are the key points where the transitivity of Wc is used.

6.6 Continuity of ρ in lines of Wc

The goal of this section is to show the following.
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Proposition 6.6.1. The function ρ is continuous at every x in M such that

Wcpxq is a line.

We will use the next definitions on this section.

Definition 6.6.2. We say that x is a s-continuity point of ρ if there exists

δ ¡ 0 such that ρ restricted to Wu
δ pxq is continuous. Analogously we define

a u-continuity point of ρ.

Definition 6.6.3 (Center holonomy maps). Suppose x PM such that Wcpxq

is a line. Suppose γ : r0, 1s Ñ rx, fpxqsc is a homeomorphism such that

γp0q � x and γp1q � fpxq. The following is standard from foliation theory:

For every δ ¡ 0 small enough the center holonomy map between s-transversals

Hc
s,x,δ : W

s
δpxq ÑWspfpxqq

is well defined as Hc
s,x,δpyq :� γyp1q for every y P Ws

δpxq, where γy : r0, 1s Ñ

M is the unique continuous curve such that γyp0q � y and γyptq P Wspγptqq

for every t P r0, 1s. Moreover, the map Hc
s,x,δ does not depend on the choice

of the homeomorphism γ : r0, 1s Ñ rx, fpxqsc.

Analogously one defines Hc
u,x,δ : W

u
δ pxq ÑWupfpxqq the center holonomy

map between u-transversals.

Remark 6.6.4. Note that in the above definition the dynamical coherence

hypothesis is crucially used.

Remark 6.6.5. It is immediate to check that if Wcpxq is a line for some

x PM then x is a s-continuity point of ρ if and only if Hc
s,x,δ is equal to the

restriction of f to Ws
δpxq for some δ ¡ 0. Analogously, x is a u-continuity

point of ρ if and only if Hu
u,x,δ coincides with f in Wu

δ pxq for some δ ¡ 0.

Dynamical coherence allows us to get the following.

Lemma 6.6.6. Suppose x P M such that Wcpxq is a line. If x is a s and

u-continuity point of ρ then ρ is continuous at x.

Proof. Let γ : r0, 1s Ñ Wcpxq be a homeomorphism from r0, 1s to the center

segment rx, fpxqsc so that γp0q � x and γp1q � fpxq. Since x is a s and

u-continuity point of ρ there exists δ ¡ 0 such that Hc
s,x,δpyq � fpyq and

Hc
u,x,δpzq � fpzq for every y P Ws

δpxq and z P Wu
δ pxq. That is, for every

y P Ws
δpxq there exists γsy : r0, 1s Ñ Wcpyq satisfying γsyp0q � y and γsyptq P

Wspγptqq for every t P r0, 1s. Analogously, for every z P Wu
δ pxq there exists

γuz : r0, 1s Ñ Wcpyq satisfying γuz p0q � z and γuz ptq P Wupγptqq for every

t P r0, 1s.
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Recall ϵ0 ¡ 0 the small constant fixed in Remark 6.4.6. One can consider

δ ¡ 0 small enough so that for every y P Ws
δpxq and z P Wu

δ pxq one has

γsyptq PWs
ϵ0pγptqq and γ

u
z ptq PWu

ϵ0pγptqq for every t P r0, 1s.

Suppose pxnq is a sequence converging to x and let δn denote the distance

dpx, xnq for every n. Suppose, modulo subsequence, that δn is smaller than

δ{2 for every n. Let xsn be the point of intersection of Ws
2δn
pxq and Wcu

2δn
pxnq.

And xun the point of intersection of Wu
2δn
pxq and Wcs

2δn
pxnq.

For simplicity in the notation, for every n let γsn and γun denote the curves

γsxsn and γuxun , respectively. It follows that W
cu
4δn
pγsnptqq intersects W

cs
4δn
pγunptqq

for every t P r0, 1s. Moreover, by dynamical coherence, one can construct a

homeomorphism over its image γn : r0, 1s Ñ Wcpxnq such that γnp0q � xn
and γnptq lies in the intersection of Wcu

4δn
pγsnptqq and Wcs

4δn
pγunptqq for every

t P r0, 1s.

Again, by dynamical coherence, it follows from fpxsnq � γsnp1q and fpx
u
nq �

γunp1q that fpxnq lies in the intersection ofWcu
4δn
pγsnp1qq andWcs

4δn
pγunp1qq. One

can chose γn so that, in addition to the properties from the last paragraph,

it satisfies that γnp1q � fpxnq.

Since the sequences pxsnq and px
u
nq converge to x it is immediate that γsn

and γun converge in the C0 topology to γ. As a consequence, since δn tends

to 0, then γn converges in the C0 topology to γ as well.

The maps γn : r0, 1s ÑWcpxnq form a sequence of homeomorphisms over

its image joining xn with fpxnq and converging C0 to γ. One obtains that

limn lengthpγnq � lengthpγq. Since ρpxq � lengthpγq, then lim infn ρpxnq ¤

ρpxq. By Proposition 6.3.7 one has the converse inequality. It follows that

limn ρpxnq � ρpxq. This shows that x is a continuity point of ρ.

The following is a key lemma relating stable and unstable sets of φct with

s and u-continuity points.

Lemma 6.6.7. Suppose x PM such that Wcpxq is a line. If for every ϵ ¡ 0

there exists δ ¡ 0 such that Ws
δpxq � Sϵpxq then x is a s-continuity point of

ρ. Analogously, if for every ϵ ¡ 0 there exists δ ¡ 0 such that Wu
δ pxq � Uϵpxq

then x is a u-continuity point of ρ.

Proof. Suppose that for every ϵ ¡ 0 there exists δϵ ¡ 0 such that Ws
δϵ
pxq �

Sϵpxq. Let us see that x needs to be a s-continuity point of ρ. The symmetric

statement for unstable local leaves of f and backwards stable sets of φct follows

by analogous reasons.

Let δ ¡ 0 be such that Hc
s,x,δ : W

s
δpxq Ñ Wspfpxqq is well defined. Then

Hc
s,x,δ1 : W

s
δ1pxq Ñ Wspfpxqq is also well defined for every 0   δ1   δ. By

Remark 6.6.5 it is enough to show that Hc
s,x,δ1 � f |Ws

δ1
pxq for some δ1 ¡ 0.
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Consider a sequence ϵn ¡ 0, n ¥ 1, converging to 0 and let δn ¡ 0 be

such that Ws
δn
pxq � Sϵnpxq for every n. Without loss of generality suppose

δn is smaller than δ for every n. Then Hc
s,x,δn

: Ws
δn
pxq Ñ Wspfpxqq is well

defined. Suppose also that ϵn is, for every n, smaller than the constant ϵ0 ¡ 0

fixed in Remark 6.4.6.

Suppose by contradiction that f restricted to Ws
δn
pxq is different from

Hc
s,x,δn

for every n. Let yn PWs
δn
pxq be such that Hc

s,x,δn
pynq � fpynq.

Recall that a leaf W of Ws can intersect at most one compact leaf of

Wc, and that this intersection can happen in at most one point. Since the

sequence yn lies in Ws
δpxq it follows that W

cpynq is compact for at most one

of the yn. Modulo subsequence, we can suppose that Wcpynq is a line for

every n.

Since yn lies in Sϵnpxq for every n one can consider a homeomorphism

Hn : r0,�8q Ñ r0,�8q such that dpφctpxq, φ
c
Hnptq

pynqq ¤ ϵn for every t P

r0,�8q. The points φctpxq and φcHnptq
pynq may not be in a same leaf of

Ws. However by dynamical coherence they lie in the same leaf of Wcs and

dcspφ
c
tpxq, φ

c
Hnptq

pynqq ¤ 2ϵn for every t P r0,�8q.

It follows that one can consider for every n the well-defined homeomor-

phism hn : r0,�8q Ñ r0,�8q satisfying that φchnptqpynq is equal to the

intersection of Ws
4ϵnpφ

c
tpxqq and Wc

4ϵnpφ
c
Hnptq

pynqq for every t P r0,�8q. In

particular, φchnptqpynq lies in Wspφctpxqq and dspφ
c
tpxq, φ

c
hnptq

pynqq ¤ 4ϵn for

every t P r0,�8q.

Note that from the above construction one obtains that Hc
s,x,δn

pynq is

equal to φchnpρpxqqpynq for every n. Consider tn ¡ 0 such that φchnptnqpynq �

fpynq. The fact that Hc
s,x,δn

pynq is different from fpynq translates to the fact

that tn is larger than ρpxq for every n.

Since Wcpxq is a line it follows that φctnpxq is different from fpxq for

every n. Since φctnpxq is a point in Ws
ϵnpxq and the sequence pϵnq converges

to 0 it follows that fpxq that the points φctnpxq converge to fpxq with n.

That is, fpxq is accumulated by points lying in Wcpxq X
�
Ws
ϵ0pfpxqqzfpxq

�
.

Since Wcpxq � Wcpfpxqq one obtains that fpxq is a s-recurrent point. This

contradicts Proposition 6.4.4.

We are now able to show Proposition 6.6.1.

Proof of Proposition 6.6.1. Suppose x P M such that Wcpxq is a line. By

Proposition 6.5.2 it follows that for every ϵ ¡ 0 there exists δ ¡ 0 such that

Ws
δpxq � Sϵpxq and Wu

δ pxq � Uϵpxq. By Lemma 6.6.7 one obtains that x is a

s and u-continuity point of ρ. By Lemma 6.6.6 the function ρ is continuous

at x.
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6.7 The function ρ is bounded in M

This section ends the proof of Theorem 6.1.2. Up until now we have shown

that the function ρ is continuous at every x in M such that Wcpxq is a line.

We will see in this section how to show from this that ρ is bounded in M .

Given C P Wc a circle leaf it follows from Lemma 6.4.2 that Wcpyq is a

line for every y in WspCqzC. In particular, the center segment ry, fpyqsc is

well defined for every y P WspCqzC and by Proposition 6.6.1 the function ρ

is continuous in restriction to WspCqzC.

Recall that the stable saturation WspCq of C is contained in the center-

stable leaf WcspCq but that a priori WspCq may be a proper subset of WcspCq

(the completeness problem).

Lemma 6.7.1. Suppose C P Wc is a circle leaf. For every y P WspCqzC one

has that ry, fpyqsc is contained in WspCq.

Proof. Since ρ is continuous in restriction to WspCqzC one has that for every

y P WspCqzC the compact center segment ry, fpyqsc varies continuously with

y in the Hausdorff topology.

Let A denote the set of points y P WspCqzC such that ry, fpyqsc is con-

tained inWspCqzC. Let B denote its complement inWspCqzC so thatWspCqzC

is equal to the disjoint union AYB. The goal is to show that B is empty.

Let BcsW
spCq � WcspCq denote the boundary of WspCq in WcspCq. Since

WspCq is saturated by leaves ofWs the set BcsW
spCq is a union of leaves ofWs.

It follows that y PWspCqzC is in B if and only if ry, fpyqsc X BcsW
spCq � H.

Since y ÞÑ ry, fpyqsc varies continuously with y inWspCqzC it is immediate

to check that both A and B are open subsets of WspCqzC (for this, note that

if y P B then ry, fpyqsc is transverse to Wspfpyqq at fpyq).

As WspCqzC is the union of the disjoint open sets A and B it follows

that A and B comprise whole connected components of WspCqzC. Note that

if dimpEsq ¥ 2 then WspCqzC has only one connected component and if

dimpEsq � 1 it may have two. We will cover both scenarios simultaneously.

Suppose by contradiction that B is not empty. For every y P B the

center segment ry, fpyqsc intersects BcsW
spCq. Since WspCq is f -invariant it

follows that f�1 � ry, fpyqsc � rf�1pyq, ysc also intersects BcsW
spCq. One can

then consider y� and y� the ‘first time’ that Wcpyq leaves WspCq in both

directions. That is, y� and y� are the only points in Wcpyq X BcsW
spCq such

that there exists a center segment py�, y�qc contained inWspCq and satisfying

y P py�, y�qc. In other words, py�, y�qc is the connected component of

Wcpyq XWspCq containing y.

It is immediate to check (by transversality again) that the functions y ÞÑ

y� and y ÞÑ y� are continuous from B to BcsW
spCq. Moreover, if z is a point
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in BcsW
spCq that is in the image of y ÞÑ y�, then every z1 PWspzq need to be

also in the image of y ÞÑ y�. This is because, by stable holonomy, one can

transport py, y�qc to a center segment in WspCq such that one of its endpoints

is z1.

Moreover, for every y P B it is immediate to check that there exists ϵ ¡ 0

such that w� lies in Wspy�q for every w PWcs
ϵ pyq. That is, the function that

assigns to every y P B the stable leaf Wspy�q is locally constant. Combined

with the information from the previous paragraph one obtains that the image

by y ÞÑ y� of B is exactly one or two leaves of Ws, whether B has one or

two connected components, respectively.

Let V be one of the leaves of Ws in the image of y ÞÑ y�. Since B is

f -invariant and has at most two connected components then V is invariant

by f2. It follows that f2 induces a contraction in V . As a consequence f2

has a fixed point in V and this fixed point is unique. Let y0 P B be such that

y�0 is the fixed point of f2 in V .

On the one hand, since WspCq and BcsW
spCq are f -invariant then the

image of ry�0 , y
�
0 sc by f

2 is a center segment whose interior lies in WspCq and

its end-points lie in BcsW
spCq. Since y�0 is fixed by f2 it follows that ry�0 , y

�
0 sc

is invariant by f2.

On the other hand, ry�0 , y
�
0 sc contains the point y0 which is a point in

Wspx0q for some x0 P C. By iterating forwards by f2 one obtains that the

orbit of y0 needs to get arbitrarily close to C. Since ry�0 , y
�
0 sc is f

2-invariant

this contradicts the fact that ry�0 , y
�
0 sc and C are disjoint compact sets that

are at a positive distance from each other. This shows that the set B needs

to be empty and ends the proof of the lemma.

Lemma 6.7.2. Suppose C PWc is a circle leaf. There exists δ ¡ 0 such that

ρ restricted to Ws
δpCq is bounded.

Proof. The set WspCqzC has one or two connected components. Without

loss of generality let us suppose that is has one. Otherwise, one should only

repeat the argument below separately on each connected component.

Suppose y in WspCqzC. By Lemma 6.4.2 the leaf Wspyq intersects C in a

unique point. Let us call it psy.

Let γy : r0, 1s Ñ Wcpyq be the C1 curve of constant speed such that

γyp0q � y and γyp1q � fpyq. By Lemma 6.7.1 the center segment ry, fpyqsc is

contained in WspCq. It follows that there exists psγy : r0, 1s Ñ C the (unique)

continuous curve such that psγyp0q � psy and γyptq P Wsppsγyptqq for every

t P r0, 1s.

By Proposition 6.6.1 the function ρ is continuous in retriction toWspCqzC.

That is, γy varies continuously with y PWspCqzC in the C1 topology. At the

same time, if y1 varies continuously in Wsppsyqzpsy one has that fpy1q varies
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continuously in Wspfppsyqqzfppsyq. One obtains that psγy needs to be a

reparametrization of psγy1 for every y
1 in Wspyq.

Given x in C and y P Wspxqzx let γx : r0, 1s Ñ C be the constant speed

reparametrization of psγy. From the above paragraph one has that the defi-

nition of γx is independent of the point y one chooses in Wspxqzx.

It is now immediate to check that z ÞÑ γz varies continuosly in the C1

topology as z varies in WspCq. Since this implies that z ÞÑ lengthpγzq varies

continuously with z PWspCq it follows that ρ is continuous in a neighborhood

of C in WspCq.

Proposition 6.7.3. For every circle leaf C PWc there exists a neighborhood

U of C such that ρ|U : U Ñ R is bounded.

Proof. Let C P Wc be a circle leaf. It follows from Lemma 6.7.2 that there

exists δ ¡ 0 and L ¡ 0 such that ρ restricted to Ws
δpCq is bounded by L.

From the regularity of Wc one can define an unstable holonomy along

center transversals as follows: There exists δL ¡ 0 such that, if y is a point in

M and z a point in Wu
δL
pyq, then for every curve γ : r0, 1s ÑWcpyq such that

γp0q � y and length γ ¤ L there exists a unique curve puγ : r0, 1s Ñ Wcpzq

given by puγp0q � z and puγptq PWupγptqq for every t P r0, 1s, and this curve

satisfies that length puγ ¤ 2L.

Let us see that ρ is bounded by 2L in U � Wu
δL
pWs

δpCqqq. Since U is a

neighborhood of C this will show the proposition.

Given z in U there exists x P C and y P Ws
δpxq such that z P Wu

δL
pyq.

Let us suppose first that for every w in Wu
δL
pyq the center leaf Wcpwq is not

compact. We can join then y with z by a curve η : r0, 1s ÑWu
δL
pyq satisfying

that ηp0q � y, ηp1q � z and Wcpηpsqq is a line for every s P r0, 1s.

By Proposition 6.6.1 one has that ρ is continuous at every point in the

image of η. Let γ : r0, 1s Ñ Wcpyq be a homeomorphism from r0, 1s to

ry, fpyqsc such that γp0q � y and γp1q � fpyq. Since ρ is continuous in the

image of η it follows that for every s P r0, 1s there exists γs : r0, 1s ÑWcpηpsqq

joining ηpsq � γsp0q and fpηpsqq � γsp1q, and satisfying that γ0 � γ and

γsptq PWupγptqq for every t P r0, 1s. In particular, fpzq � γ1p1q.

One has that length γ ¤ L since ρ is bounded by L in Ws
δpCq. Then by

the election of δL it follows that length γ1 ¤ 2L. Since γ1 is a curve in Wcpzq

joining z � γ1p0q with fpzq � γ1p1q one obtains that ρpzq ¤ 2L.

In case Wu
δL
pyq intersects a compact leaf of Wc one can argue as follows.

By Lemma 6.3.1 all but countably many y1 PWs
δpxq satisfy that Wu

δL
py1q does

not intersect a compact leaf of Wc. One can consider then pynq a sequence

in Ws
δpxq converging to y such that for every w P Wu

δL
pynq the center leaf
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Wcpwq is not compact. And consider zn P Wu
δL
pynq, for every n, so that the

sequence pznq converges to z.

By the arguments above one has that ρpznq ¤ 2L for every n. By the

semicontinuity of ρ (see Proposition 6.3.7) it follows that ρpzq ¤ 2L.

As pointed out in Remark 6.3.6, the following ends the proof of Theorem

6.1.2 as a consequence of Proposition 3.3.1.

Corollary 6.7.4. The function ρ is bounded in M

Proof. Suppose x P M . If Wcpxq is a line then by Proposition 6.6.1 the

function ρ is continuous at x. In particular, it is bounded in a neighborhood

of x. If Wcpxq is a circle, then by Proposition 6.7.3 the function ρ is bounded

on a neighborhood of Wcpxq. By compactness of M one obtains that ρ is

bounded in M .

By now, it is worth also pointing out the following.

Remark 6.7.5. Note that if f is a center fixing map and x is a point whose

f -orbit is dense in M then Wcpxq is also dense in M . Thus the hypothesis

‘Wc transitive’ in Theorem 6.1.2 can be replaced by ‘f transitive’.

6.8 Compact center foliations and center fixing in

dimension 3

The goal of this section is to show Theorem 6.1.3 stated in the introduction

of this chapter.

By Theorem 6.1.2 it is enough show dynamical coherence (Proposition

6.8.1 below) in order to show Theorem 6.1.3 item (1). Alternatively, it is

worth mentioning that once dynamical coherence is shown one can also use

[BW05, Theorem 2] (see Remark 3.8.2). Indeed, by Lemma 6.8.3 there exists

at least one compact leaf γ of Wc (in fact, the union of such leaves is dense

in M). Moreover, for every x P Ws
locpγq the leaf Wcpxq is fixed by f (in

particular, periodic). By [BW05, Theorem 2] (see Remark 3.8.2) one obtains

that fn is a discretized Anosov flow for some n ¡ 0. Then by Lemma 6.3.2

the map f is itself a discretized Anosov flow.

To show Theorem 6.1.3 item (2) one argues as follows. Once dynamical

coherence is proved it follows from [DMM20] (also [G12] in case Ec is uniquely

integrable) that the center foliation Wc is uniformly compact. Then by [B13]

one concludes that, modulo double cover, pf,Wcq is a partially hyperbolic

skew product. Alternatively, one could try to use [BW05, Theorem 1].
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Recall that the non-wandering set of f , denoted by Ωpfq, is the set of

all x in M such that for every neighborhood U of x there exists k ¡ 0

satisfying fkpUq X U � H. It is immediate to check that if f is transitive

then Ωpfq �M .

In conclusion, the above discussion justifies that Theorem 6.1.3 is proven

once the following proposition has been shown.

Proposition 6.8.1. Suppose f P PHc�1pM
3q with Ωpfq � M3 admits an

invariant center foliation Wc satisfying one of the following conditions:

1. fpW q �W for every W PWc.

2. W is compact for every W PWc.

Then f is dynamically coherent with invariant foliations Wcs and Wcu such

that Wc �Wcs XWcu.

The proof of Proposition 6.8.1 occupies the rest of this section and is done

in the next two lemmas.

Lemma 6.8.2. Suppose f P PHc�1pM
3q admits an f -invariant center fo-

liation Wc. Suppose that the set tW P Wc | W compact and fnpW q �

W for some n � 0u is dense in M . Then f is dynamically coherent and

admits f -invariant foliations Wcs and Wcu such that Wc �Wcs XWcu.

Proof. We first claim that it is enough to show that there exists δ ¡ 0 so

that for every x and y in M , if y P Ws
δpxq then Wc

δpyq � Ws
2δpW

c
2δpxqq. And

if y PWu
δ pxq then Wc

δpyq �Wu
2δpW

c
2δpxqq.

Indeed, suppose such a δ exists. For every x P M one can define Wcspxq

as the set of all points in M that can be joined to x by a finite concatenation

of Ws and Wc arcs. In this way tWcspxq : x P Mu defines a partition of M .

On each element of this partition one can consider the distance dpy, zq :�

infγ lengthpγq where γ varies among all finite concatenations of Ws and Wc

arcs joining y to z.

By shrinking δ, if necessary, one can ensure by Lemma 2.0.1 that the set

Ws
2δpW

c
2δpxqq is a C1 submanifold tangent to Es ` Ec for every x P M . As

Wc
δpyq is contained in Ws

2δpW
c
2δpxqq for every y P Ws

δpxq it follows that for

some ϵ, ϵ1 ¡ 0 independent of x the ball Bϵpxq � Wcspxq with respect to

d is an open subset of the C1 submanifold Ws
2δpW

c
2δpxqq that contains the

ball Bϵ1pxq � Ws
2δpW

c
2δpxqq with respect to the inner metric in Ws

2δpW
c
2δpxqq

induced by the Riemannian metric of M .

In this way one obtains that each element of Wcs is a C1 submanifold

tangent to Es `Ec, saturated by Ws and Wc leaves and whose inner metric

is complete. Hence Wcs is an f -invariant center-stable foliation. Analogously
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one constructs Wcu an f -invariant center-unstable foliation. The property

Wc �Wcs XWcu follows immediately. This proves the claim.

It remains to show that there exists δ ¡ 0 such that for every x, y P M

with y P Ws
δpxq then Wc

δpyq � Ws
2δpW

c
2δpxqq. For cu discs the arguments are

analogous.

The key point to note is that two distinct leaves of Wc that are compact

and periodic can not intersect the same leaf of Ws. Indeed, suppose by

contradiction that two such leaves W,W 1 P Wc contain points x P W and

y P W 1 that belong to the same leaf of Ws. One can consider N ¡ 0, a

multiple of the periods ofW andW 1, so that fN pW q �W and fN pW 1q �W 1.

On the one hand, d
�
fkN pxq, fkN pyq

�
tends to 0 as k Ñ �8 because x and

y belong to the same stable leaf. On the other hand, fkN pxq lies in W and

fkN pyq in W 1 so for every k ¡ 0 the distance between both points can not be

smaller than the positive distance between the disjoint compact sets W and

W 1. This gives us a contradiction.

Consider from now on a metric in M and δ ¡ 0 small enough so that the

bundles Es, Ec and Eu are almost constant and pairwise orthogonal at scale

δ. For a precise construction of such a metric and constant see for example

Lemma 4.2.1. And consider δ ¡ 0 small enough so that by Lemma 2.0.1 the

set Wu
4δpW

c
4δpxqq is a C1 submanifold tangent to Ec ` Eu for every x P M .

In particular, let us consider the above so that for every x, y P M such that

dpx, yq   3δ the set Ws
4δpyq intersects Wu

4δpW
c
4δpxqq and this intersection

point is unique.

For every y such that dpx, yq   3δ let πsxpyq denote the intersection of

Ws
4δpyq with Wu

4δpW
c
4δpxqq. It is immediate to check that πspyq varies contin-

uously with y. For every x P M let Dpxq denote Wu
2δpW

c
2δpxqq. By Lemma

2.0.1 it is a C1 disc tangent to Ec`Eu for every x PM . The set DpxqzWc
2δpxq

has two connected components. Let us denote them by D�pxq and D�pxq.

Suppose by contradiction that there exists x0, y0 P M such that y0 lies

in Ws
δpx0q and Wc

δpy0q is not contained in Ws
2δpW

c
2δpx0qq. Then there exists

z0 P Wc
δpy0q such that πspz0q is not in Wc

2δpx0q. Suppose without loss of

generality that πspz0q lies in D
�px0q. See Figure 6.1.

On the one hand, there exists ϵ ¡ 0 small so that πspBϵpz0qq is entirely

contained in D�px0q. On the other hand, since πspy0q � x0 one can consider

y1 as close as wanted to y0 so that πspy1q lies in D
�px0q and Wc

δpy1q intersects

Bϵpz0q. In particular, for such a y1 there exists an arc γ �Wc
δpy1q joining y1

with a point z1 P Bϵpz0q.

As tW P Wc | W compact and fnpW q � W for some n � 0u is dense in

M we can approximate γ and Wc
2δpx0q by center arcs contained in compact

periodic leaves of Wc.

By construction πspγq is an arc in Dpx0q joining a point in D�px0q with
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x0

y0

z0

πspz0q

D�px0q

D�px0q

Ws
2δpW

c
2δpx0qq

sc

Figure 6.1:

a point in D�px0q. In particular, πspγq intersects Wc
2δpx0q. One can then

approximate γ by an arc γ1 contained in a periodic compact leaf of Wc so

that the πspγ1q continues to satisfy the same property, namely that πspγ1q

intersects Wc
2δpx0q and has each of its endpoints in a different connected

component of Dpx0qzW
c
2δpx0q.

By approximating Wc
2δpx0q close enough by a center arc η contained in a

periodic compact leaf of Wc one obtains that πspγ1q and πspηq must intersect.

This gives us a contraction with the aforementioned fact that one can not

join two different compact periodic leaves of Wc by an arc contained in a leaf

of Ws.

The criterion above combined with the following lemma ends the proof

of Proposition 6.8.1.

Lemma 6.8.3. In the setting of Proposition 6.8.1 the set tW P Wc |

W is compact and fnpW q �W for some n � 0u is dense in M .

Proof. Note first that the set of fixed points of f2, denoted by Fixpf2q �M ,

has empty interior in M . This follows immediately from the fact that, if x is

a fixed point of f2, then every y in Ws
locpxqztxu can not be a fixed point of

f2 because its forward f2-orbit must tend to x.

As a consequence of Fixpf2q having empty interior in M it is enough to

show that tW P Wc | W compact and fnpW q � W for some n � 0u is dense

in MzFixpf2q.

Suppose from now on that x0 is a point in MzFixpf2q. Let us see that

for every ϵ ¡ 0 small enough there exists x P Bϵpx0q and k ¡ 0 such that

fpWc
ϵpxqq Y f2pWc

ϵpxqq is disjoint from Wc
ϵpxq and fkpxq P Wc

ϵpxq. This

immediately implies that Wcpxq needs to be compact and periodic (see next

paragraph) and shows that x0 can be approximated by periodic compact

leaves of Wc.
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Indeed, in case every leaf of Wc is compact then Wcpxq is automatically

compact and periodic and there is no more to say. In case fpW q � W

for every leaf W P Wc let us suppose by contradiction that Wcpxq is not

compact. Then f : Wcpxq Ñ Wcpxq is a homeomorphism of the line. In

case this homeomorphism preserves the orientation of Wcpxq then fpWc
ϵpxqq

disjoint from Wc
ϵpxq impedes fkpxq from lying in Wc

ϵpxq for some k ¡ 0 and

gives us a contradiction. In case the homeomorphism inverts the orientation

of Wcpxq then fpWc
ϵpxqq disjoint from Wc

ϵpxq implies that Wc
ϵpxq is disjoint

from the unique fixed point of f in Wcpxq. Let us denote by p this fixed

point. Since fkpxq lies in Wc
ϵpxq it follows that k needs to be even because

odd iterates of x and x itself must lie in different connected component of

Wcpxqztpu. The fact that f2 : Wcpxq Ñ Wcpxq preserves the orientation of

Wcpxq and f2pWc
ϵpxqq is disjoint from Wc

ϵpxq prevents fkpxq from lying in

Wc
ϵpxq for some k ¡ 0 even and gives us a contradiction.

Let ϵ ¡ 0 be small enough so that fpB2ϵpx0qq and f
2pB2ϵpx0qq are disjoint

from B2ϵpx0q. And small enough so that at scale ϵ the bundles are almost

constant and the distances inside the invariant manifolds Wσ, σ P ts, c, uu

are nearly the same as in the manifold. For a precise construction see for

example the scale and metric considered in property (P4) of Lemma 4.2.1.

Inside Bϵpx0q let U be a Wc-foliation box neighborhood containing x0
that is obtained as U :� Wc

δpDq for δ ¡ 0 some small constant and D some

C1 disc transverse to Wc and nearly tangent to Es ` Eu. In particular, let

δ ¡ 0 be such that δ{2 is smaller than the constant given by Lemma 2.0.1.

Let us consider 0   δ1   δ and 0   ϵ1   ϵ such that 10ϵ1   δ1 and such

that for every y P Bϵ1px0q the set Ws
δ1pW

u
δ1pyqq is contained in U .

We claim that for every y P Bϵ1px0q the set Ws
δ1pW

u
δ1pyqq intersects every

center plaque of U in at most one point. This is a consequence of Lemma

2.0.1. Indeed, suppose that w,w1 PWs
δ1pW

u
δ1pyqq are points in the same center

plaque of U . Then w1 P Wc
δpwq. Let z, z1 P Wu

δ1pyq be such that w P Ws
δ1pzq

and w1 P Ws
δ1pz

1q. As w1 P Wc
δ1pwq then both z and z1 lie in Ws

δ1pW
c
δ1pwqq.

As Ws
δ1pW

c
δ1pwqq is C

1 and tangent to Es ` Ec it follows that Ws
δ1pW

c
δ1pwqq

intersects Wu
δ1pyq in at most one point. That is, z � z1. Then w � w1. This

proves the claim.

Let πc : U Ñ D denote the projection along center plaques. It is imme-

diate to check that πc needs to be continuous. The previous paragraph then

implies that πc from Ws
δ1pW

u
δ1pyqq to D is a homeomorphism onto its image

for every y P Bϵ1px0q.

Since x0 P Ωpfq there exists k ¡ 0 such that fkpBϵ1px0qq X Bϵ1px0q � H.

Moreover, such a k can be considered arbitrarly large. Let us fix such a k

large enough so that Wu
2δ1pfpxqq � fkpWu

δ1pxqq and f
kpWs

δ1pxqq �Ws
δ1{2pfpxqq

for every x PM .
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Let us fix from now on y a point in Bϵ1px0q so that fkpyq P Bϵ1px0q. It fol-

lows that there exists a sub arc γuy in Wu
δ1pyq such that fkpγuy q �Wu

2δ1pf
kpyqq.

Then fkpWs
δ1pγ

u
y qq is a subset of Ws

δ1{2pW
u
2δ1pf

kpyqq. Consider R � D the

closure of the image by πc of Ws
δ1pγ

u
y qq. It follows that R is a topological disc

in D. Its boundary can be viewed as a rectangle. Two of its opposite sides,

Γ2 and Γ4, correspond to the projection by πc of the two s-arcs Ws
δ1{2py1q and

Ws
δ1{2py2q for y1, y2 each one of the two endpoints of γuy in Wupyq. The other

two sides, Γ1 and Γ3, correspond to the projection by πc of the two segments

formed by the endpoints of Ws
δ1py

1q as y1 varies in γuy .

It follows that h � πc � fk � pπcq�1 is a well defined continuous map from

R to D. We claim that it is enough to show that h has a fixed point. Indeed,

if p denotes a fixed point for h then o :� pπcq�1ppq satisfies that fkpoq and o

are in the same center plaque of U . Since fpWc
ϵpxqq Y f2pWc

ϵpxqq is disjoint

from Wc
ϵpxq, because fpB2ϵpx0qq Y f2pB2ϵpx0qq is disjoint from B2ϵpx0q, one

obtains that Wcpoq needs to be compact and periodic as discussed before.

The existence of a fixed point for h follows by a classic Lefschetz’s index

argument. Let Γ denote the boundary of R. The closed curve Γ is the union

Γ1 Y . . . Y Γ4 of the sides of R as explained above. Since fkpWs
δ1pγ

u
y qq is

a subset of Ws
δ1{2pW

u
2δ1pf

kpyqq and dpy, fkpyqq   ϵ1 for 10ϵ1   δ1 it follows

that h sends the rectangle R to a new rectangle hpRq that ‘crosses’ R so

that Γ1 and Γ3 do not intersect hpRq and hpΓ2q and hpΓ4q lie in two different

connected components of RzhpRq that are adjacent to Γ2 and Γ4, respectively

(see Figure 6.2 and Figure 6.3). This is enough for finding a fixed point for

h. For the sake of completeness we will reproduce this classical argument for

finding a fixed point under these hypothesis.

D

γuy

W s
δ pγ

u
y q

y

fkpyq

fkpW s
δ pγ

u
y qq

R

hpRq

fkpγuy qEs

Eu

Figure 6.2:

Let t ÞÑ Γptq be an homeomorphism from the circle S1 to Γ. We can

consider a nullhomotopy tΓpsqusPr0,1s of Γ inside R as follows. Let us identify
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R
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Γ3
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hpΓ3q

hpΓ1q

hpΓ2qhpΓ4q

Figure 6.3:

R homeomorphically with r0, 1s � r0, 1s. Then let Γp0q be equal to Γ and let

Γpsq, varying continuously with s P r0, 1s, be such that the image of Γpsq is

the boundary of the square r0, 1� ss � r0, 1� ss.

Suppose by contradiction that h has no fixed points in R. Let us identify

D with the euclidean plane R2. The no fixed points assumption implies that

the continuous family of maps ρs : S
1 Ñ S1 given by

ρsptq :�
hpΓpsqptqq � Γpsqptq

||hpΓpsqptqq � Γpsqptq||

is well defined for every s P r0, 1s.

On the one hand, from the way the sides Γ1, . . . , Γ4 are mapped by h it

is an immediate computation to check that ρ0 : S1 Ñ S1 has index different

from 0. On the other hand, if y0 denote the point that is the image of Γp1q,

then hpy0q � y0 and one can consider a small ball B containing y0 so that

hpBq XB � H. This immediately implies that for every s close enough to 0

(so that Γpsq � B) the map ρs : S
1 Ñ S1 must have index 0. As the index of

a continuous familiy of maps from S1 to S1 is an invariant of the family one

gets to a contradiction. Hence h must have a fixed point on R.
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Chapter 7

Uniqueness of attractor

7.1 Introduction

This chapter deepens on the study of the dynamics of discretized Anosov

flows. In particular, on the problem of uniqueness or finiteness of quasi-

attractors and quasi-repellers.

Recall that quasi-attractors are pairwise disjoint compact sets saturated

by Wu-leaves. It follows that each one of them contains at least one minimal

set for the foliation Wu. We call a minimal set for Wu a minimal unstable

lamination. Thus, uniqueness (resp. finiteness) of minimal unstable lamina-

tions implies uniqueness (resp. finiteness) of quasi-attractors.

In [CPS17] finiteness of minimal unstable laminations was shown to hap-

pen for a C1-open and dense subset of partially hyperbolic diffeomorphisms

with one-dimensional center. In this chapter we aim to a more global (non-

perturbative) study involving uniqueness and finiteness results for whole

classes of examples.

It is worth pointing out that we focus on minimal unstable laminations

and quasi-attractors but the results have obvious analogous statements for

minimal stable laminations and quasi-repellers.

7.1.1 Uniqueness of attractor for discretized transitive Anosov

flows

Discretized Anosov flows with arbitrary number of attractors and repellers

can be obtained by perturbing the time 1 map of an Anosov diffeomorphism’s

suspension φt :M ÑM . Indeed, asM fibers over the circle and φ1 preserves

fibers one can perturb φ1 so that it becomes Morse-Smale or even a dynam-

ics with infinitely many quasi-attractors in the base (see Example 7.2.1 for

details).
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In [BG10] examples of Axiom A discretized Anosov flows with a proper

attractor and a proper repeller have been built as a discretization of any

transitive Anosov flow φt :M ÑM provided that dimpMq � 3.

Recall that two flows are said to be orbit equivalent whenever there exists

a homeomorphism taking orbits of one into orbits of the other and preserving

its orientation. We obtain:

Theorem 7.1.1. Let f be a discretized Anosov flow and let φct be the center

flow of f . Suppose φct is transitive and not orbit equivalent to a suspension.

Then f has a unique minimal unstable lamination.

Corollary 7.1.2. Any f as in Theorem 7.1.1 has at most one quasi-attractor.

Theorem 7.1.1 is already known from [HU19] for discretized Anosov flows

in a C1-neighborhood of the time 1 map of a transitive Anosov flow that is

not orbit equivalent to a suspension.

We point out that the proof given here relies on a different approach.

The main inspiration for it comes from [BG09] where it was shown that

every discretized Anosov flow that is Axiom A and satisfies the hypothesis of

Theorem 7.1.1 admits a unique attractor. By generalizing the arguments in

[BG09] (see also [G02]) we are able to remove the ‘Axiom A’ hypothesis and

to obtain not only uniqueness of quasi-attractor but also of minimal unstable

lamination.

In the case when f is chain-transitive the statement of Corollary 7.1.2

gives us no new information but uniqueness of minimal unstable lamination

may give. It implies, for example, that the supports of all u-Gibbs measures

have non-trivial intersection since the support of any such a measure is a Wu-

saturated compact set. In [HU19, Theorem 1.2] more precise consequences

are obtained.

7.1.2 Finiteness of attractors for discretized non-transitive

Anosov flows

Recall that the center flow φct : M Ñ M of a discretized Anosov flow f

is a topological Anosov flow (see Proposition 3.7.2). Most of the classical

properties of Anosov flows are valid also in the context of topological Anosov

flows (see for example [Ba05] and the references therein).

In particular, if the center flow φct is not transitive then the non-wandering

set of φct admits a decomposition Ωpφtq � Λ1Y. . .YΛK in disjoint basic pieces

tΛiu1¤i¤K that are compact, φct -invariant and such that φct |Λi : Λi Ñ Λi is

transitive. Moreover, some of them, Λ1, . . . ,Λk, are attracting basic pieces

such that its whole basin FwspΛ1q Y . . . Y FwspΛkq is an open and dense
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subset of M . For the sake of completeness we detail these facts in Lemma

7.4.2.

In case the center flow φct is not transitive the problem of uniqueness

or finiteness of attractors reduces to the study of the behavior of φct on its

attracting basic pieces.

For instance, the time 1 map of the Franks-Williams’s non-transitive

Anosov flow [FW80] can be perturbed to obtain arbitrary number of quasi-

attractors (see Example 7.2.2). The unique attractor Λ in this example satis-

fies that φct |Λ : ΛÑ Λ is orbit equivalent to a suspension so one can essentially

perform, in a neighborhood of Λ, the same type of perturbation mentioned

above for the time 1 map of an Anosov’s suspension.

On the other hand, the arguments for obtaining Theorem 7.1.1 are also

valid in restriction to any non-suspension basic attracting piece. We obtain:

Theorem 7.1.3. Let f be a discretized Anosov flow and Λ be an attracting

basic piece of its center flow φct . If φct |Λ : Λ Ñ Λ is not orbit equivalent to a

suspension then Λ contains a unique minimal unstable lamination of f .

Corollary 7.1.4. Let f be a discretized Anosov flow. Suppose that all the

attracting basic pieces Λ1, . . . , Λk of φct satisfy that φct |Λi : Λi Ñ Λi is not

orbit equivalent to a suspension. Then f has exactly k minimal unstable

laminations (and exactly k quasi-attractors). Moreover, each one of them is

contained in one of the attracting basic pieces Λ1, . . . , Λk.

Discretized non-transitive Anosov flows in the hypothesis of Corollary

7.1.4 can be constructed using the techniques from [FW80] (see also [BBY17]).

We briefly sketch their construction in Example 7.2.3.

7.1.3 Uniqueness of attractor for partially hyperbolic skew-

products

Recall that f :M ÑM is a partially hyperbolic skew-product if it admits an

f -invariant center foliation Wc such that M is a fiber bundle with M{Wc as

base and the leaves of Wc as fibers. If dimpEcq � 1, we say that pM,Wcq is

the trivial bundle if Wc is topologically equivalent to the foliation t�u � S1

in M{Wc � S1. We say that pM,Wcq is a virtually trivial bundle if it is

the trivial bundle modulo finite cover. In [BW05] one can find examples of

non-trivial skew-products that are virtually trivial and not virtually trivial.

The proof of Theorem 5.1.1 will follow from the more general statements

of Proposition 7.3.1 and Proposition 7.3.3 (see Section 7.3.1). As a conse-

quence of these propositions we recover also the uniqueness of minimal unsta-

ble lamination result of [HP14] when the bundle is non-trivial in dimension

3 and we extend it to any dimension:
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Theorem 7.1.5. Suppose f P PHc�1pMq is a partially hyperbolic skew-

product such that the induced dynamics in the space of center leaves, F :

M{Wc Ñ M{Wc, is transitive. If pM,Wcq is not a virtually trivial bundle

then f admits a unique minimal unstable lamination and a unique quasi-

attractor.

In fact, Theorem 7.1.5 is still valid if we exchange the hypothesis ‘skew-

product’ for ‘Wc uniformly compact’. We will precise this in Section 7.3.1.

In dimension 3, examples of partially hyperbolic skew-products with a

proper attractor and a proper repeller such that Wc is given by the fibers of

a non-trivial bundle over M{Wc � T2 are constructed in [Sh14].

One more time, it is worth noting the marked correspondence between

skew-products and discretized Anosov flows. In this case, concerning the

uniqueness and existence results. The trivial bundle case, the uniqueness

of minimal unstable lamination result of [HP14] for 3-nilmanifolds that are

not T3 (extended in Theorem 7.1.5) and the examples of [Sh14] mirror the

suspension case, Theorem 7.1.1 and the examples of [BG10], respectively.

Notice that the hypothesis ‘F : M{Wc Ñ M{Wc transitive’ in Theorem

7.1.5 is somehow natural since in this setting F is a topological Anosov homeo-

morphism that preserves two topologically transverse contracting/expanding

continuous foliations Wcs|M{Wc and Wcu|M{Wc . A potential Theorem B’,

in analogy with Theorem 7.1.3, would involve dealing with attracting basic

pieces of a non-transitive F .

7.1.4 Uniqueness and finiteness of attractors for the classical

examples in dimension 3 and beyond

As was already mentioned, the ‘classical examples’ (in the sense of Pujals’s

conjecture and [BW05]) of partially hyperbolic diffeomophisms in dimension

3 are skew-products, deformations of Anosov diffeomorphisms (those that

are homotopic to Anosov in T3) and discretized Anosov flows.

For deformations of Anosov diffeomorphisms uniqueness of minimal stable

and unstable lamination is proved in [Po13]. Existence of a proper quasi-

attractor is unknown (see [Po13, Question 2]).

Theorem 7.1.1 and Theorem 7.1.3 complete, in a certain sense, the unique-

ness and finiteness problem for the classical examples in dimension 3 modulo

the structure of Wc. In particular, the existence of infinetely many minimal

unstable laminations is always associated with a region (the whole manifold

or some proper attracting region) where Wc ‘looks like’ a suspension flow.

Recall that, beyond the classical examples, the first non-dynamically co-

herent examples were obtained in [HHU16]. These examples detected the

existence of a periodic torus tangent to Es ` Ec or Ec ` Eu as a possible
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obstruction for dynamically coherence. Notice that such a torus is necessar-

ily an attractor or a repeller. In [HP19] it was shown that examples with

this type of tori have periodic regions homeomorphic to T2 � p0, 1q in the

complement of these tori. In these regions Ec integrates to f -invariant ‘in-

terval fibers’ transverse to T2 � t�u and the dynamics is of the type ‘Anosov

times identity’. So, essentially, the existence of minimal unstable lamina-

tions or quasi-attractors for this type of examples is similar to the trivial

skew-product and suspension’s of Anosov map scenarios.

More recently, the realm of classical examples has been enlarged with new

challenging examples (as [BPP16], [BGP16] and [BGHP17]). It is natural to

ask if results of uniqueness or finiteness of minimal unstable laminations and

quasi-attractors are also valid for whole classes of these new examples.

7.2 Examples

In this section we briefly outline some examples. We give in Example 7.2.1

and Example 7.2.2 the construction of discretized Anosov flows with arbitrary

number of quasi-attractors, even infinitely many. The center flow φct on these

examples is orbit equivalent to a suspension flow in the whole manifold or

in restriction to an attracting basic piece of φct . Then in Example 7.2.3 we

show an example of an Anosov flow in the hypothesis of Corollary 7.1.4.

We say that a flow φt : X Ñ X is a suspension flow if there exists a

homeomorphism g : Y Ñ Y such that the flow φt is the projection of the

flow in Y � R generated by the vector field B
Bt � p0, 1q into the quotient

X � Y � R{� given by py, t� 1q � pgpyq, 1q.

Notice that for a suspension flow the spaceX has the structure of a bundle

over the circle S1 with fibers that are homeomorphic to Y . Moreover, the

flow φt takes fibers to fibers and the time 1 map φ1 : X Ñ X leaves invariant

each fiber (it projects as the identity on the base) and acts on each of them

as the map g.

Example 7.2.1 (Perturbing the time 1 map of an Anosov’s suspension). Let

us consider φt : M Ñ M to be the suspension of an Anosov diffeomorphism

g : N Ñ N .

We can perturb the time 1 map of φt in order to get a partially hyperbolic

map f that still preserves fibers but acts like a Morse-Smale in the base.

Indeed, taking coordinates x � py, tq, we can consider f explicitly as fpy, tq �

φτpy,tqpy, tq with τpy, tq � 1 � α sinp2πktq for any α P p0, 1q. In this case, f

has k proper attractors and k proper repellers.

Further, for a suitable 1-periodic map h : R Ñ p�1, 1q, the discretiza-

tion τpy, tq � 1 � hptq can produce infinite number of quasi-attractors and
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quasi-repellers. It is sufficient for h to have infinite zeros (countably or un-

countably), each of them accumulated by positive and negative values.

In analogy with the above example one can perform the following one:

Example 7.2.2. (Perturbing the time 1 map of the Franks-Williams’s exam-

ple) Consider φt :M ÑM the Franks-Williams’s example of a non-transitive

Anosov flow ([FW80]). Let Λ be the unique basic attracting piece for φt.

In this particular flow one has that φt|Λ : Λ Ñ Λ is conjugate to the

suspension of a derived from Anosov map g : T2 Ñ T2 restricted to its

unique attractor Y � T2. In particular, the time 1 map φ1|Λ leaves invariant

the fibers of this bundle structure acting on each of them as g|Y : Y Ñ Y .

Notice that each fiber is already a minimal unstable lamination for φ1.

Moreover, as the construction of φt involves performing a surgery far from

the suspension of g|Y : Y Ñ Y , in fact, there exists a neighborhood V of Y

with gpV q � V such that φt is conjugate to the suspension of g|V : V Ñ V

in a neighborhood U of Λ.

So we can perturb φ1 in a smaller bundle neighborhood U 1 � U of Λ to

obtain a discretization fpxq � φτpxqpxq that acts with arbitrary number of

quasi-attractors in the base and leaves unchanged the dynamics of φ1 outside

U . This can be done as in the previous example by taking τpy, tq � 1� hptq

for a suitable 1-periodic diffeomorphism h : R Ñ R in the neighborhood U 1

and glueing it with the constant τ � 1 outside U .

This construction produces an arbitrary number of quasi-attractors for

f , each one of them homeomorphic to Y . On the fibered neighborhood U 1 of

Λ the map f acts as h in the base S1 and as g on the fibers near Λ.

Let us finish this section with a brief sketch on how to construct an Anosov

flow in the hypothesis of Corollary 7.1.4:

Example 7.2.3. Let S be a negatively curved hyperbolic closed surface. Let

φt : T
1S Ñ T 1S be the geodesic flow on the unitary tangent bundle of S.

Consider α and β two simple, closed, oriented and disjoint geodesics in

S. Let us see them as periodic orbits α, β : r0, 1s Ñ T 1S of the flow φt.

It is a standard procedure to make a DA-type perturbation of the vector

field Bφt

Bt |t�0 in a neighborhood of α in order to transform α into a repelling

periodic orbit for a new flow ψt : T
1S Ñ T 1S such that Bφt

Bt |t�0 and Bψt

Bt |t�0

coincide outside a small neighborhood of α.

By considering then T a small toroidal neighborhood of α such that

ψt points inward into T 1SzT along the boundary BT we obtain that the

maximal invariant set of ψt|T 1SzT is a connected attracting hyperbolic set

Λ � T 1SzT . By cutting out T from T 1S and gluing back adequatly another

copy of ψt|T 1SzT with the inverse orientation one can obtain a non-transitive
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Anosov flow with Λ as its unique attracting basic piece (see the techniques

in [FW80] and [BBY17] for all the details).

We claim now that ψt|Λ is not orbit equivalent to a suspension. Suppose

by contradiction that it is. Then we can consider ρ : Λ Ñ S1 such that

limtÑ�8�ρ � φtpxq � �8 and limtÑ�8�ρ � φtpxq � �8 for every x P Λ,

where t ÞÑ �ρ � φtpxq : RÑ R is any lift of t ÞÑ ρ � φtpxq : RÑ S1.

We can extend ρ to a small open φt-forward invariant neighborhood U of

Λ such that limtÑ�8�ρ � φtpxq � �8 continues to be valid for every x P U

(see the proof of Theorem 7.1.3 for details on how to construct such an U). By

considering an adapted metric such that φt contracts distances inside strong

stable leaves for all future iterates we can take U of the form
�
xPΛWs

δpxq for

some δ ¡ 0. In particular, φt points inwards to U in every point of BU .

We can extend ρ continuously to T 1SzT by setting ρpyq � ρpφtypyqq for

every y P T 1SzpT Y Uq where ty is the unique non-negative time such that

φtypyq P BU .

Now, β : r0, 1s Ñ Λ is freely homotopic to its inverse β�1 : r0, 1s Ñ Λ in

T 1S by the homotopy βs with s P r0, 1s that for each t takes 9βptq and rotates

it clockwise sπ. As βs coincides with β in the base S, we can consider T

sufficiently close to α so that this homotopy takes place inside T 1SzT . This

homotopy gives an homotopy between the curve t ÞÑ �ρ � βptq : R Ñ R that

lifts t ÞÑ ρ�βptq : RÑ S1 and the curve t ÞÑ �ρ � β�1ptq : RÑ R that lifts t ÞÑ

ρ �β�1ptq : RÑ S1. This is an imposible homotopy since limtÑ�8
�ρ � βptq �

�8 and limtÑ�8
�ρ � β�1ptq � �8. We get to a contradiction and the claim

is proved.

7.3 Uniqueness of attractor for discretized Anosov

flows such that φct is transitive

7.3.1 Proof of Theorem 7.1.1 and Theorem 7.1.5 assuming

Proposition 7.3.1 and Proposition 7.3.3

Theorem 7.1.1 and Theorem 7.1.5 will be a consequence of the following more

general statements. Together, the following two propositions can be seen as

an obstruction to the existence of more that one minimal unstable lamination

(or more than one attracting region) for certain partially hyperbolic systems

with one-dimensional center.

Recall that f acts quasi-isometrically on Wc if there exist some constants

l, L ¡ 0 such that

fnpWc
l pxqq �Wc

Lpf
npxqq (7.3.1)

for every x in M and n P Z. We say that f acts quasi-isometrically in the
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future on Wc if (7.3.1) is verified for every n ¥ 0. And quasi-isometrically in

the past on Wc if it is satisfied for every n ¤ 0.

Proposition 7.3.1. Suppose f P PHc�1pMq is dynamically coherent admit-

ting f -invariant foliations Wcs and Wcu. Suppose that Wcs is minimal and

that f acts quasi-isometrically in the future on Wc :�Wcs XWcu.

Then there exists L ¡ 0 such that every minimal unstable lamination

A �M satisfies that

Wc
Lpxq XA � H

for every x PM . In particular, A intersects every leaf of Wc.

Remark 7.3.2. In Proposition 7.3.1 the hypothesis ‘Wcs minimal’ can be

replaced by ‘f chain-transitive’ or ‘f volume preserving’ since the latter ones

imply the former one (see for example [BW05, Lemma 1.1]).

We say that a one-dimensional center manifold Wc admits a global section

if there exists a codimension one closed submanifold N � M transverse to

the leaves of Wc such that Wc
Lpxq X N � H for every x P M and some

constant L ¡ 0.

Proposition 7.3.3. Suppose f P PHc�1pMq is dynamically coherent. Sup-

pose that the foliation Wc is orientable and that there exists L ¡ 0 such that

Wc
Lpxq XA � H for every minimal unstable lamination A.

If M has more than one minimal unstable lamination then Wc admits a

global section.

Remark 7.3.4. Notice that Proposition 7.3.3 does not include the hypothe-

sis ‘f acts quasi-isometrically on Wc’. In fact, it is derived as a consequence

along the proof (see Lemma 5.3.).

Proof of Theorem 7.1.1 assuming Propositions 7.3.1 and 7.3.3. Suppose f is

a discretized Anosov flow such that its center flow φct :M ÑM is transitive

and not orbit equivalent to a suspension.

From Proposition 3.4.4 we know that f is dynamically coherent admitting

f -invariant foliations Wcs and Wcu such that Wc � Wcs XWcu is the flow

center foliation of f (whose leaves are the orbits of φct). Moreover, f acts

quasi-isometrically on Wc (see Remark 3.4.2). And the leaves of Wcs and

Wcu are the weak-stable and weak-unstable leaves of the topological Anosov

flow φct , respectively (see Proposition 3.7.2).

Since φct is transitive we claim that Wcs and Wcu are minimal foliations.

Indeed, suppose by contradiction that there exists Λcu �M a compact proper

subset of M that is saturated by leaves of Wcu. Let N ¡ 0 be such that fN

contracts distances from the first iterate on leaves of Ws and let L1 ¡ 0 be
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such that fN pxq P Wc
L1pxq for every x P M . Let ϵ, δ ¡ 0 small be such that

Ws
ϵpΛ

cuq contains Wc
L1pxq for every x PWs

δpΛ
cuq. And such that MzWs

ϵpΛ
cuq

has non-empty interior.

Let x be a point whose φct -forward orbit o�pxq is dense in M . Without

loss of generality we can suppose that x lies in Ws
δpΛ

cuq since Ws
δpΛ

cuq has

non-empty interior. And that fpxq and φc1pxq lie in the same connected

component of Wcpxqztxu (otherwise, one just reverses the time of φct).

For every y, z P Wcpxq let ry, zsc denote the center segment in Wcpxq

joining y and z. It follows that the forwards orbit o�pxq of x is equal

to
�
k¥0rf

kN pxq, f pk�1qN pxqsc. Since rfkN pxq, f pk�1qN pxqsc is a subset of

Wc
L1pf

kN pxqq for every k ¥ 0 one obtains from the election of δ and ϵ that

o�pxq is contained in Ws
ϵpΛ

cuq. This contradicts that o�pxq is dense in M

since Ws
ϵpΛ

cuq was chosen so that MzWs
ϵpΛ

cuq has non-empty interior.

Analogously in the case of a compact proper subset ofM that is saturated

by leaves of Wcs. This proves the claim.

Combining Proposition 7.3.1 and Proposition 7.3.3 one obtains that f can

not admit more than one minimal unstable lamination, otherwise φct would

have a global section, and as a consequence it would be orbit equivalent to a

suspension flow.

Recall that a one-dimensional center manifold Wc is uniformly compact if

every leaf of Wc is compact and the leaf length function x ÞÑ lengthpWcpxqq

is bounded in M . In case f is a skew-product, it is immediate that Wc is

uniformly compact (in fact, the leaf length function is continuous in M). We

will prove Theorem 7.1.5 in its more general version for the case when Wc is

an f -invariant uniformly compact foliation.

Proof of Theorem 7.1.5 assuming Propositions 7.3.1 and 7.3.3. Let f :M Ñ

M be a partially hyperbolic diffeomorphism with dimpEcq � 1 admitting an

f -invariant uniformly compact center foliation Wc such that the induced dy-

namics in the space of center leaves, F : M{Wc Ñ M{Wc, is transitive.

Suppose that M admits more that one minimal unstable lamination. We are

going to see that under this hypothesis pM,Wcq has to be a virtually trivial

bundle.

From [BB16, Theorem 1] the map f is dynamically coherent admitting

center-stable and center-unstable foliations Wcs and Wcu, respectively, such

that Wc �WcsXWcu. As F :M{Wc ÑM{Wc is transitive the foliation Wcs

has to be minimal, otherwise a proper minimal set for Wcs would project to

M{Wc into a proper repeller for F .

Furthermore, as the length of center leaves is bounded, then f automat-

ically acts quasi-isometrically on Wc as pointed out in Remark 3.4.3.
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Suppose first that Wc is orientable. By combining Propositions 7.3.1 and

7.3.3 we obtain that Wc admits a global section.

Let us denote the global section of Wc as N �M . Let α : N Ñ N denote

the first return map of Wc to N , modulo fixing an orientation for Wc.

For every x P N let kpxq P Z� be the smallest positive integer such that

αkpxqpxq � x. As x ÞÑ lengthpWcpxqq is bounded in M there exists some

constant k P Z� such that kpxq ¤ k for every x. By taking K � k! we obtain

that αK � id.

Let us consider a metric in M such that every center segment rx, αpxqsc
is of length 1

K and let ϕc : M Ñ M denote the flow by arc-length whose

flow lines are the leaves of Wc. Then the map p : N � S1 Ñ M given by

px, θq ÞÑ ϕcθpxq is a K : 1 covering map sending circles of the form t�u � S1

to leaves of the foliation Wc. We conclude that pM,Wcq is a virtually trivial

bundle.

In the case Wc is not orientable we can argue as above after taking an ori-

entable double cover forWc. Indeed, we can lift f , Wc and all the minimal un-

stable laminations to an orientable double cover M̃ . The quasi-isometrically

action of f on Wc remains valid on the lifted dynamics.

We claim that the minimality ofWcs also remains valid on the lift. Indeed,

if we suppose that the lift of Wcs is not minimal then there exist x̃ and x̃1 lifts

of a point x P M such that Wcspx̃q and Wcspx̃1q are minimal proper subsets

of M̃ . Then M̃ coincides with the disjoint union Wcspx̃q YWcspx̃1q and we

get to a contradiction. This proves the claim.

We obtain that the lifted dynamics verifies Proposition 7.3.1 and Proposi-

tion 7.3.3. Then, as argued above, M̃ and the lift ofWc form a virtually trivial

bundle. We conclude that pM,Wcq is also a virtually trivial bundle.

7.3.2 Proof of Proposition 7.3.1

Let f :M ÑM be as in the hypothesis of Proposition 7.3.1.

Recall that for every r ¡ 0 and x P M we denote by Ws
rpW

c
rpxqq the

set
�
yPWc

rpxq
Ws
rpyq. As a consequence of f acting quasi-isometrically in the

future on Wc it was shown in Proposition 3.4.4 that
�
r¥0W

s
rpW

c
rpxqq �

Wcspxq for every x in M (the proposition is stated for quasi-isometrically

action in the past and future but the proof of this fact only uses that f acts

quasi-isometrically in the future).

Lemma 7.3.5. There exists R ¡ 0 such that Ws
RpW

c
Rpxqq XWupyq � H for

every x and y in M .

Proof. By contradiction, suppose there exist Rn
n
ÝÑ 8 and sequences txnun

and tynun in M such that Ws
Rn
pWc

Rn
pxnqqXWupynq � H for every n. Then,
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as we are dealing with leaves of foliations tangent to continuous bundles, by

taking accumulation points x and y of the sequences txnun and tynun we

obtain that Wcspxq XWupyq � H. This contradicts that Wcspxq is dense in

M .

As f acts quasi-isometrically in the future on Wc there exists L ¡ 0 such

that fnpWc
Rpxqq is contained in Wc

Lpf
npxqq for every n ¥ 0 and x PM .

Proposition 7.3.1 is a direct consequence of the following lemma.

Lemma 7.3.6. For every x and y in M we have that Wc
Lpxq XWupyq � H.

Proof. Let us fix x and y arbitrary points in M . For every n ¥ 0 we have

that Ws
RpW

c
Rpf

�npxqqq XWupf�npyqq � H. Then, as f contracts distances

uniformly to the future inside stable leaves, there exists rn
n
ÝÑ 0 such that the

image of Ws
RpW

c
Rpf

�npxqqq by fn is contained in Ws
rnpW

c
Lpxqq. We obtain

that Ws
rnpW

c
Lpxqq XWupyq � H for every n ¥ 0 and then Wc

Lpxq XWupyq �

H.

7.3.3 First part of the proof of Proposition 7.3.3: The sets

pA,A1qc and pA1, Aqc

From now on let f : M Ñ M and L ¡ 0 be as in the hypothesis of Proposi-

tion 7.3.3 and suppose that there exist A and A1 different minimal unstable

laminations in M . We will see that under this hypothesis Wc has to admit a

global section.

The goal of this subsection is to show that the sets pA,A1qc and pA
1, Aqc

defined below are disjoint open subsets of M that ‘separate’ the disjoint and

closed subsets rAsc and rA
1sc (see Proposition 7.3.12).

Let us fix from now on an orientation for Wc and denote ϕc :M�RÑM

a non-singular flow that parameterizes the leaves of Wc.

Notation. For x and y in the same center leaf we will say that x ¤ y if

y � ϕctpxq for some t ¥ 0. If this is the case, let px, yqc and rx, ysc denote the

open and closed center segments from x to y.

Let us define the sets:

rAsc �
¤
trx, ysc : x P A, y P A, rx, ysc XA1 � Hu,

pA,A1qc �
¤
tpx, yqc : x P A, y P A

1, px, yqc X pAYA1q � Hu.

Notice that the center segments in the definition of rAsc may be singletons.

We define analogously the sets rA1sc and pA1, Aqc. By an abuse of notation,

we will consider this sets both as subsets of M and as an abstract collection

center segments.

The following remark is a direct consequence from the definitions.
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Remark 7.3.7. The manifoldM is equal to the disjoint union rAscYpA,A
1qcY

rA1sc Y pA1, Aqc.

Let us first point out that:

Lemma 7.3.8. The map f acts quasi-isometrically on Wc.

Proof. Let d ¡ 0 be the distance between the disjoint minimal unstable

laminations A and A1.

We claim that, as every center segment of length 2L ¡ 0 intersects every

minimal unstable lamination, then fnpWc
dpxqq can not have length larger

than 2L for any x PM and n P Z.

By contradiction, if the length of fnpWc
dpxqqq is larger that 2L for some x P

M and n P Z then fnpWc
dpxqq intersects both minimal unstable laminations

fnpAq and fnpA1q. Then Wc
dpxq has to intersect both A and A1. This gives

us a contradiction and the claim is proved. We obtain that f is acts quasi-

isometrically on Wc with constants d, 2L ¡ 0.

As a consequence of the previous lemma it follows from Proposition 3.4.4

that for every x PM the center unstable leaf Wcupxq is equal to WupWcpxqq,

the unstable saturation of the center leaf Wcpxq. Moreover, we will be able

to make ‘long’ transports by unstable holonomy of any center segment as

stated in the in Lemma 7.3.9 below.

We say that a curve xu : r0, 1s Ñ M is an unstable curve if it is a C1

curve tangent to the bundle Eu. In the setting of the following lemma we

say that trxuptq, yuptqscutPr0,1s is the transport by unstable holonomy of the

center segment rx, ysc along the unstable curve xu.

Lemma 7.3.9. Let rx, ysc be a center segment in M and xu : r0, 1s Ñ M

be an unstable curve such that xup0q � x. Then there exist a unique unsta-

ble curve yu : r0, 1s Ñ M and unique center segments rxuptq, yuptqsc vary-

ing continuously with t P r0, 1s in the Hausdorff topology and satisfying that

rxup0q, yup0qsc � rx, ysc.

Proof. As f acts quasi-isometrically on Wc there exists R ¡ 0 such that the

length of f�nprx, yscq is less than R for every n ¥ 0.

By dynamical coherence the leaves of Wcu are subfoliated by leaves of

Wc and Wu having local product structure. Then, as Wc is tangent to a

continuous bundle, there exist small constants ϵ, δ ¡ 0 such that for every

center segment rx1, y1sc of length less than R and every point x2 P Wu
δ px

1q

there exists a unique center segment rx2, y2sc with y2 P Wu
ϵ py

1q such that

rx2, y2sc is contained in an unstable ϵ-neighborhood of rx1, y1sc of the form�
zPrx1,y1sc

Wu
ϵ pzq. In other words, the transport by unstable holonomy for
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center segments of length at most R is well defined along any unstable curve

of a certain small length δ ¡ 0.

Since f contracts unstable distances in the past, then f�n0pxuq will have

length less that δ for some n0 ¥ 0. Then the transport by unstable holonomy

of rf�n0pxq, f�n0pyqsc along f�n0pxuq is well defined and, iterating it n0 to

the future, the transport by unstable holonomy of rx, ysc along x
u is also well

defined.

For every x P A let us define Spxq to be the ‘first point’ of A1 in Wcpxq

in the direction of the flow ϕc. That is, Spxq is such that px, Spxqqc is a

center segment in rAscYpA,A
1qc. Let us define lSpxq as the length of the arc

rx, Spxqsc.

Lemma 7.3.10. The function lS : A Ñ R is lower semicontinuous and

continuous in a residual subset of A.

Proof. Since lS is bounded from above by the constant 2L ¡ 0 then, for every

sequence txnun � A that converges to a point x in A, any accumulation

point y of Spxnq lies in Wcpxq. Since A1 is closed, y is a point in A1. Then

rx, Spxqsc has to be contained in rx, ysc for any such an accumulation point

y. This implies that lSpxq ¤ lim infn lSpxnq and we obtain that lS is lower

semicontinuous.

It is a well-known result that semicontinuous functions are continuous in

a residual set. For the sake of completeness we outline the proof of this fact

for lS : Consider the sets Fm � tx P A : D xn
n
ÝÑ x s.t. lim infn lSpxnq ¥

lSpxq �
1
mu for every m in Z�. The set of continuity points of lS coincides

with Az
�
m Fm. It is direct to prove that each Fm is a closed nowhere dense

subset of A. Then Az
�
m Fm is a residual set in A by Baire category theorem.

For a continuity point x of lS every sequence txnun � A converging to

x verifies that the center segments rxn, Spxnqsc converges in the Hausdorff

topology to rx, Spxqsc. For a discontinuity point this is not the case, however,

we will see in the following lemma that the failure of continuity is not that

dramatic. To show this, we will crucially use that the behavior of S near a

continuity point can be extended by unstable holonomy to any point of A

thanks to Lemma 7.3.9.

Lemma 7.3.11. Let txnun � A be a sequence converging to a point x P

A. Up to taking a subsequence, suppose that tSpxnqun converges to a point

y P A1. Then y lies in Wcpxq, the center segments rxn, Spxnqsc converge in

the Hausdorff topology to rx, ysc and rSpxq, ysc is a center segment (possibly

degenerate to a point) contained in rA1sc.
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Proof. We claim first that the lemma is true for every x P A in a neighborhood

of a continuity point of lS .

Indeed, let z P A be a continuity point of lS and consider USpzq a small

neighborhood of Spzq at a positive distance from A. We can suppose that

USpzq is a foliation box of Wc, that is, that USpzq is the image of a homeo-

morphism h : D� r0, 1s Ñ USpzq such that D is a compact disc of dimension

dimpMq � 1 and hptxu � r0, 1sq is a center segment for every x P D. Let us

denote by D1 the disc hpD � t1uq.

Since z is a continuity point of lS we can consider δ ¡ 0 such that for every

x P A X Bδpzq we have that Spxq lies in the interior of USpzq. In particular,

the center segment rx, Spxqsc does not cross the disc D1.

If txnun � A is a sequence converging to a point x P AXBδpzq, then any

accumulation point y of tSpxnqun has to lie in USpzq. Up to a subsequence,

let us assume that Spxnq
nÝÑ y. Then, as each rxn, Spxnqsc does not intersect

D1, the segments rxn, Spxnqsc need to converge in the Hausdorff topology to

rx, ysc and the whole segment rSpxq, ysc has to be contained USpzq (see Figure

7.1). As Spxq and y are in A1 and USpzq is disjoint from A we conclude that

rSpxq, ysc is a center segment in rA1sc. This proves the first claim.

Bδpzq USpzq

D1
z

x

Spzq
Spxq y

Spxnqxn

Figure 7.1:

Let us see now that the lemma is true for every point in x̂ P A. We will use

as an auxiliary construction a continuity point z for lS and the neighborhoods

Bδpzq and USpzq as in the previous claim.

Let tx̂nun � A be a sequence converging to the point x̂ P A. Suppose,

up to taking a subsequence, that Spx̂nq converges to a point ŷ. As A is

Wu-minimal and z P A we can consider x PWupx̂q XBδpzq and x
u : r0, 1s Ñ

M an unstable arc such that xup0q � x and xup1q � x̂. We can consider

also unstable arcs txun : r0, 1s Ñ Mun converging uniformly to xu such that

xunp0q � xn lies in Wupx̂nq XBδpzq and x
u
np1q � x̂n.

Let us denote yn � Spxnq for every n. Notice that yn P USpzq since

xn P Bδpzq. As the sequence xn converges to x then by the first claim, up

to taking a subsequence, rxn, ynsc converges in the Hausdorff topology to a

center segment rx, ysc such that rSpxq, ysc is in rA
1sc.

Consider now trxuptq, yuptqscutPr0,1s the transport by unstable holonomy
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x̂n

x̂ ŷ

Spx̂nq

Spxq

Bδpzq USpzq

D1

xuxun

A A1 A1

yx

Spx̂q

Figure 7.2:

of rx, ysc along xu such that rxup0q, yup0qsc � rx, ysc (see Lemma 7.3.9).

Consider also trxunptq, y
u
nptqscutPr0,1s the transport by unstable holonomy of

rxunp0q, y
u
np0qsc � rxn, ynsc along x

u
n for every n. Notice that, as Spxnq � yn

and A and A1 are Wu-invariant, then Spxunptqq � yunptq for every t P r0, 1s.

The foliations Wc and Wu have C1 leaves tangent to continuous subbun-

dles ofM . So as xun converges uniformly to xu we have that rxunptq, y
u
nptqsc has

to converge in the Hausdorff topology to rxuptq, yuptqsc for every t P r0, 1s. In

particular, the sequence rxunp1q, y
u
np1qsc � rx̂n, Spx̂nqsc needs to converge to

rxup1q, yup1qsc. As x
up1q � x̂ and Spx̂nq

nÝÑ ŷ we obtain that rxup1q, yup1qsc �

rx̂, ŷsc. Then the sequence rx̂n, Spx̂nqsc converges to rx̂, ŷsc.

Finally, from the first claim, rSpxq, ysc � rSpxup0qq, yup0qsc is a center

segment in rA1sc. This property is preserved by unstable holonomy since A

and A1 are Wu-saturated so rSpxuptqq, yuptqsc is a center segment in rA1sc for

every t P r0, 1s. We conclude that rSpxup1qq, yup1qsc � rSpx̂q, ŷsc needs to

be a center segment in rA1sc (see Figure 7.2) and this ends the proof of the

lemma.

We are now able to prove:

Proposition 7.3.12. The sets pA,A1qc and pA
1, Aqc are disjoint open subsets

of M . The sets rAsc and rA
1sc are disjoint closed subsets of M .

Proof. The sets pA,A1qc and pA1, Aqc are disjoint by definition. For proving

that pA1, Aqc is open let us see that its complement, rAs Y pA,A1qcY rA1sc, is

closed. The proof of pA,A1qc open is analogous.

Let tvnun be a sequence in rAscYpA,A
1qcYrA

1sc converging to a point v.

The sequence tvnun lies infinitely many times in rAscYpA,A
1qc or pA,A

1qcY

rA1sc. Suppose without loss of generality that it is the former. So, up to a
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subsequence, there exist xn P A and yn � Spxnq P A
1 such that vn lies in the

center segment rxn, ynsc for every n.

Then by Lemma 7.3.11, up to taking a converging subsequence such that

xn
n
ÝÑ x and yn

n
ÝÑ y, the sequence rxn, ynsc converges in the Hausdorff

topology to the center segment rx, ysc and rSpxq, ysc is in rA
1sc.

Then rx, ysc � rx, SpxqscYrSpxq, ysc is a center segment in rAsYpA,A1qcY

rA1sc. As the limit point v needs to lie in rx, ysc this proves that rAs Y

pA,A1qc Y rA1sc is closed.

The sets rAsc and rA
1sc are disjoint by definition. Let us see that rAsc is

closed. The proof of rA1sc closed is analogous.

Let twnun be a sequence in rAsc converging to a point w. Suppose that

each wn is contained in a segment rxn, znsc in rAsc and consider yn � Spxnq

for every n. Then by Lemma 7.3.11, up to taking a converging subsequence

such that xn
n
ÝÑ x and yn

n
ÝÑ y, the sequence rxn, ynsc converges in the

Hausdorff topology to the center segment rx, ysc such that rSpxq, ysc is in

rA1sc.

Up to taking another subsequence if necessary the sequence tznun � A

converges to a point z P A contained in rx, ysc. The sequence rxn, znsc con-

verges in the Hausdorff topology to rx, zsc so the point w needs to lies in rx, zsc
as it is the limit of points wn in rxn, znsc. Moreover, since rSpxq, yscXA � H,

then rx, zsc needs to be contained in rx, Spxqsc. We deduce that rx, zsc is a

center segment in rAsc containing w. This proves that rAsc is closed inM .

Let us end this subsection with a small parenthesis:

Remark 7.3.13. Let us compare with the examples in [BG10] of Axiom A

discretized Anosov flows having a proper attractor Λ and a proper repeller

Λ1 such that Wc is not topologically conjugate to a suspension.

In these examples, Λ and Λ1 are minimal unstable and stable laminations,

respectively, and Proposition 7.3.1 is verified: there exist L ¡ 0 such that

Wc
Lpxq intersects Λ and Λ1 for every x PM .

If one is tempted to imitate the present proof with Λ and Λ1 in the place

of A and A1, it fails at the following point: By considering analogously the

sets pΛ,Λ1qc and pΛ1,Λqc of center segments from Λ to Λ1 and from Λ1 to

Λ, respectively, the property that is not verified is that pΛ,Λ1qc and pΛ
1,Λqc

are open. Indeed, there exist segments in pΛ,Λ1qc accumulated by segments

from pΛ1,Λqc, and vice versa. The basin of Λ or Λ1 does not decomposes in

two connected components, rather Λ and Λ1 are geometrically intertwined in

such a fashion that its basins have a unique connected component.
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7.3.4 Second part of the proof of Proposition 7.3.3: Construc-

tion of a global section

We can conclude from the previous subsection that M decomposes as the

disjoint union

M � rAsc Y pA,A1qc Y rA1sc Y pA1, Aqc,

where pA,A1qc and pA1, Aqc are open subsets of M , and rAsc and rA1sc are

closed subsets of M . From Proposition 7.3.1 there exists L ¡ 0 such that

Wc
Lpxq X A � H and Wc

Lpxq X A1 � H for every x P M . Let us see in this

subsection that this is sufficient for showing that Wc has to admit a global

section.

Consider θ :M Ñ r0, 1s continuous such that θ�1p0q � rAsc and θ
�1p1q �

rA1sc. Define next ρ :M Ñ S1 such that

ρpxq �

#
1
2θpxq (mod 1) if x P rAsc Y pA,A1qc Y rA1sc
1� 1

2θpxq (mod 1) if x P rA1sc Y pA1, Aqc Y rAsc

Remark 7.3.14. The function ρ :M Ñ S1 is well-defined and continuous.

Proof. If x is a point belonging both to rAsc Y pA,A1qc Y rA1sc and rA1sc Y

pA1, Aqc Y rAsc then x P rAsc � θ�1p0q or x P rA1sc � θ�1p1q. In both cases,
1
2θpxq and 1� 1

2θpxq take the same value (mod 1). We obtain that ρ is well

defined.

Since ρ is a continuous function restricted to each closed subset rAsc Y

pA,A1qc Y rA1sc and rA1sc Y pA1, Aqc Y rAsc (they are closed as they are the

complement of pA1, Aqc and pA,A1qc, respectively), and since the union of

both closed subsets is M , then ρ is continuous.

Recall that ϕc :M�RÑM denotes a flow whose flow lines are the leaves

of Wc. Let us assume that ϕc is parametrized by arclength. Let p : M̃ ÑM

be the universal cover of M and ϕ̃c : M̃ � R Ñ M̃ be the lift of ϕc to M̃ .

Consider ρ̃ : M̃ Ñ R to be a lift of ρ :M Ñ S1, that is, such that π� ρ̃ � ρ�p.

As A and A1 intersect every center segment of length 2L ¡ 0 then for

every x̃ in M̃ :

ρ̃ � ϕ̃cpx̃, 4Lq � ρ̃ � ϕ̃cpx̃, 0q ¡ 1. (7.3.2)

Notice that for a given x in M the difference considered in (7.3.2) is inde-

pendent of the lift x̃ of x. Informally, it measures how much ‘winds around’

S1 the image by ρ of the center segment rx, x� 4Lsc.

Now an argument of Schwartzman (see [Sc57] and [BG09]) allows us to

conclude the proof of Proposition 7.3.3. We reproduce it for the sake of

completeness.
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Proposition 7.3.15. Let M be a smooth manifold and ϕ :M �RÑM be a

flow tangent to a continuous vector field Xϕ in M and satisfying (7.3.2) for

a certain continuous function ρ : M Ñ S1 and some constant L ¡ 0. Then

ϕ admits a smooth global section.

Proof. Let p : M̃ Ñ M be the universal cover of M . Consider Xψ a smooth

vector field C0-close to Xϕ and µ : M Ñ S1 a smooth map C0-close to

ρ : M Ñ S1. Let ψ̃ : M̃ Ñ M̃ be the lift to M̃ of the flow ψ : M Ñ M

tangent to Xψ and µ̃ : M̃ Ñ R be such that π̃ � µ̃ � µ � p. Then, if Xψ and

µ are close enough to Xϕ and ρ, respectively, we still have

µ̃ � ψ̃px, 4Lq � µ̃ � ψ̃px, 0q ¡ 1,

for every x PM .

Let us consider now the smooth map λ̃ : M̃ Ñ R given by

λ̃px̃q �
1

4L

» 4L

0
µ̃ � ψ̃px̃, tqdt.

We claim that λ̃ projects to a map λ : M Ñ S1. Indeed, if x̃ and ỹ are two

points in M̃ such that x � ppx̃q � ppỹq then there exists an integer n such

that µ̃pỹq � µ̃px̃q�n. Furthermore, n satisfies that µ̃�ψ̃pỹ, tq � µ̃�ψ̃px̃, tq�n

for every t. This implies that λ̃pỹq � λ̃px̃q � n. We deduce that

λpxq :� λ̃px̃q (mod 1)

is well defined independently of the lift x̃. This proves the claim.

Moreover, for any x̃ in M̃ we have:

B

Bt
λ̃ � ψ̃px̃, tq|t�0 �

1

4L
pµ̃ � ψ̃px̃, 4Lq � µ̃ � ψ̃px̃, 0qq ¡

1

4L
¡ 0. (7.3.3)

This proves that λ : M Ñ S1 is a submersion such that the orbits of ψ are

transverse to the fibers. We obtain that N � λ�1p0q is a submanifold of M

that is a global section for the flow ψ.

Moreover, since (7.3.3) gives us a positive lower bound (which only de-

pends on the a priori constant L ¡ 0) for the angle between the vector field

Xψ and the fibers of λ : M Ñ S1 then we can consider Xψ to be C0-close

enough to Xϕ so that ϕ :M ÑM is also transverse to the fibers and N is a

global section for ϕ.
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7.4 Finiteness of attractors for certain discretized

Anosov flows such that φct is not transitive

Given a discretized Anosov flow f with center flow φct : M Ñ M we have

shown in Proposition 3.7.2 that φct : M Ñ M is a topological Anosov flow

(see Definition 3.7.1). In fact, an a priori stronger property than the ones

stated in Definition 3.7.1 is satisfied by φct :M ÑM :

Remark 7.4.1. It is immediate from the proof of Proposition 3.7.2 that

the following ‘uniform’ form of contraction and expansion is satisfied by the

center flow φct :M ÑM of a discretized Anosov:

There exists constants ϵ ¡ 0, C ¡ 0 and λ P p0, 1q satisfying that for every

x PM and y PWs
δpxq there exists a homeomorphism hy : r0,�8q Ñ r0,�8q

such that φchyptqpyq lies in Wspφctpxqq and

dspφ
c
tpxq, φ

c
hyptq

pyqq   Ceλtdspx, yq

for every t ¥ 0.

Analogously for u in the place of s and backwards orbits of φct .

Using the property stated in the above remark and the local product

structure given by the weak-stable and weak-unstable foliations of φct (which

coincides with center stable Wcs and center-unstable Wcu of f) one can show

that φct needs to satisfy the shadowing property and that the spectral decom-

position stated in the following lemma is satisfied by means of the same type

of arguments used for classical Anosov flows. See for example [FH19] as a

reference.

Recall that the non-wandering set of a flow φt : M Ñ M is the set

Ωpφtq :� tx P M | for every neighborhood U of x and T ¡ 0 there exists

t ¡ T s.t. φtpUq X U � Hu.

Lemma 7.4.2. The topological Anosov flow φct : M Ñ M obtained as the

center flow of a discretized Anosov flow f satisfies that the non-wandering

set Ωpφctq admits a decomposition

Ωpφctq � Λ1 Y . . .Y ΛN ,

where tΛiu1¤i¤N are compact, disjoint and φct-invariant subsets of M such

that φct |Λi : Λi Ñ Λi is transitive for every 1 ¤ i ¤ N .

Moreover, some of them, Λ1, . . . ,Λk, are attracting basic pieces satisfying

that their joint basin of attraction FwspΛ1q Y . . . Y FwspΛkq is an open and

dense subset of M and that FcupΛiq � Λi for every 1 ¤ i ¤ k.

We are now able to show Theorem 7.1.3:
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Adapting the proof of Theorem 7.1.1 to show Theorem 7.1.3. Let f be a dis-

cretized Anosov flow such that its center flow φct :M ÑM is not transitive.

Let Λ be an attracting basic piece of φct . Since the flow φct |Λ : Λ Ñ Λ is

transitive one obtains thatWcspxqXΛ is dense in Λ for every x in Λ, otherwise

Wcspxq X Λ would be a proper repeller for φct |Λ. SoW
cs|Λ is minimal in Λ. As

f acts quasi-isometrically onWc then Proposition 7.3.1 adapts identically and

we get that there exists L ¡ 0 such that every minimal unstable lamination

A in Λ verifies that Wc
Lpxq XA � H for every x P Λ.

Suppose now that there exist two different minimal unstable laminations

A and A1 in Λ. We want to show that φct |Λ needs to be orbit equivalent to a

suspension. This will conclude the proof of Theorem 7.1.3.

We can analogously define the sets rAsc, pA,A
1qc, rA

1sc and pA
1, Aqc as in

the proof of Proposition 7.3.3. The proof that pA,A1qc and pA
1, Aqc are open

and that rAsc and rA
1sc are closed in Λ works analogously. This allows us to

define a continuous function ρ : ΛÑ S1 such that

|�ρ � φ4Lpxq ��ρ � φ0pxq| ¡ 1, (7.4.1)

where t ÞÑ�ρ � φctpxq : RÑ R is any lift of t ÞÑ ρ � φctpxq for every x P Λ.

We can extend now ρ to a small open φct -forward invariant neighborhood

U of Λ is the following way: We can cover Λ by Bδ1px1q Y . . .YBδj pxjq such

that xi P Λ and |ρpxq � ρpxiq|   1{10 for every x P Λ X Bδipxiq. By Tietze

extension theorem we can extend ρ|ΛXBδi
pxiq to ρi : Bδipxiq Ñ S1 such that

we still have |ρipxq � ρpxiq|   1{10 for every x P Bδipxiq. Then by taking

a partition of unity tτi : Bδipxiq Ñ r0, 1sui subordinated to tBδipxiqui the

functions tρiui can be interpolated in order to obtain an extension of ρ to

Bδ1px1q Y . . . Y Bδj pxjq. Finally, we can take V � Bδ1px1q Y . . . Y Bδj pxjq

such that φctpV q � Bδ1px1q Y . . . Y Bδj pxjq for every t ¥ 0 and then define

U �
�
t¥0 φ

c
tpV q.

This construction of U gives us that (7.4.1) continues to be valid for every

x P U . The argument of Schwartzman also works well restricted to U : by

taking smooth approximations µ and Xψ of ρ and
Bφc

t
Bt |t�0 , respectively, we

can define the function λ : U Ñ S1 as λpxq � 1
4L

³L
0
�µ � ψtpxqdt (mod 1) and

obtain that B
Bt
�λ � ψtpxq|t�0 ¡

1
4L ¡ 0 for every x P U . Then λ�1p0q gives us a

global forward section for φct |U . This global forward section gives us a global

section for φct |Λ.

Proof of Corollary 7.1.4. Let f be a discretized Anosov flow such that its

center flow φct is not transitive. Let Λ1, . . . , Λk be the attracting basic pieces

of φct and suppose that φct is not orbit equivalent to a suspension restricted

to any of these pieces.
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Recall that WcspΛ1qY . . .YWcspΛkq is an open and dense Wcs-saturated

subset of M . As f acts quasi-isometrically on Wc then Wcspxq �WspWcpxqq

for every x in M by Proposition 3.4.4. As each Λi is Wc-saturated, then

WcspΛ1q Y . . .YWcspΛkq coincides with WspΛ1q Y . . .YWspΛkq.

We claim that there exists R ¡ 0 such that

Wupxq X
�
Ws
RpΛ1q Y . . .YWs

RpΛkq
�
� H

for every x inM . Indeed, let V u
1 ,. . . , V u

j be a finite collection of Wu -foliation

boxes such that
�
i V

u
i � M . For every 1 ¤ i ¤ j there exist Ri ¡ 0 such

that Ws
Ri
pΛ1q Y . . .YWs

Ri
pΛkq intersects every Wu-plaque in V u

i . The claim

follows from taking R � maxtR1, . . . , Rju.

As a consequence of the previous claim we obtain that

Wupxq X
�
Λ1 Y . . .Y Λk

�
� H

for every x inM . Indeed, as Wupf�npxqq intesercts
�
Ws
RpΛ1qY. . .YWs

RpΛkq
�

for every n ¥ 0 then Wupxq � fnpWupf�npxqqq is at distance 0 from Λ1 Y

. . .YΛk. We deduce that every minimal unstable lamination for f intersects

Λ1 Y . . .Y Λk.

Moreover, as each attracting basic piece is compact and Wu-saturated,

then every minimal unstable lamination of f has to be contained in one of

the attracting basic pieces.

Finally, by Theorem 7.1.3, each attracting basic piece Λi contains a unique

minimal unstable lamination. We conclude that f admits exactly k minimal

unstable laminations and that each one of them is contained in one of the

attracting basic pieces Λ1, . . . , Λk of φct .
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tion à diriger des recherches, Université Claude Bernard de Lyon, 2005.
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no. 4, 1023–1032.

[HU19] J. Rodriguez Hertz and R. Ures, On the Three-Legged Accessibility

Property, New Trends in One-Dimensional Dynamics. Springer Proceed-

ings in Mathematics & Statistics, 285 (2019), 239-248.

[HPS77] M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds, Springer

Lecture Notes in Math., 583 (1977).

[M22] S. Martinchich, Global stability of discretized Anosov flows,

arXiv:2204.03825.
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