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Abstract

This thesis attempts to contribute to the study of differentiable dynamics both
from a semi-local and global point of view. The center of study is differentiable
dynamics in manifolds of dimension 3 where we are interested in the understanding
of the existence and structure of attractors as well as dynamical and topological
implications of the existence of a global partially hyperbolic splitting. The main
contributions are new examples of dynamics without attractors where we get a quite
complete description of the dynamics around some wild homoclinic classes (see Sec-
tion 2.2 and subsection 3.3.2) and two results on dynamical coherence of partially

hyperbolic diffeomorphisms of T? (see Chapter 5).

Resumen

Esta tesis pretende contribuir al estudio de la dinamica diferenciable tanto desde
sus aspectos semilocales como globales. El estudio se centra en dindamicas diferen-
ciables en variedades de dimension 3. Se busca comprender por un lado la existencia
y estructura de los atractores asi como propiedades topolégicas y dindmicas impli-
cadas por la existencia de una descomposicién parcialmente hiperbdlica global. Las
contribuciones principales son la construccion de nuevos ejemplos de dindmicas sin
atractores donde se da una descripcion bastante completa de la dinamica alrededor
de una clase homoclinica salvaje (ver Seccién 2.2 y la subseccién 3.3.2) y dos resul-
tados sobre la coherencia dinamica de difeomorfismos parcialmente hiperbélicos en
T3 (ver Capitulo 5).

Resume

Le but de cette these est de contribuer a la compréhension des dynamiques
différentiables aussi bien dun point de vue semilocal que global. L’etude se con-
centre sur les diffeomorphismes des variétés de dimension 3. On cherche a com-
prendre l'existence et la structure de leurs attracteurs, mais aussi a decrire les
propriétés topologiques et dynamiques des difféomorphismes partiellement hyper-
boliques globaux. Les contributions pricipales sont la construction de nouvelle dy-
namiques sauvages (voir Section 2.2 et subsection 3.3.2) et deux résultats sur la
cohérence dynamique des difféomorphismes partiellement hyperboliques dans T3
(voir Chapitre 5).
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Notations

For a compact metric space X we denote d(-,-) to the metric of X.

M? will denote a compact connected Riemannian manifold without boundary
of dimension d € N. It is a metric space whose metric is induced by the

Riemannian metric (-, -).

Leb(:) will denote the measure induced by any volume form on M of total
measure 1. For our purposes it will make no difference which one is it (since
we shall not assume the maps to preserve it) and we shall only care about sets

having positive, total or zero measure.

For X C M, we denote Tx M = J, .y T M with the topology induced by the
inclusion Tx M C T'M into the tangent bundle of M.

Diff"(M) (r > 0) denotes the set of C"-diffeomorphisms (homeomorphisms in
the case r = 0) with the C" topology (see [Hi]). We shall denote the distance
in Diff"(M) as deor(+,-). It is a Baire space. Similarly, C"(M, N') denotes the
space of C"-maps from M to N and Emb" (M, N) the space of C"-embeddings.

For f € Diff'(M) we denote as D, f : T,M — Tt@)M the derivative of f over

x. Sometimes, we shall not make reference to the point z when it is understood.

For V, W submanifolds of M we say that they intersect transversally at x €
VN W if we have that T,V + T, W =T,M. The set of points in V N'W where
the intersection is transversal is denoted by VAW. When VW =V AW

we say that V' and W intersect transversally.

For V,WW compact embedded submanifolds of M (possibly with boundary)
which are diffeomorphic to a certain manifold D, we define the C"-distance be-
tween them as the infimum of the C"-distance between the pairs of embeddings

of D in M whose image is respectively V and W.

For Baire spaces (in particular, sets which are metric and complete or open
subsets of these) we say that a set G is residual (or Gs—dense) if it is a countable

intersection of open and dense subsets.

11



We shall say that a property verified by diffeomorphisms in Diff" (M) is C"-
generic if it is verified by diffeomorphisms in a residual subset of Diff"(M).
Sometimes, hoping it makes no confusion, we will say that a diffeomorphism f
is a C"-generic diffeomorphism to mean that f verifies properties in a residual
subset Diff"(M) (which will be clear from the context).

T? will denote the (flat) d-dimensional torus R?/;« with the metric induced by

the canonical covering map p : R — T¢ and the Euclidean metric.

B.(x) denotes the (open) e-neighborhood of the point z, i.e. the (open) set of

points at distance smaller than ¢ of x.
B.(K) denotes the (open) e-neighborhood of the set K.

Given a subset A of a metric space X we denote Int(A), A, A, A° to the inte-

rior, closure, frontier and complement of A respectively.

Given a point z € A we will denote cc,(A) to the connected component of A

containing x.

Given a compact metric space X, we denote K(X) to be the set of compact
subsets of X endowed with the Hausdorff distance:

di(A, B) = max{sup inf {d(z, y)},sup inf{d(z,y)}}
B yEB z€EA

z€A YE

which is compact.

Given a sequence of sets A, C X a topological space. We define limsup A4,, =
Nnzo Ursn An-

We use the symbol O to denote the end of a proof of a Theorem, Lemma,
Proposition or Corollary. We use the symbol < to denote the end of a Remark,
Definition or the proof of some Claim (inside the proof of something else).
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Chapter 0O

Introduction and presentation of

results

0.1 Introduction (English)

0.1.1 Historical account and context

One may' claim that the main goal in dynamical systems is to understand the asymp-
totic behavior of orbits for a given evolution law. Originally, the subject began with

the study of ordinary differential equations of the form

i=X() X:R"5R"

and the goal was to solve these equations analytically and obtaining, for each initial
value zg € R™ an explicit solution ¢;(z) to the differential equation.

It was soon realized that even extremely simple equations gave rise to complicated
analytic solutions. Moreover, it was realized that the integrated equations did not
supply enough understanding of the laws of evolutions.

By studying the famous 3-body problem, Poincaré ([Po]) was probably the first
to propose that there should be a qualitative study of evolution rather than a quan-
titative one and he proposed to study “the behavior of most orbits for the majority
of systems”.

At the start, the study focused on stability. Lyapunov studied stable orbits, this
means, orbits which contain a neighborhood of points having essentially the same
asymptotic behavior. Andronov and Pontryagin, followed by Peixoto, studied stable

systems, this means, those whose dynamical properties are robust under perturba-

'We warn the reader that the historic context we will present is completely subjective and not
necessarily reflects the true historical facts. It must be thought as a plausible context in which the
work of this thesis fits.
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tions. But it was probably Smale ([Smsy]) the first to revitalize Poincaré’s suggestion
by giving to it a more precise formulation:

The goal is to fix a closed manifold M of dimension d and to understand the
dynamics of a large subset of Diff" (M), the space of diffeomorphisms of M endowed
with the C"-topology.

Moreover, he proposed that a subset of diffeomorphisms should be considered
large if it was open and dense with this topology, or at least, residual or dense (in
a way that by understanding large sets of diffeomorphisms one could not neglect
behavior happening in a robust fashion). We will not discuss other possible notions
of largeness used in the literature nor the reasons for considering this ones (we refer
the reader to [B] or [Cy4] for an explanation of this choice).

Structural stability became the center of Smale’s program which was strongly
based on the hope that even if dynamical systems could not be stable from the point
of view of their dynamics (they could be chaotic) they could be, at least the majority
of them, stable from the point of view of their orbit structure. This would give that
their dynamics and the one of their perturbations could be understood by symbolic or
probabilistic methods. Palis and Smale [PaSm] conjectured that structurally stable
systems coincide with hyperbolic ones.

Hyperbolicity became the paradigm. Robbin and Robinson ([R, Roby]) proved
that hyperbolic systems were stable and long afterwards Mane showed ([Ms]) that
C'-structurally stable dynamics were indeed hyperbolic (this is still unknown in other
topologies). Describing the dynamics of hyperbolic diffeomorphisms was the center
of attention for dynamicists in the 60’s and 70’s.

This project was tremendously successful from this point of view and it was not
only the semi-local study (through the use of symbolic and ergodic techniques) that
was understood but also very deep global aspects as well as some understanding of
the topology of basic pieces was achieved.

On semi-local aspects, without being exhaustive, we mention particularly the
contributions of Bowen, Newhouse, Palis, Sinai, Ruelle and Smale. We refer the
reader to [KH] Part 4 for a panoramic view of a large part of the theory.

On the other hand, the global aspects of the study were mainly associated to the
work of Anosov, Bowen, Franks, Shub, Smale, Sullivan and Williams and good part
of those can be appreciated in the nice book of Franks [F4]. It is worth mentioning
that, for different reasons, people working in this aspects of differentiable dynamics
abandoned the subject and this may be an explanation on why these results are less
popular.

However, the program of Smale, as well as the hope that structurally stable
systems should be typical among diffeomorphisms of a manifold fell down after some

examples of robustly non-hyperbolic dynamics started to appear. The first non
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hyperbolic examples were those of Abraham-Smale ([AS]) and Newhouse ([New]).

This gave rise to the theory of bifurcations, where Newhouse, Palis and Takens
(among others) were pioneers and after many work and new examples the initial
program was finally adapted in order to contemplate these new examples and to
maintain the initial philosophy of Smale. Palis’ program [Pag], however, has only a
semilocal point of view.

After the paradigm of hyperbolicity began to fall, the research started focusing on
finding alternative notions, such as non-uniform hyperbolicty (mainly by the Russian
school, of which the principal contributors were Pesin and Katok) or the partial
hyperbolicity (independently by Hirsch-Pugh-Shub [HPS] and Brin-Pesin [BrPe]). In
this thesis, we are mainly interested in the second generalization of hyperbolicity for
its condition of geometric structure (in contrast with the measurable structure given
by non-uniform hyperbolicity) and its strong relationship with robust dynamical
properties. See [BDV] for a panorama on dynamics beyond hyperbolicity.

In his quest for a proof of the stability conjecture, Mane (independently also Pliss
and Liao [Pli, L]) introduced the concept of dominated splitting and showed its close
relationship with the dynamics of the tangent map over periodic orbits.

When one studies the space of diffeomorphisms with the C'-topology the per-
turbation techniques developed since the 60’s by Pugh, Mafie, Hayashi and more
recently by Bonatti and Crovisier imply that the periodic orbits capture in a good
way (topological and statistical) the dynamics of generic diffeomorphisms. See [Cy]
for a survey on this topics.

Recently, Bonatti [B] has proposed a realistic program for the study of the dynam-
ics of C''-generic diffeomorphisms which extends Palis’ program and complements it.
It is also the case that this program has a semilocal flavour.

From the global point of view, there is much less work done, and also less proposals
on how to proceed (see [PSs] section 5 for a short survey) although there are some
ideas on how to proceed in some cases at least in dimension 3.

In what follows, we will try to present the contributions of this thesis and explain
how our results fit in this subjective account of the development of differentiable

dynamics.

0.1.2 Attractors in C'-generic dynamics

It is always possible to decompose the dynamics of a homeomorphism of a compact

metric space into its chain-recurrence classes. This is the content of Conley’s theory
[Co.

This decomposition has proven very useful in the understanding of C'-generic

15



dynamics? thanks to a result by Bonatti and Crovisier ([BC]) which guaranties that
it is possible to detect chain recurrence classes of a generic diffeomorphism by its
periodic orbits. In a certain sense, the dynamics around periodic orbits has attracted
most of the attention in the study of semi-local properties of generic diffeomorphisms
and it is hoped that by understanding their behavior one will be able to understand
C'-generic dynamics (see [B]).

If we wish to understand the dynamics of most of the orbits, there are some
chain-recurrence classes which stand out from the rest. Quasi-attractors are chain-
recurrence classes which admit a basis of neighborhoods U, verifying that f(U,) C
U,. Such classes always exist, and it was proven in [BC] that, for C'-generic diffeo-
morphisms, there is a residual subset of points in the manifold whose forward orbit
accumulates in a quasi-attractor.

Sometimes, it is possible to show that these quasi-attractors are isolated from the
rest of the chain-recurrence classes and in this case, we say that they are attractors.
Attractors have the property of being accumulated by the future orbit of nearby
points and being dynamically indecomposable. To determine whether attractors
exist and the topological and statistical properties of their basins is one of the main
problems in non-conservative dynamics. In dimension two, it is possible to show that
O'-generic diffeomorphisms have attractors. This was originally shown by Araujo
[Ara] but there was a gap in the proof and this was never published®. This result was
in a certain way incorporated to the folklore (see for example [BLY]). In this thesis,

we present a proof of the following result which appeared in [Pots] (see Section 3.1).

Theorem. There exists an open and dense subsetU of the space of Ct-diffeomorphisms
of a surface M such that every f € U has a hyperbolic attractor. Moreover, if f
cannot be perturbed in order to have infinitely many attracting periodic orbits, then
every quasi-attractor of f is a hyperbolic attractor and there are finitely many quasi-

attractors.

When a quasi-attractor is hyperbolic, it must be an attractor. To show that when
a diffeomorphism has robustly finitely many attracting periodic orbits, all quasi-
attractors are hyperbolic it is a key step to show that they admit what is called
a dominated splitting. This means that there exists a D f-invariant splitting of the
tangent bundle over the quasi-attractor into two subbundles which verify a uniform
condition of domination (vectors in one subbundle are uniformly less contracted than
on the other).

2We will use this expression to refer to diffeomorphisms belonging to a residual subset of Diff* (M)
with the C*-topology.

3See [San] for a very recent correction of the original proof with the use of the results of Pujals
and Sambarino [PS4].
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Dominated splitting, as well as many other D f-invariant geometric structure, is
an important tool for studying the dynamical properties of a chain-recurrence class,
and fundamentally, to understand how the class is accumulated by other classes (see
Section 1.2).

Aiming at the understanding of the dynamics close to quasi-attractors for C*-
generic diffeomorphisms, we have obtained the following partial result about the

structure of those quasi-attractors which are homoclinic classes (see Section 3.2 and
[Pot4]):

Theorem. Let f be a Ct-generic diffeomorphism and H be a quasi-attractor which
contains a periodic orbit p such that the differential of f over p at the period contracts

volume. Then, H admits a non-trivial dominated splitting.

From the point of view of the conclusion of this theorem, it is possible to see
by means of examples that the conclusion is in some sense optimal (see [BV]). The
same happens with the hypothesis of having a periodic orbit (see [BD3]). However,
the hypothesis on the dissipation of volume along a periodic orbit seems to follow
from the fact that H is a quasi-attractor but we were not able to prove this. Proving
this seems to require what is known as an ergodic closing lemma inside a homoclinic
class which is a problem not well understood for the moment (see [B] Conjecture 2).

The main novelty in the proof of this result is the use of a new perturbation result
due to Gourmelon [Gous| which allows to perturb the differential over a periodic orbit
while keeping control on its invariant manifolds. The use of this result combined
with Lyapunov stability has allowed us to solve the problem of guaranteeing that a
point remains in the class after perturbation. The result responds affirmatively to a
question posed in [ABD] (Problem 5.1).

The dream of having C'-generic dynamics admitting attractors? has fallen re-
cently due to a surprising example presented in [BLY]| which shows how the recent
development of the theory of C'-generic dynamics has had an important influence
in the way we understand dynamics and has simplified questions which seemed un-
approachable.

The examples of [BLY] posses what they have called essential attractors (see
subsection 1.1.5) and it is not yet known whether they posses attractors in the sense
of Milnor. In Section 3.3 we review their examples and present new examples from
[Pots] on which we have a better understanding on how other classes approach their

dynamics:

Theorem. There exists an open set U of Diff ' (T?) of diffeomorphisms such that:

4See the introduction of [BLY] for more historic account on the problem.
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- If f €U then f has a unique quasi-attractor and an attractor in the sense of
Milnor. Moreover, if f is C?, then it has a unique SRB measure whose basin

has total Lebesgque measure.
- For f in a C"-residual subset of U we know that f has no attractors.

- Chain-recurrence classes different from the quasi-attractor are contained in pe-

riodic surfaces.

The last point of the theorem contrasts with the new results obtained by Bonatti
and Shinohara ([BS]). In Section 3.4 we speculate on how both results can fit in the

same theory.

0.1.3 Partial hyperbolicity in T3

In the previous section we have discussed problems which are of semilocal nature
(although it is of course possible to ask questions of global nature about attractors
and their topology). In this section we treat results of global dynamics.

A well known result in differentiable dynamics, which joins classical results by
Mane ([Ms]) and Franks ([F;]) can be stated as follows:

Theorem (Mafie-Franks). Let M be a compact surface. The following three proper-
ties for f € Diff'(M) are equivalent:

(i) f is Cl-robustly transitive.
(ii) f is Anosov.
(i1i) f is Anosov and conjugated to a linear Anosov automorphism.

Maiie proved that (i) = (ii) while Franks had proven (ii) = (iii). Robustness of
Anosov diffeomorphisms and the fact that linear Anosov automorphisms are transi-
tive gives (iii) = (i).

If we interpret being an Anosov diffeomorphism as having a D f-invariant geomet-
ric structure, we can identify the result (i) = (ii) as saying: “an robust dynamical
property forces the existence of a D f-invariant geometric structure”. In fact, since
C'-perturbations cannot break the dynamical behavior, it is natural to expect that
this geometric structure will posses certain rigidity properties.

On the other hand, the direction (ii) = (i) can be thought as a converse statement,
showing that D f-invariant geometric structures may imply the existence of certain
robust dynamical behavior, in this case, transitivity.

In higher dimensions, the understanding of the relationship between robust dy-
namical properties and D f-invariant geometric structures is quite less advanced al-

though results in the direction of obtaining a D f-invariant geometric structure from
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a robust dynamical property do exist. In dimension 3, it follows from a result of
[DPU] and this was generalized to higher dimensions by [BDP] (see Section 1.2):

Theorem (Diaz-Pujals-Ures). Let M be a 3-dimensional manifold and f a C'-
robustly transitive diffeomorphism, then, f is partially hyperbolic.

The definition of partial hyperbolicity varies throughout the literature and time.
We use the definition used in [BDV] which is the one that fits best our approach
(see Section 1.2 for precise definitions). A partially hyperbolic diffeomorphism for
us will be one which preserves a splitting of the tangent bundle TM = E & F
verifying a domination property between the bundles and such that one of them is
uniform. For notational purposes, we remove the symmetry of the definition and
work with partially hyperbolic diffeomorphisms of the form T'M = E“ & E* where
E™ is uniformly expanded.

The first difficulty one encounters when trying to work in the converse direction
of the previous theorem is the fact that one has no control on the contraction in
the direction E° other that it is dominated by the expansion in E*. This forbids
us to gain a complete control on the dynamics in that direction as we have in the
hyperbolic case. One notable exception is the work of [PSg] where precise dynamical
consequences are obtained from the existence of a dominated splitting in dimension
2.

It is now also time to mention the importance of item (iii) in Mane-Franks’
Theorem which we have neglected so far. In a certain sense, the underlying idea
is that in order to obtain a robust dynamical property out of the existence of a
D f-invariant geometric structure it can be important to rely on the topological
restriction this geometric structure imposes, such as the topology of the manifold or
the isotopy class of the diffeomorphism. It is for this reason, and the difficulties that
have appeared in the attempt to obtain results in converse direction of Diaz-Pujals-
Ures’” Theorem that it seems for us a good idea to divide the study in something
in the spirit of (ii) = (iii) and (ii)+(iii) = (i) as in Mane-Franks’ Theorem. This
means that the study of partially hyperbolic dynamics in a fixed manifold or even
in a fixed isotopy class seems to be an important step in the understanding of these
relations.

Also in the direction of obtaining results giving topological properties by the
existence of a D f-invariant geometric structure the difficulty increases considerably
as we raise the dimension. In dimension 2, the sole fact of admitting an continuous
line field imposes strong restrictions on the topology of the manifold. In dimension
3, it is well known that every 3-dimensional manifold admits a non-vanishing vector
field and moreover, it also admits a codimension one foliation.

This situation may be considered as very bad from the point of view of find-
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ing topological properties out of the existence of D f-invariant geometric structures.
However, very recently, a beautiful remark by Brin-Burago-Ivanov ([BBI;, BI]) has

renewed the hope:

Remark (Brin-Burago-Ivanov). In a 3-dimensional manifold, if F is a foliation trans-
verse to the unstable direction of a partially hyperbolic diffeomorphism, then F has

no Reeb components.

&

Reeb components, and its relationship with partially hyperbolic dynamics had
already been studied in [DPU] (Theorem H) and [BWi] (Lemma 3.7) in more restric-
tive contexts (assuming dynamical coherence and transitivity). This remark is much
more general, its strength relies in that the only dependence on the dynamics is in
the fact that the unstable foliation cannot have closed curves.

On the one hand, it is known that many 3-manifolds do not admit foliations
without Reeb components. On the other, there exists quite a lot of theory regarding
its classification (see for example [Pla, Rou]) and therefore, we can expect that
progress in the classification of partially hyperbolic diffeomorphisms is within reach.

Unfortunately, another difficulty arises: it is not known if every partially hyper-
bolic diffeomorphism in a 3-dimensional manifold posses a foliation transverse to
the unstable direction. In this thesis, we propose the notion of almost dynamical
coherence which we show is an open and closed property among partially hyperbolic
diffeomorphisms and expect that under this hypothesis more progress can be made.

One of our main results (see Chapter 5 and [Pots]) guaranties that in certain
isotopy classes of diffeomorphisms of T? partial hyperbolicity and almost dynamical
coherence are enough to guarantee the existence of a f-invariant foliation tangent to
Ees.

Theorem. Let f : T3 — T2 be an almost dynamically coherent partially hyperbolic
diffeomorphism isotopic to a linear Anosov automorphism. Then, f is dynamically

coherent.

Being dynamically coherent means that the bundle E° integrates into an f-
invariant foliation.

In the strong partially hyperbolic case (i.e. where TM = E* @ E°® E* is a D f-
invariant splitting with domination properties and E* and E* are uniform) we can
say more.

As a starting point, in a remarkable paper [BI] it was proved that every strong
partially hyperbolic diffeomorphism is almost dynamically coherent. This was used
first by [BI] (following a very simple and elegant argument of [BBI;]) and then in [Par]

to give topological conditions these must satisfy. On the other hand, these progress
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makes expectable that, at least in some special cases, the following conjecture of

Pujals may be within reach:

Conjecture (Pujals [BWi)). Let f : M — M with M a 3-dimensional manifold
a strong partially hyperbolic diffeomorphism which is transitive. Then, one of the

following possibilities holds (modulo considering finite lifts):
- f s leaf conjugate to a linear Anosov automorphism of T3.

- f is leaf conjugate to a skew-product over a linear Anosov automorphism of T?
(and so M = T3 or a nilmanifold).

- f is leaf conjugate to the time one map of an Anosov flow.

There has been some progress in the direction of this conjecture lately. Let us
mention first the work of [BWi] which makes considerable progress. They work with-
out making any hypothesis on the topology of the manifold but they demand the
existence of a closed curve tangent to the center direction and some other technical
hypothesis. Then, the work of Hammerlindl [H, Hs] has given a proof of the conjec-
ture when the manifold is T? or a nilmanifold by assuming a more restrictive notion
of partial hyperbolicity (partial hyperbolicity with absolute domination). Although
this notion is verified by many examples, it is in some sense artificial and does not
fit well with the results of [DPUJ.

Of course, to prove Pujals’ conjecture, a previous step must be to show dynam-
ical coherence of such diffeomorphisms since leaf conjugacy requires this for a start
(see Section 1.4). The work of Hammerlindl relies heavily on previous work by Brin-
Burago-Ivanov [BBIy| who have established dynamical coherence of strong partially
hyperbolic diffeomorphisms of T? under this more restrictive notion of partial hyper-
bolicity we mentioned above.

While one could expect the use of this restrictive notion to be mainly technical,
a recent example of Rodriguez Hertz-Rodriguez Hertz-Ures ([RHRHUj)) of a non-
dynamically coherent strong partially hyperbolic diffeomorphism of T3 shows that
the passage to the general definition should at least use the transitivity hypothesis in
a fundamental way and that some difficulties must be addressed. We have completed

the panorama ([Pots]) by showing:

Theorem. Let f : T2 — T? be a strong partially hyperbolic diffeomorphism which
does not admit neither a periodic normally attracting torus nor a periodic normally

repelling torus, then f is dynamically coherent.

This theorem responds to a conjecture made by Rodriguez Hertz-Rodriguez Hertz-
Ures in T® and it also allows one to prove Pujals’ conjecture for M = T? by further

use of the techniques in the proof (see [HP]).
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In the end of Chapter 5 we also obtain some results in higher dimensions which
are analogous to the classical results of Franks, Newhouse and Manning for Anosov

diffeomorphisms in the context of partial hyperbolicity.

0.1.4 Other contributions

In this section we briefly describe other contributions of this thesis.

In Section 2.2 we present a mechanism from [Pots] for the localization of chain-
recurrence classes which we consider has intrinsic value since it can be applied in
many contexts (in this thesis, it is applied in Section 4.A as well as in subsections
3.3.2 and 3.3.3).

In Section 3.3 we present several examples of quasi-attractors and of robustly
transitive diffeomorphisms some of which are modifications of well known examples
but we consider they may contribute to the understanding of these phenomena.

Then, in Chapter 4 we present results on foliations which we use later in Chap-
ter 5 which we believe may have independent interest. In particular, we mention
a quantitative result about the existence of a global product structure of certain
transverse foliations which is presented in Section 4.3. Also, in Section 4.A we give a
characterization of dynamics of globally partially hyperbolic diffeomorphisms of T?
to show the techniques we use later in Chapter 5.

We also include in this thesis 4 appendices where some results which we pre-
ferred to separate from the main line of the thesis are presented. We make particular
emphasis on Appendix C based on [Pot,] where we prove a result about homeo-
morphisms of T? with a unique rotation vector and Appendix D based on [BCGP]
where we present a joint work with Bonatti, Crovisier and Gourmelon. This last
work studies the bifurcations of robustly isolated chain-recurrence classes and gives
examples of such classes which are not robustly transitive answering to a question
posed in [BC].

0.2 Introduccién (Espanol)

0.2.1 Contexto historico

Se puede® decir que el objetivo fundamental de los sistemas dindmicos es comprender
el comportamiento asintdtico de un estado sujeto a una ley de evolucién. Se comenz6

por el estudio de ecuaciones diferenciales ordinarias del tipo

5Vale aclarar que la introduccién histérica que se presentard es subjetiva y no necesariamente
refleja con exactitud los hechos histéricos. Se puede pensar que lo que sigue es una historia plausible
que explica algunas razones por las cuales estudiar los temas aqui presentados.
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= X(x) X :R*"—>R"

donde se buscaba una solucién analitica a la ecuacién: buscando para cada valor
posible de condicién inicial zy € R™ una solucion explicita ¢ (zo).

Répidamente se vi6 que ecuaciones extremadamente simples daban lugar a solu-
ciones complicadas que incluso luego de ser integradas tampoco aportaban a la com-
prension de la ley de evolucién.

Poincaré, interesado en estudiar el famoso problema de los 3-cuerpos ([Po]) fue
quizas el primero en proponer que el estudio de la evolucién deberia ser cualitativo, y
de alguna manera propuso estudiar ”el comportamiento de la mayoria de las érbitas
para la mayoria de los sistemas”.

El comienzo del estudio se centrd en la estabilidad. Lyapunov estudio las 6rbitas
estables, drbitas que contienen un entorno de puntos donde el comportamiento es es-
cencialmente el mismo. Por otro lado, Andronov y Pontryagin seguidos por Peixoto,
estudiaron sistemas estables, es decir, aquellos cuyas perturbaciones verifican que su
estructura dindmica es la misma. Fue quizds Smale ([Smy]) el primero en retomar la
propuesta de Poincaré dandole una formulacién méas precisa:

El objetivo es fijar una variedad cerrada M de dimension d y entender la dindmica
de un subconjunto grande de Diff" (M), el conjunto de difeomorfismos de M munido
de la topologia de la convergencia uniforme hasta orden r.

Ademas, propuso que un conjunto fuese considerado grande si era abierto y denso,
o en su defecto residual o denso (de esta forma conjunto abierto de sistemas puede
ser despreciado). No se hard mencién a otras posibles formas de considerar un
subconjunto como grande ni se discutiran las razones por las cuales considerar estas
nociones (referimos al lector a [B] o [Cy] por mds fundamentacion).

Smale propuso un programa que se centré en el estudio de la estabilidad es-
tructural y en la esperanza de que si bien las dindmicas tipicas podian no ser esta-
bles (podian ser cadticas) estas serian estables desde el punto de vista de que sus
propiedades dinamicas persistirian frente a perturbaciones. De esta forma, se podria
describir la dindmica a través de métodos simbdlicos o estadisticos. Palis y Smale
[PaSm| conjeturaron que los sistemas estructuralmente estables coincidian con los
difeomorfismos hiperbdlicos.

La hiperbolicidad fue entonces el paradigma. Robbin y Robinson ([R, Rob;]) pro-
baron que los sistemas hiperbdlicos eran estables. Finalmente Mane en un célebre
resultado ([M5]) completo la caracterizacion de la las dindmicas estables en topologia
C! (en otras topologias atin es desconocido). Describir la dindmica de los difeomor-
fismos hiperbdlicos fue la tarea que concentré la mayor atenciéon en esos anos 60 y

principios de los 70.

Desde el punto de vista de comprender la dindmica de los difeomorfismos hiperbdlicos
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el proyecto fue sumamente exitoso. No s6lo se logré comprender cabalmente los as-
pectos semilocales de su dindamica (a traves del estudio simbdlico y ergédico de sus
propiedades), sino que se obtuvieron resultados profundos acerca de aspectos globales
y de la topologia de sus piezas basicas.

Sobre los aspectos semilocales, sin ser exhaustivos, se hace mencién a las con-
tribuciones de Bowen, Newhouse, Palis, Sinai, Ruelle y el propio Smale. Se refiere al
lector a [KH] Part 4 por una visién panoramica de gran parte de la teoria.

Por otro lado, los aspectos globales fueron fundamentalmente asociados a los
trabajos de Anosov, Bowen, Franks, Shub, Smale, Sullivan y Williams y buena parte
de estos se pueden apreciar en el libro [Fy] que contiene una muy linda presentacion
de los trabajos conocidos acerca de la dindmica global de difeomorfismos hiperbdlicos.
Por diferentes razones estas personas abandonaron estos temas, lo que puede ser una
explicacién de por qué estos resultados son menos conocidos.

El programa de Smale, asi como la esperanza de que los sistemas estructuralmente
estables fueran tipicos en el espacio de difeomorfismos de una variedad, cay6 cuando
empezaron a aparecer ejemplos de dindmicas robustamente no hiperbdlicas y no
estables como los de Abraham-Smale ([AS]) y de Newhouse ([New,]).

Estos ejemplos dieron lugar a la teoria de bifurcaciones donde Newhouse, Palis
y Takens (entre otros) fueron pioneros. Luego de muchos trabajos al respecto los
programas iniciales fueron adaptados para contemplar dichas bifurcaciones mante-
niendo la filosofia inicial de Smale. El programa de Palis [Pag] sin embargo, tiene un
enfoque principalmente semilocal.

Caido el paradigma de la hiperbolicidad se empezo6 a buscar nociones alternativas
como la hiperbolicidad no uniforme (por parte de la escuela rusa, fundamentalmente
Katok y Pesin, ver [KH| Supplement S), o la hiperbolicidad parcial (independiente-
mente por Hirsch-Pugh-Shub [HPS] y Brin-Pesin [BrPe]). Este trabajo se interesa
fundamentalmente por esta segunda generalizaciéon dada su condicién de estructura
geométrica (en contraposicién a la condicién de propiedad medible de la hiperbolici-
dad no uniforme), y su fuerte vinculacién con las propiedades robustas de la dindmica.
Véase [BDV] por un panorama general de la dindmica més alld de la hiperbolicidad.

En su bisqueda de la prueba de la conjetura de estabilidad, Mane (independien-
temente lo hicieron también Pliss y Liao [Pli, L]) introdujo el concepto de descom-
posicién dominada, y lo que es mas importante, mostro su relacién con la dinamica
de la aplicacion tangente sobre las orbitas periddicas.

Cuando se estudia el espacio de difeomorfismos con la topologia C!, gracias a
las técnicas de perturbacion de érbitas desarrolladas desde los anos 60 por Pugh,
Marne, Hayashi y méas recientemente por Bonatti y Crovisier, sabemos que de alguna
manera las érbitas periddicas de los difeomorfismos genéricos capturan la dinamica

de los difeomorfismos (topolégica y estadisticamente). Ver [C4] por un survey sobre
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estos temas.

Recientemente Bonatti [B] propuso un programa realista para la comprensién de
un conjunto grande de difeomorfismos con la topologia C!. Este programa extiende
y complementa el programa general de Palis ya mencionado. También en este caso
el programa tiene un punto de vista semilocal.

Desde el punto de vista global hay menos trabajo hecho y menos propuestas de
trabajo (ver [PSy] section 5), aunque en dimensién tres hay algunas ideas de cémo
proceder en ciertos casos.

En lo que sigue, se presentan las contribuciones de esta tesis pretendiendo mostrar

como éstas encajan en este panorama subjetivo del desarrollo de la teoria.

0.2.2 Atractores en dindmica C'-genérica

Siempre es posible descomponer la dindmica de un homeomorfismo de un espacio
métrico compacto en sus clases de recurrencia. Este es el contenido de la teoria de
Conley [Co.

Esta descomposicién es muy titil en la comprension de las dindmicas C*-genéricas®,
debido a un resultado de Bonatti y Crovisier ([BC]) que garantiza que es posible de-
tectar las clases de recurrencia de un difeomorfismo genérico a partir de sus orbitas
periddicas. En buena medida, la comprension de la dindmica alrededor de dichas
orbitas periddicas se lleva toda la atencién y se espera que puedan describir la
dindmica de dichos difeomorfismos (ver [B]).

Cuando queremos entender la dindmica de la mayoria de los puntos, existen
clases de recurrencia que se destacan sobre otras. Los quasi-atractores son clases de
recurrencia que admiten una base de entornos U, que verifican que f(U,) C U,. Estas
clases siempre existen. Fue probado en [BC] que existe un conjunto residual de puntos
de la variedad que convergen a dichas clases cuando se trata de un difeomorfismo
genérico.

Algunas veces es posible demostrar que estos quasi-atractores estan aislados del
resto de las clases de recurrencia, en ese caso, decimos que son atractores. Los
atractores tienen la propiedad de ser acumulados por la érbita futura de los puntos
cercanos y ser dindamicamente indescomponibles. Determinar la existencia de atrac-
tores y sus propiedades topoldgicas y estadisticas es uno de los grandes problemas
en sistemas dinamicos. En dimension dos es posible demostrar que para la mayor
parte de los sistemas dindmicos, vistos con la topologia C!, existen atractores. Esto

fue demostrado originalmente por Araujo [Ara] aunque la demostracion contenia un

6Utilizaremos esta expresién para referirnos a difeomorfismos pertenecientes a un conjunto resid-
ual de Diff' (M) con la topologia C''.
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error y nunca fue publicada’. El resultado fue de alguna manera incorporado al folk-
lore (ver por ejemplo [BLY]). Esta tesis presenta una prueba del siguiente resultado

aparecida por primera vez en [Potsy] (ver seccién 3.1).

Teorema. Eziste un conjunto abierto y denso U del espacio de difeomorfismos de
una superficie con la topologia C' tal que si f € U entonces [ tiene un atractor
hyperbolico. Mads atun, si f no puede ser perturbado para tener infinitos puntos
periddicos atractores (pozos), entonces f y sus perturbados verifican que poseen fini-

tos quasi-atractores y estos son atractores hiperbolicos.

La hiperbolicidad de un quasi-atractor garantiza que este debe ser un atractor.
Para mostrar que cuando hay robustamente finitos pozos todos los quasi-atractores
son hiperbdlicos, es clave demostrar que dichos quasi-atractores poseen lo que se
llama una descomposicion dominada: Existe una descomposicién del fibrado tangente
sobre el quasi-atractor en dos subfibrados D f-invariantes que verifican una condicién
uniforme de dominacién de uno sobre el otro (la contraccién de los vectores en uno
de los fibrados es uniformemente menor que en el otro fibrado).

La descomposicion dominada, asi como otras varias posibles estructuras geométricas
D f-invariantes, es una herramienta importante para el estudio de las propiedades
dindmicas de una clase de recurrencia, y fundamentalmente, para entender como
dicha clase es acumulada por otras clases (ver Seccién 1.2).

Buscando comprender la dinamica cerca de los quasi-atractores para las dinamicas
C'-genéricas, se obtuvo el siguiente resultado parcial acerca de la estructura de aque-

llos quasi-atractores que son clases homoclinicas (ver Seccién 3.2 y [Poty]):

Teorema. Para un difeomorfismo C* genérico f, si H es un quasi-attractor que
contiene un punto periddico p tal que el diferencial de f sobre p en el periodo contrae

volumen, entonces H admite una descomposicion dominada no trivial.

Es posible ver mediante ejemplos ([BV]) que la conclusién del teorema es en
cierto sentido optima. La hipdtesis de que existan puntos periddicos en la clase es
también necesaria (ver [BDs]). Sin embargo, la hipétesis acerca de la disipatividad
del diferencial sobre la 6rbita periddica parece ser consecuencia de las otras hipdtesis,
pero no fue posible eliminarla. Demostrarlo pareceria necesitar de algin resultado
del tipo ergodic closing lemma en la clase homoclinica que es un problema que ain
no se logra entender correctamente (ver [B] Conjecture 2).

La mayor novedad en la prueba del teorema es que se utiliza un nuevo resultado
perturbativo debido a Gourmelon [Gous] que permite perturbar el diferencial de

una orbita periédica con cierto control de las variedades invariantes luego de la

"Ver [San] por una correccién a la prueba original utilizando los resultados de Pujals y Sambarino
[PSq].
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perturbacion. El uso de dicho resultado combinado con la estabilidad Lyapunov nos
permite resolver el problema de garantizar que un punto pertenece a la clase luego
de la perturbacién. El resultado responde positivamente a una pregunta realizada
en [ABD] (Problem 5.1).

El suefio de que las dindmicas C'-genéricas tuviesen atractores® cayé reciente-
mente debido a un ejemplo sorprendente debido a [BLY] que muestra como el desar-
rollo reciente de la teorfa de la dindmica C'-genérica ha tenido una gran influencia
en la forma de entender la dinamica y ha simplificado preguntas que resultaban a
simple vista inabordables.

Los ejemplos de [BLY] poseen lo que llamaron atractores esenciales (ver sub-
seccién 1.1.5) y no es atn sabido si poseen atractores en el sentido de Milnor. En la
Seccién 3.3 revemos estos ejemplos y presentamos algunos ejemplos nuevos de [Pots]
sobre los cuales tenemos una mejor comprension de como las otras clases se acumulan

a su dinamica.
Teorema. Eriste un abierto U de Diff'(T®) de difeomorfismos tales que:

- Si f € U entonces f tiene un unico quasi-atractor y un atractor en el sentido
de Milnor. Ademds, si f es de clase C? posee una tnica medida SRB cuya

cuenca es de medida total.
- Para f en un residual de U se verifica que f no tiene atractores.

- Las clases de recurrencia diferentes del quasi-atractor estan contenidas en su-

perficies periodicas.

El dltimo punto del teorema entra en contraste con los nuevos resultados obtenidos
por Bonattiy Shinohara ([BS]) y en la Seccién 3.4 especulamos acerca de c6mo ambos

resultados podrian llegar a entrar en una misma teoria.

0.2.3 Hiperbolicidad parcial en el toro T?

Asi como la seccién anterior trato implicitamente problemas que son de naturaleza
semilocal (a pesar de que se pueden hacer preguntas de indole global acerca de
la existencia de atractores y de su topologia) esta seccién trata fundamentalmente
acerca de problemas de dindmica global.

Un conocido teorema en dindmica diferenciable, que reune resultados clasicos de
Maitie ([Ms]) y Franks ([F]) dice lo siguiente:

Teorema (Mane-Franks). Sea M una superficie compacta. Entonces, las tres propiedades

siquientes para f € Diff' (M) son equivalentes:

8Ver la introduccién de [BLY].

27



(i) f es C'-robustamente transitivo.
(ii) [ es Anosov.

(111) [ es Anosov y conjugado a un difeomorfismo de Anosov lineal.

Escencialmente, Mafie prob¢ la implicancia (i) = (ii) y Franks la implicancia (ii)
= (iii). La robustez de los Anosov y la transitividad de los Anosov lineales da (iii)
= (i).

Si se interpreta el ser difeomorfismo de Anosov como que el diferencial de f pre-
serve una estructura geométrica, podemos de alguna manera identificar el resultado
(i) = (ii) como diciendo que “una propiedad dindmica robusta fuerza la existencia
de una estructura geométrica D f-invariante”. De hecho, en vista que las perturba-
ciones C' no pueden romper la propiedad dindmica, no es sorprendente que dicha
estructura geométrica tenga propiedades de rigidez frente a perturbaciones.

Por otro lado, la direccién (ii) = (i) se puede ver como diciendo que la existencia
de una estructura geométrica invariante esta también relacionada a la existencia de
una propiedad dinamica robusta, en este caso, la transitividad.

En dimensiones mayores la relacion entre las propiedades dinamicas robustas
y las estructuras geométricas invariantes estd menos desarrollada, aunque existen
resultados en la direcciéon de obtener una estructura geométrica invariante a partir
de una propiedad dindmica robusta. En dimensién 3, esto surge de [DPU] y fue

generalizado a dimensiones mayores en [BDP] (ver Seccién 1.2):

Teorema (Diaz-Pujals-Ures). Si M es una variedad de dimension 3 y f es un difeo-

morfismo C*-robustamente transitivo, entonces, f es parcialmente hiperbdlico.

Existen diversas definiciones de hiperbolicidad parcial en la literatura, y estas
también han variado a lo largo del tiempo. Nosotros seguimos la definiciéon que se
utiliza en [BDV] que es la que mejor se ajusta a nuestro enfoque (ver Seccién 1.2
por definiciones precisas). Un difeomorfismo parcialmente hiperbdlico sera uno que
verifica que el fibrado tangente se descompone en una suma D f-invariante TM =
E & F que verifica una propiedad de dominacion y tal que uno de los dos fibrados es
uniforme. Por simplicidad, eliminamos la simetria y consideramos descomposiciones
del tipo TM = E* & E" con E* uniformemente expandido.

Una primera dificultad que aparece si nos interesamos en entender las propiedades
dindmicas robustas implicadas por la existencia de una descomposicién parcialmente
hiperbdélica, es el no tener control de la contraccion en la direccion centro estable £,
Esto impide que tengamos una comprension cabal de la dinamica en esa direccion,
como si la tenemos en el caso donde los fibrados son uniformes. Una excepcion
notable a esto es [PSg] donde se estudian las consecuencias dindmicas de la descom-

posicion dominada en dimension 2.
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Es importante mencionar también, la importancia del item (iii) en el Teorema
de Mane y Franks. De alguna manera, la idea que subyace es que para obtener una
propiedad dindamica robusta a partir de la existencia de una estructura geométrica
invariante, puede ser importante apoyarse en las propiedades topolégicas impuestas
por dicha estructura, tanto en la topologia de la variedad como en la clase de isotopia
del difeomorfismo. Es por ello que en vista de ese teorema, y de la dificultad que
se ha tenido para obtener resultados en la direccion reciproca al Teorema de Diaz-
Pujals-Ures, puede ser importante dividir el estudio en buscar resultados del tipo
(ii) = (iii) y del tipo (ii)4(ili) = (i) emulando el Teorema de Mane y Franks. En
particular puede ser importante estudiar propiedades de difeomorfismos parcialmente
hiperbdlicos en ciertas variedades, o incluso en clases de isotopia fijadas.

Otra dificultad en dimensién 3 es obtener propiedades topoldgicas a partir de las
estructuras invariantes. En dimension 2, el solo hecho de preservar un campo de
vectores impone enormes restricciones en la topologia de la variedad. En dimension
3, es bien sabido que toda variedad admite un campo de vectores no nulo, e incluso,
una foliaciéon de codimensién 1.

Esta situacién podria ser considerada muy mala desde el punto de vista de obtener
resultados en el sentido de encontrar propiedades topologicas de un difeomorfismo
que preserva una estructura geométrica. Sin embargo, recientemente, una simple
pero poderosa observacién de Brin-Burago-Ivanov ([BBI;, BI|) despert6 nuevamente

la esperanza:

Observacion (Brin-Burago-Ivanov). En una variedad de dimension 3, si F es una
foliacion transversal a la direccion inestable E* de un difeomorfismo parcialmente

hiperbdlico f, entonces F no tiene componentes de Reeb.

%

Las componentes de Reeb y su relacién con los difeomorfismos parcialmente
hiperbdlicos ya habia sido estudiada, por ejemplo en [DPU] (Theorem H) y [BWi]
(Lemma 3.7) en contextos mas restrictivos (asumiendo coherencia dindmica y transi-
tividad). Esta observacion es més general, su fuerza radica en el hecho que depende
de la dinamica sélo en que la foliacion inestable no tiene curvas cerradas.

Por un lado, es conocido que diversas variedades no admiten foliaciones sin com-
ponentes de Reeb. Por otro lado, existe mucha teorfa acerca de su clasificacién (ver
por ejemplo [Pla, Rou]) y por lo tanto, de alguna manera nos hace esperar que
es posible entender los difeomorfismos parcialmente hiperbdlicos al menos en cierto
grado.

Por otro lado, aparece una nueva dificultad ya que no es conocido si todo difeo-
morfismo parcialmente hiperbélico posee una foliacién transversal a la direccién in-

estable. En esta tesis se propone la nocion de casi coherencia dindmica y se prueba
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que es una propiedad abierta y cerrada en el espacio de difeomorfismos parcialmente
hiperbélicos.

Uno de los teoremas principales (ver Capitulo 5 y [Pots]) garantiza en ciertas
clases de isotopia de difeomorfismos de T? que dicha nocién es suficiente para que el

fibrado £ sea tangente a una foliacién invariante:

Teorema. Sea f : T2 — T2 un difeomorfismo parcialmente hiperbélico que es casi
dinamicamente coherente y es isotopico a un difeomorfismo de Anosov lineal. En-

tonces f es dindmicamente coherente.

Ser dindmicamente coherente significa justamente que el fibrado £ sea tangente
a una foliacién f-invariante.

En el caso parcialmente hiperbolico fuerte (es decir, donde TM = E°* @ E° @ E
es una descomposicion D f-invariante con propiedades de dominacién y donde E*® y
E" son uniformes) podemos decir maés.

En [BI] fue probado que todo difeomorfismo parcialmente hiperbdlico fuerte es
casi-dindmicamente coherente y esto fue aprovechado por, primero [BI] (siguiendo
[BBI,]) y luego [Par| para dar condiciones topoldgicas que estos deben satisfacer. Por

otro lado, esta condicién permite esperar que una conjetura de Pujals sea atacable:

Conjetura (Pujals [BWi]). Sea f : M — M con M wariedad de dimension 3 un
difeomorfismo parcialmente hiperbolico fuerte y transitivo. Entonces, tenemos las

siguientes posibilidades (mddulo considerar levantamientos finitos):
- f es conjugado por hojas a un difeomorfismo de Anosov en T3.

- f es conjugado por hojas a un skew-product sobre un difeomorfismo de Anosov

de T? (entonces la variedad es T? o una nilvariedad,).
- f es conjugado por hojas al tiempo 1 de un flujo de Anosov.

Ultimamente ha habido progreso en la direccion de esta conjetura. Para empezar,
el trabajo de [BWi] hace un avance considerable sin dar ninguna hipétesis acerca de
la topologia de la variedad asumiendo la existencia de curvas cerradas tangentes a la
direccién central. Luego, los trabajos de Hammerlindl [H, Hy] dan una prueba a la
conjetura en caso que la variedad sea T® o una nilvariedad pero con una definicién
mas restrictiva de hiperbolicidad parcial. Si bien esta definicién es verificada por
varios ejemplos, es de alguna manera artificial y no encaja bien con el resultado de
[DPU].

Por supuesto, para conseguir probar la conjetura de Pujals, un paso previo es
mostrar que los difeomorfismos de ese tipo son dindmicamente coherentes ya que

la definicién de conjugacién por hojas (ver Seccién 1.4) requiere la existencia de
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foliaciones invariantes. El trabajo de Hammerlindl se apoya en trabajos previos de
Brin-Burago-Ivanov [BBIy] que muestran que en T3, con esta definicién restrictiva
de hiperbolicidad parcial se tiene coherencia dinamica.

Por otro lado, recientemente aparecié un ejemplo debido a Rodriguez Hertz-
Rodriguez Hertz-Ures ([RHRHU3]) de un difeomorfismo parcialmente hiperbdlico de
T3 que no admite foliaciones invariantes. En esta tesis se completa el panorama

([Pots]) mostrando que:

Teorema. Sea f : T> — T3 un difeomorfismo parcialmente hiperbdlico fuerte que
no admite un toro periodico normalmente atractor ni un toro periodico normalmente

repulsor, entonces, f es dindmicamente coherente.

Esto responde a una conjetura de Rodriguez Hertz-Rodriguez Hertz-Ures en T3
y también, por lo obtenido en la prueba, permite responder a la conjetura de Pujals
en T3 (ver [HP]).

Sobre el final del Capitulo 5 también se obtienen algunos resultados en dimen-
siones mayores analogos a los clasicos resultados de Franks, Newhouse y Manning

para difeomorfismos de Anosov en el contexto de parcialmente hiperbélicos.

0.2.4 Otras contribuciones

En esta seccion se describen otras contribuciones de la tesis.

Por un lado, en la Seccién 2.2 se presenta un mecanismo para la localizacién
de clases de recurrencia aparecido en [Pots] que se ha considerado tiene valor en si
mismo ya que puede ser aplicado en diferentes contextos (en esta tesis se utiliza en
la Seccién 4.A asi como en las subsecciones 3.3.2 y 3.3.3).

En la Seccion 3.3 se presentan diversos ejemplos de quasi-atractores y de difeo-
morfismos robustamente transitivos algunos de los cuales son modificaciones de ejem-
plos conocidos pero igual consideramos que pueden representar un aporte al en-
tendimiento de estos fenoémenos.

Luego, en el Capitulo 4 donde se preparan los resultados sobre foliaciones, que
luego seran utilizados en el Capitulo 5, se obtienen resultados que pueden tener
interés independiente. En particular, vale mencionar un resultado cuantitativo so-
bre la existencia de estructura de producto global para foliaciones presentado en la
Seccion 4.3. También, en la Seccién 4.A, se da una clasificacion de la dindmica de los
difeomorfismos globalmente parcialmente hiperbélicos en T? que de alguna manera
muestra en un contexto sencillo lo que se hara después en el Capitulo 5.

También se incluyen en la tesis cuatro apéndices donde se presentan resultados
que estan desviados del cuerpo central de la tesis. Se hace particular énfasis en el
Apéndice C, basado en [Pot,], donde se prueba un resultado acerca de homeomorfis-

mos del toro con un unico vector de rotacién; y en el Apéndice D, basado en [BCGP],
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donde se presenta un trabajo conjunto con Bonatti, Crovisier y Gourmelon. En ese
trabajo se estudian bifurcaciones de clases de recurrencia robustamente aisladas y se
dan ejemplos de ese tipo de clases que no son robustamente transitivas, respondiendo

as{ a una pregunta de [BC].

0.3 Introduction (Francais)

0.3.1 Contexte historique

On peut? dire que I'objectif principal des systémes dynamiques est de comprendre le
comportement assymptotique d’une loi d’évolution avec certaines conditions initiales
dans un espace de configurations. Au début, on étudiait les equations différentielles

ordinaires du type

i=X(x) X:R'5R

et on cherche a résoudre analytiquement l’équation, en essayant de trouver, pour
chaque valeur possible de la condition initiale xy € R™, une solution explicite (o).

On a vite remarqué qu’a partir d’équations extrémement simples on obtenait des
solutions compliquées qui n’aidaient pas a la compréhension de la loi d’evolution,
meéme apres étre intégrées.

Poincaré, intéréssé par I’étude du fameux probléme des 3 corps ([Po]), a été petit-
étre le premier a proposer que I’étude de 1’évolution se fasse du point de vue qualitatif,
et d’une certaine facon, il a suggérer d’étudier le comportement de la “plupart” des
orbites pour la “plupart” des systemes.

Au début, la recherche se centrait autour de la stabilité du systeme. Lyapunov
a étudié les orbites stables, qui contiennent un voisinage de points ou le comporte-
ment est essentiellement le méme. D’autre part, Andronov et Pontryagin, suivis
par Peixoto, ont étudié les systemes stables, c’est a dire, ceux dont la structure dy-
namique ne change pas sous des perturbations. C’est peut-étre Smale le premier
qui a repris la suggérence de Poincaré, en présentant une formulation plus précise:
I'objectif est de fixer une variété fermée M de dimension d et de comprendre la dy-
namique d’un sous-ensemble “grand” de Dif f"(M), 'ensemble des difféomorphismes
de M muni de la topologie de la convergence uniforme jusqu’a l'ordre r.

Aussi, Smale a proposé qu'un sous-ensemble soit consideré ”grand” s’il est soit
ouvert et dense, ou bien sl est a résidual ou méme dense (ainsi les ensembles ouverts

de systemes peuvent étre négligés). On ne faira pas allusion a d’autres possibles

9L’introduction historique que nous présentons est subjective et peut ne pas décrire avec exac-
titude les faits historiques. On peut penser que ce qui suit est une possible explication historique

des raisons pour lesquels les sujets ici présentés ont été abordés.
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définitions de “grand” et on ne discutera pas les raisons de notre choix de topologie
(voir [B] ou [Cy4] pour des explications detailles).

Smale a proposé un programme centré autour de 1’étude de la stabilité struc-
turelle. Bien que les dynamiques typiques peuvent ne pas étre stables (elles peuvent
méme étre chaotiques), il espérait que leurs propriétes dynamiques soient robustes
aux perturbations. Ainsi, Palis et Smale [PaSm] ont conjecturé que les systemes
structurellement stables coincident avec les difféomorphismes hyperboliques.

L’hyperbolicité est devenue donc le nouveau paradigme. Robbin et Robinson
([R, Roby]) ont montré que les systemes hyperboliques sont stables. Finalement,
Maiié ([Ms]) a characterisé les dynamiques stables en topologie C' (on ne sait pas
encore ce qui arrive dans d’autres topologies). Pendant les années 60 et début des 70,
la plupart de I'attention s’est concentrée autour de la description de la dynamique
des difféomorphismes hyperboliques.

Du point de vue de la compréhension de la dynamique des difféomorphismes
hyperboliques, le programme a été tres réussi: il a servi a la compréhension profonde
des aspects semi-locaux de la dynamique (a travers I’étude symbolique et ergodique
de ses propriétés) mais aussi a l'obtention d’importants résultats sur les aspects
globaux et la topologie des pieces basiques.

En ce qui concerne les propriétés semi-locales, nous citons les contributions de
Bowen, Newhouse, Palis, Sinai, Ruelle et Smale. Pour une vision panoramique de la
théorie, voir [KH] Partie 4.

D’un autre coté, les aspects globaux sont associés fondamentalement aux travaux
de Anosov, Bowen, Franks, Shub, Sullivan et Williams, dont la plupart sont présentés
dans le tres beau livre [Fy], qui rassemble les travaux connus sur la dynamique globale
des difféomorphismes hyperboliques. Pour de différentes raisons, ces auteurs ont
abandonné I’étude de ces sujets, ce qui peut expliquer qu’ils soient peu connus.

Le programme de Smale a échoué avec ’apparition d’exemples de dynamiques ro-
bustement non hyperboliques et non structuralement stables comme ceux de Abraham-
Smale ([AS]) et Newhouse ([New]).

Ces exemples ont été a la base de la théorie des bifurcations, de laquelle Newhouse,
Palis et Takens (entre autres) ont été pionniers. Apres plusieurs travails a ce sujet,
les premiers programmes ont été adaptés afin de, tout en considérant les bifurcations,
maintenir la philosophie initiale de Smale. Malgré cela, I’approche du programme de
Palis [Pag] est surtout semi-locale.

Apres la chute du paradigme de I’hyperbolicité, on a commencé a chercher des
notions alternatives comme ’hyperbolicité non uniforme (due a ’école russe, fonda-
mentalement a Katok et Pesin, voir [KH] Supplément S) ou I’hyperbolicité partielle
(considérée de fagon indépendente par Hirsch, Pugh et Shub [HPS] et par Brin et

Pesin [BrPe]). C’est a cette deuxieme géneralisation que s’intéresse surtout cette
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these. Nous sommes intéréssés par ’approche géométrique de cette géneralisation
(qui contraste avec la condition mesurable de I’hyperbolicité non uniforme) et par
son lien étroit avec les propriétés robustes de la dynamique. Le lecteur peut se référer
a [BDV] pour une vision générale de la dynamique au dela de I’hyperbolicité.

En cherchant la preuve de la conjecture de stabilité, Mane (aussi Pliss et Liao
[Pli, L], de fagon indépendente) a introduit la notion de décomposition dominée et, ce
qui est encore plus important, a montré la relation de la dynamique de I'application
tangente sur les orbites périodiques.

En ce qui concerne I'étude de l'espace des difféomorphismes sous la topologie
O, nous savons, grace aux techniques de perturbation d’orbites, développées depuis
les années 60 par Pugh, Mane, Hayashi et plus récemment par Bonatti et Cro-
visier, que les orbites périodiques capturent, d’une certaine facon, la dynamique des
difféomorphismes génériques (topologique et statistiquement). Voir [Cy] pour une
vision générale sur ces sujets.

Récemment Bonatti [B] a proposé un programme réaliste pour la compréhension
d’un grand ensemble de difféomorphismes sous la topologie C!. Ce programme pro-
longe et complete, aussi d'un point de vue semi-locale, le susmentionné programme
général de Palis.

Du point de vue globale, il y a justes quelques idées sur comment procéder en
quelques cas de dimension 3.

En ce qui suit, nous présentons les contributions de cette these et nous essayons
de montrer comment celles-ci s’adaptent a ce panorama subjectif du développement

de la théorie.

0.3.2 Attracteurs en dynamique C!-générique.

Il est toujours possible de décomposer la dynamique d’un homéomorphisme d’un
espace métrique compacte en classes de récurrence, comme explique la théorie de
Conley [Co.

Cette décomposition est trés utile pour la compréhension des dynamiques C-

0 grace & un résultat de Bonatti et Crovisier ([BC]) qui assure que

génériques’
les orbites périodiques sont suffisantes pour détecter les classes de récurrence d’un
difféfomorphisme générique. Dans une bonne mesure, I'attention se place sur la
compréhension de la dynamique autour desdites orbites et on espere qu’elles décrivent
la dynamique des difféomorphismes en question (voir [B]).

Lorsque 'on veut comprendre la dynamique de la plupart des points, on trouve des

classes de récurrence distinguées: les quasi-attracteurs sont des classes de récurrence

10Nous utiliserons cette expression pour faire allusion aux difféomorphismes appartenant a un

ensemble résiduel de Diff! (M) sous la topologie C*.
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qui admitent une base de voisinages U, qui vérifient f(U,) C U,. Les quasi-
attracteurs existent toujours. En [BC], les auteurs ont montré que, dans le cas d'un
difféomorphisme générique, il existe un ensemble résiduel de points de la variété qui
convergent aux dites classes.

Il est possible dans certains cas de prouver que les quasi-attracteurs sont isolés
du reste des classes de récurrence. Dans ces cas, on les appelle attracteurs. Les
attracteurs ont la propriete d’étre accumulés par l'orbite future des points proches
et d’étre dynamiquement indécomposables. Un des grands problemes des systemes
dynamiques consiste a déterminer leur existence et leur propriétés topologiques et
statistiques. En dimension 2, il est possible de prouver que pour la plupart des
systémes dynamiques, sous la topologie C1, il en existent. Ceci a été prouvé d’abord
par Araujo [Ara], mais la preuve contenait une erreur et n’a jamais été publiée!!.
Cette these présente une preuve du résultat suivant, apparue pour la premiere fois
en [Pots] (voir section 3.1).

Théoreme. [l existe un ensemble ouvert et dense U de l’espace de difféomorphismes
d’une surface sous la topologie O tel que tout f € U a un attracteur hyperbolique. Si
f ne peut pas étre perturbé de facon a obtenir un nombre infini de points périodiques
attracteurs (puits), alors pour f et ses perturbés il y a un nombre fini d’attracteurs

dont tous sont hyperboliques.

Tout quasi-attracteur hyperbolique est un attracteur. Pour montrer que tout
quasi-attracteur est hyerbolique, dans le cas d’un nombre fini de puits, c’est fonda-
mental de montrer d’abord que les dits attracteurs possedent ce qu’on appelle une
décomposition dominée: une décomposition du fibré tangent sur le quasi-attracteur
en deux sous-fibrés D f-invariants qui vérifient une condition uniforme de domination
de I'un sur l'autre (la contraction des vecteurs sur un des fibrés est uniformément
plus petit que la contraction sur l'autre).

La décomposition dominée, ainsi que d’autres possibles structures géométriques
D f-invariantes, est un outil important pour I’étude des propriétés dynamiques d’une
classe de récurrence et surtout pour comprendre comment ladite classe est accumulée
par d’autres classes (voir Section 1.2).

En quéte de comprendre la dynamique proche aux quasi-attracteurs pour les
systemes Cl-génériques, le résultat partiel suivant, concernant la structure des quasi-
attracteurs qui correspondent & des classes homocliniques, a été obtenu (voir Section
3.2 et [Pot4)):

Théoréme. Soit f un difféomorphisme C*-générique. Si H est un quasi-attracteur

UVoir [San] pour une correction de la preuve originelle qui utilise les résultats de Pujals et
Sambarino [PS;].
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de f qui contient un point périodique p pour lequel la différentiel a la periode contract

le volume, alors H admet une décomposition dominée non triviale.

Il est possible de voir a travers des examples ([BV]) que le théoréeme est optimal
dans un certain sens. Aussi, I’hypothese de l'existence de points périodiques est
nécessaire (voir [BD3]). Par contre, ’hypothese sur la dissipativité du différentiel sous
I'orbite périodique semble étre une conséquence des autres hypotheses, bien qu’elle
n’a pas pu étre éliminée. Pour le faire, il semble nécessaire d’avoir un résultat du
type ergodic closing lemma sur la classe homoclinique, ce qui constitue un probléeme
qui n’est pas encore compris correctement (voir [B] Conjecture 2).

La nouveauté de la preuve de ce théoreme se base surtout dans le fat qu’elle
utilise un nouveau résultat di & Gourmelon [Goug], qui permet de perturber le
différentiel de l'orbite périodique en gardant un certain controle des variétés invari-
antes. L’utilisation de ce résultat et la stabilité Lyapunov du systeme permettent de
garantir que le point reste dans la classe apres une perturbation. Ce resultat répond
positivement a une question posée en [ABD] (Probleme 5.1).

Le réve des dynamiques C'-génériques admettant des attracteurs!? a disparu a
cause d'un exemple surprenant di a [BLY] qui montre que le dévelopement récent
de la dynamique C'-générique a eu une grande influence sur la facon de comprendre
la théorie et a simplifié des questions qui résultaient a simple vue intraitables.

Les exemples de [BLY] possedent ce que 'on a appelé des attracteurs essentiels
(voir la sous-section 1.1.5); il n’est pas encore connu s’il possedent ou pas des at-
tracteurs dans les sens Milnor. Dans la Section 3.3 nous reverrons ces exemples et
nous présenterons de nouveaux exemples qui apparaissent sur [Pots] et sur lesquels

nous avons une meilleure compréhension de comment les autres classes accumulent.

Théoréme. Il existe un ouvert U de Diff' (T?) tel que:

- Chaque f € U posséde un seul quasi-attracteur et un attracteur au sens Milnor.
Aussi, si Uélément est de classe C?, il posséde un seul mesure SRB dont le

bassin est de mesure totale.
- Pour f dans un ensemble résiduel de U ne possede pas des attracteurs,

- Les classes de récurrence qui ne sont pas un quasi-attracteurs d’un élément f

de U sont contenues dans des surfaces périodiques.

La derniere conclusion du théoréme contraste avec les nouveaux résultats obtenus
par Bonatti et Shinohara ([BS]). Dans la Section 3.4, nous discutons comment les

deux résultats pourraient s’intégrer dans une meéme théorie.

12Voir I'introduction de [BLY].
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0.3.3 Hyperbolicité partielle sur le tore T3.

La section précédente ayant traité de facon implicite des problemes de nature semi-
locale (bien qu'il est possible de poser des questions sur Iexistence et la topologie
des attracteurs du point de vue global), nous dédions cette section a des problemes
des dynamiques globales.

Ala suite, nous présentons un théoreme connu en dynamique différentiable, qui

rassemble des résultats classiques de Mane ([Ms]) et Franks ([Fy]).

Théoréme (Mane-Franks). Soit M une surface compacte. Pour un difféormorphisme

f € Dif fL(M), les trois conditions suivantes sont équivalentes:
(i) f est C*-robustement transitif,

(i1) [ f est Anosov,
(iii) f f est Anosov et conjugué a un difféomorphisme Anosov linéaire du tore T?.

Essentiellement, Mane a prouvé (i) = (ii) et Franks a prouvé (ii) = (iii). L’autre
implication se déduit des faits que les difféomorphismes Anosov sont robustes et que
les linéaires sont en plus transitifs.

Si on interprete la condition Anosov comme le fait que le différentiel préserve
une certaine structure géométrique, le résultat (i)= (ii) s’identifie, d’'une certaine
facon, a la condition suivante: “une propriété dynamique robuste implique 'existence
d'une structure géométrique D f-invariante”. En fait, vu que les perturbations C*
ne peuvent pas casser la dynamique, il n’est pas surprenant que ladite structure
géométrique ait des propriétés de rigidité aux perturbation.

D’autre part, l'implication (ii)= (i) peut s’identifier a la condition suivante:
“I'existence d’une propriété géométrique invariante est liée a 1’existence d’une pro-
priété dynamique robuste” (dans ce cas, la transitivité).

En dimensions supérieures la relation entre les propriétés dynamiques robustes
et les structures géométriques invariantes est moins développée, bien qu’il existe
des résultats visant a obtenir une structure géométrique invariante a partir d’'une
propriété dynamique robuste. En dimension 3, ceci ce déduit de [DPU]| et a été

généralisé a dimensions supérieures en [BDP] (voir Section 1.2):

Théoréme (Diaz-Pujals-Ures). Soit M un variété de dimension 3. Tout difféomorphisme

Cl-robustement transitif de M est partiellement hyperbolique.

Plusieurs définitions d’hyperbolicité partielle existent dans la littérature, et celles-
ci ont changé le long du temps. Nous suivons la définition utilisée en [BDV] qui est
celle qui s’adapte le mieux a notre approche (voir Section 1.2 pour les définitions

précises). Un difféomorphisme partiellement hyperbolique sera tel que le fibré tangent
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se décompose en une somme D f-invariante TM = E & F qui vérifie la propriété
de domination et telle que I'un des fibrés de la décomposition est uniforme. Pour
simplifier, nous éliminons la symétrie et considérons les décompositions de la forme
TM = E“ ® E*, ou E* est uniformément dilate.

Si on s’intéresse a comprendre les propriétés dynamiques robustes impliquées par
I’existence d’'une décomposition partiellement hyperbolique, une premiere difficulté
que 'on trouve concerne le manque de controle de la contraction sur la direction
centre stable E°. Ceci empéche de comprendre a fond la dynamique sur cette di-
rection, comme on la comprend sur la direction des fibrés uniformes. Une exception
notable dans ce sens est [PSg], travail qui étudie les conséquences dynamiques de la
décomposition dominée pour le cas de dimension 2.

II mérite de mentionner aussi I'importance de (iii) dans le Théoréme de Mane
et Franks. D’une certaine fagon, il est basé sur 'idée qui suggere que pour obtenir
une proprié¢té dynamique robuste a partir de I'existence d’une structure géométrique
invariante, il peut étre important de s’appuyer sur les propriétés topologiques im-
posées par ladite structure: la topologie de la variété et la classe d’isotopie du
difféomorphisme. Tenant compte de ce théoreme et des difficultés a trouver des
résultats dans le sens réciproque au Théoreme de Diaz-Pujals-Ures , il semble im-
portant de diviser le travail en cherchant des résultats tu type (ii)= (iii) et du
type (ii)+(iii) = (i), en imitant le Théoreme de Manie et Franks. En particulier, il
pourrait étre pertinent d’étudier les propriétés des difféomorphismes partiellement
hyperboliques dans certaines variétés, ou méme dans des classes d’isotopie fixées.

Une autre difficulté en dimension 3 est 'obtention de propriétés topologiques a
partir des structures invariantes. En dimension 2, le seul fait de préserver un camp de
vecteurs impose des énormes restrictions sur la topologie de la variété. En dimension
3, il est bien connu que toute variété admet un champ de vecteurs non nul, et méme
un feuilletage de codimension 1.

Cette situation pourrait étre considérée mauvaise du point de vue d’obtenir
des résultats visant a trouver des propriétés topologiques d'un difféomorphisme qui
préserve une structure géométrique. En revanche, une belle remarque faite récemment

par Brin-Burago-Ivanov ([BBI, BI]) a redonné vie a 'espoir:

Remarque (Brin-Burago-Ivanov). Dans une variété de dimension 3, si F est une
feuilletage transversale a la direction instable E* d’un difféomorphisme partiellement

hyperbolique, alors F n’a pas de composantes de Reeb.

&

Les composantes de Reeb et leur relation avec les difféomorphismes partielle-
ment hyperboliques avait déja été étudiée, par exemple dans [DPU] (Theorem H)

et [BWi] (Lemma 3.7) en un contexte plus restrictif (la coherence dynamique et
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la transitivite). La puissance de cette remarque est lie au fait qu’elle dépend de
la dynamique seulement dans le fait que le feuilletage instable n’a pas des courbes
fermées.

D’un c6té, il est connu que plusieures variétés de dimension 3 n’admettent pas des
feuilletage sans composantes de Reeb. D’un autre c6té, il existe beaucoup de théorie
sur leur classification (voir par exemple [Pla, Rou]). Il semble donc possible d’utiliser
ces connaisances pour etudier les difféomorphismes partiellement hyperboliques.

Il apparait une autre difficulté: on ne sait pas si tout difféomorphisme partielle-
ment hyperbolique possede une feuilletage transversale a la direction instable. Dans
cette these, nous proposons la notion de presque-cohérence dynamique et nous prou-
vons qu’il s’agit d’une propriété ouverte et fermée dans ’espace des difféomorphismes
partiellement hyperboliques.

Un des théoremes principaux (voir Chapitre 5 et [Pot;]) garantie, dans certaines
classes d’isotopie de difféomorphismes de T2, que cette condition est suffisante pour

que le fibré F° soit tangent a un feuilletage invariante:

Théoreme. Soit f un difféomorphisme partiellement hyperbolique et isotope a un
difféeomorphisme Anosov linéaire. St f est presque-dynamiquement cohérent, alors il

est dynamiquement cohérent.

La condition de cohérence dynamique signifie justement que le fibré tangent F°*
soit tangent a una feuilletage f-invariante.

On peut dire plus pour le cas partiellement hyperbolique fort (c’est a dire lorsque
il'y a un décomposition TM = E*® E°@ E" qui est D f-invariante avec des propriétés
de domination et telle que E*® et E" sont uniformes).

En [BI] les auteurs ont montré que tout diffomorphisme partiellement hyper-
bolique fort est presque-dynamiquement cohérent et ceci a été repris d’abord par
[BI] (suivant [BBI,]), et apreés par [Par], pour donner des conditions topologiques
nécessaires pour I’hyperbolicité partielle forte.

Avec nos resultats, ca suggere que la suivante conjecture de Pujals pourrait étre

abordable dans certains varietes:

Conjecture (Pujals [BWi]). Soient M une variété de dimension 3 et f un difféomorphisme
partiellement hyperboique fort et transitif de M. Une des trois conditions suivantes

doit se vérifier:
- f est conjugué par feuilles a un difféomorphisme Anosov de T3,

- f est conjugué par feuilles a un skew-produc sur un difféomorphisme Anosov

en T? (la variété est donc T? ou une nilvariété).

- f est conjugué par feuilles au temps 1 d’un flot d’Anosov.
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Il y a eu des progres dernierement en ce qui concerne cette conjecture. Tout
d’abord, le travail de [BWi] a fait des progres importants sans imposer d’hypothese
sur la topologie de la variété, en supposant I’existence de courbes fermées tangentes
a la direction centrale. Plus tard, les travaux de Hammerlindl [H, Hy] donnent
une preuve de la conjecture pour le cas ol la variété est T2 ou une nilvariété mais
pour une notion plus restrictive de I'hyperbolicité partielle. Bien que de nombreux
exemples vérifient cette définition plus restrictive, elle est dans un sens artificielle et
ne s’adapte pas au résultat de [DPU].

Bien stur, pour obtenir une preuve générale, il faut d’abord montrer que les
difféomorphismes de ce genre sont dynamiquement cohérents, puis que la définition
de “conjugué par feuilles” (voir Section 1.3) a besoin de l'existence de feuilletages
invariantes. Le travail de Hammerlindl s’appui sur des travaux précédents de Brin-
Burago-Ivanov ([BBI;]) qui montrent que cette définition restrictive d”hyperbolicité
partielle, dans le cas de T3, implique cohérence dynamique.

D’un autre coté, un exemple récent de Rodriguez Hertz-Rodriguez Hertz-Ures
([RHRHU;3]) présente un difféomorphisme partiellement hyperbolique de T? qui n’admet
pas de foliations invariantes. Dans cette these nous complétons le paysage avec le
suivant résultat ([Pots] et Chapitre 5).

Théoréme. Tout difféomorphisme partiellement hyperbolique fort de T2 qui n’admet
pas de tore periodique normallement attracteur ni de tore periodique normallement

répulseur est dynamiquement cohérent.

Ce résultat répond a une conjecture posée par Rodriguez Hertz-Rodriguez Hertz-
Ures dans le tore T? et sa preuve permet de répondre & la conjecture de Pujals sur
T3 (voir [HP]).

Nous présentons a la fin du Chapitre 5 des résultats en dimension supérieures
qui généralisent les résultats obtenus par Franks, Newhouse et Manning pour des

difféomorphismes Anosov dans le contexte partiellement hyperbolique.

0.3.4 Autres contributions

Dans cette section nous décrivons des autres contributions de cette these.

D’une part, dans la Section 2.2 nous décrivons un mechanisme pour localiser des
classes de récurrence qui a été présenté dans [Pots] et qu’on considéré important
par soi-méme. Ce mechanisme peut étre appliqué dans des contextes variés (dans
cette these nous 'utilisons dans la Section 4.A et aussi dans les sous-sections 3.3.2
et 3.3.3).

Dans la Section 3.3, nous présentons divers exemples de quasi-attracteurs et de

difféomorphismes robustement transitifs, dont quelques uns sont obtenus a partir de
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modifications d’exemples connus, mais qui peuvent, d’apres nous, représenter une
contribution a la compréhension de ces phénomenes.

Le Chapitre 4 est dédié a présenter les idées sur les feuilletages qui seront utilisées
apres dans le Chapitre 5, nous obtenons des résultats qui peuvent avoir un intéret
indépendent. En particulier, un résultat quantitatif sur I'existence d’une structure
de produit global pour les foliations, présenté dans la Section 4.3. De méme, dans la
Section 4.A, nous donnons une classification de la dynamique des difféomorphismes
globalement partiellement hyperbolique en T? qui, d'une certaine facon, montre ce
qu’on faira dans le Chapitre 5 dans un contexte plus simple.

Nous ajoutons aussi quatre annexes ou nous présentons des résultats qui se
détachent du corps central de la these. Nous soulignons 'annexe C, basé sur [Poty],
ol nous prouvons un résultat sur les homéomorphismes du tore qui possedent un
seul vecteur de rotations. Aussi, dans I'annexe D, basé sur [BCGP| nous présentons
un travail en collaboration avec Bonatti, Crovisier et Gourmelon, o nous étudions
les biffurcations de classes de récurrence robustement isolées et nous donnons des

exemples non robustement transitifs, ce qui répond & une question posée en [BC].

0.4 Organization of this thesis
This thesis is organized as follows:

- In Chapter 1 we introduce definitions and known results about differentiable
dynamics which will be used along the thesis. This chapter also presents in a

systematic way the context in which we will work.

- In Chapter 2 we present background material on semiconjugacies and we also

present a mechanism for localization of chain-recurrence classes (see Section
2.2).

- In Chapter 3 we study attractors and quasi-attractors in C''-generic dynamics.

- In Chapter 4 we give an introduction to the known results in foliations mainly
focused in codimension one foliations and particularly in foliations of 3-manifolds.
We prove some new results which we will use later in Chapter 5. Also, this
chapter contains an appendix which shows similar results as the main results

of this thesis in the context of surfaces.

- In Chapter 5 we study global partial hyperbolicity. Most of the chapter is
devoted to the study of partially hyperbolic diffeomorphisms of T? and in the

last section some results in higher dimensions are given.
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- Appendix A presents some techniques on perturbations of cocycles over periodic

orbits.

- Appendix B gives an example of a decomposition of the plane satisfying some

pathological properties.

- Appendix C is devoted to the study of homeomorphisms of T? with a unique
rotation vector. There we present the results of [Poty] and we also give a
quite straightforward extension of the results there to certain homeomorphisms

homotopic to dehn-twists.

- Appendix D presents the results of [BCGP].

0.5 Reading paths

Being quite long, it seems reasonable to indicate at this stage how to get to certain
results without having to read the whole thesis.

First of all, it must be said that Chapter 1, concerning preliminaries, need not
be read for those who are acquainted with the subject. In particular, those who are
familiar with one or more of the excellent surveys [BDV, Cy4, PS,].

Similar comments go for Chapter 4, in particular the first part covers well known
results on the theory of foliations which can be found in [CaCo, Ca] among other
nice books. The final part though may be of interest specially for those which are
not specialist on the theory of foliations such as the author.

If the reader is interested in the part of this thesis concerned with attractors
for C''-generic dynamics, then, the suggested path (which can be coupled with the
suggestions in the previous paragraphs) is first reading Chapters 1 and Chapter 2
and then Chapter 3.

If on the other hand, the reader is interested in the part about global partially
hyperbolic dynamics, then some parts of Chapter 1 can be skipped, in particular it is
enough with reading Sections 1.2 and 1.4. Then, Chapter 4 is fundamental in those
results, but the reader which is familiar with the theory of foliations may skip it in
a first read. Finally, the results about global partial hyperbolicity are contained in
Chapter 5. If the reader is interested in Section 4.A, then Chapter 2 is suggested.
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Chapter 1

Preliminaries

1.1 Recurrence and orbit perturbation tools

1.1.1 Some important dynamically defined sets and transi-

tivity

Let f: X — X a homeomorphism of X a compact metric space. For a point x € X

we define the following sets:

- The orbit of z is the set O(z) = {f™(x) : n € Z}. We can also define the
future (resp. past) orbit of z as Ot (z) = {f"(z) : n > 0} (resp. O (z) =
{/"(x) : n<0}).

- The omega-limit set (resp.alpha-limit set) is the set w(z, f) ={y € X : In; —
+o0 such that f"(x) — y} (resp. a(x, f) = w(z, f7!)). In general, when f is

understood, we shall omit it from the notation.

We can divide the points depending on how their orbit and the nearby orbits

behave. We define the following sets:

- Fix(f) ={r € X : f(x) =z} is the set of fized points.

Per(f) = {x € X : #0O(x) < oo} is the set of periodic points. The period of
a periodic point x is #O(z) which we denote as m(x) = #0O(z).

We say that a point z is recurrent if © € w(z) U a(x).

- Lim(f) = U, w(z) U a(z) is the limit set of f.

-Q(f)y ={r e X : Ve >0, 3In>0; f"(Bx)) N B(x) # 0} it the

nonwandering set of f.
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We refer the reader to [KH, Roby, Sh] for examples showing the strict inclusions

in the following chain of closed sets which is easy to verify:

Fix(f) C Per(f) C Lim(f) C Q(f)

In section 1.1.4 we shall explore another type of recurrence which will play a

central role in this text.

For a point z € X we will define the following sets (as before the reference to the

homeomorphism f may be omitted when it is obvious from the context).

- The stable set of x is W*(z, f) ={y € X : d(f"(z), f"(y)) = 0 as n — +oo}.

- The unstable set of z is W¥(z, f) = W*(x, f~1).

It is clear that f(W7(z)) = W(f(x)) for ¢ = s,u. The study of these sets
and how are they related is one of the main challenges one faces when trying to
understand dynamical systems.

Sometimes, it is useful to consider instead the following sets which in some cases

(for sufficiently small €) are related with the stable and unstable sets:

- Se(z, f) ={y e X : d(f"(x), f"(y)) <€, Vn =0}
- Ua(w7f) = Sa(xvfil)'

Notice the following two properties which are essentially the reason for defining

these sets:

We(z) < | £ (S-("(@)))

n>0

f(Se(z)) € Se(f(x))

Similar properties hold for U.(z). It is not hard to make examples where the
inclusions are strict. However, the first property is an equality for certain special
maps (expansive, or hyperbolic) which will be of importance in this text.

For a set K C X we define W7 (K) = |, W7(2) with o = s,u. Notice that
the set is (a priori) smaller than the set of points whose omega-limit is contained in

K.
We say that f is transitive if there exists x € X such that O(x) is dense in

X. Sometimes, when f is understood (for example, when X is a compact invariant
subset of a homeomorphism of a larger set), we say that X is transitive.
It is an easy exercise to show the following equivalences (see for example [KH]

Lemma 1.4.2 and its corollaries):
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Proposition 1.1.1. The homeomorphism f : X — X is transitive if and only if for
every U,V open sets there exists n € Z such that f*(U)NV # 0, if and only if there

15 a residual subset of points whose orbit is dense.

We say that f (or as above that X) is minimal if every orbit is dense.

Given an open set U, we define the following compact f-invariant set A =
Noez [™(U) which we call the mazimal invariant set in U.

Many of the dynamical properties one obtains are invariant under what is called
conjugacy. We say that two homeomorphisms f : X — X and ¢ : ¥ — Y are
(topologically) conjugated if there exists a homeomorphism A : X — Y such that:

hof=goh

When K is an f-invariant set and K’ a g-invariant set we say that f and ¢ are
locally conjugated at K if there exists a neighborhood U of K, a neighborhood V' of
K’ and a homeomorphism h : U — V such that if a point z € U N f~1(U) then:

ho f(x) =goh(x)

1.1.2 Hyperbolic periodic points

From now on, f : M? — M9 will denote a C" diffeomorphism.
Given p € Per(f) we have the following linear map:

D,f™® . T,M — T,M

We say that p € Per(f) is a hyperbolic periodic point if D, f™®) has no eigenvalues
of modulus 1. We denote the set of hyperbolic periodic points as Perg(f).

It is a direct application of standard linear algebra to show that in fact the set
Pery(f) is f-invariant. This implies that we can also talk about hyperbolic periodic
orbits.

For a hyperbolic periodic point p we have that T,M = E*(p) & E"(p) where E*(p)
(resp. E%(p)) corresponds to the eigenspace of D, f™®) associated to the eigenvalues
of modulus smaller than 1 (resp. larger than 1). We have that D,f(E’(p)) =
E?(f(p)) with o = s,u.

We define the (stable) index! of a periodic point p as dim E*(p). This also leads to
calling stable eigenvalues (resp. unstable eigenvalues) to those which are of modulus

smaller (resp. larger) than 1. We denote the set of index ¢ periodic points as Per;(f).

'We warn the reader that some authors define the index of a periodic point as the unstable

dimension.
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The importance of hyperbolic periodic points is related to the fact that their local
dynamics is very well understood and it is persistent under C''-perturbations (for a

proof see for example [KH] chapter 6):
Theorem 1.1.2. Let p be a hyperbolic periodic point of a C*-diffeomorphism f, then:

(i) f™® s locally conjugated to Dpf”(p) at p. In particular, there are no periodic
points of period smaller or equal to 7(p) inside a neighborhood U of p.

(ii) There exists a Ct-neighborhood U of f such that for every g € U there is a
unique periodic point p, of period w(p) of g inside U which is also hyperbolic.
We say that p, is the continuation of p for g.

(iii) There exists € > 0 such that S. is an embedded C* manifold tangent to E*(p)
at p and in particular, one has S. C W*(p).

As a consequence we have that the set of hyperbolic periodic points of period
smaller than n is finite. We have that the sets W7(p) are (injectively) immersed
C'-submanifolds of M diffeomorphic to R¥™£”. Moreover, one can define W°(O(p))
which will also be an injectively immersed C*-submanifold with the same number of
connected components as the period of p.

When the stable index s of a hyperbolic periodic point is the same as the dimen-
sion of the ambient manifold (resp. s = 0), we shall say that it is a periodic sink
(resp. periodic source). In any other case we shall say that it is a periodic saddle of
index s.

One of the first perturbation results in dynamics was given by Kupka and Smale

independently showing:

Theorem 1.1.3 ([Kup, Smy]). For every r > 1, there exists a residual subset Gxg C
Diff" (M) of diffeomorphisms such that if f € Gis:

- All periodic points are hyperbolic (i.e. Per(f) = Perg(f)).

- Given p,q € Per(f) we have that W*(p) and W¥(q) intersect transversally
(recall that this allows the manifolds not to intersect at all).

Transversal intersections between stable and unstable manifolds yield information
on the iterates of those manifolds. A quite useful tool to treat those intersections is
given by the celebrated A\-Lemma (or Inclination Lemma) of Palis (see [Pa;]) which
we state as follows (see also [KH] Proposition 6.2.23). The statement we present
is for fixed points, but considering an iterate one can of course treat also periodic
points as well:
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Theorem 1.1.4 (A\-Lemma). Let p be a hyperbolic fized point of f a C*-diffeomorphism
of a manifold M and let D be a C'-embedded disk which intersects W*(p) transver-
sally. Then, given a compact submanifold B of W¥(p) and € > 0 there exists ng > 0
such that for every n > ng there is a compact submanifold D, C D such that f"(D,,)

is at C'-distance smaller than € of B.

See also Lemma D.1.4.

1.1.3 Homoclinic classes

Given two hyperbolic periodic points p, ¢ we say that they are homoclinically related
if We(p) MW*(q) # 0 and W*(q) AW*“(p) # 0.

Given a periodic obit O we define its homoclinic class H(Q) as the closure of the
set of periodic points homoclinically related to some point in the orbit O.

Notice that by the definition of being homoclinically related, necessarily one has
that if two periodic points are homoclinically related, then they have the same stable
index. However, this does not exclude the possibility of having periodic points of
different index (and even non-hyperbolic periodic points) inside H(O) and this will
be “usually” the case outside the “hyperbolic world”.

Homoclinic classes were introduced by Newhouse as an attempt to generalize for
arbitrary diffeomorphisms the basic pieces previously defined by Smale ([Sms]) for
Axiom A diffeomorphisms. The first and probably the main example of non-trivial
homoclinic class is given by the famous horseshoe of Smale (see [Smy| or [KH] 2.5).

We have the following properties:

Proposition 1.1.5 ([News)). For every hyperbolic periodic orbit O of a C*-diffeomorphism

f the homoclinic class H(O) is a transitive f-invariant set. Moreover, we have that:

H(O) = W (O) m WH(0).

This proposition essentially follows as an application of the A\-Lemma (see also
Smal).

For a periodic point p we denote as H(p) = H(O(p)). Given a hyperbolic periodic
point p of a C1-diffeomorphism, we have by Theorem 1.1.2 that there exists a contin-
uation of p as well as W#(p) and W*(p) for close diffeomorphisms. We will sometimes
make explicit reference to the diffeomorphism and use the notation H (p, f).

We have the following fact which follows from the continuous variation of stable

and unstable manifolds with the diffeomorphism:

Proposition 1.1.6. Given a hyperbolic periodic point p of a C*-diffeomorphism f
and U an open neighborhood of M such that H(p) N U # 0, there exists U a C*-
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neighborhood such that if H(p,) is the homoclinic class for g € U of the continuation
pg of p we have that H(p,) NU # 0.

Remark 1.1.7 (Semicontinuity). The last statement of the proposition can be stated
by saying that homoclinic classes vary semicontinuously with respect to the Hausdorff
topology. This means that they cannot implode (if f, — f have hyperbolic periodic
points p,, which are the continuation of p € Pery(f) for f,, we have that if H(p, f)
intersects a given open set U, then H(p,, f,) also intersects U for large enough n).
There exists the possibility that the homoclinic class explodes by small perturbations
(see for example [Pay, DS]). However, a classic result in point set topology guaranties
that when a map is semicontinuous then it must be continuous in a residual subset

(see Proposition 3.9 of [C,4] for a precise statement). Other compact sets related to

the dynamics which have semicontinuous variation are Perg(f), Per;(f) or for a given
hyperbolic periodic point p of f the set ng) (0 = s,u) for g in a neighborhood
of f. All these sets cannot implode but may explode in some situations, from the
mentioned result on point set topology, there is a residual subset G of Diff' (M) where
all these sets vary continuously. In the next subsection we shall see a set which also
varies semicontinuously but in “the other sense”, meaning that it can implode but

not explode.

&

As it was already mentioned, periodic points in a homoclinic class may not have
the same stable index (even if to be homoclinically related they must have the same
index). The existence of periodic points of different index in a homoclinic class is
one of the main obstructions for hyperbolicity. Given a homoclinic class H we say
that its minimal index (resp. mazimal indez) is the smallest (resp. largest) stable

index of periodic points in H.

1.1.4 Chain recurrence and filtrations

In this section we shall review yet another recurrence property, namely, chain-
recurrence. From the point of view of recurrence, it can be regarded as the “weakest”
form of recurrence for the dynamics. Indeed, it is so weak that it was neglected for
much time in differentiable dynamics since its classes seem to have really poor dy-
namical indecomposability (see for example Appendix C and [Poty]).

On the other hand, it is by far the best notion when one wishes to decompose the
dynamics in pieces, and this is why after being shown to be quite similar to the rest
of the notions for C'*-generic dynamics (in [BC]) it became “the” notion of recurrence
used in C'-differentiable dynamics.

We derive the reader to [Cy4] for a more comprehensive introduction to these
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concepts (see also [BDV] chapter 10 for another introduction to these topics which

is less up to date but still a good introduction).

Definition 1.1.1 (Pseudo-orbits). Given a homeomorphism f: X — X and points
x,y € X we say that there exists an e-pseudo orbit from x to y and we denote it as

x . y iff there exists points zp = x,..., 2 = y such that £ > 1 and

We use the notation x - y to express that for every € > 0 we have that x . y. We

also use x Hy to mean x 4y and y 4 z.

&

We define the chain-recurrent set of f: X — X as

R(f)={reX : zHx}

It is easy to show that inside R(f) the relation H is an equivalence relation so we
can decompose R(f) in the equivalence classes which we shall call chain-recurrence
classes. For a point x € R(f) we will denote as C(x) its chain-recurrence class.
Both R(f) and the chain recurrence classes can be easily seen to be closed (and thus
compact).

One can regard chain recurrence classes as maximal chain transitive sets. We say
that an invariant set K C X is chain-transitive if for every x,y € K we have that
x 4 y. We say that a homeomorphism f : X — X is chain recurrent if X is a chain
transitive set for f.

For a chain-transitive set K we define its chain stable set (resp. chain unstable
set) as pW?*(K) ={y € X : 3z € K such that y 4 z} (resp. as pW*(K), the chain
stable set for f~1).

Remark 1.1.8. Given a hyperbolic periodic point p of a C!-diffeomorphism, one has
that the homoclinic class of p is a chain-transitive set. In particular, it is always
contained in the chain-recurrence class of p. In general, one can have that the
inclusion is strict (see for example [DS]). Notice also that if p is a hyperbolic sink
(or source) we have that C(p) = O(p). Indeed, since p admits neighborhoods whose
closure is sent to its interior by f (or f~1), this prevents small pseudo-orbits to leave

(or enter) any small neighborhood of p.

&

An essential tool for decomposing chain-recurrence classes whose existence is the
content of Conley’s theory (see [Co| and [Robs] chapter 9.1) are Lyapunov functions.
We remark that the definition we use of Lyapunov function is not the standard one
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in the literature, we have adapted our definition in order to have the properties of

the function given by Conley’s Theorem.

Definition 1.1.2 (Lyapunov Functions). Given a homeomorphism f : X — X we
say that ¢ : X — [0, 1] is a Lyapunov function if the following conditions are satisfied:

- For every x € X we have that ¢(f(z)) < ¢(x) and p(x) = ¢(f(x)) if and only
if v € R(f).

- Given z,y € R(f) then ¢(z) = ¢(y) if and only if C(x) = C(y).
- The image of R(f) by ¢ has empty interior.
&

It is remarkable that these functions always exist (see [Robs] chapter 9.1 for a
simple proof of the following theorem also sometimes called Fundamental theorem of

dynamical systems).

Theorem 1.1.9 (Conley [Co]). For any homeomorphism f : X — X of a compact
metric space X there exists a Lyapunov function ¢ : X — R.

Remark 1.1.10 (Filtrations). Lyapunov functions allow to create filtrations separat-
ing chain recurrence classes. Indeed, consider C; and Cy two distinct chain recurrence
classes, and a Lyapunov function (.

From the definition, we have that without loss of generality, we can assume
©(C1) < ¢(Cy). Since the image by ¢ of the chain-recurrent set has empty interior,
there exists a € [0,1] \ ¢(R(f)) such that ¢(C;) < a < p(C2).

Let U = ¢ '((—00,a)) an open set. Since every point such that p(x) = a is not
chain-recurrent, we obtain by the definition of Lyapunov function that f(U) C U
and that C; C U and C, C U".

Moreover, every chain-recurrence class C admits a basis of neighborhoods U,
such that if A,, is the maximal invariant subset of U, then C =, A,,. Moreover, it
verifies that if Cy is a chain recurrence class which intersects U,, then Cy is contained
in U, (one can consider p~!((a—¢,,a+¢,) with &, — 0). The sets U,, are sometimes
called filtrating netghborhoods for C.

&

These filtrating neighborhoods (which persist under C°-small perturbations) al-
low one to show that the mapping f — R(f) is semicontinuous in the sense that
it cannot “explode” (see Remark 1.1.7), so it will vary continuously in a residual
subset of Diff'(M) with respect to the Hausdorff topology on compact sets. See the
example of Appendix D.
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Pseudo-orbits can be thought of real-orbits of C°-perturbations of the initial

system. We have:

Proposition 1.1.11. Let f, : X — X be a sequence of homeomorphisms such that
fo — f in C°-topology and let A, be chain-transitive sets for f,. Then, in the

Hausdorff topology we have that A = limsup A,, is a chain-transitive set.

ProOOF. Consider x,y € A and € > 0. We can consider n large enough so that

- dCO(fmf) <
- dH(An,A) <

N

N|™M

Since a 5-pseudo-orbit for f, will be an e-pseudo-orbit of f and since there are

points in A, which are $-close to x and y we conclude.
O

Remark 1.1.12 (Trapping regions). Conley’s Theorem implies in particular that a
homeomorphism f : X — X is chain-recurrent if and only if there is no proper (i.e.
strictly contained) open set U C X such that f(U) C U.

&

In order to understand the asymptotic behavior of orbits one must then com-
prehend the dynamics inside chain recurrence classes as well as how the classes are
related to each other.

An important concept is then that of isolation. We say that a chain-recurrence
class C is isolated iff there exists a neighborhood U of C such that U N R(f) = C.
This is equivalent to ¢(C) being isolated in ¢(R(f)) for some Lyapunov function (as
defined in Definition 1.1.2) of f. Sometimes, non isolated classes will be referred to

as wild chain recurrence classes.

Remark 1.1.13. In particular, one has that a chain-recurrence class is isolated if and

only if it is the maximal invariant set in a neighborhood of itself.

&

1.1.5 Attracting sets

It seems natural that the goal of understanding the whole orbit structure for gen-
eral homeomorphisms should be quite difficult. This is why, in general, we content
ourselves by trying to understand “almost every” orbit of “almost every” system.
This informal statement has various ways to be understood, in particular, it is well

known that many different formalizations of “almost every” can be quite different
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(the paradigma of this is seen in the case of irrational numbers, where Diophantine
ones have total Lebesgue measure while Liouville ones form a disjoint residual subset
of R).

However, it seems natural in view of the Lyapunov functions to study certain
special chain-recurrence classes which are called quasi-attractors. In this section we
shall define plenty types of attractors which in a certain sense will be the chain-
recurrence classes to which we shall pay more attention in view of the discussion
above.

Given an open set U C X such that f(U) C U we can consider the set A =
Mnso f™(U) which is compact and invariant (it is the maximal invariant subset in

U). We call A a topological attractor?.

Proposition 1.1.14. Let U be an open set such that f(U) C U and let A be its
maximal invariant set. If y € X is a point such that for every ¢ > 0 there exists

z € A such that z -, y, then, y € A. In particular, for every z € A we have that
Wu(z) C A.

PrOOF. Let y € X be such that for every € > 0 there is some z € A such that
z - y.

Assume by contradiction that y ¢ A. Since A is invariant, we can assume (by
iterating backwards) that y ¢ U.

Let 6 > 0 be such that d(0U, f(U)) > §. We will show that there cannot be a
d-pseudo orbit from A to y.

Indeed, given a point x € U we have that f(x) is in f(U) which implies by induc-
tion that a d-pseudo-orbit starting at U must remain in U. This is a contradiction
and proves the proposition.

([

The problem with topological attractors is they are not indecomposable in the
sense that the dynamics inside A may not even be chain-recurrent (and in fact they
can admit topological attractors contained inside themselves). On the other hand,
they have the virtue of always existing (for example, the whole space is always a
topological attractor, and by Remark 1.1.12 there always exist proper topological at-
tractors when the homeomorphism is not chain-recurrent). To obtain in a sense bet-
ter suited definitions we present now the definition of attractors and quasi-attractors

which will appear throughout this text as one of the main objects of study.

2This is the usual definition in the literature related to this subject (see [BDV] Chapter 10).
It seems that it could be better to call this sets attracting sets, since the word attractor may be

sometimes misleading. However, we have chosen to keep this nomenclature.
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Definition 1.1.3 (Attractor). We say that a compact invariant set A is an attractor
if it is a topological attractor and it is chain-recurrent. An attractor for f=1 is called

a repeller.

&

Remark 1.1.15. We remark that it is usual in the literature also to define attractor
by asking the stronger indecomposability hypothesis of being transitive, we use this
definition since our context is better suited with the use of chain-recurrence. It is

easy to see that if A is an attractor, then it is an isolated chain-recurrence class.

%

In general, a homeomorphism may not have any attractors, however, it will always

have what we call quasi-attractors.

Definition 1.1.4. A compact invariant set Q is a quasi-attractor for a homeomor-
phism f : X — X if and only if it is a chain-recurrence class and there exists a

nested sequence of open neighborhoods {U,} of Q such that:

- Q@=0),U,, and
A quasi-attractor for f~! is called a quasi-repeller.
&
Remark 1.1.16. - If o : X — R is a Lyapunov function for a homeomorphism

f: X — X, it is clear that Q, the chain-recurrence class for which the value
of ¢ is the minimum must be a Lyapunov stable set. Recall that a compact
set A is Lyapunov stable for f if for every neighborhood U of A there exists a
neighborhood V' of A such that f"(V') C U for every n > 0.

- It is almost direct from the definition that a quasi-attractor must always be a

Lyapunov stable set.

- Moreover, although we shall not use it, it is not hard to see that given a
quasi-attractor of f one can always construct a Lyapunov function attaining a
minimum in the given quasi-attractor. This follows from the proof of Conley’s
Theorem (see [Roby] Chapter 9.1).

- A quasi-attractor is a topological attractor if and only if it is an attractor. A
quasi-attractor is an attractor if and only if it is isolated (as a chain-recurrence
class). This implies that if a homeomorphism has no attractors, then it must

have infinitely many distinct chain-recurrence classes.

&
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We say that a chain-recurrence class C is a bi-Lyapunov stable class iff it is
Lyapunov stable for both f and f~!.

We now state a corollary from Proposition 1.1.14:

Corollary 1.1.17. Let Q be a quasi-attractor for a homeomorphism f: X — X. If
y € X s a point such that for every € > 0 there exists z € A such that z - y, then,

y € Q. In particular, for every z € Q we have that W*(z) C Q.

PRrROOF. In Proposition 1.1.14 it is proved that if y is as in the statement it must
belong to U, for all U, in the definition of quasi-attractor. This concludes.
(Il

To finish this section we will define two further notions of attracting sets which
will also appear later in the text.

We say that a quasi-attractor Q is an essential attractor (as defined in [BLY]) if
it has a neighborhood U which does not intersect any other quasi-attractors. The
importance of these classes is given by a conjecture by Hurley [Hur| (known in certain
topologies, see Theorem 1.1.22): For typical dynamics, typical points converge to
quasi-attractors.

Sometimes, the invariant sets which attract important parts of the dynamics need
not be chain-recurrence classes, and even not Lyapunov stable. Another important
kind of “attracting sets” are Milnor attractors (see [Mi]). To define them we first

define the topological basin of a compact invariant set K as:

Bas(K)={ye X : w(y) C K}

We say that a compact f-invariant set K is a Milnor attractor if Leb(Bas(K)) > 0
and for every K’ C K compact, invariant different from K one has that Leb(Bas(K')) <
Leb(Bas(K)).

The definition seems a little stronger than demanding that the basin has positive

Lebesgue measure, but a simple Zorn’s Lemma argument gives:

Lemma 1.1.18 (Lemma 1 of [Mi]). Let K be a compact invariant set such that
Leb(Bas(K)) > 0 then, there exists K' C K a compact invariant set which is a

Milnor attractor.

In some situations, we can have a stronger notion of attractor. We say that a
compact f-invariant set K is a minimal Milnor attractor if Leb(Bas(K)) > 0 and
Leb(Bas(K")) = 0 for every K’ C K compact invariant subset different from K.
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1.1.6 Connecting lemmas

In the study of “typical” dynamics in the space of C'*-diffeomorphisms, the main tool
is the study of periodic orbits which we hope to describe accurately the recurrent
behavior. It is then important to control perturbations of orbits in order to create
the desired behavior. This section reviews several orbit perturbation results (in 1.2.4
we shall review perturbations of the derivative which is the other main tool in the
study of typical C'-behavior) such as the closing and connecting lemmas and their
consequences. All this results were for many time considered extremely difficult and
technical. Nowadays, even if they remain subtle, many proofs have been considerably
improved (see in particular [Cy4] for simple proofs of some of the results and sketches
of the rest). This section intends to be a mere presentation of the results, for an
introduction see [C4] and [BDV] appendix A.

We first introduce the well known Closing Lemma of Pugh ([Puy, Puy]) and a
very important consequence which together with Kupka Smale’s theorem was one of
the first genericity results. Its simple and natural statement may hide its intrinsic
difficulties, the references above explain why it is not that easy to perform such

perturbation.

Theorem 1.1.19 (Closing Lemma [Pu,]). Given f € Diff'(M), U a neighborhood
of f and x € Q(f), then, there exists g € U such that x € Per(g).

The extension of the Closing Lemma to the C?-topology is far beyond reach of
the current techniques except in certain cases where one can control the recurrence
and be able perform perturbations in higher topologies (see for example [Pus, CP]).

As a consequence of the Closing lemma and the fact that semicontinuous functions
are continuous in a residual subset, Pugh obtained the following consequence from
his theorem. We shall only sketch the proof to show how to use the techniques (see

for example [Cy4] Corollary 2.8 for a complete proof).

Corollary 1.1.20. There erists a C'-residual subset G C Diff'(M) such that if

f € G one has that Per(f) = Q(f).

SKETCH. Since hyperbolic periodic points persist under C*-perturbations (see The-
orem 1.1.2) we get that the map f +— Pery(f) which goes from Diff' (M) to k(M)
is semicontinuous (see Remark 1.1.7).

We obtain that there is a residual subset G C Diff* (M) consisting of diffeomor-
phisms where the map f +— m varies continuously with respect to the Hausdorff
metric in K(M).

We claim that if f is such a continuity point, then Per(f) = Q(f). Indeed, if

this was not the case, using the Closing Lemma we could make the non-wandering
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set explode by creating a periodic point far from Pery(f) by an arbitrarily small
perturbation® contradicting the continuity and concluding the proof.
O

It may seem that creating a periodic point out of a recurrent (or non-wandering)
one is equally as difficult as creating a connection between orbits x and y such that
the omega-limit set of one intersects the alpha-limit set of the other. However, the
difficulties that arise in this context are considerably larger and it took a long time
to handle this case.

The Connecting Lemma was first proven by Hayashi in [Hay]. Then, many im-
provements appeared (see [Arn;, WX, BC] for example). The statement we present

is taken from [C;] Theorem 5 and it is quite stronger.

Theorem 1.1.21 (Connecting Lemma [Hay, C,]). Let f € Diff'(M) and U a neigh-
borhood of f. Then, there exists N > 0 such that every non periodic point x € M
admits two neighborhoods W C W satisfying that:

- The sets W, f(W),..., fN"Y (W) are pairwise disjoint.

- For every p,q € M\(f(W)U...U fN"Y(W)) such that p has a forward iterate
f™(p) € W and q has a backward iterate f~™(q) € W, there exists g € U
which coincides with  in M\(f(W)U...U fN"Y(W)) and such that for some
m > 0 we have g™ (p) = q.

Moreover, {p,g(p),...,g™(p)} is contained in the union of the orbits {p, ..., f"(p)},
{f™(q),...,q} and the neighborhoods w,... ,fN(W). Also, the neighborhoods W, W

can be chosen arbitrarily small.

A much harder problem is to create orbits which realize in some sense the e-
pseudo-orbits since this will clearly require making several perturbations. We shall
state the consequences of a connecting lemma for pseudo-orbits obtained in [BC|

since we shall not use the perturbation result itself (previous partial results can be
found in [Ab, BDy, CMP, MP]).

Theorem 1.1.22 ([BC]). There exists a C'-residual subset Gpo of Diff'(M) such
that for f € Gpc one has that:

- Per(f) = R(f).
- For p € Per(f) we have that C(p) = H(p). In particular, homoclinic classes of
[ are disjoint or equal. Moreover, if two periodic points in H(p) have the same

index, then they are homoclinically related.

3Notice that it is not hard to perturb a periodic point in order to make it hyperbolic.
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- (Hurley’s Conjecture) There exists a residual subset R C M such that for every

xr € R we have that w(x) is a quasi-attractor.

- If Q is an essential attractor, then there exists U a neighborhood of Q such

that for a residual set of points in U the w-limit is contained in Q.

- If a chain-recurrence class C is isolated, then, there exists U a neighborhood of
C and U a neighborhood of f such that for every g € U the mazimal invariant

subset of U is chain-recurrent.

- ([CMP)) The closure of the unstable manifold of a periodic orbit is a Lyapunov
stable set. Moreover, the homoclinic class of a periodic point p € M is H(p) =
We(p) N W(p).

When a chain recurrence class C has no periodic points we say that C is an
aperiodic class.

As a direct consequence we obtain the following properties:
Corollary 1.1.23 ([BC|). For f € Ggc one has that:
- If a chain-recurrence class C s isolated, then C is a homoclinic class.

- If a chain-recurrence class C has non-empty interior, then it is a bi-Lyapunov

stable homoclinic class.

PrOOF. The statement of those classes being homoclinic classes is a direct con-
sequence of the fact that periodic points are dense in the chain-recurrence set and
that chain-recurrence classes containing periodic points coincide with the homoclinic
classes of the periodic points.

To prove that a homoclinic class with non-empty interior is bi-Lyapunov stable,
notice that since it contains the unstable manifold of any periodic orbit in its interior,
from the last statement of Theorem 1.1.22 it follows that it must be a quasi-attractor.
The argument is symmetric and it also shows that it must also be a quasi-repeller.

(Il

The first statement of this corollary poses the following natural question (see
[BDV] Problems 10.18 and 10.22):

Question 1.1.24. Is an isolated homoclinic class of a C"-generic diffeomorphism

C-robustly transitive* ?

4We say that a chain recurrence class C of a diffeomorphism f is C"-robustly transitive if there
exists a C"-neighborhood U of f and a neighborhood U of C' such that the maximal invariant of U

for g € U is transitive.
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We have given a negative answer to this question with C. Bonatti, S. Crovisier
and N. Gourmelon in [BCGP] (see Appendix D)

In general, another difficult problem is to control that when one perturbs a
pseudo-orbit in order to create a real orbit then the new orbit essentially “shadows”
the pseudo-orbit (this will be better explained later). In general, this is not possible
([BDT]), however, one can approach pseudo-orbits for C'-generic diffeomorphisms

with a weak form of shadowing (see [Arny] for a previous related result).

Theorem 1.1.25 ([Cy] Theorem 1). There exists a C* residual subset G of Diff' (M)
such that for any 6 > 0 there exists € > 0 such that for any e-pseudo-orbit {zo, . . ., 21}
there exist a segment of orbit {x,..., f"(zx)} which is at Hausdorff distance smaller
than & from the pseudo-orbit. Moreover, if the e-pseudo-orbit is periodic (i.e. zp = 2o)

then one can choose the orbit to be periodic.

1.1.7 Invariant measures and the ergodic closing lemma

When studying the orbit structure of diffeomorphisms it is sometimes important
to understand the recurrence from a more quantitative viewpoint to have better
control on how the recurrent points affect the orbits which pass close to them. A
main tool for measuring recurrence is ergodic theory which treats dynamics of bi-
measurable, measure preserving transformations of measure spaces. When combined
with topological dynamics one can obtain lots of information some of which will be
used in this text. We will present here some of this theory and refer to the reader to
[M] for a more complete review of ergodic theory of differentiable dynamics.

Let f € Diff'(M) and p a regular (probability) measure in the Borel o-algebra
of M. We shall denote the set of regular probability measures of M as M(M). We
say that u € M(M) is invariant if u(f~'(A)) = u(A) for every measurable set A.
We denote the set of invariant measures of f as M (M) C M(M). With the weak-*
topology in the space of measures of M we know that M (M) is convex and compact.
It is easy to see that M (M) is also convex and compact.

An invariant measure p is called ergodic if and only if f-invariant measurable
sets have p-measure 0 or 1. We denote the set of ergodic measures as M., (M)
which can be seen to be the set of extremal points of M ;(M). We deduce from the
usual Krein-Milman theorem (see [Rud]) the following consequence which will allow
us in general to concentrate in ergodic measures (see [My] I1.6 for a more general

statement):

Proposition 1.1.26. Let j be an invariant measure and ¢ : M — R such that

/god,u>0
M
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then, there exists an ergodic measure 1’ whose support is contained in the support of

/ edp' > 0.
M

The same result holds® for >, <, <.

i and such that

The importance of measuring the integral of real-valued functions with invariant
measures is given by the well known Birkhoff ergodic theorem which guaranties that
for knowing such integrals it is enough to average the values obtained in the orbit of

a generic point:

Theorem 1.1.27 (Birkhoff Ergodic Theorem). Let f € Diff' (M) and u € M (M)
an invariant measure. Given @ : M — R a p-integrable function we have that for

pu-almost every point x there exists
1 n—1
lim — “(z) = §(x).
m Y pe £ 4t

Moreover, ¢(x) is p-integrable and f-invariant (i.e. ¢(f(x)) = @(x)) and it satisfies

that
/ dp = / edp
M M

Since when p is ergodic f-invariant functions are (almost) constant we get that

for p-almost every point x € M:

n—1

1 i

lim — > sOOf(fv):/wdﬂ
=0

One can define the statistical basin of an ergodic measure p as the set of points

whose averages with respect to any continuous function ¢ converge towards [ odpu:

Bas(u) = {yEM Yo € C°(M,R) , ngo]” —>/ godu}

A direct consequence of Birkhoff theorem is that pu(Bas(u)) = 1, however, a C'-
generic diffeomorphism verifies that the support of invariant measures is very small
from the topological point of view [ABCs] (as well as from the point of view of
Lebesgue measure [AvBo]). This suggest the following definition of measures which
are sometimes also called ergodic attractors (see [BDV] chapter 11 and references

therein for an introduction in the context we are interested in):

°In fact, for the non-strict inequalities one needs to use the ergodic decomposition theorem (see
[My] 11.6).
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Definition 1.1.5 (SRB measures). We say that an ergodic f-invariant measures is
an SRB measure for f iff:

Leb(Bas(u)) > 0
&

Notice that in general one has that supp(u) C Bas(u) and that Bas(p) C
Bas(supp(p)) so we obtain that the support of an SRB measure always contains
a Milnor attractor (see Lemma 1.1.18). In some (quite usual) circumstances, one
can in fact guaranty that the support of an SRB measure is indeed a minimal Milnor
attractor.

There is a way of generalizing the notion of eigenvalues of the derivative for points

which are not periodic:

Definition 1.1.6 (Lyapunov Regular Points). Given a C'-diffeomorphism f of a
d-dimensional manifold M, we say that a point x € M is Lyapunov regular if there
are numbers A\i(z) < Ao(z) < ... < Ay(p)(2) and a decomposition T,M = E;(z) @
... ® Epyz)(x) such that for every 1 < j < m(x) and every v € Ej(x)\{0} we have:

.1 —_—
lim —log D, /]| = Ay(x)

The numbers \;(x) are called Lyapunov exponents of the point = and the space
E;(x) is called the Lyapunov eigenspace associated to \;(z). We shall denote as

Reg(f) to the set of Lyapunov regular points of f.
&

A remarkable fact is that given an invariant measure, typical points with respect

to the measure are Lyapunov regular (see in contrast Theorem 3.14 of [ABCy)).

Theorem 1.1.28 (Oseledet’s Theorem [O]). Given f € Diff' (M) and an f-invariant

measure |t we have that the set of Lyapunov reqular points has p total measure

(1(Reg(f)) =1).

Remark 1.1.29. Notice that the set of Lyapunov regular points of f is f-invariant.
Indeed, \;(f(z)) = \i(x) and E;(f(z)) = D, f(F;(x)). This implies in particular that
given an ergodic measure u the Lyapunov exponents of u-generic points is constant.

We can thus define \; () for an ergodic measure® as [ ;(z)dp and m(p) = [ m(z)dpu.
&

5We integrate the quantities only as a way of saying that it equals the value for almost every

point.
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Given a periodic orbit O of a diffeomorphism f one can define the following

f-invariant ergodic measure:

1
MO:%Z&C

z€0

To some extent, the closing lemma and pseudo-orbit connecting lemma give infor-
mation on the union of the supports of these measures for C''-generic diffeomorphisms
and Theorem 1.1.25 says that in fact every chain-transitive set can be approached in
the Hausdorff topology by the supports of such measures for a C''-generic diffeomor-
phism. A very important tool yet to be presented is the celebrated Ergodic Closing
Lemma of Mane ([M3]) which asserts that in fact one can perturb a generic point of
a measure in order to shadow it. See [Cy] section 4.1 for a simple and modern proof

of this result. An important consequence (with some improvement) is the following:

Theorem 1.1.30 (Ergodic Closing Lemma [M;], [ABCy] Theorem 3.8). There exists
a C'-residual subset Gg C Diff' (M) such that if f € Gg and p is an ergodic measure,

then, there exists O,, a sequence of periodic orbits such that:
- The measures pp, converge towards (v in the weak-x topology.

- The supports of the measures pup, converge towards the support of j in the

Hausdorff topology.

- m(po,) = m(p) for every n and the Lyapunov exponents \;(po,) converge
towards ().

We say an invariant ergodic measure p is hyperbolic if all its Lyapunov exponents
are different from 0.

1.2 Invariant structures under the tangent map

1.2.1 Cocycles over vector bundles

Consider a homeomorphism f : X — X of a metric space X and a vector bundle p :
X — X. We say that A : X — X is a linear cocycle over f if it is a homeomorphism,
we have that f o p(v) = po A(v) and A, : p*({z}) — p'({f(z)}) is a linear
isomorphism.

This general abstract context particularizes to several applications of which we

will only be interested in two:

- The derivative of a diffeomorphism Df : TM — T M is a linear cocycle over f
where the vector bundle is given by the trivial projection TM — M.
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- A= (3, f,E, A d) is a large period linear cocycle of dimension d and bounded
by K iff

f 3 — X is a bijection such that every point of X is periodic and such
that given n > 0 there are finitely many points in % of period smaller

than n (in particular, ¥ is at most countable).

FE is a vector bundle over X, this is, there exists p : £ — ¥ such that
p~'({z}) = E, is a d-dimensional vector space endowed with a Euclidean

metric (-, ).

A:xeX— A, € GL(E,, E¢() is such that ||A,|| < K and |4, < K.

&

In fact, one can think (and it is what it will represent) of large period linear
cocycles as the restriction of the derivative of a diffeomorphism to a subset of periodic
points (which of course can be a unique periodic orbit). For this reason, in the core of
this text we shall restrict ourselves to the study of the derivative of diffeomorphisms
(and the restriction of that cocycle to invariant subsets), however, in Appendix A we
will use the formalism of large period linear cocycles where some quantitative results

can be put in qualitative form.

1.2.2 Dominated splitting

Consider f € Diff'(M) and A an f-invariant subset of M. We say that a subbundle
E CThAM is D f-invariant if we have that

Df(E(z)) = E(f(x)) VzeA

Given E and F two D f-invariant subbundles of T\ M we say that F' ¢-dominates
E (and we denote it as E <, F') iff for every x € A and any pair of unit vectors
vp € E(x) and vp € F(x) we have that

1
1D, foll < §||Dxf€UF||

In general, we say that F' dominates E (which we denote E < F') iff there exists
¢ such that £ <, F'.

In some examples, there is a stronger form of domination, called absolute domi-
nation (in contrast to the previous concept sometimes called pointwise domination).
We say that F' absolutely (-dominates E (and we denote it as E <% F) iff for any
pair of points z,y € A and any pair of unit vectors vy € E(x) and vp € F(y) we
have that:
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1
1Dz f vl < §|\Dyf£vF||

In a similar manner as above, we say that F' absolutely dominates E (and denote it
as E <% F) if there exists ¢ > 0 such that £ < F.

It is possible to define domination in other ways. Notice that the concept of a
bundle /-dominating another one (both absolutely as pointwisely) is dependent on the
metric chosen in T'M. However, if a subbundle E is dominated by other subbundle
F then this does not depend on the metric chosen. See [Gou,| for information on
possible changes of metric to get domination.

We say that an f-invariant subset A admits a dominated splitting it TAM = E@®F
where F and F' are non-trivial D f-invariant subbundles and £ < F'. If one has that
E <% F then we say that the dominated splitting is absolute.

More generally, a D f-invariant decomposition Th\M = F; @ ... @ Ey over an
f-invariant subset A is called a dominated splitting if for every 1 < i < k we have
that (F1 @ ...® E;_1) < (E; ®...® Ej). One can extend to absolute domination in
a trivial manner.

A notational parentheses is that we will make a difference in F & F and F & FE
since in the first case we shall understand that £ < F and in the second one that
F < E (this is not always the notation used in the literature).

We shall now give some properties of dominated splittings, the proofs can be
found in [BDV] appendix B.

Proposition 1.2.1 (Uniqueness). Let T\M = E1®...QE, and TyM = F1®...®F;
be two dominated splitting for f with dim E; = dim F; for every i. Then, E; = F; for

every i.

The uniqueness of the decomposition with fixed dimensions of the subbundles
allows one to consider the maximal possible decomposition which we shall call the
finest dominated splitting. When a set does not admit any dominated splitting we will
say that its finest dominated splitting is in only one subbundle (we shall explicitly

mention the possibility).

Proposition 1.2.2 (Finest dominated splitting). If an f-invariant set A admits
a (non-trivial) dominated splitting, then there exists a dominated splitting TaM =
E\®...® Ey (k> 2) such that every other dominated splitting TA\M = F1 & ... & F,
verifies that | < k and that for every 1 < j <1 one has that F; = E; © ... ® E; 4 for
somel <i<kand0<t<k-—i.

The fact that the invariant set needs not be compact will play an important
role since we shall mainly study the behavior over periodic orbits and then use the

following proposition to extend that behavior to the closure (it was in fact this
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property which made Mane, and probably also Liao and Pliss, consider this notion

for attacking the stability conjecture, see [M3, Ms])

Proposition 1.2.3 (Extension to the closure and to the limit). Let f, € Diff'(M)
be a sequence of diffeomorphisms converging to a diffeomorphism f and let A,, be a
sequence of fn-invariant sets admitting {-dominated splittings Ty, M = E{ ®.. ®E}

such that dim E' does not depend on n nor on the point. Then, if

A =limsup A, = ﬂ U A,

N>0n>N

then A is a compact f-invariant set which admits a dominated splitting
TA\M=FE,®...0 E
such that E;(x) = lim E}(x}) for every x} € A, converging to x.

Remark 1.2.4. As a consequence of the previous proposition we obtain that if Ty M =
E, @ ... ® E; is a dominated splitting for an f-invariant subset A the following
properties are verified:

- The closure A admits a dominated splitting T5xM = E|@. ..® E, which extends
the previous splitting (i.e. restricted to A it coincides with Ey @...® Ey). This
follows by applying the previous proposition with f,, = f, A, = A and E' = E;.

- The bundles E; vary continuously, this means, if x, is a sequence in A such
that x, — = € A then E;(z,) — E;(z). This follows by applying the previous

proposition with f, = f, A, = A, E' = E; and z* = x;, converging to z.

- There exists a > 0 such that for i # j the angle” between E; and E; is larger
than «. This follows from the fact that the bundles vary continuously and
extend to the closure, so, if the angle is not bounded from below then there
must be a point where two bundles have non-trivial intersection contradicting
the fact that the sum is direct.

&

Given a vector space V of dimension d with an inner product (-, ) and a k-
dimensional subspace E of V' we can express every vector of V' in a unique way as
v + v+ where v € E and v+ € E+. We define &, the a-cone of E as:

E={v+vteV : vt <alv|}

"We can define the angle between two subbundles as arccos of the suppremum of the inner

product between pairs of unit vectors, one in £; and the other in Ej.

64



The interior of £ is denoted as Int(€) and is the topological interior of £ together
with the vector 0. The dimension of £ is the dimension of the largest subspace it
contains.

Given a subset K of a manifold M a k-dimensional cone field is a continuous
association of cones in T, M to points x in K. It will be given by a continuous k-
dimensional subbundle £ C Tx M together with a continuous function o : K — R:
so, the cone field will associate to x € K the a(z)-cone of E(x) which we shall denote
as E(x).

One can define more general cones and cone fields and this is useful in other

contexts ([BoG]J), but for us it will suffice to consider this notion.

Proposition 1.2.5 (Cone fields). If A is a f-invariant set admitting a dominated
splitting TAM = E @ F. Then, there exists an open neighborhood U of A and a
dim F'-dimensional cone field £ defined in U such that for every x € U such that
f(z) € U one has that

Df(&(x)) C Int(E(f(2)))

Conversely, if there exists a k-dimensional cone field £ defined in an open subset U of
M wverifying that if x € U and f(x) € U it satisfies Df(E(x)) C Int(E(f(x))) then, if
A is the mazimal invariant subset of U we have a dominated splitting T\M = E® F
with dim F' = k.

We say that a set A admits a dominated splitting of indez k if there is a dominated
splitting ThAM = E & F with dim F = k.

Remark 1.2.6 (Robustness of dominated splitting). The previous proposition allows
one to show that if A is an f-invariant set which admits a dominated splitting of
index k, then there exists a neighborhood U of A and a neighborhood U of f such that
for every g € U the maximal invariant set of U for g admits a dominated splitting of
index k. Indeed, the first part allows one to construct a k-dimensional cone field in a
neighborhood U of A which is D f-invariant in the sense explained in the statement
of the proposition. This invariance is not hard to see is robust in the C!-topology
and it gives an open neighborhood U of f such that for every g € U the cone field

will verify the converse part of the proposition.

&

1.2.3 Uniform subbundles

Given a f-invariant subset A and a D f-invariant subbundles E C T) M we say that
E is uniformly contracted (resp. wuniformly expanded) if there exist N > 0 (resp.
N < 0) such that for every = € A:
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1D ¥ ol <

Given a C'-diffeomorphism f on a Riemannian manifold M we define the con-
tinuous map Jf|g : M — R such that Jf|g(x) is the dim E-dimensional (oriented)
volume of the parallelepiped generated by the D f image of a orthonormal basis in
E.

We say that a D f-invariant subbundle E C TAM is uniformly volume contracted
(resp. uniformly volume expanding) if there exists N > 0 (resp. N < 0) such that
for every x € A:

1
TN @ ()] < 3

Invariant measures may give a criteria for knowing weather invariant subbundles

are uniform (see [C3] Claim 1.7):

Proposition 1.2.7. Consider a D f-invariant continuous subbundle E C ThAM over

a compact f-invariant subset A C M. We have that:

(i) E is uniformly contracted if and only if for every invariant ergodic measure p
such that supp(p) C A we have that the largest Lyapunov exponent of u whose

Lyapunov eigenspace is contained in E is strictly smaller than 0.

(i) E is uniformly volume contracted if and only if for every invariant ergodic
measure p such that supp(p) C A we have that the sum of all the Lyapunov ex-
ponents of p whose Lyapunov eigenspaces are contained in E is strictly smaller
than 0. In particular, if E is one dimensional uniform volume contraction

implies uniform contraction.

An analogous statement holds for uniform expansion and uniform volume expansion.

PrROOF. We first prove (i). If F is uniformly contracted, it is clear that for every

vector v C E one has that

1
limsup — log || D f"v]| < 0
n o n
Which gives the direct implication. Now, assuming that FE is not uniformly
contracted, one can prove that there must be points z, € A and v, € E(z,) such
that

HDmnfjvnH > 0<7<n

N | —
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Consider the invariant measures p,, = = Z?:_ol dfi(z,)- By compactness of M(M)
we have that (modulo considering a subsequence) p,, — p which will be an invariant
measure as it is easy to check.

We claim that g must have a Lyapunov exponent larger or equal to 0 inside FE.
Indeed, consider (again modulo considering subsequences) the limit F' C FE of the
subspaces generated by v,, which will be contained in £ by continuity of E. Let x be
a generic point in the support of u and v a vector in F(z). We have that for every
€ > 0 there are points z,, arbitrarily close to x such that v, is arbitrarily close to
v. This implies that the derivative along v for x will not be able to contract giving
the desired Lyapunov exponent which is larger or equal to 0 (see [Cs] Claim 1.7 for
more details, in particular, formalizing this idea requires passing to the unit tangent
bundle of the manifold and consider the measures there).

To prove (ii) one proceeds in a similar way by noticing that the change of volume
is related to the expansions and contractions in an orthonormal basis and the angles
to which they are sent. The fact that the angles between Lyapunov eigenspaces vary
subexponentially is a consequence of a stronger version of Oseledet’s theorem (see
for example [KH] Theorem S.2.9).

O

With some more work one can prove the following result of Pliss [Pli] (see [ABC;]

Lemma 8.4 for a proof):

Lemma 1.2.8 (Pliss). Let p be an ergodic measure such that all of its Lyapunov

exponents are negative, then i 1s supported on a hyperbolic sink.

Now we are ready to define some notions which will in some sense capture robust

dynamical behavior as will be reviewed in subsection 1.2.6.

Definition 1.2.1. Let f € Diff'(M) and A a compact f-invariant set such that its
finest dominated splitting is of the form T\ M = E; @& ... ® Ej (in this case we allow
k =1). We will say that:

A is hyperbolic if either k = 1 and FE; is uniformly expanded or contracted or
there exists 1 < j < k such that F; @ ... ® E;_; is uniformly contracted and
E; ® ... ® Ej is uniformly expanded.

A is strongly partially hyperbolic if Ey is uniformly contracted and Ej is uni-
formly expanded.

A is partially hyperbolic if either F; is uniformly contracted or Ej is uniformly

expanded.

A is volume partially hyperbolic if both F; is uniformly volume contracted and

E}; is uniformly volume expanded.
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- A is volume hyperbolic if it is both volume partially hyperbolic and partially
hyperbolic.

&

The definitions of volume partial hyperbolicity and volume hyperbolicity may
vary in the literature as well as those of partial hyperbolicty and strong partial

hyperbolicity. We warn the reader for that distinction.
Remark 1.2.9. Using Proposition 1.2.7 and Lemma 1.2.8 we get that if the finest

dominated splitting of a compact invariant set is trivial (i.e. & = 1) and the set is
either hyperbolic or partially hyperbolic then it must be a periodic sink or a source.

When the finest dominated splitting is not trivial we have the following implications:

Hyperbolic = Strong Partially Hyperbolic =
= Volume hyperbolic = Partially Hyperbolic

Moreover if one extremal bundle is one-dimensional we have that:

Volume Partially Hyperbolic = Volume Hyperbolic = Partially Hyperbolic

&

Notation (Uniform bundles). Let A be a compact f-invariant set admiting a dom-
inated splitting of the form ThAM = F; @& ... & Ej which is the finest dominated
splitting (where k& may be equal to 1). Assume that j is the largest value such
that E; uniformly contracted and [ the smallest such that Eji; is uniformly ex-
panded. If we denote a D f-invariant subbundle of Ty M as E* it will be implicit
that £ = B4 @ ...... E; with t < j. In a similar way, if we denote a D f-invariant
subbundle as E* it will be implicit that £ = F;,, @© ... ® £} with ¢ > [.

In certain situations we may separate E* = E* & EY (or E* = EY ¢ E")

which will denote that the contraction in £** is stronger than the one in E*"%.

&

An important part of this thesis will be devoted to study diffeomorphisms such
that the whole manifold is a partially hyperbolic (or strong partially hyperbolic)
set. We shall say that f is Anosov (resp. partially hyperbolic, resp. strong partially
hyperbolic, resp. volume hyperbolic) if M is a hyperbolic (resp. partially hyperbolic,
resp. strong partially hyperbolic, resp. volume hyperbolic) set for f. We will review

these concepts with more detail later.
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We remark that there are alternative definitions of these global concepts, for
example, it is usual (see [C4]) to name a diffeomorphism hyperbolic if its chain-
recurrent set is hyperbolic, in a similar way, it is defined in [CSY] a diffeomorphism to

be partially hyperbolic if its chain-recurrent set admits a partially hyperbolic splitting.

Notation (Absolute Notions). In many examples one gets a stronger version of these
concepts which is given by the fact that the domination provided by the definitions
(between the uniform bundles and the “central” or “neutral” ones) may be absolute
instead of pointwise as we have been working with. In those cases we will add the
word absolute before partial hyperbolicity, strong partial hyperbolicity or volume
hyperbolicity depending on the context. Notice that in the hyperbolic case both
notions coincide since uniform bundles are naturally absolutely dominated (this is

another reason for choosing sometimes the definition of absolute domination).

%

We obtain the following robustness property which is quite straightforward from
the definitions and Remark 1.2.6.

Proposition 1.2.10 (Robustness). Assume that A is a compact f-invariant set
which is hyperbolic, then there exists U a neighborhood of A and U a C'-neighborhood
of f such that for every g € U the mazimal invariant set of g in U s also hyperbolic.
The same holds for the concepts of partial hyperbolicity, strong partial hyperbolicity,

volume hyperbolicity, volume partial hyperbolicity and the absolute versions.

1.2.4 Franks-Gourmelon’s Lemma

In this section we shall review some techniques of perturbation which allow to change
the derivative of the diffeomorphism over a periodic orbit by a small C*-perturbation.
Notice that this cannot be done in higher topologies (not even in C? see [PSg]).

The classical Franks’ Lemma ([F3]) states the following:

Theorem 1.2.11 (Franks’ Lemma [F3]). Given a C*-neighborhood U of a diffeomor-
phism f, there exists € > 0 such that:

given any finite set {xy,... ,xx} in M,

any neighborhood U of this finite set

any set of linear transformations A; @ Ty, M — Ty M wverifying that ||A; —
D, f|l| <e foreveryl <i<k

then there exists g € U such that:
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- g= f outside U.
(@) = flos) for every 1 <i <.
- D,.g=A; for every1 <i < k.

In sections 3.1 and 3.2 we will use a stronger version of this Lemma which allows
to have control on invariant manifolds of periodic points when one perturbs their
derivatives. For doing this it is important to have a better understanding of the way
one perturbs the cocycle of derivatives in order to make the perturbation step by
step and in some sense “follow” the invariant manifolds.

Consider f a C'-diffeomorphism. We denote as Per;(f) the set of (stable) index j
hyperbolic periodic points. Let O be a periodic orbit and F a D f invariant subbundle
of ToM. We denote as Do f/r to the cocycle over the periodic orbit given by its
derivative restricted to the invariant subbundle as defined in greater generality in
subsection 1.2.1.

Let O be a periodic orbit and Ae be a linear cocycle ® over O. We say that Ap
has a strong stable manifold of dimension i if the eigenvalues |A;| < [Aa] < ... < |\
of Ap satisfy that |\;| < min{1, |X\;;1]}.

If the derivative of O has strong stable manifold of dimension ¢ then classical
results ensure the existence of a local, invariant manifold W*'(x) tangent to the
the subspace generated by the eigenvectors of these i eigenvalues and imitating the
behavior of the derivative (see [KH] Theorem 6.2.8 for a precise formulation and
recall Theorem 1.1.2). In fact, W2 is characterized for being the set of points in an
e-neighborhood of O such that the distance of future iterates of those points and O
goes to zero exponentially at rate faster than \; + ¢ with small ¢.

Let T';(O) be the set of cocycles over O which have a strong stable manifold of
dimension .

We endow I';(Q) with the following distance, d(Ao, Bo) = max{|Ao—Boll, || 45" —

B,'|} where the norm is

A, (v

ol = sy ¢ 7 an g0y,
peo vl

Let g be a perturbation of f such that the cocycles Do f and Dpg are both in

[;(O), and let U be a neighborhood of @. We shall say that g preserves locally the

i-strong stable manifold of f outside U, if the set of points of the i-strong stable

8Recall from subsection 1.2.1 that a linear cocycle A of dimension n over a transformation
f ¥ — ¥ can in this case be represented by a map A : ¥ — GL(n,R). When one point
p € ¥ is f—periodic, the eigenvalues of the cocycle at p are the eigenvalues of the matrix given by

Afﬂ'(p)—l(p) R Ap
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manifold of O outside U whose positive iterates do not leave U once they entered it,
are the same for f and for g.

We have the following theorem due to Gourmelon which allows to perturb the
derivative of periodic orbits while controlling the position of the invariant manifolds
of them.

Theorem 1.2.12 ([Goug)). Let f be a diffeomorphism, and O a periodic orbit of f
such that Do f € T';(O) and let 7y : [0,1] — I';(O) be a path starting at Do f. Then,
given a neighborhood U of O, there is a perturbation g of f such that Dog = (1),
g coincides with [ outside U and preserves locally the i-strong stable manifold of f
outside U. Moreover, given U a C' neighborhood of f, there exists € > 0 such that
if diam(vy) < & one can choose g € U.

We observe that the Franks’ lemma for periodic orbits (Theorem 1.2.11) is the
previous theorem with ¢ = 0. Also, we remark that Gourmelon’s result is more
general since it allows to preserve at the same time more than one strong stable and

more than one strong unstable manifolds (of different dimensions, see [Gous)).

1.2.5 Perturbation of periodic cocycles

In view of the techniques of perturbation of the derivative over finite sets of points
reviewed in the previous section, it makes sense to try to understand what type of
behavior one can create by (small) perturbations of the derivative of periodic orbits.

Of course, eigenvalues depend continuously on the matrices, so a small perturba-
tion has only small effect on the derivative over a periodic orbit. However, the fact
that we can perturb a small amount but on many points at a time gives that it is
sometimes possible to get large effect by making a small perturbation (of the diffeo-
morphism) by accumulation of these effects. It turns out that the main obstruction
for making such perturbations is the existence of a dominated splitting.

The first results of this kind were obtained by Frank’s itself in his paper [F3].
However, the progress made in [M3] started the systematic study of perturbations of
cocycles over periodic orbits.

Relevant development was obtained in [BDP] where the concept of transitions
was introduced. Later, in [BGV] some results were recovered without the need for
transitions, and recently, in [BoB], a kind of optimal result was obtained which in
turn combines in a very nice way with the recent result of [Gous] (see Theorem
1.2.12).

In this section we shall present the results we shall use without proofs.

The first result we shall state is the result from [BDP| which uses the notion of
transitions. It gives a dichotomy between the existence of a dominated splitting and

the creation of homotheties by small perturbations along orbits.
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Theorem 1.2.13 ([BDP]). Let H be the homoclinic class of a hyperbolic periodic
point p of a C*-diffeomorphism f. Let ¥, be the set of periodic points homoclinically
related to p and assume that E C Tx, M is a D f-invariant subbundle. We have the
following dichotomy:

- Fither E = Ey @& Ey were F; are D f-invariant subbundles and E; < Es.

- Or, for every € > 0 there exists a periodic point ¢ C X, and a periodic linear
cocycle A = TogyM — TogM such that ||A — Do) f|| < € and we have that
A(f™D=Y) . A(q) is a linear homothety. Moreover, if det(D,f™®) < 1 we can

constder the homothety to be contracting.

We shall not present a proof of this fact, the reader can consult [BDV] chapter 7
for a nice sketch of the proof. We will give though a proof of the following result to

give the reader a taste on the idea of considering transitions.

Proposition 1.2.14 ([BDP]). Let H be homoclinic class of a periodic point with
|det(D, f™®)| > 1, then there is a dense subset of periodic points in H having the

same property.

PROOF. Let U be an open set in H. There is a periodic point ¢ € U homoclinically
related to p. Consider z € W*(O(p)) AW*(O(q)) and y € W*(O(q)) AW™(O(p)).
The set O(p) U O(q) U O(z) U O(y) is a hyperbolic set. So, using the shadowing
lemma (see [KH] Theorem 6.4.15 for example) we can obtain a periodic point r € U,
homoclinically related to p such that its orbit spends most of the time near O(p).
Thus, it will satisfy that |det(D, f™™)| > 1.

(|

When we wish to use Theorem 1.2.12 we need to not only make small pertur-
bations but also to make them in small paths which do not affect the index of the
periodic points during the perturbation. The natural idea of considering the straight
line between the initial cocycle and the homothety falls short of providing the desired
perturbation and it is quite a difficult problem to really realize the desired pertur-
bation. A recent result of J.Bochi and C.Bonatti ([BoB] which extends previous
development in this sense by [BGV]) provides a solution to this problem as well as
it investigates which kind of paths of perturbations can be realized in relation to
the kind of domination a cocycle admits. We shall state a quite weaker version of
their result and avoid the (very natural) mention to large period linear cocycles and
work instead with the derivative and paths of perturbations. We refer the interested
reader to Appendix A in order to get a more complete account with complete proofs

of partial results.
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Recall from the previous subsection that given a periodic orbit O we denote I';(O)
to be the set of cocycles over O which have strong stable manifold of dimension ¢

endowed with the distance considered there.

Theorem 1.2.15 ([BGV, BoB]). Let f : M — M be a C'-diffeomorphism and p, a
sequence of periodic points whose periods tend to infinity and their orbits O,, converge

in the Hausdorff topology to a compact set A. Let
T\M=E,&...0E,

be the finest dominated splitting over A (where k may be 1). Then, for every e > 0
there exists n > 0 such that an e-perturbation of the derivative along O, makes
all the eigenvalues of the orbit in the subspace E; to be equal. Moreover, if the
determinants of Dy, f™®)| 5 have modulus smaller than 1 for every n and the periodic
orbits have strong stable manifold of dimension j (which must be strictly larger than
the dimension of Ey & ... @ E;_1) then, given ¢ > 0 there is n > 0 and a path
v :10,1] = I';(O,) such that:

- diam(y) < e.
- ’Y(O) = Donf'
- v(1) has all its eigenvalues of modulus smaller than 1 in E;.

We recommend reading Lemma 7.7 of [BDV] whose (simple) argument can be

easily adapted to give this result in dimension 2.

1.2.6 Robust properties and domination

In this subsection we shall explain certain results which are consequence of the per-
turbation results reviewed in the previous subsections.

Possibly, one of the departure points of this study was the study of the stability
conjecture finally solved in [Ms]. We say that a diffecomorphism f is R-stable if
and only if there exists a C'-neighborhood of f such that for every ¢ € U the
diffeomorphism g restricted to R(g) is conjugated to f restricted to R(f). See [C4]
section 7.7 for a modern proof of the following result (which has been an underlying
motivation for the development of differentiable dynamics) and more references for
related results.

Theorem 1.2.16 (Stability Conjecture, [PaSm, Ms]). A diffeomorphism f is R-
stable if and only if R(f) is hyperbolic.
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One of the robust properties we will be most interested in is in isolation of classes
(and in particular quasi-attractors). For homoclinic classes of generic diffeomor-
phisms, isolation is enough to guaranty the existence of some invariant geometric
structure. The following result of [BDP] was preceded by results in [M3, DPU].

Theorem 1.2.17. There exists a residual subset Ggpp C Diffl(M) such that if
f € Ggpp and C is an isolated chain-recurrence class, then, C is volume partially
hyperbolic. Moreover, if a homoclinic class H of a diffeomorphism f € Ggpp does

not admit any non-trivial dominated splitting then it is contained in the closure of
sinks and sources (Pery(f) U Pery(f)).

SKETCH. The proof of the first statement goes as follows: First, by a classical Baire
argument, one shows that there is a residual subset of Gppp of Diff'(M) such that
if C is an isolated chain-recurrence class of a diffeomorphism f € Ggpp then C is a
homoclinic class and there exists a neighborhood U of f and a neighborhood U of C
such that for every g € Ggpp NU we have that the maximal invariant set of g in U
is a homoclinic class (see Theorem 1.1.22 and the discussions after).

Now, consider C an isolated chain-recurrence class of a diffeomorphism f € Ggpp.
Let p be a hyperbolic periodic point of f such that C = H(p) and consider 3, the
set of hyperbolic periodic points homoclinically related to p.

Assume that C does not admit a non-trivial dominated splitting, then, by Remark
1.2.4 we know that X, cannot admit a dominated splitting. Now, by Theorem 1.2.13
we know that we can make an arbitrarily small perturbation of the derivative of some
periodic point in order to make it an homothety.

This perturbation can be made dynamically by using Theorem 1.2.11 creating a
sink or a source inside U the neighborhood of C. The chain-recurrence class of a sink
or a source is the point itself (see Remark 1.1.8), and since sinks and sources persist
under perturbations (Theorem 1.1.2), we find a diffeomorphism g € GgppNU having
more than one chain-recurrence class in U, a contradiction.

Now, let TeM = E1 @ ... @ Ej, be the finest dominated splitting over C = H(p).
Assume that E; is not uniformly volume contracting (the same argument applied to
71 will show that Ej, is uniformly volume expanding).

By Proposition 1.2.7 we know that there exists an ergodic measure p supported
on H(p) such that the sum of the Lyapunov exponents of x in Fj is larger or equal
to 0. By the Ergodic Closing Lemma (Theorem 1.1.30) there are periodic orbits
O,, converging in the Hausdorff topology towards supp(x) and such that for n large
enough, the sum of the eigenvalues of O, in the invariant bundle FE; is larger than
or equal to —e with small . These periodic orbits belong to H(p) since we have

assumed that it is an isolated chain-recurrence class.
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Now, by the argument of Proposition 1.2.14 we get a dense’ subset of H(p)
of periodic orbits such that the sum of the eigenvalues in F; is larger than —e with
arbitrarily small €. Since E; does not admit a subdominated splitting in H(p) we are
able by using again Theorem 1.2.13 to create sources inside U by small perturbations
of f.

For the second statement, the proof is very similar. Consider a homoclinic class
H of a diffeomorphism f and we can assume that the residual subset Ggpp verifies
that for g in a neighborhood of f the continuation H, of H is close to H in the
Hausdorff topology.

Using Proposition 1.2.14 one can make the periodic points which one can turn
into sinks or sources e-dense in H. A Baire argument then allows to show that if
the homoclinic class admits no-dominated splitting then it contained in the closure
of the set of sinks and sources.

(Il

We remark that Theorem 1.2.15 together with Franks” Lemma (Theorem 1.2.11)
allows also to obtain that if a chain-recurrence class is not accumulated by infinitely
many sinks or sources then it admits a non-trivial dominated splitting (see [ABC4]).
This results can be used in order to re-obtain the examples presented in [BDy] where
homoclinic classes of generic diffeomorphisms accumulated by infinitely many sinks
and sources were constructed.

An immediate consequence is that we obtain a criterium for guaranteeing that a
homoclinic class is not isolated (this is a key ingredient in constructing examples of

dynamics with no attractors).

Corollary 1.2.18. Let f be a C*-generic diffeomorphism of M and H a homoclinic

class of f which is not volume partially hyperbolic. Then, H is not isolated.

Remark 1.2.19. Indeed, the proof of Theorem 1.2.17 allows one to show that if f €

Gppp and H is a homoclinic class such that:
- The finest dominated splitting in H is of the form Ty M = E1 ® ... ® Ej.
- H has a periodic point ¢ verifying that det(D ™|z ) > 1

then H is contained in the closure of the set of sources of f.

&

9The fact that we are able to create a dense subset of periodic orbits with such behavior is crucial
in the proof, since a priori we do not know if the measure for which the volume contraction is not
satisfied has total support or not, and whether the finest dominated splitting inside that subbundle
is finer or not than the global one.
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Another consequence of Theorem 1.2.17 is the global characterization of diffeo-
morphisms which are robustly transitive (or even, C'-generic diffeomorphisms which
are transitive). The following result is one of the motivations of many of the results
we will present in this thesis (the optimality of this result from the point of view of

the obtained D f-invariant geometric structure is given by the examples of [BV]):

Corollary 1.2.20. If f € Ggpp and R(f) = M, then f is volume partially hyper-
bolic. Also, if f € Ggpp and there is a chain-recurrence class C of f with non-empty

interior, then C admits a non-trivial dominated splitting.

In dimension 2, this result was shown by Maie in [Mj]: if a C'-generic diffeo-
morphism of a surface is transitive, then, f is Anosov (recall Remark 1.2.9). Indeed,
together with a result from Franks ([F;]) we get the following characterization of

robust behaviour in terms of the dynamics of the tangent map:

Theorem 1.2.21 ([Fy, M3]). A diffeomorphism f of a surface has a C*-neighborhood
U such that every g € U is chain-recurrent if and only if f is an Anosov diffeomor-
phism of T2.

A remarkable feature of this result is that it leaves in evidence the fact that robust
dynamical behavior is in relation with the topology of the state space (and even the
isotopy class). This relation is given through the appearance of a geometric structure
which is invariant under the tangent map of the diffeomorphism. This leads to the

following idea whose understanding represents a main challenge:

Robust dynamical behaviour < Invariant Structures < Topological Properties

Other than in dimension 2, very few is known in this respect other than what
it was reviewed in this section (which represents hints on the direction of giving
invariant geometric structures by the existence of robust dynamical behavior). In
dimension 3, the fact that Corollary 1.2.20 admits a stronger form suggests that it
may be possible to search for results with similar taste as Theorem 1.2.21 (we shall

review some of the known results later):

Theorem 1.2.22 ([DPU]). Let M be a 3-dimensional manifold and f € Ggpp be
chain-recurrent. Then, f is volume hyperbolic (i.e. partially hyperbolic and volume

partially hyperbolic). It can present the following forms of domination:
TM = E*“ & E",
TM =FE*® E°®E" or
TM = E°@® E.
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We recommend reading [BDV] chapter 7 for a review on robust transitivity and
for a survey of examples which show how these results are optimal from the point of
view of the geometric structures obtained.

In dimension 3 the main examples of transitive strong partially hyperbolic diffeo-
morphisms fall in the following classes: Fiber bundles whose base is Anosov, Time

one maps of Anosov flows or Examples derived from Anosov diffeomorphisms in T%.
See [BWi].

Remark 1.2.23. 1t is important to remark that all this results give pointwise domi-
nation and not the absolute one. Indeed, it is not hard to construct examples which
verify all these robust properties and fail to admit absolute domination between the

invariant subbundles.

&

1.2.7 Homoclinic tangencies and domination

In this subsection we shall review certain properties of diffeomorphisms which are
far from homoclinic tangencies. We refer the reader to [CSY, LVY] for the latest
results on dynamics of diffeomorphisms C*'-far from tangencies.

In this section we shall recall some result whose germ can be traced to [PS;] where
it was proved that a diffeomorphism of a surface which is far away from homoclinic
tangencies must admit a dominated splitting on the closure of the saddle hyperbolic
periodic points.

First, we define the notion of a homoclinic tangency: Given a hyperbolic periodic
saddle p of a C!-diffeomorphism f, we say that p has a homoclinic tangency if there
exists a point of non-transverse intersection between W*(O(p)) and W*(O(p)).

We denote as Tang C Diff* (M) to the set of diffeomorphisms f having a hyper-
bolic saddle with a homoclinic tangency. As a consequence of results which relate
the existence of a dominated splitting with the creation of homoclinic tangencies for
periodic orbits [W;, Wy as well as some adaptations of the ergodic closing lemma
(see [ABCy)), in [Cs] the following result is proved:

Theorem 1.2.24 ([Cs] Corollary 1.3). Let f be a diffeomorphism in Diff* (M)\Tang.
Then, there exists a Ct-neighborhood U of f integers £, N > 0 and constants §,p > 0
such that for every g € U and every ergodic g-invariant measure p the following
holds:

Let x be a p-generic point and ToM = E_@® E°® E, be the Oseledet’s splitting
into the Lyapunov eigenspaces corresponding respectively to Lyapunov exponents in
(—o0, —0), [—0,0] and (0, +00), so:

- dim £¢ < 1.
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- The splitting E_ & E°® E, is (-dominated (hence it extends to supp(u)).

- For p-almost every point we have that:

k—1 k—1
Jim ;log 1D e vl < —p Jim + ;log IDf e (- @yll > p

To finish this subsection, we present the following result of [ABCDW] which will
be used later.

Theorem 1.2.25 ([ABCDW)], [Gouy]). There exists a residual subset G of Diff'(M)
such that if f € G and H is a homoclinic class of f having periodic points of (stable)
index s and s'. Then, for every s < j < s' we have that H contains periodic points
of index j. In particular, if there is no perturbation of f which creates a homoclinic
tangency for a periodic point in H then H admits a dominated splitting of the form
TyM =E® G & ...Gp,® F withdmFE =s, dmF =d— s and dimG,; =1 for

every j.

We would like to point out that with the new techniques of perturbation given
by [BoB] and [Gous] one can give a proof of the fact that a homoclinic class of a C*-
generic diffeomorphism is index complete which is very direct: First, if a homoclinic
class has periodic points of index ¢ and j, then, by perturbing the derivative of some
periodic points it is possible to get periodic orbits of index in between (by the results
of [BoB|). After, the results of [Gous] allows one to make the perturbation in order
to keep the necessary homoclinic relations in order guarantee that the point remains

in the homoclinic class after perturbation.

1.2.8 Domination and non-isolation in higher regularity

As well as in the case of Cl-topology, we can obtain a similar criterium to obtain
non-isolation of a homoclinic class for C"—generic diffeomorphisms combining the
main results of [BDy4| and [PaV] (it is worth also mentioning [Rom]). The only cost
will be that we must consider a new open set and that the accumulation by other
classes is not as well understood.

We state a consequence of the results in those papers in the following result. We
shall only use the result in dimension 3, so we state it in this dimension, it can be
modified in order to hold in higher dimension but it would imply defining sectionally
dissipative saddles (see [PaV]).

Theorem 1.2.26 ([BD,] and [PaV]). Consider f € Dift"(M) with dimM = 3, a
Cl—open set U of DIff" (M) (r > 1), a hyperbolic periodic point p of f such that its

continuation p, is well defined for every g € U and such that:
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- The homoclinic class H(p,) admits a partially hyperbolic splitting of the form
TypyM = E“ @ E* for every g € U.

- The subbundle E° admits no decomposition in non-trivial Dg—invariant sub-

bundles which are dominated.

- There is a periodic point ¢ € H(p,) such that det(Dgf;(q)

Ecs(q)) > 1

Then, there exists a Ct-open and C'-dense subset Uy C U and a C"-residual subset
Gpy of Uy such that for every g € Gpy one has that H(p,) intersects the closure of

the set of periodic sources of g.

The conditions of the Theorem are used in [BDy4| in order to create robust tan-
gencies for a hyperbolic set for diffeomorphisms in an C'-open and dense subset U
of U. Then, using similar arguments as in section 3.7 of [BLY] one creates tangencies
associated with periodic orbits which are sectionally dissipative for f~! which allows

to use the results in [PaV] to get the conclusion.

1.3 Plaque families and laminations

1.3.1 Stable and unstable lamination

As for periodic orbits, when a compact invariant subset admits a dominated splitting
with one uniform extremal subbundle, one can in a sense integrate the subbundle
in order to translate the uniformity of the bundle in a dynamical property in the
manifold. The following result is classical, the standard proof can be found in [Sh,
HPS] (see also [KH] chapter 6).

Theorem 1.3.1 (Strong Unstable Manifold Theorem). Let A be a compact f-invariant
set which admits a dominated splitting of the form TyM = E° & E" where E* is

uniformly expanded. Then, there exists a lamination F* such that:

- For every x € A the leaf F"(z) through x is an injectively immersed copy of
RANE" tangent at x to E%(x).

- The leaves of F" form a partition, this is, for x,y € A we have that either
F(z) and F*(y) are disjoint or coincide.

- There exists p > 0 such that points of F"“(x) are characterized in the following

way:

y € Fi(z) & lim ~log(d(f™(z), [ ™(W))) < —p

n—oo 1N
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- Leaves vary continuously in the C*-topology: If x, € A — x € A we have that
FU(x,) tends uniformly in compact subsets to F"(x) in the C*-topology.

- There exists a neighborhood U of A such that the leaves also vary continu-
ously in the C*-topology for points in the mazimal invariant subset of U for

diffeomorphisms g close to f.

By lamination on a set K we mean a collection of disjoint C! injectively immersed
manifolds of the same dimension (called leaves) such that there exists a compact
metric space I' such that for every point x € K there exists a neighborhood U and a
homeomorphism ¢ : U N K — I' x R? such that if L is a leaf of the lamination and
L a connected component of L NU then ¢|; is a C'-diffeomorphism to {s} x R? for
some s € ' (this implies that in K they are tangent to a continuous subbundle of
T M).

For a lamination F on a compact set K C M we shall always denote as F(x) to
the leaf of F through z. It is worth remarking that in Theorem 1.3.1 the set laminated
by F* need not coincide with A as it may be (and it is in various situations) strictly
larger.

For hyperbolic sets, this results gives two transversal laminations which will admit
a local product structure and dynamical properties. This allows to obtain the well
known shadowing lemma (see [Sh]). In particular, we obtain the following corollary

in quite a direct way:

Proposition 1.3.2. Let C be a chain-recurrence class of a diffeomorphism f which
15 hyperbolic. Then, it is isolated and coincides with the homoclinic class of any of

its periodic points. In particular, it is transitive.

1.3.2 Locally invariant plaque families

In order to search for dynamical or topological consequences of having a geometric
structure invariant under the tangent map, it is important to try to “project” into
the manifold the information we have on the tangent map.

A model of this kind of projection was given in Theorem 1.3.1 where we saw that
the dynamics of the tangent map on uniform bundles project into similar uniform
behavior in invariant submanifolds of the same dimension.

When the invariant bundles are not uniform, we are not able to obtain such a
description (much in the way it is in general not possible to understand the local
behavior of a real-valued function when the derivative is 1) but we are able to obtain
certain plaque-families which sometimes help in reducing the ambient dimension and

transforming problems in high dimensional dynamics into lower dimensional ones.
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Theorem 1.3.3 ([HPS| Theorem 5.5). Let A be a compact f-invariant set endowed
with a dominated splitting of the form TxM = E®F. Then, there exists a continuous
map W : x € A — W, € Emb'(E(x), M) such that:

- For every x € A we have that W,(0) = x and the image of W, is tangent to
E(x) at x.

- It is locally invariant, i.e. There exists p > 0 such that f(W,(B,(0))) C
Wi (E(f(x))) for every x € A.

Remark 1.3.4. In case one has a dominated splitting of the form T\M = E® F & G
one can obtain (by applying the previous theorem to £ @® F and to F'& G with f~1)

a locally invariant plaque family tangent to F' as well.

&

We will usually (in case no confusion appears) abuse notation and denote W, to
W,(E(z)). Also, W, will denote the closure of W,(E(x)) which we can assume is
the image of a closed ball of R4™ ¥ The proof of the theorem allows one to obtain
a uniform version of this result, in fact, one obtains that the locally invariant plaque
family can also be chosen continuous with respect to the diffeomorphism in a neigh-
borhood of f and defined in the maximal invariant subset by that diffeomorphism in
a neighborhood of A (see [CP] Lemma 3.7).

Remark 1.3.5. Since these locally invariant manifolds are not dynamically defined
they have no uniqueness properties a priori. They may even have wild intersections
between them (see [BuWs] for a construction which is slightly more “friendly” which
they call fake foliations).

&

When an invariant plaque family has dynamical properties one can often recover
certain uniqueness properties (see Chapter 5 of [HPS] or Lemma 2.4 of [Cs]):

Proposition 1.3.6. Let A be a compact set admitting a dominated splitting Tha M =
E @ F. There exists € > 0 such that if there exists a plaque family {W, }ean tangent
to E wverifying that:

- FEvery plaque W, has diameter smaller than €.

- The plaques verify the following trapping condition:

Ve e A fWo) C Wy

Then, the following properties are verified:
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(Uniqueness) Any locally invariant plaque family {W.}.ea tangent to E ver-
ifies that for every x € A the intersection W. N W, is open relative to both
plaques.

(Coherence) Given x,y € A such that W, N W, # 0 then we have that the

intersection 1s open relative to both plaques.

(Robust Trapping) There exists 6 > 0 such that if y € W, N A is at distance
smaller than § from x then we have that f(W,) C We(z). Moreover, if A is the
mazximal invariant set in a neighborhood U, then, there exists U a neighborhood
of f such that for every g € U the maximal invariant set in U has a plaque

family which verifies the same trapping condition.

PROOF. One can choose a neighborhood U of A and a neighborhood U of f such
that the maximal invariant set in U will have a dominated splitting for every g € U.
Moreover, there will be a cone field £F around FE (resp. £F of F') which is invariant for
every point in U whose backward (resp. forward) iterate is also in U: i.e. verifies that
Df1EF(z) c It EF(f~1()) when z, f~1(x) € U (resp. Df.EF(x) C Int EX(f(x))
when z, f(z) € U). See Proposition 1.2.5 and Remark 1.2.6.

Choose e-small enough so that the expansion in F' dominates the one in E for
every pair of points at distance smaller than ¢ (this is trivially verified for every ¢ if
the domination is absolute).

Assuming any of the first two properties of the consequence of the proposition
does not hold (uniqueness or coherence), one can find points x, z1, 2o in a ball of
radius smaller than € such that x can be connected to both z; and 25 by curves v,
and 7, contained in some plaque of the plaque family and such that z; and 25 can be
joined by a curve 1 (of positive length) which is tangent to £F. Moreover, for every
n > 0 choose 7, the curve tangent to £ joining 2z; and 2, such that the length of
f™(n,) is minimal among curves joining f"(z1) and f"(z) and whose preimage by
f~™ are tangent to £F.

Using the trapping condition, one concludes that for every n > 0 one has that
the points f™(z), f"(21), f"(22) are contained in a ball of radius € around f"(x).

This implies that f™(n,) remains always of length smaller than ¢ and since the
initial length was at least 6 > 0 this implies that the length of «; and 7, decreases

exponentially fast, in particular:

6 <length(n,) < (1 +€)"[|Df"[r(fra) |l length(f"(1,)) <
< (14D f"p(pr eyl (length(f (1) + length(f"(12)) <
< (14 ™D @yl Df" £ | (length(f*(11) + length(f™(72)) <
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< const(A(1+¢€)*)" — 0

which is a contradiction.
To show that trapping holds after perturbation, it is enough to use the fact that
the plaque families vary continuously and the trapping condition is C°-open.
O

This argument uses strongly the fact that plaques are sufficiently small. There

are two reasons for this:

- It allows to control the domination between the points involved.

- It allows to control the geometry of the curves joining the points in different

plaques and sharing a point in their plaques.

In section 5.1.3 we will review an argument of Brin ([Bri]) which allows to obtain
tangent foliations under the existence of a partially hyperbolic splitting. To solve the
first problem, he uses absolute domination, and for the second one, he introduces the
concept of quasi-isometric foliations which allows him to obtain the desired geometry

for comparing distances and lengths.

1.3.3 Holonomy and local manifolds

When there exists an invariant lamination or foliation F tangent to certain bundle
E on some invariant set A we will denote the local leaves through a point = as
Fioc(z). By this we mean that Fj,.(x) is the connected component of the leaf F(z)
containing z in a neighborhood of x. We remark that this notion is of course not
strictly well defined but when we mention local leaves we will state which are the
referred neighborhoods. In some situations, we will use other notations such as

Wie(x) or W

1o~ Lhis notations hold also for locally invariant plaque families which

we shall sometimes give similar notation.

When we have two transverse laminations, or even only one and transverse local
leaves we can define the holonomy between the transversals (which in some sense
generalizes the holonomy of foliations, c.f. Chapter 4).

Consider a compact set A admitting a lamination F tangent to a subbundle F'
of ThoM, denote A to the union of leaves of F.

Given a plaque family {W, },ca tangent to a bundle E such that E® F = T\M

we can define the following set of maps for x,y € A in the same leaf of F:

Hﬁy:Uﬂf\CWx%Wy
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given by the intersection between the local leaves of F intersecting W, with W,
Notice that the domain U N A of II,, can be chosen in order to be open in W, N A
and contain a neighborhood of = there.

When z,y are sufficiently close in the leaf F(x), the domains in the transversal

can be chosen arbitrarily large, since the transversals are very close.

1.3.4 Control of uniformity of certain bundles

Sometimes one can deduce that certain extremal bundles are uniform. In dimension

2 this follows from a result from [PS;]:

Theorem 1.3.7 ([PS;], [ABCD] Theorem 2). There exist a residual subset Gpg C
Diff* (M?) where M? is a surface such that if f € Gps and A is a chain recurrence

class admitting a dominated splitting, then, A is hyperbolic.

The proof of this result uses approximation by C?-diffeomorphisms. At the mo-
ment, it is not completely understood the importance of the fact that bundles are
extremal and extending this results to higher dimensions as well as for non-extremal
bundles represents a main challenge (see [PS5, CP, CSY] for some progress in that
direction).

Another important result we will use relates the existence of hyperbolic invari-
ant measures for C'-diffeomorphisms whose support admits a dominated splitting
separating positive and negative Lyapunov exponents. This results extends a well
known result of Katok (see [KH| Supplement S) asserting that hyperbolic measures
of C?-diffeomorphisms are contained in the support of a homoclinic class. The cost
for doing this is requiring a dominated splitting separating the Lyapunov exponents

of the measures (a necessary hypothesis, see [BCS]):

Theorem 1.3.8 ([ABCs] and [C3], Proposition 1.4). Let p be an ergodic hyperbolic
measure of a C*-diffeomorphism f (that is, all the Lyapunov exponents are different
from zero) such that supp(un) admits a dominated splitting TyppuM = E ® F such
that the Lyapunov exponents on E are negative and in F' positive. Then, the support

of p s contained in a homoclinic class containing periodic orbits of stable index
dim F.

The proof of this theorem follows from careful application of the existence of

locally invariant plaque families as well as ideas in the vein of Lemma 1.2.8 (see also
[Pli]).

1.3.5 Central models and Lyapunov exponents

We will present the tool of central models first introduced in [Cs] and developed in

[C3] which allows to treat the case where there is no knowledge on the Lyapunov
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exponents along a certain D f-invariant subbundle of dimension 1. The presentation
will be incomplete and restricted to the uses we will make of this tool. We strongly
recommend the reading of [C,] Chapter 9 or [C3] section 2 if the reader is interested
in understanding this tool.

Consider a compact f-invariant set A which is chain-transitive and we will assume
that A admits a dominated splitting Th\M = F; ® £ ® F3 with dim £¢ = 1.

Consider a locally invariant plaque family {W¢},.ca tangent to E€. Recall that
each W¢ is an embedding of E¢(x) in M.

By local invariance, there exists p > 0 such that f(W;([—p,p])) C W5, (R),
where we are identifying E°(z) with R. Without loss of generality, we can take
p=1

When D f-preserves some continuous orientation on £° (which in particular im-

plies that E€ is orientable) this allows us to define two maps:

A

fi:Ax[0,1] = A x [0, +00)

~

fa: Ax[-1,0] = A x (—o0,0]

induced by the way f acts on the locally invariant plaques.

When D f-does not preserve any continuous orientation on E¢ (in particular
when E° is not orientable) one can consider the double covering A of A (on which
the dynamics will still be chain-transitive) and in a similar way define one map (see
[C3] section 2):

fAx[0,1] = A x[0,400)

This motivates the study of continuous skew-products of the form (called central

models):

~

f: K x[0,1] = K x [0, +00)

f('r?t) = (fl(x)v f2<x7t))

where f; : K — K is chain-transitive, fo(z,0) = 0 and f is a local homeomorphism
in a neighborhood of K x {0}.

For this kind of dynamics, in [C3] the following classification was proven:

Proposition 1.3.9 (Central Models [Cs] Proposition 2.2). For a central model f :
K x[0,1] = K x [0,+00) one of the following possibilities holds:

- The chain-stable and the chain-stable set of K x {0} are non-trivial. In this

case there is a segment {x} x [0, 0] which is chain-recurrent.
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- The chain-stable set contains a neighborhood of K x {0} and the chain-unstable

set 1s trivial.

- The chain-unstable set contains a neighborhood of K x {0} and the chain-stable

set is trivial.
- Both the chain-stable and the chain-unstable set of K x {0} are trivial.

As a consequence, for partially hyperbolic dynamics we have (at least one of) the

following types of central dynamics:

- Type (R) For every neighborhood U of A, there exists a curve v tangent to E°
at a point of A such that v is contained in a compact, invariant, chain-transitive
set in U.

- Type (N) There are arbitrarily small neighborhoods Uy, of the 0 section of E°
such that f(WS(Uy)) C W,y (Ux) (which we call trapping strips for f) and

there are arbitrarily small trapping strips for f=!.

- Type (H) There are arbitrarily small trapping strips for f (case (Hg)) or for
/7! (case (Hy)) and the trapping strips belong to the chain-stable set of A
(case (Hg)) or the chain-unstable set of A (case (Hy)).

- Type (P) This is only possible in the orientable case and corresponds to the
following subtypes: (Psy), (Pyn) and (Psy) and corresponds to the case where

there is a mixed behavior with respect to the types defined above.

In [Cs] it is proved that these types are well defined and more properties are
studied.

1.3.6 Blenders

Blenders represent one of the main tools of differentiable dynamics, in particular
when searching to prove certain robust properties of diffeomorphisms. They were
introduced in [D] and [BD;]. See [BDV] chapter 6 for a nice introduction to these
sets, we will only present some properties which we use later. An explicit construction
of these sets can be found in Appendix D.

We shall now present cu-blenders by its properties: A cu-blender K for a dif-
feomorphism f : M — M of a 3-dimensional manifold'® is a compact f-invariant
hyperbolic set with splitting Tx M = E** @ E*@® E" such that the following properties

are verified:

100f course they can be defined in more generality, see [BD1, BDy].
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- K is the maximal invariant subset in a neighborhood U'.

- There exists a cone-field £%° around E*° defined in all U which is invariant
under Df~1.

- There exists a compact region B with non-empty interior (which is called acti-
vating region) such that every curve contained in U, tangent to £%° with length
larger than 0 and intersecting B verifies that it intersects the stable manifold

of a point of K.

- There exists an open neighborhood U of f such that for every g in U the
properties above are verified for the same cone field, the same set B and for

K, the maximal invariant set of U.

For more properties and construction of cu-blenders, see [BDV]| chapters 6 and

[BD4]. There one can see a proof of the following:

Proposition 1.3.10 ([BD;] Lemma 1.9, [BDV] Lemma 6.2). If the stable manifold
of a periodic point p € M of stable index 1 contains an arc v tangent to £%° and

intersecting the activating region of a cu-blender K, then, W¥(p) C Wu(q) for every
q periodic point in K.

1.3.7 Higher regularity and SRB measures

We shall briefly review some of the results from [BV] (see also [VY] for recent ad-
vances on this direction) that guaranty the existence of a unique SRB measure in
certain partially hyperbolic sets whenever there are some properties verified by the
exponents in the center stable direction and f is sufficiently regular (i.e. C? is
enough).

Consider f : M — M a C?-diffeomorphism of a compact manifold such that it
contains an open set U such that f(U) C U. We denote:

A=)
n>0

which is a (not-necessarily transitive) topological attractor.

We shall assume that A admits a partially hyperbolic splitting of the form Ty M =
E & E* where E* is uniformly expanding and £ is dominated by E*“.

Since A is a topological attractor, we get that A is saturated by unstable manifolds
(see Proposition 1.1.14).

To obtain SRB measures for this type of attractors one considers the push-forward

by the iterates of the diffeomorphism of Lebesgue measure and by controlling the
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distortion (here the C*-hypothesis becomes crucial) one can see that the limiting mea-
sure is absolutely continuous with respect to the unstable foliation (for precise defini-
tions see [BDV] chapter 11). After this is done, the fact that for C*-diffeomorphisms
the center-stable leaves are also absolutely continuous, one shows that the limit mea-
sures are SRB measures and that their basins covers a full Lebesgue measure of the
basin. To obtain this results, further hypothesis are required in [BV] which we pass

to review.

We define

: 1 "
A4 (z) = limsup — log || Dy f"| ges () |

n—+oo M
which resembles the Lyapunov exponent (only that x needs not be a Lyapunov
regular point).

We obtain the following result:

Theorem 1.3.11 (Bonatti-Viana [BV] Theorem A). Let f : M — M be a C?-
diffeomorphism such that it admits an open set U verifying f(U) C U such that
A=, f"(U), its mazimal invariant set is partially hyperbolic with splitting Ta M =
E“ @ E". Assume moreover that for every D disc contained in F" there is a positive
Lebesgue measure of points x such that \*(x) < 0. Then, there exists finitely many

SRB measures fu,. .., such that |J, Bas(w;) has total Lebesque measure inside
Bas(A).

Under certain assumptions, one can see that there is a unique SRB measure. We
shall state the following theorem which has slightly more general hypothesis but for
which the same proof as in [BV] works (see also [VY] for a further development of

these results):

Theorem 1.3.12 (Bonatti-Viana [BV] Theorem B). Assume that f and A satisfy
the hypothesis of Theorem 1.3.11 and that moreover there is a unique minimal set
of F* inside A, then, f admits a unique SRB measure in A whose statistical basin

coincides with the topological one modulo a zero Lebesque measure set.

The hypothesis required in [BV] is that F* is minimal inside A. However, it is
not hard to see how the proof of [BV] works for the hypotheis stated above: See
the first paragraph of section 5 in [BV], consider the unique minimal set A of the
unstable foliation: we get that there is only one accessibility class there as needed
for their Theorem B.
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1.4 Normal hyperbolicity and dynamical coher-

ence

Consider a lamination F in a compact set A and let f : M — M be a C'-
diffeomorphism preserving F. We will say that F is normally hyperbolic if there
exists a splitting of TWM = E°* & TF & E* as a D f-invariant sum verifying that the
decomposition is partially hyperbolic (in particular, E* or E* can be trivial). If the
domination is of absolute nature, we say that F is absolutely normally hyperbolic.
See [HPS] for the classical reference and [Be] for recent results and some modern
proofs of the results (and extensions to general laminations and endomorphisms).
When the lamination F covers the whole manifold, we say that it is a foliation
(this corresponds with a C%foliation with Cl-leaves and tangent to a continuous

distribution in the literature). See Chapter 4.

1.4.1 Leaf conjugacy

Given a lamination F which is invariant under a diffeomorphism f one wishes to
understand which conditions guaranty the fact that for perturbations g of f there will
still be a foliation which is g-invariant. As hyperbolicity gives a sufficient condition
for structural stability, normal hyperbolicity appears as a natural requirement when
one searches for persistence of invariant laminations'.

In some situations, one obtains something much stronger than persistence of an
invariant lamination (notice that for a 0-dimensional foliation-by points- the following
notion coincides with the usual conjugacy). For a lamination F we denote as Kr to

the (compact) set which is the union of the leaves of F.

Definition 1.4.1 (Leaf conjugacy). Given f,g : M — M be C'-diffeomorphisms
such that there are laminations F; and F, invariant under f and g respectively.
We say that (f, Fy) and (g, F,) are leaf conjugate if there exists a homeomorphism
h: Kz, — Kz, such that:

- For every x € M, h(Fy(x)) = Fy(h(x)).

- For every x € M we have that

h(Fp(f(2))) = Fy(g o h(z))

If a C!-diffeomorphism f leaves a lamination F invariant we say that the foliation
F is structurally stable if there exists a neighborhood U of f such that for g € U the

UThough in this case, the issue of being a necessary condition is quite more subtle [Be].
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diffeomorphism ¢ admits a g-invariant foliation F, such that the pairs (f, F) and
(g, F,) are leaf conjugate.

&

The classical result of [HPS] asserts that normal hyperbolicity along with a tech-
nical condition called plaque expansivity is enough to guarantee structural stability

of a lamination:

Theorem 1.4.1 ([HPS] Chapter 7 and [Be] Remark 2.2). Let f be a C*-diffeomorphism
leaving invariant a foliation F which is normally hyperbolic and plaque expansive we

have that the foliation is structurally stable.

We shall not give a definition of plaque-expansivity (we refer the reader to [HPS,
Be]) but we mention that it is not known if it is a necessary hypothesis and all known
normally hyperbolic foliations are either known to be structurally stable or at least
suspected.

We do however state the following result which ensures plaque-expansivity and

is useful to treat many important examples:

Proposition 1.4.2. If a normally hyperbolic foliation F is of class C (this means
that the change of charts given by Proposition 4.1.1 are of class C1) then it is plaque-

expansive.

This extends also to general laminations where the concept of being C! is harder
to define. We will use this fact later in this thesis.
In general, checking plaque-expansiveness is hard and this makes it an undesirable

hypothesis for leaf conjugacy.

1.4.2 Dynamical coherence

One sometimes wishes to consider the inverse problem. We have seen in Theorem
1.3.1 that if a diffeomorphism f : M — M is partially hyperbolic with splitting
TM = E® @& E* then there exists a (unique) foliation F* tangent to E* which we
call the unstable foliation of f. In general, it may happen that there is no foliation
tangent to £ (this was remarked by Wilkinson in [Wi] using an example of Smale
[Smy], this is extended in section 3 of [BuW]).

Definition 1.4.2 (Dynamical coherence). Let f: M — M be a partially hyperbolic
diffeomorphism with splitting TM = E“® E*. We say that f is dynamically coherent
if there exists a foliation F* everywhere tangent to E“ which is f-invariant in the
sense that f(F*(z)) = F(f(x)). When f is strongly partially hyperbolic with
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splitting TM = E* @ E° @ E" we say that it is dynamically coherent if there exists
f-invariant foliations tangent to both £E* & E° and to £ & E*.
¢

Remark 1.4.3 (Central Direction). When a strong partially hyperbolic diffeomor-
phism is dynamically coherent one can intersect the foliations F¢ and F“* tangent
to E*® E° and E°@ E* respectively and obtain a foliation F¢ tangent to E°. More-
over, one can show (see Proposition 2.4 of [BuWj]) that the foliations F¢ and F*
(resp. F*) subfoliate the leaves of F¢* (resp. F).

¢

Remark 1.4.4 (Unique integrability). We have not made assumptions in the definition
of dynamical coherence about the uniqueness of the f-invariant foliation tangent to

E. There are many ways to require uniqueness:

- One can ask for F* to be the unique f-invariant foliation tangent to F. If
there exists n > 0 such that there exists a unique f"-invariant foliation, then
f is dynamically coherent and with a unique f-invariant foliation. Dynamical
coherence in principle does not follow from the existence of an f"-invariant

foliation tangent to E.

- One can ask for F° to be the unique foliation tangent to £ which is stronger

than the previous requirement.

- One can ask for the following much stronger statement: Any C'-curve every-

where tangent to £ is contained in a leaf of F.

These (and more) types of uniqueness properties are discussed further in section 2
of [BuWj]. See [PuShWi, BFra] for examples of foliations which satisfy weak forms

of uniqueness.

&

Notice that if f, a partially hyperbolic diffeomorphism is dynamically coherent,
then the f-invariant foliations (F¢*, F* and F¢) are automatically normally hyper-
bolic.

Notice that again, the lack of knowledge (in general) of whether the foliations
are plaque-expansive does not allow to know if in general the foliation must be

structurally stable, in particular, the following is an open question:

Question 1.4.5. Is dynamical coherence an open property?
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1.4.3 Classification of transitive 3-dimensional strong par-

tially hyperbolic diffeomorphisms

Another main problem in dynamics is to consider a class of systems and try to
classify their possible dynamics. For partially hyperbolic diffeomorphisms there is

the following conjecture posed by Pujals (see [BWi]):

Conjecture 1.4.6 (Pujals). Let f : M3 — M3 be a transitive strong partially hy-
perbolic diffeomorphism of a 3-dimensional manifold, then f s leaf conjugate to one

of the following models:
- Finite lifts of a skew product over an Anosov map of T2.
- Finite lifts of time one maps of Anosov flows.
- Anosov diffeomorphisms on T3.

In [BWi] this conjecture is treated and some positive results are obtained without
any assumptions on the topology of the manifold.

Hammerlindl ([H, Hy]) has made some important partial progress to this conjec-
ture by assuming that the manifold is a nilmanifold and the partial hyperbolicity
admits absolute domination. The work done in the present thesis allows to eliminate
the need for absolute domination, but it seems that we still lack of tools to attack
the complete conjecture. With A. Hammerlindl we plan to use several of the tech-
niques used in this thesis in order to prove Pujals’ conjecture for 3-manifolds with
fundamental group of polynominal growth (see [HP]).

Notice also that the example of  RHRHUj] which is not transitive does not belong

to any of the classes, so that the hypothesis of transitivity cannot be removed.

1.4.4 Accessibility

Let f : M — M be a strong partially hyperbolic diffeomorphism with splitting
TM = E* ® E°® E". As stated in Theorem 1.3.1 there exist foliations F* and F*
tangent to the bundles £ and E" respectively.

An important notion introduced by Pugh and Shub in the mid 90’s is the concept
of accessibility on which their celebrated conjectures on abundance of ergodicity is
based (see [PuSh] and also Chapter 8 of [BDV]).

We define the accessibility class of a point x € M as the set of points y € M such
that there exists an su-path from z to y. An su-path is a concatenation of finitely
many C'-paths alternatively tangent to E* of E*.

We say that a diffeomorphism is accessible if there is a unique accessibility class.

There has been lots of work devoted to the understanding of accessibility and its
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relationship with ergodicity, but from the point of view of abundance, we know the

following results:

Theorem 1.4.7 ([DoWi]). There is a C'-open and dense subset A of partially hy-
perbolic diffeomorphisms such that for every f € A we have that f is accessible.

Moreover, it is proved in [BRHRHTU]J, that if dim E° = 1 the set of accessible
partially hyperbolic diffeomorphisms forms a C'-open and C'*-dense set.
We refer the reader to [BuW,] and [RHRHU,] for proofs of ergodicity by using

accessibility and certain technical conditions we will not discuss.

1.5 Integer 3 x 3 matrices

We will denote as GL(d,Z) to the group of invertible d x d matrices with integer
coefficients. If one interprets this as having invertibility in the group of integer
matrices, it is immediate that the determinant must be of modulus 1, but since there
are different uses of this notation in the literature, we will make explicit mention to

this when used.

1.5.1 Hyperbolic matrices

Let A € GL(3,7Z) with determinant of modulus 1 and no eigenvalues of modulus 1.

Since A is hyperbolic and the product of eigenvalues is one, we get that A must
have one or two eigenvalues with modulus smaller than 1. We say that A has stable
dimension 1 or 2 depending on how many eigenvalues of modulus smaller than one
it has.

We call stable eigenvalues (resp. unstable eigenvalues) to the eigenvalues of mod-
ulus smaller than one (resp. larger than one). The subspace E% = W*(0, A) (resp
EY = W"(0, A)) corresponds to the eigenspace associated to the stable (resp. unsta-
ble) eigenvalues.

We shall review some properties of linear Anosov automorphisms on T3.

We say that a matrix A € GL(3,7Z) (with determinant of modulus 1) is irreducible
if and only if its characteristic polynomial is irreducible in the field Q. This is
equivalent to stating that the characteristic polynomial has no rational roots. It is

not hard to prove:

Proposition 1.5.1. Every hyperbolic matriz A € GL(3,7Z) with determinant of mod-
ulus 1 s irreducible. Moreover, it cannot have an invariant linear two-dimensional

torus.
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PROOF. Assume that a matrix A is not irreducible, this means that A has one
eigenvalue in Q.

Notice that the characteristic polynomial of A has the form —\3 + a\? + b\ £ 1.
By the rational root theorem (see [Hun|), if there is a rational root, it must be +1
which is impossible if A is hyperbolic.

Every linear Anosov automorphism is transitive. Let T" be a linear two-dimensional
torus which is invariant under A. Since the tangent space of T must also be invari-
ant, we get that it must be everywhere tangent to an eigenspace of A. Since we have
only 3 eigenvalues, this implies that either 7T is attracting or repelling, contradicting
transitivity.

(I

We can obtain further properties of hyperbolic matrices acting in T®:

Lemma 1.5.2. Let A € SL(3,7Z) be a hyperbolic matrixz. Then, the eigenvalues are
simple and irrational. Moreover, if there is a pair of complex conjugate eigenvalues

they must be of irrational angle.

PRrROOF. By the previous proposition, we have that the characteristic polynomial of
A is irreducible as a polynomial with rational coefficients.

It is a classic result in Galois” theory that in a field of characteristic zero, irre-
ducible polynomials have simple roots (see [Hun| Definition V.3.10 and the Remark
that follows): In fact, since Q[z] is a principal ideals domain, if a polynomial has
double roots then it can be factorized by its derivative which has strictly smaller
degree contradicting irreducibility.

This also implies that if the roots are complex, they must have irrational angle
since otherwise, by iterating A we would obtain an irreducible polynomial of degree
3 and non-simple roots (namely, the power of the complex conjugate roots which
makes them equal).

O

When A has two different stable eigenvalues |A1| < |Aa] < 1 (resp. unstable
eigenvalues || > |A2| > 1) we call strong stable manifold of A (resp. strong unstable
manifold of A) to the eigenline of \; which we denote as E% (resp. E%*).

Remark 1.5.3. For every A € SL(3,7Z) hyperbolic, we know exactly which are the
invariant planes of A. If A has complex eigenvalues, then, the only invariant plane
is the eigenspace associated to that pair of complex conjugate eigenvalues. If A has
3 different real eigenvalues then there are 3 different invariant planes, one for each
pair of eigenvalues. All these planes are totally irrational (i.e. their projection to T?

is simply connected and dense).

&
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1.5.2 Non-hyperbolic partially hyperbolic matrices

We prove the following result which plays the role of Lemma 1.5.2 in the non-Anosov

partially hyperbolic case.

Lemma 1.5.4. Let A be a matriz in GL(3,7Z) with eigenvalues \*; X\, \* verifying
0 < || < [N =1] < || = [X*|7L. Let B2, ES, E* be the eigenspaces associated to
A X and \* respectively. We have that:

- E¢ projects by p into a closed circle where p : R® — T® is the covering projec-

tion.

- The eigenlines ES and EY project by p into immersed lines whose closure co-

mcide with a two dimensional linear torus.

PROOF. We can work in the vector field Q* over Q where f, is well defined since it
has integer entries.

Since 1 is an eigenvalue of f, and is rational, we obtain that there is an eigenvector
of 1in Q3. Thus, the R-generated subspace (now in R?) projects under p into a circle.

Since 1 is a simple eigenvalue for f,, there is a rational canonical form for f,
which implies the existence of two-dimensional Q-subspace of Q3 which is invariant
by f. and corresponds to the other two eigenvalues (see for example Theorem VII.4.2
of [Hun)).

This plane (as a 2-dimensional R-subspace of R?) must project by p into a torus
since it is generated by two linearly independent rational vectors. This torus is
disjoint from the circle corresponding to the eigenvalue 1 and coincides with the
subspace generated by E7 and EY.

On the other hand, the lines generated by E? and E cannot project into circles in
the torus since that would imply they have rational eigenvalues which is not possible,

this implies that the closure of their projection is the whole torus.
O
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Chapter 2

Semiconjugacies and localization of

chain-recurrence classes

The purpose of this chapter is to present Proposition 2.2.1 which plays an impor-
tant role in this thesis. It gives conditions under which chain-recurrence classes
accumulating a given one to be contained in lower dimensional normally hyperbolic
submanifolds. We profit to introduce some notions on semiconjugacies and decompo-
sitions of spaces in Section 2.1 and to state and prove a classical result on topological

stability of hyperbolic sets which will be useful to then use Proposition 2.2.1.

2.1 Fibers, monotone maps and decompositions of

manifolds

Consider two homeomorphisms f : X — X and g : ¥ — Y. We say that f is
semiconjugated to g (or that g is a factor of f) if there exists a continuous map
h: X — Y such that

hof=goh

Semiconjugacies will play an important role in this text, that is why we shall

make some effort in understanding certain continuous maps.

Remark 2.1.1. Semiconjugacies preserve some dynamical properties. For example, if
h: X — Y semiconjugates f: X — X and g : Y — Y then we have that:

- If x € X is a periodic point for f, then h(zx) is periodic for g.

- If z € X is recurrent (resp. non-wandering) for f, then h(z) is recurrent (resp.

nonwandering) for g.
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- If x4 is in the stable set (resp. unstable set) of z; for f, then h(xs) is in the
stable set (resp. unstable set) of h(z;) for g.

&

Let h: X — Y be a continuous map and y € Y, we call h='({y}) the fiber of y
by h.

Sometimes, the topology of the fiber gives us information about the map h. We
say that h is a monotone map if all the fibers are compact and connected. In general
we will work with X = M a topological manifold, in that case we will require a
stronger property and say that h is a cellular map if the fiber of every point is a
cellular set (i.e. decreasing intersection of topological balls).

Every time we have a continuous and surjective map h : X — Y we can think Y
as X /. where the equivalence classes are given by fibers of h.

Special interest is payed to cellular decompositions of manifolds (a partition of a
manifold M such that the quotient map is a cellular map) since these quotient spaces
are what is known as generalized manifolds (see [Dal).

To be more precise, we say that an equivalence relation ~ in a manifold M is a

cellular decomposition if the following properties are verified:

- If we denote by A, to the equivalence class of a point x we have that the sets

A, are cellular for every z € M.

- The decomposition is upper semicontinuous in the sense that if z,, — x then
we have that limsup A,, C A,.

When we have a cellular decomposition of a manifold M, we can define a quotient
map 7 : M — M/. and we give to M/. the quotient topology. We have that (see
[Da] Proposition 1.2.2) that:

Proposition 2.1.2. The topological space M/ ~ is metrizable.

Also, we can define a function d : M/ x M/. — R by:

d(A;, Ay) =min{d(z,w) : z€ A, , we A}

Notice that this function may not be a metric since the triangle inequality may
fail. However, in a certain sense, we have that we can control the topology of M/.
using d.

Proposition 2.1.3. The quotient topology on M/.. wverifies the following: For ev-
ery U open set in M/. and p € U there exists € such that Bd(p) = {m(y)
d(A,, 71 (p)) < e} is contained in U. Conversely, for every e >0 and p € M/.. we
have that B(p) contains a neighborhood of p.
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PROOF. First consider an open set U € M/ with the quotient topology. This
means that the preimage 7—!(U) in M is open.

We must show that for w(x) € U there exists € such that B(m(z)) is con-
tained in U (here B? denotes the e-ball for the function defined above, that is,
Bi(w(z)) = {n(y) : d(A,, A;) < €}). For this, we use that the decomposition
is upper semicontinuous, thus, given an open set V of A, = 7~ (n(z)) there exists
e > 0 such that for every y € B.(A,) we have that A, C V. Considering V =7~ (U)
we have that there is an open set for d contained in U as desired.

Now, let ¢ > 0 and 7(z) € M/ we must show that B4(w(z)) contains an open
set for the quotient topology. This is direct since m~1(B%(n(z))) contains the e-
neighborhood of A, and so it contains an open saturated set again by the upper
semicontinuity.

O

2.2 A criterium for localization of chain-recurrence

classes

We give a criteria obtained in [Pots] in order to guaranty that a certain (wild)
chain-recurrence class is accumulated by dynamics of lower dimensions. This goes
in contraposition with other kind of “wildness” such as universal properties or viral
ones though it is not clear at the moment how they are related (see [B]).

Given a homeomorphism g : I' — I where I' is a compact metric space, we say
that g is expansive if there exists @ > 0 such that for any pair of distinct points
x #y € I there exists n € Z such that d(¢"(x),¢"(y)) > .

Given a center-stable plaque family {W¢}, . for a partially hyperbolic set A and
a set C' contained in one of the plaques W;® we define the center-stable frontier of C
which we denote as 90°°C' to the set of points z in W¢* such that every ball centered
in z intersects both C' and WS N C° (i.e. the frontier with respect to the relative

topology).

Proposition 2.2.1. Let f be a C*-diffeomorphism and U a filtrating set such that
its maximal invariant set A admits a partially hyperbolic structure TAM = E* @& E*
such that it admits a locally invariant plaque family {W}.en tangent to E° whose
plaques are contained in U. Assume that there exists a continuous surjective map

h:A—T, a homeomorphism g :I' = I' and a chain-recurrence class () such that:
-hof=goh.

- h s injective in unstable manifolds.
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- For every x € A we have that h™*({h(z)}) is contained in WS and 0“h~' ({h(x)}) C
Q. In particular h(Q) =T.

- The fibers h=*({y}) are invariant under unstable holonomy.

- g 1S expansive.

Then, every chain-recurrence class in U different from Q is contained in the preimage

of a periodic orbit by h.

For simplicity, the reader can follow the proof assuming that g is an Anosov

diffeomorphism we shall make some footnotes when some differences (which are quite

small) appear.

We remark that the hypothesis of having the fibers invariant under unstable

holonomy is necessary for proving the result and does not follow from the others in

general.

Before starting with the proof we would like to comment on the hypothesis which

are quite strong. We are asking the fibers to be invariant under unstable holonomy

(which is only defined on A) and asking that the center-stable frontier of the fibers to

be contained in the chain-recurrence class (). This implies that in order to have the

possibility of A being different from () we must have at least some fibers of A which

have interior in some of the center-stable plaques (and by the holonomy invariance in

many of the center-stable plaques). In general, the most difficult hypothesis to verify

will then be that the center-stable frontier is always contained in the chain-recurrence

class, to do this we use different arguments depending on the example.

PROOF. Let R # @ be a chain recurrence class of f. Then, since 0h™'({y}) C Q
for every y € T', we have that R Nint(h~*({y})) # 0 for some y € T.

Conley’s theory gives us an open neighborhood V' of R whose closure is disjoint

with ) and such that every two points x,z € R are joined by arbitrarily small

pseudo-orbits contained in V.

Since V' does not intersect @, using the invariance under unstable holonomy of

the fibers, we get that there exists 7y such that if d(z, z) < ny and = € V, then h(x)

and h(z) lie in the same local unstable manifold!: In fact, choose 79 < d(V,Q)/2 and

assume that the image of h(z) is not in the unstable manifold of h(z), then, we get

that if v : [0,1] — U is the straight segment joining x and z there is a last point ¢,
such that h(vy(tg)) € W*(h(x), g), it is not hard to show that (o) must then belong
to < h~(h(y(ty))) C Q contradicting that the straight segment cannot intersect @

from the choice of 7.

The ¢(—local unstable set of a point  for an expansive homeomorphism g is the set of points

whose orbit remains at distance smaller than ( for every past iterate. For an expansive homeomor-

phism, this set is contained in the unstable set.
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Figure 2.1: Pseudo-orbits for f are sent to pseudo-orbits of g with jumps in the unstable

sets.

Given ¢ > 0 we choose n > 0 such that d(x,z) < n implies d(h(z), h(2)) < (.
The semiconjugacy implies then that if zg,...z, is a n—pseudo orbit for f, then
h(zo),...,h(z,) is a (-pseudo orbit for g (that is, d(g(h(z;)),h(zi11)) < (). Also,
if n < ny and zg,...z, is contained in U, then we get that the the pseudo-orbit
h(20); ..., h(z,) has jumps inside local unstable sets (i.e. h(ziy1) € W (g(h(z:)))).

Take x € R. Then, for every n < ng we take x = zp,21,...,2, = ¢ (n > 1) a

n—pseudo orbit contained in V joining x to itself. Thus, we have that

g"(W*(h(x))) = W*(h(x))

so, W*(h(z)) is the unstable manifold for g of a periodic orbit O. Since R is f-
invariant and since the semiconjugacy implies that f~"(z) accumulates on h~1(O),
we get that R intersects the fiber h=(0O).

We must now prove that R C h™!(O) which concludes.

Given € > 0 there exists 0 > 0 such that if 2, ...z, is a d—pseudo orbit for g
with jumps in the unstable manifold, then z, € O implies that zp € W*(O) (notice
that a pseudo orbit with jumps in the unstable manifold of a periodic orbits can be

regarded as a pseudo orbit for a homothety? in R¥).

2In the general case of g being an expansive homeomorphism, it is very similar since one has
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Assume that there is a point z € R such that h(z) € W*(O)\O. Let € such
that d(h(z),0) > . Since R intersects h~'(O) there are §-pseudoorbits joining 2 to
h=1(O) for every § > 0. This implies that after sending the pseudo orbit by h we
would get d-pseudo orbits for g, with jumps in the unstable manifold, joining h(z)
with O. This contradicts the remark made in the last paragraph.

So, we get that R is contained in h~!(O) where O is a periodic orbit of g.

2.3 Diffeomorphisms homotopic to Anosov ones,

C? perturbations of hyperbolic sets

Let f : T* — T9 be a diffeomorphism which is isotopic to a linear Anosov auto-
morphism A : T — T9 (i.e. the diffeomorphism induced by a hyperbolic matrix
in GL(d,Z) with determinant +1). Along this text, we assume that A € SL(d,Z)
which does not represent a loss in generality since the results are invariant under
considering iterates.

In the context we are working, being isotopic to a linear Anosov automorphism is
equivalent to the fact that the induced action f, of f on the (real) homology (which
equals RY) is hyperbolic (see [F1]).

We shall denote as A to both the diffeomorphism of T¢ and to the hyperbolic
matrix A € SL(d,Z) which acts in R? and is the lift of the torus diffeomorphism A
to the universal cover.

Let p : R — T be the covering projection, and f : RY — R the lift of f to its
universal cover. Notice that the fact that f, = A implies that there exists Ky > 0
such that d(f(x), Az) < K, for every = € R3.

Classical arguments (see [Wa]) give that there exists K; such that for every

x € R?, there exists a unique y € R? such that
d(f™(z), A) < K, Vn € Z

We say that the point y shadows the point . Notice that uniqueness implies
that the point associated with = + v is y + v where v € Z%. We get the following

well known result:

Proposition 2.3.1. There exists H : R — RY continuous and surjective such that
Hof = Ao H. Also, it is verified that H(x + ) = H(x) + ~ for every x € R?

that restricted to the unstable set of a periodic orbit, one can obtain a metric inducing the same

topology where g~—!

is an uniform contraction. This follows from [Fa] and can also be deduced
using the uniform expansion of f in unstable leaves and the injectivity of the semi-conjugacy along

unstable leaves.
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and v € Z¢ so, there exists also h : T — T homotopic to the identity such that
ho f = Aoh. Moreover, we have that d(H(z),z) < K, for every x € R%.

PROOF. Any orbit of f is a Ky-pseudo-orbit of the hyperbolic matrix A. This gives

that for every = we can associate a unique point y such that

d(f™(z), A™y) < K, Vn € Z

We define H(x) = y. It is not hard to show that H is continuous. Since it is
at distance smaller than K from the identity, we deduce that H is surjective (this
follows from a degree argument, see [Hat] Chapter 2). Periodicity follows from the
fact that all maps here project to the torus.

O

It is well known and easy to show that H(W?(z, f)) € W7 (H(x), A) with o =
S, U.
The previous result generalizes to general C%-perturbations of hyperbolic sets.

We get the following classical result whose proof is very similar to the previous one:

Proposition 2.3.2. Let A C M be a hyperbolic set for a diffeomorphism f such that
it is maximal invariant in a neighborhood U of A. Then, there exists € > 0 such that
for every homeomorphism g which is e-C°-close to f in U we have that if A, is the

mazimal invariant set for g in U then there exists a continuous and surjective map

h: Ay — A such that:

flaoh=hogls,
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Chapter 3
Attractors and quasi-attractors

This chapter is devoted to the study of attractors and quasi-attractors for C1-generic
dynamics (see subsection 1.1.5). We will present the results obtained in [Poty, Poty,
POtg] .

The chapter is organized as follows:

- In Section 3.1 we present a proof of a result by Araujo stating that C'-generic
diffeomorphisms of surfaces have hyperbolic attractors. In addition, we prove
a result from [Pot,] in the context of surfaces which we believe makes its proof

more transparent.

- In Section 3.2 we study quasi-attractors of C''-generic diffeomorphisms in any
dimension and present some results regarding their structure. Then, we give

as an application some results on bi-Lyapunov stable homoclinic classes.

- In Section 3.3 we present several examples of dynamics without attractors and
of robustly transitive attractors. We present the results from [BLY] and then
the ones of [Pots]. We profit to add some examples which we believe may have

some interest in the general theory.

- In Section 3.4 we present a definition which covers a certain class of quasi-
attractors in dimension 3 and explain why we believe this class of examples
should be studied.

3.1 Existence of hyperbolic attractors in surfaces

In dimension 2, the result of the existence of attractors for C'-generic diffeomor-
phisms was announced to be true by Araujo ([Ara]) but the result was never pub-

lished since there was a gap on its proof. However, it has become a folklore result:
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with the techniques of [PS;] the gap in the proof can be arranged (see [San]). There
has also been an announcement of this result in [BLY].
We prove here the following theorem which is similar to the one by Araujo. The

proof we give is quite short but based on the recent developments of generic dynamics
(mainly [ABC,],[BC], [MP] and [PS;]). The proof was made available in [Pots)].

Theorem 3.1.1. There is G C Diff'(M?), a residual subset of diffeomorphisms in
the surface M? such that for every f € G, there is an hyperbolic attractor. Moreover,

if f has finitely many sinks, then f is essentially hyperbolic.

We say that f is essentially hyperbolic if it admits finitely many hyperbolic at-
tractors and such that the union of their basins cover an open and dense subset of
M (Araujo proves that the basin of atraction has Lebesgue measure one, his tech-
niques work in this context too, see [San]). This definition comes from [PaT] and is
motivated by a new result of [CP] which closes a long standing problem posed by
Palis in [PaT] (though a stronger formulation remains open and important).

We will prove the following Theorem in any dimensions in Section 3.2, however,

we present it here before since the proofs are easier to follow in the surface case.

Theorem 3.1.2. There is G C Diff'(M?), a residual subset of diffeomorphisms in
the surface M? such that for every f € G with finitely many sources satisfies that

every homoclinic class which is a quasi-attractor is an hyperbolic attractor.

In particular we get the following using results in [MP] and [BC] (see Theorem
1.1.22):

Corollary 3.1.3. There is G C Diff'(M?), a residual subset of diffeomorphisms in
the surface M? such that for every f € G with finitely many sources satisfies that

generic points converge either to hyperbolic attractors or to aperiodic classes.

This last Corollary applies for example in a C'-neighborhood of the well known
Henén attractor (see [BDV] Chapter 4). In fact, since hyperbolic attractors which
are in a disc which is dissipative are sinks, in the Henén case we get that there are no
non-trivial attractors (aperiodic quasi attractors for generic diffeomorphisms cannot

be attractors).

3.1.1 Proof of the Theorem 3.1.1

Let IC be the set of all compact subsets of M with the Hausdorff topology.
Let S : Diff'(M?) — K be the map such that S(f) = Perg(f) is the clousure of
the set of sinks of f.
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Since S is semicontinuous (see Remark 1.1.7), there exists a residual subset Gy of
Diff* (M) such that for every f € Gy, the diffeomorphism f is a continuity point of
S.

This implies that we can write Go = AUZ open sets in G, such that for every f € A
the number of sinks is locally constant and finite (that is, there is a neighborhood U
of f in Diff* (M) such that for every g € U the number of sinks is the same and they
vary continuously), and such that for every f € Z there are infinitely many sinks.

To prove the Theorem it is enough to work inside A (an open set in Diff' (M)
such that A = AN Gy) since the theorem is trivially satisfied in Z.

Let G = Go N Gpc N Gppp N Gps (see Theorems 1.1.22, 1.2.17 and 1.3.7). Let
f e ANG. We must show that f is essentially hyperbolic.

Step 1: We first prove that every quasi-attractor Q is a hyperbolic attractor.

We have that A admits a nested sequence of open neighborhoods U, such that
Q = ﬂnzo U, and such that f(U,) C U,. The following lemma holds in every

dimension:

Lemma 3.1.4. Let Q be a quasi-attractor. Then, there exist an ergodic measure ji
supported in Q such that [ log(|det(Df)])du < 0.

PROOF. Let m,, be the normalized Lebesgue measure in U,,.
Consider p, a limit point in the weak-* topology of the sequence of measures

given by

k
=5 2 xlma)
which is an invariant measure supported in f(U,). We are here using the following

notation: fy(v)(A) = v(f~(A)).
Since f(U,) C U,, the change of variables theorem and Jensen’s inequality (see
[Rud]) implies that:

PT‘lF—‘

/log(] det D f|)dm,, < 0.

The same argument, using the fact that f*(U,) C f*~1(U,) implies that

/ log (| det Df|)df’ (my) < 0.

We obtain that

/1og(| det Df])dv, <0
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From which we deduce that [ log(] det D f|)du, < 0. Now, consider a measure p
which is a limit point in the weak-* topology of the measures .

The measure g must be an invariant measure, supported on Q and satisfying that

/log(] det D f|)du < 0.

Using Proposition 1.1.26 one can assume that p is ergodic.
O

Since the set of sinks varies continuously with f and there are finitely many of
them, we can choose n such that there are no sinks in U,,.

Using the Ergodic closing Lemma (Theorem 1.1.30) we get that the support of the
measure must admit a dominated splitting: Otherwise we get periodic points converg-
ing in the Hausdorff topology to the support of the measure and with log(| det D f*®)))
arbitrarily close to zero. If they do not admit a dominated splitting, using a classical
argument (see subsection 1.2.5) one can convert them into sinks by applying Franks’
Lemma (Theorem 1.2.11), a contradiction.

Also, the measure must be hyperbolic: If no positive exponents exist, since
[log(] det(Df)])du < 0, one can approach the measure by periodic orbits with both
exponents smaller than e (arbitrarily small) by using the Ergodic closing Lemma
(Theorem 1.1.30) and one can create a sink by making a further small perturbation
with Franks’ Lemma (Theorem 1.2.11).

Using Theorem 1.3.8, we deduce that the support of y is contained in a homoclinic
class. Since f € Ggc we have that Q is a homoclinic class.

Also we get periodic points inside the class such that log(|det Df™®)|) < ¢ for
small € > 0.

Using Proposition 1.2.14 we get that periodic points with this property are dense
in the homoclinic class and so we get a dominated splitting ToM = E @ F in the
whole class. In fact, since we are far from sinks and f € Ggpp, we get that F' must
be uniformly expanding.

Since we are in Gpg we get that Q is hyperbolic (see Theorem 1.3.7), and thus,
Q is a hyperbolic attractor (see Proposition 1.3.2).

This proves the first assertion of the Theorem.
Step 2: We now prove that in fact f must be essentially hyperbolic.

Suppose first that there are infinitely many non-trivial hyperbolic attractors (re-
call that we are assuming that there are finitely many sinks). Assume Q, is a
sequence of distinct hyperbolic attractors such that Q,, — K in the Hausdorff topol-
ogy. From Proposition 1.1.11 we have that K must be a chain-transitive set, this
implies that K N S(f) = 0 (notice that since S(f) is a finite set it will be isolated

from the chain-recurrent set).
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Notice that there are measures p, supported in Q,, such that

/ log(|det(D f)|)dp, < 0.

Consider a weak-* limit p of these measures, so we have that u is supported in
K and verifies that

/ log(|det(D f)])dp < 0.

So using the same argument as before we deduce that K is contained in a hyper-
bolic homoclinic class, and thus isolated, a contradiction with the fact that it was
accumulated by quasi-attractors.

Since f € Gpc (see Theorem 1.1.22), generic points in the manifold converge to
Lyapunov stable chain recurrence classes and we get that there is an open and dense
subset of M in the basin of hyperbolic attractors. This finishes the proof of the
Theorem.

(Il

3.1.2 Proof of the Theorem 3.1.2

Theorem 3.1.2 is implied by the following Theorem from [Pot;]. This theorem will
be extended to higher dimensions in Section 3.2 but we prefer to present a proof
in this context since it helps to grasp better the idea involved (which is the use of
Theorem 1.2.12):

Theorem 3.1.5. Let H be a homoclinic class of a C'-generic surface diffeomor-
phism [ which is a quasi-attractor. Then, if H has a periodic point p such that
det(Dpf”(p)) < 1 then H admits a dominated splitting and thus it is a hyperbolic

attractor.

Proor. Consider a generic diffeomorphism f. Consider a periodic point ¢ € H
fixed such that for a neighborhood U of f the class H(qy, g) is a quasi-attractor for
every ¢ in a residual subset of U (see subsection 3.2.1).

By genericity, we can assume that every periodic point ¢ € H verifies that
det(D,f™®)) # 1 and using Proposition 1.2.14 we deduce there is a dense set of
points verifying that the determinant is smaller than 1.

By Theorem 1.2.15 we know that if H does not admit a dominated splitting then
for every € > 0 we can modify the derivative of f along a periodic orbit along a
curve with small diameter and which satisfies the hypothesis of Gourmelon’s version
of Franks’ Lemma (Theorem 1.2.12).

We can then apply Theorem 1.2.12 to perturb the periodic point p preserving its

strong stable manifold locally.
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The idea is to make the perturbation in a small neighborhood of p without break-
ing the intersection between W*(q) and W#(p). This creates a sink in p but such that
W(q) still intersects its basin. Since H(g,,g) is still a quasi-attractor, this means
that p, € H(q,, g) which is a contradiction (see Lemma 3.2.6 for a more detailed
proof).

Now by Theorem 1.3.7 we get that H must be hyperbolic which concludes.

(I

The last theorem has some immediate consequences which may have some interest
on their own.

We say that an embedding f : D? — D? is dissipative if for every x € D? we have
that |det(D,f)] < b < 1. Recall that for a dissipative embeddings of the disc, the
only hyperbolic attractors are the sinks ([Ply]).

Corollary 3.1.6. Let f : D?> — D? be a generic dissipative embedding. Then, every

quasi-attractor which is a homoclinic class is a sink.

3.2 Structure of quasi-attractors

In this section we explore the existence of invariant structures for quasi-attractors
of Cl-generic dynamics in any dimensions. We expect that, for a homoclinic class,
being a quasi-attractor imposes sufficiently many structure in the dynamics on the
tangent map. We have obtained partial results in this direction.

The main difficulty is that domination is very much related to either isolation
of the homoclinic class or with being far from homoclinic tangencies, in this result
we manage to deal with homoclinic classes for which we do not know a priori that
either of these conditions are satisfied. The main idea is to use the fact that being
a quasi-attractor is a somewhat robust property and the perturbation techniques

developed by Gourmelon (Theorem 1.2.12). This allows us to prove:

Theorem 3.2.1. For every f in a residual subset Gy of Diff* (M), if H is a homoclinic
class for f which is a quasi-attractor and there is a periodic point p € H such that
det(D,f™P)) < 1, then, H admits a non-trivial dominated splitting.

This theorem is proved in subsection 3.2.3. In view of Lemma 3.1.4 one can ask

(see [B] Conjecture 2 for a stronger version of this question):

Question 3.2.2. Is it true that every quasi-attractor Q of a C'-generic diffeomor-

phism which is a homoclinic class has a pertodic point p such that det(Dpf“(p)) <17

Another important task is to determine whether some (extremal) bundles are

uniform in order to be able to derive further dynamical properties. In this direction,
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we have obtained the following result motivated by previous results obtained in
[PotS]:

Theorem 3.2.3. There erists a residual set Gy of Diff'(M) such that if f is a
diffeomorphism in Gy and H a homoclinic class which is a quasi-attractor admitting
a codimension one dominated splitting TyM = E & F where dim(F) = 1. Then, the
bundle F is uniformly expanding for f.

The proof of this theorem is presented in subsection 3.2.2.
In dimension 3 we have the following corollary about the structure of quasi-
attractors:

Corollary 3.2.4. There exists a residual subset Goa of Diff'(M3) with M a 3-
dimensional manifold such that if f € Gga and Q a quasi-attractor of f having a
periodic point p such that det(D,f™) < 1 then, Q admits a dominated splitting of

one of the following forms:

- ToM = E® @ E* where E" is one dimensional and uniformly expanded and

E may or may not admit a sub-dominated splitting.

- ToM = E; & E where the bundle E* is two-dimensional and verifies that

periodic points are volume hyperbolic at the period in E.

Moreover, if Q is not accumulated by sinks, then in the second case we have that E*

is uniformly volume expanding.

We also explore some properties of quasi-attractors far from homoclinic tangen-
cies and we deduce some consequences for homoclinic classes which are both quasi-
attractors and quasi-repellers (bi-Lyapunov stable homoclinic classes) responding to
some questions posed in [ABD]. The results about dynamics far from tangencies

overlap with [Y].

3.2.1 Persistence of quasi-attractors which are homoclinic

classes

The following result will be essential for our proofs of Theorems 3.2.1 and 3.2.3. It
states that for C'-generic diffeomorphisms, the quasi-attractors which are homoclinic

classes have a well defined continuation.

Proposition 3.2.5 (Lemma 3.6 of [ABD]). There is a residual subset Gagp of
Diff* (M) such that if f € Gagp and H(p, f) is a homoclinic class of f then, there
exists a neighborhood U of f such that the point p has a continuation in U and such
that:
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- If H(p, f) is a quasi-attractor, then H(py, g) is also a quasi-attractor for every
9 € Gapp NU.

- If H(p, f) is not a quasi-attractor, then, H(py, g) is not a quasi-attractor for
any g € Gagp NU.

PRrROOF. We reproduce the proof from [ABD].
Consider G = Ggc N G.ont a residual subset of Diffl(M ) such that for every f € G

we have that:

- A homoclinic class H(p, f) of f is a quasi-attractor if and only if H(p, f) =

Wu(p, f) (see Theorem 1.1.22).

- There exists a neighborhood U of f such that the following maps g — H(py, g)
and g — W¥(p,,g) are well defined and continuous on every g € G NU (see
Remark 1.1.7).

For a pair ¢/ and p which has a continuation for every f € U welet Ay, CUNG
be the set of g such that H(p,, g) # Wg,g). Since both sets are compact and vary
continuously we deduce that Ay ) is open in U N G.

Let Bp) be the complement of the closure of Ay ) in & NG which is also open
and verifies that if g € By then there is a neighborhood of ¢ in G consisting of
diffeomorphisms ¢ such that the homoclinic class H(pg, §) is a quasi-attractor.

From how we defined Ay ) and By, ;) we have that their union is open and dense
inGgNU.

The residual subset G4pp is then obtained by considering a countable collection
of pairs (U, p) where U varies in a countable basis of the topology of Diff* (M) and
p is a hyperbolic periodic point of f € U which has a continuation to the whole
U (there are clearly at most countably many of them by Kupka-Smale’s Theorem
1.1.3). We finally define:

Gapp = ﬂ (A(Z/l,p) U B(Um) U UC)
U.p)
O

In general, if X is a Baire topological space and A is a Borel subset of X, then
there exists a residual subset G' of X such that A is open and closed in G. This
usually serves as an heuristic principle, but in general it is not so easy to show
that a certain property is Borel. One must prove this kind of result by barehanded

arguments.
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3.2.2 One dimensional extremal bundle

We will first prove Theorem 3.2.3. The proof strongly resembles the proof of the
main theorem of [PotS| and it was indeed motivated by it.

The main difference is that the fact that periodic points must be hyperbolic at
the period in the case the homoclinic class has non-empty interior is quite direct by
using transitions and the fact that the interior has some persistence properties. This
is the content of the following lemma whose proof will serve also as a model for the
proof of Theorem 3.2.1. We will make emphasis only in the part of the proof which
differs from [PotS] and we refer the reader to that paper for more details in the rest

of the proof.

Lemma 3.2.6. Let H be a homoclinic class which is a quasi-attractor of a C-generic
diffeomorphism f such that the class has only periodic orbits of stable index smaller
or equal to . So, there exists Ko > 0, A € (0,1) and mg € Z such that for every
p € Per,(f|u) of sufficiently large period one has

T (p)
T Df Meegg-momsy | < KoM k= [—}
i=0 || j=0 mo

PROOF. Let G be a residual subset of Diff' (M) such that if f € G and H is
homoclinic class of a periodic point ¢ of index o and a quasi-attractor, there exists
a small neighborhood U of f where the continuation ¢, of ¢ is well defined and such
that for every g € YNNG one has that H(qy,, g) is quasi-attractor and ¢ is a continuity
point of the map g — H(qy, g) (see Proposition 3.2.5 and Remark 1.1.7).

Also, being f generic, we can assume that for every ¢ € U N G and every p €
Per,(g) N H(qy,9) we have that H(qy,g9) = H(p,g), so, the orbits of p and ¢, are
homoclinically related (see Theorem 1.1.22).

We can also assume that U and G were chosen so that for every g € U NG every
periodic point in H(qg, g) has index smaller or equal to a. We can also assume that
g has index a for every g € U.

Lemma IL.5 of [M;3] asserts that to prove the lemma it is enough to show that

there exists € > 0 such that the set of cocycles

®a = {D(’)(p)fil‘Eu i pE Pera(f|H)}

which all have its eigenvalues of modulus bigger than one, verify that every e-
perturbation of them preserves this property. That is, given p € Per,(f|y) one has
that every e-perturbation {Ay,..., Arp)—1} of Do f|e« verifies that Arp)_1... Ao
has all its eigenvalues of modulus bigger or equal to one.
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Therefore, assuming by contradiction that the Lemma is false, we get that Ve > 0
there exists a periodic point p € Per,(f|x) and a linear cocycle {Ay, ..., Az} over

p satisfying that:
- | Dyig [l — Aill <,
- ||Dfi(p)f71|Eu — Al_IH < e and
- Hf:(%)_l A; has some eigenvalue of modulus smaller or equal to 1.

In coordinates Tpp M = E*@ (E*)*, since E* is invariant we have that the form

of Df is given by

Dyigyfrme K}
1%@f=< f%ﬂE K%g)

Let 7 : [0,1] — I, given in coordinates Top,M = E* @ (E*)* by

[ A=8)Dpg flee +tA K (f)
o= ( 0 K2(7) )

whose diameter is bounded by € (see Lemma 4.1 of [BDP]).

)
Now (1), choose a point z of intersection between W*(p, f) with W¥(q, f) and
choose a neighborhood U of the orbit of p such that:

(i) It does not intersect the orbit of g.
(ii) It does not intersect the past orbit of z.

(iii) It verifies that once the orbit of x enters U it stays there for all its future

iterates by f.

It is very easy to choose U satisfying (i) since both the orbit of p and the one
from q are finite. Since the past orbit of x accumulates in ¢ is not difficult to choose
U satisfying (ii). To satisfy (iii) one has only to use the fact that x belongs to the
stable manifold of p so, after a finite number of iterates, x will stay in the local stable
manifold of p. It is then not difficult to choose a neighborhood U which satisfies (iii)
also.

Applying Theorem 1.2.12 we can perturb f to a new diffeomorphism ¢ so that
the orbit of p has index greater than « and so that it preserves locally its strong
stable manifold. This allows to ensure that the intersection between W"(g;, §) and

W*#(p, g) is non-empty.

!The following argument will be referred too by the proof of Theorem 3.2.1.
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This intersection is transversal so it persist by small perturbations, the same
occurs with the index of p so we can assume that ¢ is in G NU.

Using the fact that H(qg, §) is a quasi-attractor we obtain that p € H(qy, 9):

This is because quasi-attractors are saturated by unstable sets, so, since g; C
H(gy, g) we have that Wg,g) C H(qy, g) and since W*(p, g) N W*(qg,,g) # 0, we
get by the A\-Lemma (Theorem 1.1.4) and the fact that the quasi-attractor is closed
that

pE Wu<p7 g) C Wu(QQ?Q) C H(QQ).@)

This contradicts the choice of U since we find a diffeomorphism in U N G with a
periodic point with index bigger than « in the continuation of H, and so the lemma

is proved.
O

Remark 3.2.7. One can recover Lemma 2 of [PotS] in this context. In fact, if there
is a codimension one dominated splitting of the form Ty M = EF® F with dim F = 1
then (using the adapted metric given by [Gouy]) for a periodic point of maximal
index one has | Df~pp)ll < | DS Eul| so,

k mo—1 7T(p)
LTI LT 2r e || < KoX* k= { ]
i=0 || j=0 Mo

And since F is one dimensional one has [, ||A:|| = || TT; 4ill so |Df™® g, || <
Ko\™®) (maybe changing the constants Ky and \).

In fact, there is v € (0,1) such that for every periodic point of maximal index
and big enough period one has ||Df=™®)| g, || < @

Also, it is not hard to see, that if the class admits a dominated splitting of
index bigger or equal than the index of all the periodic points in the class, then,
periodic points should be hyperbolic in the period along F' (for a precise definition

and discussion on this topics one can read [BGY], [W3]).

&

Remark 3.2.8. As a consequence of the proof of the lemma we get that: One can
perturb the eigenvalues along an invariant subspace of a cocycle without altering the
rest of the eigenvalues. The perturbation will be of similar size to the size of the
perturbation in the invariant subspace. See Lemma 4.1 of [BDP]. Notice also that
we could have perturbed the cocycle {K?(f)}; without altering the eigenvalues of
the cocycle Do f|gu.

&
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One can now conclude the proof of Theorem 3.2.3 with the same techniques as

in the proof of the main Theorem of [PotS].
PrROOF OF THEOREM 3.2.3. We have that Ty M = E @ F with dim F' = 1. We

first prove that the center unstable curves tangent to F' should be unstable and with
uniform size (this is Lemma 3 of [PotS]). To do this, we first use Lemma 3.2.6 to get
this property in the periodic points and then use the results from [PS,] and [BC] to
show that the property extends to the rest of the points. This dynamical properties
imply also uniqueness of these central unstable curves.

Assuming the bundle F' is not uniformly expanded, one has two cases: one can
apply Liao’s selecting lemma or not (see [L, W3]).

In the first case one gets weak periodic points inside the class which contradict
the thesis of Lemma 3.2.6.

The second case is similar, if Liao’s selecting lemma ([L]) does not apply, one
gets a minimal set inside H where the expansion along F' is very weak and thus E is
uniformly contracting. Using the dynamical properties of the center unstable curves,
classical arguments give that we can shadow orbits of this minimal sets by periodic
points which are weak in the F' direction. Since the stable manifold of this periodic
point will be uniform, it will intersect the unstable manifold of a point in H, and
then the fact that H is a quasi-attractor implies the point is inside the class and
again contradicts Lemma 3.2.6.

For more details see [PotS].

3.2.3 Existence of a dominated splitting

We prove here Theorem 3.2.1 which state that a homoclinic class which is a quasi-
attractor and has a dissipative periodic orbit admits a dominated splitting.

The idea is the following: in case H does not admit any dominated splitting we
can perturb the derivative of some periodic point in order to convert it into a sink
with the techniques of [BoB]|.

We pretend to use Theorem 1.2.12 to ensure that the unstable manifold of a peri-
odic point in the class intersects the stable set of the sink and reach a contradiction

as we did in the end of the proof of Lemma 3.2.6.

PROOF OF THEOREM 3.2.1. Let H be a homoclinic class of a C''-generic diffeomor-
phism f which is a quasi-attractor. Let us assume that H contains periodic points
of index o and we consider A" C Per,(f|y) the set of index a and 7-disippative
periodic points in H for some 1 < 1.

It is enough to have one periodic point with determinant smaller than one to get
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that for some 7 < 1, the set A” will be dense in H (see Proposition 1.2.14). Notice
that from hypothesis, and the fact that for generic diffeomorphisms the determinant
of the differential at the period is different from one, there is 7 < 1 such that A7 is
dense.

Notice that if H admits no dominated splitting, then neither does the cocycle of
the derivatives over A. This implies that we can apply Theorem 1.2.15 and there is
a periodic point p € A which can be turned into a sink with a C''-small perturbation
done along a path contained in I', (which maintains or increases the index).

Now we are able to use Theorem 1.2.12 and reach a contradiction. Consider a
periodic point ¢ € A? fixed such that for a neighborhood U of f the class H(g,,9)
is a quasi-attractor for every g e Y N G.

Suppose the class does not admit any dominated splitting, so, as we explained
above we have a periodic point p € A7 such that f can be perturbed in an arbitrarily
small neighborhood of p to a sink for a diffeomorphism ¢ € U (which we can assume
is in GNU since sinks are persistent) and preserving locally the strong stable manifold
of p. So, we choose a neighborhood of p such that it does not meet the orbit of ¢
nor the past orbit of some intersection of its unstable manifold with the local stable
manifold of p with the same argument as in Lemma 3.2.6.

Thus, we get that W*"(q,, ) N\W?*(p, g) # (0 and using Lyapunov stability we reach
a contradiction since it implies that p € H(g,) which is absurd since p is a sink.

(Il

One can also deduce some properties on the indices of the possible dominated
splitting depending on the indices of the periodic points in the class (see [Poty]).

Remark 3.2.9. - Also the same ideas give that periodic points in the class must
be volume hyperbolic in the period (not necessarily uniformly, see [BGY] for
a discussion on the difference between hyperbolicity in the period and uniform

hyperbolicity)

- In fact, we can assume that if a homoclinic class which is a quasi-attractor
admits no dominated splitting, then, there exists n > 1 such that every periodic
point p, it has determinant bigger than n™® . Otherwise, there would exists
a subsequence p,, of periodic points with normalized determinant converging
to 1. After composing with a small homothety, we are in the hypothesis of
Theorem 3.2.1.

&
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3.2.4 Quasi-attractors far from tangencies

We present a proof of a result originally proved in [Y]. We believe that having another
approach to this result is not entirely devoid of interest (see [CSY] for results that
exceed the results here presented on dynamics far from tangencies).

We remark that in the far from tangencies context, J. Yang ([Y]) has proved
that quasi-attractors of C''-generic diffeomorphisms are homoclinic classes (see also
[C4]) and more recently, C.Bonatti, S.Gan, M.Li and D.Yang have proved that for
C'-generic diffeomorphisms far from homoclinic tangencies quasi-attractors are in
fact essential attractors (see [BGLY]).

Theorem 3.2.10 ([Y] Theorem 3). Let f € G, where G is a residual subset of
Diff* (M)\Tang, and let H be a Lyapunov stable homoclinic class for f of minimal
inder o. Let TyM = E & F be a dominated splitting for H with dim E = «, so, one
of the following two options holds:

1. E s uniformly contracting.

2. E decomposes as E° & E° where E° is uniformly contracting and E° is one

dimensional and H is the Hausdorff limit of periodic orbits of index ov — 1.

As in [Y], the proof has 3 stages, the first one is to reduce the problem to the
central models introduced by Crovisier, the second one to treat the possible cases
and finally, the introduction of some new generic property allowing to conclude in
the difficult case.

Our proof resembles that of [Y] in the middle stage (which is the most direct one
after the deep results of Crovisier) and has small differences mainly in the other two.

For the first one, we use a recent result of [C3] (Theorem 3.2.11) and for the last
one, we introduce Lemma 3.2.12 which can be compared with the main Lemma of
[Y] but the proof and the statement are somewhat different (in particular, ours is
slightly stronger). We believe that this Lemma can find some applications (see for
example [Cy]).

Before we start the proof of Theorem 3.2.10 we state the following theorem due

to Crovisier which will be the starting point for our study:

Theorem 3.2.11 (Theorem 1 of [Cs]). Let f € G where G C Diff'(M)\Tang is
residual, and K, an invariant compact set with dominated splitting T, M = E @ F.

If E is not uniformly contracted, then, one of the following cases occurs.

1. Ky ntersects a homoclinic class whose minimal index is strictly less than
dim E.
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2. Ky intersects a homoclinic class whose minimal index is dim E and which con-
tains weak periodic orbits (for every o there is a sequence of hyperbolic periodic
orbits homoclinically related which converge in the Hausdorff topology to a set
K C Ky, whose indez is dim E but whose maximal exponent in E is in (—4,0) ).
Also, this implies that every homoclinic class H intersecting Ky verifies that it
admits a dominated splitting of the form Ty M = E'® E°® F with dim E¢ = 1.

3. There exists a compact invariant set K C Ky with minimal dynamics and which
has a partially hyperbolic structure of the form TxM = E°* & E°® E" where
dim £¢ =1 and dim E* < dim E. Also, any measure supported on K has zero

Lyapunov exponent along E°.

Now we are ready to give a proof of Theorem 3.2.10.

PROOF OF THEOREM 3.2.10. Let G C Diff'(M)\Tang be a residual subset such
that for every f € G and every periodic point p of f, there exists a neighborhood U
of f, where the continuation p, of p is well defined, such that f is a continuity point
of the map g — H(py,g) and such that if H(p, f) is a homoclinic class which is a
quasi-attractor for f, then H, = H(pg, g) is also a quasi-attractor for every g € UNG.
Also, we can assume that for every g € & N G, the minimal index of H, is a.

The class admits a dominated splitting of the form Ty M = EG F with dim F = «
(see Theorem 1.2.24). We assume that the subbundle F is not uniformly contracted.
This allows us to use Theorem 3.2.11.

Since the minimal index of H is a, option 1) of the theorem cannot occur.

We shall prove that option 3) implies option 2). That is, we shall prove that if
E is not uniformly contracted, then we are in option 2) of Theorem 3.2.11.

This is enough to prove the theorem since if we apply Theorem 3.2.11 to E’ given
by option 2) we get that since dim £/ = o — 1 option 1) and 2) cannot happen, and
since option 3) implies option 2) we get that £’ must be uniformly contracted thus
proving Theorem 3.2.10 (observe that the statement on the Hausdorff convergence
of periodic orbits to the class can be deduced from option 2) also by using Frank’s

Lemma).

Claim. To get option 2) in Theorem 3.2.11 is enough to find one periodic orbit of

index v in H which is weak (that is, it has one Lyapunov exponent in (—4,0)).

ProOF. This follows using the fact that being far from tangencies there is a domi-
nated splitting in the orbit given by Theorem 1.2.24 with a one dimensional central
bundle associated with the weak eigenvalue. Let O be the weak periodic orbit, so
we have a dominated splitting of the form ToM = E° ¢ E° & E".

Using transitions (see Proposition 1.2.14), we can find a dense subset in the class

of periodic orbits that spend most of the time near the orbit we found, say, for a
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small neighborhood U of O, we find a dense subset of periodic points p,, such that the
cardinal of the set {i € ZN[0,7(p,) — 1] : f'(pn) € U} is bigger than (1 — &) (p,).

Since we can choose U to be arbitrarily small, we can choose ¢ so that the orbits of
all p, admit the same dominated splitting (this can be done using cones for example)

and maybe by taking ¢ smaller to show that p,, are also weak periodic orbits.

%

It rests to prove that option 3) implies the existence of weak periodic orbits in
the class. To do this, we shall discuss depending on the structure of the partially
hyperbolic splitting using the classification given in [Cs]. There are 3 different cases
according to the possibilities given by Proposition 1.3.9.

We have a compact invariant set X' C H with minimal dynamics and which has a
partially hyperbolic structure of the form Tx M = E°*@ E°@ E* where dim £° = 1 and
dim £ < dim E. Also, any measure supported on K has zero Lyapunov exponent
along E°. We shall assume that the dimension of E* is minimal in the sense that
every other compact invariant K satisfying the same properties as K satisfies that
dim(E%) > dim(E%) (this will be used only for Case C)).

Case A): There exists a chain recurrent central segment. K has type (R)

Assume that the set K C H admits a chain recurrent central segment. That is,
there exists a curve v tangent to E° in a point of K, which is contained in H and
such that ~ is contained in a compact, invariant, chain transitive set in U, a small
neighborhood of K.

In this case, the results of [Cy] (Addendum 3.9) imply that there are periodic
orbits in the same chain recurrence class as K (i.e. H) with index dim E* < o — 1,

a contradiction.

Case B): K has type (N), (H) or (Psy)

If K has type (H), one can apply Proposition 4.4 of [C3] which implies that there is
a weak periodic orbit in H giving option 2) of Theorem B.1.

Cases (N) and (Psy) give a family of central curves 7, Vo € K (tangent to E€,
see [Cs]) which satisfy that f(v.) C Vf@). It is not difficult to see that there is a
neighborhood U of K such that for every invariant set in U the same property will
be satisfied (see remark 2.3 of [Cy]).

Consider a set K = K U U,, O, where O,, are close enough periodic orbits con-
verging in Hausdorff topology to K (these are given, for instance, by Theorem 1.1.25)
which we can suppose are contained in U.

[

So, since for some = € K, we have that F**(x) will intersect W.(p,,) in a point

CS

z (for a point z, the local center stable set, W (z) is the union of the local strong
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stable leaves of the points in 7).
Since the w-limit set of z must be a periodic point (see Lemma 3.13 of [Cy]) and
since H is Lyapunov stable we get that there is a periodic point of index «a which is

weak, or a periodic point of smaller index in H which gives a contradiction.

Case C): K has type (Pyn) or (Psy)

One has a minimal set K which is contained in a homoclinic class which is a quasi-
attractor and it admits a partially hyperbolic splitting with one dimensional center
with zero exponents and type (Pyy) or (Psy).

This gives that given a compact neighborhood U of K, there exists a family
of Cl-curves v, : [0,1] — U (7,(0) = x) tangent to the central bundle such that
F71(72([0,1])) C ~p-1(([0,1)). This implies that the preimages of these curves
remain in U for past iterates and with bounded length.

They also verify that the chain unstable set of K restricted to U (that is, the set
of points that can be reached from K by arbitrarily small pseudo orbits contained in
U) contains these curves. Since H is a quasi-attractor, this implies that these curves
are contained in H.

Assume we could extend the partially hyperbolic splitting from K to a dominated
splitting Tx» M = E; & E°@® Es in a chain transitive set K’ C H containing 7,([0,?))
for some z € K and for some t € (0,1).

Since the orbit of ,([0,1]) remains near K for past iterates, we can assume (by
choosing U sufficiently small) that the bundle Ej is uniformly expanded there. So,
there are uniformly large unstable manifolds for every point in v,([0,1]) and are
contained in H.

If we prove that F; is uniformly contracted in all K’, since we can approach K’
by weak periodic orbits, we get weak periodic in the class since its strong stable
manifold (tangent to F;) will intersect H.

To prove this, we use that for K the dimension of E*® is minimal. So E; must be
stable, otherwise, we would get that, using Theorem 3.2.11 again, there is a partially
hyperbolic minimal set inside K’ with stable bundle of dimension smaller than the
one of K, a contradiction.

The fact that we can extend the dominated splitting and approach the point y
in 7,((0,1)) by weak periodic points is given by Lemma 3.2.12 below.

Lemma 3.2.12. There exists a residual subset G' C Diff*(M)\Tang such that every

f € G werifies the following. Given a compact invariant set K such that

- K 1s a chain transitive set.

- K admits a partially hyperbolic splitting Tk M = E° & E° @& E* where E° s

uniformly contracting, E* is uniformly expanding and dim E¢ = 1.
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- Any invariant measure supported in K has zero Lyapunov exponents along E°.

Then, for every 6 > 0, there exists U, a neighborhood of K such that for every
y € U satisfying:

- y belongs to the local chain unstable set pW*(K,U) of K (that is, for every

e > 0 there exists an e—pseudo orbit from K to y contained in U)
- y belongs to the chain recurrence class of K

we have that there exist p, — vy, periodic points, such that:

- The orbit O(p,) of the periodic point p,, has its dim E® + 1 Lyapunov exponent

contained in (—9,0).

- For large enough ny, if K = KU Unsn, Opn), then we can extend the partially
hyperbolic splitting to a dominated splitting of the form TM = E; & E°® Es.

The following lemma allows to conclude the proof as we mentioned before. Its
proof is postponed to subsection 3.2.5.
This concludes the proof of Theorem 3.2.10

3.2.5 Proof of Lemma 3.2.12

We shall first prove a perturbation result and afterwards we shall deduce Lemma
3.2.12 with a standard Baire argument. One can compare this lemma with Lemma
3.2 of [Y] which is a slightly weaker version of this. See [C4] Chapter 9 for possible

applications.

Lemma 3.2.13. There exists a residual subset G C Diff* (M) such that every f € G

verifies the following. Given:
- K a compact chain transitive set.

- U a neighborhood of K and y € U wverifying that y is contained in the local
chain unstable set pW"(K,U) of K and in the chain recurrence class of K.

- U a C'-neighborhood of f.

Then, there exists | > 0 such that, for every v > 0 and L > 0 we have g € U with a
periodic orbit O with the following properties:

- There exists p; € O such that d(f~*(y),g7*(p1)) < v for every 0 < k < L.
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- There exists py € O such that O\{pa,...,¢'(p2)} C U.

PROOF. The argument is similar as the one in section 1.4 of [C3]. We must show
that after an arbitrarily small perturbation, we can construct such periodic orbits.

Consider a point y as above. We can assume that y is not chain recurrent in U,
otherwise y we would be accumulated by periodic orbits contained in U (see Theorem
1.1.25) and that would conclude without perturbing.

For every € > 0 we consider an e—pseudo orbit Y. = (z, 21, ..., 2,) with zy € K
and z, = y contained in U. Using that y is not chain recurrent in U, we get that
for € small enough we have that B,(y) N Y. = {y} where B,(y) is the ball of radius
v and v is small. So if we consider a Hausdorft limit of the sequence Y;,, we get
a compact set Z~ for which y is isolated and such that it is contained in the chain
unstable set of K restricted to U. Notice that Z~ is backward invariant.

If we now consider the pair (A~,y) where A~ = Z7\{f"(y) }n>0 we get a pair
as the one obtained in Lemma 1.11 of [C3] where y plays the role of x~. Notice that
A~ is compact and invariant.

Now, we consider U C U a small neighborhood of K UA~ such that y ¢ U. Take
x € HNU® where H is the chain recurrence class of K.

Consider X, = (2, ...2,) an e—pseudo orbit such that zo = = and 2, € K. Take
z; the last point of X, outside U. Since we chose U small we have z; € U\U. We
call X to (zj,...2,).

Consider Z* the Hausdorff limit of the sequence X; /n Which will be a forward
invariant compact set which intersects U\U. Since y is not chain recurrent in U we
have that y ¢ Z7.

We consider a point 7 € Zt NU \U . This point satisfies that one can reach K
from x* by arbitrarily small pseudo orbits. We get that the future orbit of 2 does
not intersect the orbit of y.

Consider U a neighborhood of f in the C! topology. Hayashi’s connecting lemma,
(Theorem 1.1.21) gives us N > 0 and neighborhoods W+ c W+ of 2 and W~ c W~

of y which we can consider arbitrarily small so, we can suppose that
- All the iterates fi(W*) and f/(W~) for 0 <4,j < N are pairwise disjoint.
- The iterates fi(W+) for 0 < ¢ < N are disjoint from the past orbit of y.

Since there are arbitrarily small pseudo orbits going from y to 21 contained in H
and f is generic, Theorem 1.1.25 {xzy, ..., f'(zo)} in a small neighborhood of H and
such that zop € W~ and f!(z) € W.

The same argument gives us an orbit {zy,..., f*(z1)} contained in U such that
1 € W and f¥(x;) € W~. In fact, we can choose it so that d(f~*(y), f*~(z1)) < v
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for 0 <4 < L (this can be done using uniform continuity of f~1,..., f~% and choosing
f*¥(z1) close enough to y).

Using Hayashi’s connecting lemma (Theorem 1.1.21) we can then create a periodic
orbit O for a diffeomorphism ¢ € I which is contained in {zo, ..., f(z¢)} UW* U
LUNWHY U, )} UW T UL U Y (W) (in the proof of Proposition
1.10 of [C3)]) is explained how one can compose two perturbations in order to close
the orbit).

Notice that from how we choose W+ and W~ and the orbit {z1,..., f*(z)}
we get that the periodic orbit we create with the connecting lemma satisfies that
d(f~(y),g7"(pn)) < v for 0 < i < L and some p, in the orbit. This is because
{a1,..., f*Y(z1)} does not intersect W~ U...U fN(W~) and {5 L (xy),... f¥(x1)}
does not intersect WU ... U fN (W+ ) (in fact, this gives that the orbit of p, for g
contains { f*L(xy),... fF(z1)}).

Also, since W+ U ... U fN(WH)U{zy,..., fF(x1)} € U we get that, except for
maybe [ consecutive iterates of one point in the resulting orbit, the rest of the orbit
is contained in U. This concludes the proof.

O

PROOFOF LEMMA 3.2.12. Takez € M, anlet m,e,t € N. We consider U(m, e, t, x)
the set of O diffeomorphisms ¢ € Diff'(M) with a periodic orbit O satisfying:

- O is hyperbolic.
- Its e + 1 Lyapunov exponent of O is contained in (—1/m,1/m).
- There exists p € O such that d(p,z) < 1/t.

This set is clearly open in Diff'(M). Let {x,} be a countable dense set of M.
We define G, ers = U(m, e, t, z5) U Diff' (M)\U(m, e, t, z,) which is open and dense
by definition. Consider G; = ﬂme’ 4.5 Gm.e.t.s Which is residual. Finally, taking G as in

Lemma 3.2.13, we consider

G’ = (G NGi)\Tang

Consider K compact chain transitive and with a partially hyperbolic splitting
TkM = E° & E° @ E* with dim £ = 1. We assume that any invariant measure
supported in K has Lyapunov exponent equal to zero.

Choose ¢ > 0 small enough. Since f is far from tangencies, Theorem 1.2.24 gives
us that every periodic orbit having its dim E* + 1 Lyapunov exponent in (—d,0)
admits a dominated splitting £ @ E°@ F3 with uniform strength (that is, if there is
a set {O,} of periodic orbits with their dim £* + 1 Lyapunov exponents in (—d,6),

then the dominated splitting extends to the closure).
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We choose U;, an open neighborhood of K such that every invariant measure
supported in U; has its Lyapunov exponents in (—1/2mq, 1/2mg) where 1/mgy < 4.

We can assume that U; verifies that there are D f invariant cones £“* and £
around E* and E°@® E* respectively, defined in U;. Similarly, there are in Uy, D f~1
invariant cones £%°, £ around E*® and E* ® E° respectively.

We can assume, by choosing an adapted metric (see [HPS] or [Gouy)), that for
every v € £% we have || D fv|| < A||v|| and for every v € £“* we have || D fv]| > A7 !||v]|
for some \ < 1. There exists U;, a C'-neighborhood of f such that for every g € U,
the properties above remain true.

Given U neighborhood of K such that U C U, we have that any ¢ invariant set
contained in U admits a partially hyperbolic splitting.

We now consider y € pW*"(K,U) which is contained in the chain recurrence class
of K.

Claim. Given t, for any xs with d(xs,y) < 1/2t we get that f € U(mo, dim E®,t,s).

PROOF. Since f is in G} it is enough to show that every neighborhood of f intersects
U(mg, dim E* t, s).

Choose a neighborhood U of f and consider Uy C U given by Franks’ Lemma
(Theorem 1.2.11) such that we can perturb the derivative of some g € Uy in a finite
set of points less than ¢ and obtain a diffeomorphism in U.

For Uy, Lemma 3.2.13 gives us a value of [ < 0 such that for any L > 0 and
there exists gr, € Uy and a periodic orbit O, of gr, such that there is a point p; € Oy,
satisfying that d(g~"(p1), f~*(y)) < 1/2t (0 <i < L) and a point py € Oy, such that
Or\{p2; - .., g (p2)} is contained in U. We can assume that O is hyperbolic.

We must perturb the derivative of Op less than ¢ in order to show that the
dim E* 4+ 1 Lyapunov exponent is in (—1/mg, 1/myg).

Notice that if we choose L large enough, we can assume that the angle of the
cone Dg”(C?(g~*(ps)) is arbitrarily small (¢ = uu,cu). In the same way, we can
assume that the angle of the cone Dg=£(C%(g=*!(py) is arbitrarily small (6 = cs, ss
respectively).

Since [ is fixed, we get that for p € Op N U*® (if there exists any, we can assume
it is p2), it is enough to perturb less than & the derivative in order to get the cones
Dgt(Co(g=L(p2)) and Dg=L=Y(C%(g* ! (py) transversal (for o = uu, cu and G = cs, ss
respectively). This allows us to have a well defined dominated splitting above Op,
(which may be of very small strength) which in turn allow us to define the dim E*+1
Lyapunov exponent. Since the orbit Of spends most of the time inside U, and any
measure supported in U has its center Lyapunov exponent in (—1/2mg, 1/2mg) we

get the desired property.
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Taking ¢t = n — oo and using Theorem 1.2.24, we get a sequence of periodic
points p, — y such that if O(p,) are their orbits, the set K = K U{J, O(p,) admits
a dominated splitting Tx: M = E; & E° @ E3 extending the partially hyperbolic
splitting.

This concludes the proof of Lemma 3.2.12.

3.2.6 Application: Bi-Lyapunov stable homoclinic classes

In [ABD] the following conjecture was posed (it also appeared as Problem 1 in [BC])

Conjecture 3.2.14 ([ABD]). There exists a residual set G of Diff' (M) of diffeomor-
phisms such that if f € G admits a homoclinic class with nonempty interior, then

the diffeomorphism is transitive.

Some progress has been made towards the proof of this conjecture (see [ABD],[ABCD]
and [PotS]), in particular, it has been proved in [ABD] that isolated homoclinic
classes as well as homoclinic classes admitting a strong partially hyperbolic splitting
verify the conjecture. Also, they proved that a homoclinic class with non empty
interior must admit a dominated splitting (see Theorem 8 in [ABD]).

In [ABCD] the conjecture was proved for surface diffeomorphisms, other proof
for surfaces (which does not use the approximation by C? diffeomorphisms) can be
found in [PotS] where the codimension one case is studied.

Also, from the work of Yang ([Y], see also subsection 3.2.4 and Proposition 3.2.23
below) one can deduce the conjecture in the case f is C''-generic and far from ho-
moclinic tangencies.

When studying some facts about this conjecture, in [ABD] it was proved that if
a homoclinic class of a C!-generic diffeomorphism has nonempty interior then this
class should be bi-Lyapunov stable. In fact, in [ABD] they proved that isolated
and strongly partially hyperbolic bi-Lyapunov stable homoclinic classes for generic
diffeomorphisms are the whole manifold.

This concept is a priori weaker than having nonempty interior and it is natural

to ask the following question.

Question 3.2.15 (Problem 1 of [BC]). Is a bi-Lyapunov stable homoclinic class of

a generic diffeomorphism necessarily the whole manifold?

It is not difficult to deduce from [BC] that, for generic diffeomorphisms, a chain

recurrence class with non empty interior must be a homoclinic class (see Corollary
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1.1.23), thus, the answer to Conjecture 3.2.14 must be the same for chain recurrence
classes and for homoclinic classes.

However, we know that Question 3.2.15 admits a negative answer if posed for
general chain recurrence classes. Bonatti and Diaz constructed (see [BD3]) open sets
of diffeomorphisms in every manifold of dimension > 3 admitting, for generic dif-
feomorphisms there, uncountably many bi-Lyapunov stable chain recurrence classes
which in turn have no periodic points.

Although this may suggest a negative answer for Question 3.2.15 we present here
some results suggesting an affirmative answer. In particular, we prove that the answer
is affirmative for surface diffeomorphisms, and that in three dimensional manifold
diffeomorphisms the answer must be the same as for Conjecture 3.2.14.

The main reason for which the techniques in [ABCD] (or in [PotS]) are not able
to answer Question 3.2.15 for surfaces, is because differently from the case of homo-
clinic classes with interior, it is not so easy to prove that bi-Lyapunov stable classes
admit a dominated splitting (in fact, the bi-Lyapunov stable chain recurrence classes
constructed in [BD3] do not admit any). However, as a consequence of Theorem

3.2.1 we will have this property automatically.

Theorem 3.2.16. For every f in a residual subset Gy of Diff*(M), if H is a bi-
Lyapunov stable homoclinic class for f, then, H admits a dominated splitting. More-
over, it admits at least one dominated splitting with index equal to the index of some

pertodic point in the class.

PROOF. This follows directly from Theorem 3.2.1 applied either to f or f=1.
O

This theorem solves affirmatively the second part of Problem 5.1 in [ABD]. We
remark that Theorem 3.2.16 does not imply that the class is not accumulated by
sinks or sources. Also, we must remark that the theorem is optimal in the following
sense, in [BV] an example is constructed of a robustly transitive diffeomorphism
(thus bi-Lyapunov stable) of T* admitting only one dominated splitting (into two
two-dimensional bundles) and with periodic points of all possible indexes for saddles.

We recall now that a compact invariant set H is strongly partially hyperbolic if
it admits a three ways dominated splitting Ty M = E°* & E° @ E", where E° is non
trivial and uniformly contracting and E* is non trivial and uniformly expanding.

In the context of Question 3.2.15 it was shown in [ABD] that generic bi-Lyapunov
stable homoclinic classes admitting a strongly partially hyperbolic splitting must be
the whole manifold. Thus, it is very important to study whether the extremal bundles
of a dominated splitting must be uniform.

As a consequence of Theorem 3.2.3 we get the following easy corollaries.
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Corollary 3.2.17. Let H be a bi-Lyapunov stable homoclinic class for a C*-generic
diffeomorphism f such that TyM = E' @ E?>® E? is a dominated splitting for f and
dim(E') = dim(E?) = 1. Then, H is strongly partially hyperbolic and H = M.

PRrOOF. The class should be strongly partially hyperbolic by applying Theorem 3.2.3
applied to both f and f~'. Corollary 1 of [ABD] (page 185) implies that H = M.
O

We say that a hyperbolic periodic point p is far from tangencies if there is a
neighborhood of f such that there are no homoclinic tangencies associated to the
stable and unstable manifolds of the continuation of p. The tangencies are of index
1 if they are associated to a periodic point of index ¢, that is, its stable manifold has

dimension <.

Corollary 3.2.18. Let H be a bi-Lyapunov stable homoclinic class for a C*-generic
diffeomorphism f which has a periodic point p of index 1 and a periodic point q of
index d — 1 and such that p and q are far from tangencies . Then, H = M.

ProoOF. Using Theorem 1.2.25 we are in the hypothesis of Corollary 3.2.17

In low dimension, our results have some stronger implications, we obtain:

Theorem 3.2.19. Let f be a Ct-generic surface diffeomorphism having a bi- Lyapunov

stable homoclinic class H. Then, H = T? and f is Anosov.

Proor. From Theorem 3.2.16 and Theorem 3.2.3 we deduce that A must be hy-
perbolic. Using the interior and the local product structure, we obtain that H = M
(see [ABD]) and thus f is Anosov.
Now, by Franks’ theorem ([F;]) M must be T? and f conjugated to a linear
Anosov diffeomorphism.
O

Remark 3.2.20. Notice that for proving this Theorem we do not need to use the

results of [PS;] which involve C? approximations.

&

The following proposition gives a complete answer to Problem 5.1 of [ABD] in

dimension 3.

Proposition 3.2.21. Let H be a bi-Lyapunov stable homoclinic class for a C1-

generic diffeomorphism in dimension 3. Then, H has nonempty interior.
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PrROOF. Applying Theorem 3.2.16 one can assume that the class H admits a dom-
inated splitting of the form F @& F', and without loss of generality one can assume
that dim F' = 1.

Theorem 3.2.3 thus implies that F' is uniformly expanded so the splitting is
TyM = E & E*.

Assume first that there exist a periodic point p in H of index 2. Thus, this
periodic point has a local stable manifold of dimension 2 which is homeomorphic to
a 2 dimensional disc.

Since the class is Lyapunov stable for f=! the stable manifold of the periodic
point is completely contained in the class.

Now, using Lyapunov stability for f and the lamination by strong unstable man-
ifolds given by Theorem 1.3.1 one gets (saturating by unstable sets the local stable
manifold of p) that the homoclinic class contains an open set. This implies the thesis
under this assumption.

So, we must show that if all the periodic points in the class have index 1 then
the class is the whole manifold. As we have been doing, using the genericity of f
we can assume that there is a residual subset G of Diff' (M) and an open set U of f
such that for every g € U N G all the periodic points in the class have index 1.

We have 2 situations, on the one hand, we consider the case where E admits
two invariant subbundles, F = E' @ E?, with a dominated splitting and thus, we
get that E! should be uniformly contracting (using Theorem 3.2.3) proving that the
homoclinic class is the whole manifold (Corollary 3.2.17).

If E admits no invariant subbundles then, using Theorem 1.2.15, we can perturb
the derivative of a periodic point in the class, so that the cocycle over the periodic
point restricted to E has all its eigenvalues contracting. So, we can construct a
periodic point of index 2 inside the class.

O

Remark 3.2.22. 1t is very easy to adapt the proof of this proposition to get that: If a
bi-Lyapunov stable homoclinic class of a generic diffeomorphism admits a codimen-
sion one dominated splitting, Ty M = E & F with dim /' = 1, and has a periodic

point of index d — 1, then, the class has nonempty interior.

&

Using a Theorems 3.2.10 and 3.2.3 we are able to prove a similar result which
is stronger than the previous corollary but which in turn, has hypothesis of a more
global nature. We say that a diffeomorphism f is far from tangencies if it can not be
approximated by diffeomorphisms having homoclinic tangencies for some hyperbolic
periodic point. Notice that in the far from tangencies context, it is proved in [Y]

that a Lyapunov stable chain recurrence class must be an homoclinic class.
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Proposition 3.2.23. There exists a C'-residual subset of the open set of diffeomor-
phisms far from tangencies such that if H is a bi-Lyapunov stable chain recurrence

class for such a diffeomorphism, then, H = M.

PRrROOF. First of all, if the class has all its periodic points with index between « and
[ we know that it admits a 3 ways dominated splitting of the form Ty M = EGGEF
where dim £ = « and dim ' = d — . This is because we can apply the result of
[W1] (see Theorem 1.2.24) which says that far from homoclinic tangencies there is an
index 7 dominated splitting over the closure of the index ¢ periodic points together
with the fact that index o and [ periodic points should be dense in the class since
the diffeomorphism is generic.

Now, we will show that H admits a strong partially hyperbolic splitting. If E is
one dimensional, then it must be uniformly hyperbolic because of Theorem 3.2.3. If
not, suppose dim £ > 1 then, if it is not uniform, Theorem 3.2.10 implies that it can
be decomposed as a uniform bundle together with a one dimensional central bundle,
since dim £ > 1 we get a uniform bundle of positive dimension.

The same argument applies for F' using Lyapunov stability for f=!

so we get a
strong partially hyperbolic splitting.

Corollary 1 of [ABD] finishes the proof.

3.3 Examples

We have seen in section 3.1 that a C'-generic diffeomorphism of a compact sur-
face admits a hyperbolic attractor. Moreover, we have seen that if a Cl-generic
diffeomorphism of a manifold has an attractor, then this attractor must be vol-
ume partially hyperbolic (see Theorem 1.2.17, notice that an attractor is an isolated
chain-recurrence class).

It seems natural to ask the following question (see [PaPu] Problem 26, [Mi], [BDV]
Problems 10.1 and 10.30, [BC]):

Question 3.3.1. Does a C"-generic diffeomorphism of a compact manifold have an

attractor?

The question traces back to R. Thom and S. Smale who believed in a positive
answer to this question. See [BLY] for a more complete historical account on this
problem.

Recently, and surprisingly (notice that even though it was always posed as a

question, it had always follow up questions in case the answer was positive), it was
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shown by [BLY] that this is not the case. We will review their example in subsection
3.3.1.

Their example posses infinitely many sources accumulating on certain quasi-
attractors (which as we have seen always exist by Theorem 1.1.22) so it seemed
also natural to ask whether a C"-generic diffeomorphism has either attractors or
repellers. A very subtle modification of the example of [BLY] allows one to create
examples not having either attractors nor repellers (see [BS], we shall extend this
comment in the following section).

It seems natural then, to weaken the notion of attractor in order to continue
searching for the chain-recurrence classes which capture “most” of the dynamics of
a “typical” diffeomorphism. We have seen in subsection 1.1.5 several notions of
attracting sets, and we have payed special attention (specially in this chapter) to
quasi-attractors (which as we said, always exist by Theorem 1.1.22).

However, the notion of quasi-attractor is not that satisfying since it may even
have empty basin (see the examples of [BD3]). The following natural question was

posed in [BLY] and seems the “right” one:

Question 3.3.2. Does a C"-generic diffeomorphism admit an essential attractor?

and a Milnor attractor?

As we already mentioned, the first question has been answered in the affirmative
for C'-generic diffeomorphisms far away from tangencies ([BGLY]).

Of course, candidates for such classes will be quasi-attractors, specially those
which are homoclinic classes. In view of our Corollary 3.2.4 it seems that there
are some tools to attack certain partial questions in dimension 3, and regarding
at partially hyperbolic quasi-attractors in dimension 3 which are homoclinic classes
seems a reasonable way to proceed. We still lack of examples, but in certain cases, we
seem to be acquiring the necessary tools to understand these particular classes and
start constructing a theory. In this section, we will review this bunch of examples and
we will close the chapter by proposing a direction in order to understand a certain

class of quasi-attractors in dimension 3.

3.3.1 The example of Bonatti-Li-Yang

We briefly explain the construction of C.Bonatti, M.Li and D.Yang in [BLY] and the
modifications made by C.Bonatti and K.Shinohara in [BS].
They prove the following theorem:

Theorem 3.3.3 ([BLY, BS]). Given a d-dimensional manifold M (d > 3) we have
that for every isotopy class of diffeomorphisms of M there exists an open set U such

that for a diffeomorphisms f in a C"-residual subset of U we have that:
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- There is no attractor nor repeller for f.
- FBvery quasi-attractor Q of f is an essential attractor.

- In every neighborhood of Q there are aperiodic classes.

Sketch of the construction of dynamics without attractors

We will outline the construction given in [BLY] of generic dynamics in an open set of
diffeomorphisms without attractors. We will make the construction in dimension 3
and in an attracting solid torus, see [BLY] for details on how to extend the dynamics
into an attracting ball and other dimensions. Notice that in appendix B of [Fy] it is
shown how to construct an Axiom A diffeomorphism C°-close to a given one having
only finitely many sinks as attractors (a simple surgery then allows to obtain that in
any isotopy class of diffeomorphisms of a given manifold of dimension > 3 one can
construct the desired diffeomorphisms).

We assume from now on some acquaintance with the construction of Smale’s
solenoid and Plykin’s attractor (see for example [KH, Roby, Sh]).

One starts with the solid torus 7" = D? x S'. As in the solenoid, one “cuts” T' by
a disk of the form D? x {z} obtaining a solid cylinder of the form D? x [—1, 1].

Then, one “streches” the resulting filled cylinder in order to be able to “wrap”
the torus 7" more than once. Then one inserts the resulting cylinder in 7" such that
it does not autointersects and “glues” again in the same place one had cut.

One can do this in order that the following conditions are satisfied:

- The resulting map f : T — T is an injective C'"*° embedding.

- The image of a disk of the form D? x {z} is contained in D? x {22} where one
thinks of S C C (so that the map z + 22 is the well known doubling map, see
[KH] section 1.7).

- There exists a > 0 such that any vector v in the tangent space of a point of
the form (p, z) whose angle with respect to to D? x {z} is larger than or equal
to a verifies that the image by D f of v makes angle strictly larger than o with

D? x {22} and norm larger than twice the one of v.

If one also requires that in the f-invariant plaque family given by D?x {z} one has
uniform contraction, one obtains the well known Smale’s solenoid. C.Bonatti, M.Li
and D.Yang have profited from the fact that there is still some freedom to choose
the dynamics in this invariant plaque family in order to construct their mentioned

example.
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Notice that the maximal invariant subset A of T" admits a partially hyperbolic
splitting of the form T)\T = E° @ E* where E° is tangent to D? x {z} in any point
of the form (p, z), the subbundle E* is uniformly expanding and the angle between
E° and E" is larger than a.

They demand the following two extra properties which are enough to show that
in a Cl-neighborhood of f, there will be a residual subset of diffeomorphisms having
no attractor at all in 7' (notice that there must be at least one quasi-attractor since

T is a trapping neighborhood, see Theorem 1.1.9):

- Let 1 € St be the fixed point of z — 2z2. We demand that the dynamics in
D% x {1} which is f-invariant has a unique fixed point p which will be hyperbolic

and attracting and has complex eigenvalues.

- Let 2 be a periodic point of z +— 22 of period k& > 0. We have that f*(D? x
{20}) C D% x {2}. We will demand that the dynamics of f* in that disk is the
one of the Plykin attractor on the disk and contains a periodic point ¢ whose

determinant restricted to £ is larger than 1.

The first property allows one to show the following;:

Lemma 3.3.4. There exists a C'-neighborhood U of f such that every g € U has a

unique quasi-attractor in T which contains the homoclinic class of the continuation
of p.

PrOOF. Notice that the unstable manifold of every point in the maximal invariant
set of g inside T" must intersect the stable manifold of the continuation of p. This
implies that the closure of the unstable manifold of p (and therefore its homoclinic
class) must be contained in every quasi-attractor inside 7. See Lemma 3.3.9 for more
details.

O

With the second property we can show that generic diffeomorphisms in a neigh-
borhood of f cannot have attractors (recall that an attractor is an isolated quasi-

attractor) inside 7"

Theorem 3.3.5 ([BLY]). There exists a C'-neighborhood U of f such that for every
C'-generic diffeomorphism g € U the homoclinic class of the continuation of p is
contained in the closure of the set of sources of g, in particular, g has no isolated
quasi-attractors.

SKETCH. The fact that p has complex stable eigenvalues implies that E° admits

no sub-dominated splitting.
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We now show that the continuation of ¢ for diffeomorphisms in a neighborhood
of p belongs to the chain-recurrence class of p. Indeed, the unstable manifold of p
intersects the basin of attraction of the Plykin attractor (which is contained in a
normally hyperbolic disk) and thus, there are arbitrarilly small pseudo-orbits going
from p to the Plykin attractor. Now, since the chain-recurrence class of p is robustly
a quasi-attractor by the previous Lemma, we get that the Plykin attractor (and thus
q) belongs robustly to the unique quasi-attractor.

By Theorem 1.2.17 we obtain that for C''-generic diffeomorphisms in a neighbor-
hood of f the homoclinic class of p (which coincides with the unique quasi-attractor
for generic diffeomorphisms) is contained in the closure of the set of sources. This
concludes.

([

Indeed, in [BLY] it is proved that the same result holds for the C"-topology (we

refer the reader to the next subsection for more details).

Bonatti and Shinohara’s result

In the proof of Theorem 3.3.5 the non-isolation of the quasi-attractor follows from
the fact that containing a periodic orbit whose determinant at the period is larger
than 1, the class cannot be volume hyperbolic, and thus, by Theorem 1.2.17 it cannot
be isolated.

One could wonder what happens in the event that the quasi-attractor is indeed
volume hyperbolic, so that the creation of sources is not allowed and the criterium
given by Corollary 1.2.18 does not apply.

Bonatti and Shinohara, in [BS] have developed a very subtle technique which
allows them to eject periodic saddles from the homoclinic class of p even if the class
is volume hyperbolic.

Using this technique they are able to construct examples which have no quasi-
attractors in 7" but do not contain sources either 2 thus without attractors nor re-
pellers. A surgery argument allows to prove the second statement of Theorem 3.3.3.

The final item of Theorem 3.3.3 hides some deep consequences of Bonatti and
Shinohara’s construction. Indeed, they show that such a quasi-attractor (they in
fact work in a more general framework which applies to this context) has some
viral properties as defined in [BCDG] (see also [B]). This allows them to show the
existence of quite atypical aperiodic classes (for example, aperiodic classes which are

not transitive) as well as to show that there are, for C'-generic diffeomorphisms in

2Notice that they must change the Plykin attractor since it forces the existence of sources even
if they are not near the quasi-attractor, see [Ply]. In order to change this, the construction slightly

more complicated since it must use Blenders, see subsection 1.3.6.
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a neighborhood of the constructed f, uncountably many chain-recurrence classes.
The remarkable feature of their construction is that it relies heavily on the topol-
ogy of the intersection of the class with the center stable plaques, and indeed, in the
next subsection we will show some examples from [Pots] which have a quite opposed
behavior3.
Both Bonatti-Li-Yang’s example and the modifications made by Bonatti and

Shinohara yield essential attractors, it would be nice to know if indeed:

Question 3.3.6. Do these examples admit a Milnor attractor?

3.3.2 Derived from Anosov examples

After the examples of Bonatti,Li and Yang appeared, it became clear that the use of
Theorem 1.2.17 could be a tool yielding examples of dynamics without attractors: It
suffices to construct a quasi-attractor which has periodic points which are sectionally
dissipative in some sense. Also, the question of understanding ergodic properties of
attracting sets and sets whose topological basin is large in some sense becomes an
important question.

On the other hand, Bonatti-Li-Yang’s example was in a sense, a new kind of
wild homoclinic class, and the understanding of how the class is accumulated by
other classes became a new challenge. Hoping to answer partially to this, I was
able to construct some examples whose properties are summarized in the following

statement.
Theorem 3.3.7. There exists a C*-open set U of Diff" (T?) such that:

(a) For every f € U we have that f is partially hyperbolic with splitting TM =

E“ @ E* and E integrates into a f-invariant foliation F°°.
(b) Every f € U has a unique quasi-attractor Qs which contains a homoclinic class.

(¢) Every chain recurrence class R # Qy is contained in the orbit of a periodic

disk in a leaf of the foliation F°°.

(d) There exists a residual subset G" of U such that for every f € G" the diffeomor-
phism f has no attractors. In particular, f has infinitely many chain-recurrence

classes accumulating on Qy.
(e) For every f € U there is a unique Milnor attractor QcC Qs.

(f) If r > 2 then every f € U has a unique SRB measure whose support coincides

with a homoclinic class. Consequently, Q is a minimal attractor in the sense of

3The examples were obtained almost simultaneously.
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Milnor. If r = 1, then there exists a residual subset Gy of U such that for every

f € Gy we have that Q coincides with Qy and is a minimal Milnor attractor.

The goal of this subsection is to prove this theorem.

By inspection in the proofs, one can easily see that in fact the construction can
be made in higher dimensional torus, however, it can only be done in the isotopy
classes of Anosov diffeomorphisms. Also, it can be seen that condition (d) can be
slightly strengthened in the C'-topology.

It is clear that this example contrasts with the properties obtained by Bonatti
and Shinohara in [BS]. Indeed, for this example, the following question remains

unsolved (see [Pots] for more discussion on this question):

Question 3.3.8. Does a Cl-generic diffeomorphism in U have countably many

chain-recurrence classes?

We remark that the answer to this question for the C" topology with r > 2 is
false (see [BDV] section 3 and the discussion in [Pots]).

In [Pots] it is also proved that the example is in the hypothesis of the main
theorem of [BuFi] and consequently admits a unique measure of maximal entropy

(concept we will not define in this thesis but which is self-explanatory).

Construction of the example

In this section we shall construct an open set U of Diff"(T?) for » > 1 verifying
Theorem 3.3.7.

The construction is very similar to the one of Carvalho’s example ([Car]) following
[BV] with the difference that instead of creating a source, we create an expanding
saddle. We do not assume acquaintance of the reader with the referred construction
but we will in some stages point the reader to specific parts we will not reproduce.

We start with a linear Anosov diffeomorphism A : T3 — T? admitting a splitting
E° & E* where dim E° = 2.

We assume that A has complex eigenvalues on the E* direction so that E* cannot

split as a dominated sum of other two subspaces. For example, the matrix

_ o
o O =
oS = O

which has characteristic polynomial 1+ A2 — A\* works since it has only one real root,
and it is larger than one.

Considering an iterate, we may assume that there exists A < 1/3 satisfying:
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I(DA) s

<A (DAl <A

Let ¢ and r be different fixed points of A.

Consider 0 small enough such that Bgs(q) and Bgs(r) are pairwise disjoint and at
distance larger than 4004 (this implies in particular that the diameter of T? is larger
than 4004).

Let £* be a family of closed cones around the subspace E* of A which is preserved
by DA (that is D, A(E%(z)) C Int(E*(Ax))). We shall consider the cones are narrow
enough so that any curve tangent to £" of length bigger than L intersects any stable
disk of radius §. Let £° be a family of closed cones around E* preserved by DA™

From now on, ¢ remains fixed. Given £ > 0 such* that ¢ < §, we can choose
v sufficiently small such that every diffeomorphism g which is v-C%-close to A is
semiconjugated to A with a continuous surjection 4 which is e-C°-close to the identity
(this is a classical result on topological stability of Anosov diffeomorphisms, see [Wa]
and Proposition 2.3.1).

We shall modify A inside Bs(q) such that we get a new diffeomorphism F : T —
T3 that verifies the following properties:

F coincides with A outside Bs(q) and lies at C°-distance smaller than v from

A.

- The point ¢ is a hyperbolic saddle fixed point of stable index 1 and such that
the product of its two eigenvalues with smaller modulus is larger than 1. We

also assume that the length of the stable manifold of ¢ is larger than 9.

- D, F(&%(x)) C Int(E"(F(x))). Also, for every w € &%(x) \ {0} we have
IDE wlf < Allw]l.

- F preserves the stable foliation of A. Notice that the foliation will no longer
be stable.

- For some small 8 > 0 we have that ||D,Fv|| < (1+ §)||v|| for every v tangent
to the stable foliation of A preserved by F' and every x.

This construction can be made using classical methods (see [BV] section 6). In-
deed, consider a small neighborhood U of g such that U C B, /2(q) such that U admits
a chart ¢ : U — D? x [—1, 1] which sends ¢ to (0,0) and sends stable manifolds of
A in sets of the form D? x {t} and unstable ones into sets of the form {s} x [—1,1].

We can modify A by isotopy inside U in such a way that the sets D? x {¢} remain an

4If K bounds ||Al| and ||[A7||7! then ;2= is enough.
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Figure 3.1: Modification of A in a neighborhood of g.

invariant foliation but such that the derivative of ¢ becomes the identity in the tan-
gent space to ¢ }(D? x {0}) which is invariant and such that the dynamics remains
conjugated to the initial one. At this point, the norm of the images of unit vectors
tangent to the stable foliation of A are not expanded by the derivative.

Now, one can modify slightly the dynamics in ¢! (D? x {0}) in order to obtain
the desired conditions on the eigenvalues of ¢ for F'. It is not hard to see that for
backward iterates there will be points outside ¢ ~1(ID? x {0}) which will approach ¢ so
one can obtain the desired length of the stable manifold of ¢ by maybe performing yet
another small modification. All this can be made in order that the vectors tangent
to the stable foliation of A are expanded by DF by a factor of at most (1+ ) with
[ as small as we desire.

The fact that we can keep narrow cones invariant under DF' seems difficult to
obtain in view that we made all this modifications. However, the argument of [BV]
(page 190) allows to obtain it: This is achieved by conjugating the modification with
appropriate homotheties in the stable direction.

The last condition on the norm of DF' in the tangent space to the stable foliation
of A seems quite restrictive, more indeed in view of the condition on the eigenvalues
of g. This condition (as well as property (P7) below) shall be only used (and will be
essential) to obtain the ergodic properties of the diffeomorphisms in the open set we
shall construct. Nevertheless, one can construct such a diffeomorphism as explained
above.

There exists a C'-open neighborhood U; of F such that for every f € U; we have
that:

(P1) There exists a continuation ¢ of ¢ and r; of r. The point r; has stable index

2 and complex eigenvalues. The point ¢y is a saddle fixed point of stable index
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1, such that the product of its two eigenvalues with smaller modulus is larger
than 1 and such that the length of the stable manifold is larger than §.

(P2) D,f(E%(x)) C Int(E*(f(z))). Also, for every w € £%(x) we have

1D few]| = Allw]].

(P3) f preserves a foliation F° which is C°-close to the stable foliation of A. Also,
each leaf of F° is C'-close to a leaf of the stable foliation of A.

(P4) For every = ¢ Bs(q) we have that if v € £%(z) then
1Dz fol] < Affo]l.
This is satisfied for F' since F' = A outside Bs(q).
(P5) There exists a continuous and surjective map hy : T — T? such that
hiof=Aohy
and d(h(z), ) < € for every = € T3.

The fact that properties (P1), (P2) and (P4) are C'—robust is immediate, ro-
bustness of (P5) follows from the choice of v.

Property (P3) holds in a neighborhood of F since F' preserves the stable foliation
of A which is a C'—foliation (see [HPS] chapter 7). The foliation F° will be tangent
to £ a bidimensional bundle which is f-invariant and contained in £°. Other way
to proceed in order to obtain an invariant foliation is to use Theorem 3.1 of [BuFi]
of which all hypothesis are verified here but we shall not state it.

Since the cones £" are narrow and from (P3) one has that:

(P6) Every curve of length L tangent to £" will intersect any disc of radius 24 in
Fes.

Finally, there exists an open set Us C U, such that for f € Us we have:
(P7) || Do fv]] < (1 + B)|lv]| for every v € £(z) and every .

For this examples there exists a unique quasi-attractor for the dynamics.

Lemma 3.3.9. For every f € U, there exists an unique quasi-attractor Q. This

quast attractor contains the homoclinic class of vy, the continuation of r.
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PROOF. We use the same argument as in [BLY].

There is a center stable disc of radius bigger than 20 contained in the stable
manifold of 7 ((P3) and (P4)). So, every unstable manifold of length bigger than L
will intersect the stable manifold of r; ((P6)).

Let Q be a quasi attractor, so, there exists a sequence U, of neighborhoods of
Q such that f(U,) C U, and Q =, U,..

Since U, is open, there is a small unstable curve v contained in U,. Since D f
expands vectors in £ we have that the length of f*() tends to +o00 as n — +oo.
So, there exists ko such that f%(y) N W?*(r) # (. So, since f(U,) C U, we get that
U, "NW3(rs) # 0, using again the forward invariance of U, we get that vy € U,,.

This holds for every n so ry € Q. Since the homoclinic class of r¢ is chain
transitive, we also get that H(ry) C Q.

From Conley’s theory (subsection 1.1.4), every homeomorphism of a compact
metric space there is at least one chain recurrent class which is a quasi attractor.
This concludes.

(I

The example verifies the mechanism of Proposition 2.2.1

We shall consider f € U so that it verifies (P1)-(P6).

Let A° and A" be, respectively, the stable and unstable foliations of A, which
are linear foliations. Since A is a linear Anosov diffeomorphism, the distances inside
the leaves of the foliations and the distances in the manifold are equal in small
neighborhoods of the points if we choose a convenient metric.

Let A; (x) denote the ball of radius 7 around z inside the leaf of x of A®. For any
n > 0, it is satisfied that A(Aj(z)) C A} 5(Az) (an analogous property is satisfied
by Aj(r) and backward iterates).

The distance inside the leaves of 7 is similar to the ones in the ambient manifold
since each leaf of F¢ is Cl-close to a leaf of A®. That is, there exists p ~ 1 such
that if x,y belong to a connected component of F¢(2) N Bygs(z) then p~td.s(z,y) <
d(z,y) < pdes(z,y) where F(z) denotes the leaf of the foliation passing through z
and d.s the distance restricted to the leaf.

For z € T3 we define W£5(z) (the local center stable manifold of z) as the 24-
neighborhood of z in F*(z) with the distance d.s.

Also, we can assume that for some v < min{||A[|7, |47~ §/10} the plaque
W (z) is contained in a /2 neighborhood of Ajs(x), the disc of radius 20 of the
stable foliation of A around .

Lemma 3.3.10. We have that f(Wg(x)) C WE(f(x)).

loc
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PROOF. Consider around each z € T? a continuous map b, : D* x [—1,1] — T3 such
that b, ({0} x [—1,1]) = AY%(z) and b,(D? x {t}) = A55(b.({0} x {t})). For example,
one can choose b, to be affine in each coordinate to the covering of T3.

Thus, it is not hard to see that one can assume also that b,(3D? x {t}) =

A5(b:({0} x {t})) and that b,({y} x [-1/3,1/3]) = A5 (b.({y} x {0})). Let

B, = b,(D* x [~7/2,7/2)).

We have that A(B,) is contained in by, (3D? x [-1/2,1/2]). Since f is e-C%near
A, we get that f(B,) C by (3D? x [—1,1]).

Let 1 : D*x[~1,1] — D such that m (z, t) = 2. We have that 7 (b7, (Wi (f(x))))
contains %Dz from how we chose v and from how we have defined the local center
stable manifolds®.

Since f(F*(z)) C F(f(z)) and f(WE(x)) C by (3D? x [—1,1]) we get the
desired property.

O

The fact that f € U; is semiconjugated with A together with the fact that the
semiconjugacy is e-C°-close to the identity gives us the following easy properties
about the fibers (preimages under hy) of the points.

We denote

I - U C Wigi(x) = Wigi(2)

loc
the unstable holonomy where z € F*(z) and U is a neighborhood of z in W (z)
which can be considered large if z is close to z in F*(z). In particular, let v > 0 be
such that if z € F¥(x) then the holonomy is defined in a neighborhood of radius ¢

of .
Proposition 3.3.11. Consider y = hy(z) for x € T?:

1. h;l({y}) is a compact connected set contained in W3 (x).

2. If z € Fy(x), then hf(H;Z(hJil({y}))) is exactly one point.

PROOF. (1) Since hy is e-C°-close the identity, we get that for every point y € T?,
h;l({y}) has diameter smaller than €. Since ¢ is small compared to 4, it is enough
to prove that iy ({y}) C Wi (z) for some z € h7'({y}).

Assume that for some y € T3, h;l({y}) intersects two different center stable

leaves of F in points x; and 5.

°In fact, b;(lz)(Wl‘;Sc(g(x))) N iD? x [—1,1] is the graph of a C! function from 1D? to [—v/2,7/2]

if b, is well chosen.
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Since the points are near, we have that F}(zy) N Wi (z2) = {z}. Thus, by
forward iteration, we get that for some ny > 0 we have d(f"°(xy), f"(z)) > 30.

Lemma 3.3.10 gives us that d(f™ (z2), f™(z)) < 25. We get that d(f™(x1), f"(z2)) >
d which is a contradiction since { f"(z1), f"(z2)} C hJIl({A"O (y)}) which has diam-
eter smaller than ¢ < 4.

Also, since the dynamics is trapped in center stable manifolds, we get that the

fibers must be connected since one can write them as

W ({h(@)}) = () 1 Wi (f " (2))).
n>0
(2) Since f~(h;'({y})) = h; ({A™"(y)}) we get that diam(f"(h;'({y}))) <e
for every n > 0.
This implies that there exists ng such that if n > ng then f‘"(l’[;?z(h;l({y}))) is
sufficiently near f‘”(h;l({y})) So, we have that

diam(f (I (h; ' ({y})))) < 28 <0,

Assume that hf(quz(h]?l({y}))) contains more than one point. These points
must differ in the stable coordinate of A, so, after backwards iteration we get that
they are at distance bigger than 3. Since h; is e-C°-close the identity this represents
a contradiction.

O

Remark 3.3.12. The second statement of the previous proposition gives that the

fibers of h; are invariant under unstable holonomy.

&

The following simple lemma is essential in order to satisfy the properties of Propo-
sition 2.2.1.

Lemma 3.3.13. For every f € Uy, given a disc D in WS

loc

(x) whose image by hy

has at least two points, then D N F"(ry) # 0 and the intersection is transversal.

PROOF. Given a subset K C F®(z) we define its center stable diameter as the
diameter with the metric d.; defined above induced by the metric in the manifold.
We shall first prove that there exists ny such that diam.(f~"°(D)) > 1000:

Since D is arc connected so is h¢(D), so, it is enough to suppose that diam(D) < ¢.
We shall first prove that hy(D) is contained in a stable leaf of the stable foliation of
A. Otherwise, there would exist points in hy(D) whose future iterates separate more
than 20, this contradicts that the center stable plaques are trapped for f (Lemma
3.3.10).
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One now has that, since A is Anosov and that hs(D) is a connected compact set
with more than two points contained in a stable leaf of the stable foliation, there
exists ng > 0 such that A7"°(h;(D)) has stable diameter bigger than 2000 (recall
that diam T® > 4000). Now, since h; is close to the identity, one gets the desired
property.

We conclude by proving the following:

Claim. If there exists ng such that f~"°(D) has diameter larger than 1000, then D

intersects F"(ry).

PRrROOF. This is proved in detail in section 6.1 of [BV] so we shall only sketch it.

If f="0(D) has diameter larger than 1000, from how we choose § we have that
there is a compact connected subset of f~"0(D) of diameter larger than 356 which
is outside Bgs(q).

So, f~™~Y(D) will have diameter larger than 100§ and the same will happen
again. This allows to find a point € D such that Vn > ny we have that f~"(z) ¢
Bes(q)-

Now, considering a small disc around x we have that by backward iterates it will
contain discs of radius each time bigger and this will continue while the disc does not
intersect Bs(q). If that happens, since f~"(z) ¢ Bgs(q) the disc must have radius at
least 30.

This proves that there exists m such that f~"™(D) contains a center stable disc of
radius bigger than 24, so, the unstable manifold of r¢ intersects it. Since the unstable
manifold of r¢ is invariant, we deduce that it intersects D and this concludes the proof
of the claim.

Transversality of the intersection is immediate from the fact that D is contained

in F¢ which is transversal to FY.

%

O

We obtain the following corollary which puts us in the hypothesis of Proposition
2.2.1:

Corollary 3.3.14. For every f € U, let x € 8h;1({y}) (relative to the local center
stable manifold of h;l({y})), then, x belongs to the homoclinic class of vy, and in
particular, to Qy.

PROOF. Notice first that the stable manifold of r; coincides with F°(ry) which is
dense in T3. This follows from the fact that when iterating an unstable curve, it
will eventually intersect the stable manifold of 7, since the stable manifold of r is

invariant, we obtain the density of F(ry).
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Now, considering x € 8/1]71({@/}), and € > 0, we consider a connected component

D of F*(ry) N B.(z). Clearly, since the fibers are invariant under holonomy and

NS 3h]71({y}) we get that D contains a disk D which is sent by hy to a non trivial

connected set. Using the previous lemma we obtain that there is a homoclinic point
of r; inside B.(x) which concludes.

O

The following corollary will allow us to use Theorems 1.2.17 and 1.2.26.

Corollary 3.3.15. For every f € Uy we have that qf € H(ry).

ProOF. Consider U, a neighborhood of ¢y, and D a center stable disc contained in
U.

Since the stable manifold of gy has length bigger than 6 > e, after backward
iteration of D one gets that f~*(D) will eventually have diameter larger than e, thus
h¢(D) will have at least two points, this means that ¢; € ahjjl({h(qf)}). Corollary
3.3.14 concludes.

O

We finish this section by proving the following theorem which is the topological
part of Theorem 3.3.7.

Theorem 3.3.16. (i) For every f € U, there exists a unique quasi-attractor Qy
which contains the homoclinic class H(ry) and such that every chain-recurrence

class R # Qy is contained in a periodic disc of F°.

(i1) For every f € Gge N Gppy NU; we have that H(ry) = Qf and is contained in

the closure of the sources of f.

(11i) For every r > 2, there erists a C*-open dense subset Us of Uy and a residual
subset G" C Us N Diff"(T?) such that for every f € G" the homoclinic class

H(ry) intersects the closure of the sources of f.

(iv) For every f € Uy there exists a unique Milnor attractor contained in Q.

PROOF. Part (i) follows from Proposition 2.2.1 since hy is the desired semiconjugacy:
Indeed, Proposition 3.3.11 and Corollary 3.3.14 show that the hypothesis of the
mentioned proposition are verified (notice that A is clearly expansive).

Part (ii) follows from Theorem 1.2.17 using Corollary 3.3.15. Notice that E°
cannot be decomposed in two D f-invariant subbundles since D f has complex eigen-
values in ry.

Similarly, part (iii) follows from Theorem 1.2.26. The need for considering Us;

comes from [BDy].
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To prove (iv) notice that every point which does not belong to the fiber of a
periodic orbit belongs to the basin of Qj: Since there are only countably many
periodic orbits and their fibers are contained in two dimensional discs (which have
zero Lebesgue measure) this implies directly that the basin of Q; has total Lebesgue
measure:

Consider a point  whose omega-limit set w(z) is contained in a chain recurrence
class R different from Q. Then, since this chain recurrence class is contained in the
fiber h;l(O) of a periodic orbit O of A, which in turn is contained in the local center
stable manifold of some point z € T®. This implies that some forward iterate of x
is contained in W5 (z). The fact that the dynamics in W, is trapping (see Lemma
3.3.10) and the fact that Oh;'(O) C Qy (see Corollary 3.3.14) gives that x itself is
contained in h;l((’)) as claimed.

Now, Lemma 1.1.18 implies that Q contains an attractor in the sense of Milnor.

O

We have just proved parts (a), (b), (c) and (d) of Theorem 3.3.7 hold in Us. In
fact, for the C''-topology, we have obtain a slightly stronger property than (d) holds
in U;. Also, we have proved that (e) is satisfied.

Remark 3.3.17. The choice of having complex eigenvalues for A was only used to
guaranty that £“ admits no D f-invariant subbundles. One could have started with
any linear Anosov map A and modify the derivative of a given fixed or periodic point

r to have complex eigenvalues and the construction would be the same.

&

Ergodic properties

In this section we shall work with f € Uy so that properties (P1)-(P7) are verified.
Consider the open set U defined above such that f(U) C U and consider:

Ap=()fU)

We shall show that the hypothesis of Theorem 1.3.11 are satisfied for Ay, and
thus, we get that there are at most finitely many SRB measures such that the union
of their (statistical) basins has full Lebesgue measure in the topological basin of Ay.
We must show that in every unstable arc there is a positive Lebesgue measure set of
points such that A®(z) < 0.

Proposition 3.3.18. For every x € T? and D C W;*“(z) an unstable arc, we have

oc

full measure set of points which have negative Lyapunov exponents in the direction
Ecs.
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PROOF. The proof is exactly the same as the one in Proposition 6.5 of [BV] so
we omit it. Notice that conditions (P2), (P4) and (P7) in our construction imply
conditions (i) and (i¢) in section 6.3 of [BV].

]

To prove uniqueness of the SRB measure, we must show that there is a unique
minimal set of the unstable foliation inside Ay to apply Theorem 1.3.12.

However, the fact that the stable manifold of r; contains WS (rs), gives that
every unstable manifold intersects W*(ry) and so we get that every compact subset
of Ay saturated by unstable sets must contain W This implies that for every

xr € Fu(ry) we have that Fu(ry) = F%(z) and F*(rs) is the only compact set with
this property (we say that F*(rs) is the unique minimal set of the foliation F*).

We get thus that f admits an unique SRB measure p and clearly, the support of
this SRB measure is F*(ry).

We claim that F“(r;) = H(rs): this follows from the fact that the SRB measure
i is hyperbolic (by Proposition 3.3.18) and that the partially hyperbolic splitting

separates the positive and negative exponents of y and so verifies the hypothesis of
Theorem 1.3.8.

Finally, since the SRB measure has total support and almost every point con-
verges to the whole support, we get that the attractor is in fact a minimal attractor

in the sense of Milnor. We have proved:

Proposition 3.3.19. If f € U, is of class C?, then f admits a unique SRB measure

whose support coincides with F*(rg) = H(ry). In particular, F*(ry) is a minimal

attractor in the sense of Milnor for f.

The importance of considering f of class C? comes from the fact that with lower
regularity, even if we knew that almost every point in the unstable manifold of r
has stable manifolds, we cannot assure that these cover a positive measure set due
to the lack of absolute continuity in the center stable foliation.

However, the information we gathered for smooth systems in Uy allows us to
extend the result for C''-generic diffeomorphisms in . Recall that for a C'-generic

diffeomorphisms f € Uy, the homoclinic class of r¢ coincides with Q.

Theorem 3.3.20. There exists a Cl-residual subset Gy C Uy such that for every
f € G the set Qf = H(ry) is a minimal Milnor attractor.

PRrooF. Notice that since r; has a well defined continuation in U,, it makes sense to
consider the map f W which is naturally semicontinuous with respect to the
Haussdorff topology. Thus, it is continuous in a residual subset G; of U,. Notice that
since the semicontinuity is also valid in the C2-topology, we have that G; N Diff?(T?)

is also residual in Uy N Diff?(T?).
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It suffices to show that the set of diffeomorphisms in Gy for which Fu(ry) is a
minimal Milnor attractor is a Gy set (countable intersection of open sets) since we
have already shown that C? diffeomorphisms (which are dense in G;) verify this
property.

Given an open set U, we define

Ut(f) = () £(0)

n<0
Let us define the set Oy (e) as the set of f € Gy such that they satisfy one of the

following (disjoint) conditions

- Fu(ry) is contained in U or
- Fu(rp) NU" # 0 and Leb(U*(f)) < ¢

We must show that this sets are open in G; (it is not hard to show that if we
consider an countable basis of the topology and {U,} are finite unions of open sets
in the basis then Gy =1, ,, Ov, (1/m)).

To prove that these sets are open, we only have to prove the semicontinuity of
the measure of U™ (f) (since the other conditions are clearly open from how we chose
G).

Let us consider the set K = U\U*(f), so, we can write K as an increasing union
K= U,.»; Kn where K, is the set of points which leave U in less than n iterates.

So, if_Leb(UJr(f)) < &, we can choose ng such that Leb(U\K,,) < ¢, and in fact
we can consider K/, a compact subset of K, such that Leb(U\K}, ) < ¢.

In a small neighborhood N of f, we have that if f' € N, then K, C U\UT([").
This concludes.

a

This completes the proof of part (f) of Theorem 3.3.7.

3.3.3 Example of Plykin type

The examples in subsection 3.3.2 cannot be embedded in any manifold as the ones
of Bonatti-Li-Yang. We were able to adapt the construction in order to get an
example with similar properties which can be embedded in any isotopy class of
diffeomorphisms of a manifold. However, we were not able to obtain the same strong

ergodic properties (see [Pots] for more discussion and problems).
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Theorem 3.3.21. For every d-dimensional manifold M and every isotopy class of
diffeomorphisms of M there exists a C'-open set U of Diff"(M) such that for some
open neighborhood U in M :

(a) Every f € U has a unique quasi-attractor Q¢ in U which contains a homo-
clinic class and has a partially hyperbolic splitting Tg, M = E* @& E* which 1is

coherent.

(b) Every chain recurrence class R # Qy is contained in the orbit of a periodic leaf
of the lamination F° tangent to E at Qy.

(c) There exists a residual subset G™ of U such that for every f € G" the diffeomor-
phism f has no attractors. In particular, f has infinitely many chain-recurrence

classes.
(d) For every f € U there is a unique Milnor attractor Q C Q.

The examples here are modifications of the product of a Plykin attractor and the
identity on the circle S'. One can also obtain them in order to provide examples of
robustly transitive attractors in dimension 3 with splitting £°° & E". The author is
not aware of other known examples of such attractors other than Carvalho’s example
which is only possible to be made in certain isotopy classes of diffeomorphisms®.

In this section we shall show how to construct an example verifying Theorem
B. We shall see that we can construct a quasi-attractor with a partially hyperbolic
splitting £ & E" such that £ admits no sub-dominated splitting. In case E is
volume contracting, it will turn out that this quasi-attractor is in fact a robustly
transitive attractor (thus providing examples of robustly transitive attractors with
splitting £ @ E* in every 3—dimensional manifold) and when there is a periodic
saddle of stable index 1 and such that the product of any two eigenvalues is greater
than one and using Theorems 1.2.17 and 1.2.26 we shall obtain that the quasi-
attractor will not be isolated for generic diffeomorphisms in a neighborhood.

We shall work only in dimension 3. It will be clear that by multiplying the
examples here with a strong contraction, one can obtain examples in any manifold
of any dimension.

A main difference between this construction and the one done in section 3.3.2
is the use of blenders instead of the argument a la Bonatti-Viana. Blenders were
introduced in [BD;] (see subsection 1.3.6) and constitute a very powerful tool in

order to get robust intersections between stable and unstable manifolds of compact

6N. Gourmelon communicated me the possibility of constructing examples of this kind by bifur-
cating other robustly transitive diffeomorphisms such as perturbations of time-one maps of Anosov

flows.
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sets. We shall only use the facts presented in subsection 1.3.6 and not enter in
their definition or construction for which there are many excellent references (we

recommend chapter 6 of [BDV] in particular).

Construction of the example

Let us consider P : D? — D? the map given by the Plykin attractor in the disk D?
(see [Roby)).

We have that P(D?) C int(D?), there exist a hyperbolic attractor T C D? and
three fixed sources (we can assume this by considering an iterate).

There is a neighborhood N of T which is homeomorphic to the disc with 3 holes

removed that satisfies that P(N) C N and

T=()P"N)

n>0

It is well known that given € > 0, one can choose a finite number of periodic
points si,...,sy and L > 0 such that if A = Ufil Wi(s;), then, for every x € T\ A
one has that A intersects both connected components of W2(z) \ {x}.

We now consider the map Fy : D? x S* < D? x S! given by Fy(x,t) = (P(z),t)
whose chain recurrence classes consist of the set T x S which is a (non transitive)
partially hyperbolic attractor and three repelling circles.

In [BD;] they make a small C* perturbation Fj of Fy, for whom the maximal
invariant set in U = N x S! becomes a C'-robustly transitive partially hyperbolic
attractor () which remains homeomorphic to T x S!.

This attractor has a partially hyperbolic structure of the type E* @ E@ E*. One
can make this example in order that it fixes the boundary of D? x S*, this allows
to embed this example (and all the modifications we shall make) in any isotopy
class of diffeomorphisms of any 3-dimensional manifold (since every diffeomorphism
is isotopic to one which fixes a ball, then one can introduce this map by a simple
surgery).

In [BD,] the diffeomorphism F; constructed verifies the following properties (see

[BD; | section 4.a page 391, also one can find the indications in [BDV] section 7.1.3):

(F1) F; leaves invariant a C'-lamination F° (see [HPS] chapter 7 for a precise

definition) tangent to E* & E° whose leaves are homeomorphic to R x S'.

(F2) There are periodic points py, . .., py of stable index 1 such that for every z € @
one has that the connected component of F¢(x) \ (Wi(p1)U...UWk(pn))
containing = has finite volume for every z € @\ UZN:1 Wi (p;). Here W} (p;)

denotes the L-neighborhood of p; in its unstable manifold with the metric

induced by the ambient.
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(F3) There is a periodic point ¢ periodic point of stable index 2 contained in a cu-
blender K such that for every 1 < ¢ < N the stable manifold of p; intersects
the activating region of K. By Proposition 1.3.10, the unstable manifold of ¢

is dense in the union of the unstable manifolds of p;.

(F4) The local stable manifold of ¢ intersects every unstable curve of length larger
than L.

Before we continue, we shall make some remarks on the properties. The hy-
pothesis (F1) on the differentiability of the lamination F* will be used in order to
apply the results on normal hyperbolicity of [HPS] (chapter 7, Theorem 7.4, see also
Section 1.4).

It can be seen in [BD;] that the construction of Fj is made by changing the
dynamics in finitely many periodic circles and this can be done without altering the
lamination F° which is C' before modification.

This is in fact not necessary; it is possible to apply the barehanded arguments of
the proof of Theorem 3.1 of [BuFi] in order to obtain that for the modifications we
shall make, there will exist a lamination tangent to the bundle E.

Hypothesis (F2) is justified by the fact that the Plykin attractor verifies the same
property and the construction of F; in [BD;| is made by changing the dynamics in
the periodic points by Morse-Smale diffeomorphisms which give rise property (F2)
(see section 4.a. of [BD;]). Notice that by continuous variation of stable and unstable
sets, this condition is C'*-robust.

Property (F3) is the essence in the construction of [BDy], es-blenders are the main
tool for proving the robust transitivity of this examples. As explained in subsection
1.3.6 this is a C'-open property.

Property (F4) is given by the fact that the local stable manifold of ¢ can be
assumed to be W§ (s) x S' with a curve removed, where s € Y is a periodic point.
This is also a C'-open property.

Let us consider a periodic point r; € () of stable index 1 and another one 7y of
stable index 2. We can assume they are fixed (modulo considering an iterate of F}).

Consider § > 0 small enough such that Bgs(r1) U Bgs(r2) is disjoint from:
- the periodic points py, ..., pn, ¢ defined above,

- the blender K,

- W) U~ UWE(pw)) and
- from F}.(q) (where L' is chosen such that F}.(q) intersects K).

In the same vein as in subsection 3.3.2 we shall first construct a diffeomorphism
F5 modifying F such that:
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N x [0,1]

{z} >x {0} ~ {a} > {1}

Figure 3.2: How to construct F; by small C*° perturbations in finitely many circles.

- F; coincides with F} outside Bs(rs).
- F), preserves the center-stable foliation of F7.

- DF, preserves narrow cones £“ and £ around the unstable direction £* and
the center stable direction E* @ E° of F respectively. Also, vectors in £ are
expanded uniformly by DF;, while every plane contained in £ verifies that the

volume” is contracted by DFE.
- The point ry remains fixed for F5 but now has complex eigenvalues in r5.

Before we continue with the construction of the example to prove Theorem 3.3.21,

we shall make a small detour to sketch the following:

Proposition 3.3.22. There exists an open C'-neighborhood V of Fy such that for

every f €V one has that f has a transitive attractor in U.

SKETCH. Notice that one can choose V such that for every f € V one preserves a
center-stable foliation close to the original one. Also, one can assume that properties
(F2) and (F3) still hold for the continuations p;(f) and ¢(f) since F» coincides with
Fy outside Bs(ry) and these are C''-robust properties.

Also, we demand that for every f € V, the derivative of f preserves the cones
E" and £, contracts volume in £ C £ (the plane tangent to the center-stable

foliation) and expands vectors in E* C £¥.

"This means with respect to the Riemannian metric which allows to define a notion of 2-

dimensional volume in each plane.
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Consider now a center stable disk D and an unstable curve v which intersect the

maximal invariant set

Q=) U).

n>0

Since by future iterations 7 will intersect the stable manifold of ¢(f) (property
(F3)) we obtain that by the A—lemma it will accumulate the unstable manifold
of g(f). Since the unstable manifold of ¢(f) is dense in the union of the unstable
manifolds W*(p,(f))U...UW"(pn(f)) we obtain that the union of the future iterates
of v will also be dense there.

Now, iterating backwards the disk D we obtain, using that D f~! expands volume
in the center-stable direction that the diameter of the disk grows exponentially with
these iterates.

Condition (F2) will now imply that eventually the backward iterates of D will
intersect the future iterates of . This implies transitivity.

O

Now, we shall modify F» inside Bs(ry) in order to obtain an open set to satisfy
Theorem 3.3.21. So we shall obtain F3 such that:

- F3 coincides with Fy outside Bjs(rq).
- Fj preserves the center-stable lamination of F5.

- DFj preserves narrow cones £“ and £ around the unstable direction E* and
the center stable direction £ of Fy. Also, vectors in £“ are expanded uniformly

- ry is a saddle with stable index 1, the product of any pair of eigenvalues is larger

than 1 and the stable manifold of r; intersects the complement of Bgs(ry).

We obtain a C* neighborhood U; of F3 where for f € U, if we denote

A= f(U):

n>0

(P1’) There exists a continuation of the points pi,...,pn,q, 71,72 which we shall
denote as p;(f), q(f) and r;(f). The point r1(f) is a saddle of stable index 1

and its stable manifold intersects the complement of B(ry, 66).

(P2’) There is a D f-invariant families of cones £* in Qy and for every v € £%(x) we
have that
|1 Dz foll = Allv].
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(P3’) f preserves a lamination F° which is C° close to the one preserved by F3 and
which is trapped in the sense that there exists a family W (z) C F(x) such
that for every point = € Qy the plaque W () is homeomorphic to (0,1) x S*

and verifies that

F(Wi(@)) € Wi

Moreover, the stable manifold of  ( f) intersects the complement of W (r1(f)).

(P4’) Properties (F2),(F3) and (F4) are satisfied for f and every curve 7 tangent to
E" of length larger than L intersects the stable manifold of ¢(f).

Notice that (P4’) implies that there exists a unique quasi-attractor Qf in U for
every f € U which contains the homoclinic class H(q(f)) of ¢(f) (the proof is the

same as Lemma 3.3.9).

The example verifies the mechanism of Proposition 2.2.1

We shall show that every f € U is in the hypothesis of Proposition 2.2.1 which will
conclude the proof of Theorem 3.3.21 as in Theorem 3.3.16. We shall only sketch
the proof since it has the same ingredients as the proof of Theorem A, the main
difference is that instead of having an a priori semiconjugacy we must construct one.

To construct the semiconjugacy, one uses property (P3’), specifically the fact
that (W (2)) € W () (compare with Lemma 3.3.10) to consider for each point
x € Ay the set:

Ar = () " Wi (F(@))
n>0
(compare with Proposition 3.3.11 (1)). One easily checks that the sets A, constitute a
partition of Ay into compact connected sets contained in local center stable manifolds
and that the partition is upper-semicontinuous. It is not hard to prove that if Ay :
Ay — Ay/. is the quotient map, then, the map g : Ay/. — A/ defined such that

h f O f =4go h f
is expansive (in fact, Ay/. can be seen to be homeomorphic to T and ¢ conjugated
to P). See [Da] for more details on this kind of decompositions and quotients.
Since fibers are contained in center stable sets, we get that h; is injective on
unstable manifolds and one can check that the fibers are invariant under unstable

holonomy (see the proof of Proposition 3.3.11 (2)). Stable sets of g are dense in
Af/n.
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Qf ll Y, Qf |

Figure 3.3: The set A, is surrounded by points in W4(q) C Qy

The point 71 (f) will be in the boundary of h;l({hf(r(f))}) since its stable man-
ifold is not contained in WS (ry(f)).

We claim that the boundary of the fibers restricted to center-stable manifolds is
contained in the unique quasi-attractor Qy. This is proven as follows:

Assume that = € 0h]71({hf(x)}) and consider a small neighborhood V' of x.
Consider a disk D in W (z), since z is a boundary point, we get that hf(D) is a
compact connected set containing at least two points in the stable set of hs(z) for g,
so by iterating backwards, and using (F2) (guaranteed for f by (P4’)) we get that
there is a backward iterate of D which intersects F*(¢) C Qs which concludes.

Now, Theorem 3.3.21 follows with the same argument as for Theorem 3.3.16,
using Proposition 2.2.1 and the fact that r;(f) is contained in Q.

O

3.3.4 Derived from Anosov revisited

The first examples of non-hyperbolic C'-robustly transitive diffeomorphisms were
given by Shub (see [HPS] chapter 8) in T* by considering a skew-product over TZ.
Maiie then improved the example to obtain a non-hyperbolic C'-robustly transitive
diffeomorphism of T? by deformation of an Anosov diffeomorphism ([M;]). These ex-
amples were strongly partially hyperbolic with central dimension 1. Bonatti and Diaz
([BD4]) constructed examples with arbitrary central dimension as well as examples
isotopic to the identity but still strongly partially hyperbolic®.

Finally, Bonatti and Viana ([BV]) constructed examples of robustly transitive dif-
feomorphisms without any uniform bundle by deforming an Anosov diffeomorphism
of T* and improving the ideas from Maiie’s example. In all the examples constructed
by deformation of an Anosov diffeomorphism there is an underlying property which
is that the dominated splitting (which must exist by Theorem 1.2.17) has dimensions

8Bonatti also constructed an (unpublished) example of robustly transitive partially hyperbolic

diffeomorphism of T2 which was not strongly partially hyperbolic using blenders.
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coherent with the splitting the Anosov diffeomorphism has. This simplifies a little
the proofs and it is natural to construct the examples this way.

We present here a very similar construction which does not introduce new ideas.
However, we believe that such an example is not yet very well understood and may
represent an important model for starting to study partially hyperbolic systems with

two dimensional center and mixed behavior inside it.

Theorem 3.3.23. There exists an open set U C Diff' (T®) in the isotopy class of a
linear Anosov diffeomorphism A with unstable dimension 2 such that for every f € U

we have that:

- f is partially hyperbolic with splitting TT® = E* & E* with dim E* = 1 and

such that E* admits no subdominated splitting.

- f is transitive.

PROOF. Let us consider a linear Anosov automorphism A € SL(3,7Z) such that the
eigenvalues of A verify 0 < A\ < 1/3 < 3 < Ay < A3 and have defined eigenspaces
E?) E* and E"" respectively.

We denote p : R3 — T3 the covering projection. Notice that since A\; oAz = 1 we
have that Ay < 1.

We choose 0 > 0 to be defined later (in the same way as in section 3.3.2) and we

make a small C%-perturbation fy of A supported on B;(p(0)) such that:

- The tangent map D f; preserves narrow cones C* and C*® around E"* and

E* @ E" respectively and uniformly expands vectors in C*.

- The point p(0) becomes a fixed point with stable index 2 and complex stable

eigenvalues.
- The jacobian of fy in any 2—plane inside C* is smaller than 1.

- The C°-distance between fy and A is smaller than . Here, ¢ is chosen in a
way that every homeomorphism at C°-distance smaller than 2¢ of A is semi-
conjugated to A by a continuous map at distance smaller than ¢ from the

identity.

This modification can be made in the same way as we have done for the construc-
tion of the example for Theorem 3.3.7.

We shall first consider a small C'—open neighborhood U of f, such that for every
f € U we have that:

- The tangent map of Df preserves the cones C* and C®, uniformly expands

vectors in C* and the jacobian of f in any 2—plane inside C* is smaller than 1.
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- The maximal invariant set of f outside Bs(p(0)) is a hyperbolic set Ay with
invariant splitting £* @ E" @ E*" which is close to the invariant splitting of A
at those points and such that the norm of vectors in an invariant cone around
E" @ E** multiplies by 3 outside Bs(p(0)).

- The C°-distance of f and A is smaller than 2¢.

We obtain that for every f € U there exists hy : T?> — T? a semiconjugacy with
A which is at C°—distance ¢ of the identity, that is, we have that hyo f = Aoh; and
we have that d(h¢(x),x) < 0. Also, we can assume that ¢ is such that the distance
between the connected components of B = p~'(Bss(p(0))) is larger than 1000.

We can choose M such that for every disc D of radius 20 outside B and every
curve of length larger than M and such that its image by H; (the lift of i) to R? is
close to an arc of stable manifold of A we have that it has an integer translate which
intersects D.

Now, consider two open sets U and V in T3, we must show that there exists n > 0
such that f*(U) NV # (. We shall work in the universal cover R3 of T®. The lift
of f shall be denoted as f . Let us denote U, and V[ to connected components of
p 1 (U) and p~ (V) respectively.

Since there is an invariant cone C* where vectors are expanded, we get that the
diameter of Uy grows exponentially with future iterates of f.

It is not hard to show that there exists a point = € Uy and ng > 0 such that for
every n > ng we have that f"(z) ¢ B. Indeed, once the diameter of f™ (Uy) is larger
than 1006, there exists a compact connected subset C of Uy such that f”l(Cl) does
not intersect B and diam(f~™(C})) > 408. Now, we obtain inductively a decreasing
intersection of sets C}, such that f"l”“(C'k) does not intersect B and has large enough
diameter. This implies that in the intersection of all those sets one has the desired
point (see the proof the claim inside Lemma 3.3.13).

In a similar fashion, there exists a point y € Vj such that its backward iterates
after some ny < 0 are disjoint from B (here it is essential the fact that the jacobian
of f contracts uniformly the volume in the cone C*).

Now, we consider a small disk D; tangent to a small cone around E" & E"*
centered in f™(z) and contained in "0 (Uy). Iterating forward an using the fact that
vectors in that cone are expanded when are outside p~'(B(p(0),d)) and the point
£ (z) remains outside B we get that eventually, f*(Uy) contains a disk Dy C f*(Uy)
whose internal radius is greater than 26 and whose center is contained in B¢

For past iterates we consider a disk D3 whose tangent space belongs to a narrow
cone around £ and we know that by volume contraction its backward iterates

grow exponentially in diameter?. We get that if H; is the lift of hy we get that

9This could require using dynamical coherence, but we will ignore this issue. In any case, we
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Hy(f~"(Vh)) contains a curve transverse to the cone around E" @ E"* and thus
when iterating backwards by A we obtain that its length grows exponentially and it
becomes close to the stable direction. Since Hy is at distance smaller than ¢ of the
identity, we get that eventually it has a translate which intersects D, by the remark
made above which concludes.

O

3.4 Trapping quasi-attractors and further ques-

tions

To close this chapter, we will introduce a definition of a kind of quasi-attractors
which we believe to be in reach of understanding. The definition is motivated by the
examples of Bonatti-Li-Yang as well as the examples presented in subsection 3.3.2.
The rest of the examples presented in section 3.3 was essentially introduced in order
to show that understanding this kind of quasi-attractors is not the end of the story,

even in dimension 3.

Definition 3.4.1 (Trapping quasi-attractors). Let Q be a quasi-attractor of a dif-
feomorphism f : M — M admitting a partially hyperbolic splitting of the form
ToM = E“ & E*. We will say that Q is a trapping quasi-attractor if it admits a
locally f-invariant plaque family {W¢*},co verifying that

FOVE) cwy?
¢

This sets must be compared with chain-hyperbolic chain-recurrence classes defined
in [CP] which have a similar yet different definition and have played an important role
in the proof of the C''-Palis’ conjecture on dynamics far from homoclinic bifurcations.

Hyperbolic attractors are of course examples of trapping quasi-attractors. Both
the examples of Bonatti-Li-Yang and the ones presented in section 3.3.2 are non-
hyperbolic examples of this type.

As was mentioned, the results of Bonatti-Shinohara and the ones presented in
section 3.3.2 present very different properties and it seems a natural to try to under-
stand which are the reasons for this different behaviour.

The author’s impression is that the different phenomena is related with the topol-
ogy of the intersection of the quasi-attractor with center stable plaques: In one case

(Bonatti-Li-Yang’s example) there is room to eject saddle points, and in the other

can use it because of the results in Chapter 5.
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one, the quasi-attractor surrounds the point which one would like to eject prohibiting
its removal from the class.

What follows is speculation, and moreover, it is restricted to the 3-dimensional
case. We are also assuming that the splitting is of the form ToM = E“ & E* with
dim £* =1 and such that £ does not admit a sub-dominated splitting.

It is in principle not obvious how to define the “topology of the intersection of the
quasi-attractor with center-stable plaques”. We propose that the following should
be studied, and we hope pursuing this line in the future:

It should be possible to make a quotient of the dynamics along center-stable leaves
in order to obtain an expansive quotient which can be embedded as an expansive
attractor of a 3-dimensional manifold (see Section 5.4 for an explicit construction in
a particular case). Then, the recent classification by A. Brown [Bro] should allow one
to classify these attractors in terms of the topology of the intersection with center-
stable plaques. We expect to obtain that if the quotient attractor is one-dimensional
then one will be able to perform the techniques of Bonatti and Shinohara in order to
get that these quasi-attractors share the same properties as the example of Bonatti-
Li-Yang.

In the case the dimension of the attractor has topological dimension 3, we expect
that the properties will be similar to the ones obtained for the example in subsection
3.3.2.

It remains to understand also the case where the quotient has topological dimen-
sion 2. Although it is not hard to construct examples of this behavior, it seems that
a stronger understanding of them needs to be acquired in order to have a more clear
picture on the possible dynamics such a quasi-attractor may have.

We finish this section by pointing out that trapping quasi-attractors of course
do not cover all the possibilities, even in the case where the decomposition is of the
form ToM = E® ¢ E".

On the one hand, the examples of subsection 3.3.3 show that this may not happen,
however, those examples share some property with trapping quasi-attractors since it
is possible to find a family of locally invariant plaques (whose topology is not of a disk
but a cylinder) which are “trapped”. Indeed, this property was the key ingredient
in the proof of Theorem 3.3.21.

On the other hand, the example in subsection 3.3.4 seems the real challenge if
one wishes to completely understand quasi-attractors in dimension 3 with splitting of
the form To M = E @ E*. The problem is that the center-stable direction contains
“unstable” behavior, and this is far less understood. C. Bonatti and Y. Shi ([BSh])
have provided new examples by the study of perturbations the time one map of the
Lorenz attractor (see [BDV] chapter 9) which essentially share this problems as well

as having several other new interesting properties. It is surely of great interest to have
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a big list of examples before one attempts to attack the problem of understanding

general quasi-attractors in dimension 3.
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Chapter 4
Foliations

This chapter has two purposes. One the one hand, it presents general results on
foliations and gathers well known material which serves as preliminaries for what we
will prove.

On the other hand, we present “almost new” results on foliations: In subsection
4.2.3 we give a classification of Reebless foliations on T? (this is “almost new” because
the proofs resemble quite nearly those of [BBI,] and similar results exist for C*-
foliations).

In Section 4.3 we prove a result which gives global product structure for certain
codimension one foliations on compact manifolds. Our results are slightly more
general than the ones which appear, for example, in [HeHi| but with more restrictive
hypothesis on the topology of the manifold. Those restrictions on the topology of the
manifold have allowed us to prove this result with weaker hypothesis and a essentially
different proof.

This chapter contains an appendix which presents similar ideas in the case of
surfaces which can be read independently of the rest of the chapter and motivates

some of the results of the next chapter.

4.1 Generalities on foliations

4.1.1 Definitions

In section 1.3 we reviewed the concept of lamination, which consists of a partition of
a compact subset of a manifold by injectively immersed submanifolds which behave
nicely between them. The fact that laminations are only defined in compact subsets
suggests that the information they will give about the topology of the manifold is
not that strong (although there are many exceptions). In this chapter, we shall work

with foliations, that for us will be laminations of the whole manifold and review
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many results which will give us a lot of information on the relationship between the
dynamics and the topology of the phase space.

We will give a partial overview of foliations influenced by the results we use in
this thesis. The main sources will be [Ca, CLN, CaCo, HeHi].

Definition 4.1.1 (Foliation). A foliation F of dimension k on a manifold M9
(or codimension d — k) is a partition of M on injectively immersed connected C*-

submanifolds tangent to a continuous subbundle E of T'M satisfying:

- For every © € M there exists a neighborhood U and a continuous homeomor-
phism ¢ : U — R¥ x R4 such that for every y € R¢*:

L, = ¢ ' (R* x {y})
is a connected component of L N U where L is an element of the partition JF.

&

In most of the texts about foliations, this notion refers to a C°-foliation with
C-leaves (or foliations of class C*°F in [CaCol).

In dynamical systems, particularly in the theory of Anosov diffeomorphisms, flows
and or partially hyperbolic systems, this notion is the best suited since it is the one
guarantied by these dynamical properties (see Theorem 1.3.1, this notion corresponds

to a C''-lamination of the whole manifold).

Notation. We will denote F(z) to the leaf (i.e. element of the partition) of the
foliation F containing x. Given a foliation F of a manifold M, we will always denote
as F to the lift of the foliation F to the universal cover M of M.

&

We will say that a foliation is orientable if there exists a continuous choice of
orientation for the subbundle F C TM which is tangent to F. Similarly, we say
that the foliation is transversally orientable if there exists a continuous choice of
orientation for the subbundle £+ C T'M consisting of the orthogonal bundle to E.
Notice that if M is orientable, then the fact that £ is orientable implies that B+ is
also orientable.

Given a foliation F of a manifold M, one can always consider a finite covering of
M and F in order to get that the lifted foliation is both orientable and transversally
orientable.

We remark that sometimes, the definition of a foliation is given in terms of atlases

on the manifold, we state the following consequence of our definition:
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Proposition 4.1.1. Let M be a d-dimensional manifold and F a k-dimensional
foliation of M. Then, there exists a C°-atlas {(¢;, U;)} of M such that:

- @; Uy = RF x R** 45 a homeomorphism.

- IfU;NU; # 0 one has that p; 0 ;' < (U N U;) — RE x R s of the form
©; © gpj_l(x, y) = (pi;(x,y), 05 (y)). Moreover, the maps ¢;; are C".

- The preimage by @; of a set of the form R* x {y} is contained in a leaf of F.

An important tool in foliation theory is the concept of holonomy (compare with
subsection 1.3.3). Given two points z,y in a leaf F(z) of a foliation F one can
consider transverse disks >, and >, of dimension d — k and a curve ~,, joining these
two points and contained in F(x). It is possible to “lift” this curve to the nearby
leaves (by using the atlas given by Proposition 4.1.1) to define a continuous map from
a neighborhood of z in ¥, to a neighborhood of ¥,. When the curve is understood
from the context (for example, when the foliation F is one dimensional) we denote

this map as:

n7,:UCy, =%,

These neighborhoods where one can define the maps may depend on the curve
7, however, it can be seen that given two curves v, , and 7,, which are homotopic
inside F(z) the maps defined coincide in the intersection of their domains, thus, a
homotopy class of curves defines a germ of maps from ¥, to X,.

Considering the curves joining x to itself inside F(z) one can thus define the

following map:

Hol : m(F(x)) = Germ(X,)

Which can be seen to be a group morphism. This is useful in some cases in order
to see that certain leaves are not simply connected. We call holonomy group of a leaf
L to the image of the morphism Hol restricted to the fundamental group of L.

An important use of the knowledge of holonomy is given by the following theorem:

Theorem 4.1.2 (Reeb’s stability theorem). Let F be a foliation of M? of dimension
k and let L be a compact leaf whose holonomy group s trivial. Then, there exists a
netghborhood U of L saturated by F such that every leaf in U is homeomorphic to L.

Moreover, the neighborhood U can be chosen arbitrarily small.

Being an equivalence relation, we can always make a quotient from the foliation
and obtain a topological space (which is typically non-Hausdorff) called the leaf space
endowed with the quotient topology. For a foliation F on a manifold M we denote

the leaf space as M/ .
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4.1.2 Generalities on codimension one foliations

Very few is known about foliations in general. However, when the foliation is of
codimension 1 there is quite a large general theory (see in particular [HeHil).

The first important property of codimension one foliations, is the existence of a
transverse foliation (which holds in more general contexts, but for our definition of

foliation is quite direct):

Proposition 4.1.3. Given a codimension 1 foliation F of a compact manifold M
there exists a one-dimensional foliation F+ transverse to F. Moreover, the foliations
F and F* admit a local product structure, this means that for every ¢ > 0 there
exists 6 > 0 such that:

- Given x,y € M such that d(z,y) < & one has that F.(x) N FX(y) consists of a
unique point. Here, F.(z) and FX(y) denote the local leaves' of the foliations
in B:(z) and B.(y).

PROOF. Assume first that F is transversally orientable. To prove the existence of
a one dimensional foliation transverse to F consider E the continuous subbundle of
TM tangent to F. Now, there exists an arbitrarily narrow cone £+ transverse to £
around the one dimensional subbundle E+ (the orthogonal subbundle to E).

In &% there exists a C' subbundle F. Since E* is orientable, so is F so we
can choose a C'-vector field without singularities inside F' which integrates to a C*
foliation which will be of course transverse to F.

If F is not transversally orientable, one can choose a C'-line field inside the cone
field and taking the double cover construct a Cl-vector field invariant under deck
transformations. This gives rise to an orientable one dimensional foliation transverse
to the lift of F which projects to a non-orientable one transverse to JF.

By compactness of M one checks that the local product structure holds.

(I

Remark 4.1.4 (Uniform local product structure). There exists ¢ > 0 such that for
every ¥ € M there exists V, C M containing B.(z) admitting C°-coordinates v, :
Ve = [—1,1]7! x [—1,1] such that:

- 1, is a homeomorphism and ¥, (z) = (0,0).

- 1, sends connected components in V, of leaves of F into sets of the form
[—1,1]%t x {t}.

"More precisely, F.(z) = cc,(F(z) N Be(z)) and F(y) = cc, (F(y) N B:(y)). As defined in the
Notation section, cc;(A) denotes the connected component of A containing x.
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- 1, sends connected components in V, of leaves of F* into sets of the form
{s} x [-1.1].

In fact, choose £y > 0 and consider 4 as in the statement about local product structure
of Proposition 4.1.3, we get that if d(z, y) < 6 then F. (x)NF_; (y) consists of exactly

one point. Given a point z € M we can then find a continuous map:

Uy : ]:%(3:) X F%L(a:) - M

such that ,(a,b) is the unique point of intersection of F.,(x) N F=(y). By the
invariance of domain theorem (see [Hat]) we obtain that 1), is a homeomorphism
over its image V,. Let ¢ be the Lebesgue number of the covering of M by the open
sets V,. For every point z € M there exists = such that B.(z) C V,. Consider a
homeomorphism v, : [—1,1]7"tx[-1,1] — I (x) X.Fé(x) preserving the coordinates,

then it is direct to check that the inverse of ¢, composed with v, is the desired ..
¢

In codimension 1 the behaviour of the transversal foliation may detect non-simply
connected leafs, this is the content of this well known result of Haefliger which can

be thought of a precursor of the celebrated Novikov’s theorem:

Proposition 4.1.5 (Haefliger Argument). Consider a codimension one foliation F
of a compact manifold M. Let F and F* be the lifts to the universal cover of both
F and the transverse foliation given by Proposition 4.1.3. Assume that there exists
a leaf of F* that intersects a leaf of F in more than one point, then, F has a

non-simply connected leaf.

This can be restated in the initial manifold by saying that if there exists a closed
curve in M transverse to JF which is nullhomotopic, then there exists a leaf of F
such that its fundamental group does not inject in the fundamental group of M.

This result was first proven by Haefliger for C? foliations and then extended to
general C%~foliations by Solodov (see [So]). The idea is to consider a disk bounding a
transverse curve to the foliation and making general position arguments (the reason
for which Haefliger considered the C?-case first) in order to have one dimensional
foliation with Morse singularities on the disk, classical Poincare-Bendixon type of
arguments then give the existence of a leaf of F with non-trivial holonomy.

Other reason for considering codimension one foliations is that leaves with finite
fundamental group do not only give a condition on the local behaviour of the foliation

but on the global one:

Theorem 4.1.6 (Reeb’s global stability theorem). Let F be a codimension one

foliation on a compact manifold M and assume that there is a compact leaf L of F
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with finite fundamental group. Then, M is finitely covered by a manifold M admitting
a fibration p : M — S' whose fibers are homeomorphic to L which finitely covers L
and by lifting the foliation F to M we obtain the foliation given by the fibers of the
fibration p.

Corollary 4.1.7. Let F be a codimension one foliation of a 3-dimensional manifold
M having a leaf with finite fundamental group. Then, M is finitely covered by S* x S*
and the foliation lifts to a foliation of S? x S' by spheres.

For a codimension one foliation F of a manifold M, such that the leafs in the
universal cover are properly embedded, there is a quite nice description of the leaf
space M/ z as a (possibly non-Hausdorff) one-dimensional manifold. When the leaf

space is homeomorphic to R we say that the foliation is R-covered (see [Cal).

4.2 Codimension one foliations in dimension 3

4.2.1 Reeb components and Novikov’s Theorem

Consider the foliation of the band [—1,1] x R given by the horizontal lines together
+ b with b € R.

with the graphs of the functions x — exp 7 5
-
Clearly, this foliation is invariant by the translation (z,t) — (z,t + 1) so that it
defines a foliation on the annulus [—1, 1] x S* which we call Reeb annulus.

In a similar way, we can define a two-dimensional foliation on D? x R given by

1
the cylinder 9D? x R and the graphs of the maps (z,y) — exp (ﬁ) + 0.

Definition 4.2.1 (Reeb component). Any foliation of D? x S' homeomorphic to the
foliation obtained by quotienting the foliation defined above by translation by 1 is

called a Reeb component.

&

Another important component of 3-dimensional foliations are dead-end compo-
nents. They consist of foliations of T? x [—1, 1] such that any transversal which enters
the boundary cannot leave the manifold again. An example would be the product of

a Reeb annulus with the circle.

Definition 4.2.2 (Dead-end component). A foliation of T? x [—1,1] such that no

transversal can intersect both boundary components is called a dead-end component.

&
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Novikov’s theorem (see [No]) was proved for C?-foliations by the same reason as
with Haefliger’s argument (see Proposition 4.1.5), with the techniques of Solodov
(the techniques of Solodov can be simplified with the existence of a transversal one-
dimensional foliation) one can prove it in our context (see [CaCo] Theorems 9.1.3
and 9.1.4 and the Remark on page 286):

Theorem 4.2.1 (Novikov [So, CaCol). Let F be a (transversally oriented) codimen-
sion one foliation on a 3-dimensional compact manifold M and assume that one of
the following holds:

- There exist a positively oriented closed loop transverse to F which is nullho-

motopic, or,

- there exist a leaf S of F such that the fundamental group of S does not inject
on the fundamental group of M.

- m(M) # {0},

Then, F has a Reeb component.

4.2.2 Reebless and taut foliations

We will say that a (transversally oriented) codimension one foliation of a 3-dimensional
manifold is Reebless if it does not contain Reeb components. Similarly, we say that
a Reebless foliation is taut if it has no dead-end components.

As a consequence of Novikov’s theorem we obtain the following corollary on Reeb-
less foliations on 3-manifolds which we state without proof. We say that a surface
S embedded in a 3-manifold M is incompressible if the inclusion 2 : S — M induces

an injective morphism of fundamental groups.

Corollary 4.2.2. Let F be a Reebless foliation on an orientable 3-manifold M and

F* a transversal one-dimensional foliation. Then,
(i) For every x € M we have that F(x) N F-(z) = {x}.

(ii) The leafs of F are properly embedded surfaces in M. In fact there exists § > 0
such that every euclidean ball U of radius d can be covered by a continuous
coordinate chart such that the intersection of every leaf S of F with U is ei-
ther empty of represented as the graph of a function hg : R? — R in those
coordinates.

(i1i) Every leaf of F is incompressible. In particular, M s either S2 x R and every

leaf is homeomorphic to S% or M = R3.
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(iv) For every § > 0, there exists a constant Cs such that if J is a segment of Ft
then Vol(Bs(J)) > Cslength(J).

Notice that item (iii) implies that every leaf of F is simply connected, thus, if the
manifold M is not finitely covered by S? x S' then every leaf is homeomorphic to R2.
Also, if M is T® one can see that every closed leaf of F must be a two-dimensional
torus (since for every other surface S, the fundamental group m;(.S) does not inject
in Z3, see [Ri]).

The last statement of (iii) follows by the fact that the leaves of F being in-
compressible they lift to M as simply connected leaves. Applying Reeb’s stability
Theorem 4.1.6 we see that if one leaf is a sphere, then the first situation occurs, and
if there are no leaves homeomorphic to S? then all leaves of F must be planes and
by a result of Palmeira ([Pal]) we obtain that M is homeomorphic to R,

We give a detailed proof of a similar result in the proof of Corollary 5.1.5 (in

particular item (iv)) so we leave this result without proof.

4.2.3 Reebles foliations of T?

This subsection present results whose proofs are essentially contained in [BBIy]. We
mention that there is a paper by Plante [Pla] which is also based on previous devel-
opments by Novikov ([No]) and Roussarie ([Rou]) which proves essentially the same
results for foliations of class C? and extends it to manifolds with almost solvable
fundamental group. There exists a result of Gabai ([Ga]) which proves the result of
Roussarie for the foliations of lower regularity.

We consider a codimension one foliation F of T3 which is transversally oriented
and F* a one dimensional transversal foliation given by Proposition 4.1.3 (the only
thing we require to F+ is to be transversal to F in order to satisfy Remark 4.1.4.
We shall assume throughout that F has no Reeb components.

Let p : R® — T be the cannonical covering map whose deck transformations are
translations by elements of Z3.

Since R? is simply connected, we can consider an orientation on F* (since F* is
oriented, this orientation is preserved under covering transformations).

Given z € R? we get that F-(x)\ {z} has two connected components which we
call F1(x) and F*(z) according to the chosen orientation of F=.

By Corollary 4.2.2 (i) we have that for every z € R? the set F () is an embedded
surface in R3. Tt is diffeomorphic to R? by Corollary 4.2.2 (iii). It is well known

that this implies that F(x) separates R? into two connected components? whose

20ne can consider the usual one point compactification of R? and apply the well known Jordan-
Brower’s theorem. See for example [Hat] Proposition 2.B.1. This gives that the complement of F (x)

consists of two connected components. The fact that F (x) is the boundary of both connected com-
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boundary is F(z). These components will be denoted as F, (x) and F_(z) depending
on whether they contain F(z) or F*(x).

Since covering transformations preserve the orientation and send F into itself, we
have that:

Fi(z)+y=Fi(z+7) VyeZ’

For every z € R?, we consider the following subsets of Z3 seen as deck transforma-

tions:

Pi(z)={ye€Z’ : Fi(z)+vC F(r)}

I (z)={y€Z®: F(zx)+vyCF_(2)}
We also consider I'(x) =Ty (z) UT _(x).

Remark 4.2.3. There exists a uniform local product structure between F and F*
(given by Remark 4.1.4). Since leafs of F do not intersect there exists § > 0 such
that if two points z,y are at distance smaller than §, then either F,(z) C Fy(y)
or F(y) C Fy(x) (the same for F_). In particular, if d(F(z), F(z) + ) < 6, then
v € I'(z). By Corollary 4.2.2 (i) we also know that if two points are in the same leaf
of F*+ and are at distance smaller than 4, then they are connected by a small arc

inside the leaf.

&

Lemma 4.2.4. The following properties hold:

(i) If both Fy(z) N Fy(y) # 0 and F_(x) N F_(y) # 0 then, either Fy(z) C F,(y)
and F_(y) C F_(x) or Fi(y) C Fy(z) and F_(x) C F_(y). In both of this
cases we shall say that F(z) and Fy(y) are nested (similar with F_).

ponents is proved as follows: First, since F (z) is differentiable, one can find a normal neighborhood
which is an I-bundle (homeomorphic to F(z) x [~1, 1] such that the homeomorphism maps F(x)
to F(x) x {0}). This implies that if a point of F(z) is in the boundary of a connected component
of R?\ F(z) then the whole F(z) must be in its boundary. Now, assume that the boundary of
one of the connected components of R3 \ F(x) does not coincide with F(x). This implies that in
fact the boundary of the connected component is empty: there cannot be boundary points in the
other component since is open and contained in the complement and if one point of F (z) is in the
boundary, then from the argument above, one gets that the boundary coincides with F (z). This
is a contradiction since this connected component would be open and closed, thus the whole R?

which is not the case.
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(ii) If Fi(z) N Fy(y) = 0 then Fy(y) C F_(z) and Fy(z) C F_(y). A similar
property holds if F_(x) N F_(y) = 0.

(11i) In particular, F\(x) C F(y) if and only if F_(y) C F_(x).

PrROOF. We will only consider the case where F(z) # F(y) since otherwise the
Lemma is trivially satisfied (and case (ii) is not possible).

Assume that both Fy(z) N Fy(y) and F_(z) N F_(y) are non-empty. Since F(y)
is connected and does not intersect F(z) we have that it is contained in either
F.(x) or F_(z). We can further assume that F(y) C F,(z) the other case being
symmetric. In this case, we deduce that F,(y) C F,(z): otherwise, we would
have that F_(z) N F_(y) = (. But this implies that F(z) C F_(y) and thus that
F_(x) C F_(y) which concludes the proof of (i).

To prove (i) notice that if Fy(z) N Fy(y) = @ then we have that F(z) C F_(y)
and F(y) C F_(x). This gives that both F(z) C F_(y) and Fy(y) C F_(z) as
desired.

Finally, if Fy(z) C F(y) we have that F'_(z) N F_(y) contains at least F_(y) so
that (i) applies to give (iii).

See also [BBI;] Lemma 3.8.

T+

Figure 4.1: When Fl (x) and F(z) + 7 are not nested.

We can prove (see Lemma 3.9 of [BBI)):

Lemma 4.2.5. For every x € R® we have that T'(x) is a subgroup of Z3.

PRroOF. Consider 71,72 € I'(x). Since y; € 'y (x) we have that F'y (z)+v, C Fy(z).
By translating by 72 we obtain F () + v1 + 72 C F(x) + 79, but since v, € 'y (2)
we have Fy(z) + 71 + 72 C Fi(z), so 1 + 72 € I't(x). This shows that I'; () is a

semigroup.
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Notice also that if v € T'y(z) then F,(x) + v C Fy(x), by substracting v we
obtain that F'y () C F(x)—~ which implies that F__(z) —~ C F_(x) obtaining that
—v € I'_(x). We have proved that —I', (z) = I'_(x).

It then remains to prove that if 71,72 € '\ (x), then v — 72 € I'(x).

Since F'y(x) + 71 + 72 is contained in both F(z) + v and Fl(z) + 7o we have
that

(F (@) +7) N (Fi(z) +72) # 0.

By Lemma 4.2.4 (iii) we have that both F_(x)+~; and F_(x)+ v, contain F_(x)
so they also have non-empty intersection.
Using Lemma 4.2.4 (i), we get that F () + v, and F,(x) + 7, are nested and
this implies that either 73 — v or 75 — v, is in 'y (x) which concludes.
(Il

We close this subsection by proving the following theorem which provides a kind

of classification of Reebless foliations in T3:

Theorem 4.2.6. Let F be a Reebless foliation of T®. Then, there exists a plane
P C R? and R > 0 such that every leaf of F lies in an R-neighborhood of a translate
of P. Moreover, one of the following conditions hold:

(i) Either for every z € R® the R-neighborhood of F(z) contains P + x, or,

(ii) P projects into a two-dimensional torus and (if F is orientable) there is a dead-
end component of F (in particular, F has a leaf which is a two-dimensional

torus).

Notice that this theorem is mostly concerned with statements on the universal
cover so that orientability of the foliation is not necessary. In fact, if one proves the
theorem for a finite lift, one obtains the same result since there cannot be embedded
incompressible Klein-bottles inside T* (see [Ri]). In option (ii), the only thing we
need is the fact that transversals remain at bounded distance with the plane P (which

does not use orientability since it is a statement on the universal cover).

PrROOF. By the remark above, we will assume throughout that the foliation is
orientable and transversally orientable. This allows us to define as above the sets
Fy(z) for every x.

We define G4 (o) = [,z F.(z) +~ and G_(x) in a similar way.

First, assume that there exists zo such that Gy (o) = (,czs F1(7) +7 # 0 (see
Lemma 3.10 of [BBIy]). The case where G_(xg) # 0 is symmetric. The idea is to
prove that in this case we will get option (ii) of the theorem.

There exists 6 > 0 such that given a point z € G (xy) we can consider a neigh-

borhood U, containing Bs(z) given by Corollary 4.2.2 (ii) such that:

168



\

=

Figure 4.2: How the possibilities on F look like.

- There is a C'-coordinate neighborhood %, : U, — R? — R such that for
every y € U, we have that ¢ (F(y) N U.) consists of the graph of a function
h, : R* = R (in particular, it is connected).

Since F and F* are orientable, we get that we can choose the coordinates v, in
order that for every y € U, we have that ¢,(F(y) N U) is the set of points (w,t)
such that ¢ > h,(w).

Notice that for every v € Z3 we have that (F,(x) + ) NU is either the whole U
or the upper part of the graph of a function h,- : R*> — R in some coordinates in
U.

This implies that the intersection G () is a 3-dimensional submanifold of R3
(modeled in the upper half space) with boundary consisting of leaves of F (since the
boundary components are always locally limits of local leaves).

The boundary is clearly non trivial since G (zg) C F(zg) # R>.

Claim. If G, (xg) # 0 then there exists plane P and R > 0 such that every leaf of
JE(x) 1s contained in an R-neighborhood of a translate of P and whose projection to

T3 is a two dimensional torus. Moreover, option (ii) of the proposition holds.

PROOF. Since G (x¢) is invariant under every integer translation, we get that the
boundary of G, (z) descends to a closed surface in T? which is union of leaves of F.

By Corollary 4.2.2 (iii) we get that those leaves are two-dimensional torus whose
fundamental group is injected by the inclusion map.

This implies that they are at bounded distance of linear embeddings of T? in T?
and so their lifts lie within bounded distance from a plane P whose projection is a
two dimensional torus.

Since leafs of F do not cross, the plane P does not depend on the boundary

component. Moreover, every leaf of F(x) must lie within bounded distance from a
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translate of P since every leaf of F has a lift which lies within two given lifts of some
of the torus leafs.

Consider a point z in the boundary of G (xy). We have that F(z) lies within
bounded distance from P from the argument above.

Moreover, each boundary component of G (z) is positively oriented in the di-
rection which points inward to the interior of G (zo) (recall that it is a compact
3-manifold with boundary).

We claim that 7, lies within bounded distance from P for every z € F(z) and
n, positive transversal to F. Indeed, if this is not the case, then 7, would intersect
other boundary component of G, (xg) which is impossible since the boundary leafs
of G (zo) point inward to Gy (zo) (with the orientation of F1).

Now, consider any point z € R3, and 7, a positive transversal which we assume
does not remain at bounded distance from P. Then it must intersect some translate
of F (x), and the argument above applies. This is a contradiction.

The same argument works for negative transversals since once a leaf enters
(G4 (x0))¢ it cannot reenter any of its translates. We have proved that p(G (o))

contains a dead end component. This concludes the proof of the claim.

&

Now, assume that (ii) does not hold, in particular G4 (x) = () for every z. Then,

for every point x we have that

U FE@) +7) = | F-() +7) =R

~€eZ3 ~€EZ3

As in Lemma 3.11 of [BBIy] we can prove:

Claim. We have that T'(z) = Z3 for every x € R3.

PRrOOF. If for some vy ¢ I'(x) one has that F (z) N (Fy(x) 4+ 7) = 0 (the other
possibility being that F_(z) N (F_(x) 4+ ) = 0)) then, we claim that for every
v & T'(x) we have that Fy (z) N (Fy(z) +7v) = 0.

Indeed, by Lemma 4.2.4 (i) if the claim does not hold, there would exist v ¢ I'(x)
such that

F (x)N(F_(z)+7)=0 and F,(x)N(F.(z)+7)#0.

By Lemma 4.2.4 (ii) we have:
- F_(x) C Fi(x) + 7.

- Fo(z) + 70 C F_(x).
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Let z € Fy(x) N (Fy(x) + 7) then z + o must belong both to (Fy(z) + ) C
(Fy(z)+~) and to (Fy(x)+v+). By substracting v we get that z+~y —~ belongs
to F(x) N Fy(x) 4+ 7o contradicting our initial assumption. So, for every v ¢ I'(z)
we have that F (x) N (Fy(x)+v) =0.

Now, consider the set

U= | (Fe@)+9).

vel(z)

From the above claim, the sets U, (z) 4+, and Uy (x)+ . are disjoint (if y; — 7 ¢
[(x)) or coincide (if 71 — v € I'(x)).

Since these sets are open, and its translates by Z3 should cover the whole R? we
get by connectedness that there must be only one. This implies that I'(z) = Z3 and
finishes the proof of the claim.

&

Consider I'y(z) = 'y (z) N T'_(z), the set of translates which fix F(x).

If Rank(To(x)) = 3, then p~!(p(F(z))) consists of finitely many translates of
F(z) which implies that p(F(z)) is a closed surface of F. On the other hand,
the fundamental group of this closed surface should be isomorphic to Z* which is
impossible since there are no closed surfaces with such fundamental group ([Ri]).

This implies that Rank(Ty(z)) < 3 for every = € R3.

Claim. For every x € R® there exists a plane P(z) and translates P, (z) and P_(x)
such that F'\(x) lies in a half space bounded by P, (x) and F_(z) lies in a half space
bounded by P_(x).

PRrROOF. Since Rank(I'g(x)) < 3 we can prove that ', (z) and I'_(z) are half latices
(this means that there exists a plane P C R?® such that each one is contained in a
half space bounded by P).

The argument is the same as in Lemma 3.12 of [BBIy] (and the argument after
that lemma).

Consider the convex hulls of I'y () and I'_(x). If their interiors intersect one
can consider 3 linearly independent points whose coordinates are rational. These
points are both positive rational convex combinations of vectors in I'y (z) as well as
of vectors in I'_(x). One obtains that ['y(z) = I () NI'_(x) has rank 3 contradicting
our assumption.

This implies that there exists a plane P(z) separating these convex hulls.

Consider z € R? and let O, (z) = (2 + Z3) N F,(x). We have that O, (z) # ()
(otherwise z € G_(x)). Moreover, O4(z) + ' (z) C O4(z) because I'; (x) preserves
F.(x). The symmetric statements hold for O_(z) = (z + Z3) N F_(x).
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We get that O, (z) and O_(z) are separated by a plane P, parallel to P(x). The
proof is as follows: we consider the convex hull CO, (z) of O,(z) and the fact that
O4(2)+I' 1 (x) C O (2) implies that if v is a vector in the positive half plane bounded
by P(x) we have that CO,(z) + v C CO,(z). The same holds for the convex hull
of CO_(z) and we get that if the interiors of CO,(z) and CO_(z) intersect, then
the interiors of the convex hulls of T'y(z) and I'_(z) intersect contradicting that
Rank(T'y(z)) < 3.

Consider ¢ given by Corollary 4.2.2 (ii) such that every point z has a neighborhood
U, containing Bj(z) and such that F(y) N U, is connected for every y € U..

Let {z} a finite set /2-dense in a fundamental domain Dy. We denote as P
and P de half spaces defined by the plane P, parallel to P(z) containing O (z;)
and O_(z;) respectively.

We claim that F;(x) is contained in the -neighborhood of | J; P} and the sym-
metric statement holds for F_(x).

Consider a point y € F,(x). We get that F(y) intersects the neighborhood U,
containing Bs(y) in a connected component and thus there exists a §/2-ball in U,
contained in F (x). Thus, there exists z; and v € Z3 such that z; + v is contained
in F(z) and thus z; +v € O4(z) C P}. We deduce that y is contained in the
d-neighborhood of P as desired.

The é-neighborhood H* of | J; P is a half space bounded by a plane parallel
to P(z) and the same holds for H~ defined symmetrically. We have proved that
F (z) C H" and F_(z) C H~. This implies that F(z) is contained in H* N H~, a
strip bounded by planes P, (x) and P_(z) parallel to P(z) concluding the claim.

&

We have proved that for every z € R? there exists a plane P(z) and translates
P, (z) and P_(x) such that Fy(z) lies in a half space bounded by Py (z). Let R(z)
be the distance between P, (z) and P_(z), we have that F(z) lies at distance smaller
than R from P, (z).

Now, we must prove that the R(z)-neighborhood of F(z) contains Py (z). To do
this, it is enough to show that the projection from F(z) to Py(z) by an orthogonal
vector to P(x) is surjective. If this is not the case, then there exists a segment joining
P, () to P_(z) which does not intersect F(x). This contradicts the fact that every
curve from F_(z) to F(x) must intersect F(z).

Since the leaves of F do not intersect, P(z) cannot depend on z. Since the
foliation is invariant under integer translations, we get (by compactness) that R(z)
can be chosen uniformly bounded.

O

Remark 4.2.7. Tt is direct to show that for a given Reebless foliation F of T3, the plane
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P given by Theorem 4.2.6 is unique. Indeed, the intersection of the R-neighborhoods
of two different planes is contained in a 2 R-neighborhood of their intersection line L.
If two planes would satisfy the thesis of Theorem 4.2.6 then we would obtain that
the complement of every leaf contains a connected component which is contained
in the 2R-neighborhood of L. This is a contradiction since as a consequence of
Theorem 4.2.6 we get that there is always a leaf of F whose complement contains

two connected components each of which contains a half space of a plane?.

&

We have used strongly the fact that F is the lift of a foliation in T? so that the
foliation is invariant under integer translations, this is why there is more rigidity
in the possible foliations of R? which are lifts of foliations on T2. See [Pal] for a

classification of foliations by planes of R3.

4.2.4 Further properties of the foliations

It is not hard to see that:

Proposition 4.2.8. Let F be a Reebless foliation of T3, if option (i) of Theorem
4.2.6 holds, then the leaf space L =R?/ 3 is homeomorphic to R.

ProOOF. The space of leafs £ with the quotient topology has the structure of a
(possibly non-Hausdorff) one-dimensional manifold (see [Ca]). In fact, this follows
directly from Corollary 4.2.2 as well as the fact that it is simply connected as a
one-dimensional manifold (see Corollary 4.2.2 (i)). To prove the proposition is thus
enough to show that it is Hausdorff.

We define an ordering in £ as follows

Fla) 2 Fly) if Fi(r) C Fi(y).

If option (i) of Theorem 4.2.6 holds, given z,y we have that F (z) N Fy(y) # 0
and F_(z) N F_(y) # 0.

Then, Lemma 4.2.4 (i) implies that F(x) and F, (y) are nested. In conclusion,
we obtain that the relationship we have defined is a total order.

Let F(z) and F(y) two different leaves of F. We must show that they belong to
disjoint open sets.

Without loss of generality, since it is a total order, we can assume that F(z) <
F(y). This implies that F(y) is strictly contained in F,(y). On the other hand,

3Notice that if case (ii) holds this is direct from the existence of a torus leaf and in case (i) this

follows from the statement of the last claim in the proof.
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this implies that F_(y) N Fy(z) # 0, in particular, there exists z such that F(z) <
F(z) < Fly). ~
Since the sets F(z) and F_(z) are open and disjoint and we have that F(z) C
F_(2) and F(y) € Fy(z) we deduce that £ is Hausdorff as desired.
O

Now, since F is invariant under deck transformations, we obtain that we can
consider the quotient action of Z3 = 7 (T%) in £. For [z] = F(z) € £ we get that
v - [x] =[x + 7] for every v € Z3.

Notice that all leaves of F in T® are simply connected if and only if 7;(T?) acts
without fixed point in £. In a similar fashion, existence of fixed points, or common
fixed points allows one to determine the topology of leaves of F in T®.

In fact, we can prove the following result:

Proposition 4.2.9. Let F be a Reebless foliation of T3. If the plane P given by
Theorem 4.2.6 projects into a two dimensional torus by p, then there is a leaf of F

homeomorphic to a two-dimensional torus.

Proor. Notice first that if option (ii) of Theorem 4.2.6 holds, the existence of a
torus leaf is contained in the statement of the theorem.

So, we can assume that option (i) holds. By considering a finite index subgroup,
we can further assume that the plane P is invariant under two of the generators of
71 (T3) = Z3 which we denote as v, and 7.

Since leaves of F remain close in the Hausdorff topology to the plane P we
deduce that the orbit of every point [z] € £ by the action of the elements v, and 7,
is bounded.

Let ~3 be the third generator, we get that its orbit cannot be bounded since
otherwise it would fix the plane P since it is a translation. So, the quotient of £ by
the action of ~5 is a circle. We can make the group generated by v; and 7, act on
this circle and we obtain two commuting circle homeomorphisms with zero rotation
number. This implies they have a common fixed point which in turn gives us the
desired two-torus leaf of F.

(Il

Also, depending on the topology of the projection of the plane P given by The-

orem 4.2.6 we can obtain some properties on the topology of the leaves of F.

Lemma 4.2.10. Let F be a Reebless foliation of T3 and P be the plane given by
Theorem 4.2.6.

(i) Every closed curve in a leaf of F is homotopic in T2 to a closed curve contained
in p(P). This implies in particular that if p(P) is simply connected, then all

the leaves of F are also simply connected.
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(i1) If a leaf of F is homeomorphic to a two dimensional torus, then, it is homotopic

to p(P) (in particular, p(P) is also a two dimensional torus).

PROOF. To see (i), first notice that leafs are incompressible. Given a closed curve ~y
in a leaf of F which is not null-homotopic, we know that when lifted to the universal
cover it remains at bounded distance from a linear one-dimensional subspace L. Since
7 is a circle, we get that p(L) is a circle in T?. If the subspace L is not contained in
P then it must be transverse to it. This contradicts the fact that leaves of F remain
at bounded distance from P.

To prove (ii), notice that a torus leaf T" which is incompressible must remain
close in the universal cover to a plane Pr which projects to a linear embedding of
a 2-dimensional torus. From the proof of Theorem 4.2.6 and the fact that F is a
foliation we get that Pr = P. See also the proof of Lemma 3.10 of [BBI;].

O

4.3 Global product structure

4.3.1 Statement of results

We start by defining global product structure:

Definition 4.3.1 (Global Product Structure). Given two transverse foliations (this
in particular implies that their dimensions are complementary) F; and F3 of a man-
ifold M we say they admit a global product structure if given two points x,y € M

the universal cover of M we have that F(z) and Fy(y) intersect in a unique point.

o

Notice that by continuity of the foliations and invariance of domain theorem
([Hat]) we have that if a manifold has two transverse foliations with a global product
structure, then, the universal cover of the manifold must be homeomorphic to the
product of Fy(z) x Fy(z) for any = € M. Indeed, the map

Q: .7:"1(1') X ]:"2(3/) —~ M o(z,w) = .7:"1(2) ﬂ]:"g(w)

is well defined, continuous (by the continuity of foliations) and bijective (because of
the global product structure), thus a global homeomorphism.

In particular, leaves of F; must be simply connected and all homeomorphic be-
tween them.

In general, it is a very difficult problem to determine whether two foliations
have a global product structure even if there is a local one (this is indeed the main

obstruction in the clasification of Anosov diffeomorphisms of manifolds, see [F]).
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However, in the codimension 1 case we again have much more information:

Theorem 4.3.1 (Theorem VII1.2.2.1 of [HeHi]). Consider a codimension one folia-
tion F of a compact manifold M such that all the leaves of F have trivial holonomy.
Then, for every F* foliation transverse to F we have that F and F* have global

product structure.

This theorem applies for example when every leaf is compact and without holon-
omy. The other important case (for this thesis) in which this result applies is when
every leaf of the foliation is simply connected. Unfortunately, there will be some sit-
uations where we will be needing to obtain global product structure but not having
neither all leaves of F simply connected nor that the foliation lacks of holonomy in
all its leaves.

We will instead use the following quantitative version of the previous result which
does not imply it other than it the situations we will be needing it. The following
theorem was proved in [Pot;] and we believe it simplifies certain parts of the previous
theorem (at least for the non-expert in the theory of foliations and for the more

restrictive hypothesis we include):

Theorem 4.3.2. Let M be a compact manifold and 6 > 0. Consider a set of gener-
ators of m (M) and endow (M) with the word length for generators. Then, there
exists K > 0 such that if F is a codimension one foliation and F* a transverse
foliation such that:

- There is a local product structure of size § between F and F* (see Remark

4.1.4).

- The leaves of F are simply connected and no element of m (M) of size less than
K fizes a leaf of F.

- The leaf space L = M/]_- 15 homeomorphic to R.
- The fundamental group of M 1is abelian.

Then, F and F* admit a global product structure.

4.3.2 Proof of Theorem 4.3.2

Notice that the hypothesis of the Theorem are stable by considering finite lifts and
the thesis is in the universal cover so that we can (and we shall) assume that F is
both orientable and transversally orientable.

The first step is to show that leaves of F and F* intersect in at most one point:

Lemma 4.3.3. For every x € M one has that F(z) N F*(z) = {z}.
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PROOF. Assume otherwise, then, by Proposition 4.1.5 (Haefliger argument) one
would obtain that there is a non-simply connected leaf of F a contradiction.
O

InL =M/ # we can consider an ordering of leafs (by using the ordering from R).
We denote as [z] to the equivalence class in M of the point z, which coincides with

The following condition will be the main ingredient for obtaining a global product

structure:
() For every zy € M there exists y~ and y* € M verifying that [y~] < [20] < [y7]
and such that for every 2,2, € M satistying [y7] < [z] < [y*] (i = 1,2) we

have that F(z1) N F(z) # 0.

We get

Lemma 4.3.4. If property (%) is salisfied, then F and F*+ have a global product

structure.

ProOF. Consider any point zo € M and consider the set G = {z € M : F(zy) N
F(z) # 0}. We have that G is open from the local product structure (Remark 4.2.3)
and by definition it is saturated by F. We must show that G is closed and since M
is connected this would conclude.

Now, consider zy € G, using assumption (*) we obtain that there exists [y~] <
[z] < [y*] such that every point z such that [27] < [2] < [¢7] verifies that its unstable
leaf intersects both F(y~) and F(y™).

Since 2, € G we have that there are points z, € G such that z, — F (20).

We get that eventually, [y~] < [zx] < [y"] and thus we obtain that there is a
point y € F(xo) verifying that [y~] < [y] < [y*]. We get that every leaf between
F(y~) and F(y™) is contained in G from assumption (x). In particular, zy € G as
desired.

O

We must now show that property (x) is verified. To this end, we will need the

following lemma:

Lemma 4.3.5. There exists K > 0 such that if £ > 0 is large enough, every segment
of FX(x) of length ¢ intersects every leaf of F.

We postpone the proof of this lemma to the next subsection 4.3.3.

PROOF OF THEOREM 4.3.2.  We must prove that condition () is verified. We

consider § given by the size of local product structure boxes (see Remark 4.2.3) and

177



by Lemma 4.3.5 we get a value of £ > 0 such that every segment of F+ of length ¢
intersects every leaf of F.

There exists k£ > 0 such that every curve of length k¢ will verify that it has a
subarc whose endpoints are d-close and joined by a curve in F* of length larger than
¢ (so, intersecting every leaf of F).

Consider a point zy € M and a point z € F(z). Let 7, be the segment in F(z)
of length k¢ with one extreme in z. We can project 7, to M and we obtain a segment
7, transverse to F which contains two points z; and z, at distance smaller than ¢
and such that the segment from z; to 2z in 7, intersects every leaf of 7. We denote

Z1 and Zy to the lift of those points to 7,.

21

22

z UP

Figure 4.3: The curve n,.

Using the local product structure, we can modify slightly 7, in order to create a
closed curve 7, through z; which is contained in 7, outside Bj(2;), intersects every
leaf of F and has length smaller than k¢ + §.

We can define I'; as the set of elements in (M) which send the half space
bounded by F(z) in the positive orientation into itself.

Since 7, essentially contains a loop of length smaller than k¢ + § we have that 7,
connects [zo] with [2; 4+ ] where 7 belongs to I'}. and can be represented by a loop of
length smaller than ¢+ 6. Moreover, since from z to Z; there is a positively oriented
arc of F+ we get that [2] = [2] < [21] (notice that it is possible that z = ).

This implies that [Z; +7] > [z0 + 7] > [20], where the last inequality follows from
the fact that the loop is positively oriented and non-trivial (recall that by Lemma
4.3.3 a curve transversal to F cannot intersect the same leaf twice).

Notice that there are finitely many elements in I', which are represented by loops
of length smaller than k¢+4§. This is because the fundamental group is abelian so that
deck transformations are in one to one correspondence with free homotopy classes of

loops.
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The fact that there are finitely many such elements in I'; implies the following:
There exists 79 € I'y such that for every v € I'y which can be represented by a

positively oriented loop transverse to F of length smaller than k¢ 4 §, we have

[20] < [20 + 0] < [20 +1]

We have obtained that for y* = 2y + v there exists L = k¢ > 0 such that for
every point z € F(z) the segment of F(z) of length L intersects F(y*).

This defines a continuous injective map from F(z) to F(yT) (injectivity follows
from Lemma 4.3.3). Since the length of the curves defining the map is uniformly
bounded, this map is proper and thus, a homeomorphism. The same argument
applies to any leaf F(z;) such that [z] <[] < [y7].

For any z; such that [zp] < [21] < [y1] we get that F(z;) intersects F(z). Since
the map defined above is a homeomorphism, we get that also F*(z) N F(z) # 0.

A symmetric argument allows us to find y~ with similar characteristics. Using
the fact that intersecting with leaves of F* is a homeomorphism between any pair
of leafs of F between [y~] and [y*] we obtain (x) as desired.

Lemma 4.3.4 finishes the proof.

4.3.3 Proof of Lemma 4.3.5

We first prove the following Lemma which allows us to bound the topology of M in
terms of coverings of size §. Notice that we are implicitly using that w1 (M) as before
to be able to define a correspondence between (free) homotopy classes of loops with

elements of 7 (M).

Lemma 4.3.6. Given a covering {V1,...,V,} of M by contractible open subsets
there exists there exists K > 0 such that if n is a loop in M such that it intersects

each V; at most once®, then [n] € m (M) has norm less than K.

PROOF. We can consider the lift p~!(V;) to the universal cover of each V; and we
have that each connected component of p~!(V;) has bounded diameter since they are
simply connected in M. Let Cy > 0 be a uniform bound on those diameters.

Let K be such that every loop of length smaller than 2nCy has norm less than
K in m(M).

Now, consider a loop 1 which intersects each of the open sets V; at most once.
Consider n as a function n : [0,1] — M such that n(0) = n(1). Consider a lift
7 :[0,1] — M such that p(n(t)) = n(t) for every t.

4More precisely, if n is 1 : [0,1] — M with 1(0) = n(1) this means that ~!(V;) is connected for

every i.
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We claim that the diameter of the image of 7 cannot exceed nC'y,. Otherwise,
this would imply that 7 intersects some V; more than once. Now, we can homotope
7 fixing the extremes in order to have length smaller than 2nC'y,. This implies the
Lemma.

O

Given ¢ of the uniform local product structure (see Remark 4.1.4), we say that
a loop 7 is a d-loop if it is transverse to F and consists of a segment of a leaf of F*

together with a curve of length smaller than 9.

Lemma 4.3.7. There exists K > 0 such that if O C M is an open F-saturated set
such that O # M. Then, there is no d-loop contained in O.

PROOF. For every point x consider N, = Bs(x) with ¢ the size of the local product
structure boxes. We can consider a finite subcover {N,,,..., N, } for which Lemma
4.3.6 applies giving K > 0.

Consider, an open set O # M which is F-saturated. We must prove that O
cannot contain a d-loop.

Let Oy a connected component of the lift O of O to the universal cover M. We
have that the boundary of Oy consists of leaves of F and if a translation v € (M)

verifies that

Oy N0y #
then we must have that Oy = v+ Op. This implies that ~ fixes the boundary leafs of
Oy: This is because the leaf space £ = M / # is homeomorphic to R so that Oy being
connected and F saturated is an open interval of £. Since deck transformations
preserve orientation, if they fix an open interval then they must fix the boundaries.

The definition of K then guaranties that if an element ~ of 7, (M) makes Oy in-
tersect with itself, then v must be larger than K. In particular, any d-loop contained
in O must represent an element of 71 (M) of length larger than K.

Now consider a d-loop 7. Corollary 4.2.2 (i) implies that 7 is in the hypothesis of
Lemma 4.3.6. We deduce that n cannot be entirely contained in O since otherwise
its lift would be contained in Oy giving a deck transformation 7 of norm less than K
fixing Oy a contradiction.

O

Corollary 4.3.8. For the K > 0 obtained in the previous Lemma, if n is a -loop

then it intersects every leaf of F.

PrOOF. The saturation by F of n is an open set which is F-saturated by definition.
Lemma 4.3.7 implies that it must be the whole M and this implies that every leaf of

F intersects 7.
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O

Proor orF LEMMA 4.3.5. Choose K as in Lemma 4.3.7. Considering a covering
{Vi,..., Vi} of M by neighborhoods with local product structure between F and F*
and of diameter less than ¢.

There exists ¢, > 0 such that every oriented unstable curve of length larger than
(o traverses at least one of the V/s. Choose £ > (k + 1){y and we get that every
curve of length larger than ¢ must intersect some V; twice in points say x; and x,.
By changing the curve only in V; we obtain a d-loop which will intersect the same
leafs as the initial arc joining x; and x,.

Corollary 4.3.8 implies that the mentioned arc must intersect all leafs of F.

4.3.4 Consequences of a global product structure

We say that a foliation F in a Riemannian manifold M is quasi-isometric if there

exists a,b € R such that for every z,y in a same leaf of F we have:

d;(a:,y) S ad(xay) + b

where d denotes the distance in M induced by the Riemannian metric and dr the
distance induced in the leaves of F by restricting the metric of M to the leaves of

F. See Section 5.1 for more discussion on quasi-isometry.

Proposition 4.3.9. Let F be a codimension one foliation of T and F* a transverse
foliation. Assume the foliations F and F=* lifted to the universal cover have global
product structure. Then, the foliation F* is quasi-isometric. Moreover, if P is the
plane given by Theorem 4.2.6, there exists a cone € transverse to P in R3 and K > 0
such that for every x € R® and y € F* (x) at distance larger than K from x we have

that y — x is contained in the cone .

PRrooOF. Notice that the global product structure implies that F is Reebless. Let P
be the plane given by Theorem 4.2.6.

Consider v a unit vector perpendicular to P in R3.

Global product structure implies that for every N > 0 there exists L such that
every segments of L of length L starting at a point z intersect P+ z + Nv. Indeed,
if this was not the case, we could find arbitrarily large segments of leaves of F*
not satisfying this property, by taking a subsequence and translations such that the
initial point is in a bounded region, we obtain a leaf of F+ which does not intersect

every leaf of F.
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This implies quasi-isometry since having length larger than kL implies that the
endpoints are at distance at least kN.

Moreover, assuming that the last claim of the proposition does not hold, we get
a sequence of points x,,, v, such that the distance is larger than n and such that the
angle between y,, — z,, with P is smaller than 1/||z,, — y,||-

In the limit (by translating z,, we can assume that it has a convergent subse-
quence), we get a leaf of F+ which cannot intersect every leaf of F contradicting the

global product structure.
(Il

4.A One dimensional foliations of T?

This appendix is devoted to characterizing foliations by lines in T? where the ideas
of the previous sections can be developed in an easier way. The goal is to leave this
section independent from the previous ones so that the reader can start by reading

this section (even if it will not be used in the remaining of the text).

4.A.1 Classification of foliations

Let F be a one-dimensional foliation of T? and F* any transversal foliation.

We will consider F and F* the lifts of these foliations to R? with the canonical
covering map p : R? — T2

Here, foliation will mean a partition of T? by continuous flow tangent to a con-
tinuous vector field without singularities. This definition implies orientability, the
proofs can be easily adapted to cover the non-orientable case.

The first remark is a direct consequence of Poincare-Bendixon’s Theorem (see
[KH] 14.1.1):

Proposition 4.A.1. All the leaves of F and F* are properly embedded copies of R.

PrOOF. By transversality and compactness, there are local product structure boxes
of uniform size (see Remark 5.2.8).

Assume there is a leaf F(z) which intersects a local product structure box in
more than one connected component.

This implies that there exists a leaf of F which is a circle by the argument of the
proof of Poincare-Bendixon’s theorem. This gives a singularity for the foliation Ft
a contradiction.

O

This allows us to prove the following:
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Proposition 4.A.2. Given a one dimensional orientable foliation F of T? we have
that there exists a subspace L C R% and R > 0 such that every leaf of F lies in a
R-neighborhood of a translate of L. Moreover, one can choose R such that one of

the following properties holds:

(i) Fither the R-neighborhood of every leaf of F contains a translate of L or,

(ii) The line L projects under p to a circle and there is no transversal to F which

intersects every leaf of F.

See figure 4.2, in fact, in option (ii) it can be proved that the foliation has a two-

dimensional Reeb component (which to avoid confusions we prefer not to define).

ProoF. Consider a circle C' transverse to F. By Proposition 4.A.1 we know that C'
is not null-homotopic. The existence of C' is not hard to show, it suffices to consider
a vector field transverse to F and perturb it in order to have a periodic orbit.

First, assume that C' does not intersect every leaf of F. By saturating C' with
the leaves of F we construct O, an open F saturated set strictly contained in T2,

We claim that the boundary of the open set consists of leaves of F homotopic
to C: Consider Oy a connected component of the lift of O to the universal cover.
Since C'is contained in O we have that there is a connected component of the lift
of C' contained in O. This connected component joins a point x € O, with a point
x + v where v € Z? represents C' in m;(T?) = Z?. This implies that + fixes Oy and
in particular its boundary components which must be leafs of F the lift of F to the
universal cover.

We have that the one-dimensional subspace L generated by the vector 7 in R?
verifies that every leaf of F lies within bounded distance from a translate of L.
Indeed, this holds for the boundary leaves of Oy and by compactness and the fact
that leaves do not cross one extends this to every leaf.

Now, assume that there is no circle transverse to F which intersects every leaf of
F. We claim that this means that every transversal to F must remain at bounded
distance from L (which is not hard to prove implies (ii) of the Proposition). Indeed,
by the argument above, if this were not the case we would find two closed leaves of
F which are not homotopic, a contradiction with the fact that leaves of F do not
intersect.

So, we can assume that there exists a circle C' which is transverse to F and
intersects every leaf of F. By composing with a homeomorphism H : T? — T2
isotopic to the identity we can assume that C' verifies that its lift is a one-dimensional
subspace Cy. If we prove (i) for H(F) we get (i) for F too since H is at bounded
distance from the identity in the universal cover.

By considering the first return map of the flow generated by X to this circle C' we

obtain a circle homeomorphism h : C'— C. By the classical rotation number theory,
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when lifted to the universal cover C' = R we have that the orbit of every point by the
lift » has bounded deviation to the translation by some number p € R. We consider
the specific lift given orthogonal projecting into Cj the point of intersection of the
flow line with the first integer translate of Cj it intersects.

We get that the line L we are looking for is generated by py +~*+ where v € Z? is
a generator of C' and 77 is the vector orthogonal to 7 whose norm equals the distance
of Cy with its closest translate by a vector of Z2.

O

4.A.2 Global dominated splitting in surfaces

The goal of this section is to show some of the ideas that will appear in Chapter 5)
in a simpler context.

Consider f : T? — T? a C!-diffeomorphism which is partially hyperbolic. With-
out loss of generality, we will assume that the splitting is of the form TT? = E @ E*
where both bundles are one-dimensional and £ is uniformly expanded. By Theorem
1.3.1 there exists a one-dimensional f-invariant foliation F* tangent to E*. Notice
that F* cannot have leaves which are circles.

For simplicity, we will assume throughout that the bundles £ and E* are oriented
and their orientation is preserved by Df. It is not hard to adapt the results here to
the more general case.

We denote as f to a lift of f to the universal cover R? and consider the foliation
F* which is the lift of F* to R2.

Notice that in dimension 2 being partially hyperbolic is equivalent to having
a global absolute dominated splitting. The fact that a global dominated splitting
implies the existence of a continuous vector field on the manifold readily implies that
in an orientable surface, the surface must be T2.

We will show the following:

Theorem 4.A.3. Let f : T? — T2 be a partially hyperbolic diffeomorphism with
splitting TT? = E @ E*. Then:

- f is semiconjugated to an Anosov diffeomorphism of T2.
- There is a unique quasi-attractor Q of f.

- Every chain-recurrence class different from Q is contained in a periodic inter-

val.

Since F is a one dimensional bundle uniformly transverse to E* we can approx-
imate E by a C'-vector field X which is still transverse to E*. The vector field X
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will be integrable and give rise to a foliation F which may not be invariant but is
transverse to E*. As usual, we denote as F to the lift of F to R2.

Using this foliation and the things we have proved we will be able to show:

Lemma 4.A.4. Let f : T? — T2 be a partially hyperbolic with splitting TT? =
E @ E", then f, : R? — R? is hyperbolic.

PRrROOF. Assume that f, has only eigenvalues of modulus smaller or equal to 1. Then,
the diameter of compact sets grows at most polynomially when iterated forward.

Consider an arc v of F* and we iterate it forward. We get that the length of
v grows exponentially while its diameter only polynomially. In R? this implies that
there will be recurrence of ~ to itself and in particular, we will obtain a leaf of F*
which intersects a leaf of F twice, a contradiction with Proposition 4.A.1.

Since f, has determinant of modulus 1 we deduce that f, must be hyperbolic.

O

We deduce:

Lemma 4.A.5. There is a global product structure between F and F*. In particular,

F" 1s quasi-isometric.

Proor. We apply Proposition 4.A.2 to F*. We obtain a line L* which will be
fo-invariant since F* is f-invariant.

Since L" is f,-invariant and f, is hyperbolic, we can deduce that L" does not
project into a circle so that option (ii) does not hold (recall that hyperbolic matrices
have irrational eigenlines).

Moreover, since L* must project into a dense line in T2, we get that the foliation
F* has no holonomy, and this implies by Theorem 4.3.1 that there is a global product
structure between F" and F.

Quasi-isometry follows exactly as in Proposition 4.3.9.

O

It is possible to give a proof of Theorem 4.3.1 in the lines of the proof of our
Theorem 4.3.2. In the case L # L" where L is the line given by Proposition 4.A.2
for F it is almost direct that there is a global product structure. In the case L =
L" one must reach a contradiction finding a translation which fixes the direction

contradicting that L* is totally irrational.

Remark 4.A.6. With the same argument as in Lemma 4.A.4 we can also deduce
that the line L" given by Proposition 4.A.2 for F* must be the eigenline of f,
corresponding to the eigenvalue of modulus larger than 1. Indeed, since F* is f—

invariant, then L" must be f,-invariant. Moreover, if L* corresponds to the stable
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eigenline of f, then the diameter of forward iterates of an unstable arc cannot grow

more than linearly and the same argument as in Lemma 4.A.4 applies.

&

This allows us to show (notice that this also follows from [PSy4])

Proposition 4.A.7. There is a unique f-invariant foliation Fg tangent to E.

PrROOF. The same argument as in Lemma 4.A.5 gives that any foliation tangent to
E must have a global product structure with F* when lifted to the universal cover.

We first show there exists one f-invariant foliation. To do this, we consider any
foliation F transverse to K" and we iterate it backwards. Recall that the line L*
close to the foliation F* must be the eigenline of the unstable eigenvalue of f, (see
Remark 4.A.6).

Let L be the one dimensional subspace given by Proposition 4.A.2 for F. Since
there is a global product structure between F and F* we get that L # L": Otherwise
by considering points x, y at distance larger than R in the direction orthogonal to L*
we would get that the leaves of F(z) and F*(y) cannot intersect due to Proposition
4.A.2.

Iterating backwards, we get that the foliation F,, = f *m(]’:" ) is close to the line
f™(L) that as m — oo converges to L®, the eigenline of the stable eigenvalue of f..

Moreover, we can prove that there exists a constant R such that for every m we
have that every leaf of F,, lies at distance smaller than R from f.™(L). Indeed,
consider R > % where K is the C%-distance from f and f., A" the unstable
eigenvalue of f, and « the angle between L and L°. We get that the R neighborhood
of any translate of L is mapped by f! into an <% (\*)~! R-neighborhood of f (L)

COs &

where o/ < a is the angle between f;'(L) and L*. Since R — =X (\)~IR > K,
from the choice of R we get that every leaf of Fy = f~!(F) lies within R-distance
from a translate of f;1(L). Inductively, we get that each F, lies within distance
smaller than R from f,™(L).

We must show that there exists a unique limit for the backward iterates of any
leaf of F. Let us fix R as above.

Let = € R? and we consider F,(z) = f"(F(f"(z))). Notice that F,(z) is an
embedded line which intersects the unstable leaf of each point of F(x) in exactly one
point. Assume there exists z € F(x) such that in F*(z) there are two different limit
points z, and 2z, of the sequence F,,(x) N F*(z). We have that forward iterates of
f¥(2) must lie at distance smaller than R from L* + f*(x).

Consider K > 0 such that if two points lie at distance larger than K inside an
unstable leaf then they are at distance larger than R in the direction transverse to

L. Then, by choosing k large enough so that the length of the arc of unstable joining
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z and 2, is larger than K we get that f*(z;) and f*(z,) must be at distance larger
than R in the direction transversal to L° contradicting the previous claim.
A similar argument implies that there cannot be two different f-invariant folia-
tions tangent to E since both should remain close to the stable eigenline of f,.
O

Since f, is hyperbolic (Lemma 4.A.4) Proposition 2.3.1 gives that there exists a
semiconjugacy H : R? — R? which is C%-close to the identity, is periodic and verifies
that:

Hof=f.oH
We denote as Fg to the lift of Fj to the universal cover, we can prove:

Lemma 4.A.8. The preimage by H of every point is contained in a leaf of Fg.

PROOF. From Proposition 4.A.2 (and the fact that Fp is f-invariant and has a
global product structure with .7:"“) we get that every leaf of Fp lies within distance
smaller than R from a translate of L*.

Consider points z,y lying in different leaves of Fg. Now, consider z = F, s(y) N
Fu(z). We have that the distance of z and & grows exponentially in the direction of
L*. This implies that by iterating forward, the distance between Fg(z) and Fg(y)
must grow also exponentially.

We conclude that d(f"(x), f"(y)) — oo with n — +o0.

Since H is close to the identity and semiconjugates f with f, it cannot send =
and y to the same point.

O

In order to be able to apply Proposition 2.2.1 we must show the following;:

Lemma 4.A.9. There is a unique quasi-attractor Q for f. Moreover, every point y
which belongs to the boundary of a fiber of H relative to its leaf of F belongs to Q.

PRroOF. By Conley’s theorem (Theorem 1.1.9), there always exists a quasi-attractor
Q of f. Moreover, we have seen that such quasi-attractors are saturated by unstable
sets (see 1.1.16).

Consider any quasi-attractor Q. Let y be a point which is in the boundary of
H'({z}) relative to Fg(y). Given ¢ > 0, since y is in the boundary of H~'({x})
relative to F, £(y) we obtain that its image by H cannot be contained in the unstable
set of x for f,.

Iterating backwards we obtain a connected set of arbitrarily large diameter in the

direction of the stable eigenline of f,. This implies that for large m we have that
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f~™(B.(y)) intersects p~*(Q). This holds for every & > 0 so we get that for every
e > 0 we can construct an e-pseudo-orbit from y to Q. This implies that y € Q.
Since Q was arbitrary and quasi-attractors are disjoint it also implies that there is a
unique quasi-attractor.

O

We are now able to give a proof of Theorem 4.A.3:

PrOOF OF THEOREM 4.A.3. We have proved that f is semiconjugated to a linear
Anosov diffeomorphism of T? and that there is a unique quasi-attractor.
The last claim of the Theorem follows from the fact that we have proved that the

conditions of Proposition 2.2.1 are verified:

- The partially hyperbolic set is the whole T? (so that the maximal invariant set
in U is also the whole T?).

- The semiconjugacy is the one given by H. It is injective on unstable manifolds
by Lemma 4.A.8.

- Lemma 4.A.9 implies that the frontier of fibers in center stable leaves are all

contained in the unique quasi-attractor Q of f.

- Fibers of H are invariant under unstable holonomy (see the proof of Proposition
3.3.11).

This concludes.
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Chapter 5
Global partial hyperbolicity

This chapter contains the main contributions of this thesis. In Section 5.1 we present
some preliminaries and in particular we introduce the concept of almost dynamical
coherence which is key in the study we make in this chapter. In particular, this

concept allows us to prove the following result in Section 5.2:

Theorem. Dynamical coherence is an open and closed property among partially hy-

perbolic diffeomorphisms of T3 isotopic to Anosov.

We remark that in general it is not known whether dynamical coherence is nei-
ther an open nor a closed property. There are not known examples where it is not
open but in general, to obtain opennes a technical condition is used (called plaque-
expansiveness). See [HPS, Be].

Dynamical coherence in the case where the center bundle has dimension larger
than one is a widely open subject. It has been remarked by Wilkinson ([Wi]) that
one can look at some Anosov diffeomorphisms as partially hyperbolic ones which
are not dynamically coherent (see [BuW,]| for an overview of dynamical coherence).
The proof here presented relies heavily both in the assumption of almost dynamical
coherence and in being in the isotopy class of an Anosov automorphism in T3. Several
questions regarding generalizations of these kind of results pop up even in dimension

3. The one which we believe to be more important is the following:

Question 5.0.10. Is it true that every partially hyperbolic diffeomorphism in dimen-

sion 3 is almost dynamically coherent?

Assuming this question admits a positive answer, one could expect to make some
progress in the direction of classification of both partially hyperbolic diffeomorphisms
of 3-manifolds, and more importantly (due to Theorem 1.2.22) of robustly transitive
diffeomorphisms in 3-manifolds.

Another quite natural question to be posed, which is related, is whether some

manifolds can admit partially hyperbolic diffeomorphisms but not strong partially
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hyperbolic ones. We prove in Section 5.2 that there are isotopy classes in T? which
admit partially hyperbolic diffeomorphisms but not strongly partially hyperbolic

ones. This poses the following natural question for which we do not know the answer:

Question 5.0.11. Let M be a 3-manifold different from T3. Is every partially hy-
perbolic diffeomorphism of M isotopic to a strong partially hyperbolic one?

When we treat strong partially hyperbolic systems we are able to obtain much

stronger results concerning integrability. We prove in Section 5.3 the following:
Theorem. Let f: T3 — T3 be a strong partially hyperbolic diffeomorphism. Then:
- FEither E° ® E° is tangent to a unique f-invariant foliation, or,

- there exists a f-periodic two-dimensional torus T which is tangent to E° @& E°

and normally expanding.

This result extends the results of [BBIy] to the pointwise partially hyperbolic
case and answers to a conjecture from [RHRHUj;] where it is shown that the second
possibility of the theorem is non-empty. In the introduction of Section 5.3 we explain
the difference between our approach and the one of [BBIy].

In Section 5.1 we present the definition of almost dynamical coherence as well as
some properties and we give some preliminaries of results which we will use after-
wards.

Finally, in Section 5.4 we comment on some results in higher dimensions as well
as to explore some results which allow one to characterize the isotopy class of a

partially hyperbolic diffeomorphism.

5.1 Almost dynamical coherence and Quasi-Isometry

5.1.1 Almost dynamical coherence

In general, a partially hyperbolic diffeomorphism may not be dynamically coherent,
and even if it is, it is not known in all generality if being dynamically coherent is
an open property (see [HPS, Be|). However, all the known examples in dimension 3

verify the following property which is clearly C'-open:

Definition 5.1.1 (Almost dynamical coherence). We say that f : M — M partially
hyperbolic of the form T'M = E“° @ E" is almost dynamaically coherent if there exists

a foliation F transverse to the direction E“.

&
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The introduction of this definition is motivated by the work of [BI] where it was
remarked that sometimes it is enough to have a foliation transverse to the unstable
direction in order to obtain conclusions.

Almost dynamical coherence is not a very strong requirement, with the basic

facts on domination we can show:

Proposition 5.1.1. Let {f,} a sequence of almost dynamically coherent partially
hyperbolic diffeomorphisms converging in the Ct-topology to a partially hyperbolic

diffeomorphism f. Then, f is almost dynamically coherent.

PROOF. Let us call E5° & E" to the splitting of f,, and E“ & E* to the splitting of
f. We use the following well known facts on domination (see Proposition 1.2.3 and
Remark 1.2.4):

- The subspaces E5° and E' converge as n — oo towards £ and E*.
- The angle between £E* and E* is larger than o > 0.

Now, consider f,, such that the angle between E¢* and E" is larger than «/2. Let
F. be the foliation transverse to Ey.
By iterating backwards by f,, we obtain that f,™(F,) is, when m is large, tangent
to a small cone around E¢°. From our assumptions, we can thus deduce that f, " (F,)
is transverse also to E*. This implies that f is almost dynamically coherent as
desired.
O

Notice that this proposition implies that if we denote as PH!(M) the set of
partially hyperbolic diffeomorphisms of M, and P to a connected component: If P
contains an almost dynamically coherent diffeomorphisms, every diffeomorphism in
P is almost dynamically coherent. In particular, almost dynamical coherent partially
hyperbolic diffeomorphisms contain the connected component in PH!(T?) containing
the linear representatives of the isotopy class when these are partially hyperbolic.

As a consequence [BI] (Key Lemma 2.1), every strong partially hyperbolic diffeo-
morphism of a 3-dimensional manifold is almost dynamically coherent. It is impor-
tant to remark that it is a mayor problem to determine whether partially hyperbolic
diffeomorphisms in the sphere S? are almost dynamically coherent (which would solve
the question on the existence of robustly transitive diffeomorphisms in the sphere!).

The author is not aware of whether the following question is known or still open:

Indeed, by a result of [DPU] a robustly transitive diffeomorphism of a 3-dimensional manifold
should be partially hyperbolic. If it were almost dynamically coherent, we would get by Novikov’s
Theorem that there exists a Reeb component transverse to the strong unstable direction (if it is
partially hyperbolic of type T'S® = E*® E* one should consider f~1). This contradicts Proposition
5.1.3.
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Question 5.1.2. Are there any examples of partially hyperbolic diffeomorphisms of
T2 isotopic to a linear Anosov automorphism which are not isotopic to the linear

Anosov automorphism through a path of partially hyperbolic diffeomorphisms?

We end this subsection by stating a property first observed by Brin,Burago and
Ivanov ([BBI;, BI]) which makes our definition a good tool for studying partially
hyperbolic diffeomorphisms:

Proposition 5.1.3 (Brin-Burago-Ivanov). Let f : M — M an almost dynamically
coherent partially hyperbolic diffeomorphism with splitting TM = E° ® E" and let

F be the foliation transverse to E*. Then, F has no Reeb components.

PRrROOF. If a (transversally oriented) foliation F on a compact closed 3-dimensional
manifold M has a Reeb component, then, every one dimensional foliation transverse
to F has a closed leaf (see [BI] Lemma 2.2).

Since F* is one dimensional, transverse to F and has no closed leafs, we obtain

that F cannot have Reeb components.
O

This has allowed them to prove (see also [Par]):

Theorem 5.1.4 (Brin-Burago-Ivanov [BBIy, BI, Par]). If f is an almost dynamically
coherent partially hyperbolic diffeomorphism of a 3-dimensional manifold M with fun-
damental group of polynomial growth, then, the induced map f, : Hi(M,R) = RF —
H,(M,R) is partially hyperbolic. This means, it is represented by an invertible ma-
triv A € GL(k,Z) which has an eigenvalue of modulus larger than 1 and determinant

of modulus 1 (in particular, it also has an eigenvalue of modulus smaller than 1).

SKETCH.  We prove the result when 7 (M) is abelian, so that it coincides with
H,(M,Z). When the fundamental group is nilpotent, this follows from the fact that
the 3-manifolds with this fundamental group are well known (they are circle bundles
over the torus) so that one can make other kind of arguments with the same spirit
(see [Par] Theorem 1.12).

Assume that every eigenvalue of f, is smaller or equal to 1. Since the universal
cover M is quasi-isometric to 7 (M), it is thus quasi-isometric to Hy(M,R) = R*
(notice that this is trivial if M = T3).

Now, we have that f. acting in H;(M,R) has all of its eigenvalues smaller than
one, we obtain that the diameter of a compact set in M grows subexponentially by
iterating it with f .

Given R > 0 the number of fundamental domains needed to cover a ball of radius

R in M is polynomial in R.
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Consider an unstable arc I. We obtain that f"(I) has subexponential (in n)
diameter but the length grows exponentially (in n). By the previous observation, we
obtain that given e we find points of F* which are not in the same local unstable
manifold but are at distance smaller than e, this implies the existence of a Reeb
component for F (Theorem 4.2.1) and contradicts Proposition 5.1.3.

O

Notice that if the growth of the fundamental group is exponential, one can make
partially hyperbolic diffeomorphisms which are isotopic to the identity (for example,
the time-one map of an Anosov flow). This is because in such a manifold, a sequence
K, of sets with exponentially (in n) many points but polynomial (in n) diameter
may not have accumulation points.

As a consequence of combining the Proposition 5.1.3 with Novikov’s Theorem

4.2.1 we obtain for T? the following consequence (recall Corollary 4.2.2):

Corollary 5.1.5. Let f be a partially hyperbolic diffeomorphism of T? of the form
TT? = B & E* (dim E® = 2) which is almost dynamically coherent with foliation
F. Assume that F is oriented and transversally oriented and let F and F* the lifts
of the foliations F and the unstable foliation F* to R®. Then:

(i) For every x € R® we have that F(x) N F*(z) = {z}.

(ii) The leafs of F are properly embedded complete surfaces in R3. In fact there
exists 0 > 0 such that every euclidean ball U of radius 6 can be covered by a
continuous coordinate chart such that the intersection of every leaf S of F with
U is either empty of represented as the graph of a function hg : R* — R in

those coordinates.
(111) Each closed leaf of F is a two dimensional torus.

(iv) For every § > 0, there exists a constant Cs such that if J is a segment of Fu
then Vol(Bs(J)) > Cslength(J).

PROOF. The proof of (i) is the same as the one of Lemma 2.3 of [BI], indeed, if there
were two points of intersection, one can construct a closed loop transverse to F which
descends in T® to a nullhomotopic one. By Novikov’s theorem (Theorem 4.2.1), this
implies the existence of a Reeb component, a contradiction with Proposition 5.1.3.
Once (i) is proved, (ii) follows from the same argument as in Lemma 3.2 in [BBI,].
Notice that the fact that the leafs of F are properly embedded is trivial after (i),
with some work, one can prove the remaining part of (ii) (see also Lemma 5.2.7 for

a more general statement).
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Part (iii) follows from the fact that if S is an oriented closed surface in T® which
is not a torus, then it is either a sphere or its fundamental group cannot inject in T?
(see [Ri] and notice that a group with exponential growth cannot inject in Z3).

Since F has no Reeb components, we obtain that if S is a closed leaf of F then it
must be a sphere or a torus. But S cannot be a sphere since in that case, the Reeb’s
stability theorem (Theorem 4.1.6) would imply that all the leafs of F are spheres
and that the foliated manifold is finitely covered by S? x S! which is not the case.

The proof of (iv) is as Lemma 3.3 of [BBI,]. Since there cannot be two points in
the same leaf of F* which are close but in different local unstable leaves, we can find
¢ > 0 and a > 0 such that in a curve of length K of F* there are at least X points
whose balls of radius € are disjoint (and all have the same volume).

Now, consider § > 0 and § = min{#,e}. Let {z,...,2;} with [ > alength(.J) be
points such that their o-balls are disjoint. We get that U = (J\_, Bs(z;) € Bs(J)
and we have that Vol(U) > [ Vol(Bj(x;)). We obtain that Cs = %ad* works.

O

Notice that most of the previous result can be extended to arbitrary 3-dimensional
manifolds. In fact, with a similar proof (see also [Par]) one proves that almost
dynamically coherent partially hyperbolic diffeomorphisms can only occur in certain

specific 3-manifolds:

Corollary 5.1.6. Let f be an almost dynamically coherent partially hyperbolic dif-
feomorphism of a 3-dimensional manifold M with splitting TM = E & E". Then:

- The manifold M is irreducible (i.e. mo(M) = {0}).
- The covering space of M is homeomorphic to R3.

- The fundamental group of M s infinite (and different from Z)

PRrROOF. Let F be the foliation transverse to E*.

The first claim follows from the fact that having (M) # {0} implies the exis-
tence of a Reeb component for F by Novikov’s Theorem 4.2.1. The last claim follows
by the same reason. The fact that the fundamental group cannot be Z follows from
Proposition 5.1.3 since a manifold with Z as fundamental group (which is of poly-
nomial growth) has Z as first homology group and admits no automorphisms with
eigenvalues of modulus different from 1.

To get the second statement, notice that since the fundamental group of every
leaf must inject in the fundamental group of M we have that every leaf of F must
be homeomorphic to R? or S%. By Reeb’s stability theorem (Theorem 4.1.6) leafs

must be homeomorphic to R2.
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By a result by Palmeira (see [Pal]) we obtain that M must be homeomorphic to
R3.
O

5.1.2 Branched Foliations and Burago-Ivanov’s result

We follow [BI] section 4.

We define a surface in a 3-manifold M to be a C'-immersion 2 : U — M of a
connected smooth 2-dimensional manifold (possibly with boundary). The surface is
said to be complete if it is complete with the metric induced in U by the Riemannian
metric of M and the immersion 2. The surface is open if it has no boundary.

Given a point z in (the image of) a surface ¢ : U — M we have that there is
a neighborhood B of x such that the connected component C' containing +~!(x) of
171 (B) verifies that 1(C') separates B. We say that two surfaces 1 : Uy — M, 15 : Uy —
M topologically cross if there exists a point x in (the image of) 21 and 23 and a curve
v in Uy such that 25(7y) passes through = and intersects both connected components
of a neighborhood of = with the part of the surface defined above removed. This
definition is symmetric and does not depend on the choice of B (see [BI]) however

we will not use this facts.

Definition 5.1.2. A branching foliation on M is a collection of complete open sur-
faces tangent to a given continuous 2-dimensional distribution on M such that every
point belongs to at least one surface and no pair of surfaces of the collection have

topological crossings.

&

We will abuse notation and denote a branching foliation as Fy,qn, and by Fypan ()
to the set of set of surfaces whose image contains x. We call the (image of) the
surfaces, leaves of the branching foliation.

We have the following:

Proposition 5.1.7. If every point of M belongs to a unique leaf of the branching

foliation, then the branching foliation is a true foliation.

PRrROOF. Let E be the two-dimensional distribution tangent to the branching foliation
and we consider E+ a transverse direction which we can assume is C' and almost
orthogonal to E.

By uniform continuity we find ¢ such that for every point p in M the 2¢ ball
verifies that it admits a C'-chart to an open set in R3 which sends E to an almost

horizontal zy-plane and E* to an almost vertical z-line.
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Let D be a small disk in the (unique) surface through p and 7 a small arc tangent
to E1 thorough p. Given a point ¢ € D and t € v we have that inside Ba.(p) there
is a unique point of intersection between the curve tangent to E+ through ¢ and
the connected component of the (unique) surface of Fy.q, intersected with Ba.(p)
containing ¢.

We get a well defined continuous and injective map from D x v = R? to a
neighborhood of p (by the invariance of domain’s theorem, see [Hat]) such that it
sends sets of the form D x {t} into surfaces of the branching foliation. Since we
already know that Fy,., is tangent to a continuous distribution, we get that Fp.q, is
a true foliation.

(I

Indeed, the result also follows from the following statement we will also use:

Proposition 5.1.8 ([BWi] Proposition 1.6 and Remark 1.10). Let E be a continuous
codimension one distribution on a manifold M and S a (possibly non connected)
surface tangent to E which contains a family of disks of fized radius and whose set
of midpoints is dense in M. Then, there exists a foliation F tangent to E which

contains S in its leaves.

Invariant branching foliations always exist for strong partially hyperbolic diffeo-
morphisms of 3-dimensional manifolds due to a remarkable result of Burago and

Ivanov:

Theorem 5.1.9 ([BI],Theorem 4.1 and Theorem 7.2). Let f : M® — M3 be a strong
partially hyperbolic diffeomorphism with splitting TM = E®* & E¢® E" into one
dimensional subbundles. There exists branching foliations Fg>,. and tangent
to B = E° ® E° and E® = E°® E" which are f-invariant®>. Moreover, for every

e > 0 there exist foliations S. and U. tangent to an c-cone around E“ and E

cu
bran

respectively and continuous maps he® and he* at C°-distance smaller than & from the

identity which send the leaves of S. and U to leaves of Fg:,. and Fi. respectively.

We remark that when there exists an f-invariant (branching) foliation, one can
assume that every sequence of leaves through points xp such that x, — z verifies
that it converges to a leaf through x (see Lemma 7.1 of [BI]).

Convention. We will assume throughout that every branching foliation is completed

in the sense stated above: For every sequence Ly of leaves in Ff° (x) such that

CS

g5 (x) contained

x), — o we have that L, converges in the C*'-topology to a leaf L €
in the branching foliation.

&

2This means that for every Fj, € Fg....(z) there exists Fys € FZ.. (f(x)) such that f(Fy) = Fp.
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Notice that the existence of the maps hZ® and hS" implies that when lifted to the
universal cover, the leaves of S. (resp. U.) remain at distance smaller than ¢ from
lifted leaves of F$2 . (resp. Fit.).

We obtain as a corollary the following result we have already announced:

Corollary 5.1.10 (Key Lemma 2.2 of [BI]). A strong partially hyperbolic diffeomor-

phism on a 3-dimensional manifold is almost dynamically coherent.

Using the fact that when x;, — x the leaves through x; converge to a leaf through

2z we obtain:

Proposition 5.1.11. Let Fy,qn be a branching foliation of T2 and consider a sequence
of points xy, such that there are leaves Fy, € Fpran(xr) which are compact, incompress-
ible and homotopic to each other. If x;, — x, then there is a leaf L € Fypan(x) which

15 incompressible and homotopic to the leaves Fi.

PROOF. Recall that if x;, — z and we consider a sequence of leaves through x; we
get that the leaves converge to a leaf through x.

Consider the lifts of the leaves Fj which are homeomorphic to a plane since they
are incompressible. Moreover, the fundamental group of each of the leaves must be
7% and the leaves must be homoeomorphic to 2-torus, since it is the only possibly
incompressible surface in T3.

Since all the leaves Fj are homotopic, their lifts are invariant under the same
elements of 71(T?). The limit leaf must thus be also invariant under those elements.
Notice that it cannot be invariant under further elements of 71 (T?) since no surface
has such fundamental group.

O

The idea of the proof of the previous proposition can be applied to other contexts,
however, for simplifying the proof we chose to state it only in this context which is

the one of interest for us.

5.1.3 Quasi-isometry and dynamical coherence

We review in this section a simple criterium given by Brin in [Bri] which guaranties
dynamical coherence for absolutely dominated partially hyperbolic diffeomorphisms.
It involves the concept of quasi-isometry which we will use after in this thesis. We
present the sketch of the proof by Brin to show the importance of absolute domination
in his argument.

For more information on quasi-isometric foliations we refer the reader to [Hs].

We recall its definition (which already appeared in subsection 4.3.4):
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Definition 5.1.3 (Quasi-Isometric Foliation). Consider a Riemannian manifold M
(not necessarily compact) and a foliation F in M. We say that the foliation F
is quasi-isometric if distances inside leaves can be compared with distances in the
manifold. More precisely, for z,y € F(z) we denote as dx(z,y) as the infimum of
the lengths of curves joining = to y, we say that F is quasi-isometric if there exists

a,b € R such that for every x,y in the same leaf of F one has that:

dr(z,y) < ad(z,y) +b
o

In general, this notion makes sense in non-compact manifolds, and it will be used
by us mainly in the universal covering space of the manifolds we work with. Notice
that if a foliation of a compact manifold is quasi-isometric then all leaves must be
compact.

The classic example of a quasi-isometric foliation is a linear foliation in R¢ with
the euclidean metric. Indeed, it can be thought that quasi-isometry foliations are in a
sense a generalization of these (notice however that even a one dimensional foliation
of the plane® which is quasi-isometric needs not remain at bounded distance from a
one-dimensional “direction”).

It is important to remark that the metric in the manifold is quite important, and
as in general we work with the universal cover of a compact manifold, this metric
is also influenced by the topology of the manifold. See [Hj] for more discussion on
quasi-isometric foliations and topological and restrictions for their existence.

The argument of the proof of Proposition 1.3.6 can be extended to non-local
arguments if one demands that the domination required is absolute and the geometry
of leaves is quite special. In fact, Brin has proved in [Bri] the following quite useful

criterium (see for example [BBIy|, [Par| or [H, Hs] for applications of this criterium).

Proposition 5.1.12 ([Bri]). Let f : M — M be an absolutely partially hyperbolic
diffeomorphism with splitting TM = E° & E* and such that the foliation F* is

quasi-isometric in M the universal cover of M. Then, f is dynamically coherent.

It shows that in fact, the foliation is unique in (almost) the strongest sense,
which is that every C'-embedding of a ball of dimension dim £ which is everywhere
tangent to £ is in fact contained in a leaf of the foliation F*¢*.

We give a sketch of the proof in order to show how the hypothesis are essential

to pursue the argument. See [Bri] for a clear exposition of the complete argument.

3Consider for example the foliation given by {(t,t> + b)}s.
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SKETCH. Assume that there are two embedded balls B; and By through a point
x which are everywhere tangent to £ and whose intersection is not relatively open
in (at least) one of them.

Then, as in Proposition 1.3.6 it is possible to construct a curve 1 which has
non-zero length, is contained in a leaf of 7" and joins these two embedded balls.

Let 71 and v, two curves contained in By and Bsr respectively joining x to the
extremes of 7.

Since n is an unstable curve, its length growths exponentially, and by quasi-
isometry, we know that the extremal points of the curve are at a distance which
grows exponentially with the same rate as the rate the vectors in E* expand.

On the other hand, the curves v; and v are forced to grow with at most an
exponential rate which is smaller than the one in E* (by using absolute domination)
and so we violate the triangle inequality.

O

5.2 Partially hyperbolic diffeomorphisms isotopic
to linear Anosov automorphisms of T°
In this section we give a proof of the following:

Theorem 5.2.1. Let f : T3 — T2 be an almost dynamically coherent partially
hyperbolic diffeomorphism with splitting of the form TT? = E* & E*. Assume that

f s isotopic to Anosov, then:

- f s (robustly) dynamically coherent and has a unique f-invariant foliation F°°

tangent to E°.

- There ezists a global product structure between the lift of F° to the universal

cover and the lift of F* to the universal cover.

- If f. has two eigenvalues of modulus larger than 1 then they must be real and

different.

As a consequence of the fact that almost dynamical coherence is an open and

closed property (see Proposition 5.1.1 above) we obtain:

Corollary. Dynamical coherence is an open and closed property among partially

hyperbolic diffeomorphisms of T3 isotopic to Anosov.

ProoOF. By Proposition 5.1.1 we know that almost dynamical coherence is an open

and closed property. Theorem 5.2.1 then implies that in the isotopy class of Anosov
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dynamical coherence is open and closed too (since almost dynamical coherence im-
plies dynamical coherence in this context).
a

We shall assume that f : T — T® is an almost dynamical coherent partially
hyperbolic diffeomorphism with splitting of the form TT? = E* @& E* with dim B =
1 and isotopic to a linear Anosov automorphism A : T3 — T3,

It is important to remark that we are not assuming that the stable dimension of
A = f, coincides with the one of E°. In fact, many of the arguments below become
much easier in the case A has stable dimension 2. The fact that we can treat the case
where A has two eigenvalues of modulus larger than one is in the authors’ opinion,
one of the main contributions of this thesis.

We will denote as F the foliation given by the definition of almost dynamical
coherence which we know is Reebless and it thus verifies the hypothesis of Theorem
4.2.6.

As before, we denote as p : R® — T3 the covering projection and we denote as f ,
F and F* the lifts of f, F and F* to the universal cover.

We provide an orientation to F* and denote as ﬁ_’ﬁ(a:) and F*(z) to the connected
components of F*(z)\ {z}. Since F(x) separates R? (see subsection 4.2.3) we denote
F,(x) and F_(z) to the connected components of R? \ F(z) containing respectively
F(x) and F*(x).

Proposition 2.3.1 implies the existence of a continuous and surjective function
H : R? — R? which verifies

Hof=AoH

and such that d(H(z),z) < K, for every x € R3.

5.2.1 Consequences of the semiconjugacy

We can prove:

Lemma 5.2.2. For every x € R we have that H(F%(z)) is unbounded.

PROOF. Otherwise, for some z € R?, the unstable leaf F%(z) would be bounded.
Since its length is infinite one can find two points in ]-11(3:) in different local unstable
leafs at arbitrarily small distance. This contradicts Corollary 5.1.5 (i).

(|

Remark 5.2.3. Notice that for every € R3 the set F, (x) is unbounded and contains
a half unstable leaf of F*.

- In the case the automorphism A has stable dimension 2, this implies that

H(Fy(z)) contains a half-line of irrational slope. Indeed, by Lemma 5.2.2 we
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have that H(F%(z)) is non bounded and since we know that H(F“(z)) C
W*(H(z), A) we conclude.

- When A has stable dimension 1, we only obtain that H(F!(x)) contains an un-
bounded connected set in W*(H (x), A) which is two dimensional plane parallel
to BY.

%

One can push forward Lemma 5.2.2 in order to show that H is almost injective
in each unstable leaf of F*, in particular, a similar argument to the one in Lemma
5.2.2 gives that at most finitely many points of an unstable leaf can have the same
image under H. Later, we shall obtain that in fact, H is injective on unstable leaves

so that we will not give the details of the previous claim (see Remark 5.2.11).

5.2.2 A planar direction for the foliation transverse to E“

Since F is transverse to the unstable direction, we get by Corollary 4.2.2 that it is
a Reebless foliation so that we can apply Theorem 4.2.6. We intend to prove in this
section that option (ii) of Theorem 4.2.6 is not possible when f is isotopic to Anosov
(see [RHRHUj] where that possibility occurs). The following simple remark will be

essential in what follows:

Remark 5.2.4. Notice that if we apply f~! to the foliation F, then the new foliation
f _1(.7:" ) is still transverse to E* so that Theorem 4.2.6 still applies. So, we obtain a
plane P’ close to f~'(F). We claim that P’ = A~!(P) where P is the plane given by
Theorem 4.2.6 for F. To prove this, recall that f and A are at bounded distance so,
leaves of f~!(F) must remain at bounded distance from A~'(P) and then use the

fact that the plane is unique (Remark 4.2.7).
%

The result that follows can be deduced more easily if one assumes that A has
stable dimension 2.

We say that a subspace P is almost parallel to a foliation F if there exists R > 0
such that for every 2 € R* we have that P + x lies in an R-neighborhood of F (x)
and F(z) lies in a R-neighborhood of P + z.

Proposition 5.2.5. Let f : T3 — T3 be a partially hyperbolic diffeomorphism of the
form TT? = E @ E* (with dim E = 2) isotopic to a linear Anosov automorphism
and F a foliation transverse to E*. Then, there exists a two dimensional subspace
P C R? which is almost parallel to F.
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PROOF. It is enough to show that option (i) of Proposition 4.2.6 holds, since it
implies the existence of a plane P almost parallel to F.

Assume by contradiction that option (ii) of Proposition 4.2.6 holds. Then, there
exists a plane P C R? whose projection to T? is a two dimensional torus and such
that every leaf of F*, being transverse to F, remains at bounded distance? from
P. Indeed, when there is a dead-end component for F we get that any transverse
foliation must verify that its leaves remain at bounded distance from the boundary
torus of the dead-end component which in turn are at bounded distance from the
plane P.

Since f is isotopic to a linear Anosov automorphism A we know that P cannot be
invariant under A (see Proposition 1.5.1). So, we have that P and A~!(P) intersect
in a one dimensional subspace L which projects into a circle in T3 (notice that a
linear curve in T? is either dense or a circle, so, if a line belongs to the intersection
of two linear two dimensional torus in T? which do not coincide, it must be a circle).

We get that for every point  we have that F*(z) must lie within bounded
distance from P as well as from A~ (P) (since when we apply f~! to F the leaf close
to P becomes close to A(P), see Remark 5.2.4). This implies that in fact F*(z) lies
within bounded distance from L.

On the other hand, we have that H(F%(x)) is contained in W"(H(x), A) =
EY% + H(x) for every x € R3. Since H is at bounded distance from the identity, we
get that F “(z) lies within bounded distance from EY, the eigenspace corresponding
to the unstable eigenvalues of A.

Since E% must be totally irrational (see Remark 1.5.3) and L projects into a
circle L, we get that F*(z) remains at bounded distance from £ N L = {0}. This
contradicts the fact that F¥(z) is unbounded (Lemma 5.2.2).

O

5.2.3 Global Product Structure in the universal cover

When the plane P almost parallel to F is totally irrational, one can see that the
foliation F in T? is without holonomy, and thus there is a global product structure
between F and F* which follows directly from Theorem 4.3.1.

This would be the case if we knew that the plane P given by Theorem 4.2.6 is
fe-invariant (see subsection 5.3.6). To obtain the global product structure in our
case we will use the fact that iterating the plane P backwards by f, it will converge

to an irrational plane and use instead Theorem 4.3.2.

4Notice that if A has stable dimension 2, this already gives us a contradiction since H(F*(x)) =
WY (H(z),A) which is totally irrational and cannot acumulate in a plane which projects into a

two-torus.
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Proposition 5.2.5 implies that the foliation F is quite well behaved. In this
section we shall show that the properties we have showed for the foliations and the
fact that F* is f-invariant while the foliation F remains with a uniform local product
structure with F* when iterated backwards (see Lemma 5.2.7) imply that there is
a global product structure. Some of the arguments become simpler if one assumes
that A has stable dimension 2.

The main result of this section is thus the following:

Proposition 5.2.6. Given z,y € R® we have that F(x) N F*(y) # 0. This intersec-

tion consists of exactly one point.

Notice that uniqueness of the intersection point follows from Corollary 5.1.5 (i)
and will be used to prove the proposition. We must put ourselves in the conditions
of Theorem 4.3.2.

We shall proceed with the proof of Proposition 5.2.6.

We start by proving a result which gives that the size of local product structure
boxes between f~"(F) and F* can be chosen independent of n. We shall denote as
D*={z€C : |z|] <1}

Lemma 5.2.7. There exists 6 > 0 such that for every x € R® and n > 0 there
exists a closed neighborhood V" containing Bs(x) such that it admits C°-coordinates
e D? x [—1,1] = R? such that:

- (D% x [~1,1]) = V2 and ¢2(0,0) = .

T

- i (D x {t}) = [ (F((e2(0,0)) NV for every t € [-1,1].

- er({s} x [-1,1]) = f"(gog(s,O)) NV for every s € D?.

PROOF. Notice first that the tangent space to f~"(F) belongs to a cone transverse
to E" and independent of n. Let us call this cone £¢.
Given € > 0 we can choose a neighborhood V, of = contained in B.(x) such that

the following is verified:

- There exists a two dimensional disk D containing x such that V, is the union
of segments of F*(x) of length 2¢ centered at points in D. This defines two
boundary disks D and D~ contained in the boundary of V..

- By choosing D small enough, we get that there exists €; > 0 such that every
curve of length €, starting at a point y € B, (z) tangent to £ must leave V,
and intersects V; in 9V, \ (DT U D7).
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Notice that both € and €; can be chosen uniformly in R? because of compactness
of T? and uniform transversality of the foliations (see Remark 4.2.3).

This implies that every disk of radius e tangent to £° centered at a point z €
B, (z) must intersect the unstable leaf of every point in D, in particular, there is a
local product structure of uniform size around each point in R3.

Now, we can choose a continuous chart (recall that the foliations are with C*
leaves but only continuous) around each point which sends horizontal disks into
disks transverse to E* and vertical lines into leaves of F* containing a fixed ball
around each point x independent of n > 0 giving the desired statement.

O

Remark 5.2.8. We obtain that there exists ¢ > 0 such that for every x € R? there
exists Vi, C [,5o V' containing B.(z) admitting C'-coordinates ¢, : D* x [—1,1] —
R3 such that:

- ¢E(D2 X [_17 1]) =V, and %(070) = .

- If we consider VF = ¢ !(B.(x)) then one has that for every y € B.(z) and
n > 0 we have that:

S FTESW))) N VL)
is the graph of a function A} : D* — [~1,1] which has uniformly bounded

derivative in y and n.

Indeed, this is given by considering a C!-chart 1), around every point such that its im-
age covers the e-neighborhood of x and sends the E-direction to an almost horizontal
direction and the E"-direction to an almost vertical direction (see Proposition 5.1.7).

See for example [BuWs] section 3 for more details on this kind of constructions.

&

This lemma shows that after iterating the foliation backwards, one gets that it

becomes nearly irrational so that we can apply Theorem 4.3.2.

Lemma 5.2.9. Given K > 0 there exists ng > 0 such that for every x € R and for

every v € Z3 with norm less than K we have that

Fo(F(@) +y # f(F(z))  VzeR>

PROOF. Notice that f~"(F) is almost parallel to A~"(P). Notice that A~"(P) has a
converging subsequence towards a totally irrational plane P (see Remarks 1.5.3 and
1.5.2).

We can choose ng large enough such that no element of Z3 of norm smaller than
K fixes A="(P).
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Notice first that f~"0(F) is almost parallel to A= (P) (see Remark 5.2.4). Now,
assuming that there is a translation v which fixes a leaf of f~"0(F) we get that the
leaf contains a loop homotopic to . This implies that it is at bounded distance from
the line which is the lift of the canonical (linear) representative of v (see Lemma
4.2.10). This implies that v fixes A7"°(P) and thus has norm larger than K as
desired.

(|

We can now complete the proof of Proposition 5.2.6.

PRrROOF OF PROPOSITION 5.2.6. By Corollary 5.1.5 we know that all the leaves
of F are simply connected. Proposition 4.2.8 implies that the leaf space of F is
homeomorphic to R. All this properties remain true for the foliations f _"(j} ) since
they are diffeomorphisms at bounded distance from linear transformations.

Lemma 5.2.7 gives that the size of the local product structure between f _”(.7} )
and F* does not depend on n.

Using Lemma 5.2.9 we get that for some sufficiently large n the foliations f~"(F)
and F* are in the hypothesis of Theorem 4.3.2 which gives global product structure
between f ’”(.7:" ) and F*. Since F* is f-invariant and f is a diffeomorphism we get
that there is a global product structure between F and F* as desired.

O

Using Proposition 4.3.9 we deduce the following (see figure 5.1) :

Corollary 5.2.10. The foliation F" is quasi-isometric. Moreover, there exist one
dimensional subspaces Ly and Lo of E'f transverse to P and K > 0 such that for every
z € R and y € F*(x) at distance larger than K from x we have that H(y) — H(y)

s contained in the cone of EY% with boundaries Ly and Ly and transverse to P.

Notice that if A has stable dimension 2 then Ly = Ly = EY.

PRrROOF. This is a direct consequence of Proposition 4.3.9 and the fact that the image
of F(z) by H is contained in EY + H(z).
O

Remark 5.2.11. Since points which are sent to the same point by H must have orbits
remaining at bounded distance, the quasi-isometry of F* implies that H must be

injective on leaves of F™.

&

5.2.4 Complex eigenvalues

The following proposition has interest only in the case A has stable dimension 1.
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Figure 5.1: The unstable leaf of & remains close to the cone bounded by L; and Lo.

Proposition 5.2.12. The matrix A cannot have complex unstable eigenvalues.

PROOF. Assume that A has complex unstable eigenvalues, in particular EY is two-
dimensional. Consider a fixed point zo of f.

Recall that by Lemma 5.2.2 the set n = H(F¥(x)) is an unbounded continuous
curve in EY%. Since z is fixed and since H is a semiconjugacy, we have that 7 is
A-invariant.

On the other hand, by Corollary 5.2.10 we have that 7 is eventually contained in
a cone between two lines L; and L.

This implies that A cannot have complex unstable eigenvalues (recall that they
should have irrational angle by Lemma 1.5.2) since a matrix which preserves an un-
bounded connected subset of a cone cannot have complex eigenvalues with irrational
angle.

O

5.2.5 Dynamical Coherence

In this section we shall show dynamical coherence of almost dynamically coherent

partially hyperbolic diffeomorphisms isotopic to linear Anosov automorphisms.
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The proof of the following theorem becomes much simpler if one assumes that
the plane P almost parallel to F is A-invariant which as we mentioned before is the

most important case (see also subsection 5.3.6)

Theorem 5.2.13. Let f : T3 — T® be an almost dynamically coherent partially
hyperbolic diffeomorphism of the form TT? = E° @ E* isotopic to a linear Anosov
automorphism. Then, there exists an f-invariant foliation F¢ tangent to E. If
F denotes the lift to R® of this foliation, then H(F(z)) = P + H(z) where P
is an A-invariant subspace and EY is not contained in P.

ProOF. Consider the foliation F, by Proposition 5.2.5 we have a plane P which is
almost parallel to F.

Let P be the limit of A="(P) which is an A-invariant subspace. Since we have
proved that A has no complex unstable eigenvalues (Proposition 5.2.12) and since P
is transverse to £ (Proposition 4.3.9), this plane is well defined (see Remark 1.5.3).

Notice that the transversality of P with EY% implies that P° contains E?, the
eigenspace associated with stable eigenvalues (in the case where A has stable dimen-
sion 2 we thus have P = E%).

Since P is A-invariant, we get that it is totally irrational so that no deck trans-
formation fixes P.

Using Remark 5.2.8 we obtain ¢ > 0 such that for every z € R? there are
neighborhoods V,, containing B.(z) admitting C''-coordinates ¢, : D? x [-1,1] = V,
such that:

- For every y € B.(z) we have that if we denote as W7(y) to the connected
component containing y of V, N f~"(F(f™(y))) then the set ¥, (WZ(y)) is the
graph of a C''-function hf, : D* — [~1,1] with bounded derivatives.

By a standard graph transform argument (see [HPS] or [BuWs] section 3) using
the fact that these graphs have bounded derivative we get that {hZ¥} is pre-compact
in the space of functions from D? to [—1, 1].

For every y € B.(x) there exists J; a set of indices such that for every a € J7
we have a C''-function hZ¥, : D* — [—1,1] and n; — +o0 such that:

hZY, = lim hy?
) ]—)+OO J
Every h%Y, gives rise to a graph whose image by v, we denote as W, (y). This

manifold verifies that it contains y and is everywhere tangent to £°°.

Claim. We have that H(W3, (2)) C P + H(z) for every z € B.(x) and every
ae J!.
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ProOF. Consider y € W7, ,(z) for some o € J.. One can find n; — oo such that
Wi (2) = WE o(2).

In the coordinates ¢, of V;, we can find a sequence z,, € Wy (2)NF*(y) such that
Zn; — Y. Moreover, we have that f”f(znj) € F(f(z)). Assume that H(y) # H(z)
(otherwise there is nothing to prove).

We have, by continuity of H that H(z,,) — H(y) # H(z).

We choose a metric in R? so that (P®)+ with this metric is A-invariant. We
denote as A to the eigenvalue of A in the direction (P°)=.

By Proposition 5.2.5 and the fact that H is at bounded distance from the identity,
there exists R > 0 such that for every n; > 0 we have that A" (H(z,,)) is at distance
smaller than R from P + A" (H(z)) since f”j(znj) e F(fr(z)).

Suppose that H(z,,) does not converge to P + H(z). We must reach a contra-
diction.

Consider then a > 0 such that the angle between P and the vector H(y)— H(z)
is larger than o > 0. This a can be chosen positive under the assumption that H (z,,)
does not converge to P + H(z).

Let n; > 0 be large enough such that:

- The angle between A=" (P) and P is smaller than «/4,
- |[1H (z0,) — H(2)|| > 311H (y) — H(2)]I,
- A% > 2R(sin(g) cos(B) | H (y) — H(2)|))™".

Let v,, be the vector which realizes d(H(2,,) — H(z), A7 (P)) and as v,fj the
projection of vy, to (P)L. We have that

1. s«
ol > 5sin () I1H (@) — HE)]
Notice that the distance between A" (H(z,,)) and P + A" (H(z)) is larger than
[ A" vy, || cos(B).
This is a contradiction since this implies that A" (H(z,,)) is at distance larger
than

N[l [ cos(B) > R

from P + A™ (H(z)). This concludes the claim.
&

Assuming that P does not intersect the cone bounded by L; and L, this finishes
the proof since one sees that each leaf of F* can intersect the pre-image by H of

P + y in a unique point, thus showing that the partition of R? by the pre-images
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of the translates of P defines a f-invariant foliation (and also invariant under deck
transformations). We leave to the interested reader the task of filling the details of
the proof in this particular case, since we will continue by giving a proof which works
in all cases.

We will prove that H cannot send unstable intervals into the same plane parallel
to P.

Claim. Given 7 : [0,1] = R a non-trivial curve contained in F*(x) we have that
H(~([0,1])) is not contained in P + H(v(0)).

PrROOF. Consider C. given by Corollary 5.1.5 (iv) for € of the size of the uniform
local product structure. Moreover, consider L large enough such that C. L > Vol(T?).

Since F* is f—invariant and P is A-invariant we deduce that we can assume that
the length of v is arbitrarily large, in particular larger than 2L.

We will show that H(B.(y([a,b]))) C P* + H(v(0)) where 0 < a < b < 1 and
the length of v([a, b]) is larger than L.

Having volume larger than Vol(T?) there must be a deck transformation v €
Z? such that v + B.(v([a,b])) N B.(y([a,b])) # @. This in turn gives that v +
H(B:(v([a,b]))) N H(B:(y([a,b]))) # @ and thus v + P* N P # (. Since P is
totally irrational this is a contradiction.

It remains to show that H(B.(y([a,b]))) C P*+ H(v(0)). By the previous claim,
we know that if z,w € WZ ,(y) for some a € J,, then H(z) — H(w) € P*.

Consider a,b € [0,1] such that F*(z) N B.(y([a,b])) € ~v([0,1]). By Corollary
5.1.5 we have that such a,b exist and we can choose them in order that the length
of v([a, b)) is larger than L.

Let z € B.(v([a,b])) and choose w € 7([a,b]) such that z € B.(w). We get
that for every a € J” we have that W ,(2) N ~([0,1]) # 0. Since H(y([0,1])) C
P + H(v(0)) and by the previous claim, we deduce that H(w) C P* + H(v(0))
finishing the proof.

%

Now we are in conditions to show that for every point z and for every point
y € B.(x) there is a unique manifold WZ (y) tangent to £ which is a limit of the
manifolds WZ(y). Using the same argument as in Proposition 5.1.7 we get that the
foliations f _"(]} ) converge to a f-invariant foliation F° tangent to E° concluding
the proof of the Theorem.

Indeed, assume that the manifolds W7 (y) have a unique limit for every r € R?
and y € B.(r) and that for any pair points y,z € B.(z) these limits are either
disjoint or equal (see the claim below). One has that the set of manifolds WZ (y)

forms an f-invariant plaque family in the following sense:
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- fWE(y)) N Wgo(x)(f(y)) is relatively open whenever f(y) € B.(f(x)).

We must thus show that these plaque families form a foliation. For this, we use
the same argument as in Proposition 5.1.7. Consider z,w € B.(z) we have that
W2 (2) N F*(w) # () and in fact consists of a unique point (see Corollary 5.1.5 (i)).
Since the intersection point varies continuously and using that plaques are either
disjoint or equal we obtain a continuous map from D? x [—1,1] to a neighborhood
of = sending horizontal disks into plaques. This implies that the plaques form an
f-invariant foliation as desired.

It thus remains to show the following:

Claim. Given x € R? and y, z € B.(x) we have that there is a unique limit of W2 (y)
and W5 (z) and they are either disjoint or coincide. More precisely, for every o € J
and 8 € JF (z could coincide with y) we have that hiY, = h3"; or the graphs are

o0

disjoint.

PROOF. Assuming the claim does not hold, one obtains y, 2 € B.(x) such that hZ?Y,
and hic’fﬁ coincide at some point but whose graphs are different for some o € J” and
B € JE. In particular, there exists a point ¢ € D? which is in the boundary of where
both functions coincide. We assume for simplicity® that 1, (¢) belongs to B.(z).

Let 7 : [0,1] — B.(z) be a non-trivial arc of F* joining the graphs of h&Y, and
h 5. Since the graphs of both hZY, and hZ; separate V, we have that every point
w € ¥((0,1)) verifies that for every 6 € J, one has that W2, 5(w) intersects at least
one of WZ, ,(y) or W 5(z). By the first claim we get that H(w) € P* + H(y) =
P% + H(z) a contradiction with the second claim.

&

O

We can in fact obtain a stronger property since our results allow us to show that
in fact £ is uniquely integrable into a foliation. Notice that there are stronger

notions of unique integrability (see [BuW;] and [BFra|).

Proposition 5.2.14. There is a unique f-invariant foliation F°° tangent to E.
Moreover, the plane P given by Theorem 4.2.6 for this foliation is A-invariant and

contains the stable eigenspace of A.

PROOF. Assume there are two different f-invariant foliations F7* and F5® tangent
to B,

SIf it were not the case we would need to change the coordinates and perform the same proof,

but not to charge the notation we choose to make this (unnecessary) assumption.
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Since they are transverse to E" they must be Reebless (see Corollary 4.2.2) so
that Theorem 4.2.6 applies.

By Remark 5.2.4 we know that since the foliations are f-invariant, the planes
Pf® and Py® given by Theorem 4.2.6 are A-invariant. The fact that P contains the
stable direction of A is given by Remark 1.5.3 and Corollary 5.2.10 since it implies
that P“ cannot be contained in EY.

Assume first that the planes P{* and Ps® coincide. The foliations remain at
distance R from translates of the planes. By Corollary 5.2.10 we know that two
points in the same unstable leaf must separate in a direction transverse to Pf* = Ps*.
If F¢* is different from F5* we have a point x such that Fi*(z) # F5*(z). By the
global product structure we get a point y € F*(z) such that F*(y) N F§*(z) # {y}.
Iterating forward and using Corollary 5.2.10 we contradict the fact that leaves of F7*
and F35° remain at distance R from translates of P/* = Ps°.

Now, if P{* # Py°® we know that A has stable dimension 1 since we know that £
is contained in both. Using Corollary 5.2.10 and the fact that the unstable foliation
is f-invariant we see that this cannot happen.

(]

Notice also that from the proof of Theorem 5.2.13 we deduce that given a foliation
F transverse to £ we have that the backward iterates of this foliation must converge

to this unique f-invariant foliation. This implies that:

Corollary 5.2.15. Given a dynamically coherent partially hyperbolic diffeomorphism
f T3 — T3 with splitting TT? = E° @ E* isotopic to Anosov we know that it is C'-
robustly dynamically coherent and that the f.-invariant plane P given by Theorem
4.2.6 for the unique f-invariant foliation F¢° tangent to E° does not change for
diffeomorphisms C'-close to f.

The robustness of dynamical coherence follows from the fact that being dynami-
cally coherent it is robustly almost dynamically coherent.

We close this Section with a question we were not able to answer in full generality:

Question 5.2.16. s it true that P corresponds to the eigenspace asociated to the

smallest eigenvalues of A?.

This is true for the case when A has stable index 2 and we show in Proposition

5.3.12 that it is the case in the strong partially hyperbolic case.
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5.3 Strong partial hyperbolicity and coherence in
TB

In the strong partially hyperbolic case we are able to give a stronger result indepen-

dent of the isotopy class of f:

Theorem 5.3.1. Let f : T3 — T3 be a strong partially hyperbolic diffeomorphism,
then:

- FEither there exists a unique f-invariant foliation F° tangent to E* @ E° or,

- There exists a periodic two-dimensional torus T tangent to E° & E¢ which s

(normally) repelling.

Remark 5.3.2. Indeed, it is not hard to show that in the case there is a repelling
torus, it must be an Anosov tori as defined in [RHRHU,| (see Proposition 2.1 of
[BBI| or Lemma 4.A.4). In the example of [RHRHUj] it is shown that the second
possibility is not empty.

&

A diffeomorphism f is chain-recurrent if there is no open set U such that f(U) C
U (see [Cy4] for an introduction to this concept in the context of differentiable dy-

namics):

Corollary. Let f : T — T3 a chain-recurrent strongly partially hyperbolic diffeo-

morphism. Then, f is dynamically coherent.

In the strong partially hyperbolic case, when no torus tangent to E° & E° nor
E¢ @ E" exists, we deduce further properties on the existence of planes close to the
f-invariant foliations. These results are essential to obtain leaf-conjugacy results (see
[H]).

The idea of the proof is to obtain a global product structure between the foliations
involved in order to then get dynamical coherence. In a certain sense, this is a similar
idea to the one used for the proof of Theorem 5.2.1.

However, the fact that global product structure implies dynamical coherence
is much easier in our case due to the existence of f-invariant branching foliations
tangent to the center-stable direction (see subsection 5.3.2).

This approach goes in the inverse direction to the one made in [BBI,] (and con-

tinued in [H]). In [BBI,] the proof proceeds as follows:

- First they show that the planes close to the two foliations are different. To

prove this they use absolute domination.
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- They then show (again by using absolute domination) that leaves of FU are
quasi-isometric. Here absolute domination is essential (since in the examples
of [RHRHUj3] the lift of the unstable foliation is not quasi-isometric).

- Finally, they use Brin’s criterium for absolutely dominated partially hyperbolic
systems ([Bri]) to obtain coherence. As it was shown in Proposition 5.1.12 this

criterium uses absolute domination in an essential way.

Then, in [H] it is proved that in fact, the planes P and P close to the f-
invariant foliations are the expected ones in order to obtain global product structure
and then leaf conjugacy to linear models.

Another difference with the proof there is that in our case it will be important
to discuss depending on the isotopy class of f which is not needed in the case of
absolute partial hyperbolicity. In a certain sense, the reason why in each case there
is a global product structure can be regarded as different: In the isotopic to Anosov
case (see subsection 5.3.6) we deduce that the foliations are without holonomy and
use Theorem 4.3.1 to get global product structure. In the case which is isotopic to
a non-hyperbolic matrix we must first find out which are the planes close to each

foliation in order to get the global product structure.

5.3.1 Preliminary discussions

Let f : T® — T® be a strong partially hyperbolic diffeomorphism with splitting
T} =FE*® E°® E“

We denote as F° and F* to the stable and unstable foliations given by Theorem
1.3.1 which are one dimensional and f-invariant.

As in the previous sections, we will denote as p : R® — T3 to the covering
projection and f will denote a lift of f to the universal cover. Recall that f, : R3 — R3
which denotes the linear part of f is at bounded distance (Ko > 0) from f.

We have already proved:

Theorem 5.3.3. Let f : T2 — T3 be a strong partially hyperbolic diffeomorphism
isotopic to Anosov, then f is dynamically coherent. Moreover, there is a unique
f-invariant foliation tangent to K = E* & E° and a unique f-invariant foliation
tangent to B = E° @ E".

This follows from Theorem 5.2.1 and the fact that strongly partially hyperbolic
diffeomorphisms are almost dynamical coherent (Corollary 5.1.10). The uniqueness
follows from Proposition 5.2.14. We will give an independent proof in subsection

5.3.6 since in the context of strong partial hyperbolicity the proof becomes simpler.
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The starting point of our proof of Theorem 5.3.1 is the existence of f-invariant
tangent to £° @& F° and E° & E" respectively.
By using Theorem 5.1.9 and Theorem 4.2.6 we can deduce the following:

branching foliations and

bran bran

Proposition 5.3.4. There exist an f.-invariant plane P* and R > 0 such that every
leaf of Fg:.. lies in the R-neighborhood of a plane parallel to P.

Moreover, one can choose R such that one of the following conditions holds:

(i) The projectz’on of the plane P is dense in T? and the R-neighborhood of every

leaf of Fg,,, contains a plane parallel to P, or,

(ii) The projection of P is a linear two-dimensional torus and there is a leaf of

CS

55 which is a two-dimensional torus homotopic to p(P°).

An analogous dichotomy holds for

bran

Proor. We consider sufficiently small € > 0 and the foliation S, given by Theorem
5.1.9.
Let hZ® be the continuous and surjective map which is e-close to the identity

sending leaves of S, into leaves of By taking the lift to the universal cover, we

bran
have that there is h% : R* — R? continuous and surjective which is also at distance
smaller than e from the identity such that it sends leaves of S. homeomorphically
into leaves of > .

This implies that given a leaf L of F oo there exists a leaf S of S. such that L is
at distance smaller than L from S and viceversa.

Since the foliation &; is transverse to E* we can apply Theorem 4.2.6 and we
obtain that there exists a plane P® and R > 0 such that every leaf of the lift S. of
S. to R? lies in an R-neighborhood of a translate of P°. Recall that this plane is
unique (see Remark 4.2.7).

From the previous remark, we get that every leaf of lies in an R + e-

bran
nelghborhood of a translate of P“ and this is the unique plane with this property.

Since Fys .. is f invariant, we deduce that the plane P* is f,-invariant (see also
Remark 5.2.4).

By Proposition 4.2.9 we know that if P® projects into a two-dimensional torus,
we obtain that the foliation S, must have a torus leaf. The image of this leaf by h¢*
is a torus leaf of Fg° . This gives (ii).

Since a plane whose projection is not a two-dimensional torus must be dense we
get that if option (ii) does not hold, we have that the image of P must be dense.
Moreover, option (i) of Theorem 4.2.6 must hold for S, and this concludes the proof
of this proposition.

O
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Remark 5.3.5. Assume that f : T3 — T2 is a strongly partially hyperbolic diffeomor-
phism which is not isotopic to Anosov. By Theorem 5.1.4 and Corollary 5.1.10 we
have that if f is not isotopic to Anosov, then f, is in the hypothesis of Lemma 1.5.4.

Let P be an f,-invariant plane, then there are the following 3 possibilities:

- P may project into a torus. In this case, P = E? @ EY (the eigenplane corre-

sponding to the eigenvalues of modulus different from one).

- If P = E; & ES then P projects into an immersed cylinder which is dense in
3.

- It P = E{® EY then P projects into an immersed cylinder which is dense in
3.

5.3.2 Global product structure implies dynamical coherence

cs
bran

Assume that f : T3 — T® is a strong partially hyperbolic diffeomorphism. Let
be the f-invariant branching foliation tangent to E° & E°¢ given by Theorem 5.1.9
and let S. be a foliation tangent to an e-cone around E°® & E° which remains e-close
to the lift of F° = to the universal cover for small .

When the lifts of S. and F" to the universal cover have a global product structure,

we deduce from Proposition 4.3.9 the following:

Corollary 5.3.6. If S. and F* have global product structure, then, the foliation F"
is quasi-isometric. Indeed, if v € (P®)L is a unit vector, there exists £ > 0 such that
for every n > 0, every unstable curve starting at a point x of length larger than nt

tersects P°° +nv +x or P —nv + x.

Before we show that global product structure implies coherence, we will show
an equivalence to having global product structure between F* and S. which will

sometimes be better adapted to our proofs.

Lemma 5.3.7. There ezists € > 0 such that F* and S. have global product structure
if and only if:
- For every z,y € R® and for every L € F&5, (y) we have that F*(x) N L # 0.

bran

PROOF. First notice that any of the hypothesis implies that S. cannot have dead-

end components. In particular, there exists R > 0 and a plane P such every leaf

CS

55 verifies that it is contained in an R-neighborhood of a

of 8. and every leaf of
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translate of P* and the R-neighborhood of the leafs contains a translate of P too
(see Proposition 5.3.4).

We prove the direct implication first. Consider z,y € R? and L a leaf of F¢2, (y).
Now, we know that L separates in R? the planes P® + y + 2R and P + y — 2R.
One of them must be in the connected component of R® \ L which not contains =,
without loss of generality we assume that it is P + y + 2R. Now, we know that
there is a leaf S of S. which is contained in the half space bounded by P +y + R
not containing L (notice that L does not intersect P + y + R). Global product
product structure implies that F “(z) intersects S and thus, it also intersects L.

The converse direction has an analogous proof.

(I

We can prove the following result which does not make use of the isotopy class

of f.

Proposition 5.3.8. Assume that there is a global product structure between the lift
of Sc and the lift of F* to the universal cover. Then there exists an f-invariant
foliation F° everywhere tangent to E° & E".
PROOF. We will show that the branched foliation F¢*, must be a true foliation (it
cannot be branched and use Proposition 5.1.7)).

Assume otherwise, i.e. there exists z € R? such that F¢, (z) has more than one

bran

complete surface. We call L, and Ly different leaves in F¢*, (x). There exists y such

that y € Ly \ Ls. Using global product structure and Lemma 5.3.7 we get z € Lo
such that:

-y € FU(z).

Consider  the arc in F*(z) whose endpoints are y and z. Let R be the value
given by Proposition 5.3.4 and ¢ > 0 given by Corollary 5.3.6. We consider N large
enough so that fV () has length larger than nf with n > R.

By Corollary 5.3.6 we get that the distance between P + fN(z) and fN(y) is
much larger than R. However, we have that, by f-invariance of F¢¥, there is a leaf
of F¢*  containing both f¥(z) and fV(z) and another one containing both fV(y)
and fN(z). This contradicts Proposition 5.3.4 showing that Fg*, must be a true

foliation.
O

5.3.3 Torus leafs

This subsection is devoted to the proof of the following:
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Lemma 5.3.9. If F{°, contains a leaf which is a two-dimensional torus, then there

CS

cs which is a torus and it is fived by f* for some k > 1. Moreover,

exists a leaf of
this leaf is normally repelling.

PROOF. Let T C T? be a leaf of £, homeomorphic to a two-torus. Since F¢2  is
f-invariant and P is invariant under f, we get that the image of T" by f is homotopic
to T" and a leaf of F> .

Notice that having an f,-invariant plane which projects into a torus already
implies that f.-cannot be hyperbolic (see Proposition 1.5.1).

By Remark 5.3.5 we have that the plane P coincides with ES®E! (the eigenspaces
corresponding to the eigenvalues of modulus different from 1 of f,).

Since the eigenvalue of f, in E¢ is of modulus 1, this implies that if we consider
two different lifts of 7', then they remain at bounded distance when iterated by f.
Indeed, if we consider two different lifts Tl and TQ of T' we have that Tg = Tl +
with v € E¢NZ3. Now, we have that f(T%) = f(T}) + f.(v) = f(T1) £ 7.

We shall separate the proof depending on how the orbit of T is.

Case 1: Assume the torus T is fixed by some iterate f" of f with n > 1. Then,
since it is tangent to the center stable distribution, we obtain that it must be normally

repelling as desired.

Case 2: If the orbit of T"is dense, we get that F;° is a true foliation by two-
dimensional torus which we call F° from now on. This is obtained by the fact that
one can extend the foliation to the closure using the fact that there are no topological
crossings between the torus leaves (see Proposition 5.1.8).

Since all leaves must be two-dimensional torus which are homotopic we get that
the foliation F* has no holonomy (see Theorem 4.1.6 and Proposition 5.1.11).

Using Theorem 4.3.1, we get that the unstable direction F* in the universal cover
must have a global product structure with Fes.

Let S be a leaf of F° and consider S*l and 52 two different lifts of S to R>.

Consider an arc J of F* joining S; to Sy. Iterating the arc J by f we get that
its length grows exponentially, while the extremes remain the the forward iterates of
Sy and S, which remain at bounded distance by the argument above.

By considering translations of one end of f*(.J) to a fundamental domain and
taking a convergent subsequence we obtain a leaf of F* which does not intersect

every leaf of F°. This contradicts global product structure.

Case 3: Let 11,715 € F°,. two different torus leaves. Since there are no topolog-
ical crossings, we can regard Ty as embedded in T? x [—1,1] where both boundary
components are identified with 7} and such that the embedding is homotopic to the

boundary components (recall that any pair of torus leaves must be homotopic). In
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particular, we get that T3\ (7} UT) has at least two different connected components
and each of the components has its boundary contained in 77 U T5.
If the orbit of T is not dense, we consider O =, f*(T") the closure of the orbit

of T" which is an invariant set.

CS

cs o (Le. for every x, — x and

Recall that we can assume completeness of
L, € Fg..(x,) we have that L,, converges in the C'-topology to Lo, € Fgs,. (2)).
We get that O is saturated by leaves of F;>  all of which are homotopic torus leaves
(see Proposition 5.1.11).

Let U be a connected component of the complement of O. By the previous
remarks we know that its boundary OU is contained in the union of two torus leaves
of Fii.

If some component U of O° verifies that there exists n > 1 such that f*(U)NU #
(), by invariance of O¢ we get that f?" fixes both torus leaves whose union contains
OU. This implies the existence of a periodic normally repelling torus as in Case 1.

We claim that if every connected component of O° is wandering, then we can

CS

oo Which allows to conclude

show that every leaf of F* intersects every leaf of
exactly as in Case 2.

To prove the claim, consider ¢ given by the local product structure between these
two transverse foliations (one of them branched). This means that given z,y such
that d(z,y) < § we have that F*(z) intersects every leaf of F¢ passing through y.

Assume there is a point = € R? such that F*(z) does not intersect every leaf

CS

3 .
e Separates R° into

of Fg* . As in subsection 4.2.3 we know that each leaf of
two connected components so we can choose among the lifts of torus leaves, the leaf
T, which is the lowest (or highest depending on the orientation of the semi-unstable
leaf of z not intersecting every leaf of Fc5, ) not intersecting F*(x). We claim that
T, must project by the convering projection into a torus leaf which intersects the
boundary of a connected component of O°. Indeed, there are only finitely many
connected components Uy, ..., Uy of O° having volume smaller than the volume of
a 0-ball, so if a point is not in U; for some i, we know that it must be covered by
local product structure boxes forcing its unstable leaf to advance until one of those
components.

On the other hand, using f-invariance of F* and the fact that every connected
component of O° is wandering, we get that every point in U; must eventually fall
out of | J, U; and then its unstable manifold must advance to other component. This
concludes the claim, and as we explained, allows to use the same argument as in
Case 2 to finish the proof in Case 3.

O

M.A. Rodriguez Hertz and R. Ures were kind to comunicate an alternative proof
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of this lemma by using an adaptation of an argument due to Haefliger for branched
foliations (it should appear in [RHRHU3)).

5.3.4 Obtaining Global Product Structure

In this section we will prove the following result which will allow us to conclude in

the case where f, is not isotopic to Anosov.

Proposition 5.3.10. Let f : T3 — T2 be a strongly partially hyperbolic diffeomor-
phism which is not isotopic to Anosov and does not have a periodic two-dimensional
torus tangent to E°@® E°. Then, the plane P given by Proposition 5.3.4 corresponds
to the eigenplane corresponding to the eigenvalues of modulus smaller or equal to 1.
Moreover, there is a global product structure between Fg5. and F*. A symmetric
statement holds for F¢. and F°.

As noted in Remark 5.3.5 we get that even if a strongly partially hyperbolic
diffeomorphism is not isotopic to Anosov, then, f, still must have one eigenvalue of
modulus larger than one and one smaller than one.

The mentioned remark also gives that there are exactly three f.-invariant lines
E?, E¢ and EY corresponding to the eigenvalues of f, of modulus smaller, equal and

larger than one respectively.

Lemma 5.3.11. For every R > 0 and x € R® we have that .7:"“(95) is not contained
in an R-neighborhood of (E* ® E°) + x. Symmetrically, for every R > 0 and x € R3
the leaf F*(x) is not contained in an R-neighborhood of (ES ® E*) + .

PRrROOF. Let C be a connected set contained in an R-neighborhood of a translate of
E* @ E, we will estimate the diameter of f(C) in terms of the diameter of C.

Claim. There exists Kr which depends only on f, f« and R such that:

diam(f(C)) < diam(C) + Kp

PROOF. Let K be the CO-distance between f and f, and consider z,y € C' we get
that:

d(f(x), f()) < d(fu(@), fu(y) +d(fu(@), (@) +d(f(y), [(y)) <
< d(fi(x), f+(y)) + 2K

We have that the difference between z and y in the unstable direction of f, is
bounded by 2R given by the distance to the plane E? & E* which is transverse to
EY.
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Since the eigenvalues of f, along F{ @& E¢ we have that f, does not increase
distances in this direction: we thus have that d(f.(x), f.(y)) < d(x,y) + 2|\*|R

where A" is the eigenvalue of modulus larger than 1. We have obtained:

d(f(x), f(y)) < d(z,y) + 2Ky + 2|\ R = d(z,y) + Kg

which concludes the proof of the claim.

&

Now, this implies that if we consider an arc v of F* of length 1 and assume that
its future iterates remain in a slice parallel to F¢ & E¢ of width 2R we have that

diam(f"(y)) < diam(y) + nKr <1+ nKpg

So that the diameter grows linearly with n.

The volume of balls in the universal cover of T® grows polynomially with the
radius (see Step 2 of [BBI;] or page 545 of [BI], notice that the universal) so that we
have that Bs(f~"(7)) has volume which is polynomial P(n) in n.

On the other hand, we know from the partial hyperbolicity that there exists
C >0 and X > 1 such that the length of f™(y) is larger than C\™.

Using Corollary 4.2.2 (iv), we obtain that there exists ny uniform such that every
arc of length 1 verifies that fm () is not contained in the R-neighborhood of a
translate of £ @ E¢. This implies that no unstable leaf can be contained in the
R-neighborhood of a translate of £ & E¢ concluding the proof of the lemma.

O

We are now ready to prove Proposition 5.3.10

PrROOF OF PROPOSITION 5.3.10. Consider the plane P given by Proposition
5.3.4 for the branching foliation Fj7, . .

If option (ii) of Proposition 5.3.4 holds, we get that there must be a torus leaf in

bem Which we assume there is not.

By Lemma 1.5.4 and Remark 5.3.5 the plane P must be either £} & EY or
E;© LY.

Lemma 5.3.11 implies that P° cannot be E¢@® E* since F* is contained in
This implies that P = ES & E¢ as desired.

Now, using Lemma 5.3.11 for F* we see that the unstable foliation cannot remain

cs
bran:

close to a translate of P®. This implies that F* intersects every translate of P
and since every leaf of S, is contained in between two translates of P° which are

separated by the leaf, we deduce that every leaf of F* intersects every leaf of S..

CS

bran and

Now, by Lemma 5.3.7 gives “global prooduct structure” between F* and

using Proposition 5.3.8.
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5.3.5 Proof of Theorem 5.3.1

To prove Theorem 5.3.1, we first assume that f, is not isotopic to Anosov.

If there is a torus tangent to £* @ E°, then, by Lemma 5.3.9 we obtain a periodic
normally repelling torus.

By Proposition 5.3.10 we get that if there is no repelling torus, then there is a
global product structure. Now, Proposition 5.3.8 gives the existence of an f-invariant
foliation F*° tangent to E° @ E° (see also Lemma 5.3.7).

The proof shows that there must be a unique f-invariant foliation tangent to £
(and to E).

Indeed, we get that every foliation tangent to £ must verify option (i) of Propo-
sition 5.3.4 when lifted to the universal cover and that the plane which is close to
the foliation must correspond to the eigenspace of f, corresponding to the smallest
eigenvalues (Proposition 5.3.10).

Using quasi-isometry of the strong foliations, this implies that if there is another
surface tangent to E° through a point x, then this surface will not extend to an
f-invariant foliation since we get that forward iterates will get arbitrarily far from
this plane (this is proved exactly as Proposition 5.3.8).

This concludes the proof of Theorem 5.3.1 in case f is not isotopic to Anosov,

Theorem 5.3.3 concludes.
O

It may be that there are other (non-invariant) foliations tangent to E° (see
[BFral) or, even if there are no such foliations there may be complete surfaces tangent
to £°° which do not extend to foliations. The techniques here presented do not seem

to be enough to discard such situations.

5.3.6 A simpler proof of Theorem 5.3.3. The isotopy class

of Anosov.

In Section 5.2 Theorem 5.3.3 is obtained as a consequence of a more general result

which is harder to prove. We present here a simpler proof of this result.

PrROOF OF THEOREM 5.3.3. Let Fg°  be the branched foliation tangent to E
given by Theorem 5.1.9. By Proposition 5.3.4 we get a f,-invariant plane P in R3
which we know cannot project into a two-dimensional torus since f, has no invariant
planes projecting into a torus (see Remark 1.5.3), this implies that option (i) of

Proposition 5.3.4 is verified.
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Since for every € > 0, Theorem 5.1.9 gives us a foliation S, whose lift is close
to F¢, we get that the foliation S. remains close to P which must be totally
irrational (see Remark 1.5.3). By Lemma 4.2.10 (i) we get that all leaves of S, are
simply connected, thus, we get that the foliation S, is without holonomy.

We can apply Theorem 4.3.1 and we obtain that for every € > 0 there is a global
product structure between S. and F* which is transverse to S. if ¢ is small enough.

The rest of the proof follows from Proposition. 5.3.8.

(Il

In fact, using the same argument as in Proposition 5.2.14 we get uniqueness of
the foliation tangent to E* @ E°.

We are also able to prove the following proposition which is similar to Proposition
5.3.10 in the context of partially hyperbolic diffeomorphisms isotopic to Anosov, this
will be used in [HP] to obtain leaf conjugacy to the linear model.

Notice first that the eigenvalues of f, verify that they are all different (see Lemma
1.5.2 and Proposition 5.2.12).

We shall name them i, Ao, A3 and assume they verify:

M| <[rof <[As| 5 A<, [Aof#1, [As]>1

we shall denote as E! to the eigenline of f, corresponding to ;.

Proposition 5.3.12. The plane close to the branched foliation F°* corresponds to the
eigenplane corresponding to the eigenvalues of smaller modulus (i.e. the eigenspace
E! ® E? corresponding to Ay and X\y). Moreover, there is a global product structure
between F¢ and F*. A symmetric statement holds for Fe* and F?.

Proor. This proposition follows from the existence of a semiconjugacy H between
f and its linear part f, which is at bounded distance from the identity.

The existence of a global product structure was proven above. Assume first that
|A2| < 1, in this case, we know that F*is sent by the semiconjugacy into lines parallel
to the eigenspace of A3 for f,. This readily implies that P must coincide with the
eigenspace of f, corresponding to A\; and Ay otherwise we would contradict the global
product structure.

The case were |Az| > 1 is more difficult. First, it is not hard to show that the
eigenspace corresponding to A; must be contained in P* (otherwise we can repeat
the argument in Lemma 5.3.11 to reach a contradiction).

Assume by contradiction that P is the eigenspace corresponding to A; and As.

First, notice that by the basic properties of the semiconjugacy H, for every z € R3
we have that F*(z) is sent by H into E¥+H(x) (where E* = E>®FE? is the eigenspace
corresponding to Ay and Az of f,).
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We claim that this implies that in fact H(F*(x)) = E? + H(z) for every z € R,
In fact, we know from Corollary 5.2.10 that points of H(F(x)) which are sufficiently
far apart are contained in a cone of (E? @ E?) 4+ H(z) bounded by two lines L; and
Lo which are transverse to P¢. If P contains E? this implies that if one considers
points in the same unstable leaf which are sufficiently far apart, then their image by
H makes an angle with E2 which is uniformly bounded from below. If there is a point
y € F*(x) such that H(y) not contained in E? then we have that d(f™(y), f*(z)) goes
to oo with n while the angle of H(y) — H(xz) with E? converges to 0 exponentially
contradicting Corollary 5.2.10.

Consider now a point € R3 and let y be a point which can be joined to x by
a finite set of segments ~y,...,7 tangent either to E® or to E" (an su-path, see
subsection 1.4.4). We know that each ; verifies that H(v;) is contained either in a
translate of £} (when ~; is tangent to E*, i.e. it is an arc of the strong stable foliation
F %) or in a translate of E? (when ~; is tangent to E* from what we have shown in
the previous paragraph). This implies that the accesibility class of x verifies that its
image by H is contained in (E! @ E?) + H(z). The projection of E} @& E? to the
torus is not the whole T® so in particular, we get that f cannot be accesible. From
Corollary 5.2.15 this situation should be robust under C*-perturbations since those
perturbations cannot change the direction of P.

On the other hand, Theorem 1.4.7 implies that by an arbitrarily small (C' or C")
perturbation of f one can make it accessible. This gives a contradiction and shows
that P° must coincide with E! @ E? as desired.

O

5.4 Higher dimensions

In this section we attempt to find conditions that guarantee a partially hyperbolic
diffeomorphism to be isotopic to an Anosov diffeomorphism. The progress made so
far in this direction is not as strong though we have obtained some partial results.
We present here part of what will appear in [Potg].

We start by giving the property we will require for a partially hyperbolic diffeo-

morphism and hope it implies being isotopic to an Anosov diffeomorphism.

Definition 5.4.1 (Coherent trapping property). Let f € Diff*(M) be a dynamically
coherent partially hyperbolic diffeomorphism of type TM = E* & E*. We shall

say that it admits the coherent trapping property® if there exists a continuous map

5The word coherent (motivated by the existence of an invariant cs—foliation) is included to
distinguish it from the a priori weaker condition of only having a plaque family trapped by f (it
could be that this condition alone implies coherence, see [BuFi] for progress in that direction).

223



D« M — Emb'(D, M) such that D(x)(0) = x, the image of D by D(z) is
always contained in F°(z) and they verify the following trapping property:

J(D(@)(D*)) € D=(f(@))(int(D™))  Va € M.
&

For notational purposes, and with the risk of abusing notation, we shall denote
from now on: D¢ = D(x)(D*) and D = D (z)(int(D)).

We remark the important point that there is no restriction on the size of the
plaques DS’ so the dynamics can be quite rich in the center stable plaques.

We will prove the following:

Theorem 5.4.1. Let f : M — M be a partially hyperbolic diffeomorphism with
splitting TM = E° @& E" having the coherent trapping property and such that one of

the following conditions holds:
-dimE* =1 or
- M =T

Then, M = T? and f is isotopic to a linear Anosov automorphism with stable di-

mension equal to dim £,

In view of Franks-Manning theory [F;, Man| one can expect that this result also
holds for nilmanifolds.

Notice that in general, obtaining a classification result for partially hyperbolic
diffeomorphisms with the coherent trapping property should be at least as difficult
as having a classification result for Anosov diffeomorphisms since the latter are indeed
partially hyperbolic with the coherent trapping property.

The fact that f is dynamically coherent seems to be a strong hypothesis, more
in view of the robustness of the conclusion of Theorem 5.4.1. However, we have
not been able to remove the hypothesis from our assumptions unless some strong
properties are verified.

Along this section we shall assume that f € Diff'(M) is a partially hyperbolic
diffeomorphism with the coherent trapping property. Also, we shall call c¢s = dim E°*
and v = d — dim £* = dim £".

5.4.1 An expansive quotient of the dynamics
We can define for each x € M
A, =) 1Dy

n>0
Some obvious properties satisfied by the sets A, are:
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- f(Az) = A for every x € M.

- The set A, is a decreasing union of topological balls (it is a cellular set), so,

compact and connected in particular.

We would like to prove that the sets A, constitute a partition of M and that they
vary semicontinuously, so that we can quotient the dynamics. For this, the following

lemma is of great use:

Lemma 5.4.2. For every y € F*(x), there exists n, such that f™(Ds) C Dy -
The number n, varies semicontinuously on the point, that is, there exists U a small

neighborhood of y such that for every z € U we have that n, < n,.

ProOF. Consider in F(z) the sets

E,={yeF(z) : f"(Dy)CDfim}

Notice that there exists 6 > 0 (independent of n) such that if y € E,, then
Bs(y) N F(x) C E,. This is given by continuity of f and of the plaque family
(using compactness of M) and by the coherent trapping property.

The sets F,, are thus clearly open and verify that E, C E,;; (this is implied by
the coherent trapping property).

Now, by the uniform estimate, it is not hard to show that |, E» is closed, so,
since it is not empty, it must be the whole F(z) as claimed. )

The fact that the numbers n, varies semicontinuously is a consequence of the fact
that E, is open (n, is the first integer such that y € E,,).

(I

Corollary 5.4.3. For x,y € M we have that A, = A, or A, N A, = (0. Moreover,

the classes vary semicontinuously, that s, given x, € M such that limzx, = x:

limsup A,, = ﬂ U A, CA,

k>0n>k

PROOF. There exists ng fixed such that for every z € M and y € f(D;S_I(w)) we

have that f™(D;*) C Do (- This is proved first by showing that n, exists for each

x € M (using the Lemma 5.4.2 and compactness of f(D$.,,)) and then, since the

numbers n, vary semicontinuously, the uniform bound ng is found.
We know that for every z such that z € A, we have that A, € D¢°: Indeed, since
z € Ay we have that f7"(z) € D}, and thus f"(D$,, ) C Dg* as desired.

In fact, this shows that if z € A, then A, C A,. In particular, by symmetry, we
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get that if A, N A, # (), we can find a point z in the intersection and we have that
A, =A, and A, = A, giving the desired statement.

To prove semicontinuity: Consider A, and an e neighborhood A,(¢) in F*(z).
Now, fix m such that fm(Df;im(m)) C A.(e). Now, for n large enough, z, verifies
that d(f~"(zy), [ ™ (2)) is so small that f™(D¢,., ) C As(e) as wanted. The
semicontinuity for points which are not in the same center-stable manifold follows
from Lemma 5.4.5 bellow.

(Il

We get thus a continuous projection by considering the equivalence relation x ~
yeye A,

T M— M/,

We denote as g : M/ — M/.. the map given by g([z]) = [f(z)] (that is gom =
mo f). Since 7 is continuous and surjective (in fact, it is cellular), it is a semiconjugacy.
Notice that since f is a diffeomorphism, and g preserves the equivalence classes, one
can show that ¢ must be a homeomorphism of M/ ..

Notice that a priori, we have no knowledge of the topology of M/ except that
it is the image by a cellular map of a manifold (see Section 2.1), for example, we do
not know a priori if the dimension of M/ is finite. However, in view of Proposition
2.1.2 we know that this quotient is a metric space.

We will prove that it has finite topological dimension dynamically after we prove
Theorem 5.4.4 (combined with [Ms]).

We say that a homeomorphism has local product structure if there exists § > 0
such that d(z,y) < § implies that S.(z) N U.(y) # 0 (see Section 1.1).

Recall that a homeomorphism h is ezpansive (with expansivity constant «) if for
every z € X we have that S,(z) N U,(z) = {z}.

It is well known that for expansive homeomorphisms we have that diam(h"™(S.(x))) —
0 uniformly on z for € < « (so this coincides with the usual definitions of stable and
unstable sets). This implies that S.(xz) C W#(z) for an expansive homeomorphism
(e < a).

Theorem 5.4.4. The homeomorphism g is expansive with local product structure.
Moreover, m(F(x)) = W*(w(x)) and 7 is injective when restricted to the unstable

manifold of any point.

PROOF. The last two claims are direct from Lemma 5.4.2 and the definition of the
equivalence classes respectively.
We choose ¢ > 0 such that:
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-z,y € Mandzx ¢ f‘l(DJszy)) then there exists n > 0 such that d(f"(z), D)) >

E.

Now, let x,y be two points such that d(f™(x), f*(y)) < e for every n € Z. From
how we choose €, we have that f~*(z) € D;s_k(y) for every k > 0 so, x € A, as
desired.

Since w(F(z)) = W*5(n(z)), and since d(z,y) < § implies that D H W (y) # )
we get that for every two close points, there is a non trivial intersection between the
local stable and unstable sets (here, we are using the upper semicontinuity of the
sets A, which imply that if there are two points Z,¢ in M/. which are near, there
are points in 77(Z) and 7~!() which are near).

O

Consider two points x, y such that y € W**(x). We denote I3 : D C Dg* — D;°
as the unstable holonomy from a subset of Dg” into a subset of D;°. An important

useful property is the following:

Lemma 5.4.5. We have that 11} (A,) = A

Y-

PROOF. It is enough to show (by the symmetry of the problem) that II**(A,) C A,.
For n large enough we have that f~"(II**(A,)) is very close to a compact subset of
Di..(,) and thus, by continuity of D* we have that f~"(II"*(4;)) C Df, ) which
concludes.

Some remarks on the topology of the quotient

We shall cite some results from [Da] which help to understand the topology of M/...

We refer to the reader to that book for much more information and precise definitions.
Before, we remark that Mane proved that a compact metric space admitting an

expansive homeomorphism must have finite topological dimension ([Ms]).

Corollary IV.20.3A of [Da] implies that, since M/ is finite dimensional, we have
that it is a locally compact ANR (i.e. absolute neighborhood retract). In particular,
we get that dim(M/.) < dim M (see Theorem I11.17.7). Then, by using Proposition
VI.26.1 (or Corollary VI.26.1A) we get that M/. is a d—dimensional homology
manifold (since it is an ANR, it is a generalized manifold). More properties of these
spaces can be found in section VI.26 of [Da].

Also, in the cited book, one can find a statement of Moore’s theorem (see section
IV.25 of [Da]) which states that a cellular decomposition of a surface is approximated

by homeomorphisms (this means that the continuous projection is approximated by
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homeomorphisms in the C%-topology). In particular, in our case, if dim E* = 2, we
get that M/ is a manifold (see also Theorem VI.31.5 of [Da] and its Corolaries).

Some other results are available, in particular, we notice Edward’s cell-like decom-
position theorem which asserts that if ~ is a cellular decomposition of a d dimensional
manifold (d > 5) such that M/, has finite topological dimension and such that it
has the disjoint disk property (see chapter IV.24 of [Dal) then the quotient map is
approximated by homeomorphisms. A similar result exists for dimension 3 which is
even more technical. Notice than in our case, since we have the decomposition of
the center-stable manifold, we can play with the dimensions in order not to be never
in dimension 4 by choosing to work with the decomposition on the center stables or
the whole manifold.

Also, we remark that it is known that when multiplying a decomposition by
R? we always get the disjoint disc property and in all known decompositions, after
multiplying by R we get a decomposition approximated by homeomorphisms (see
section V.26 of [Da]) so in theory, it should be true that always our space M/. is a
manifold homeomorphic to M. We show this in the case M = T? (the proof should

be adaptable for infranilmanifolds).

5.4.2 Transitivity of the expansive homeomorphism

In general, it is not yet known if an Anosov diffeomorphism must be transitive. So,
since Anosov diffeomorphisms enter in our hypothesis, there is no hope of knowing if
f or g will be transitive without solving this long-standing conjecture. We shall then
work with similar hypothesis to the well known facts for Anosov diffeomorphisms,
showing that those hypothesis that we know guaranty that Anosov diffeomorphisms
are transitive imply transitivity of g.

In particular, we shall prove in this section the following Theorem which implies
Theorem 5.4.1:

Theorem 5.4.6. The following properties hold:
(T1) If for every x,y € M we have that F**(x) N D*(y) # 0, then g is transitive.
(T2) If dim E* = 1, then g is transitive. Moreover, M = T<.

(T3) If M = T¢, then g is transitive. Moreover, f is homotopic to a linear Anosov
diffeomorphism A the topological space M/.. is homeomorphic to T and g is
conjugated to A.

Notice that (T1) is trivial, (T2) can be compared to Franks-Newhouse theory
([F1, News]) and (T3) to Franks-Manning theory ([F2, Man] see also [KH] chapter
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18.6 which motivated the proof here presented). It is natural to expect that property
(T3) should hold if we consider M an infranilmanifold.

It is important to notice also that it is natural to extend the conjecture about
transitivity of Anosov diffeomorphisms to expansive homeomorphisms with local
product structure (at least in manifolds). See the results in [Vie, ABP, Hir|.

Proof of (T2)

We shall follow the argument of [News].

From how we defined g, we get that for every y € M we have that 7T|Wl7éc(y) is a
homeomorphism over its image and thus, we get that every point in M/ has a one
dimensional immersed copy of R as unstable set.

Also, we have that g : M/ — M/ is expansive with local product structure.

This implies that there is a spectral decomposition for g:

Lemma 5.4.7. The homeomorphism g has a spectral decomposition.

PrOOF. The proof is exactly as the one for Anosov or Axiom A diffeomorphisms.

It is not hard to show that Per(g) is dense in Q(g) with essentially the same proof
as in the Anosov case. Let & be a nonwandering point of g, so, every neighborhood
of 771(x) has points which return to the neighborhood in arbitrarily large backward
iterates. The fact that center stable leaves are invariant and unstable manifolds
expand by iterating backwards, gives the existence of a fixed center stable leaf with
a point returning near itself. Since the center stable disks are trapped, we obtain a
fixed fiber for some iterate, this gives a periodic point for g which is arbitrarily close
to x.

The rest of the spectral decomposition, is done by defining homoclinic classes and
that needs no more that the local product structure of uniform size (see [News]).

(|

By Conley’s theory (see Remark 1.1.16), we get a repeller A for g which will be
saturated by stable sets.

We shall show that A = M/ which concludes.

To do this, it is enough to show that for every y € A, we have that y is accumulated
by the intersections of both connected components of W*(y) \ {y} with A.

We can assume that W* is orientable and g preserves orientation of W* (other-
wise, we take a double cover and g2, transitivity at this level is even more general
than if we do not take the cover nor the iterate). So, for every y € A we denote W} (y)
and W*(y) the connected components of W*(y) \ {y} depending on the orientation.

We define the set
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At ={ye A : Wiy)nA#0D}

which is an invariant set (we define A~ similarly). It is enough to show that AT = A:
Indeed, this implies, by compactness that every point intersects A in a bounded

length of W7. This is enough since being invariant, the length must be zero.

Lemma 5.4.8. Any point which is not periodic by g belongs to AT. In fact, there

are at most finitely many points not in A¥.

PRrROOF. The past orbit of every point contains an accumulation point and they are
pairwise not in the same local stable set, thus, there is one point in the past orbit
such that both components of its unstable set intersect the stable set of the other,
and thus A, invariance concludes.
The fact that there exists NV > 0 such that any set with cardinal larger than
N has 3 points in a local product structure box, implies that if a point x does not
belong to AT then its orbit O(x) must have cardinal smaller than N. This gives that
there are at most finitely many points outside A* (which must be periodic).
(I

To prove that periodic points are in AT too, we assume that it is not the case
and consider p € A such that p ¢ A*. We have that W#*(p)\{p} is connected .

This implies that if ¢ : W*(p)\{p} — A is the function which sends every point
y € W?*(p)\{p} to the first intersection of W} (y) with A (the first point of intersection
exists since otherwise we would get that p € A™), then we have that the image of
W (p)\{p} is a unique stable set, say of a point z.

Now, we must show that in fact, we have that W*"(p) must intersect W#(z) which
will be a contradiction and conclude. So, consider in 7~ (Wj.(p)) C DS (where
7(p) = p) a (small) sphere ¥ around 7~ *(p) . That is, we assume that 7(2) C W} (p)
(which we can since 7 is a cellular map).

Now, we consider y € 3 and I C W(y) the interval of the unstable manifold of y
from y to the only point in W*(y) N7 (¢(7(y))). This interval can be parametrized
in [0, 1]. We shall call y; to the point corresponding to ¢ € [0, 1].

We consider the set of points s € [0, 1] such that W (p) N W (7(y;)) # 0 which
is open by the local product structure. We must show that the supremum of this
set, say ty belongs to the set and we shall conclude.

Let T be the set homeomorphic to ¥ x [0, 1] given by the map Y : (z,t) —
L N7 (7(I,) N W*(n(y;))) where I, is the interval in the unstable manifold of z
such that m(I;) C Wi(n(x)) and connects 7(z) with ¢(m(x)).

"We are assuming that dim E° > 2, since if we remove 7 !(p) to F¢*(rm~!(p)) it remains

connected, the claim follows.
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We get that Y (X x {tp}) is homeomorphic to a sphere, and thus it separates
F(yy,) in two connected components, one of which is bounded (and thus compact).
The image K of this compact component by 7 is also compact and contained in
W#(m(y,)) and thus we get that there is local product structure well defined around
K. This implies that W (p) N W*(7(y,,)) # 0 and we have shown that ¢, is in the
set considered above. This shows that A™ = A which as we have already mentioned
gives transitivity of f.

Now, following the same proof as in (for example) the appendix of [ABP], we get
that M = T

O

Proof of (T3)

We shall follow the proof given in [KH] chapter 18.6.

Before we start with the proof, we shall recall Theorem 18.5.5 of [KH] (the state-
ment is modified in order to fit our needs, notice that for an expansive homeo-
morphism with local product structure, we have the shadowing property, and thus,

specification in each basic piece):

Proposition 5.4.9 (Theorem 18.5.5 of [KH]). Let X a compact metric space and
g : X — X an expansive homeomorphism with local product structure. Then, there

exists h,cy,co > 0 such that for n € N we have:
c1e™ < P(g) < coe™
where P, (g) is the number of fized points of g".

We shall use several time the very well know Lefschetz formula which relates the
homotopy type of a continuous function, with the index of its fixed points (see [F4]
Chapter 5).

Definition 5.4.2. Let V C R* be an open set, and F : V C R¥ — R* a continuous
map such that I' C V' the set of fixed points of F' is a compact set, then, I+ (F) € Z
(the index of F) is defined to be the image by (id—F), : H,(V,V —T') — Hy(RF RF—
{0}) of ur where ur is the image of 1 under the composite Hy(R¥ R¥ — D) —
H(RF, R —T) & H(V,V —T') where D is a disk containing T".

&

Remark 5.4.10. In general, if we have a map from a manifold, we can include the
manifold in R* and extend the map in order to be in the hypothesis of the definition.
The value of Ir(F) does not depend on how we embed the manifold in R¥,

&
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For hyperbolic fixed points, it is very easy how to compute the index, it is exactly
the sign of det(/d — D, f). Since the definition is topological, any time we have a set
which behaves locally as a hyperbolic fixed point, it is not hard to see that the index
is the same.

Lefshetz fixed point formula for the torus can be stated as follows:

Theorem 5.4.11 (Lefshetz fixed point formula ([F4] p.34-38)). Let h : T¢ — T¢ be
an homeomorphism, so, the sum of the Lefshetz index along a covering of Fix(h) by
sets homeomorphic to balls equals det(Id — h,) where h, : H\(T% Z) — H,(T4,Z) is
the action of h in homology.

The first thing we must show, is that the linear part of f, that is, the action
A= f.: H(TYZ) — H(T% Z) € SL(d,Z) is a hyperbolic matrix.

Lemma 5.4.12. The matrix A is hyperbolic.

PROOF. We can assume (maybe after considering a double covering and f?) that
E° and E* are orientable and its orientations preserved by Df. So, it is not hard
to show that for every fixed point p of ¢, the index of 7—!(p) for f is of modulus
one and always of the same sign.

So, we know from the Lefshetz formula that

|det(Id = A")| = Y |L1n(f)] = #Fix(g"):

9" (p)=p
L . n d
Proposition 5.4.9 and an easy estimate on the growth of | det(Id—A")| = [[:_, |1—
A"l where {\1, ..., A\s} are the eigenvalues of A gives that A cannot have eigenvalues

of modulus 1 and thus A must be hyperbolic (see the argument in Lemma 18.6.2 of
|

Proposition 2.3.1 gives the existence of a semiconjugacy h : T¢ — T? isotopic to
the identity such that ho f = Ao h. Its lift H : R? — R? is given by shadowing, in

particular, the iterations of the set H~!(x) remain of bounded diameter.

Lemma 5.4.13. We have that g factors as an intermediate semiconjugacy. More

precisely, there exists h: T¢/. — T? continuous and surjective such that hom=h.

PROOF. It is enough to show that for every z € T/ there exists y € T such that
7 Hz) C h(y).

For this, notice that any lifting of 7=!(x) (that is, a connected component of
the preimage under the covering map) to the universal covering R? verifies that its

iterates remain of bounded size. This concludes by the remark above on H.
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Now, we shall prove that if f : R? — R? is any lift of f, then there is exactly one
fixed fiber of 7 for f.

Lemma 5.4.14. Let ™ be any lift of [ to R%. So, there is ezactly one fized fiber
of .

PROOF. Since f™ is homotopic to A" which has exactly one fixed point and each

fixed fiber of 7 contributes the same amount to the index of f* it must have exactly

one fixed fiber.
O

This allows us to show that g is transitive:

Proposition 5.4.15. The homeomorphism g is transitive.

PROOF. First, we show that there exists a basic piece of g which projects by A to
the whole T¢.

This is easy since otherwise, there would be a periodic point ¢ in T\ 2(Q(g))
but clearly, the g—orbit of ﬁ_l(q) must contain non-wandering points (it is compact
and invariant).

This concludes, since considering a point y with dense A-orbit and a point in
Q(g) N h~(y) we get the desired basic piece.

Now, let A be the basic piece of g such that h(A) = T Assume that there exists
A # A a different basic piece and z a periodic point of A, naturally, we get that
h='(h(z)) contains also a periodic point 2’ in A. By considering an iterate, we can
assume that z and 2’ are fixed by g¢.

So, we get that it is possible to lift =" (h(2)) and chose a lift of f* which fixes
771(2) and 771(2’) contradicting the previous lemma.

([

With this in hand, we will continue to prove that the fibers of h coincide with
those of m proving that g is conjugated to A (in particular, T¢/. = T4).

First, we show a global product structure for the lift of f. Notice that when we lift
f to RY, we can also lift its center-stable and unstable foliation. It is clear that both
foliations in R? are composed by leaves homeomorphic to R and R* respectively
(the unstable one is direct, the other is an increasing union of balls, so the same
holds).

Lemma 5.4.16. Given x,y € R%, the center stable leaf of = intersects the unstable

leaf of y in exactly one point.
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PrROOF. The fact that they intersect in at most one point is given by the fact that
otherwise, we could find a horseshoe for the lift, and thus many periodic points
contradicting Lemma 5.4.14 (for more details, see Lemma 18.6.7 in [KH]).

The proof that any two points have intersecting manifolds, is quite classical, and
almost topological once we know that both foliations project into minimal foliations
(see also Lemma 18.6.7 of [KH]).

(|

Now, we can conclude with the proof of Part (T3) of Theorem 5.4.6.

To do this, notice that the map H conjugating f with A is proper, so the preimage
of compact sets is compact. Now, assume that A, A, are lifts of fibers of 7 such
that H(A,) = H(A,) we shall show they coincide.

Consider K such that if two points have an iterate at distance bigger than K
then their image by H is distinct.

We fix x € A, and consider a box D of f*(xy) consisting of the points z of R?
such that F“(z) N F&(xo) # 0 and F(2) N Fi(zo) # 0.

It is not hard to show using Lemma 5.4.16 that there exists K independent of n
such that every pair of points in D% in the same unstable leaf of 7" have distance
along F* smaller than K (this is a compactness argument). An analogous property
holds for F*.

This implies that if f*(A,) C D% for every n € Z then A, and A, must be
contained in the same leaf of F°. In fact we get that f~"(A,) C Fe(f"(x)) for
every n > (0 and so we conclude that A, = A, using Lemma 5.4.2.

O

5.4.3 Some manifolds which do not admit this kind of dif-

feomorphisms

The arguments used in the previous section also allow to show that certain manifolds
(and even some isotopy classes in some manifolds) do not admit partially hyperbolic
diffeomorphisms satisfying the coherent trapping property.

To do this, we recall that for general manifolds M?, and a homeomorphism A :
M — M, the Lefschetz number of h, which we denote as L(h) is calculated as
Z?:o trace(h.,;) where h,; : H;(M,Q) — H;(M, Q) is the induced map on (rational)
homology®. We also have that the sum of index the sum of the Lefshetz index along

a covering of Fix(h) by sets homeomorphic to balls equals L(h).

8This is just to avoid torsion elements. Otherwise, one can define the trace with Z coeficients

after making a quotient by the torsion.

234



A similar argument to the one used in the previous section yields the following

result (see also [Shi] for the analog result for Anosov diffeomorphisms?®)

Theorem 5.4.17. Let f be a partially hyperbolic diffeomorphism of M with the
coherent trapping property, then, the action f. : H.(M,Q) — H.(M,Q) is strongly
partially hyperbolic (it has both eigenvalues of modulus > 1 and < 1).

As a consequence, several manifolds cannot admit this kind of diffeomorphisms
(notably S? and products of spheres of different dimensions such as S* x S? x S3)
and also, for example, there cannot be diffeomorphisms like this acting as the iden-
tity on homology. This leads to a natural question: Is every partially hyperbolic
diffeomorphism with the coherent trapping property homotopic to an Anosov diffeo-
morphism?.

PrOOF. The proof is very similar to the one given in the previous section, so we
shall omit some details.

First, we get by counting the fixed points of g™ (the expansive quotient of f™ to
M/.) and we get an exponential growth.

Now, if there are no eigenvalues of modulus greater than one for f,, the trace
of the map cannot grow exponentially. The same argument applies to f~! so we

conclude.
O

9 Although this result even refines slightly his result even for Anosov diffeomorphisms.
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Appendix A

Perturbation of cocycles

A.1 Definitions and statement of results

Before we proceed with the statement and proof of Theorem A.1.4 we shall give some
definitions taken from [BGV] and others which we shall adapt to fit our needs.

Recall that A = (X, f,E, A) is a large period linear cocycle! of dimension d
bounded by K over an infinite set > iff:

- f X — ¥ is a bijection such that all points in X are periodic and such that

given n > 0 there are only finitely many with period less than n.

- E is a vector bundle over 3, that is, there is p : E — ¥ such that E, = p~'(z)

is a vector space of dimension d endowed with an euclidian metric (, ).

-A:ze¥— A, € GL(E,, Ej() is such that [|A,| < K and [|AJ!] < K.

In general, we shall denote A = A F-1(z) - - - Az where juxtaposition denotes the
usual composition of linear transformations.

For every x € 3 we denote by m(z) its period and M4 = AL

) which is a linear
map in GL(E,, E,) (which allows to study eigenvalues and eigenvectors).

For1<j<d

log| )|
m(x)

Where \j, ...\ are the eigenvalues of M in increasing order of modulus. As

ol (2, A) =

usual, we call ¢7(z,.A) the j-th Lyapunov exponent of A at .
Given an f-invariant subset ¥’ C X, we can always restrict the cocycle to the

invariant set defining the cocycle Alsy = (f|sw, ¥/, Els, Alsy).

!Sometimes, we shall abuse notation and call it just cocycle.
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We shall say that a subbundle F' C E is invariant if Vo € ¥ we have A, (F,) =
Ft). When there is an invariant subbundle, we can write the cocycle in coordinates

F & F* (notice that F+ may not be invariant) as

Ar Cp
0 AlF
Where CF is uniformly bounded. This induces two new cocycles: Ap = (3, f, F, A|r)
on F' (where A|p is the restriction of A to F) and A|F = (3, f, E|F, A|F) on
E|F ~ F* where (A[F), € GL((F,)", (Fs@)") is given by pj .,y o A, where p?
is the projection map from F to F*. Notice that changing only Ap affects only
the eigenvalues associated to F' and changing only A|F affects only the rest of the
eigenvalues, recall Remark 3.2.8. See section 4.1 of [BDP] for more discussions on
this decomposition.
As in Section 1.2, if A has two invariant subbundles F' and G, we shall say that
F is (-dominated by G (and denote it as F' <, (G) on an invariant subset ¥/ C ¥ if
for every x € ¥ and for every pair of vectors v € F;\{0}, w € G,\{0} one has

AL @I _ 1 [ AL (w)l]
loll =2
We shall denote F' < G when there exists ¢ > 0 such that F' <, G.
If there exists complementary invariant subbundles £ = F' & G such that F < G

on a subset >’ C ¥, we shall say that A admits a dominated splitting on X'.

As in [BGV], we shall say that A is strictly without domination if it is satisfied
that whenever A admits a dominated splitting in a set ¥’ it is satisfied that X' is
finite.

Let I',, be the set of cocycles over the orbit of  with the distance

—1 1
d(A;, B,) = sup { H(Af"(:r) - Bf"(:r))“” H(Afi(x) - Bfi(g;))UH }

0<i<m(z),veE\{0} o]l 7 o]l

and let I's, (or I'y o) the set of bounded large period linear cocycles over X. Given
A € I's, we denote as A, € T'; to the cocycle {Ay, ..., Apr@-1(4)}-

We say that the cocycle A, has strong stable manifold of dimension i if o*(x, A;) <
min{0, o' (z, A,)}.

For 0 <1 <d, let

I'y;,={A€Tly : VzeX,; A, has strong stable manifold of dimension 7}
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Following [BGV] we say that B is a perturbation of A (denoted by B ~ A) if for
every € > 0 the set of points € 3 such that B, is not e—close to the cocycle A, is
finite.

Similarly, we say that B is a path perturbation of A if for every £ > 0 one has
that the set of points z € ¥ such that B, is not a perturbation of A, along a path
of diameter < ¢ is finite. That is, there is a path 7 : [0, 1] — I's such that 4(0) = A
and 4(1) = B such that 4, : [0, 1] — I, are continuous paths and given £ > 0 the set
of = such that 4,([0, 1]) has diameter > ¢ is finite.

In general, we shall be concerned with path perturbations which preserve the
dimension of the strong stable manifold, so, we shall say that B is a path perturbation
of index i of a cocycle A € I'y; iff: B is a path perturbation of A and the whole path
is contained in I'y;;. This induces a relation in I's;; which we shall denote as ~.

We have that ~ and ~7 are equivalence relations in I'y, and I'y;; respectively, and

clearly ~7 is contained in ~.

Remark A.1.1. Notice that if there is an invariant subbundle F' C E for a cocycle A.
Then, a perturbation (resp. path perturbation) of Ap or A|F can be completed to
an perturbation (resp. path perturbation) of A which does not alter the eigenvalues
associated to A|F or Ap. Any of this perturbations also preserves the invariance of

F'. however, one can not control the effect on other invariant subbundles. See section
4.1 of [BDP].

&

The Lyapunov diameter of the cocycle A is defined as

d(A) = }Tl(r;}i)rg [0z, A) — o' (z, A)].

If A€ I'y;, we define 8, (A) = infp4{0(B)}. Similarly, we define 6° (A) =
infg.-4{5(B)}. Notice that &57%,(A) > 6min(A) and a priori it could be strictly
bigger.

Remark A.1.2. For any cocycle A, it is easy to see that 650 (A) = Gmin(A). Tt
sufficies to consider the path (1 —t).A+¢B where B is a perturbation of A having the
same determinant over any periodic orbit and verifying 6(B) = 0,in(A) (see Lemma

4.3 of [BGV] where it is shown that such a B exists).
&

The following easy Lemma relates the definitions we have just introduced. Its
proof is contained in [BDP] and [BGV] except from property (f). We include quick

proofs for completeness.

Lemma A.1.3. Let A = (X, f,E,A) and B = (X, f, E,B) be two large period

cocycles of dimension d and bounded by K.
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(a) If A is strictly without domination and B ~ A (in particular if B ~F A) then

B is also strictly without domination.

(b) For every ¢ > 0 there exists v > 0 such that if F' and G are two invariant
subbundles and F' <, G on ¥, then §((Arac)|s) > v.

(¢) If 6min(A) = 0 there exists an infinite subset X' C ¥ such that Alss is strictly
without domination. Conversely, if A is strictly without domination, 6, (A) =

0.

(d) If A~ B, then
d d
Zaj(x,A) — Zoj(x,A) —0 as w(r) — o0
j=1 =1

(e) Let F,G and H be invariant subbundles of E. So, F < G® H if F < G and
FIG < H|G. Also, if F <G and G < H then F <G® H and F& G < H.

(f) Let F,G and H be invariant subbundles of E. So, F < G & H implies that
F|G < H|G.

PrOOF. Part (a) is Corollary 2.15 of [BGV]. It uses the quite standard fact (see
Lemma 2.14 of [BGV]) which asserts that if a cocycle admits certain dominated
splitting in a subset ¥/, then, there exists € such that every e-perturbation of the
cocycle remains with dominated splitting in that set.

Assume that B ~ A admits dominated splitting in a set ', then, the previous
argument implies that, modulo removing some finite subset of ', the cocycle A also
admits dominated splitting. This implies that 3 is finite (otherwise, .4 would admit
a dominated splitting in an infinite set).

Part (b) follows directly from the definition of dominated splitting (v is going to
depend on K, the dimensions of F' and G and /).

Part (c¢) is also standard. The existence of a dominated splitting implies directly
the separation of the Lyapunov exponents in each of the invariant subbundles (see
part (b)). That is, given a dominated splitting over a set ¥/, we get € > 0 such that

for every x € ¥/ we have that

0¥z, A) — o'z, A) > ¢

So, if 0(A) = 0, we get that ¥\X' contains periodic points of arbitrarily large
period, so it is infinite as wanted. Notice that .4 may have infinite sets admitting a
dominated splitting and still verifying d,,:,(A) = 0. The converse part is the main
result of [BGV] (see Theorem 4.1 of [BGV]).
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Part (d) is given by the fact that the determinant is multiplicative, so, an e-
perturbation of a cocycle, can increase at most (1 + ¢)™®) the determinant of MA.
So, the sum of the exponents can change at most log(1 + €) which converges to zero
as e — 0.

Part (e) is contained in Lemmas 4.4 and 4.6 of [BDP].

To prove property (f) we use that the existence of a dominated splitting admits
a change of metric which makes the subbundles ortogonal (see [BDP] section 4.1).

So, we can write the cocycle restricted to F'@® G @ H in the form (using coordinates,
G,(GeH)NG F)

.AG * 0
0 A(H) 0
0 0 Ap

Where A(H) = A|(GOF). So the cocycle A|G is written in coordinates H|G, F|G

A(H) 0
0 Ar

Since F' is dominated by G & H, we get the desired property. Notice that for
any r € %, we have that ||(Az|lcen) |7 < ||(A(H),)'||7! and this guaranties the
domination of F|G < H|G as desired.

as

O

We are now ready to state the main result of this appendix. A much stronger
version of this result can be found? in [BoB|. The proof here presented of this weaker
result has some similarities with their proof but I hope that its inclusion in the text
is not devoid of interest and introduces some different ways of proving some parts of
the result.

Theorem A.1.4. Let A = (X, f,E, A) be a bounded large period linear cocycle of
dimension d. Assume that

- A is strictly without domination.
-Aely,;

- For every x € 3, we have |det(M2)| < 1 (that is, for all x € ¥ we have
Z;l:l ol(x,A) <0).

2In fact, the result of [BoB] was announced before I had a proof of this result but I did not

notice the overlap and pursued in this direction.
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Then, (5;1”1(/1) = 0. In particular, given € > 0 there exists a point x € ¥ and a path

Yo of diameter smaller than ¢ such that ,(0) = A, the matriz MFY has all its
eigenvalues of modulus smaller than one, and such that v(t) € T; for everyt € [0, 1].

A.2 Proof of Theorem A.1.4

This section will be devoted to prove this theorem. The proof is by induction.
The following Lemma allows to find several invariant subbundles in order to be

able to apply induction. It is proved in [Gous| Proposition 6.6.

Lemma A.2.1. For every A € I's;, there exists B ~* A such that for every x € ¥
the eigenvalues of MB have all different modulus and their modulus is arbitrarily
near the original one in M2, that is, |o'(z, A) — o'(z,B)] — 0 as 7(z) — oo (in
particular, 6(B) = 6(A)).

SKETCH We proceed by induction. In dimension 2 the result is the same as in
Proposition 3.7 of [BGV] (the only perturbations done there can be made along paths
without any difficulty, this was first done in [BC]). Notice that if the eigenvalues are
both equal for some x € X, then necessarily the cocycle belongs to I's o or I's, .

We assume the result holds in dimension < d. Since there always exists an
invariant subspace of dimension 2, you can make independent perturbations and
change the eigenvalues as required using the induction hypothesis. For this, one
should perturb in the invariant subspace and in the quotient (see Remark A.1.1).

O

If a cocycle A verifies that for every x € ¥, the eigenvalues of M# have all

different modulus and different from 1, we shall say that A is a diagonal cocycle.

Remark A.2.2. For a diagonal cocycle A € I'y;; one has well defined invariant one-
dimensional subspaces Ey(z, A),. .., Eq(x, A) (we shall in general omit the reference
to the point and/or the cocycle) associated to the eigenvalues in increasing order of
modulus. Also, if F; = FE; @ ... ® Ej, one gets that Ay, € I'y; for any 0 < j <
min{i, [}.

From now on, for diagonal cocycles we shall name F; = F1 & ... & E; and G; =
Eo.. ®E,.

¢

As we said, Theorem A.1.4 is easier in dimension 2 (it does not even need the
uniformity hypothesis on the determinant). The following Lemma is essentially due

to Manie and will be the base of the induction.
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Lemma A.2.3. Let A € I's;; be a bounded large period linear cocycle of dimension
2 (0 < i < 2) and strictly without domination such that |det(M2)| < 1 for every
x € X. Then, there exists B ~f A with the following properties:

1. §(B) = 0.
2. |det(M2)| = |det(MP)| for every x € 3.

ProOOF. This is very standard (see [Ms] or section 7.2.1 of [BDV]). With a small
perturbation (see Proposition 6.7 of [Gous]) one can make the angle between the
stable and unstable spaces arbitrarily small and not change the determinant.

After that, one can compose with a rotation, of determinant equal to 1 (so,
without affecting the product of the modulus of the eigenvalues), since after rotating a
small amount one gets complex eigenvalues, there is a moment where the eigenvalues
are real and arbitrarily near, there is where we stop.

Notice that if |det(M2)] > 1 and i = 1 we would be obliged to stop the path
longtime before the eigenvalues are nearly equal since the smallest exponent would

attain the value 0 which is forbidden for path perturbations of index 1.
O

Before we continue with the induction to prove the general result, we shall make
some general perturbative results which loosely state that if two bundles are not
dominated, then, after a perturbation which preserves the exponents, we can see the
non domination in the bundles associated to the closest bundles.

First we will state a standard linear algebra result we shall use in order to perturb

two dimensional cocycles.

Lemma A.2.4. Givene > 0 and K > 0, there exists ¢ > 0 such that if Ay,..., Ay isa
sequence in GL(2,R) matrices verifying that max;{|| A, ||A; ||} < K and v, w € R?

are vectors with ||v|| = ||w|| = 1. Suppose that

1
[ A Avell = 5[4, .. Ave

Then, there exists rotations Ry, ..., Ry of angle smaller than € verifying that

RgAg NP RlAlRw = Ag ce AlR"U

PrOOF. For simplicity we shall assume that A;v = v for every 7. Since this is made
by composing each matrix by a rotation and a homothety, we should change K by
K? which will be the new bound for the norm of the matrices.

For v € PY(R), let oy(7) = W where z is a vector in the direction 7.
It is a well known result in linear algebra that if the function «; : P*(R) — R is
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not constant then it has a maximum and a minimum in antipodal points and it is
monotone in the complement.

We can assume that for every ¢ > 0, we have that A;... A;Rw is at distance
larger than ¢ from Ruv, otherwise we can perform the perturbation.

Notice also that given 0 < n < v < 1 there exists s such that if for some point
v € PY(R) we have that [J/_, as(7) > &, then (notice that [[_, a;(Rv) = 1), there
is an interval of length v around ~ which does not contain Rv which is mapped by
A; ... Ay to an interval around A; ... Ay of length 1. A similar statement holds for
the inverses in the case the product is smaller than x~!.

If we choose v > 1 —¢ and ) < € we get kK = k() which will verify the following:
Assume that there exists v € P}(R) verifying Hf:j a;(y) < k7t for some j, k, then,
since A; ... AjRw should be in the interval around ~y, we can first rotate it to send
it to an extreme point of the interval, and after applying Ay ... A, the vector will
be € close to Rv and so we can finish the perturbation.

This implies that for K = k(e) we get that for every j < k we have that
Hf:j a;(y) > k7! for any v € P(R).

The hypothesis of the Lemma (and the choice of a;(Rv) = 1 for every i) implies
that []i_, a;(Rw) < 2.

This implies that also (maybe by rechoosing ) that we can not have a sequence
a;(Rw) verifying Hf:j a;(Rw) > k. Which in turn implies that this should also
happen for every point v € P}(R) (otherwise an iterate of Rw would be ¢ close to
v).

This gives us that, there exists 0 < p < 1 such that the iterates of an interval
of length ¢ remain of length bounded from below by pe. Now, choosing ¢ such that
lpe > 1 we get that we can take any vector to Rv with rotations of angle less than e.

(Il

The following proposition is the key step of the proof.
Notice that the Proposition does not use the fact that A may be chosen strictly

without domination, or even with §(A) = 0.

Proposition A.2.5. Given K >0, k > 0 and € > 0, there exists N > 0 and { such
that if

- There exists a diagonal cocycle A, of dimension 2 and bounded by K over a

periodic orbit of period w(x) > N.
- There exists a unit vector v € E, such that

k

Az

3 |45 )
A el > ——
2@ [ A%
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Then, there exists B, a path perturbation of A, of diameter smaller than & veri-

fying that all along the path the cocycle has the same Lyapunov exponents and

1B |2 | < 2] A4S0l

PROOF. We use coordinates £y @ FEi-. With this convention, we have

n—1
Ax _ Oy Kx A" — Hj=0 Qfi(x) 1*
0 B 0 11520 Bri)

We also have that |a,|, |5, and |K,| are uniformly bounded from above by K
and also |a,| and |5,| are bounded from below by 1/K for every x € 3. It is satisfied
that ’H}ﬁ) api(a)| < ‘H}Tg) Briw)

We fix k > 0 and € > 0. Let £ > 0 given by Lemma A.2.4 and let v € E, a vector
in the hypothesis of the Proposition.

We consider the set T C E of vectors satisfying that if wy € T is an unitary
Aggw

A we have

vector and if we denote w; =

1
1A% ) |1 ey | > §||A§k(m)wk||

and

[ AZwo|| < 2[|AZv]

We remark that T is defined just in terms of {A,,... Axie(,)} provided that we
maintain the condition on all A, being triangular. Also, it is easy to see that T is
a closed under scalar multiplication, so we shall sometimes consider the unit vectors
there and think of it as a subset of the projective line P}(R).

Notice that if Fi(x, A) € T, the Proposition holds without need to make any
perturbation, so we will assume that it is not the case. We shall call § the distance
in P}(R) between Ej(z, A) and T where the distance we consider is the one given
by the inner angle between the generated lines.

We shall consider k + ¢ < L < w(z) — ¢ the largest integer (if there exists any)

verifying that there exists some w € T satisfying

1
| AG ey wr ]| > §HA§‘L(;E)‘E1(]‘L(:U),A)H (4.1)

Claim. [fn(zx) is large enough, there exists some L with the properties above. More-
over, L — 00 as m(x) — 00.

PROOF. Assume that for some s > 0 and for arbitrarily large 7(z) (for simplicity

we consider it of the form 7(z) = R{ + s with R — 00), if L exists is smaller than s.
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We have that for w € T, the nearest vector to E;(z,.A) we have that

1 R
4% w0l < (5) 14wl

A simple calculation gives us, choosing R large enough to satisfy that K*® (%)R <
tan(6/2), that the cone of angle 6/2 around E;(f*(z),.A) is mapped by A}r(ﬁ) inside
itself. This contradicts the fact that F; is the eigenspace associated to the smallest
< T3S Brio )

eigenvalue (i.e. that ’H A
&

We shall need a more quantitative version of this growth:

Claim. There exists N > 0 such that if m(x) > N + 2( + k then

L1 ()
_ w(x)—L—4
( H Ozfj(w)(l +¢) 1> K2£+k||Af(L+)1(x) | < Hafj(l) <

i=1

L—1
S (H aﬂ(:c)) K2é+k||AfL+e(x) ”

j=k-+l

PrROOF. The second inequality is direct. We prove the claim by contradiction, we
assume though that

w(x)—L—¢
T e < IATEE a2 1 o) it
j¢{k+e,.. . L—1}
Notice that by the previous claim we have that L — oo as m(z) — oo so as 7r(a:)
grows, the norm of A" e (L) ¢ grows to infinity compared to the norm of A" ; o H ( | By -
Also, we get that the distance between AZY and E(f7(x),.A) for j > L must be
bounded from bellow since the norm of every Afu- (@) is bounded by K* so being very
close implies that j would satisfy (4.1) contradicting the maximality of L.
So, if 7(x) is large enough, we get that the vectors far from Ey(fLr(x), A) must
o) +k+0—L :
and thus, this

fL”( )
allows to find a vector in T verifying (4.1) a contradiction with the maximality of L.

be mapped near the direction of maximal expansion of A

See Lemma A.2.4 for a similar argument.

&

We shall now define the perturbation we will make in order to satisfy the re-
quirements of the Proposition. We shall define a continuous path ~ : [0,1] — T,
of diameter smaller than ¢ and verifying the required properties. Notice that all
along the path, the determinant is never changed in any point, so, the product of

t)

the eigenvalues of M;" remains unchanged for every t € [0,1].

245



Using Lemma A.2.4 we can perturb with small rotations the transformations
Aji(py, -, Aprve-i(y inorder to send Ey(f*(x),.A) into the one dimensional subspace
Rw such that A;(Lﬁ); (1L(:)£)RZD = Rw where w € T is the vector defining L.

Since this perturbations are made by composing with small rotations, they can
be made along small paths. Let A}j(m) 0 [0,1] = GL(Eyfi(y), Efiv1(y)) where j €

{L,..., L+ ¢—1} such that

(AfL(:v) AfLH () -'-AlL(w)A?f:ff(:)% Ey(f**(x), A) = Rw

The hypothesis we made and the previous Lemma allow us to send Rw to
E\(f***(z), A) by composing the matrices Ay, with k& < j < k + ¢ with small
rotations. Clearly, by choosing properly the rotations, for £ < 7 < k+ ¢ — 1 we can
find also paths A%,y 1 [0,1] = GL(Efi(), Epi+1(r)) verifying that

<Atfk+g,1(x) “e . Atk(x)AkA AfL+£ l(x) AtL m)A?k-}-(ek+z ) El (fk+£(x)7 A) = E]. (fk—i_g(x)? A)

We shall also perturb the linear transformations Ay;(,) with j € {k+¢,...,L—1}
by multiplying them by matrices of the form

(25
0 «aft)

Where a(t) is conveniently chosen in [1,1 + ¢] in order to get that for every
t € [0, 1] the two exponents of M}Y,S?,_,(x) coincide.

To show that the latter can be made, notice that the perturbations we made
imply that in our coordinates, the matrix M;,S Ee( ) is of the same triangular form,
so, after applying the first L — k — ¢ transformations, the F; direction will remain
horizontal, so, Claim 2 implies that for every ¢ € [0, 1], there exists «(t) such that
the exponents are equal, the fact that this «(t) varies continuously is given by the
fact that the eigenvalues of a path of matrices vary continuously. This concludes.

O

We shall extend this two dimensional result to a more general context using this
kind of two dimensional perturbations. This will allow us to reduce all the problems

to a two dimensional context that we know well how to treat (see Lemma A.2.3).

Proposition A.2.6. Let A € I's; a bounded diagonal cocycle. Assume that for
0 < j < d we have that Fj is not dominated by G;i1. Then, there exists B, a path
perturbation of A along a path which does not change any of the Lyapunov exponents,
which verifies that E;(B) is not dominated by E;1(B).
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Proor. We shall prove that if F} is not dominated by G;11 we can perturb as above
in order to break the domination between Fj and F;;;. A symmetric argument gives
the desired property.

We prove this by induction. So, we will fix j and assume that the proposition
holds for every d < dy > j + 2 and prove it in the case d = dy. We assume that F]
is not dominated by G,41 but that Fj; < E;1; (otherwise there is nothing to prove).

This implies (by property (e) of Lemma A.1.3) that F;|E;; is not dominated by
Gji2|Ej+1, so, we can by induction, find a perturbation respecting all the eigenvalues
such that F;|Ej; is not dominated by E;2|E;+1. Now, property (f) of Lemma A.1.3
implies that F} is not dominated by F;,1 @ Ej12. Using induction again we obtain a
perturbation which respects the eigenvalues and such that that F; is not dominated
by E;;1 as wanted.

Finally we must prove the Proposition in the case d = j + 2 in order to conclude.
Assume then that Fj is dominated by Ej; (otherwise there is nothing to prove).

We have that there exists s such that I} <, F;;1. For simplicity, we take s = 1,
that is, for every = € ¥ (maybe by considering an infinite subset), and unitary vectors

v; € Fy and v € Ej4; we have that

1
14av;]] < Sl Azvjall

Since we have assumed that F} is not dominated by E; i ® F;;» we have that
for every n > 0 there exists N such that if 7(z) > N we have that for some point
of the orbit of x (which without loss of generality we suppose is z) one has that for

some unitary vectors v; € F; and v € Fj1 @ Ej4» we have that

2|| A% || > [l Azvll

Using standard arguments (see for example Pliss” Lemma [Pli, W3]) we get that
for every k and ¢ there exists N such that if 7(x) > N we have that (again choosing
x conveniently and maybe by changing the vectors by their normalized iterates)

[ A%y Azl
[Azo]

||A§k(I)AI;Uj [ ’
ko < 2l Areleal

3
2
and

3
14zl < Sl Azl

This puts us in the hypothesis of Proposition A.2.5 which allow us to make
a perturbation of Ag,, ,¢p;, , without changing the Lyapunov exponents and that

breaks the domination between F; and Ej; ;.
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Notice that given k and € we get that for periodic points with large period we
can perform these perturbations with size smaller than €, so, we get that we can
perturb a sequence of periodic orbits with period going to infinity with arbitrarily

small perturbations and break the domination.
O

This proposition allows us to complete the proof of Theorem A.1.4. Before, we

shall make some reductions.

Lemma A.2.7. Let A € T's;. Then, there exists B ~ A such that §(B) = 65 (A).

Moreover, we can assume that B is a diagonal cocycle and 6(Br,) = 67 (Br,) for
every 1 <1 <d and j = min{i,l}.

PrOOF. The existence of B is proved by following verbatim the proof of Lemma 4.3
in [BGV], since the proof does not introduce new perturbations. The idea is to take a
sequence B,, of path perturbations of index i with 6(1,,) converging to 6" (A) with
different eigenvalues (see Lemma A.2.1), and then considering the cocycle B defined
as coinciding with B,, over the periodic points of period n.

To prove that we can choose §(Br,) = 6.7, (Br,) we make another diagonal process
to first take 6(Bg,_,) to 85

mzn(8>7 then 5(BFd_2) and so on.
O

From now on, we shall use the following notation

7 (A) = limsup o’ (z, A) o/(A) = liminf o7 (z, A)

(z)—00 m(z) =00
Remark A.2.8. Notice that if ¥’ C ¥ is an invariant infinite subset, we get that
o5t (Alsy) > 05 (A). So, we can always restrict to an infinite invariant subset to
prove the Theorem.

This implies that to prove the Theorem, we can assume that the cocycle A satisfies
that for every 1 < j < d we have ¢/(A) = 37 (A) = 0’(A). To do this it is enough
to make a diagonal process showing that there is an infinite subset 3; C > where
c'(Als,) = 7 (Als,). Then, inductively, we can construct ¥, C ... C ¥£; C ¥ an
infinite subset such that for every 1 < j < k we have ¢/ (Al|s,) = 77 (Al|s,). Finally,
we restrict A to X4 and use the previous remark.

In this context, we get also that §(A) = 0¥(A) — ol (A).

¢

We shall say that a cocycle A € I'y,; of dimension d is i-incompressible if it
satisfies the following properties (notice that they are quite more restrictive than the
ones used in [BGV]):
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- A is a diagonal cocycle.
- 0(Ap) = 6:7 (Ap) where j = min{4, 1} for every 1 <1 < d.

- For every 1 < j < d we have that ¢/(A) = 57(A) = 7 (A).

The previous Lemma and Remark A.2.8 show that to prove Theorem A.1.4 it is
enough to work with ¢—incompressible cocycles strictly without domination. Notice
that trivially, if B ~} A is a diagonal path perturbation such that for every j we
have 07 (B) = 07(A), then, B is also i—incompressible.

PRrROOF. of Theorem A.1.4 We shall prove this Theorem by induction. As we said
we can work with ¢—incompressible cocycles.

Now we make the standing induction hypothesis, which holds for two dimensional
cocycles after Lemma A.2.3. It is easy to see that proving this implies directly the

Theorem.

(H) Let D € I'y,; be an i—incompressible cocycle of dimension k < d (0 < ¢ < k)
verifying that for every x € 3 we have that |det(MP)| < 1. Then, if j < k is
the first number such that o7(D) < ¢/1(D) then, it holds that F; < G;41.

Now, let us consider an i—incompressible cocycle A € I'y; of dimension d. Let
j be the smallest number such that ¢/(A) < o/*(A) (if no such j exists there is
nothing to prove).

If 7 =d — 1, we shall show that F; | < Ej.

We notice first that since the sum of all exponents is < 0, we have that o'(A) =
od=1(A) < 0.

Assume that F,;_; is not dominated by E4. So, by Proposition A.2.6 (used for the
inverses) we get that for some B ~ A that remains i—incompressible (since it does
not change the eigenvalues) we have that F,; ; is not dominated by E,;. But this is
a contradiction since Lemma A.2.3 allows us to decrease the Lyapunov diameter of
Bg, e, contradicting the i—incompressibility (notice that this would make the last
exponent to decrease).

So it rest to prove the theorem in the case j < d — 1.

First of all, by induction we get that F; < Fj11 @ ... 3 Ey1.

Now, if F} is not dominated by G;;; we get that a perturbation which preserves
the i—incompressibility (given by Proposition A.2.6), allows us to break the domi-
nation F; < F;11 @ ... ® E4_1 a contradiction.

O
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Appendix B

Plane decompositions

We present a construction of a plane diffeomorphism f of bounded C*° norm which
is semiconjugated to the homothety x — x/2 by a continuous map h : R? — R?
whose fibers are all cellular sets of diameter smaller than K and such that it has two
disjoint attracting neighborhoods which project by h to the whole plane. We derive
some unexpected consequences of the existence of such an example.

We shall denote as dy : R? — R? to the map

The goal of this note is to prove the following theorem (recall subsection 2.1):

Theorem B.0.9. There exists a C®-diffeomorphism f : R? — R? and a constants
K >0 and ax > 0 such that the following properties are verified:

- There exists a (Hélder) continuous cellular map h : R?* — R? such that deo(h, id) <
K anddyoh=ho f.

- There exist open sets Vi and Vy such that
- VinV, =10
— h(V;) =R? fori=1,2.
— F(V) C Vi fori=1,2.

- The C* norm of f and f~' is smaller than ag.

A direct consequence of this Theorem is the existence of h : R? — R? whose
fibers are all non trivial and cellular (decreasing intersection of topological disks),

the existence of these decompositions of the plane had been shown by Roberts [Ro].
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B.1 Construction of f.

For simplicity, we start by considering a curve v = {0} x [—1, ] (the construction
can be made changing ~y for any cellular set!).

Clearly, v C By = B;(0) the ball of radius one on the origin. We shall also
consider the sets B,, = Ban(0) for every n > 0. We have that

RQ:UBn

n>0
We shall define f : R? — R? with the desired properties in an inductive manner,
starting by defining it in By and then in the annulus B, \ B,_;.
Let us define fy : By — By a C* embedding and disjoint open sets V and V3’
such that:

(a) fo coincides with dy in a small neighborhood of 0Bj.
(B) Mo fo'(Bo) = 7.
(c) fo(VO) c VO fori=1,2.

(d) The sets V% are diffeomorphic to [—1,1] X R, separate By in two connected

components and intersect {0} x [—1/4,1/4] in disjoint closed intervals.

Now, we assume that we have defined a C*°-diffeomorphism f, : B, — B, _1 and
disjoint open connected sets V" and V3" (homeomorphic to a band R x (0,1)) such
that:

(1) ful,, = fao1 and V"1 C VP fori = 1,2.

(I2) The C°°-distance between f,, and dy in B, is smaller than a.
(13) (fu(V/)\ 0B,_1) C V" ! for i = 1,2 and f7(V;*) disconnects By.
(I4) V™ is K/2-dense in B,,.

(I5) f, coincides with dy in a K/10-neighborhood of 0B,,.

We must now construct f,,; assuming we had constructed f,, and this will define
a diffeomorphism f : R? — R? which we shall show has the desired properties.

To construct f,1 and V/* we notice that in order to verify (I1), it is enough to
define f,41 in B, \B,_1 as well as to add to V* an open set in B,,;1\B, in order to

verify the hypothesis.

LA cellular set is a decreasing intersection of compact topological disks.
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We consider d; (V") N B,41\B, which since V;* was K/2-dense in B, becomes
K-dense in B, 1\B, for i =1,2.
We shall use the following lemma whose proof we delay to the end of this section.

Lemma B.1.1. There exists ax which only depends on K such that:

- Given two open sets Ay, Ay which are K -dense inside a set of the form B, \ B,—1

with sufficiently large n.

- The sets A; verify that for every point in A; there is a curve going from 0B,

to 0B,,_1 and contained in A;.

Then there exists a C* diffeomorphism g of C*-norm less than ax such that co-
incides with the identity in K/10-neighborhood of the boundaries and such that the
image by g of the open sets is K/2-dense in B, \ B,_1.

We consider a diffeomorphism g given by the previous lemma which is ax — C*°-
close to the identity, coincides with the identity in the K /10-neighborhoods of 05,14
and 0B,, and such that g(V;") is K/2-dense for i = 1, 2.

We define then f,, 11 in B,y 1\B, as dy o g~! which clearly glues together with f,,
and satisfies properties (I12) and (I5).

To define V"™ we consider a very small € > 0 (in order that g(V;") is also K /2—¢-
dense) and for each boundary component C' of g(V;*) (which is a curve) we consider
a curve C’ which is at distance less than ¢ of C' inside g(V;") and such that each when
it approaches C' N 0B, the distance goes to zero and when it approaches C' N 0B, 11
the distance goes to e. This allows to define new V"™ as the open set delimited by
these curves united with the initial V;*. It is not hard to see that it will satisty (I3)
and (14).

We have then constructed a C*°-diffeomorphism f : R? — R? which is at C*
distance ax of dy and such that there are two disjoint open connected sets V; and V5
such that f(V;) C V;. and such that both of them are K/2-dense in R2.

We now indicate the proof of the Lemma we have used:

Proor or LEMMA B.1.1. The proof follows from the following simple bound:

Claim. There exists A > 0 such that for every pair of curves ~vy,7v2 in the square
[—2, 2] which touch both boundaries and intersect [—1,1]* we have that there erists a
C*®-diffeomorphism h of C*°-norm less than A and which coincides with the identity

in the boundaries of the cube such that the image of both curves is 1/4-dense.

We can assume that n is large enough since we can get a bound by hand on the
rest of B,,’s.

Now, to prove the Lemma it is enough to subdivide the complement of the K /10-
neighborhoods of the boundaries of B, \ B,_; into sets Si such that they contain
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balls of radius 4K and are contained in balls of radius 5K . Moreover, we can choose

these sets Sy in order to verify that for some positive constant B we have:

- Sy is diffeomorphic to [—2,2]* via a C* diffeomorphism I, : [-2,2]*> — S}, of

norm less than B.

- The diffeomorphism /; sends 1/4-dense subsets of [—2, 2]? into K /2-dense sub-
sets of Sj.

Now, using the claim it is not hard to see that we can construct the desired
diffeomorphism ¢ of C*°-norm less than AB.
(I

B.2 Proof of the Theorem

We first show the existence of a continuous function h : R*> — R? conjugating f to
ds which is close to the identity.

This is quite classical, consider a point z € R?, so, since deo(f,ds) < K we
get that the orbit {f"(z)} is in fact a K —pseudo-orbit of dy. Since d is infinitely
expansive, there exists only one orbit {d5(y)} which a(K')-shadows {f"(z)} and we
define h(x) = y (in fact, in this case, it suffices with the past pseudo-orbit to find
the shadowing).

We get that h is continuous since when x,, — x then the pseudo-orbit which
shadows must rest near for more and more time, and then, again by expansivity, one
concludes. This implies also that h is onto since it is at bounded distance of the
identity.

Now, consider any ball B of radius 100a(K) in R?, it is easy to see that f(B) is
contained in a ball of radius 50c(K) and then, we get a way to identify the preimage

of points by h. Consider a point z € R?, we get that

R (W) = (1) " (Buovat) (f " (2)))

n>0
So, h is also cellular.
It only remains to show that the image under h of both Vi and V5 is the whole
plane. Since they share equal properties, it will be enough to prove it for one of
them.

Lemma B.2.1. h(V;) =R? fori=1,2.
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ProOOF. We shall show that h(V;) is dense. Since h is proper, it is closed: this will
imply that it is in fact the whole plane. Using the semiconjugacy and the fact that
f(V;) C V; this would prove the lemma.

To prove that h(V;) is dense, we consider an arbitrary open set U C R% Now,
choose ng such that d; ™ (U) contains a ball of radius 10a(K). We get that h=(d; " (U))
contains a ball of radius 9a(K) and thus, since a(K) > K, we know that since V;
is K/2-dense, we get that V; N h~1(dy™(U)) # (. So, since f(V;) C V; we get that
Vinfroh=Y(d,™(U)) # 0 which using the semiconjugacy gives us that h(V;)NU # 0.

This concludes.

O

B.3 Holder continuity

In this section, we shall prove that in fact h is a-Holder continuous (see also Theorem
19.2.1 of [KH]). Since the boundary of dV; for each i is a space filling curve in
arbitrarily small domains and by some easy estimates on the change of Hausdorff
dimension by Holder maps, we see easily that o < %

To prove the existence of a > 0 such that h is a-Holder, consider C' to be a
(uniform) bound on [|Df~!|| (recall that f can be choosen “close” to dy). We choose
also a > 0 such that C'* < 2.

Also, from how we constructed the semiconjugacy h, we see that there exists A;
and Ay such that d(z,y) < A; implies that d(h(x), h(y)) < As. Now, consider a pair
of points z,y € R? such that § = d(z,y) is sufficiently small (say, smaller than A;).

We consider ng such that C~§ < A4; < C~™~1§. We have that

2TMAY < 2O < OO

Now, since dy o ho f~"(x) = h(x) for every n and = we get

d(h(x), h(y)) = d(dy* oho f~"(x),dy* oho [~ (y)) = 27" d(h(f " (x)), h(f " (y)))

But, from how we choose C, we get that d(f~"°(z), f~"(y)) < Ay, so

d(h(x), h(y)) <270 A,

From the above, we obtain thus

dhta) i) < A < 2o = (g Y e
1 1
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Appendix C

Irrational pseudo-rotations of the

torus

This appendix was taken from [Poty], but we have added Section C.4.

We consider Homeog(T?) to be the set of homeomorphisms homotopic to the
identity. We shall say that f € Homeog(T?) is non-resonant if the rotation set of f
is a unique vector («, 5) and the values 1, o, § are irrationally independent (i.e. a,
and /3 are not rational). This ammounts to say that given any lift ' of f to R?,
for every z € R? we have that:

. F'(2)—=
nh_}p{)lo % = (a, B)(mod Z?) (C.1)

In general, one can define the rotation set of a homeomorphism homotopic to
the identity (see [MiZi]). In fact, although we shall not make it explicit, our con-
structions work in the same way for homeomorphisms of the torus whose rotation
set is contained in a segment of slope (o, 5) with «, 8 and «/f irrational and not
containing zero.

Non-resonant torus homeomorphisms! have been intensively studied in the last
years looking for resemblance between them and homeomorphisms of the circle with
irrational rotation number (see [Kwap], [LeC], [Jag;]) and also constructing examples
showing some difference between them (see [Fay|, [BCL], [BCJL], [Jags]).

In [Kwak] the possible topologies of minimal sets these homeomorphisms admit
are classified and it is shown that under some conditions, these minimal sets are

unique and coincide with the non-wandering set?. However, there is one kind of

!These are called irrational pseudo-rotations by several authors, but since some of them use the

term exclusively for conservative ones, we adopt the definition used in [Kwak].
2A point z is wandering for a homeomorphism f if there exists a neighborhood U of z such that

f™(U)NU = ( for every n # 0. The non-wandering set is the closed set of points which are not

wandering.
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topology of minimal sets where the question of the uniqueness of minimal sets re-
mains unknown. When the topology of a minimal set is of this last kind, [BCJL]
constructed an example where the non wandering set does not coincide with the
unique minimal set, in fact, they construct a transitive non-resonant torus home-
omorphism containing a proper minimal set as a skew product over an irrational
rotation.

A natural example of non-resonant torus homeomorphism is the one given by a
homeomorphism semiconjugated to an irrational rotation by a continuous map homo-
topic to the identity. In [Jag;] it is proved that a non-resonant torus homeomorphism
is semiconjugated to an irrational rotation under some quite mild hypothesis.

Under the hypothesis of being semiconjugated by a monotone map?® which has
points whose preimage is a singleton, it is not hard to show the uniqueness of a
minimal set (see for example [Kwak] Lemma 14). However, as shown in Appendix
B (see also [Ro]), a continuous monotone map may be very degenerate and thus
even if there exist such a semiconjugation, it is not clear whether there should exist
a unique minimal set nor the kind of recurrence the homeomorphisms should have.
Moreover, for general non-resonant torus homeomorphisms, there does not exist a
semiconjugacy to the irrational rotation (even when there is “bounded mean motion”,
see [Jaga)).

Here, we give a simple and self-contained proof (based on some ideas of [Kwak]
but not on the classification of the topologies of the minimal sets) of a result which
shows that even if there may be more than one minimal set, the dynamics is in some
sense irreducible. Clearly, transitivity of f may not hold for a general non-resonant
torus homeomorphism (it may even have wandering points, as in the product of two
Denjoy counterexamples; some more elaborate examples may be found in [Kwak]),
but we shall show that, in fact, these homeomorphisms are weakly transitive. For
a homeomorphism f we shall denote Q(f) to the non-wandering set of f (i.e. the

set of points x such that for every neighborhood U of x there exists n > 0 with

[ U)ynu #90).

Theorem C.0.1. Let f € Homeoy(T?) be a non-resonant torus homeomorphism,

then, flocy) is weakly transitive.

Recall that for h : M — M a homeomorphism, and K an h—invariant compact
set, we say that h|x is weakly transitive if given two open sets U and V of M
intersecting K, there exists n > 0 such that h™(U) NV # 0 (the difference with being
transitive is that for transitivity one requires the open sets to be considered relative
to K).

This allows to re-obtain Corollary E of [Jag,]:

3A monotone map is a map whose preimages are all compact and connected.
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Corollary C.0.2. Let f € Homeoy(T?) be a non-resonant torus homeomorphism
such that Q(f) = T?. Then, f is transitive.

In fact, as a consequence of weak-transitivity, we can obtain also the more well

known concept of chain-transitivity for non-resonant torus homeomorphisms.

Corollary C.0.3. Let f € Homeoy(T?) be a non-resonant torus homeomorphism,

then, f is chain-transitive.

Recall that a homeomorphism A of a compact metric space M is chain-transitive
if for every pair of points x,y € M and every € > 0 there exists an e—pseudo-orbit
T =2z0,...,2, =y withn > 1 (ie. d(zi41,h(z)) < e).

PRrooOF. Consider two points z,y € M and ¢ > 0.

We first assume that x # y are both nonwandering points which shows the idea in
a simpler way. From Theorem A we know that there exists a point z and n > 0 such
that d(z, f(z)) < € and d(f"**(2),y) < €. We can then consider the e—pseudo-orbit:
{z,2,..., f"(2),y}

Now, for general x,y € T? we consider ny > 1 such that d(f™™(z),Q(f)) <
g/2 and d(f~™(y),Q(f)) < &/2. Now, by Theorem A there exists z € T? and
n > 0 such that d(z, f*(z)) < € and d(f"*(2), f7™(y)) < e. Considering the
following e—psudo-orbit {z,..., " 1(z),z, ..., f*(2), f7™(y),...,y} we obtain a
pseudo-orbit from x to y and thus proving chain-transitivity.

O

Remark C.0.4. We have proved that in fact, for every € > 0 the pseudo-orbit can be

made with only two “jumps”.

As a consequence of our study, we obtain the following result which may be of

independent interest:

Proposition C.0.5. Let f € Homeoy(T?) be a non-resonant torus homeomorphism
and A1 a compact connected set such that f(Ay) C Ay. Then, for every U connected
neighborhood of Ay, there exists K > 0 such that:

- If Ay is a compact set which has a connected component in the universal cover

of diameter larger than K then?,
UnNAy #0.

One could wonder if the stronger property of Q(f) being transitive may hold.
However, in section C.3 we present an example where Q(f) is a Cantor set times S,

but for which the nonwandering set is not transitive.

4This holds if Ay is a connected set such that f?(Ag) C Ay for some i € Z for example.
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C.1 Reduction of the proofs of Theorem C.0.1 and
Proposition C.0.5

In this section we shall reduce the proofs of Theorem C.0.1 and Proposition C.0.5 to
Proposition C.1.2 and its Addendum C.1.3.

We shall use the word domain to refer to an open and connected set. We shall
say a domain U € T? is inessential, simply essential or doubly essential depending
on whether the inclusion of 71(U) in 71 (T?) is isomorphic to 0, Z or Z? respectively®.

If U is simply essential or doubly essential, we shall say it is essential.

Remark C.1.1. Notice that if U and V" are two doubly essential domains, then UNV #
(). This is because the intersection number of two closed curves is a homotopy
invariant and given two non-homotopic curves in T?, they have non-zero intersection
number, thus, they must intersect. Since clearly, being doubly essential, U and V'

contain non homotopic curves, we get the desired result.

&

We claim that Theorem C.0.1 can be reduced to the following proposition.

Proposition C.1.2. Given f € Homeoy(T?) a non-resonant torus homeomorphism
and U an open set such that f(U) C U and U intersects Q(f), then we have that U

has a connected component which is doubly essential.

Almost the same proof also yields the following statement which will imply Propo-

sition B:

Addendum C.1.3. For f as in Proposition C.1.2, if A is a compact connected set
such that f(A) C A, then, for every connected open neighborhood U of A, we have
that U 1s doubly-essential.

Notice that the fact that f(A) C A for A compact implies that it contains recur-
rent points, and in particular, A N Q(f) # 0.

PROOFOF THEOREM A AND PROPOSITION B. Let us consider two open sets U;
and V; intersecting Q(f), and let U = {J,,, f"(U1) and V = o f"(V1). These
sets verify that f(U) C U and f~'(V)) C V and both intersect the nonwandering set.

Proposition C.1.2 (applied to f and f~1) implies that both U and V are doubly
essential, so, they must intersect. This implies that for some n > 0 and m < 0 we
have that f"(Uy) N f™(V1) # 0, so, we have that f*"(U;) N'V; # 0 and thus Q(f)
is weakly transitive.

°In [Kwak] these concepts are called trivial, essential and doubly-essential.
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Proposition B follows directly from Addendum C.1.3 since given a doubly-essential
domain U in T?, there exists K > 0 such that its lift p~(U) intersects every con-
nected set of diameter larger than K.

O

Remark C.1.4. Notice that in higher dimensions, Remark C.1.1 does not hold. In
fact, it is easy to construct two open connected sets containing closed curves in every
homotopy class which do not intersect. So, even if we could show a result similar to

Proposition C.1.2, it would not imply the same result.

&

C.2 Proof of Proposition C.1.2

Consider a non-resonant torus homeomorphism f € Homeog(T?), and let us assume
that U is an open set which verifies f(U) C U and U N Q(f) # 0.

Since UNQ(f) # 0, for some N > 0 we have that there is a connected component
of U which is f¥-invariant. We may thus assume from the start that U is a domain
such that f(U) C U and U NQ(f) # 0.

Let p : R* — T2 be the canonical projection. Consider Uy C p~*(U) a connected
component. We can choose F' a lift of f such that F(Uy) C U,.

We shall denote T, , to the translation by vector (p, ¢), that is, the map from the
plane such that T, ,(z) = = + (p, q) for every x € R?.

Lemma C.2.1. The domain U is essential.

ProOOF. Consider x € Uy such that p(z) € Q(f). And consider a neighborhood
V C Uy of z. Assume that there exists ng > 0 and (p,q) € Z*\ {(0,0)} such that
F(V)YN (V4 (p,q)) # 0. Since Uy is F-invariant, we obtain two points in U
which differ by an integer translation, and since Uy is connected, this implies that U
contains a non-trivial curve in 71 (T?) and thus, it is essential.

To see that there exists such ng and (p, ¢), notice that otherwise, since x is not
periodic (because f is a non-resonant torus homeomorphism) we could consider a
basis V,, of neighborhoods of p(z) such that f*(V,,) NV, = 0 for every 0 < k < n.
Since x is non-wandering, there exists some k, > n such that f*(V,,) NV, # 0, but
since we have that F* (V) N (V, + (p,q)) = 0 for every (p,q) € Z*>\ {(0,0)}, we
should have that F*(V,,) NV, # 0 for every n. Since k, — oo, we get that f has
zero as rotation vector, a contradiction.

a

We conclude the proof of by showing the following lemma which has some resem-

blance with Lemma 11 in [Kwak].
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Lemma C.2.2. The domain U is doubly-essential.

PROOF. Assume by contradiction that U is simply-essential.

Since the inclusion of 71(U) in 71 (T?) is non-trivial by the previous lemma, there
exists a closed curve n in U such that when lifted to R? joins a point z € Uy with
x + (p,q) (which will also belong to U, because 7 is contained in U and Uy is a
connected component of p~(U)).

We claim that in fact, we can assume that 7 is a simple closed curve and such
that g.c.d(p,q) = 1 (the greatest common divisor). In fact, since U is open, we can
assume that the curve we first considered is in general position, and by considering a
subcurve, we get a simple one (maybe the point x and the vector (p, ¢) changed, but
we shall consider the curve 7 is the simple and closed curve from the start). Since it
is simple, the fact that g.c.d(p,q) = 1 is trivial.

If 1o is the lift of n which joins z € Uy with = + (p, q), we have that it is compact,
so, we get that

n= U Tnp,nq770
neZ

is a proper embedding of R in R2. Notice that 77 C Uj.

By extending to the one point compactification of R? we get by using Jordan’s
Theorem (see [Mo] chapter 4) that 77 separates R? in two disjoint unbounded con-
nected components which we shall call L and R and such that their closures L U7
and R U7 are topologically a half plane (this holds by Schénflies Theorem, see [Mo]
chapter 9).

Consider any pair a, b such that® ¢ # 5’ we claim that T, ,(7)NUy = 0. Otherwise,
the union T}, 4(77) U Uy would be a connected set contained in p~*(U) thus in Uy and
we could find a curve in Uy joining = to x + (a, b) proving that U is doubly essential
(notice that the hypothesis on (a,b) implies that (a, b) and (p, ¢) generate a subgroup
isomorphic to Z?), a contradiction.

Translations are order preserving, this means that 75, ,(R) N R and T, ,(L) N L are
both non-empty and either 7, ,(R) C R or T,,(L) C L (both can only hold in the
case § = 2). Also, one can easily see that T, () C R implies that T, (L) C L.

b
Now, we choose (a, b) such that there exists a curve 7y from x to x+(a, b) satisfying:

- Ta,b(ﬁ) C L.
- 7 is disjoint from T, ,(7).

-~y is disjoint from T, ;(7) and 7 except at its boundary points.

5We accept division by 0 as being infinity.
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We consider 7, = T, ,(77) and 72 = T, (7). Also, we shall denote ¥ = v U
T_o—b(y) which joins x — (a,b) with = + (a,b).
We obtain that Uy is contained in I' = T}, ,(R)NT_, (L) a band whose boundary
is 71 U 7)a.
Since Uy is contained in I' and is F-invariant, for every point x € U, we have
that F™(z) is a sequence in I', and since f is a non-resonant torus homeomorphism,
P Fr(z)—x

we have that lim Tm) = lim

However, we notice that I' can be written as:

= (o, B) is totally irrational.

I'= U Trpna(Lo)

nez

where T’y is a compact set in R%. Indeed, if we consider the curve ¥ U T, 4(no) U
Tpq(7) UT_, _(no) we have a Jordan curve. Considering I'y as the closure of the
bounded component we have the desired fundamental domain.

So, if we consider a sequence of points z,, € I' such that lim #* exists and is equal
to v it will verify that the coordinates of v have the same proportion as p/q, thus
cannot be totally irrational. This is a contradiction and concludes the proof of the
Lemma.

O

We conclude this section by showing how the proof adapts to the case stated in
Addendum C.1.3. Consider a compact connected set A such that f(A) C A, then,
we have that A contains points which are recurrent’.

Let A be a connected component of p~'(A) which is F-invariant. Now, if U is
an open connected neighborhood of A and Uy is a connected component of p~*(U)
containing A. Notice that d(0U,A) > & > 0 so d(dUy, A) > 6 also.

Now, the same argument in Lemma C.2.1 can be used in order to show that U
must be essential: We can choose a point # € A C Up such that p(z) is recurrent and
the same argument shows that there will exist (p,q) € Z?\ {(0,0)} such that F"(x)
is d-close to x4 (p, q) and since F™ (z) must be contained in A we get that x + (p, q)
is contained in Uy showing that U is essential.

The proof that in fact U is doubly-essential is now the same as in Lemma C.2.2
since one can see that invariance of U was not used in the proof, one only needs that
there are points in Uy such that the orbits by F' remain in Uy and this holds for every
point in A.

"Since it is a compact invariant set, it contains a minimal set whose points will be all recurrent.
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C.3 An example where f|qs) is not transitive

The example is similar to the one in section 2 of [Jags], however, we do not know a
priori if our specific examples admit or not a semiconjugacy.

Consider ¢; : S — S! and g : S' — S! Denjoy counterexamples with rotation
numbers p; and p, which are irrationally independent and have minimal invariant sets
M, and M, properly contained in S*. We shall consider the following skew-product
map [ : T? — T? given by:

fa(s:t) = (91(s), B(s)(1))

where 3 : S — Homeo, (S') is continuous and such that 3(s)(t) = go(t) for every
(S,t) € My x St

The same proof as in Lemma 2.1 of [Jagy| yields:

Lemma C.3.1. The map f3 is a non-resonant torus homeomorphism and M x M,

1$ the unique minimal set.

PROOF. The proof is the same as the one in Lemma 2.1 of [Jagy]. Indeed any
invariant measure for f must be supported in M; X M, and the dynamics there
is the product of two Denjoy counterexamples and thus uniquely-ergodic. Since
rotation vectors can be computed with ergodic measures, we also get that fz has a
unique rotation vector (pi, p2) which is totally irrational by hypothesis.

O

Clearly, if we restrict the dynamics of fg to M; x S* it is not hard to see that
the nonwandering set will be M; x My (it is a product system there). So, we shall
prove that if 3 is properly chosen, we get that Q(fz) = M; x S*. In fact, instead of
constructing a specific example, we shall show that for “generic” (8 in certain space,
this is satisfied, this will give the existence of such a f.

First, we define B to be the set of continuous maps 3 : S* — Homeo, (S) such
that 5(s) = go for every s € M;. We endow B with the topology given by restriction
from the set of every continuous map from S' to Homeo, (S'). With this topology,
B is a closed subset of the set of continuous maps from S* — Homeo, (S*) which is
a Baire space, thus, B is a Baire space.

So, the existence of the desired (8 is a consequence of:

Lemma C.3.2. There exists a dense G (residual) subset of B of maps such that
the induced map fg verifies that Q(fs) = My x S*.

PrOOF. First, we will prove the lemma assuming the following claim:
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Claim. Given 3 € B, v € My x S*, € > 0 and § > 0 there exists 5/ € B which is
d—close to 3 such that there exists k > 0 with f§(B(x,e)) N B(x,e) # 0.

Assuming this claim, the proof of the Lemma is a standard Baire argument:
Consider {x,} C M; x S! a countable dense set. Using the claim, we get that the
sets B,y consisting of the functions 8 € B such that there exists a point y and a
value k > 0 such that y and fj(y) belong to B(z,,1/N) is a dense set. Also, the
set B, ny is open, since the property is clearly robust for C° perturbations of fs.
This implies that the set R = ﬂn ~ Bn,w is a residual set, which implies, by Baire’s
theorem that it is in fact dense.

For B € R we get that given a point x € M; x S! and € > 0, we can choose
xn € B(z,e/2) and N such that 1/N < /2. Since € B,, y we have that there exists
k > 0 such that f§(B(x,e)) N B(z,e) # () proving that M; x S* is nonwandering for
/5 as desired.

PROOFOF THE CLAIM. The point x € M; x S* can be written as (s,t) in the
canonical coordinates.

Choose an interval (a,b) C (s — ¢, s+ ¢) contained in a wandering interval of g¢;.
Then, there exists a sequence of integers k,, — 400 such that ¢y ((a,b)) C (s—¢, s+¢)
for all n > 0. Further, the orbits of a and b are disjoint and do not belong to M;.
Let v = (a,b) x {t}.

We can assume that f5"(v) N B(z,e) = () for every n > 0, otherwise, there is
nothing to prove.

We shall thus consider a d—perturbation of § such that it does not modify the
orbit of (a,t) but moves the orbit of (b,%) in one direction making it give a complete
turn around S' and thus an iterate of v will intersect B(z, €).

Let s, = g7'(b) and "(sg) = B(sn-1) 0 ... 0 B(s). Note that £5"(s0)(t) = p(g2)
as n — oo since [(sr) — go as k — 0o. At the same time, if we let

By (s0) = Rg o B(sn-1) 0 Rpo B, ,0...0Rg0 B(s0)
Then, B} (so)(t) — p' > p(ge) since Ry o fs, converges to Ry o go which has

rotation number strictly greater than go (see for example [KH] Proposition 11.1.9).
If we denote by A", respectively ng the lifts of 5" and 3 to R, then, this implies

that there exists ng such that for n > ng one has
By (t) — B"(t)| > 1
So, if we consider k,, > ng and we choose [’ such that:
- it coincides with § in the g;-orbit of a,
- it coincides with Ry o § in the points {b, g1(b), ..., g™ (b)},
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- is at distance smaller than ¢ from S,

we have that f5 (v) N B(x,¢) # 0 as desired.

C.4 The homotopy class of the dehn-twist

We provide here a simple extension of the results of this appendix to homeomor-
phisms which are not homotopic to the identity. We call dehn twist to the torus
homeomorphism whose lift to the universal cover can be written in the form (z,y) —
(x,z +y).

We say that a homeomorphism f : T? — T? homotopic to the dehn-twist is
non-resonant if there exists o € R\ Q such that for every x € R? and for some lift
F : R? — R? one has that:

p1(F" (7)) — p1(w)

lim =«
n—o00 n

where p; : R? — R is the projection in the first coordinate. A classical example is

given by the projection of the torus of the following plane map:

(x,y) = (z+ o,z +y)

With essentially the same proof as Theorem C.0.1 we can prove:

Theorem C.4.1. Let f : T? — T? be a non-resonant torus homeomorphism homo-

topic to a dehn-twist. Then Q(f) is weakly transitive.

The proof is essentially the same as the one of Theorem C.0.1 so we will only give
a sketch.

In fact, the result can be reduced to the following statement analogous to Propo-
sition C.1.2.

Proposition C.4.2. Given f : T? — T? a non-resonant torus homeomorphism
homotopic to a dehn-twist and U an open set such that f(U) C U and U intersects

Q(f), then we have that U has a connected component which is doubly essential.

The proof of the reduction is exactly the same as for Theorem C.0.1.

Let us now prove the proposition.

SKETCH. As in the proof of Proposition C.1.2 we can assume that U is connected
and such that f(U) C U.
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Let us call Uy to a connected component of p~!(U) and we will choose a lift
F : R? — R? which fixes U,.

We consider = € Uy such that p(z) € Q(f). Let V C U, be a connected neigh-
borhood of z.

Assume that there exists ng > 0 such that F™ (V)N (V + (p,q)) # 0. Then, as in
Lemma C.2.1 we can prove that there is a loop v contained in U which is homotopic
to the loop joining (0,0) with (p, q).

Now, assume that p # 0, then, we have that f() which is homotopic to (p,q+1)
is also contained in U by invariance of U and the fact that f is homotopic to a
dehn-twist. Since (p,q) and (p,q + 1) are linearly independent when p # 0 we get
that U should be doubly essential.

To prove that there exists ng such that F™ (V)N (V + (p,q)) # 0 for some (p, q)
with p # 0 we use the fact that the rotation number defined above is irrational and

an argument very similar to that of Lemma C.2.1.
O
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Appendix D

Tame non-robustly transitive

diffeomorphisms

In this appendix, we review the results from [BCGP]. Recall the discussion after
Corollary 1.1.23.
Given an n—dimensional manifold M (with n > 3), we consider Diff" (M) the set

of diffeomorphisms of M endowed with the C" topology (r > 1).

Theorem. There exists a C'-open set U C Diff" (M) (1 <r < o0),
a C"-dense subset D of U and an open set U C M with the following properties:

(I) Isolation: For every f € U, the set Cy := UNR([) is a chain-recurrence class.

(II) Non-robust transitivity: For every f € D, the class Cy is not transitive.
More precisely:

(1) For any f € U there exist a subset Hy C Cy which coincides with the homoclinic
class of any hyperbolic periodic x € Cy. Moreover, each pair of hyperbolic

periodic points in Cy with the same stable dimension is homoclinically related.

(2) For any f € U there exist two hyperbolic periodic points p,q € Cy satisfying
dim 5 > dim E} and Cy is the disjoint union of Hy with W*(p) N W*(q).
Moreover the points of W*(p) N W?*(q) are isolated in Cy.

In particular, if W"(p) N W*(q) # 0, the class C¢ is not transitive.

(3) One has D :={f U : W"(p)NnW?(q) # 0}.

Moreover, this set is a countable union of one-codimensional submanifolds of

Uu.

(4) The chain-recurrent set of any f € U is the union of Cy with a finite number
of hyperbolic periodic points (which depend continuously on f).
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Remark D.0.3. In the construction, the chain recurrence class C; is partially hyper-
bolic with a one-dimensional central bundle. Thus, it is also far from homoclinic

tangencies.

&

Remark D.0.4. The isolated points C; \ H; are nonwandering for f. However, they
do not belong to Q(f|as) (since they are isolated in (f) and non-periodic).
&

D.1 A mechanism for having isolated points in a

chain recurrence class

D.1.1 Preliminaries on invariant bundles

Consider f € Diff' (M) preserving a set A.
A D f-invariant subbundle E C TAM is uniformly contracted (resp. uniformly

expanded) if there exists N > 0 such that for every unit vector v € E, we have

1
|DfNv|| < 5 (resp. > 2).

A D f-invariant splitting TAM = E* & E¢ @ E" is partially hyperbolic if E*° is
uniformly contracted, E** is uniformly expanded, both are non trivial, and if there
exists N > 0 such that for any z € A and any unit vectors vy € E2*, v, € ES and

v, € B we have:

1 1
1Dl < LID vl < 11D 0.
E*) B¢ and E* are called the strong stable, center, and strong unstable bundles.

Remark D.1.1. We will sometimes consider a D f-invariant continuous orientation of
E°¢. When A is the union of two different periodic orbits O,, O, and of a heteroclinic
orbit {f"(z)} € W*(O,) N W*(O,), such an orientation exists if and only if above
each orbit O,, O,, the tangent map D f preserves an orientation of the central bundle.

On a one-dimensional bundle, an orientation corresponds to a unit vector field

tangent.

&

D.1.2 Cuspidal periodic points

Let p be a hyperbolic periodic point whose orbit is partially hyperbolic with a one-

dimensional central bundle. When the central space is stable, there exists a strong
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stable manifold W**(p) tangent to E;° that is invariant by the iterates f7 that fix
p. It is contained in and separates the stable manifold W*(p) in two half stable
manifolds which contain W**(p) as a boundary.

Let us consider an orientation of E7. The unit vector defining the orientation goes
inward on one half stable manifold of p, that we call the right half stable manifold
R*(p). The other one is called the left half stable manifold L*(p).

These half stable manifolds are invariant by an iterate f7 which fixes p if and
only if the orientation of Ej is preserved by Df.

When the central space is unstable, one defines similarly the right and left half
unstable manifolds R*(p), L*(p).

Definition D.1.1. A hyperbolic periodic point p is stable-cuspidal if:

- its orbit is partially hyperbolic, the central bundle is one-dimensional and sta-

ble;

- one half stable manifold of p intersects the chain-recurrence class of p only at
p.
&

When the chain-recurrence class C containing p is not reduced to the orbit O, of
D, this forces the existence of a D f-invariant orientation on the central bundle of O,.

In this case, the other half stable manifold intersects C at points different from
p. The choice of the name has to do with the geometry it imposes on C N W#(p) in
a neighborhood of p, see Figure D.1.

This notion appears in [BDj]. It is stronger than the notion of stable-boundary
points in [CP].

We can define in a similar way the unstable-cuspidal points.

Remark D.1.2. If p is a stable-cuspidal point, then the hyperbolic continuation p, is
still stable-cuspidal for every ¢ that is C''-close to f.

Indeed, there exists a compact set A C L*(p) which meets every orbit of L*(p)\{p}
and which is disjoint from R(f).

By semi-continuity of the chain-recurrent set, a small neighborhood V' of A is
disjoint from R(g) for any g close to f and meets every orbit of the continuation of
L*(p) \ {p}-

&

D.1.3 Description of the mechanism

Let = be a point in a chain-recurrence class C. We introduce the following assump-
tions (see figure D.2).
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Wet(p)
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p |
Lj, AL
W*(p)
ﬁ

Figure D.1: Geometry of a chain recurrence class C near a stable-cuspidal fixed point.

(H1) The class C contains two periodic points p, ¢ such that dim(E;) = dim(E;) + 1.

(H2) (i) The point p is a stable-cuspidal point.

(ii) The point ¢ is an unstable-cuspidal point.

(H3) The point x belongs to W*(p) NW#(q). The union A of the orbits of z, p, ¢ has

a partially hyperbolic decomposition with a one-dimensional central bundle.

Moreover there exists a D f-invariant continuous orientation of the central bun-
dle over A such that C is disjoint from the half manifolds L*(p) and R"(q).

Note that from remark D.1.1 and the fact that a central orientation is preserved
for cuspidal points, a D f-invariant continuous orientation of the central bundle over

A always exists.

Proposition D.1.3. Under (H1)-(H3), the point x is isolated in the chain-recurrence

class C. In particular, C is not transitive.

D.1.4 Proof of proposition D.1.3

Let g be a periodic point whose orbit is partially hyperbolic and whose central bundle
is one-dimensional and unstable. We shall assume that there is an orientation in Ej
which is preserved by Df.

We fix such an orientation of the central bundle Ey, so that the left and right
half unstable manifolds of ¢ are defined.

We denote by d* + 1 the unstable dimension of q.
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W*(p) / “

Wwe(q)

loc

W#(p)

Figure D.2: Hypothesis (H1)-(H3).

Any x € W?*(q) has uniquely defined stable E¥ and center stable E$* directions:
the first one is the tangent space T, W*(q); a vector v € T, M \ {0} belongs to the
second if the direction of its positive iterates D f"(v) stays away from the directions
of EJ*.

If £ C E are two vector subspaces of T, M such that E is transverse to E? and
E’ is transverse to ES° (hence E’ is one-codimensional in E), then F' = E® N E is a
one-dimensional space whose forward iterates converge to the unstable bundle over
the orbit of ¢. As a consequence, there exists an orientation of F' which converges to
the orientation of the central bundle by forward iterations.

There is thus a connected component of £\ E’, such that it intersects F' in the
orientation of F' which converges towards the central orientation, its closure is the
right half plane of E'\ E'.

The closure of the other component is the left half plane of E'\ E'.

Consider a C'-embedding ¢: [—1,1]%" — M such that z := ¢(0) belongs to
W=(q).

Definition D.1.2. The embedding ¢ is coherent with the central orientation at q if

- E = Dyp(R¥"*1) and £’ := Dyp({0} x RY") are transverse to £, E respec-
tively;

- the half-plaque ¢([0,1] x [—1,1]%") is tangent to the right half-plane of £\ E'.
¢
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Let A" be a compact set contained in R"(q) \ {¢} which meets each orbit of

R*(q) \ {q}-

Lemma D.1.4. Let {@4}aca be a continuous family of Ct-embeddings that are co-
herent with the central orientation at q. Consider some ayg € A and a neighborhood
V% of A¥. Then, there exist 0 > 0 and some neighborhood A of ay such that any
point z € p,([0,8] x [=§,8]?") different from ©4(0) has a forward iterate in V.

Proof. Let 7 > 1 be the period of ¢ and x: [—1,1]¢ — M be some coordinates such
that

- x(0) = ¢;
- the image D* := x((—1,1) x {0}47%"~ x (=1,1)?") is contained in W2,(q);
- the image D" := x({0}%%" x (—1,1)%") is contained in W**(q);
- the image D" := x([0,1) x {0}¢~4"~1 x (=1,1)?") is contained in R*(q);
- f77(D%) is contained in D*.
One deduces that there exists ng > 0 such that:
(i) Any point z close to D*+\ f~7(D%) has an iterate f*(z), |k| < ng, in V.
The graph transform argument (see for instance [KH, section 6.2]) gives the
following generalization of the A-lemma.

Claim. There exists N > 0 and, for all a in a neighborhood A of ag, there exist
some decreasing sequences of disks (Do) of [=1,1]"" %" and (D)) of {0} x [-1,1]*"

which contain 0 and such that for any n > N one has, in the coordinates of x:
- f"(Dyy) is the graph of a function D* — R¥=4"~1 that is C'-close to 0;
- ["7(D,,,,) is the graph of a function D** — R that is C"-close to 0.

Let us consider a € A.

The image by f"" of each component of D,, \ D, is contained in a small
neighborhood of a component of D"\ D"*,

The graph f"7(Dy,) which is transverse to a constant cone field around the
central direction at q.

Since ¢ is coherent with the central orientation at ¢, one deduces that

(i) /™ o pq (([0,1] x [=1,1]%") N D,,,) is contained in a small neighborhood of
Dw,
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For 6 > 0 small, any point 2 € ¢, ([0, ] x [=6,]*") different from ¢, (0) belongs
to some Dgp, \ Dgpni1, with n > N. Consequently:

(iii) Any 2 € @, ([—6,8] x [=6,8]%) \ {©a(0)} has a forward iterate in D*\ f~1(D%).

Putting the properties (i-iii) together, one deduces the announced property.
]

Proof of proposition D.1.3. We denote by d® + 1 (resp. d* + 1) the stable dimension
of p (resp. the unstable dimension of ¢)

so that the dimension of M satisfies d = d® + d* + 1.

Consider a point z € W#(q) N W¥(p) satisfying (H3) and a C'-embeddeding
¢ : [-1,1]% = M with ¢(0) = z such that:

- ({0} x [=1,1]%" x {0}%") is contained in W*(q);
- ({0} x {0}*" x [-1,1]%") is contained in W*(p);
- Dop.(1,04,09") is tangent to E¢ and has positive orientation.

Note that all the restrictions of ¢ to [—1,1] x {a*} x [-1,1]?" for a* € R? close
to 0, are coherent with the central orientation at q.

Consider a compact set A* C R%(q)\{q} that meets each orbit of R"(q)\{q}.
Since C is closed and ¢ is unstable-cuspidal, there is a neighborhood V* of A" in M
that is disjoint from C.

The lemma D.1.4 can be applied: the points in ([0, 8] x {a®} x [—4d,6]?") distinct
from (0, a®,0%") have an iterate in V% hence do not belong to C.

This shows that

Cne([0,6] x [6,81") C o ({0} x [—6,8% x {0}*") |

From (H3), if one reverses the central orientation and if one considers the dy-
namics of f~!, then all the restrictions of ¢ to [—1,1] x [-1,1]¢ x {a“} for a* € R?"
close to 0, are coherent with the central orientation at p.

One can thus argues analogously and gets:

C e ([=6,0] x [—6,8]%7) € o ({0} x {0} x [—6,5").

Both inclusions give that

Cnyp ([=6,0]) = {»(0)},
which says that = ¢(0) is isolated in C.

272



D.2 Construction of the example

In this part we build a collection of diffeomorphisms satisfying the properties (I) and
(IT) stated in the theorem.
The construction will be made only in dimension 3 for notational purposes.

The generalization to higher dimensions is straightforward.

D.2.1 Construction of a diffeomorphism

Let us consider an orientation-preserving C* diffeomorphism H of the plane R? and
a closed subset D = D~ U C U D" such that:

- H(D) C Int(D) and H(D~U DY) C Int(D7);
- the forward orbit of any point in D~ converges towards a sink S € D7;

- (C'is the cube [0, 5]> whose maximal invariant set is a hyperbolic horseshoe.

On C N H~(C) the map H is piecewise linear, it preserves and contracts by 1/5
the horizontal direction and it preserves and expands by 5 the vertical direction (see
figure D.3):

- The set C'N H(C) is the union of 4 disjoint vertical bands Iy, Is, I3, I of width
1. We will assume that I; Ul C (0,24 3) x [0,5] and IsUI, C (2+32,5) x [0, 5.

- The preimage H~*(C') N C' is the union of 4 horizontal bands H~*(I;). We will
assume that H—(I;Ul,) C [0,5]x (0,2+3) and H*(I3Uly) C [0,5]x (2+2,5).

We define a C* diffeomorphism F of R? whose restriction to a neighborhood of
D x [—1,6] it is a skew product of the form

F:(x,t) = (H(x),g.(1)),

where the diffeomorphisms g, are orientation-preserving and satisfy (see figure
D.4):

(P1) g, does not depend on x in the sets H'(I;) for every i = 1,2,3, 4.
(P2) For every (z,t) € D x [—1,6] one has 4/5 < ¢/ (t) < 6/5.

(P3) g, has exactly two fixed points inside [—1,6], which are {0,4}, {3,4}, {1,2}
and {1,5}, when x belongs to H~1(I;) for i respectively equal to 1,2,3 and 4.

All fixed points are hyperbolic, moreover,
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D+

C H'(1y) H
H (1) 77N
I I I I
H(1)
H™H (1)
S \_/
D-

Figure D.3: The map H.

-g.(t)<lforte|[—1,34+1/2]and x € H'(I;) U H(I5).
- g.(t)>1fort € [141/2,6] and x € H ' (I3) U H(I,).

(P4) For every (z,t) € (D~ UD") x [—1,6] one has g,(t) > t.

p H_I(Il)
0 4
H™ (1)
3 4
H™(I5)
1 2
1o Hw)
1 5

Figure D.4: The map g, above each rectangle H*(I;).

We assume furthermore that the following properties are satisfied:
(P5) F(D x [6,8]) C Int(D x [6,8]);
(P6) there exists a sink which attracts the orbit of any point of D x [6, 8];

(P7) F coincides with a linear homothety outside a compact domain;
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(P8) any forward orbit meets D x [—1, 8].

One can build a diffeomorphism which coincides with the identity on a neigh-
borhood of the boundary of Dy x (—2,9) and coincides with F'in D x (—1,8) (Dy
denotes a small neighborhood of D in R?).

This implies that, on any 3-dimensional manifold, every isotopy class of diffeomor-
phisms contains an element whose restriction to an invariant set is C'*°-conjugated
to F.

On any 3-dimensional manifold, one can consider an orientation-preserving Morse-
Smale diffeomorphism and by surgery replace the dynamics on a neighborhood of a
sink by the dynamics of F'. We denote by fy the obtained diffeomorphism.

D.2.2 First robust properties

We list some properties satisfied by fj, which are also satisfied by any diffeomorphism
f in a small C'-neighborhood U of f.

Fixed points By (P3), in each rectangle Int(/;) x (—1,6), there exists two hyper-
bolic fixed points p;, ¢;. Their stable dimensions are respectively equal to 2 and

1. Since p; and ¢4 will play special roles, we shall denote them as p = p; and
4 = qa.

Isolation The two open sets Vo = Int(D) x (—=1,8) and V; = Vj \ (C x [—1,6]) are
isolating blocks, i.e. satisfy f(Vg) C Vg and f(V;) C V;.
For V4, the property follows immediatly from the construction.

The closure of the second set V; can be decomposed as the union of:

- DT x [—1,6], which is mapped into (D~ x [—1,6]) U (D x [6, 8]),

- D™ x [—1,6] which is also mapped into (D~ x [-1,6]) U (D x [6,8]) and
moreover has a foward iterate in D x [6, 8] by (P4),

- D x [6,8] which is mapped into itself and whose limit set is a sink.

Hence, any chain-recurrence class which meets the rectangle C' x [—1,6] is

contained inside. The maximal invariant set in C' x [—1, 6] will be denoted by

C.

Any chain-recurrence class which meets V; coincides with the sink of D x [6,9].

Partial hyperbolicity On C x [—1,6] C R?, there exists some narrow cone fields
&*, &% around the coordinate direction (1,0,0) and the plane (z,0, z) which
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are invariant by Df~!. The vectors tangent to £° are uniformly expanded by
Df~L

Similarly there exists some forward invariant cone fields &%, € close to the
direction (0, 1,0) and the plane (0,y, 2).

In particular C is partialy hyperbolic.

Moreover the tangent map D f preserves the orientation of the central direction

such that any positive unitary central vector is close to the vector (0,0, 1).

Central expansion Property (P2) holds for f when one replaces the derivative
g..(t) by the tangent map || D f|g-(z,t)| along the central bundle.

Properties (H2) and (H3) The point p is stable-cuspidal and the point ¢ is unstable-
cuspidal. More precisely the left half plaque of W#(p) and the right half plaque
of W*(q) are disjoint from C: since the chain-recurrence classes of p and ¢ are

contained in C this implies property (H2).
Moreover if there exists an intersection point x € W*(p) N W#(q) for f, then

by the isolating property it is contained in C. By preservation of the central
orientation, (H3) holds also.

Let us explain how to prove these properties: it is enough to discuss the case

of the left half-plaque of W#(p) and (arguing as in remark D.1.2) to assume
that f = f,.
From (P2) and (P3), we have:

- every point in C' x [—1,0) has a backward iterate outside C' x [—1, 6];
- the same holds for every point in (C'\ I;) x {0};

- any point in I3 x {0} has some backward image in (C'\ I;) x {0}, unless
it belongs to W*(p).

Combining these properties, one deduces that the connected component of

W (p) N (C x [—1,0]) containing p intersects C only at p.
Note that this is a left half plaque of W?*(p), giving the required property.
Hyperbolic regions By (P3), the maximal invariant set in @), := [0,5] x [0,2 +

31 x [-1,3+ 3] and Qg := [0,5] x [2+ 2,5] x [1+ 1, 6] are two locally maximal
transitive hyperbolic sets, denoted by K, and K.

Their stable dimensions are 2 and 1 respectively. The first one contains p, ps,

the second one contains ¢, gs.
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Tameness (property (4) of the theorem) since fj has been obtained by surgery
of a Morse-Smale diffeomorphism, the chain-recurrent set in M \ C is a finite

union of hyperbolic periodic orbits.

Any x € C has a strong stable manifold W#**(z). Its local strong stable manifold

Wgs (x) is the connected component containing x of the intersection W**(x) N C' x

[—1,6].
It is a curve bounded by {0,5} x [0,5] x [—1,6]. Symmetrically, we define W"*(x)
and W (x).

loc

D.2.3 Central behaviours of the dynamics

We analyze the local strong stable and strong unstable manifolds of points of C

depending on their central position.

Lemma D.2.1. There exists an open set Uy C Uy such that for every f € Uy and
xeC:

(R1) If x € Ry :=C x [—=1,4+ 3], then W (z) N W*(p) # 0.

loc

(R2) If v € Ry := C x [£,6], then Ws(z) "N W¥(q) # 0.

2 loc

(R3) If v € Ry :=C x [5,2+ 1], then WS (x) NWEi(y) # 0 for some y € K,.

loc loc

(R4) If v € Ry :=C x [2+ 3,4+ 1], then Wit(x) "W (y) # 0 for some y € K.

loc

Moreover py belongs to Ry and q3 belongs to R;.

Proof. Properties (R1) and (R2) follow directly from the continuous variation of the
stable and unstable manifolds. Similarly ps € Ry and g3 € Ry by continuity.

We prove (R3) with classical blender arguments (see [BD;]| and [BDV, chapter 6]
for more details). The set K, is a called blender-horseshoes in [BDy, section 3.2].

A cs-strip S is the image by a diffeomorphism ¢ : [—1,1]> = @, = [0,5] x [0,2 +
3] x [~1,3 + 3] such that:

- The surface S is tangent to the center-stable cone field and meets C' x [3,2+ 3].

- The curves ¢(t,[—1,1]), t € [—1, 1], are tangent to the strong stable cone field
and crosses @, i.e. ¢(t,{—1,1}) C {0,5} x [0,2+ 3] x [-1,3+ 3].

- S does not intersect W}k (p) U W, (p2).

The width of S is the minimal length of the curves contained in S, tangent to the
center cone, and that joins ¢(—1,[—1,1]) and ¢(1,[—1,1]).

Condition (P2) is important to get the following (see [BDV, lemma 6.6] for more
details):
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Claim. There exists A > 1 such that if S is a cs-strip of width ¢, then, either f~1(S)
intersects Wk .(p) U W (p2) or it contains at least one cs-strip with width \e.

PROOF. Using (P2), the set f~1(S)NC x [—1, 6] is the union of two bands crossing
C x [—1,6]: the first has its two first coordinates near H'(I;), the second near
H™Y(L).

Their width is larger than Ae where A > 1 is a lower bound of the expansion of
Df~! in the central direction inside . We assume by contradiction that none of
them intersects W, (p) U W, (p2), nor C x [5,2 4 1].

Since S intersects C' X [5,2 + 1], from conditions (P2) and (P3) the first band
intersects C X [3,4]. By our assumption it is thus contained in C' x (2 + 1,4]. Using
(P2) and (P3) again, this shows that S is contained in C' x (2,4].

The same argument with the second band shows that S is contained in C'x[—1, 2),

a contradiction.

&

Repeating this procedure, we get an intersection point between W} (p) UW . (p2)
and a backward iterate of the cs—strip. It gives in turn a transverse intersection point
z between the initial cs—strip and W"(p) U W¥(pg). By construction, all the past
iterates of z belong to ),. Hence z has a well defined local strong unstable manifold.
In particular, the intersection y between W ¥(z) and W} .(p) (which exists by (R1))
remains in (), both for future and past iterates, thus, it belongs to K.

For any point x € CN R3, one builds a cs-strip by thickening in the central direc-

tion the local strong stable manifold. We have proved that this cs—strip intersects

uu
loc

One con consider a sequence of thiner strips. Since K, is closed and the local

(y) for some y € K.

strong unstable manifolds vary continuously, we get at the limit an intersection
between W3

loc

() and Wt (y') for some y' € K, as desired.

This gives (R3). Property (R4) can be obtained similarly.
O

We have controled the local strong unstable manifold of points in R; U Ry and
the local strong stable manifold of points in Ry U R3.
Since neither Ry U Ry nor Ry U R3 cover completely C' x [—1, 6] we shall also make

use of the following result:

Lemma D.2.2. For every diffeomorphism in a small Ct-neighborhood Us C Uy of fo,

1
'3
the only point whose complete orbit is contained in C' x [4 + %, 6] is q.

the only point whose complete orbit is contained in C x [—1, 3] is p; symmetrically,
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Proof. We argue as for property (H2) in section D.2.2: the set of points whose past

iterates stay in C' x [—1, %] is the local strong unstable manifold of p. Since p is the
only point in its local unstable manifold whose future iterates stay in C' x [—1, %] is

p we conclude. 0

D.2.4 Properties (I) and (II) of the theorem

We now check that (I) and (IT) hold for the region U = Int(C' x [—1,6]) and the
neighborhood U := U; N Us.

Proposition D.2.3. For any f € U, x € C, there are arbitrarily large ng,n, > 0
such that W2 (fma(x)) N W= (y,) # 0 and WEE(f"(x)) N W (y,) # O for some

loc loc

ys € Ky, yp € K.

Proof. It {f™(z),n > no} C C x [4+ 3,6], for some ng > 0, then x € W*(g) by
lemma D.2.2.

In the remaining case, there exist some arbitrarily large forward iterates f"(x) in
Ry, so that W2 (f"(x)) meets W*(p) by lemma D.2.1.

Since p is homoclinically related with py, by the A-lemma there exists k£ > 0 such
that fH*(Wue(fm(x))) contains W4 (z') for some 2’ € W#(py) N Ry because py € Ry.

By lemma D.2.1, f*(W2e(f"(x))) intersects Wis(y,) for some y) € K, showing
that W (f"(2)) 0 W™ (y,) # 0 with y, = () in K,

We have obtained the first property in all the cases. The second property is
similar.

]

The following corollary (together with the isolation property of section D.2.2)
implies that for every f € U, the properties (I) and (H1) are verified.

Corollary D.2.4. For every f € U the set C is contained in a chain-transitive class.

Proof. For any € > 0 and x € C, there exists a e-pseudo-orbit p = xg, x1,..., 2T, = p,
n > 1, which contains x.
Indeed by proposition D.2.3, and using that K,, K, are transitive and contain
respectively p and qs, there exists a e-pseudo-orbit from p to g3 which contains z.
By lemma D.2.1, the unstable manifold of ¢3 intersects the stable manifold of p,
hence there exists a e-pseudo-orbit from ¢3 to p.

We take the concatenation of these pseudo-orbits.

Now, we show that (H3) holds for a C" dense set D of U.
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Since (H1) and (H2) are satisfied, proposition D.1.3 implies that the property
(IT) of the theorem holds with the set D C U.

In fact, as we noticed in section D.2.2 it is enough to get the following.

Corollary D.2.5. For every r > 1, the set
D={feU, W"(p)nW*(q) # 0}

is dense in U N DIff"(M). It is a countable union of one-codimensional submani-

folds.

In the C! topology, this result is direct consequence of the connecting lemma
(together with proposition D.2.3).
The additional structure of our specific example allows to make these perturba-

tions in any C"-topology.

Proof. Fix any f € U.

By proposition D.2.3, there exists x € K, such that W*"(p) intersects W**(x) at
a point y (notice that y ¢ K, U {p}).

Let U be a neighborhood of y such that:

- U is disjoint from the iterates of y, i.e. {f"(y) : n€Z}NU = {y};
- U is disjoint from K, U {p}.

Given a C" neighborhood V of the identity, there exists a neighborhood V' C U of
y such that, for every z € V| the set V contains a diffeomorphism g, which coincides
with the identity in the complement of U and maps y at z.

Since K is locally maximal, there exists z € K, N W?*(q) near x. In particular
WS (7) intersects V' in a point z whose backward orbit is disjoint from U.

For the diffeomorphism h = g, o f (which is C"-close to f) the manifolds W*(q)
and W*(p) intersect.

Indeed both f and & satisfy f~'(y) € W*(p) and z € W.(T).

Since WS (Z) € W**(q) and h(f~'(y)) = 2z we get the conclusion.
For each integer n > 1, the manifolds f™(W % (p)) and WS

loc loc

(¢) have disjoint
boundary and intersect in at most finitely many points.

One deduces that the set D, of diffeomorphisms such that they intersect is a
finite union of one-codimensional submanifold of U.

The set D is the countable union of the D,,.
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D.2.5 Other properties

We here show properties (1), (2) and (3) of the theorem.
Proposition D.2.6. For every f € U and x € C we have:
- If e § W*(q), there exist large n > 0 such that W (f™(x)) N W*(p) # 0.

- If x € W¥(p), there exists large n > 0 such that W25 (f~"(x)) N W*(q) # 0.

loc

Moreover, in the first case x belongs to the homoclinic class of p and in the second

it belongs to the homoclinic class of q.

Proof. By lemma D.2.2, any point = € C \ W?*(q) has arbitrarily large iterates f"(z)
in Ry, proving that W (f™(x)) N W*(p) # 0.

In particular, W#*(p) intersects transversaly W

“(x) at points arbitrarily close to

x. On the other hand by proposition D.2.3, there exists a sequence z, converging
to z and points y,, € K, such that z, € W*(y,) for each n, proving that W¢(z,)
intersects W"(p) transversaly at a point close to  when n is large.

By the A-lemma, W;“(y,) is the C'-limit of a sequence of discs contained in
W*(p). This proves that W*"(p) and W?*(p) have a transverse intersection point close
to x, hence = belongs to the homoclinic class of p.

The other properties are obtained analogously. O

Let Hy denotes the homoclinic class of p. The next gives property (1) of the

theorem.

Corollary D.2.7. For every f € U, the homoclinic class of any hyperbolic periodic
point of C coincides with Hy. Moreover, the periodic points in C of the same stable
index are homoclinically related.

Proof. Let z € C be a hyperbolic periodic point whose stable index is 2.

By proposition D.2.3 W#(2) intersects W (y) for some y € K, this implies
that W*(2) intersects W}“(y) and since W}**(y) is accumulated by W"(p) we get
that W#(z) intersects W*(p). Now, by proposition D.2.6, W*(z) intersects W*(p).
Moreover the partial hyperbolicity implies that the intersections are transversal,
proving that z and p are homoclinically related.

One shows in the same way that any hyperbolic periodic point whose stable index
is 1 is homoclinically related to q.

It remains to prove that the homoclinic classes of p and ¢ coincide.

The homoclinic class of ¢ contains a dense set of points x that are homoclinic to
g3. In particular, x does not belong to W*"(q), hence belongs to the homoclinic class
of p by proposition D.2.6.

This gives one inclusion. The other one is similar.
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Properties (2) and (3) of the theorem follow from corollary D.2.5 and the follow-

ing.
Corollary D.2.8. For every f € U we have C\H; = W*(q) N W*(p).

Proof. By corollary D.2.7, a point x € C\H; does not belong to the homoclinic class
of ¢ (nor to the homoclinic class of p by definition of Hy).

Proposition D.2.6 gives C\Hy C W?*(q) N W*(p).

Proposition D.1.3 proves that the points of W*(q)NW*(p) are isolated in C. Since
any point in a non-trivial homoclinic class is limit of a sequence of distinct periodic
points of the class we conclude that W#(¢) N W*(p) and H; are disjoint.

O

The proof of the theorem is now complete.
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