
Doctoral Thesis

Optimal Stopping for Strong Markov

Processes:

Explicit solutions and verification theorems for diffusions,

multidimensional diffusions, and jump-processes.

Fabián Crocce

Advisor: Ernesto Mordecki

Centro de Matemática
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Abstract

We consider the optimal stopping problem consisting in, given a strong

Markov process X = {Xt} taking values in E , and a reward function g : E →
R, finding the optimal stopping time τ ∗ and the value function Vα such that:

Vα(x) = Ex
(
e−ατ

∗
g(Xτ∗)

)
= sup

τ
Ex
(
e−ατg(Xτ )

)
,

where the supremum is taken over the class of all stopping times, α is a

positive discount rate, and x is the starting point of X. The approach we

follow, has two main components: the Dynkin’s characterization of the value

function as the smallest α-excessive function dominating g; and the Riesz

representation of α-excessive functions in terms of the Green kernel, the

main reference being Salminen (1985). In the context of one-dimensional

diffusions we give a complete characterization of the solution under some as-

sumptions on g. If the optimal stopping problem is one-sided (the optimal

stopping region is [x∗,∞) or (−∞, x∗]) we provide a simple equation to find

the threshold x∗ and discuss the validity of the smooth fit principle. We

include some new examples as the optimal stopping of the skew Brownian

motion and the sticky Brownian motion. In particular, we consider cases

in which the smooth fit principle fails. In the general case, we propose an

algorithm that finds the optimal stopping region when it is a disjoint union

of intervals. We also give a simple formula for the value function. Using

this algorithm we solve some examples including polynomial rewards. For

general Markov processes with continuous sample paths (for instance multi-

dimensional diffusions) we provide a verification theorem and use it to solve

a particular problem. Finally we consider one-dimensional strong Markov

processes with only positive (or only negative) jumps, and provide another

verification theorem for right-sided (left-sided) problems. As applications of

our results we address the problem of pricing an American put option in a

Lévy market, and also solve an optimal stopping problem for a Lévy driven

Ornstein-Uhlenbeck process.





Resumen

Consideramos el problema de parada óptima que consiste en, dados un

proceso de Markov fuerte X = {Xt} a valores en E , y una función de pago

g : E → R, encontrar el tiempo de parada óptima τ ∗ y la función de valor Vα

que verifican:

Vα(x) = Ex
(
e−ατ

∗
g(Xτ∗)

)
= sup

τ
Ex
(
e−ατg(Xτ )

)
,

donde el supremo es tomado sobre la clase de todos los tiempos de parada, α

es una tasa de descuento positiva, y x es el estado del que parte el proceso.

El enfoque que seguimos se basa en dos componentes: la caracterización de

Dynkin de la función de valor como la mı́nima función α-excesiva que dom-

ina g; y la representación de Riesz de las funciones α-excesivas en términos

del núcleo de Green. La principal referencia para este enfoque es Salminen

(1985). En el contexto de las difusiones unidimensionales damos una carac-

terización completa de la solución, asumiendo algunas condiciones sobre g. Si

el problema de parada óptima es tal que la región de parada es de la forma

[x∗,∞) o de la forma (−∞, x∗], damos una ecuación sencilla para encon-

trar el valor cŕıtico x∗ y discutimos la validez del principio de pegado suave.

También incluimos algunos ejemplos nuevos como ser la parada óptima del

movimiento browniano asimétrico (skew) y del movimiento browniano pega-

joso (sticky); en particular damos ejemplos en que no vale el principio de

pegado suave. En el caso general, proponemos un algoritmo que encuentra

la región de parada óptima cuando ésta es una unión disjunta de interva-

los, dando también una fórmula sencilla para la función de valor. Usando

el algoritmo mencionado resolvemos algunos ejemplos que incluyen funciones

de pago polinomiales. Para procesos de Markov generales con trayectorias

continuas (como ser las difusiones multidimensionales) damos un teorema

de verificación que luego usamos para resolver un problema concreto. Por

último, consideramos un proceso de Markov fuerte unidimensional solo con

saltos positivos (o solo con saltos negativos) y damos un teorema de verifi-

cación para problemas en que la región de parada es de la forma [x∗,∞) (de

la forma (−∞, x∗]). Como aplicación de los resultados obtenidos consider-

amos el problema de la valuación de una opción americana de tipo put en un

mercado de Lévy, y también resolvemos un problema de parada óptima en



que el proceso subyacente es un proceso de Ornstein-Uhlenbeck combinado

con un proceso de Lévy.



a Karen. . .
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debo a Fernando Peláez, que en febrero de 2002 en San Luis, mientras lo

acribillaba a preguntas para el examen de matemática A (con Parisi), me
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Introduction

About optimal stopping

The theory of optimal stopping is concerned with the problem of choosing the

moment to take certain action with the purpose of maximizing an expected

reward or minimizing an expected cost. It has applications in many fields

such as theory of probability, mathematical statistics, economics, mathemat-

ical finance and control theory.

One of the most famous problems in this area is the secretary problem

(also known as marriage problem, the sultan’s dowry problem, the fussy suitor

problem, etc.) in which an administrator aims to maximize the probability

of hiring the best of N applicants to the position of secretary. In this prob-

lem the applicants are interviewed sequentially in random order and they

can be ranked during the interview and compared only with those already

interviewed; after each interview, the administrator has to decide whether

the interviewee is chosen (without this assumption the problem is trivially

solved by interviewing all the applicants and selecting the best). According

to Ferguson (1989) the secretary problem appears for the first time in print,

in Martin Gardner’s February 1960 column in Scientific American, where it

was called the game of googol.

Historical comments

Optimal stopping problems have a long history in literature. The first prob-

lems arose within the framework of statistics in the late 40s, more precisely,

in the context of sequential analysis with the works of Wald (1947, 1950), and
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Wald and Wolfowitz (1948, 1950). A few years later, Snell (1952) proposed

a general optimal stopping problem, for discrete-time stochastic processes,

and characterized its solution as the smallest supermartingale dominating

the gain process –known as Snell envelope–; this result, which stands rel-

evant today, can be considered one of the first major theoretical results in

optimal stopping. This approach, sometimes called the martingale approach,

is also treated in the book by Chow et al. (1971).

A later impulse to optimal stopping theory is related to mathematical

finance, where arbitrage considerations show that in order to price an Amer-

ican option, one has to solve an optimal stopping problem. The first results

in this direction were provided by McKean Jr. (1965) and Merton (1973),

who respectively solved the perpetual put and call option pricing problem,

by solving the corresponding optimal stopping problems in the context of

the Black and Scholes model (Black and Scholes, 1973). Hedging arguments

justifying the use of optimal stopping in option pricing were provided by Ben-

soussan (1984) and Karatzas (1988). The work by Jacka (1991) also treats

the relationship between the option pricing and optimal stopping. Mathe-

matical finance problems continue to motivate works on optimal stopping,

also regarding processes with jumps, which intend to model turbulences of

the markets. Without meaning to be exhaustive, we cite the books: Bo-

yarchenko and Levendorskĭı (2002a, 2007); Cont and Tankov (2004); and the

articles: Gerber and Shiu (1999); Mordecki (2002); Boyarchenko and Leven-

dorskĭı (2002b); Alili and Kyprianou (2005); Christensen and Irle (2009).

Verification vs Theoretical approach

When considering works on optimal stopping problems we typically find two

approaches. In the first approach, in order to solve a concrete optimal stop-

ping problem, one has to somehow guess the solution and prove that the

guessed candidate, in fact, solves the optimization problem; this approach

is known as verification. The second one is the theoretical approach, that

typically includes results about properties of the solution. But these two

approaches seldom meet, as frequently in concrete problems the assumptions

of the theoretical studies are not fulfilled, and, what is more important, the

18



theoretical studies do not provide concrete ways to find solutions.

As far as the first approach is concerned, the relationship between opti-

mal stopping and free boundary problems is of key importance. A common

procedure, to delimit the region in which is optimal to stop, is to apply the

principle of smooth fit, used for the first time by Mikhalevich (1958), that

generally leads to the solution of two equations: the continuous fit and the

smooth fit equations. Once these equations are solved, a verification pro-

cedure is needed to prove that the candidate is the actual solution to the

problem itself (for more details see Peskir and Shiryaev, 2006, chapter IV).

This approach, when an explicit solution can be found, is very effective.

With regard to the second approach, the most important results may be:

Dynkin’s characterization of the value function Vα as the least α-excessive (or

α-superharmonic) dominating the reward (see Dynkin, 1963) in the continuous-

time case; and the already exposed Snell’s characterization in discrete-time.

The book by Shiryaev (2008) (which is a reprint of Shiryayev (1978), whose

first version in English is Širjaev (1973)) provides a comprehensive treatment

of Dynkin’s characterization.

Other ways of classifying approaches in the study of optimal stopping

problems include the Martingale-Markovian dichotomy. The Martingale ap-

proach is treated in the monograph (Chow et al., 1971) for discrete time

processes. As for the Markovian approach, the monograph (Shiryaev, 2008)

was, for a long time, the main reference. In the more recent book (Peskir and

Shiryaev, 2006), both approaches are extensively analysed and compared.

The problem

A general continuous time optimal stopping problem can be stated as fol-

lows: given a gain process {Gt}t≥0, defined in a filtered probability space

(Ω,F , {Ft},P), find the stopping time τ ∗ that maximizes the expected gain,

i.e.

E(Gτ∗) = sup
τ
E(Gτ ),
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where the supremum is taken over all stopping times that are less than or

equal to certain horizon T that could be either a positive real number, or

T =∞. In the former case, the problem is said to be of finite horizon, while

in the latter, it is said to be an infinite-horizon or perpetual problem.

In this work (that follows the Markovian approach) we consider continuous-

time infinite-horizon problems, where Gt is given by e−αtg(Xt) with:

• a Markov process {Xt} taking values in a certain topological state space

E ;

• a Borel function g : E → R, called the reward function; and

• a strictly positive discount rate α.

We aim to find the optimal stopping time τ ∗ and the value function Vα : E →
R that satisfy

Vα(x) = Ex
(
e−ατ

∗
g(Xτ∗)

)
= sup

τ
Ex
(
e−ατg(Xτ )

)
,

where the supremum is taken over the class of all stopping times.

The approach

We start by giving an informal description of our approach.

• Our starting point is Dynkin’s characterization of the value function Vα

as the least α-excessive function that dominates the reward g (Dynkin,

1963). Once the value function Vα is known, so is the optimal stopping

time τ ∗, which is the first time at which the process hits the set S,

so-called stopping region, given by

S := {x ∈ E : g(x) = Vα(x)}.

• The second step uses Riesz decomposition of an α-excessive function,

according to which

Vα(x) =

∫
E
Gα(x, y)ν(dy) + (a harmonic function), (1)
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where Gα is the Green function of the process with respect to some

reference measure m(dy), and ν is a non-negative Radon measure (Ku-

nita and Watanabe, 1963). In this introduction we assume that the

harmonic function in (1) is zero.

• The third step is based on the fact that the resolvent and the infinites-

imal generator of a Markov process are inverse operators. With this

idea in mind, suppose that we could write

Vα(x) =

∫
E
Gα(x, y)(α− L)Vα(y)m(dy), (2)

where L is the infinitesimal generator, and m(dy) some reference mea-

sure.

• Finally, we observe that Vα = g within the stopping region S, being

α-harmonic in its complement. Therefore

Vα(x) =

g(x), x ∈ S,

α-harmonic, else.

Assuming that the infinitesimal generator at x depends only on the

values of the function in a neighbourhood of x we would get

(α− L)Vα(x) =

(α− L)g(x), x ∈ S,

0, else.

Comparing (1) and (2), and considering the previous equation, we

would obtain that ν is supported on S, which is in fact a known re-

sult in some cases (see Mordecki and Salminen, 2007), and ν(dx) =

(α− L)g(x)m(dx).

From the previous considerations we obtain that

Vα(x) :=

∫
S
Gα(x, y)(α− L)g(y)m(dy), (3)

with S a stopping region, is a plausible value function.

This approach was initiated by Salminen (1985), and used by Mordecki

and Salminen (2007). In Alvarez (1998) some applications can be found.
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These articles are in fact the starting point of our work. According to Salmi-

nen’s approach, once the excessive function is represented as an integral with

respect to the Martin Kernel –related with the Green Kernel–,

Vα(x) =

∫
I
M(x, y)κ(dy) (4)

one has to find the representing measure κ. In (Salminen, 1985) the author

provides a way to express κ(dy) in terms of the derivatives (with respect to

the scale function of a diffusion) of the value function.

Our contributions

In this work we apply the exposed methodology in three different situations:

(i) one-dimensional diffusions; (ii) general (multidimensional) strong Markov

processes with continuous sample paths; and (iii) strong Markov processes

with one-sided (only positive or only negative) jumps.

In all these three cases formula (3) is used to obtain solutions of the corre-

sponding optimal stopping problem. The more general the problems are, the

harder is to solve them explicitly. Hence, different degrees of explicitness are

obtained, depending on the process and on the regularity of reward function.

In the case (i) of one-dimensional diffusions, we give a quite comprehen-

sive explicit solution of the optimal stopping problem. The corresponding

stopping regions can be either a half-line (one-sided case) or also a union of

disjoint intervals.

In the second and third cases we provide verification theorems in a quite

general framework.

As applications, several new concrete examples are explicitly solved. In

what follows we discuss each of the three cases in detail.

On one-dimensional diffusions

In the context of one-dimensional diffusions whose state space is an interval

I of R, we provide a complete solution, under mild regularity conditions, for
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problems that are one-sided, i.e. the optimal stopping rule has either the

form

τ ∗ = inf{t ≥ 0: Xt ≥ x∗}

or the form

τ ∗ = inf{t ≥ 0: Xt ≤ x∗}

for some optimal threshold x∗. In the former case, the problem is said to

be right-sided, while in the latter, is said to be left-sided. We prove that the

threshold, in the right-sided case, is the solution of a simple equation, which

with enough regularity is

g(x)

ψα(x)
=

g′(x)

ψ′α(x)
, (5)

where ψα is the increasing fundamental solution of (α − L)g = 0; for left-

sided problems the equation is analogous (with the decreasing fundamental

solution ϕα of (α − L)g = 0, instead of ψα). An equation close to (5) is

provided in Salminen (1985). It should be observed that (5) is a combination

of both, continuous fit, and smooth fit equations. An interesting by-product

of our work has to do with the smooth fit principle. Our results are in

fact independent of the smooth fit principle, although we obtain sufficient

conditions in order to guarantee it. Some examples of application of our

results are also provided: in particular we solve optimal stopping problems

for both the Skew Brownian motion and the Sticky Brownian motion.

Also in the context of one-dimensional diffusions, we consider problems

in which the optimal stopping region is two-sided or has a more general

form. We prove that the value function has the form given in (3); where the

continuation region C = I \ S is a union of disjoint intervals Jk that satisfy∫
Jk

ψα(y)(α− L)g(y)m(dy) =

∫
Jk

ϕα(y)(α− L)g(y)m(dy) = 0.

We also provide an algorithm to compute the continuation region, which then

use to solve an example with a polynomial reward function. Some examples

with non-differentiable reward are also provided.
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On general continuous-paths Markov processes

Markov processes with continuous sample paths, taking values in abstract

topological spaces, including multidimensional diffusions, are considered in

Chapter 4. In this context, we prove some verification theorems, which are

similar in certain sense to the results given for one-dimensional diffusions,

but, as expected, given the generality of the framework, considerably weaker.

We also solve an optimal stopping problem for a three-dimensional Brownian

motion.

On Markov processes with jumps

We consider processes with one-sided jumps, proving that the kind of repre-

sentation given in (3) can be used in the case of right-sided problems with

positive jumps (and also in the case of left-sided problems with negative

jumps). It should be noted that right-sided optimal stopping problems (e.g.

call options) for processes with negative jumps are easier to solve, as the pro-

cess hits the stopping region at the border, without overshot. As applications

of this result we consider the problem of pricing American put options in a

Lévy market with positive jumps. We also solve an optimal stopping problem

for a diffusion with jumps, used to model prices in electricity markets (Benth

et al., 2008), that is not a Lévy process.

The organization of this work is as follows: In Chapter 1 we briefly present

Markov processes and the subclasses of them in which we are interested.

In particular we include some results on potential theory and on optimal

stopping, and also some preliminary results further needed. Chapters 2 and

3 treat optimal stopping problems for one-dimensional diffusions. Problems

whose solution is one-sided are solved in Chapter 2, while the general case

is considered in Chapter 3. In Chapter 4 Markov processes with continuous

sample paths in general topological state spaces are considered. Chapter 5

has results concerning spectrally one-sided Markov processes.
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Chapter 1

Introduction to Markov

processes and optimal stopping

In the previous introduction we provided a heuristic basis to illustrate our

approach for solving optimal stopping problems. This first chapter aims

to formalize the concepts already exposed and also present some necessary

preliminary results for this monograph. Some of the results of this chapter

are well-known, but we include it for the reader’s convenience.

1.1 Markov processes

Given a probability space (Ω,F ,P) and a measurable space (E ,E ), such that

for all x ∈ E the unitary set {x} belongs to E , consider a family of random

variables X = {Xt : t ∈ Z}, where Xt : Ω → E . We call X a stochastic

process with state space (E ,E ). In this work we only consider continuous

time stochastic processes indexed in Z = [0,∞).

The family of σ-algebras {Ft : t ≥ 0} (also denoted by {Ft}) is said to be

a filtration of the σ-algebra F if the following inclusions holds:

Fs ⊆ Ft ⊆ F for every s ≤ t.

The stochastic process X is said to be adapted to the filtration {Ft} if for

every t ∈ Z the random variable Xt is Ft-measurable.
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Consider a stochastic process X, defined on (Ω,F ,P), with state space

(E ,E ), adapted to {Ft}, a filtration of F . Let {Px : x ∈ E} be a family

of probability measures defined on (Ω,F). The system ({Xt}, {Ft}, {Px}) is

called a (time-homogeneous, non-terminating) Markov process if the follow-

ing conditions are fulfilled:

(i) For every A ∈ F , the map x 7→ Px(A) is E -measurable.

(ii) For all x ∈ E , B ∈ E , s, t ≥ 0,

Px(Xt+s ∈ B|Ft) = PXt(Xs ∈ B) (Px − a.s.).

(iii) For every x ∈ E , Px(X0 = x) = 1.

(iv) For each t > 0, and for all ω ∈ Ω, there exists a unique ω′ ∈ Ω such

that

Xs(ω
′) = Xt+s(ω) (∀s ≥ 0).

Condition (ii) is known as Markov property, being its intuitive meaning

that the future of the process depends only on the present, but not on the

past behaviour.

A stochastic process X is said to be progressively-measurable with respect

to a filtration {Ft} of F if the map

(t, ω) 7→ Xt(ω)

is measurable with respect to B × Ft, where B denotes the Borel σ-algebra

of [0,∞).

Given the filtration {Ft} of F , a random variable τ in (Ω,F), taking

values in [0,∞] and such that {ω : τ(ω) < t} ∈ Ft, for all t ≥ 0 is known as

a stopping time with respect to the filtration {Ft}.

A progressively measurable Markov process X = ({Xt}, {Ft}, {Px}) is

said to verify the strong Markov property if for all stopping times τ with

respect to {Ft}, for all x ∈ E , for all B ∈ E , and for any s ≥ 0,

Px(Xτ+s ∈ B|Fτ ) = PXτ (Xs ∈ B) (Px−a.s.). (1.1)
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Note that the strong Markov property, as we call the previous condition,

includes the Markov property by taking deterministic stopping times (τ =

t). A progressively-measurable Markov process that satisfies this stronger

condition is called a strong Markov process.

A filtration {Ft} is said to be right-continuous if for all t ≥ 0, we have

that Ft = Ft+ , where Ft+ is the σ-algebra defined by

Ft+ :=
⋂
s>0

Ft+s. (1.2)

Given a stopping time τ with respect to a filtration {Ft} of F , the family

of sets Fτ defined by

Fτ := {A ∈ F : ∀t ≥ 0, A ∩ {ω : τ(ω) ≤ t} ∈ Ft}

is a subσ-algebra of F .

A progressively measurable Markov process X = ({Xt}, {Ft}, {Px}) is

said to be left-quasi-continuous if for any stopping time τ with respect to

{Ft}, the random variable Xτ is Fτ -measurable and for any non-decreasing

sequence of stopping times τn → τ

Xτn → Xτ (Px−a.s in the set {τ <∞}).

for all x ∈ E .

Definition 1.1. A left quasi-continuous strong Markov process X with state

space (E ,E ) is said to be a standard Markov process if:

• The paths are right continuous, that is to say, for every ω ∈ Ω, and for

all t > 0,

lim
h→0+

Xt+h(ω) = Xt(ω).

• The paths have left-hand limits almost surely, that is, for almost all

ω ∈ Ω, the limit limh→0+ Xt−h(ω) exists for all t > 0.

• The filtration {Ft} is right-continuous, and Ft is Px-complete for all t

and for all x.

• The state space E is semi-compact, and E is the Borel σ-algebra.
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All the processes we consider in this work are, in fact, standard Markov

processes. As we just did in the previous definition, we use the notation X,

getting rid of ({Xt}, {Ft}, {Px}) when it is not strictly necessary, to denote

a standard Markov process.

For general reference about Markov processes we refer to Dynkin (1965);

Dynkin and Yushkevich (1969); Karlin and Taylor (1981); Rogers and Williams

(2000); Blumenthal and Getoor (1968); Revuz and Yor (1999)

1.1.1 Resolvent and infinitesimal generator

Given a standard Markov process X and an E -measurable function f : E →
R, we say that f belongs to the domain D of the extended infinitesimal

generator of X, if there exists an E -measurable function Af : E → R such

that
∫ t

0
|Af(xs)|ds <∞ almost surely for every t, and

f(Xt)− f(X0)−
∫ t

0

Af(Xs)ds

is a right-continuous martingale with respect to the filtration {Ft} and the

probability Px, for every x ∈ E (see Revuz and Yor, 1999, chap. VII, sect.

1).

The α-Green kernel of the process X is defined by

Gα(x,H) :=

∫ ∞
0

e−αtPx(Xt ∈ H)dt,

for x ∈ E and H ∈ E .

Consider the operator Rα, given by

Rαf(x) :=

∫ ∞
0

e−αtEx (f(Xt)) dt, (1.3)

which can be defined for all E -measurable functions such that the previous

integral makes sense for all x ∈ E . Note that if, for instance

Rαf(x) =

∫ ∞
0

e−αtEx |f(Xt)|dt <∞ (x ∈ E)
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then, using Fubini’s theorem we may conclude that

Rαf(x) =

∫
E
f(y)Gα(x, dy). (1.4)

Considering Tα as a random variable with an exponential distribution with

parameter α (i.e. P(Tα ≤ t) = 1 − e−αt for t ≥ 0) and independent of X,

define the process Y with state space E ∪{∆} –where ∆ is an isolated point–

by

Yt :=

Xt if t < Tα,

∆ else.

Given a function f : E → R, we extend its domain by considering f(∆) := 0.

Observe that Ex (f(Yt)) = e−αtEx (f(Xt)). We call Y the α-killed process

with respect to X.

Consider a function f that belongs to the domain Dα of the extended

infinitesimal generator of the α-killed process Y . In this case, there is a

function Aαf : E → R such that

f(Yt)− f(Y0)−
∫ t

0

Aαf(Ys)ds

is a right-continuous martingale with respect to the filtration {Ft} and the

probability Px, for every x ∈ E . Bearing the equality Ex (f(Yt)) = e−αtEx (f(Xt))

in mind, it can be seen that

e−αtf(Xt)− f(X0)−
∫ t

0

e−αsAαf(Xs)ds

is also a right-continuous martingale with respect to the filtration {Ft} and

the probability Px, for every x ∈ E . Then

Ex
(
e−αtf(Xt)

)
− f(x)− Ex

(∫ t

0

e−αsAαf(Xs)ds

)
= 0.

From the previous equation, and assuming that for all x ∈ E

• limt→∞Ex (e−αtf(Xt)) = 0 and

• Ex
(∫∞

0
e−αs|Aαf(Xs)|ds

)
<∞,

29



we obtain, by taking the limit as t → ∞ and using Lebesgue dominated

convergence theorem, that

f(x) =

∫ ∞
0

e−αsEx (−Aαf(Xs)) ds.

Note that the right-hand side of the previous equation is Rα(−Aαf)(x); from

this fact and the previous equation we obtain, by (1.4),

f(x) =

∫
E
−Aαf(y)Gα(x, dy). (1.5)

It can be proved that if the function f belongs to D, it also belongs to Dα
and Aαf = Af − αf .

1.1.2 Dynkin’s formula

Given a standard Markov process X and a stopping time τ , if f = Rαh, we

have that (see e.g. Dynkin (1965), Theorem 5.1 or Karlin and Taylor (1981)

equation (11.36))

f(x) = Ex

(∫ τ

0

e−αth(Xt)dt

)
+ Ex

(
e−ατf(Xτ )

)
. (1.6)

As we will see further on, this formula has an important corollary in the

analysis of optimal stopping problems. Observe that it can be written in

terms of Aαf , when f ∈ Dα by

Ex
(
e−ατf(Xτ )

)
− f(x) = Ex

(∫ τ

0

e−αtAαf(Xt)dt

)
;

being its validity a direct consequence of the Doob’s optional sampling the-

orem.

1.1.3 α-Excessive functions

Consider a standard Markov process X. In a few words it may be said that

α-excessive functions are those f such that f(Xt) is a supermartingale. In

optimal stopping theory, the reward being a α-excessive function, means that,
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in order to maximize the expected discounted reward, the process should be

stopped immediately.

A non-negative measurable function f : E → R is called α-excessive –with

respect to the process X– provided that:

• e−αtEx(f(Xt)) ≤ f(x) for all x ∈ E and t ≥ 0; and

• limt→0Ex(f(Xt)) = f(x) for all x ∈ E .

A 0-excessive function is just called excessive.

If h : E → R is an E -measurable non-negative function, then Rαf is α-

excessive (see for instance Dynkin, 1969).

1.2 Optimal stopping

To state the optimal stopping problem we consider in this work, which we

call the optimal stopping problem, or more briefly the OSP, we need:

• a standard Markov process X = {Xt}t≥0, whose state space we denote

by E in general and also by I when it is an interval of R;

• a reward function g : E → R;

• a discount rate α, which we assume to be positive (in some specific

cases it can be 0).

The problem we face is to find a stopping time τ ∗ and a value function Vα

such that

Vα(x) = Ex
(
e−ατ

∗
g(Xτ∗)

)
= sup

τ
Ex
(
e−ατg(Xτ )

)
(x ∈ E).

where the supremum is taken over all stopping times with respect to the

filtration {Ft} of the standard Markov process X. We consider g(Xτ ) = 0 if

τ =∞. With this assumption in mind we conclude that Vα is non-negative.

Another consequence of our assumption is that the optimal stopping with

reward g has the same solution as the problem with reward g+ = max{g, 0},
as it is never optimal to stop if g(Xt) < 0. We might, without loss of

31



generality, consider non-negative functions g, however, in some examples it

is convenient to allow negative values. Observe that if g is a non-positive

function the OSP is trivially solved, being Vα ≡ 0 and τ ∗ = ∞ a solution.

From now on we assume that g(x) > 0 for some x.

It can be seen that the α-discounted optimal stopping problem for the

process X is equivalent to the non-discounted problem associated with the

α-killed process Y . Both problems have the same solution (value function

and optimal stopping time).

1.2.1 Dynkin’s characterization for the OSP

The Dynkin’s characterization, proposed in Dynkin (1963), states that, given

the reward function g : E → R satisfying some mild regularity conditions (see

Shiryaev, 2008, Chapter III, Theorem 1) the value function V , defined by

V (x) := sup
τ
Ex (g(Xτ )) ,

is an excessive function, satisfying V (x) ≥ g(x) for all x ∈ E , and such that

if W is another excessive function dominating g then V (x) ≤ W (x) for all

x ∈ E . In this sense V is the minimal excessive majorant of the reward.

Observe as well that function f is excessive with respect to Y (the α-

killed process already defined) if and only if it is α-excessive with respect

to X. Applying the Dynkin’s characterization to the value function V and

to the process Y and, taking the previous considerations into account, a

discounted version of the Dynkin’s characterization may be established: the

value function

Vα(x) := sup
τ
Ex
(
e−ατg(Xτ )

)
of the α-discounted optimal stopping problem is the minimal α-excessive

function that dominates g. From this point on we also refer to this result as

Dynkin’s characterization, as is usual done in the optimal stopping literature.

In our context, in order to Dynkin’s characterization hold, it is sufficient

to consider Borel-measurable reward functions g such that

lim inf
x→a

g(x) ≥ g(a)
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for all a ∈ E .

1.2.2 Stopping and continuation region

Once the value function Vα is found as the minimal α-excessive majorant,

or by any other method, the optimal stopping problem (2.1) is completely

solved, as the optimal stopping time is the first time at which the process

hits the stopping region. Therefore, τ ∗ is defined by

τ ∗ := inf{t ≥ 0: Xt ∈ S},

with S, the stopping region, defined by

S := {x ∈ E : Vα(x) = g(x)}.

From the stopping region we can define naturally the continuation region,

which is its complement, C = E \ S. With this criteria the state space is

divided into stopping states and continuation states. However, it could be

the case that there are some states of S in which is as good to stop as to

continue, so a smaller stopping region S ′ could be defined and the stopping

time τ ′, defined by

τ ′ := inf{t ≥ 0: Xt ∈ S ′},

would be optimal as well. In this case

Vα = Ex
(
e−ατ

∗
g(Xτ∗)

)
= Ex

(
e−ατ

′
g(Xτ ′)

)
.

From now on, we ignore this ambiguity and denote by S, not only the set in

which Vα and g coincide, but also any set satisfying that to stop at the first

time the process hits it, is actually optimal. In any of these cases, we call S
the stopping region.

An important corollary of the Dynkin’s formula has to do with the con-

tinuation region C and the sign of h, when the reward function g satisfy

g = Rαh. Assuming that h is negative in A, a neighbourhood of x, it can be

proved that x ∈ C: by Dynkin’s formula (1.6)

g(x) = Ex

(∫ hAc

0

e−αth(Xt)dt

)
+ Ex

(
e−αhAcg(XhAc )

)
,
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where hAc states for the first time at the process hits the set S \A; from the

made assumptions it follows that Ex

(∫ hAc
0

e−αth(Xt)dt
)
< 0, so

Ex
(
e−αhAcg(XhAc )

)
≥ g(x),

proving that is better to stop at hAc than to stop at x, this implying that the

optimal action at x is not to stop, therefore x ∈ C.

1.3 Preliminary results

The following lemmas constitute relevant results in the approach considered

in this work. We use the notation hS for the hitting time of S,

hS := inf{t ≥ 0 : Xt ∈ S}

Lemma 1.2. Let X be a standard Markov process, and consider S ∈ E .

Then the Green kernel satisfies;

Gα(x,H) = Ex
(
e−αhSGα(XhS , H)

)
,

for all x in E and for all H ∈ E , H ⊆ S.

In other words, for every x ∈ E, both Gα(x, dy) and Ex
(
e−αhSGα(XhS , dy)

)
,

are the same measure in S.

Proof. For x ∈ S the assertion is clearly valid, since hS ≡ 0. Let us consider

x ∈ E \ S. By the definition of Gα and some manipulation, we obtain

Gα(x,H) = Ex

(∫ ∞
0

e−αt1H(Xt)dt

)
= Ex

(∫ ∞
0

e−αt1H(Xt)dt 1{hS<∞}

)
= Ex

(∫ hS

0

e−αt1H(Xt)dt 1{hS<∞}

)
+ Ex

(∫ ∞
hS

e−αt1H(Xt)dt 1{hS<∞}

)
,

where the second equality holds, because if hS is infinite, then Xt does not

hit S, therefore, 1H(Xt) = 0 for all t. In the third equality we simply split
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the integral in two parts. Note that the first term on the right-hand side of

the previous equality vanishes, since 1H(Xt) is 0 when Xt is out of S for the

previously exposed argument. It remains to be proven that the second term

is equal to Ex
(
e−αhSGα(XhS , H)

)
; the following chain of equalities completes

the proof:

Ex

(∫ ∞
hS

e−αt1H(Xt)dt

)
= Ex

(
e−αhS

∫ ∞
0

e−αt1H(Xt+hS)dt

)
= Ex

(
e−αhS Ex

(∫ ∞
0

e−αt1H(Xt+hS)dt
∣∣FhS

))
= Ex

(
e−αhS EXhS

(∫ ∞
0

e−αt1H(Xt)dt

))
= Ex

(
e−αhSGα(XhS , H)

)
;

the first equality is a change of variable; in the second one, we take the

conditional expectation into the expected value, and consider that hS is mea-

surable with respect to FhS ; the third equality is a consequence of the strong

Markov property; while in the last one, we use the definition of Gα.

As well as the previous lemma, the following one also considers standard

Markov processes, even without continuous sample paths.

Lemma 1.3. Let X be a standard Markov process. Given f : E → R and

S ∈ E such that

• f is a E -measurable function, and

• for all x in E,
∫
S
|f(y)|Gα(x, dy) <∞;

denote by FS : E → R the function

FS(x) :=

∫
S

f(y)Gα(x, dy).

Then

FS(x) = Ex
(
e−αhSFS(XhS)

)
.

Proof. From Lemma 1.2 we get that

FS(x) =

∫
S

f(y)Ex
(
e−αhSGα(XhS , dy)

)
.
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Changing the integration sign with the expected value on the right-hand side

of the equation, we complete the proof.

1.4 One-dimensional diffusions

In this section we introduce the concept of one-dimensional (time-homogeneous)

diffusion, a very important sub-class of the strong Markov processes already

presented. In a first approach, we may say that one-dimensional diffusions

are strong Markov processes with continuous sample paths, whose state space

is included in the real line. The aim of this section is to give some necessary

results for chapters 2 and 3. Our main references in this topic are: Borodin

and Salminen (2002); Itô and McKean Jr. (1974).

To give a formal definition of one-dimensional diffusions we start by con-

sidering the set Ω of all functions ω : [0,∞) → I, where I, to be the state

space of the diffusion, is an interval of R. We denote by ` and r the infi-

mum and supremum of I (` could be −∞ and r could be ∞). For every

non-negative t, consider the shift operator θt : Ω→ Ω such that

θtω(s) = ω(t+ s).

Let F be the smallest σ-algebra over Ω such that the coordinate mappings

(ω 7→ ω(t)) are measurable for all t ∈ [0,+∞), and let {Ft : t ≥ 0} be the

filtration of F defined by

Ft := σ (ω(s) : s ≤ t) .

Given a stopping time τ with respect to {Ft+}t≥0, we denote by Fτ+ the

σ-algebra

Fτ+ := {A ∈ F : ∀t > 0, A ∩ {ω : τ(ω) < t} ∈ Ft}.

Consider a family {Px : x ∈ I} of probability measures over (Ω,F) such that

for every A ∈ F , the map x 7→ Px(A) is Borel-measurable, and Px(ω(0) =

x) = 1 for every x in I.
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Over Ω consider the process {Xt}t≥0 such that Xt(ω) = ω(t). We say that

X = (Xt,Ft,Px) is a one-dimensional diffusion if:

• for all x in I, the map t 7→ Xt(ω) is continuous Px-a.s; and

• for all x in I, for all {Ft+}-stopping time τ , and for all B ∈ F

Px(Xτ+s ∈ B|Fτ+) = Pxτ (Xs ∈ B) (Px−a.s.).

A one-dimensional diffusion X is said to be regular (see Dynkin, 1965, vol

2, p. 121) if for all x, y ∈ I:

Px(hy <∞) > 0,

where hy := inf{t ≥ 0: Xt = y} is the hitting time of level y. All the one-

dimensional diffusions considered in this work are assumed to be regular.

The most important example of one-dimensional diffusion is the well-

known Wiener process –or Brownian motion– and more generally the class of

time-homogeneous Itô diffusions, which are solutions of stochastic differential

equations of the form

dXt = b(Xt)dt+ σ(Xt)dBt.

In fact, the term “diffusion” in some literature is used to refer Itô diffusions.

Some basic references about Itô diffusions are: Øksendal (2003); Karatzas

and Shreve (1991); Ikeda and Watanabe (1989). Some applications to optimal

stopping are also included in Øksendal (2003).

1.4.1 Differential and resolvent operators

Let us denote by Cb(I) the family of all continuous and bounded functions

f : I → R.

The infinitesimal generator of a diffusion X is the operator L defined by

Lf(x) = lim
h→0

Ex (f(Xh))− f(x)

h
, (1.7)
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applied to the functions f ∈ Cb(I) for which the limit exists pointwise, is in

Cb(I), and

sup
h>0

‖Ex (f(Xh)− f(x)) ‖
h

<∞.

Let DL denote this set of functions. The extended infinitesimal generator,

already defined for more general Markov processes, is, in fact, an extension

of L (see Revuz and Yor, 1999, chapter VII, section 1).

Consider the resolvent operator, as was defined for Markov processes in

(1.3), with domain restricted to Cb(I). The range of the operator Rα is

independent of α > 0 and coincides with the domain of the infinitesimal

generator DL. Moreover, for any f ∈ DL, Rα(α − L)f = f and for any

u ∈ Cb(I), (α − L)Rαu = u; in other words Rα and (α − L) are inverse

operators.

Since f = Rα(α−L)f we can apply the Dynkin’s formula (1.6) to f ∈ DL;

obtaining that for any stopping time τ and for any f ∈ DL:

f(x) = Ex

(∫ τ

0

e−αt(α− L)f(Xt)dt

)
+ Ex

(
e−ατf(Xτ )

)
. (1.8)

Denoting by s and m the scale function and the speed measure of the

diffusion X respectively, and by

∂+f

∂s
(x) = lim

h→0+

g(x+ h)− g(x)

s(x+ h)− s(x)
,

∂−f

∂s
(x) = lim

h→0+

g(x− h)− g(x)

s(x− h)− s(x)
,

the right and left derivatives of f with respect to s; we have that for any

f ∈ DL, the lateral derivatives with respect to the scale function exist for

every x ∈ (`, r). Furthermore, they satisfy

∂+f

∂s
(x)− ∂−f

∂s
(x) = m({x})Lf(x), (1.9)

and the following identity holds:

∂+f

∂s
(z)− ∂+f

∂s
(y) =

∫
(y,z]

Lg(x)m(dx). (1.10)

This last formula allows us to define the differential operator of the diffu-

sion for a given function u (not necessarily in DL) at x ∈ I by the equation

Lf(x) =
∂

∂m

∂+

∂s
f(x),
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when this expression exists, that extends the infinitesimal generator L.

There exist two continuous functions ϕα : I → R+ and ψα : I → R+, such

that ϕα is decreasing, ψα is increasing, both are solution of αu = Lu, and

any other continuous function u is solution of the differential equation if and

only if there exist a ∈ R and b ∈ R such that u = aϕα + bψα. Denoting by

hz = inf{t : Xt = z}, the hitting time of level z ∈ I, we have that

Ex
(
e−αhz

)
=


ψα(x)
ψα(z)

, x ≤ z;

ϕα(x)
ϕα(z)

, x ≥ z.
(1.11)

Functions ϕα and ψα, though not necessarily in DL, also satisfy (1.9) for all

x ∈ (`, r), which allows us to conclude that in case m({x}) = 0 the derivative

of both functions with respect to the scale at x exists. It is easy to see that

0 <
∂−ψα
∂s

(x) ≤ ∂+ψα
∂s

(x) <∞

and

−∞ <
∂−ϕα
∂s

(x) ≤ ∂+ϕα
∂s

(x) < 0.

The Green function of the process X with discount factor α is defined by

Gα(x, y) :=

∫ ∞
0

e−αtp(t;x, y)dt,

where p(t;x, y) is the transition density of the diffusion with respect to the

speed measure m(dx) (this density always exists, see Borodin and Salminen

(2002)). The Green function may be expressed in terms of ϕα and ψα as

follows:

Gα(x, y) =

w−1
α ψα(x)ϕα(y), x ≤ y;

w−1
α ψα(y)ϕα(x), x ≥ y.

(1.12)

where wα –the Wronskian– is given by

wα =
∂ψ+

α

∂s
(x)ϕα(x)− ψα(x)

∂ϕ+
α

∂s
(x)

and it is a positive constant independent of x. It should be observed that

the relation between the Green kernel (already defined for Markov processes)

and the Green function is given by

Gα(x, dy) = Gα(x, y)m(dy).
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Then, considering f : I → R under the condition
∫
I Gα(x, y)|f(y)|m(dy) <

∞, by applying (1.4), we obtain

Rαf(x) =

∫
I
Gα(x, y)f(y)m(dy). (1.13)

We recall Riesz decomposition for excessive functions in our context (see

Kunita and Watanabe (1963, 1965); Dynkin (1969)). Every real valued ex-

cessive function f has a unique decomposition in the form

f(x) =

∫
(`,r)

G(x, y)µ(dy) + h(x), (1.14)

where h is a harmonic function. Morover, for every measure µ over I and

for every harmonic function h, the function f of (1.14) is excessive.

Considering α-killed process Y already defined, it is easy to see that the

Green function GY of the process Y coincides with Gα. Taking this into

account and considering that α-excessive functions for X are excessive func-

tions for Y , we get that any α-excessive function has a unique decomposition

in the form

f(x) =

∫
(`,r)

Gα(x, y)µ(dy) + h(x), (1.15)

where h is an α-harmonic function; and any function defined by (1.15) is

α-excessive. The measure µ is called the representing measure of f .

For general reference on diffusion we recommend: Borodin and Salminen

(2002); Itô and McKean Jr. (1974); Revuz and Yor (1999); Dynkin (1965);

Karatzas and Shreve (1991).
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Chapter 2

Optimal stopping for

one-dimensional diffusions:

the one-sided case

2.1 Introduction

Throughout this chapter, consider a non-terminating and regular one-dimen-

sional diffusion X = {Xt : t ≥ 0} as defined in Section 1.4. The state space of

X is denoted by I and it is an interval of the real line R, with left endpoint

` = inf I and right endpoint r = sup I, where −∞ ≤ ` < r ≤ ∞. Denote by

Px the probability measure associated with X when starting from x, and by

Ex the corresponding mathematical expectation. Denote by T the set of all

stopping times with respect to {Ft : t ≥ 0}, the natural filtration generated

by X.

Given a reward function g : I → R and a discount factor α > 0, con-

sider the optimal stopping problem consisting in finding a function Vα and a

stopping time τ ∗ such that

Vα(x) = Ex
(
e−ατ

∗
g(Xτ∗)

)
= sup

τ
Ex
(
e−ατg(Xτ )

)
, (2.1)

where the supremum is taken over all stopping times. The elements Vα(x)
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and τ ∗, the solution to the problem, are called the value function and the

optimal stopping time respectively.

A large number of works considering the optimal stopping of one-dimensional

diffusions were developed. See the comprehensive book by Peskir and Shiryaev

(2006) and the references therein.

Our approach in addressing this problem firmly adheres to Salminen’s

work (Salminen, 1985) and, as pointed in the general introduction, is based

on the Dynkin’s characterization of the value function and on the Riesz rep-

resentation of α-excessive functions.

To give a quick idea of the kind of results we prove in this chapter, suppose

that

• the speed measure m of the diffusion X has not atoms, and

• the reward function g satisfies

g(x) =

∫
I
Gα(x, y)(α− L)g(y)m(dy); (2.2)

which is more than we really need in our theorems. We manage to prove the

equivalence of the following three assertions.

1. The problem is right-sided with threshold x∗, or what is the same, the

optimal stopping time τ ∗ is given by

τ ∗ = inf{t ≥ 0: Xt ≥ x∗}

2. x∗ satisfies

2.a. g(x∗) =
∫ r
x∗
Gα(x∗, y)(α− L)g(y)m(dy),

2.b. (α− L)g(x) ≥ 0 for all x ≥ x∗,

2.c. ψα(x) g
ψα

(x∗) ≥ g(x) for all x ≤ x∗.

3. The same as 2. but substituting 2.a. by g
ψα

(x∗) = ∂g
∂ψα

(x∗).

The main byproduct of the previous result is the following recipe to solve

the optimal stopping problem (2.1), which is effective when the problem is

right-sided:
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• Find the root x∗ of either the equation in 2.a. or the equation

g

ψα
(x) =

∂g

∂ψα
(x).

• Verify conditions 2.b. and 2.c.

If these steps are fulfilled, from our results we conclude that the problem

is right-sided with optimal threshold x∗. As a direct consequence of this

conclusion we obtain that the value function fulfils

Vα(x) =

Ex
(
e−αhx∗g(x∗)

)
, x < x∗,

g(x), x ≥ x∗,

being greater or equal that the reward function. In virtue of equation (1.11),

we obtain

Vα(x) =


ψα(x)
ψα(x∗)

g(x∗), x < x∗,

g(x), x ≥ x∗.
(2.3)

Some of the contents of this chapter are contained in Crocce and Mordecki

(2012).

2.2 Main results

We formulate the hypothesis of the main result, weaker than the inversion

formula (2.2).

Condition 2.1. We say that a function g : I → R satisfies the right regularity

condition (RRC) for x∗ if there exists a function g̃ such that g̃(x) = g(x) for

x ≥ x∗ and

g̃(x) =

∫
I
Gα(x, y)(α− L)g̃(y)m(dy) (x ∈ I),

which is (2.2) for g̃.

Informally speaking, the RRC is fulfilled by functions g that satisfy all

the local conditions –regularity conditions– to belong to DL for x ≥ x∗, and

does not increase as quick as ψα does when approaching r. Observe that if g
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satisfies the RRC for certain x∗ it also satisfies it for any greater threshold;

and of course, if g itself satisfy (2.2) then it satisfies the RRC for all x∗ in

I. In Subsection 2.2.2 we discuss conditions that ensures the validity of the

inversion formula (2.2).

During this chapter we use the notation I>a to refer to the set I ∩{x : x >

a}. Symbols I≥a, I<a, I≤a are used in the same sense.

The equation

g(x) = w−1
α ψα(x)

∫
I>x

ϕα(y)(α− L)g(y)m(dy), (2.4)

plays an important role in our approach to solve the optimal stopping prob-

lem. Observe that it can be also written in terms of Gα(x, y) by

g(x) =

∫
I>x

Gα(x, y)(α− L)g(y)m(dy).

Lemma 2.2. Assume x∗ is a root of equation (2.4), and the RRC (Condi-

tion 2.1) is fulfilled for x∗. Then, for all x ∈ I≥x∗, we have that

g(x) =

∫
I>x∗

Gα(x, y)(α− L)g(y)m(dy).

Proof. This lemma is a particular case of the slightly more general Lemma 2.6.

We are ready to present the first of our main results previously outlined.

Theorem 2.3. Consider a diffusion X and a reward function g. Let x∗ be a

root of equation (2.4) such that the RRC (Condition 2.1) is fulfilled. Suppose

H.2.1. for all x > x∗, (α− L)g(x) ≥ 0, and

H.2.2. for all x < x∗, g(x∗)
ψα(x∗)

ψα(x) ≥ g(x).

Then, the optimal stopping problem (2.1) is right-sided and x∗ is an optimal

threshold. Furthermore, the value function is Vα : I → R defined by

Vα(x) :=

∫
I>x∗

Gα(x, y)(α− L)g(y)m(dy).
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Proof. Riesz decomposition, given in (1.15), and the hypothesis H.2.1 allow

us to conclude that Vα is α-excessive. Denoting by ν(dy) = (α−L)g(y)m(dy)

for y ≥ x∗, by (1.12), in the first equality and (2.4) in the second, we have

for x ≤ x∗:

Vα(x) = w−1
α ψα(x)

∫
I>x∗

ϕα(y)ν(dy) =
ψα(x)

ψα(x∗)
g(x∗).

Hypothesis H.2.2 renders Vα(x) ≥ g(x) for x ≤ x∗. Besides, from Lemma 2.2,

it follows that Vα(x) = g(x) for x ∈ I≥x∗ ; thereby, Vα is a majorant of g, and

by Dynkin’s characterization of the value function as the minimal α-excessive

majorant of g, it follows that

Vα(x) ≥ sup
τ
Ex
(
e−ατg(Xτ )

)
.

Observing that Vα satisfies (2.3), we conclude that Vα is the expected dis-

counted reward associated with τ ∗ = inf{t : Xt ≥ x∗} and

Vα(x) ≤ sup
τ
Ex
(
e−ατg(xτ )

)
.

From both previous inequalities we conclude that the equality holds and the

optimal stopping problem is right-sided with threshold x∗. Thus completing

the proof.

Remark 2.4. Under the conditions of Theorem 2.3, if x∗∗ is another solution

of (2.4) greater that x∗, then

g(x∗∗) =

∫
I>x∗∗

Gα(x∗∗, y)(α−L)g(y)m(dy) =

∫
I>x∗

Gα(x∗∗, y)(α−L)g(y)m(dy).

This means that ∫
(x∗,x∗∗]

Gα(x, y)(α− L)g(y)m(dy) = 0,

and the measure (α−L)g(y)m(dy) does not charge (x∗, x∗∗]. Actually, every

x ∈ (x∗, x∗∗] is a root of (2.4) and also an optimal threshold. This shows

that the “best candidate” to be x∗ is the largest solution of (2.4).
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The existence of a solution of equation (2.4) not only provides a solution

to the problem, but also implies a certain type of smooth fit, discussed in

Section 2.3.

Even if the optimal stopping problem is right-sided, it could be the case

that (2.4) has no solutions. The following result could be useful in these

situations.

Theorem 2.5. Consider a diffusion X and a reward function g. Consider

x∗ such that: the RRC (Condition 2.1) holds; the inequality

g(x∗) > w−1
α ψα(x∗)

∫
I>x∗

ϕα(y)(α− L)g(y)m(dy), (2.5)

is fulfilled; and both hypothesis H.2.1 and H.2.2 are valid. Then the optimal

stopping problem is right-sided with optimal threshold x∗. Furthermore, x∗ is

the smallest value satisfying equation (2.5) and hypothesis H.2.1.

Before giving the proof we state the following useful lemma.

Lemma 2.6. Consider a diffusion X and reward function g. Assume the

RRC holds for a given x∗ and define Vα : I → R by

Vα(x) =

∫
I>x∗

Gα(x, y)(α− L)g(y)m(dy) + kGα(x, x∗),

where k is such that Vα(x∗) = g(x∗), i.e.

k =
g(x∗)−

∫
I>x∗

Gα(x∗, y)(α− L)g(y)m(dy)

Gα(x∗, x∗)
.

Then, for all x ∈ I≥x∗
g(x) = Vα(x).

Proof. Let us compute Vα(x) − g(x) for x ≥ x∗. We can substitute g by g̃,

the extension given by the RRC, and use the inversion formula (2.2) for g̃;

denoting by σ(dy) = (α− L)g̃(y)m(dy) we get

Vα(x) =

∫
I>x∗

Gα(x, y)σ(dy) + kGα(x, x∗),

and

g̃(x) =

∫
I
Gα(x, y)σ(dy).
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Computing the difference for x ∈ I≥x∗ we obtain that

Vα(x)− g(x) = Vα(x)− g̃(x)

=

∫
I≤x∗

Gα(x, y)σ(dy) + kGα(x, x∗)

= w−1
α ϕα(x)

(∫
I≤x∗

ψα(y)σ(dy) + kψα(x∗)

)

=
ϕα(x)

ϕα(x∗)
(Vα(x∗)− g(x∗)) ,

that vanishes due to Vα(x∗) = g(x∗).

Proof of Theorem 2.5. The idea is the same as in the proof of Theorem 2.3

but considering Vα as defined in Lemma 2.6. It is easy to reproduce that

proof to observe that Vα is α-excessive, is majorant of g, and satisfies (2.3).

We move on to prove that x∗ is the smallest value satisfying equation

(2.5) and hypothesis H.2.1: Suppose that there exists x∗∗ such that x1 <

x∗∗ < x∗, satisfying (2.5) and H.2.1. Let us compute Vα(x∗∗) − g(x∗∗) to

see it is negative, in contradiction with the fact that Vα is a majorant of g.

Considering the extension g̃ of the RRC and calling σ(dy) = (α−L)g̃(y)m(dy)

we find

Vα(x∗∗)− g(x∗∗) = −
∫
I≤x∗

Gα(x∗∗, y)σ(dy) + kGα(x∗∗, x∗).

Splitting the integral in x∗∗, the first term on the right-hand side of the

previous equation is s1 + s2 with

s1 = −
∫
I≤x∗∗

Gα(x∗∗, y)σ(dy), and s2 = −w−1
α ψα(x∗∗)

∫
(x∗∗,x∗]

ϕα(y)σ(dy).

To compute the second term observe that

k =
1

Gα(x∗, x∗)

∫
I≤x∗

Gα(x∗, y)σ(dy)

and by (1.12) we get Gα(x∗∗,x∗)
Gα(x∗,x∗)

= ψα(x∗∗)
ψα(x∗)

; we obtain that kGα(x∗∗, x∗) = s3+s4

with

s3 =
ψα(x∗∗)

ψα(x∗)

ϕα(x∗)

ϕα(x∗∗)

∫
I≤x∗∗

Gα(x∗∗, y)σ(dy)
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and

s4 =
ψα(x∗∗)

ψα(x∗)

∫
(x∗∗,x∗]

Gα(x∗, y)σ(dy).

Finally observe that

s1 + s3 =

(
ψα(x∗∗)

ψα(x∗)

ϕα(x∗)

ϕα(x∗∗)
− 1

)∫
I≤x∗∗

Gα(x∗∗, y)σ(dy) < 0

because the first factor negative, while the second is positive by the assump-

tion about x∗∗, and on the other hand

s4 + s2 =
w−1
α ψα(x∗∗)

ψα(x∗)

∫
(x∗∗,x∗]

(ψ(y)ϕα(x∗)− ψα(x∗)ϕα(y))σ(dy) < 0,

because the measure is positive by our assumption, and the integrand is non-

positive (it is increasing and null in y = x∗). We have proved Vα(x∗∗) −
g(x∗∗) = s1 + s2 + s3 + s4 < 0, thus completing the proof.

Although the following result does not give a practical method to solve

the optimal stopping problem, we find it relevant because it gives conditions

under which the previous theorems can be used successfully to find the solu-

tion of the problem. Observe that, under the RRC, the following result is a

converse result of Theorem 2.3 and Theorem 2.5 together.

Theorem 2.7. Consider a diffusion X and a reward function g such that

the optimal stopping problem is right-sided and x∗ is an optimal threshold.

Assume X and g satisfy the RRC for x∗. Then x∗ satisfies

g(x∗) ≥ w−1
α ψα(x∗)

∫
I>x∗

ϕα(y)(α− L)g(y)m(dy), (2.6)

(i.e. x∗ satisfies either (2.4) or (2.5)) and both H.2.1 and H.2.2 are valid as

well.

Proof. Since the optimal stopping problem is right-sided we obtain that the

value function Vα satisfies (2.3). We also know that Vα is a majorant of g, then

H.2.2 clearly holds. To conclude the validity of H.2.1, one needs to observe

that I>x∗ is included in the stopping region, and in general (α−L)g(y) ≥ 0 in
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that region. It only remains to verify (2.6). Consider the excessive function

Wα defined by

Wα(x) :=

∫
I>x∗

Gα(x, y)(α− L)g(y)m(dy).

It is easy to see, by using (1.12), that for x ≤ x∗

Wα(x) = ψα(x)
Wα(x∗)

ψα(x∗)
,

then, by using (2.3), we get

Vα(x)−Wα(x) = ψα(x)
g(x∗)−Wα(x∗)

ψα(x∗)
, if x ≤ x∗. (2.7)

Now consider the region x ≥ x∗: the equalities Vα = g = g̃ (where g̃ is the

extension in the RRC) hold in that region, so by using the inversion formula

for g̃, and also using the explicit formula for Gα we obtain that

Vα(x)−Wα(x) =
g(x∗)−Wα(x∗)

ϕα(x∗)
ϕα(x), if x ≥ x∗;

multiplying and dividing by w−1
α ϕα(x∗) in the previous equation, and by

w−1
α ψα(x∗) in (2.7), we find, bearing (1.12) in mind,

Vα(x)−Wα(x) =
g(x∗)−Wα(x∗)

Gα(x∗, x∗)
Gα(x, x∗).

Since Vα is an excessive function, Riesz representation (1.14) ensures the

existence of a representing measure µ and a harmonic function h such that

Vα(x) =

∫
(`,r)

Gα(x, y)µ(dy) + h(x).

Suppose that g(x∗) < Wα(x∗). We obtain that

Wα(x) = Vα(x) +
Wα(x∗)− g(x∗)

Gα(x∗, x∗)
Gα(x, x∗)

=

∫
I

Gα(x, y)µ∗(dy) + h(x),

where the measure µ∗ = µ + Wα(x∗)−g(x∗)
Gα(x∗,x∗)

δx∗(dy), and this is absurd because

the representing measure of Wα does not charge I≤x∗ and µ∗({x∗}) > 0. We

conclude that g(x∗) ≥ Wα(x∗), that is (2.6).
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The proof of the previous theorem gives a precise description of the Riesz

representation of the value function Vα as an α-excessive function given in

equation (1.15).

Proposition 2.8. Assume the conditions of Theorem 2.7. Then, in the

representation of Vα as an α-excessive function (1.15), the harmonic part

vanishes and the representing measure µ is given by

µ(dx) = kδ{x∗}(dx) + 1{x>x∗}(α− L)g(x)m(dx),

with

µ({x∗}) = k =
g(x∗)−

∫
I>x∗

Gα(x∗, y)(α− L)g(y)m(dy)

Gα(x∗, x∗)
.

Furthermore, if the RRC holds for some x1 < x∗ we have that

µ({x∗}) ≤ (α− L)g(x∗)m({x∗}). (2.8)

Proof. The first claim is already proved in the previous results. We only need

to prove the validity of (2.8). Assume it does not hold. Then

(α− L)g(x∗)m({x∗}) < µ({x∗})

and ∫
I≥x∗

Gα(x∗, y)(α− L)g(y)m(dy) <

∫
I≥x∗

Gα(x∗, y)µ(dy) = g(x∗).

Since (α−L)g(x∗) > 0 and (α−L)g is a continuous function in I≥x1 we can

find x2 < x∗ such that (2.5) and H.2.1 are fulfilled, this being in contradiction

with Theorem 2.5.

Theorem 2.3 and Theorem 2.5 give sufficient conditions for the problem

(2.1) to be right-sided. Theorem 2.7 shows that these conditions are actually

necessary. In order to know in a quick view if the problem is right-sided, the

following result gives a simpler sufficient condition.

Theorem 2.9. Consider a diffusion X and a reward function g such that

the inversion formula, given in (2.2), is fulfilled. Suppose that there exists
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a root c ∈ I of the equation (α − L)g(x) = 0, such that (α − L)g(x) < 0

if x < c and (α − L)g(x) > 0 if x > c. Assume also that g(x1) > 0 for

some x1 ∈ I. Then the optimal stopping problem (2.1) is right-sided and the

optimal threshold is

x∗ = inf{x : b(x) ≥ 0} (2.9)

where b : I → R is defined by

b(x) =

∫
I≤x

ψα(y)(α− L)g(y)m(dy).

In fact, b(x) < 0, if x < x∗, and b(x∗) > 0 if x > x∗.

Proof. The idea of the proof is to apply either Theorem 2.3 or Theorem 2.5,

to x∗ defined in (2.9). We first must prove that x∗ is well defined. We start

by observing that the set {x : b(x) ≥ 0} is not empty, or what is the same∫
I
ψα(y)(α− L)g(y)m(dy) > 0.

To verify this, one can observe that, taking k = Gα(x1,c)
ψα(c)

> 0, we get kψα(y) ≤
Gα(x1, y) for y ≤ c, where (α − L)g(y) ≤ 0, and kψα(y) ≥ Gα(x1, y) for

y ≥ x1, where (α− L)g(y) ≥ 0. Then∫
I
kψα(y)(α− L)g(y)m(dy) ≥

∫
I
Gα(x1, y)(α− L)(y)m(dy) = g(x1) > 0.

By the assumptions on (α − L)g and the fact that m is strictly positive in

any open set, we conclude that b is decreasing in I<c and increasing in I>c.
Moreover, b(x) < 0 if x ≤ c. Since b is right continuous and increasing in I>c
we have that as {x : b(x) ≥ 0} is not empty, it is I>x∗ with x∗ > c. Observe

that, by the inversion formula (2.2) and the explicit representation (1.12) of

Gα, we obtain that

g(x) = w−1
α ϕα(x)b(x) +

∫
I>x

Gα(x, y)(α− L)g(y)m(dy).

Since b(x∗) ≥ 0 we get

g(x∗) ≤
∫
I>x∗

Gα(x∗, y)(α− L)g(y)m(dy),

and either equation (2.4) or equation (2.5) is fulfilled. Since x∗ ≥ c, it follows

that (α − L)g(y) > 0 for x > x∗. It just remains to be proven that H.2.2

holds. By the definition of x∗, there exists a signed measure σ`(dy) such that:
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• its support is contained in I≤x∗ ;

• σ`(dy) = (α− L)g(y)m(dy) for y < x∗; and

•
∫
I≤x∗

ψα(y)σ`(dy) = 0.

Furthermore, σr(dy) = (α − L)g(y)m(dy) − σ`(dy) is a positive measure

supported in I≥x∗ . Using the inversion formula for g and the explicit repre-

sentation of Gα, given in (1.12), we get for x < x∗, that

g(x)− ψα(x)

ψα(x∗)
g(x∗) =

∫
I≤x∗

Gα(x, y)σ`(dy) ≤ Gα(x, c)

ψα(c)

∫
I≤x∗

ψα(y)σ`(dy) = 0,

where the inequality follows from the following facts: if y < c then σ`(dy) ≤ 0

and

ψα(y)
Gα(x, c)

ψα(c)
≤ Gα(x, y),

while if y > c then σ`(dy) ≥ 0

ψα(y)
Gα(x, c)

ψα(c)
≥ Gα(x, y).

We can now apply either Theorem 2.3 or Theorem 2.5 to complete the proof.

2.2.1 An alternative equation to find the optimal thresh-

old

Equation (2.4), which is key in our approach to solve the optimal stopping

problem, can be difficult to solve, as it involves the computation of a usually

difficult integral. In this section we prove that, in order to find the opti-

mal threshold x∗, one can solve the alternative, and typically much easier,

equation
∂+g

∂ψα
(x) =

g(x)

ψα(x)
. (2.10)

which in the smooth case, if g and ψα have derivatives, becomes

g′(x)

ψ′α(x)
=

g(x)

ψα(x)
. (2.11)
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Lemma 2.10. Assume X and g satisfy the RRC (Condition 2.1) for x∗.

Then, x∗ is a root of (2.4) if and only if it is a root of (2.10). In other

words, in the region where g is regular the solutions of (2.4), coincide with

the solutions of (2.10).

Proof. Consider Vα such that

Vα(x) =

∫
I>x∗

Gα(x, y)(α− L)g(y)m(dy) + kGα(x, x∗),

where k is such that Vα(x∗) = g(x∗). From Lemma 2.6 it follows that Vα(x)

coincides with g(x) for all x ∈ I≥x∗ , so we can compute the right derivative

of g –with respect to ψα– at x∗ by

∂+g

∂ψα
(x) = lim

x→x∗+

Vα(x)− Vα(x∗)

ψα(x)− ψα(x∗)
.

For x > x∗, using ν(dy) as an abbreviation for (α− L)g(y)m(dy), we obtain

that:

Vα(x) = ϕα(x)w−1
α

∫
(x∗,x)

ψα(y)ν(dy)+ψα(x)w−1
α

∫
I≥x

ϕα(y)ν(dy)+kψα(x∗)ϕα(x).

Computing the difference between Vα(x) and Vα(x∗) we obtain that

Vα(x)− Vα(x∗) = w−1
α (ψα(x)− ψα(x∗))

∫
I≥x

ϕα(y)ν(dy)

+ w−1
α

∫
(x∗,x)

(ϕα(x)ψα(y)− ψα(x∗)ϕα(y)) ν(dy)

+ kw−1
α ψα(x∗) (ϕα(x)− ϕα(x∗)) .

Dividing by the increment of ψα and taking the limit we get

lim
x→x∗+

Vα(x)− Vα(x∗)

ψα(x)− ψα(x∗)
= w−1

α

∫
I>x∗

ϕα(y)ν(dy)

+ w−1
α lim

x→x∗+

∫
(x∗,x)

ϕα(x)ψα(y)− ψα(x∗)ϕα(y)ν(dy)

ψα(x)− ψα(x∗)

+ kw−1
α ψα(x∗)

∂+ϕα
∂ψα

(x∗).

Assume for a moment that the middle term on the right-hand side vanishes;

hence the limit exists, and

∂g+

∂ψα
(x∗) = w−1

α

∫
I>x∗

ϕα(y)ν(dy) + kw−1
α ψα(x∗)

∂+ϕα
∂ψα

(x∗). (2.12)
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On the other hand, concerning g(x∗)
ψα(x∗)

, we have:

g(x∗)

ψα(x∗)
=
Vα(x∗)

ψα(x∗)
= w−1

α

∫
I>x∗

ϕα(y)ν(dy) + kw−1
α ϕα(x∗). (2.13)

Comparing the two previous equations, we obtain that x∗ satisfy (2.10) if

and only if

kw−1
α ψα(x∗)

∂+ϕα
∂ψα

(x∗) = kw−1
α ϕα(x∗).

Since ϕα(x∗) > 0 and ∂+ϕα
∂ψα

(x∗) < 0 the previous equality holds if and only if

k = 0, and this is equivalent to (2.4). This means that we only need to verify

lim
x→x∗+

∫
(x∗,x)

ϕα(x)ψα(y)− ψα(x∗)ϕα(y)

ψα(x)− ψα(x∗)
ν(dy) = 0, (2.14)

to finalize the proof. Denoting by f(y) the numerator of the integrand in

(2.14), observe that

f(y) = ϕα(x)(ψα(y)− ψα(x∗)) + ψα(x∗)(ϕα(x)− ϕα(y)).

Concerning the first term, we have

0 ≤ ϕα(x)(ψα(y)− ψα(x∗)) ≤ ϕα(x)(ψα(x)− ψα(x∗)),

while for the second we have

0 ≥ ψα(x∗)(ϕα(x)− ϕα(y)) ≥ ψα(x∗)(ϕα(x)− ϕα(x∗)).

These two previous inequalities render

ψα(x∗)(ϕα(x)− ϕα(x∗)) ≤ f(y) ≤ ϕα(x)(ψα(x)− ψα(x∗)).

Dividing by ψα(x) − ψα(x∗) in the previous formula, we conclude that the

integrand in (2.14) is bounded from below by

b(x) = ψα(x∗)
ϕα(x)− ϕα(x∗)

ψα(x)− ψα(x∗)
= ψα(x∗)

ϕα(x)− ϕα(x∗)

s(x)− s(x∗)
s(x)− s(x∗)

ψα(x)− ψα(x∗)
,

and bounded from above by ϕα(x). We obtain that the integral in (2.14)

satisfies

b(x)ν(x∗, x) ≤
∫

(x∗,x)

ϕα(x)ψα(y)− ψα(x∗)ϕα(y)

ψα(x)− ψα(x∗)
ν(dy) ≤ ϕα(x)ν(x∗, x).
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Taking the limits as x→ x∗+ we obtain that ϕα(x)→ ϕα(x∗), ν(x, x∗)→ 0,

and

lim
x→x∗+

b(x) = ψα(x∗)
∂ϕ+

α

∂s
(x∗)

/
∂ψ+

α

∂s
(x∗) ;

hence

0 ≤ lim
x→x∗+

∫
(x∗,x)

ϕα(x)ψα(y)− ψα(x∗)ϕα(y)

ψα(x)− ψα(x∗)
ν(dy) ≤ 0,

and (2.14) holds.

Remark 2.11. A useful consequence of the previous proof is that, under the

RRC for x∗, the right derivative of g with respect to ψα exists.

Lemma 2.12. Assume that X and g satisfy the RRC for x∗. Then, equation

(2.5) is fulfilled if and only if

∂+g

∂ψα
(x∗) <

g(x∗)

ψα(x∗)
. (2.15)

Proof. Define Vα as in the proof of the previous lemma. By equations (2.12)

and (2.13) we conclude that (2.15) holds if and only if

kw−1
α ψα(x∗)

∂+ϕα
∂ψα

(x∗) < kw−1
α ϕα(x∗),

if and only if k > 0, if and only if (2.5) holds.

Remark 2.13. Applying Lemma 2.10 and Lemma 2.12, we obtain results

analogous to Theorem 2.3, Theorem 2.5 and Theorem 2.7, by substituting

equations (2.4) and (2.5) by (2.10) and (2.15) respectively.

Theorem 2.14. Let x∗ be the argument of the maximum of g
ψα

. Assume that

the RRC is fulfilled for x∗, and (α − L)g(x) ≥ 0 for all x > x∗. Then, the

optimal stopping problem (2.1) is right-sided and x∗ is an optimal threshold.

Proof. The idea is to prove that either Theorem 2.3 or Theorem 2.5 are

applicable. The validity of H.2.2 is a direct consequence of the definition of
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x∗. We need to verify that x∗ satisfies (2.4) or (2.5), or, what is equivalent,

that

g(x∗) ≥ w−1
α ψα(x∗)

∫
I>x∗

ϕα(y)(α− L)g(y)m(dy).

By Lemma 2.10 and Lemma 2.12 we get that this is equivalent to the condi-

tion
∂+g

∂ψα
(x∗) ≤ g

ψα
(x∗).

Suppose that the previous condition does not hold, i.e.

lim
x→x∗+

g(x)− g(x∗)

ψα(x)− ψα(x∗)
>

g(x∗)

ψα(x∗)
,

and consider x2 > x∗ such that

g(x2)− g(x∗)

ψα(x2)− ψα(x∗)
>

g(x∗)

ψα(x∗)
;

doing computations we conclude that g
ψα

(x2) > g
ψα

(x∗), which contradicts

the hypothesis on x∗. We conclude, by the application of Theorem 2.3 if

(2.10), and by the application of Theorem 2.5 if (2.15), that the problem is

right-sided with threshold x∗.

The following is a converse of the previous result:

Theorem 2.15. Consider a diffusion X and a reward function g, such that

the optimal stopping problem (2.1) is right-sided with optimal threshold x∗.

Then, g
ψα

takes its maximum value at x∗. Furthermore, if the RRC is fulfilled,

then (α− L)g(x) ≥ 0 for all x > x∗.

Proof. We have already seen that (α − L)g ≥ 0 in the stopping region. Let

us see that g
ψα

(x∗) is maximum. For x < x∗ we have, by equation (2.3), that

Vα(x) = ψα(x)
g

ψα
(x∗) ≥ g(x),

therefore, g
ψα

(x) ≤ g
ψα

(x∗). Suppose there exists x2 > x∗ such that g
ψα

(x2) >
g
ψα

(x∗), we would conclude, by equation (1.11), that

Ex∗
(
e−αhx2g(Xhx2 )

)
=
ψα(x∗)

ψα(x2)
g(x2) > g(x∗),
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what would be in contradiction with the fact of x∗ being the optimal thresh-

old.

Remark 2.16. Consider the optimal stopping problem (2.1) but taking the

supremum over the more restrictive class of hitting times of sets of the form

I≥z. Departing from `, for example, we have to solve

sup
z∈I

E`
(
e−αhzg(Xhz)

)
= sup

z∈I

ψα(`)

ψα(z)
g(z).

In conclusion we need to find the supremum of g
ψα

(z). Previous results give

conditions under which the solution of the problem (2.1) is the solution of

the problem in the restricted family of stopping times.

2.2.2 About the inversion formula

In order to apply the previous results we need to know whether a function g

satisfies equation (2.2). We remember the equation

g(x) =

∫
I
Gα(x, y)(α− L)g(y)m(dy). (2.2)

As we have seen in the preliminaries, if g ∈ DL we have that Rα(α−L)g =

g and, if equation (1.13) is valid for (α− L)g, we then get (2.2). This is the

content of the following result:

Lemma 2.17. If g ∈ DL and for all x ∈ I we have that∫
I
Gα(x, y)|(α− L)g(y)|m(dy) <∞;

then, for all x ∈ I, equation (2.2) holds.

The condition of the previous lemma is very restrictive in solving concrete

problems, because typically, we have that limx→r− g(x) = ∞ (in this case

r /∈ I). The following result extends the previous one to unbounded reward

functions. It states, essentially, that if a function g satisfies all the local

conditions to belong to DL, and its only “problem” is its behaviour at r−

(typically r− = +∞), then it is sufficient to verify the condition g
ψα

(x) → 0

(x→ r), to ensure the validity of (2.2).
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Proposition 2.18. Suppose that r /∈ I and g : I → R is such that: the

differential operator is defined for all x ∈ I; and∫
I
Gα(x, y)|(α− L)g(y)|m(dy) <∞. (2.16)

Assume that, for each natural number n that satisfies r− 1
n
∈ I, there exists

a function gn ∈ DL such that gn(x) = g(x) for all x ≤ r − 1
n

. If

lim
z→r−

g(z)

ψα(z)
= 0, (2.17)

then (2.2) holds.

Proof. By (1.13) we get that
∫
I Gα(x, y)(α−L)g(y)m(dy) = Rα(α−L)g(x).

Consider the strictly increasing sequence rn := r− 1
n−1

. By the continuity of

the paths we conclude that hrn → ∞, (n → ∞). Applying formula (1.8) to

gn and hrn we obtain, for x < rn, that

gn(x) = Ex

(∫ hrn

0

e−αt(α− L)gn(Xt)dt

)
+ Ex

(
e−αhrngn(rn)

)
.

By using gn(x) = g(x) and (α − L)g(x) = (α − L)gn(x) for x < rn+1 we

conclude that

g(x) = Ex

(∫ hrn

0

e−αt(α− L)g(Xt)dt

)
+ Ex

(
e−αhrng(rn)

)
. (2.18)

Taking the limit as n→∞, by (1.11) and (2.17) we obtain that:

Ex
(
e−αhrn

)
g(rn) =

ψα(x)

ψα(rn)
g(rn)→ 0.

Let us verify we are can apply the Lebesgue dominated convergence theorem

to compute the limit of the first term on the right-hand side of (2.18):∣∣∣∣∫ hrn

0

e−αt(α− L)g(Xt)dt

∣∣∣∣ ≤ ∫ hrn

0

e−αt|(α− L)g(Xt)|dt

≤
∫ ∞

0

e−αt|(α− L)g(Xt)|dt

and by Fubini’s Theorem, and hypothesis (2.16),

Ex

(∫ ∞
0

e−αt|(α− L)g(Xt)|
)

=

∫ ∞
0

e−αtEx (|(α− L)g(Xt)|) dt

=

∫
I
Gα(x, y)|(α− L)g(y)|m(dy) <∞.
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Taking the limit into the expected it follows that

Ex

(∫ hrn

0

e−αt(α− L)g(Xt)dt

)
→
∫ ∞

0

Ex
(
e−αt(α− L)g(Xt)

)
dt (n→∞).

We have obtained:

g(x) =

∫ ∞
0

Ex
(
e−αt(α− L)g(Xt)

)
dt

=

∫
I
Gα(x, y)(α− L)g(y)m(dy),

thus completing the proof.

The following result is analogous to Proposition 2.18, considering the case

in which the function g does not belong to DL due to its behaviour on the

left endpoint of I.

Proposition 2.19. Suppose that ` /∈ I and g : I → R is such that: the

differential operator is defined for all x ∈ I; and∫
I
Gα(x, y)|(α− L)g(y)|m(dy) <∞.

Assume that, for each natural number n that satisfies `+ 1
n
∈ I, there exists

a function gn ∈ DL such that gn(x) = g(x) for all x ≥ `+ 1
n

. If

lim
z→`+

g(z)

ϕα(z)
= 0,

then (2.2) holds.

2.3 On the Smooth fit principle

The well-known smooth fit principle (SF) states that under some conditions

at the critical threshold x∗ the condition V ′(x∗) = g′(x∗) is satisfied. This

principle was used for the first time by Mikhalevich (1958) and constitutes

a widely used method to find the limit between the stopping and the con-

tinuation region. Many works studying the validity of this principle in dif-

ferent situation were developed. Some of them are: Grigelionis and Shiryaev
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(1966); Brekke and Øksendal (1991); Chernoff (1968); Alili and Kyprianou

(2005); Dayanik (2002); Dayanik and Karatzas (2003); Villeneuve (2007);

Christensen and Irle (2009). In Salminen (1985), the author proposes an

alternative version of this principle, considering derivatives with respect to

the scale function. We say that there is scale smooth fit (SSF) when the

value function has derivative at x∗ with respect to the scale function; note

that if g also has derivative with respect to the scale function, they coincide,

as g = Vα in I≥x∗ . This alternative smooth fit principle happens to be more

general than the (SF) in the sense that it needs less regularity conditions in

order to hold.

In this work we consider another smooth fit principle considering deriva-

tives with respect to ψα. We say that there is smooth fit with respect to ψα,

and we denote (α-SF), if the value function has derivative with respect to

ψα, i.e. if the following limit exists,

∂Vα
∂ψα

(x∗) = lim
h→0

Vα(x∗ + h)− Vα(x∗)

ψα(x∗ + h)− ψα(x∗)
. (2.19)

As the scale function is an increasing solution to the equation (α−L)f = 0

in case α = 0, the (SSF) can be considered as an 0-SF, obtaining then

a generalization of Salminen’s proposal (although in Salminen (1985) the

(SSF) is considered also in case α > 0). In what follows we discuss in detail

conditions in order to the different smooth fit principles hold.

In the previous section we give a solution to the optimal stopping problem

(2.1) when it is right-sided and the RRC is satisfied. We have seen that the

Riesz representation of the value function is

Vα(x) =

∫
I≥x∗

Gα(x, y)ν(y)

where ν(dy) = (α − L)g(y)m(dy) in I>x∗ . In the particular case in which

ν({x∗}) = 0 have the following result:

Theorem 2.20. Given a diffusion X, and a reward function g, if the optimal

stopping problem is right-sided and the value function satisfies

Vα(x) =

∫
I>x∗

Gα(x, y)(α− L)g(y)m(dy)
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then Vα is differentiable in x∗ with respect to ψα, i.e.

ν({x∗}) = 0 ⇒ (α-SF).

Proof. For x ≤ x∗

Vα(x) = w−1
α ψα(x)

∫
I>x∗

ϕα(y)ν(dy),

and the left derivative of Vα with respect to ψα in x∗ is

∂V −α
∂ψα

(x∗) = w−1
α

∫
I>x∗

ϕα(y)ν(dy).

It still remains to verify that

lim
x→x∗+

V (x)− V (x∗)

ψα(x)− ψα(x∗)
= w−1

α

∫
I>x∗

ϕα(y)ν(dy);

what can be done by the same computation as in the proof of Lemma 2.10,

for k = 0.

As we have seen in the previous section, if the speed measure does not

charge x∗ neither does the representing measure, i.e.

m({x∗}) = 0 ⇒ ν({x∗}) = 0;

then the previous theorem is applicable to this case to conclude that there is

(α-SF). Next theorem states that in this case there is (SSF).

Corolary 2.21. Under the same conditions as in the previous theorem, if

the speed measure does not charge x∗, then there is scale smooth fit, i.e.

m({x∗}) = 0 ⇒ (SSF).

Proof. From the previous theorem it follows that there is (α-SF). Hypothesis

m({x∗}) = 0 implies ψα has derivative with respect to the scale function. We

have obtained that

∂Vα
∂s

(x∗) =
∂Vα
∂ψα

(x∗)

/
∂ψα
∂s

(x∗) ;

thus competing the proof.
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Next corollary, which is a direct consequence from the previous results,

gives sufficient conditions in order to the (SF) hold.

Corolary 2.22. Suppose either,

• the hypotheses of Theorem 2.20 are fulfilled and ψα is differentiable at

x∗, or

• the hypotheses of Corollary 2.21 are fulfilled and s is differentiable at

x∗.

Then, if the reward function g is differentiable at x∗ the classic smooth fit

principle holds.

2.4 Examples

We follow by showing how to solve some optimal stopping problems using the

previous results. We start with some well-known problems, whose solutions

are also known, and we include as well some new examples in which the

smooth fit principle is not useful to find the solution.

2.4.1 Standard Brownian motion

Through this subsection we consider X such that Xt := Wt, the standard

Wiener process (see Borodin and Salminen, 2002, p.119). The state space is

I = R, the scale function is s(x) = x and the speed measure is m(dx) = 2dx.

The differential operator L is given Lf = f ′′/2, being its domain

DL = {f : f, Lf ∈ Cb(R)}.

The fundamental solutions of (α−L)u = 0 are ϕα(x) = e−
√

2αx and ψα(x) =

e
√

2αx. The Wronskian is wα = 2
√

2α and, according to (1.12), the Green

function is given by

Gα(x, y) =


1

2
√

2α
e−
√

2αxe
√

2αy, x ≥ y;

1
2
√

2α
e−
√

2αye
√

2αx, x < y.
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Example 2.23. Consider the reward function g(x) := x+, where x+ states

for the maximum between x and 0. The OSP for X and g was solved for the

first time by Taylor (1968). It is easy to verify that the RRC is fulfilled for

x1 = 0: it is enough to consider g̃ ∈ C 2(R) such that g̃(x) = 0 for x < −1

and g̃(x) = x for x > 0 and, by the application of Proposition 2.18, one

can prove that g̃ satisfies the inversion formula (2.2). Now we check that we

can apply Theorem 2.3 to find the solution of the optimal stopping problem:

Observe that (α− L)g is given by

(α− L)g(x) = αx, for x > 0.

To find x∗ we solve equation (2.4), which is

x∗ =
1

2
√

2α
e
√

2αx∗
∫ ∞
x∗

e−
√

2αyαy 2dy

=
1

2
√

2α
(x∗
√

2α + 1),

obtaining that x∗ = 1√
2α

. The conditions H.2.1 and H.2.2 are easy to verify.

We conclude that the problem is right-sided and x∗ is the optimal threshold.

Observe that the hypotheses of Theorem 2.20, Corollary 2.21 and Corol-

lary 2.22 are fulfilled; then, all variants of smooth fit principle hold in this

example.

Considering the results in Subsection 2.2.1, we can see that the simpler

equation (2.11) could be used to find x∗. For x > 0 we have g′(x) = 1 and

ψ′α(x) =
√

2α e
√

2α, so in this particular case, equation (2.11) is

1√
2α e

√
2α

=
x

e
√

2α

obtaining the same solution.

According to equation (2.3) the value function is

Vα(x) =

 e
√
2αx

e
√

2α
, x < 1√

2α
,

x, x ≥ 1√
2α
.

Figure 2.1 shows the value function Vα for α = 1
2
.
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Figure 2.1: OSP for the standard BM: g (black), Vα (gray, when different

from g). Parameter α = 1
2
.

Example 2.24 (Discontinuous reward). Now consider the reward function

g(x) =

0, x < 0,

1, x ≥ 0.
(2.20)

Obviously, the optimal stopping problem (2.1) with positive discount has

optimal threshold x∗ = 0; we show this fact as a consequence of Theorem 2.5.

First we observe that the RRC is fulfilled for x∗ = 0, for example g̃(x) = 1

satisfy the inversion formula and is equal to g(x) for x ≥ 0. The inequality

(2.5) is, in this particular case and considering x∗ = 0,

1 ≥ 1

2
√

2α

∫ ∞
0

e−
√

2αyα2dy,

which clearly holds, since the right-hand side is 1
2
. For x ≥ 0 we have that

(α−L)g = α > 0, therefore H.2.1 is valid. Finally we observe that ψα(x) > 0

for x < 0 and then H.2.2 is also valid. We conclude, by the application of

Theorem 2.5, that the problem is right-sided with 0 as optimal threshold.

The value function is, by (2.3)

Vα(x) =

e
√

2αx, x < 0,

1, x ≥ 0.
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Clearly the smooth fit principle does not hold in this example; from Theo-

rem 2.20 we get that the representing measure ν of Vα has to have a mass

at 0, in fact, from Proposition 2.8, we obtain that ν({0}) = 1
2
. We remark

that the hypotheses that ensures (2.8) in Proposition 2.8 are not fulfilled in

this case; in fact, the absence of smooth fitting, in this particular example,

comes from the reward function. Further on we present examples in which,

although the reward function is differentiable, the smooth fitting fail due

to the lack of regularity of the scale function or due to atoms in the speed

measure.

Example 2.25 (Non-smooth reward). Following with the same Wiener pro-

cess, consider the continuous reward function g, depending on a positive

parameter a, defined by

g(x) =


0, x ≤ − 1

a
,

ax+ 1, − 1
a
< x < 0,

1, x ≥ 0

The question we try to answer is: for which values of the discount parameter

α, the optimal threshold associated to the optimal stopping problem (2.1)

is x∗ = 0. As in the previous example, and with the same arguments, we

observe that the RRC (Condition 2.1) is fulfilled for x∗ = 0 and also the

inequality (2.5) and the condition H.2.1 in Theorem 2.5 hold. We only need

to verify that H.2.2 is valid, i.e. for all x < 0,

ψα(x)
g(0)

ψα(0)
≥ g(x),

or what is the same e
√

2αx ≥ ax + 1 for − 1
a
< x < 0. It is easy to see that

previous equation holds if a ≥
√

2α. Figure 2.2 shows the value function for

α = 1
2

and α = 1
8

when a = 1

2.4.2 American call options

We consider the classical optimal stopping problem associated with the pric-

ing of an American call option with dividends, solved by Merton (1973).
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Figure 2.2: OSP for the standard BM, non-smooth reward: g (black), V0.5

(gray, when is different from g), V0.125 (gray dashed, when is different from

g). Parameter a = 1

Example 2.26. Consider a geometric Brownian motion {Xt} (see Borodin

and Salminen, 2002, p.132), which is a solution of the stochastic differential

equation

dXt = σXtdWt + µXtdt;

where µ ∈ R and σ2 > 0. The state space is I = (0,∞). Set ν = µ
σ2 − 1

2
, the

scale function is

s(x) =

−x−2ν

2ν
, ν 6= 0,

ln(x), ν = 0;

and the speed measure m(dx) = 2
σ2x

2µ

σ2
−2dx. The differential operator is

Lf = 1
2
σ2x2f ′′ + µxf ′, and the domain of the infinitesimal generator is

DL = {f : f ∈ Cb(I), Lf ∈ Cb(I)} .

Functions ψα and ϕα are given by

ψα(x) = xγ1 , with γ1 =
1

2
− µ

σ2
+

√(
1

2
− µ

σ2

)2

+
2α

σ2

and

ϕα(x) = xγ2 , with γ2 =
1

2
− µ

σ2
−

√(
1

2
− µ

σ2

)2

+
2α

σ2
,
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the Wronskian is wα = 2
√
ν2 + 2α/σ2. The Green function, by (1.12), is

given by

Gα(x, y) =


w−1
α xγ2yγ1 , x ≥ y > 0,

w−1
α yγ2xγ1 , y ≥ x > 0.

Consider the reward function g : R+ → R, g(x) := (x − K)+ where K is

a positive constant, and a positive discount factor α satisfying α > µ. The

reward function g satisfies the RRC for x1 = K, it is enough to consider g̃

as a C 2 function, bounded in (0, k) and such that g̃(x) = x − k for x ≥ k.

Function g̃ defined satisfies the following inversion formula:

g̃(x) =

∫
I
Gα(x, y)(α− L)g̃(y)m(dy),

as a consequence of Proposition 2.18. Observe that equation (2.16) holds.

Equation (2.17) is in this case

lim
z→∞

g̃(z)

ψα(z)
= lim

z→∞
z1−γ1 ;

the last limit vanishes if 1− γ1 < 0 which is equivalent to µ < α. To find x∗

we solve equation (2.4). We will need a primitive of ϕα(x)(α− L)g̃(x)m(x),

where m(x) is the density of the speed measure with respect to Lebesgue

measure,

F (x) =

∫
ϕα(x)(α− L)g̃(x)m(x)dx

=
2(α− µ)

σ2

∫
xγ2+ 2µ

σ2
−1 − 2αK

σ2

∫
xγ2+ 2µ

σ2
−2

=
2(α− µ)

σ2(γ2 + 2µ
σ2 )

xγ2+ 2µ

σ2 − 2αK

σ2(γ2 + 2µ
σ2 − 1)

xγ2+ 2µ

σ2
−1;

observe that

γ2 +
2µ

σ2
− 1 < γ2 +

2µ

σ2
= 1− γ1 < 0
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and limx→∞ F (x) = 0. We solve equation (2.4),

x∗ −K = w−1
α ψα(x∗)

∫ ∞
x∗

ϕα(y)(α− L)g(y)m(y)dy

= w−1
α ψα(x∗)(−F (x∗))

= w−1
α

(
2αK

σ2(γ2 + 2µ
σ2 − 1)

x∗γ1+γ2+ 2µ

σ2
−1 − 2(α− µ)

σ2(γ2 + 2µ
σ2 )

x∗γ1+γ2+ 2µ

σ2

)

= w−1
α

(
2αK

σ2(γ2 + 2µ
σ2 − 1)

− 2(α− µ)

σ2(γ2 + 2µ
σ2 )

x∗

)

then, using γ2 = 1− 2µ
σ2 − γ1 we obtain that

x∗
(

1 + w−1
α

2(α− µ)

σ2(1− γ1)

)
= K

(
1 + w−1

α

2α

σ2(−γ1)

)
,

concluding that

x∗ = K

(
γ1 − 1

γ1

)(
wαγ1 − 2α/σ2

wα(γ1 − 1)− 2α/σ2 + 2µ/σ2

)
.

Calling s =
√

1
4
− µ

σ2 + µ2

σ4 + 2α
σ2 , we have wα = 2s, γ1 = 1

2
− µ

σ2 + s, and

wαγ1 −
2α

σ2
= s− 2µs

σ2
+ 2s2 − 2α

σ2

= s− 2µs

σ2
+ s2 +

1

4
− µ

σ2
+
µ2

σ4
+

2α

σ2︸ ︷︷ ︸
s2

−2α

σ2
= γ2

1 .

In the same way,

wα(γ1 − 1)− 2α

σ2
+

2µ

σ2
= γ2

1 − wα +
2µ

σ2
= γ2

1 − 2γ1 + 1 = (γ1 − 1)2.

Finally, we arrive to the conclusion:

x∗ = K

(
γ1

γ1 − 1

)
.

Observing that x∗ > x1 = K, we only need to verify H.2.1 and H.2.2 is fulfilled

in order to apply Theorem 2.3. The condition H.2.1 is, in this example,

(α− µ)x− αK ≥ 0, if x > K

(
γ1

γ1 − 1

)
;
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it is enough to prove (α − µ)x∗ − αK ≥ 0, which is equivalent to µγ1 ≤ α.

To justify the validity of the previous equation remember that ψα satisfies

(α− L)ψα ≡ 0 and in this particular cases

(α− L)ψα(x) =

(
α− 1

2
σ2γ1(γ1 − 1)− µγ1

)
xγ1,

so we have α−µγ1 = 1
2
σ2γ1(γ1−1) ≥ 0, concluding what we need. In order to

verify H.2.2 we need to observe
(

1
γ1−1

)(
γ1−1
Kγ1

x
)γ1

< (x−K)+ for all x < x∗.

We conclude, by the application of Theorem 2.3, that the problem is right-

sided with optimal threshold x∗. Observe that, as in the previous example,

hypothesis of Theorem 2.20, Corollary 2.21 and Corollary 2.22 are fulfilled

and all variants of smooth fit principle hold.

In virtue of the results in Subsection 2.2.1, the threshold x∗ can be ob-

tained also by solving (2.11), which in this case is

1

γ1 xγ1−1
=
x−K
xγ1

,

and we obtain very easily the already given threshold x∗.

2.4.3 Russian Options

Optimal stopping problems regarding the maximum of a process constitutes

other topic of high fertility in optimal stopping. In particular, it has applica-

tions in the search of maximal inequalities. Some optimal stopping problems

for the maximum of a process can be reduced to a regular optimal stop-

ping problem –as is the case in this example–. Some works regarding the

maximum process are Dubins et al. (1993); Peskir (1998); Pedersen (2000);

Zhitlukhin (2009). For further reference see Peskir and Shiryaev (2006). In

the article by Kramkov and Mordecki (1994), the authors use the same kind

of reduction used in this example, but in this case to reduce an optimal

stopping problem for the integral of the process.

The Russian Option was introduced by Shepp and Shiryaev (1993). If Xt

is a standard geometric Brownian motion and St = max{Xs : 0 ≤ s ≤ t},
the Russian option gives the holder the right –but not the obligation– to
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receive an amount Sτ at a moment he can choose. First the authors found

the value of the option, reducing the problem to an optimal stopping problem

of a two-dimensional Markov process. Later they found the way to solve the

same problem based on the solution of a one-dimensional optimal stopping

problem (Shepp and Shiryaev, 1994). More recently Salminen (2000), making

use of a generalization of Lévy’s theorem for a Brownian motion with drift

shortened the derivation of the valuation formula in Shepp and Shiryaev

(1994) and solved the related optimal stopping problem. Now we show how

to use our results to solve this one-dimensional optimal stopping problem.

Example 2.27. Consider α > 0, r > 0 and σ > 0. Let X be a Brownian

motion on I = [0,∞), with drift −δ < 0, where δ = r+σ2/2
σ

and reflected at

0 (see Borodin and Salminen (2002), p. 129). The scale function is

s(x) =
1

−2δ
(1− e2δx);

the speed measure is m(dx) = 2e−2δ x. The differential operator is given by

Lf(x) = f ′′(x)/2 − δf ′(x) for x > 0, and Lf(0) = limx→0+ Lf(x), being its

domain

DL =

{
f : f ∈ Cb(I), Lf ∈ Cb(I), lim

x→0+
f ′(x) = 0

}
.

Functions ϕα and ψα are given by

ϕα(x) = e−(γ−δ)x

and

ψα(x) =
γ − δ

2γ
e(γ+δ)x +

γ + δ

2γ
e−(γ−δ)x,

where γ =
√

2α + δ2, the Wronskian is given by wα = γ − δ. Consider the

reward function g(x) := eσx, which does satisfy the RRC for every x1 > 0.

We have,

(α− L)g(x) = (α− σ2/2 + δσ)eσx = (α + r)eσx > 0.

In order to apply Theorem 2.3 we solve equation (2.4), which in this case is

eσx =
1

γ − δ

(
γ − δ

2γ
e(γ+δ)x +

γ + δ

2γ
e−(γ−δ)x

)∫ ∞
x

2(α + r)e(−γ−δ+σ)ydy,
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or we can solve the easier equivalent equation (2.11), which in this case is

σeσx

γ2−δ2
2γ

(e(γ+δ)x − e−(γ−δ)x)
=

eσx

γ−δ
2γ
e(γ+δ)x + γ+δ

2γ
e−(γ−δ)x

obtaining that

x∗ =
1

2γ
ln

((
γ + δ

γ − δ

)(
γ − δ + σ

γ + δ − σ

))
.

Assertions H.2.1 and H.2.2 remains to be verified to obtain that the optimal

stopping rule is to stop when Xt ≥ x∗. This result agree with the ones

obtained in the previous works.

We solve a particular case with α = 0.7, r = 0.5 and σ = 1. Figure 2.3

shows the value function Vα and the reward g for this example. The threshold

is x∗ ' 0.495.
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Figure 2.3: Russian options: g (black), Vα (gray, when different from g).

Parameters: α = 0.7, r = 0.5 and σ = 1.

2.4.4 Skew Brownian motion

We consider a Brownian motion skew at zero (see Borodin and Salminen,

2002, p.126). For further results about Skew Brownian we refer to Lejay

(2006) and the references therein. This process is a standard Brownian mo-

tion when off the origin, but it has an asymmetric behaviour from the origin.
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It has the following property

P0(Xt ≥ 0) = 1− P0(Xt ≤ 0) = β.

The parameter β ∈ (0, 1) is known as the “skewness parameter of the pro-

cess”. The space state of this process is I = R; the scale function is

s(x) =

x
β
, x ≥ 0,

x
1−β , x < 0;

and the speed measure is

m(dx) =

2(1− β) dx, x < 0;

2β dx, x > 0.

The differential operator is Lf(x) = f ′′(x)/2 if x 6= 0 and Lf(0) = limx→0 Lf(x).

The domain of the infinitesimal generator is

DL = {f : f, Lf ∈ Cb(I), βf ′(0+) = (1− β)f ′(0−)}.

Functions ϕα and ψα are given by

ϕα(x) =


1−2β
1−β sinh(x

√
2α) + e−

√
2αx, x ≤ 0,

e−
√

2αx, x ≥ 0,

and

ψα(x) =

e
√

2αx, x ≤ 0,

1−2β
β

sinh(x
√

2α) + e
√

2αx, x ≥ 0,

and the Wronskian is wα =
√

2α.

Example 2.28 (Skew BM, g(x) = x+). Consider the reward function g(x) =

x+. It satisfies the RRC for x1 = 0. We have (α − L)g(x) = αx, x ≥ 0.

Equation (2.4) is in this case

x∗ =
1√
2α

(
1− 2β

β
sinh(

√
2αx∗) + e

√
2αx∗

)∫ ∞
x∗

e−
√

2α tαt 2βdt

or equivalently

x∗ =
1

2
√

2α

(
(2β − 1)e−

√
2αx∗(

√
2αx∗ + 1) +

√
2αx∗ + 1

)
. (2.21)
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In general it is not possible to solve analytically equation (2.21). If we con-

sider the particular case β = 1
2
, in which the process is the ordinary Brownian

motion, we obtain that x∗ = 1√
2α

; according with results obtained in Subsec-

tion 2.4.1. Consider a particular case, in which α = 1 and β = 0.9. Solving

numerically equation (2.21) we obtain that

x∗ ' 0.82575.

Figure 2.4 shows the optimal expected reward function Vα. Observe that if

x > x∗, Vα(x) = x, and Vα has derivative in x∗. The article by Zhitlukhin
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Figure 2.4: OSP for the Skew BM: g (black), Vα (gray, when different from

g). Parameters: α = 1 and β = 0.9.

(2009) considers the optimal stopping problem for the maximum of this pro-

cess.

Example 2.29 (Skew BM: an example without smooth fitting). Consider

the Skew Brownian motion, process presented in the previous example, with

parameters value β = 1/3 and α = 1/8. Let g(x) = (x + 1)+ be the reward

function. Functions ϕα, ψα were already presented. We have (α− L)g(x) =

α(x+1), x ≥ 0. Observe that x∗ = 0 is solution of (2.4). It is easy to see that

the hypotheses of Theorem 2.3 are fulfilled. We conclude that the problem
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is right-sided with threshold x∗ = 0. Moreover, the value function satisfies:

Vα(x) =

x+ 1, x ≥ 0,

ψα(x), x ≤ 0.

Unlike the previous examples Vα is not derivable at x∗. As can be seen in

Figure 2.5 the graphic of Vα shows an angle in x = 0.
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Figure 2.5: OSP for the Skew BM, example without smooth fitting: g

(black), ψα (gray), Vα (highlighted with dots). Parameters: α = 1/8 and

β = 1/3.

As we have mentioned, the smooth fit principle states that x∗, the critical

value between the continuation and the stopping region, satisfies the equation

V ′α(x∗) = g′(x∗). This principle is valid for a wide class of optimal stopping

problems, and it is commonly used to find x∗. In the article (Peskir, 2007), the

author gives an example of an optimal stopping problem of a regular diffusion

with a differentiable reward function in which the smooth fit principle does

not hold. Despite the fact that in the previous example the reward function

is not differentiable (at 0), it is very easy to see that a differentiable reward

function g̃ for which the solution of the OSP is exactly the same can be

considered; Figure 2.6 shows a possible differentiable g̃.
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Figure 2.6: OSP for the Skew BM, example without smooth fitting with

differentiable reward: g̃(x) (black), ψα (gray), Vα (highlighted with dots).

Parameters: α = 1/8 and β = 1/3.

2.4.5 Sticky Brownian Motion

Consider a Brownian motion, sticky in 0 (see Borodin and Salminen, 2002,

p. 123). It is a Brownian motion out of 0, but in 0 expends a positive time,

which depends on a positive parameter that we assume to be 1.

The space state of this process is I = R. The scale function is s(x) = x

and the speed measure is m(dx) = 2dx+ 2δ{0}(dx). The differential operator

is Lf(x) = f ′′(x)
2

when x 6= 0, and Lf(0) = limx→0 Lf(x); being its domain

DL =
{
f : f, Lf ∈ Cb(I), f ′′(0+) = f ′(0+)− f ′(0−)

}
.

Functions ϕα and ψα are given by

ϕα(x) =

e−
√

2αx −
√

2α sinh(x
√

2α), x ≤ 0,

e−
√

2αx, x ≥ 0;

and

ψα(x) =

e
√

2αx, x ≤ 0,

e
√

2αx +
√

2α sinh(x
√

2α), x ≥ 0;

the Wronskian is wα = 2
√

2α + 2α.
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We remark that in the literature there are different definitions of sticky

Brownian motion, (see Amir, 1991, note on page 223). According to the

definition we follow the process is defined withR as space state. Another used

definition has space state [0,∞) and it is given by the stochastic differential

equation

dXt = θ1{Xt=0}dt+ 1{Xt>0}dBt.

Example 2.30. Consider the reward function g(x) = (x + 1)+. It is easy

to see that the RRC is fulfilled for x1 = −1. We discuss the solution of the

optimal stopping problem depending on the discount factor; particularly, we

are interested in finding the values of α for which the optimal threshold is

the sticky point. We are going to use (2.4) in a different way: we fix x = 0

and solve the equation with α. We obtain that

1 = w−1
α

∫
(0,∞)

e−
√

2αyα(y + 1)2dy

and we find α1 = (−1+
√

5)2

8
' 0.19 is the solution. It can be seen, by the

application of Theorem 2.3, that with α = α1 the problem is right-sided with

threshold 0. Another option to have threshold 0 could be, by the application

of Theorem 2.5, that x∗ = 0 is the minimum satisfying (2.5). In order to find

these values of α it is useful to solve equation

g(x) = w−1
α ψα(x)

∫
[x,∞)

ϕα(y)(α− L)g(y)m(dy) (2.22)

with x = 0. Since the measure m(dx) has an atom at x = 0, the solution

of the previous equation is different from α1. Solving this equation we find

the root α2 = 1/2. It is easy to see that, for α ∈ (α1, α2], the minimal

x satisfying (2.5) is 0. Then Theorem 2.5 can be applied to conclude that

0 is the optimal threshold. In this case we cannot apply the theorems of

Section 2.3 to conclude that any of the smooth fit principles hold. In fact for

α ∈ (α1, α2) any of the principles is fulfilled. With α = α2 there is (SF) and

(SSF). This is not a consequence of (2.22), but it follows from the particular

choose of the reward function. This example shows that theorems on smooth

fit only give sufficient conditions. Table 2.1 summarizes the information

about the solution of the OSP in this example.
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Table 2.1: Sticky BM: solution of the OSP depending on α

α x∗ Theo. (SF) (SSF) (α-SF) Fig.

α ∈ (0, α1) x∗ > 0 2.3 yes yes yes 2.7

α = α1 x∗ = 0 2.3 no no yes 2.8

α ∈ (α1, α2) x∗ = 0 2.5 no no no 2.9

α = α2 x∗ = 0 2.5 yes yes no 2.10

α ∈ (α2,+∞) x∗ < 0 2.3 yes yes yes 2.11
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Figure 2.7: OSP for the Sticky BM: g (black), kψα (gray), Vα (highlighted

with dots). Parameter α = 0.1.
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Figure 2.8: OSP for the Sticky BM: g (black), kψα (gray), Vα (highlighted

with dots). Parameter α = α1 ' 0.19.
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Figure 2.9: OSP for the Sticky BM: g (black), kψα (gray), Vα (highlighted

with dots). Parameter α = 0.28.
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Figure 2.10: OSP for the Sticky BM: g (black), kψα (gray), Vα (highlighted

with dots). Parameter α = α2 = 0.5.
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Figure 2.11: OSP for the Sticky BM: g (black), kψα (gray), Vα (highlighted

with dots). Parameter α = 2.
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2.4.6 Bessel process

Consider a 3-dimensional Bessel process X. It is a process with state space

I = [0,∞), which is given by Xt = ‖Bt‖ with B a 3-dimensional Brownian

motion. (see Borodin and Salminen, 2002, p. 134 for details).

We have for x 6= 0:

ψα(x) =
2 sinh(

√
2αx)

x

and

ψ′α(x) =
2x
√

2α cosh(
√

2αx)− 2 sinh(
√

2αx)

x2

Example 2.31. Consider the reward function g(x) = x2. Assuming that

the OSP (2.1) is right-sided we find the threshold by solving equation (2.11),

which in this case is

2x3

2x
√

2α cosh(
√

2αx)− 2 sinh(
√

2αx)
=

x3

2 sinh(
√

2αx)
.

After computations, we conclude that x∗ = z/
√

2α, with z the positive solu-

tion of

arctan(z) =
z

3
.

To conclude that the problem is indeed right-sided it remains to observe

that (α − L)g(x) > 0 for x > x∗ and g(x) < ψα(x) g(x∗)
ψα(x∗)

for x < x∗; both

conditions are easy to prove.
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Chapter 3

Optimal stopping for

one-dimensional diffusions:

the general case

3.1 Introduction

The optimal stopping problem which we deal with in this chapter, as in

Chapter 2, consist on finding a stopping time τ ∗ and a value function Vα

such that

Vα(x) = Ex
(
e−ατ

∗
g(Xτ∗)

)
= sup

τ
Ex
(
e−ατg(Xτ )

)
,

where X = {Xt} is a regular one-dimensional diffusion and the supremum is

taken over all stopping times. In Chapter 2 we gave several results concerning

one-sided problems. In the present chapter we consider results for “two-

sided” problems, and also more general situations.

The most important result of this chapter considers reward functions g

that satisfy the (already stated) inversion formula

g(x) =

∫
I
Gα(x, y)(α− L)g(y)m(dy). (2.2)
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It states that the optimal continuation region C, is a disjoint union of intervals

Ji = (ai, bi) that satisfy∫
Ji

ψα(y)(α− L)g(y)m(dy) = 0

if bi 6= r, and also ∫
Ji

ϕα(y)(α− L)g(y)m(dy) = 0.

if ai 6= `. Its proof consists on an algorithm that determines this continuation

region. A remarkable characteristic of the method is that it always arrives

to the solution, thus no verification is needed. Furthermore, we find the

following simple expression to the value function:

Vα(x) =

g(x), if x /∈ C,

ki1ϕα(x) + ki2ψα(x) if x ∈ Ji : i = 1 . . . n

with

ki1 =


0, ai = `,

g(ai)
ϕα(ai)

, bi = r,

g(bi)ψα(ai)−g(ai)ψα(bi)
ψα(ai)ϕα(bi)−ψα(bi)ϕα(ai)

else;

and

ki2 =


g(bi)
ψα(bi)

, ai = `,

0, bi = r

g(ai)ϕα(bi)−g(bi)ϕα(ai)
ψα(ai)ϕα(bi)−ψα(bi)ϕα(ai)

, else.

The previous expression for the value function is alternative to the Riesz

representation

Vα =

∫
S
Gα(x, y)(α− L)g(y)m(dy),

which also holds in this case, with S = I \ C.

The described result also holds for one-sided problems. In fact, some

results of the previous chapter follow from this general results in case the

general assumptions are fulfilled.
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3.2 Preliminary results

We start by presenting a few preliminary results about one-dimensional dif-

fusions.

Lemma 3.1. Consider a one-dimensional diffusion X. Consider a, x, b ∈ I
such that a ≤ x ≤ b. Denote by hab the hitting time of the set {a, b}, i.e.

hab := inf{t : Xt ∈ {a, b}}.

Then, if a > `

ϕα(x) = Ex
(
e−αhabϕα(Xhab)

)
,

and if b < r

ψα(x) = Ex
(
e−αhabψα(Xhab)

)
.

Proof. Let us prove the first statement, which is a direct consequence of

the discounted Dynkin’s formula (1.8) for functions that belong to DL. As

ϕα /∈ DL, we consider a function h ∈ Cb(I) such that h(x) = 0 for x ≥ a and

h(x) > 0 for x < a. Then f defined by f(x) := (Rαh) (x) belongs to DL and

there exist a constant k > 0 such that for x ≥ a, f(x) = kϕα(x) (see Itô and

McKean Jr., 1974, section 4.6). The discounted Dynkin’s formula holds for

f , so, for x ≥ a,

f(x)− Ex
(
e−αhabf(Xhab)

)
= Ex

(∫ hab

0

(α− L)f(Xt)dt

)
.

From the continuity of the paths, for t ∈ [0, hab], Xt ≥ a and (α−L)f(Xt) =

h(Xt) = 0, so the right-hand side of the previous equation vanishes. Finally

taking into account the relation between f and ϕα the conclusion follows.

The second statement is proved in an analogous way.

Lemma 3.2. Let X be a one-dimensional diffusion. Consider the function

Wα : I → R such that

Wα(x) =

∫
S

Gα(x, y)σ(dy),
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where σ is a positive measure and the set S is

S = I \ ∪Ni=1Ji,

where N could be infinite, and Ji are disjoint intervals included in I.

Then Wα satisfies

Wα(x) = Ex
(
e−αhSWα(XhS)

)
.

Proof. If x ∈ S the result is trivial, because hS ≡ 0. Let us consider the case

x /∈ S. In this case x ∈ Ji for some i; we move on to prove that

Gα(x, y) = Ex
(
e−αhSGα(XhS , y)

)
for all y in S. To see this, let us denote by a = inf Ji and b = sup Ji, and

observe that hS = hab. If b < r and y ≥ b we have Gα(x, y) = w−1
α ψα(x)ϕα(y)

and by Lemma 3.1 we get

Gα(x, y) = w−1
α Ex

(
e−αhabψα(Xhab)

)
ϕα(y)

= Ex
(
e−αhabGα(Xhab , y)

)
,

where in the second equality we have used again (1.12) and the fact that

hab ≤ y. In the case y ≤ a we have to do the analogous computation.

Now we can write

Wα(x) =

∫
S

Gα(x, y)σ(dy)

=

∫
S

Ex
(
e−αhSGα(XhS , y)

)
σ(dy)

= Ex

(
e−αhS

∫
S

Gα(XhS , y)σ(dy)

)
= Ex

(
e−αhSWα(XhS , y)

)
and the result follows.

Lemma 3.3. Let X be a one-dimensional diffusion and consider the function

g : I → R defined by

g(x) :=

∫
I
Gα(x, y)σ(dy),
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where σ is a signed measure in E . Consider the function Wα : E → R defined

by

Wα(x) :=

∫
S

Gα(x, y)σ(dy), (3.1)

where the set S is

S := I \ ∪Ni=1Ji,

where N could be infinite, and Ji ⊂ I are intervals such that Ji ∩ Jj = ∅ if

j 6= i and

•
∫
Ji
ϕα(y)σ(dy) = 0 if there is some x ∈ I such that x < y for all y ∈ Ji,

•
∫
Ji
ψα(y)σ(dy) = 0 if there is some x ∈ I such that x > y for all y ∈ Ji,

Then g(x) = Wα(x) for all x ∈ S.

Proof. From the definitions of g and Wα we get

g(x) =

∫
I
Gα(x, y)σ(dy)

= Wα(x) +
N∑
i=1

∫
Ji

Gα(x, y)σ(dy).

To prove the result it is enough to verify that if x ∈ S, then∫
Ji

Gα(x, y)σ(dy) = 0, for all i.

Consider x ∈ S, then for any i = 1 . . . N , we have that x /∈ Ji. Since Ji is an

interval either x < y for all y in Ji or x > y for all y in Ji. Suppose the first

case, from (1.12) we obtain∫
Ji

Gα(x, y)σ(dy) = w−1
α ψα(x)

∫
Ji

ϕα(y)σ(dy) = 0,

where the second equality follows from hypothesis. The other case is analo-

gous.
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3.2.1 More about the inversion formula

In Subsection 2.2.2 we already considered the problem of determining when

the inversion formula (2.2) is valid. In this chapter, we need to have an

easy rule to decide whether the inversion formula holds, for instance, for

functions g such that both limx→r g(x) and limx→` g(x) are infinite. These

cases are not considered in Subsection 2.2.2. Nevertheless, an analogous

result of Proposition 2.18 and Proposition 2.19 can be stated as well in this

case.

Proposition 3.4. Suppose that I = (`, r) and that g : I → R is such that

the differential operator is defined for all x ∈ I and∫
I
Gα(x, y)|(α− L)g(y)|m(dy) <∞. (3.2)

Assume that for each natural number n, satisfying ` + 1
n
< r − 1

n
∈ I there

exists a function gn ∈ DL such that gn(x) = g(x) for all x : `+ 1
n
≤ x ≤ r− 1

n
.

If

lim
z→r−

g(z)

ψα(z)
= lim

z→`+

g(z)

ϕα(z)
= 0, (3.3)

then (2.2) holds.

Proof. The outline of the proof is the same as in Proposition 2.18 with minor

differences: By (1.13) we get that∫
I
Gα(x, y)(α− L)g(y)m(dy) = Rα(α− L)g(x).

Consider the strictly increasing sequence rn := r − 1
n−1

and the strictly

decreasing sequence `n := ` + 1
n−1

. Let τn be the hitting time of the set

I \ (`n, rn), defined by

τn := inf{t ≥ 0: Xt /∈ (`n, rn)}.

Observe that τn = inf{hrn , h`n}. By the continuity of the paths it can be

concluded that τn →∞, (n→∞). Applying formula (1.8) to gn and τn we

obtain, for x ∈ (`n, rn),

gn(x) = Ex

(∫ τn

0

e−αt(α− L)gn(Xt)dt

)
+ Ex

(
e−ατngn(Xτn)

)
,
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taking into account that gn(x) = g(x) and (α − L)g(x) = (α − L)gn(x) for

`n+1 < x < rn+1, from the previous equality follows that

g(x) = Ex

(∫ τn

0

e−αt(α− L)g(Xt)dt

)
+ Ex

(
e−ατng(Xτn)

)
. (3.4)

About the second term on the right-hand side of the previous equation we

have

Ex
(
e−ατng(Xτn)

)
= Ex

(
e−αhrng(Xhrn )1{hrn<h`n}

)
+ Ex

(
e−αh`ng(Xh`n )1{h`n<hrn}

)
≤ Ex

(
e−αhrng(Xhrn )

)
+ Ex

(
e−αh`ng(Xh`n )

)
= ψα(x)

g(rn)

ψα(rn)
+ ϕα(x)

g(`n)

ϕα(rn)
,

which taking the limit as n→∞ vanishes, by the hypotheses. Finally, in the

same way we did in Proposition 2.18, we can apply Fubini’s theorem, and

dominated convergence theorem to conclude that the limit as n→∞ of the

first term on the right-hand side of (3.4) is∫
I
Gα(x, y)(α− L)g(y)m(dy),

thus completing the proof.

3.3 The two-sided case

The following theorem is a two-sided version of Theorem 2.3.

Theorem 3.5. Consider a one-dimensional diffusion X and a reward func-

tion g : I → R. Suppose (α− L)g(x) is defined and non-negative for x < x`

and x > xr, where x`, xr : ` < x` < xr < r are solution of the system of

equations ϕα(x`)k`(x`) + ψα(x`)kr(xr) = g(x`),

ϕα(xr)k`(x`) + ψα(xr)kr(xr) = g(xr),
(3.5)

with

k`(x`) = w−1
α

∫
(`,x`)

ψα(y)σ(dy)

87



and

kr(xr) = w−1
α

∫
(xr,r)

ϕα(y)σ(dy),

where σ(dy) states for (α − L)g(y)m(dy). Assume either that g satisfy the

inversion formula (2.2) or there exists g̃ such that g̃(x) = g(x) for x ≤ x`

and for x ≥ xr and g̃ satisfies the inversion formula (2.2). Define Vα by

Vα(x) :=

∫
I\[x`,xr]

Gα(x, y)σ(dy).

If Vα(x) ≥ g(x) for x ∈ (x`, xr), then S = I \ [x`, xr] is the stopping region

and Vα is the value function.

Remark 3.6. By (1.12) the system of equation (3.5) is
∫
I\[x`,xr]

Gα(x`, y)σ(dy) = g(x`)∫
I\[x`,xr]

Gα(xr, y)σ(dy) = g(x`)

and the value function Vα also can be represented by

Vα(x) =

g(x), x ∈ S,

k`ϕα(x) + krψα(x), x ∈ [x`, xr].

Proof. Clearly the defined Vα is an α-excessive function. Consider x ∈ S; by

hypothesis, there exists g̃(x) that satisfies (2.2) and it is equal to g for x ≤ x`

and for x ≥ xr (in some cases g̃ could be g itself). Therefore

g̃(x) =

∫
I
Gα(x, y)(α− L)g̃(y)m(dy)

=

∫
I\[x`,xr]

Gα(x, y)σ(dy) +

∫
[x`,xr]

Gα(x, y)(α− L)g̃(y)m(dy)

= Vα(x) +

∫
[x`,xr]

Gα(x, y)(α− L)g̃(y)m(dy). (3.6)

Observe that (3.5) is g(x`) = Vα(x`) and g(xr) = Vα(xr). Considering g(x`) =

g̃(x`) and g(xr) = g̃(xr), we obtain, by (3.6), that∫
[x`,xr]

Gα(x`, y)(α− L)g̃(y)m(dy) =

∫
[x`,xr]

Gα(xr, y)(α− L)g̃(y)m(dy) = 0
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and this implies, using the explicit formula for Gα, that∫
[x`,xr]

ϕα(y)(α− L)g̃(y)m(dy) =

∫
[x`,xr]

ψα(y)(α− L)g̃(y)m(dy) = 0.

Considering the previous equation we are in conditions to apply Lemma 3.3

to g̃, with σ(dy) = (α − L)g̃(y)m(dy) and Wα = Vα; we conclude that

Vα(x) = g̃(x) for x ∈ S, region in which g̃(x) = g(x). We assumed as

hypothesis Vα(x) ≥ g(x) for x ∈ (x`, xr), therefore we have proved that Vα

is a majorant of g. Since, by Dynkin’s characterization, the value function is

the minimal α-excessive majorant of g, and Vα is α-excessive and majorant

we conclude that

Vα(x) ≥ sup
τ
Ex
(
e−ατg(Xτ )

)
.

By Lemma 3.2 we get that Vα(x) = Ex
(
e−αhSVα(XhS )

)
and considering that

Vα(x) = g(x) for x ∈ S we conclude that

Vα(x) = Ex
(
e−αhSg(XhS )

)
,

which proves the other inequality.

3.3.1 Brownian motion with drift and g(x) = |x|

Consider X a Brownian motion with drift µ (see Borodin and Salminen,

2002, p. 127). The scale function is s(x) = (1− e2µx)/2µ, the speed measure

is m(dx) = 2e2µxdx. The differential operator is Lf(x) = f ′′(x)/2 + µf ′(x).

Denoting by γ =
√

2α + µ2 we have

ϕα(x) = e−(γ+µ)x and ψα(x) = e(γ−µ)x.

The Wronskian is wα = 2γ.

Example 3.7. We consider the OSP with reward function g(x) = |x|. Since

it is not differentiable at 0, we can not apply Theorem 3.8 as in the previous

examples; nevertheless we do can apply Theorem 3.5 (observe that the reward

function suggests that the problem is two-sided). We have to solve (3.5). By

the nature of the problem we assume that x` < 0 < xr. We have

σ(dx) =

(αx− µ)2e2µxdx x > 0,

(−αx+ µ)2e2µxdx x < 0;
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then, if |µ| < γ ∫ ∞
xr

ϕα(y)σ(dy) = e−(γ−µ)xr(xr(γ + µ) + 1)

and ∫ x`

−∞
ψα(y)σ(dy) = e(γ+µ)x`(−x`(γ − µ) + 1).

The system of equations (3.5) becomese(γ−µ)(x`−xr)(xr(γ + µ) + 1) = (−γ − µ)x` − 1

e(γ+µ)(x`−xr)(−x`(γ − µ) + 1) = (γ − µ)xr − 1,

which has a unique solution (x`, xr); by the application of Theorem 3.5 we

can conclude that the interval (x`, xr) is the continuation region associated

to the optimal stopping problem. We remark that the system of equations

that defines x` and xr is equivalent to the system obtained in (Salminen,

1985). In Subsection 3.5.1 we consider this problem again and include some

graphics with the solution.

3.4 General case with regular reward

During this section we consider a one-dimensional diffusion X whose speed

measure has no atoms, and a reward function g such that the inversion for-

mula (2.2) is fulfilled (the differential operator L must be defined for all

x ∈ I). We also assume that the set

{x : (α− L)g(x) < 0}

has a finite number of connected components. We denote by σ(dx) the mea-

sure (α− L)g(x)m(dx).

We characterize the solution to the OSP for this kind of reward functions,

providing an algorithm to find it.

Theorem 3.8. Under the assumptions of this section, the value function

associated with the OSP is
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Vα(x) =

∫
S
Gα(x, y)σ(dy), (3.7)

where S, the stopping region, is given by S = I \ C and C, the continuation

region, can be represented as a disjoint union of intervals (`i, ri), satisfying

• if `i 6= `, then
∫

(`i,ri)
ϕα(y)σ(dy) = 0,

• if ri 6= r, then
∫

(`i,ri)
ψα(y)σ(dy) = 0, and

• the set {x : (α− L)g(x) < 0} is included in C

Furthermore, C can be found by the algorithm 3.1, to be presented further on.

Remark 3.9. The condition m({x}) = 0 (absence of atoms of the speed

measure) is required only for simplicity of exposition. A corresponding result

for the general case can also be obtained. Observe that in the one-sided case

we have not considered this restriction (see, for instance, Example 2.30 of

the sticky BM).

Remark 3.10. Once the continuation region is found, we have the integral

formula for Vα, given in (3.7). Consider one of the connected components of

the continuation region Ji = (ai, bi); for x ∈ Ji we have

Vα(x) =

∫
I\C

Gα(x, y)σ(dy)

=

∫
(I\C)∩{x<ai}

w−1
α ψα(y)ϕα(x)σ(dy) +

∫
(I\C)∩{x>bi}

w−1
α ψα(x)ϕα(y)σ(dy)

= ki1ϕα(x) + ki2ψα(x).

Other alternative way to find ki1 and ki2 is to take into account the fact that

Vα(ai) = g(ai) and Vα(bi) = g(bi) and solve the system of equationski1ϕα(ai) + ki2ψα(ai) = g(ai)

ki1ϕα(bi) + ki2ψα(bi) = g(bi)

obtaining

ki1 =
g(bi)ψα(ai)− g(ai)ψα(bi)

ψα(ai)ϕα(bi)− ψα(bi)ϕα(ai)

and

ki2 =
g(ai)ϕα(bi)− g(bi)ϕα(ai)

ψα(ai)ϕα(bi)− ψα(bi)ϕα(ai)
.

91



In the particular case in which ai = ` we have ki1 = 0 and ki2 = g(bi)/ψα(bi),

and if bi = r then k1 = g(ai)/ϕα(ai) and k2 = 0. We have the following

alternative formula for Vα:

Vα(x) =

g(x) for x /∈ C

ki1ϕα(x) + ki2ψα(x) for x ∈ Ji : i = 1 . . . n
(3.8)

The proof of this theorem is essentially the algorithm to find the intervals

that constitute the continuation region (Algorithm 3.1) and it requires some

previous results. Anyway we start by giving a brief idea of the algorithm as

a motivation:

1. split the set (α− L)g(x) < 0 in J1 = (a1, b1), . . . , Jn = (an, bn) disjoint

intervals with a1 < b1 < a2 < b2 < . . . < an < bn;

2. for each Ji consider a bigger interval J̄i contained in the continuation

region (see Condition 3.11);

3. if J̄i are disjoint intervals then C =
⋃
i J̄i;

4. else, consider, for each connected component A of
⋃
i J̄i, a unique in-

terval (a′, b′), where a′ = inf{ai : ai ∈ A} and b′ = sup{bi : bi ∈ A} and

return to step 2.

Before giving the algorithm and the proof of Theorem 3.8 we need some

preliminary results.

Given an interval J ⊆ I we define the signed measure σJ by

σJ(dx) =

σ(dx) if x ∈ J or (α− L)g(x) > 0,

0 else.

Observe that σJ is a positive measure out of J , and it is equal to σ into J .

Condition 3.11. We say that the pair of intervals (J, J̄) : J ⊆ J̄ ⊆ I satisfies

the Condition 3.11 if the following assertions hold:

(i) both,
∫
J
ϕα(x)σ(dx) ≤ 0 and

∫
J
ψα(x)σ(dx) ≤ 0;

(ii) if inf{J̄} 6= ` then
∫
J̄
ϕα(x)σJ(dx) = 0;
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(iii) if sup{J̄} 6= r then
∫
J̄
ψα(x)σJ(dx) = 0; and

(iv) for every x ∈ J̄ ,
∫
J̄
Gα(x, y)σJ(dy) ≤ 0.

We denote by σ+(dx) the measure

σ+(dx) := σ(dx)1{(α−L)g(x)>0}.

Lemma 3.12. Under the assumptions of this section, consider an open in-

terval J ⊆ I, such that σ(dx) < 0 for x ∈ J . Then, there exists an interval

J̄ such that (J, J̄) satisfies Condition 3.11

Proof. Consider J to be (a, b). Assertion (i) in Condition 3.11 is clearly

fulfilled. Without loss of generality (denoting by ϕα the result of multiplying

ϕα by the necessary positive constant) we may assume∫
J

ψα(x)σ(dx) =

∫
J

ϕα(x)σ(dx) < 0.

Under this assumption, ϕα(a) < ψα(a) and ϕα(b) > ψα(b). Consider

x1 := inf

{
x ∈ [`, a] :

∫
(x1,b)

ϕα(x)σJ(dx) < 0

}
.

Since ϕα(x) > ψα(x) for x ≤ a and σJ(dx) is non-negative in the same region

we conclude that
∫

(x1,b)
ψα(x)σJ(dx) ≤ 0. Consider y1 > b defined by

y1 := sup

{
x ∈ [b, r] :

∫
(x1,y1)

ψα(x)σJ(dx) < 0

}
.

Now we consider x2 ≥ x1 as

x2 := inf

{
x ∈ [`, a] :

∫
(x2,y1)

ϕα(x)σJ(dx) < 0

}
and y2 ≥ y1 as

y2 := sup

{
x ∈ [b, r] :

∫
(x2,y2)

ψα(x)σJ(dx) < 0

}
.

Following in the same way we obtain two non-decreasing sequences ` ≤
{xn} ≤ a and b ≤ {yn} ≤ r. By construction, the interval J̄ = (limxn, lim yn)
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satisfies (ii) and (iii) in Condition 3.11. To prove (iv), first we find k1(x) and

k2(x) such that k1(x)ψα(a) + k2(x)ϕα(a) = Gα(x, a)

k1(x)ψα(b) + k2(x)ϕα(b) = Gα(x, b).

Solving the system we obtain

k1(x) =
Gα(x, b)ϕα(a)−Gα(x, a)ϕα(b)

ψα(b)ϕα(a)− ψα(a)ϕα(b)

and

k2(x) =
Gα(x, a)ψα(b)−Gα(x, b)ψα(a)

ψα(b)ϕα(a)− ψα(a)ϕα(b)
.

Let us see that k1(x), k2(x) ≥ 0 for any x ∈ J̄ : using the explicit formula for

Gα it follows that

k1(x) =


0 for x ≤ a,

w−1
α ϕα(b)ψα(x)ϕα(a)−ψα(a)ϕα(x)

ψα(b)ϕα(a)−ψα(a)ϕα(b)
for x ∈ (a, b),

w−1
α ψα(x) for x ≥ b.

The only non-trivial case is when x ∈ (a, b). The numerator and denominator

are non-negative because ϕα is decreasing and ψα increasing. The case of k2

is completely analogous.

Considering h(x, y) = k1(x)ψα(y) + k2(x)ϕα(y), it can be seen (discussing

for the different positions of x and y with respect to a and b) that for all

x ∈ J̄ , h(x, y) ≤ Gα(x, y) for y ∈ (a, b) and h(x, y) ≥ Gα(x, y) for y /∈ (a, b).

From these inequalities we conclude that∫
J̄

Gα(x, y)σJ(dy) ≤
∫
J̄

h(x, y)σJ(dy) ≤ 0;

where the first inequality is consequence of σJ(dy) ≥ 0 in I\J and σJ(dy) ≤ 0

in J ; and the second one is obtained fixing x and observing that h(x, y) is a

linear combination of ψα and ϕα with non-negative coefficients.

Lemma 3.13. Under the assumptions of this section, consider J1 = (a1, b1),

J2 = (a2, b2) such that b1 < a2 and (α − L)g(x) ≥ 0 for x in (b1, a2). Let
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J̄1 = (ā1, b̄1) and J̄2 = (ā2, b̄2) be intervals such that ā1 > `, b̄1 < r, ā2 >

`, b̄2 < r. Suppose that the two pairs of intervals (J1, J̄1), (J2, J̄2) satisfy

Condition 3.11.

If J̄1 ∩ J̄2 6= ∅ then, considering J = (a1, b2), there exists an interval J̄

such that (J, J̄) satisfies Condition 3.11.

Proof. By hypothesis∫
J̄i

ϕα(x)σJi(dx) =

∫
J̄i

ψα(x)σJi(dx) = 0.

Then ∫
J̄1∪J̄2

ϕα(x)σ(dx) = −
∫
J̄1∩J̄2

ϕα(x)σ+(dx)

and ∫
J̄1∪J̄2

ψα(x)σ(dx) = −
∫
J̄1∩J̄2

ψα(x)σ+(dx).

We assume, without loss of generality, that∫
J̄1∩J̄2

ϕα(x)σ+(dx) =

∫
J̄1∩J̄2

ψα(x)σ+(dx) > 0

and therefore, denoting by (a′, b′) the interval J̄1 ∪ J̄2, we get:∫
(a′,b′)

ϕα(x)σ(dx) =

∫
(a′,b′)

ψα(x)σ(dx) < 0;

ψα(a′) ≤ ϕα(a′); and ψα(b′) ≥ ϕα(b′). The same procedure in the proof

of Lemma 3.12, allow us to construct an interval J̄ such that (J, J̄) satisfy

(i), (ii) and (iii) in Condition 3.11. Let us prove (iv): If x < a1 we have

Gα(x, y) = w−1
α ψα(x)ϕα(y) for y ≥ a1 and Gα(x, y) ≤ w−1

α ψα(x)ϕα(y) for

y ≤ a1; since σJ(dy) is non-negative in y ≤ a1 we find∫
J̄

Gα(x, y)σJ(dy) ≤ w−1
α ψα(x)

∫
J̄

ϕα(y)σJ(dy) ≤ 0.

An analogous argument prove the assertion in the case x > b2. Now consider

x ∈ J , suppose x < min{a2, b̄1} (in case x > max{b1, ā2} an analogous

argument is valid), we get∫
J̄

Gα(x, y)σJ(dy) =

∫
J̄1

Gα(x, y)σJ1(dy) +

∫
J̄1

Gα(x, y)(σJ − σJ1)(dy)

+

∫
J̄\J̄1

Gα(x, y)σJ(dy),
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where
∫
J̄1
Gα(x, y)σJ1(dy) ≤ 0 by hypothesis. We move on to prove that the

sum of the second and the third terms on the right-hand side of the previous

equation are non-positive, thus completing the proof: Observe that

Gα(x, y) ≤ w−1
α ψα(x)ϕα(y)

and

Gα(x, y) = w−1
α ψα(x)ϕα(y) (y ≥ min{a2, b̄1})

The measure (σJ−σJ1) has support in J2, where the previous equality holds.

The measure σJ(dy) is positive for y < a1 where we do not have the equality,

then ∫
J̄1

Gα(x, y)(σJ − σJ1)(dy) +

∫
J̄\J̄1

Gα(x, y)σJ(dy)

≤ w−1
α ψα(x)

(∫
J̄1

ϕα(y)(σJ − σJ1)(dy) +

∫
J̄\J̄1

ϕα(y)σJ(dy)

)
≤ 0,

where the last inequality is a consequence of∫
J̄

ϕα(y)σJ(dy) =

∫
J̄1

ϕα(y)σJ1(dy) +

∫
J̄1

ϕα(y)(σJ − σJ1)(dy)

+

∫
J̄\J̄1

ϕα(y)σJ(dy) ≤ 0,

and ∫
J̄1

ϕα(y)σJ1(dy) = 0.

This completes the proof.

Lemma 3.14. Under the assumptions of this section, consider the interval

J = (a, b) and J̄ = (`, b̄) (with b̄ < r) such that (J, J̄) satisfies Condition 3.11.

Then, there exists b′ ≥ b̄ such that (J ′ = (`, b), J̄ ′ = (`, b′)) satisfies Condi-

tion 3.11.

Proof. By hypothesis we know∫
J̄

ψα(y)σJ(dy) = 0.
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It follow that ∫
J̄

ψα(y)σJ ′(dy) ≤ 0.

Consider b′ = sup{x ∈ [b̄, r) :
∫

(`,x)
ψα(y)σJ ′(dy) ≤ 0}. It is clear that∫

J̄ ′
ψα(y)σJ ′(dy) ≤ 0,

with equality if b′ = r. This proves (iii) in Condition 3.11. Now we prove

(iv). Consider∫
J̄ ′
Gα(x, y)σJ ′(dy) =

∫
J̄

Gα(x, y)σJ(dy) +

∫
J̄

Gα(x, y)(σJ ′ − σJ)(dy)

+

∫
J̄ ′\J̄

Gα(x, y)σJ ′(dy). (3.9)

The first term on the right-hand side is non-positive by hypothesis. Let us

analyse the sum of the remainder terms. Considering the previous decom-

position with ψα(y) instead of Gα(x, y), and taking
∫
J̄
ψα(y)σJ(dy) = 0 into

account, we obtain∫
J̄

ψα(y)(σJ ′ − σJ)(dy) +

∫
J̄ ′\J̄

ψα(y)σJ ′(dy) ≤ 0. (3.10)

Consider k(x) such that k(x)ψα(b̄) = Gα(x, b̄); we have k(x)ψα(y) ≤ Gα(x, y)

if y ≤ b̄ and k(x)ψα(y) ≥ Gα(x, y) if y ≥ b̄. Also note that (σJ ′ − σJ)(dy) is

non-positive in J̄ and σJ ′ is non-negative in J̄ ′ \ J̄ . We get∫
J̄

Gα(x, y)(σJ ′ − σJ)(dy) +

∫
J̄ ′\J̄

Gα(x, y)σJ ′(dy)

≤
∫
J̄

ψα(y)(σJ ′ − σJ)(dy) +

∫
J̄ ′\J̄

ψα(y)σJ ′(dy) ≤ 0.

This completes the proof of (iv). To prove (iii), i.e.∫
J̄ ′
ϕα(y)σJ ′(dy) ≤ 0,

consider k > 0 such that ϕα(b̄) = kψα(b̄). It is easy to see that all the steps

considered in proving (iv) also work in this case.
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Lemma 3.15. Under the assumptions of this section, consider the interval

J = (a, b) and J̄ = (ā, r) (with ā > `), such that (J, J̄) satisfies Condi-

tion 3.11. Then, there exists a′ ≤ ā such that (J ′ = (a, r), J̄ ′ = (a′, r))

satisfies Condition 3.11.

Proof. Analogous to the proof of the previous lemma.

Lemma 3.16. Under the assumptions of this section, consider J1 = (`, b1),

J2 = (a2, b2) such that: b1 < a2; and (α − L)g(x) ≥ 0 for x in (b1, a2).

Let J̄1 = (`, b̄1) and J̄2 = (ā2, b̄2) be intervals such that: b̄1 < r; ā2 > `;

and b̄2 < r. Suppose that the two pairs of intervals (J1, J̄1), (J2, J̄2) satisfy

Condition 3.11. If J̄1 ∩ J̄2 6= ∅ then, considering J = (`, b2), there exists b̄

such that (J, J̄ = (`, b̄)) satisfies Condition 3.11.

Proof. Define b̄ = sup{x ∈ [b̄2, r) :
∫

(`,x)
ψα(y)σJ(dy) ≤ 0} (note that b̄2

belongs to the set). We have∫
J̄

ψα(y)σJ(dy) ≤ 0, (3.11)

with equality if b̄ < r, proving (ii) in Condition 3.11. To prove (iv) we split

the integral as follows:∫
J̄

Gα(x, y)σJ(dy) =

∫
J̄1

Gα(x, y)σJ1(dy) +

∫
J̄2

Gα(x, y)σJ2(dy) (3.12)

−
∫
J̄1∩J̄2

Gα(x, y)σ+
J (dy) +

∫
J̄\(J̄1∪J̄2)

Gα(x, y)σJ(dy)

where σ+
J is the positive part of σJ . Considering the same decomposition

as in (3.12) with ψα(y), instead of Gα(x, y), and also considering: equation

(3.11);
∫
J̄1
ψα(y)σJ1(dy) = 0; and

∫
J̄2
ψα(y)σJ2(dy) = 0, we obtain

−
∫
J̄1∩J̄2

ψα(y)σ+
J (dy) +

∫
J̄\(J̄1∪J̄2)

ψα(y)σJ(dy) ≤ 0. (3.13)

For every x consider k(x) ≥ 0 such that k(x)ψα(b̄2) = Gα(x, b̄2). We have

k(x)ψα(b̄2) ≤ Gα(x, b̄2) for y ≤ b̄2 and k(x)ψα(b̄2) ≥ Gα(x, b̄2) for y ≥ b̄2 and
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therefore

−
∫
J̄1∩J̄2

Gα(x, y)σ+
J (dy) +

∫
J̄\(J̄1∪J̄2)

Gα(x, y)σJ(dy)

= k(x)

(
−
∫
J̄1∩J̄2

ψα(y)σ+
J (dy) +

∫
J̄\(J̄1∪J̄2)

ψα(y)σJ(dy)

)
≤ 0.

The first two terms on the right-hand side of equation (3.12) are also non-

positive, and we conclude that (iv) in Condition 3.11 holds. To prove (ii)

we consider the decomposition in (3.12) with ϕα(y) instead of Gα(x, y) and

k ≥ 0 such that kψα(b̄2) = ϕα(b̄2); the same considerations done to prove

(iv) conclude the result in this case.

Lemma 3.17. Under the assumptions of this section, consider J1 = (a1, b1),

J2 = (a2, r) such that: b1 < a2; and (α − L)g(x) ≥ 0 for x in (b1, a2).

Let J̄1 = (ā1, b̄1) and J̄2 = (ā2, r) intervals such that: ā1 > `; b̄1 < r;

and ā2 > `. Suppose that the two pairs of intervals (J1, J̄1), (J2, J̄2) satisfy

Condition 3.11. If J̄1 ∩ J̄2 6= ∅ then, considering J = (a1, r), there exists ā

such that (J, J̄ = (ā, r)) satisfies Condition 3.11.

Proof. Analogous to the previous lemma.

Lemma 3.18. Under the assumptions of this section, consider J1 = (`, b1),

J2 = (a2, r) such that: b1 < a2; and (α − L)g(x) ≥ 0 for x in (b1, a2). Let

J̄1 = (`, b̄1) and J̄2 = (ā2, r) intervals such that the two pairs of intervals

(J1, J̄1), (J2, J̄2) satisfy Condition 3.11. If J̄1 ∩ J̄2 6= ∅ then for all x ∈ I,∫
I
Gα(x, y)σ(dy) ≤ 0.

Proof. Consider the following decomposition of the integral∫
I
Gα(x, y)σ(dy) =

∫
J̄1

Gα(x, y)σJ1(dy) +

∫
J̄2

Gα(x, y)σJ2(dy)

−
∫
J̄1∩J̄2

Gα(x, y)σ+(dy).

99



Observing that the three terms on the right-hand side are non-positive, the

lemma is proved.

Now we state the algorithm to find the continuation region in the OSP

corresponding to (3.1).

Algorithm 3.1. (Starting from a subset of the continuation region, in sub-

sequent steps, increase the considered subset until finding the actual contin-

uation region)

BS. (base step) Consider disjoint intervals J1, . . . , Jn ⊆ I such that

{x ∈ I : (α− L)g(x) < 0} =
n⋃
i=1

Ji.

Consider for each i, J̄i such that (Ji, J̄i) satisfies Condition 3.11 (this

can be done in virtue of Lemma 3.12). Define

C =
{

(Ji, J̄i) : i = 1 . . . n
}
,

and go to the iterative step (IS) with C1.

IS. (iterative step) At this step we assume given a set C of pair of intervals

satisfying Condition 3.11. We assume the notation1

C = {(Ji = (ai, bi), J̄i = (āi, b̄i)) : i = 1 . . . n},

with ai < aj if i < j (the intervals are ordered) and bi < ai+1 (the

intervals are disjoint)

– If C is empty, the algorithm is finished and the continuation region

is empty.

– Else, if for some j, J̄j = I, the algorithm is finished and the

continuation region is I.

1We remark that at different moments the algorithm execute this step, the notation

refers to different objects, e.g. the set C is not always the same set.
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– Else, if the intervals J̄i are pairwise disjoint, the algorithm is fin-

ished and the continuation region is

C =
n⋃
i=1

J̄i

– Else, if āj = ` for some j > 1, add to C the pair (J = (`, bj), J̄)

satisfying Condition 3.11, and remove from C the pairs (Ji, J̄i)

for i = 1 . . . j. Observe that the existence of J̄ is proved in

Lemma 3.14. Return to the iterative step (IS).

– Else, if b̄j = r for some j < n, add to C the pair (J = (aj, r), J̄)

satisfying Condition 3.11, and remove from C the pairs (Ji, J̄i) for

i = j . . . n (observe that the existence of J̄ is proved in Lemma 3.15).

Return to the iterative step (IS).

– Else, if for some j, J̄j ∩ J̄j+1 6= ∅, remove from C the pairs j and

j+ 1, and add to C the pair (J = (aj, bj + 1), J̄) satisfying Condi-

tion 3.11 (its existence is guaranteed, depending on the situation,

Lemma 3.13, Lemma 3.16, Lemma 3.17 or Lemma 3.18). Return

to the iterative step (IS).

We are now ready to prove Theorem 3.8.

Proof of Theorem 3.8. Denote by C = {J1, . . . , Jn} the set resulting from

Algorithm 3.1. It is clearly a disjoint union of intervals and it is easy to

see that it satisfies all the conditions stated in the theorem. It remains to

prove that this is in fact the continuation region associated with the optimal

stopping problem. We use the Dynkin’s characterization as the minimal

α-excessive majorant to prove that

Vα(x) :=

∫
I\C

Gα(x, y)σ(dy)

is the value function. Since σ(dy) is non-negative in I \ C we have that Vα is
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α-excessive. For x ∈ I, we have

g(x) =

∫
I
Gα(x, y)σ(dy) (3.14)

= Vα(x) +
n∑
i=1

∫
Ji

Gα(x, y)σ(dy).

Observe that, on the one hand,∫
Ji

Gα(x, y)σ(dy) = 0 (x /∈ Ji),

due to the fact that, if x < Ji thenGα(x, y) = w−1
α ψα(x)ϕα(y) and

∫
Ji
ϕα(y)σ(dy) =

0 and, on the other hand,∫
Ji

Gα(x, y)σ(dy) ≤ 0 (x ∈ Ji).

Combining this facts with equation (3.14), we conclude that

Vα(x) ≥ g(x) (x ∈ I),

and, in fact, the equality holds for x ∈ I \ C, what can be seen also as

an application of Lemma 3.3. We have proved that Vα is a majorant of g.

We have, up to now, Vα(x) ≥ supτ Ex (e−ατg(Xτ )). Finally observe that,

denoting by S the set I \ C

Vα(x) = Ex
(
e−αhSVα(XhS )

)
= Ex

(
e−αhSg(XhS )

)
,

where the first equality is a consequence of Lemma 3.2. We conclude that Vα

is the value function and that S is the stopping region, finishing the proof.

3.4.1 Implementation

To compute in practice the optimal stopping region, following the Algo-

rithm 3.1, it can be necessary a computational implementation of some parts

of the algorithm. In fact, to solve our examples we have implemented a script

in R (see R Core Team, 2012) that receives as input:
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• function (α− L)g;

• the density of measure m;

• the atoms of measure m;

• functions ϕα and ψα;

• two numbers a, b that are interpreted as the left and right endpoint of

an interval J

and produce as output two numbers a′ ≤ a, b′ ≥ b such that (J, (a′, b′)) satisfy

Condition 3.11. It is assumed that the interval J given as input satisfies the

necessary conditions to ensure the existence of J ′.

To compute a′ and b′ we use a discretization of the given functions and

compute the corresponding integrals numerically. We follow the iterative

procedure presented in the proof of Lemma 3.12.

Using this script the examples are easily solved following Algorithm 3.1.

3.4.2 Brownian motion and polynomial reward

The previous results are specially suited for non-monotone reward functions.

Example 3.19 (α = 2). Consider a standard Brownian motion X as in

Subsection 2.4.1. Consider the reward function g defined by

g(x) := −(x− 2)(x− 1)x(x+ 1)(x+ 2),

and the discount factor α = 2. To solve the optimal stopping problem (3.1),

by the application of Algorithm 3.1, we start by finding the set (α−L)g(x) <

0. Remember that the infinitesimal generator is given by Lg(x) = g′′(x)/2.

After computations, we find that

{x : (α− L)g(x) < 0} =
3⋃
i=1

Ji,

with J1 ' (−2.95,−1.15), J2 ' (0, 1.15) and J3 ' (2.95,∞). Computing J̄i,

as is specified in the (base step) of the algorithm in the proof of Theorem 3.8,
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Figure 3.1: OSP for the standard BM and a 5th. degree polynomial: g

(black), Vα (gray, when different from g). Parameter α = 2. In Figure 3.2

zooms of the interesting parts are shown.
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Figure 3.2: Zooms of Figure 3.1 to appreciate the smooth fit principle.

we find J̄1 ' (−3.23,−0.50), J̄2 ' (−0.36, 1.43) and J̄3 ' (1.78,∞). Observ-

ing that the intervals are disjoint we conclude that the continuation region

is given by J̄1 ∪ J̄2 ∪ J̄3. Now, by the application of equation (3.8), we find

the value function, which is shown in Figure 3.1. Note that the smooth fit

principle holds in the five contact point.

Example 3.20 (case α = 1.5). Consider the process and the reward as in

the previous example but with a slightly smaller discount, α = 1.5. We have

again

{x : (α− L)g(x) < 0} =
3⋃
i=1

Ji,
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Figure 3.3: OSP for the standard BM and a 5th. degree polynomial: g

(black), Vα (gray, when different from g). Parameter α = 1.5.

but with J1 ' (−3.21,−1.17), J2 ' (0, 1.17) and J3 ' (3.21,∞). Computing

J̄i we obtain J̄1 ' (−3.53,−0.31), J̄2 ' (−0.39, 1.46) and J̄3 ' (1.76,∞).

In this case J̄1 ∩ J̄2 6= ∅, therefore, according to the algorithm, we have to

consider J1 ' (−3.21, 1.17), obtaining J̄1 ' (−3.53, 1.46). Now we have two

disjoint intervals and the algorithm is completed. The continuation region is

C ' (−3.53, 1.46) ∪ (1.76,∞).

It can be seen that for α small enough the OPS will be left-sided.

3.5 More general rewards

In this section we consider one-dimensional diffusions, as in the rest of the

chapter, but we allow less regular reward functions. Our assumption about

g is that there exist a measure ν such that

g(x) =

∫
I
Gα(x, y)ν(dy), (3.15)

where Gα(x, y) is defined by (1.12). This is motivated by different cases

in which the reward g is not regular enough to satisfy the inversion formula
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(2.2). In these cases, considering the second derivative of the difference of two

convex functions as a signed measure, it is possible to obtain a “generalized”

inversion formula useful for our needs (see Dudley (2002) Problems 11 and

12 of Section 6.3; and see also Protter (2005) p. 218–219).

Just to consider a very simple example, suppose that X is a standard

Brownian motion. Consider the function g : R→ R given by

g(x) :=


x, x < 1

−x+ 2, 1 ≤ x ≤ 2

x− 2 x > 2

In this case, the differential operator is Lf = f ′′

2
when f is in DL. The

inversion formula (2.2) would be

g(x) =

∫
R

Gα(x, y)(α− L)g(y)m(dy)

where m(dy) = 2dy, so the candidate to be ν is (α−L)g(y)2dy. The deriva-

tives of g, in the general sense, would be

g′(x) =


1, x < 1

−1, 1 < x < 2

1 x > 2

and the second generalized derivative is the measure −2δ1(dx) + 2δ2(dx).

This lead us to consider

ν(dy) = αg(y)1R\{1,2}(y)2dy + 2δ{1}(dy)− 2δ{2}(dy)

The corresponding computations show that (3.15) holds with the considered

measure ν.

Theorem 3.21. Consider a one-dimensional diffusion X. Consider the

function g : E → R such that

g(x) =

∫
I
Gα(x, y)ν(dy), (3.15)

with ν a signed measure over E . Assume that g satisfies the conditions

for Dynkin’s characterization (see Subsection 1.2.1). Suppose that Ji : i =
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1, . . . , N (N could be ∞) are subintervals of I, such that Ji ∩ Jj = ∅ if i 6= j

and

•
∫
Ji
ϕα(y)ν(dy) = 0 if there is some x ∈ I such that x < y for all y ∈ Ji,

•
∫
Ji
ψα(y)ν(dy) = 0 if there is some x ∈ I such that x > y for all y ∈ Ji.

Define S by

S = I \ ∪Ni=1Ji.

and Vα : I → R by

Vα(x) =

∫
S

Gα(x, y)ν(dy).

If ν(dy) ≥ 0 in S, and Vα ≥ g in C = ∪Ni=1Ji, then Vα is the value function

associated with the OSP, and S is the stopping region.

Remark 3.22. With the same arguments given in Remark 3.10 we obtain

the alternative representation for Vα, given in (3.8):

Vα(x) =

g(x) for x /∈ C,

ki1ϕα(x) + ki2ψα(x) for x ∈ Ji : i = 1 . . . N ;

where, denoting ai = inf Ji and bi = sup Ji

• ki1 = 0 and ki2 = g(bi)/ψα(bi) if there is not x ∈ I such that x < y for

all y ∈ Ji;

• k1 = g(ai)/ϕα(ai) and k2 = 0 if there is not x ∈ I such that x > y for

all y ∈ Ji;

• in the other cases

ki1 =
g(bi)ψα(ai)− g(ai)ψα(bi)

ψα(ai)ϕα(bi)− ψα(bi)ϕα(ai)
,

and

ki2 =
g(ai)ϕα(bi)− g(bi)ϕα(ai)

ψα(ai)ϕα(bi)− ψα(bi)ϕα(ai)
.

Proof. The strategy for the proof is to verify that Vα is the minimal α-

excessive function that dominates the reward function g, then, from Dynkin’s

characterization, follows that Vα is the optimal expected reward.
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By the definition of Vα, and taking into account that ν is a non-negative

measure in S, we conclude that Vα is an α-excessive function. Applying

Lemma 3.3 with Wα := Vα, we conclude that Vα(x) and g(x) are equal for

x ∈ S, which in addition to the hypothesis Vα(x) ≥ g(x) for all x ∈ Sc allow

us to conclude that Vα is a majorant of the reward. So far, we know

sup
τ
Ex
(
e−ατg(Xτ )

)
≤ Vα(x).

From Lemma 3.3 –in the first equality– we get

Vα(x) = Ex
(
e−αhSg(XhS )

)
≤ sup

τ
Ex
(
e−ατg(Xτ )

)
,

that proves the other inequality holds as well. From the previous equation

we also conclude that S is the stopping region.

Comparing Theorem 3.8 and Theorem 3.21, it should be emphasized that

the former gives a characterization of the solution and a method to find it,

while the latter is just a verification theorem, which of course, also suggests

a method to find the solution. However, Theorem 3.21 has less restrictive

hypothesis and, although we do not include it here, an algorithm to find the

continuation region may be developed, at least when the region in which the

measure ν is negative, is a finite union of intervals; in fact, Algorithm 3.1

would be a particular case of this algorithm when considering ν(dy) = (α −
L)g(y)m(dy).

3.5.1 Brownian motion with drift and g(x) = |x|

As in Subsection 3.3.1 we consider X to be Brownian motion with drift µ

and the reward function g(x) = |x|. This process has a Green function with

respect to the reference measure m(dx) = 2e2µxdx given by

Gα(x, y) =

w−1
α e−(γ+µ)xe(γ−µ)y, y ≥ x,

w−1
α e−(γ+µ)ye(γ−µ)x, y ≤ x.
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where γ =
√

2α + µ2 and the Wronskian is wα = 2γ. The differential opera-

tor is Lf(x) = µf ′(x) + f ′′(x)/2

For functions f in the domain of the extended infinitesimal generator we

would have

f(x) =

∫
E
Gα(x, y)(−Aαf(y))m(dy)

with −Aαg(x) = αf(x) − Lf(x). Suppose we can apply this formula to

f(x) = |x|, interpreting the derivatives in the extended sense of measures,

we would have

|x| =
∫
R∗
Gα(x, y)µ(dy)

with

µ(dy) = (−αy + µ)2e2µy1{y<0}(y)dy + 2δ{0}(dy) + (αy − µ)2e2µy1{y>0}(y)dy.

It can be checked that the previous formula actually holds. We can apply

Theorem 3.21. Assuming that the set S is of the form S = (−∞, x`)∪(xr,∞)

for some x` < 0 < xr, we need to find x`, xr such that
∫
S
Gα(x`, y)µ(dy) = −x`,∫

S
Gα(x`, y)µ(dy) = xr,

or what is the same 
∫

(x`,xr)
Gα(x`, y)µ(dy) = 0,∫

(x`,xr)
Gα(xr, y)µ(dy) = 0,

which is also equivalent to
∫

(x`,xr)
ϕα(y)µ(dy) = 0,∫

(x`,xr)
ψα(y)µ(dy) = 0.

(3.16)

It can be seen that these equations are equivalent with the ones found in

Subsection 3.3.1. When solving particular cases (with concrete parameter

values) it is easy to verify that the region found is indeed the optimal stopping

region.

We follow with some numerical examples. To do the numerical computa-

tions we have used the implementation in R, presented in Subsection 3.4.1

with minor changes.
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Figure 3.4: OSP for the standard BM and g(x) = |x|: g (black), V1 (gray,

when different from g).

Example 3.23. Consider the discount α = 1 and the drift µ = 0, solving

numerically the system of equations (3.16) we find x` ' −0.69264, xr '
0.69264, a graphic of the solution is shown in Figure 3.4.

Example 3.24. Now consider the same discount α = 1 but a positive drift

µ = 1, solving numerically the system of equations (3.16) we find x` '
−0.737, xr ' 1.373, a graphic of the solution is shown in Figure 3.5.

Example 3.25. Considering α = 1 and a negative drift µ = 3 we find

x` ' −3.158 and xr ' 1.037. Figure 3.6 shows the solution.

3.5.2 Example: Other non-differentiable reward

Consider the OSP with reward g : R→ R given by

g(x) =


x, x < 1,

−x+ 2, 1 ≤ x ≤ 2,

x− 2 x > 2.
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Figure 3.5: OSP for the BM with drift µ = 1 and g(x) = |x|: g (black), V1

(gray, when different from g).

This is the function already presented in the introduction of this section and

it satisfies (3.15) with ν given by

ν(dy) = 2αg(y)1R\{1,2}(y)dy + 2δ{1}(dy)− 2δ{2}(dy).

Consider the discount factor α = 1. The measure ν is negative in (−∞, 0) and

in {2}. Computing exactly in the first case, and by numerical approximation

in the second (by following a variant of Algorithm 3.1), we manage to find

two disjoint intervals J1 ' (−∞, 1/
√

2) and J2 ' (1.15, 2.85) that satisfy

the conditions of Theorem 3.21. For Vα, we have the expression given in

Remark 3.22, which considering ψα(x) = e
√

2αx and ϕα(x) = e−
√

2αx in the

particular case α = 1, renders2

V1(x) =



k1
2e
√

2x, x < 1√
2
,

x, 1√
2
≤ x ≤ 1,

−x+ 2, 1 < x ≤ 1.15,

k2
1e
−
√

2x + k2
2e
√

2x, 1.15 < x < 2.85,

x− 2, x ≥ 2.85;

with k1
2 = 1

e
√

2
' 0.26, k2

1 ' 3.96 and k2
2 ' 0.013. In Figure 3.7 we show the

2We approximate the roots.
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Figure 3.6: OSP for the BM with drift µ = −3 and g(x) = |x|: g (black), V1

(gray, when different from g). The second graphic is a zoom to appreciate

the smooth fitting.
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Figure 3.7: OSP for the standard BM and irregular reward: g (black), V1

(gray, when different from g).

reward function g and the value function V1.
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Chapter 4

Optimal stopping for

multidimensional continuous

Markov processes

4.1 Introduction

In this chapter we present results on optimal stopping for Markov processes

with continuous sample paths taking values in general state spaces. We

consider a standard Markov process, as presented in Definition 1.1, with the

additional assumption of having continuous sample paths. We remember that

the state space is an abstract topological semi-compact set E equipped with

the Borel σ-algebra E . The optimal stopping problem being considered, as in

the previous chapters, is to find the stopping time τ ∗ and the value function

Vα satisfying

Vα(x) = Ex
(
e−ατ

∗
g(Xτ∗)

)
= sup

τ
Ex
(
e−ατg(Xτ )

)
, (4.1)

where the supremum is taken over all stopping times.

By the discounted version of the Dynkin’s characterization, stated in Sub-

section 1.2.1, the value function Vα is the smallest α-excessive function dom-

inating the reward function g, while the optimal stopping time is the hitting
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time of the stopping region S given by:

S := {x ∈ E : Vα(x) = g(x)}.

Combining this with the fact that

x 7→
∫
E
f(y)Gα(x, dy)

is an α-excessive function if f : E → R is a non-negative function, we manage

to prove a verification theorem to test the solution of the OSP when the

reward function has a representation of the form:

g(x) =

∫
E
f(y)Gα(x, dy).

Results in Chapter 1 suggest that the class of functions having this represen-

tation is fairly large.

Optimal stopping problems in which the process is a multidimensional

diffusion (see Stroock and Varadhan, 1979) are a relevant particular case of

the processes considered in this chapter. The optimal stopping problem of a

multidimensional process is, in general, a hard issue, being the exception the

problems for which a closed solution is known –usually problems in which

the process and the reward function have certain type structure that allow

to reduce it to a one-dimensional problem.– One of the first work in this

direction was Margrabe (1978), in which the author provides an explicit

formula for the price of the right of changing an asset by another at the

expiration date of the contract or at a time that can be choose, all this in the

context of a Black-Scholes market. In the same line Gerber and Shiu (2006)

solve the problem of pricing American options on two stocks, where the prices

are driven by geometric Brownian motions. A generalization of this result

was provided in Fajardo and Mordecki (2006), considering Lévy driven stock

prices. In some sense, the work by Dubins et al. (1993) on optimal stopping

for the maximum of a Bessel process, can be seen as a problem regarding

multidimensional process, as the Bessel process itself has its origin in the

multidimensional Brownian motion. In the pricing of Russian options, Shepp

and Shiryaev (1993) deal with a two-dimensional diffusion; later, in Shepp

and Shiryaev (1994), the authors find the way of reducing the problem to a
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one-dimensional problem, obtaining an easier solution. An interesting object

to study, regarding optimal stopping of multidimensional processes, are the

contracts on indexes that are constructed by linear combinations of different

stock prices; similar to this is the problem considered in Hu and Øksendal

(1998). The recent paper on optimal stopping by Christensen and Irle (2011)

includes the treatment of multidimensional diffusions presenting a method

based on harmonic functions. Another work that considers multidimensional

processes is the Firth’s PhD thesis (Firth, 2005), in which the problem of

pricing multi-asset American options is studied.

4.2 Main results

We denote by hS the hitting time of the set S, defined by

hS := inf{t ≥ 0: Xt ∈ S}.

We start by stating our main theorem.

Theorem 4.1. Consider a standard Markov process X with continuous sam-

ple paths. Consider a reward function g : E → R such that there exists

f : E → R that satisfies

g(x) =

∫
E
f(y)Gα(x, dy) (x ∈ E).

Assume as well that function g satisfies the conditions for Dynkin’s charac-

terization (see Subsection 1.2.1). Consider S ∈ E such that: f(x) ≥ 0 for

all x ∈ S; and Vα : E → R defined by

Vα(x) :=

∫
S

f(y)Gα(x, dy),

satisfies

• Vα(x) ≥ g(x) for all x ∈ E \ S, and

• Vα(x) = g(x) for all x ∈ ∂S.

Then, S is the stopping region of the OSP, being hS the optimal stopping time

and Vα the value function.

117



Remark 4.2. This theorem is a generalization, to topological (including

multidimensional) spaces, of Theorem 2.3 in the case in which the inversion

formula (2.2) holds.

In the practical use of the previous theorem, one can think the function

f as αg − Ag with Ag as the infinitesimal generator of g. Before proving

the theorem, we state and prove a previous lemma, whose result we find

interesting in itself.

Lemma 4.3. Consider a standard Markov process X with continuous sample

paths. Let Wα : E → R be defined by

Wα(x) :=

∫
S

f(y)Gα(x, dy). (4.2)

and g : E → R be defined by

g(x) :=

∫
E
f(y)Gα(x, dy),

where f : E → R is some E -measurable function. If g(x) = Wα(x) for all

x ∈ ∂S, then, g(x) = Wα(x) for all x ∈ S. Furthermore, Wα satisfies

Wα(x) = Ex
(
e−αhSg(XhS)

)
. (4.3)

Proof. First observe that from the fact that g(x) = Wα(x) for all x ∈ ∂S it

follows that ∫
Sc
f(y)Gα(x, dy) = 0 (x ∈ ∂S), (4.4)

where Sc := E \ S. We can now move on to prove that g(x) = Wα(x) for

x ∈ S. To confirm this, consider the following equalities:

g(x) =

∫
E
f(y)Gα(x, dy)

=

∫
S

f(y)Gα(x, dy) +

∫
Sc
f(y)Gα(x, dy)

= Wα(x) +

∫
Sc
f(y)Gα(x, dy),

and note that we must prove that the second term on the right-hand side

vanishes. Given that
∫
Sc
f(y)Gα(x, dy) is FSc , in the notation of Lemma 1.3,

and by the application of this result, we are able to conclude that for x ∈ S∫
Sc
f(y)Gα(x, dy) = Ex

(
e−αhSc

∫
Sc
f(y)Gα(XhSc , dy)

)
.
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Bearing (4.4) in mind, the integral inside the expected value above on the

right-hand side vanishes, as XhSc is in ∂S. Therefore, the formula on the

right-hand side vanishes, thus completing the proof.

The validity of (4.3) is a direct consequence of Lemma 1.3, considering

that Wα = FS and taking into account that g(x) = Wα(x) for x ∈ ∂S.

Proof of Theorem 4.1. As in the proof for the one-dimensional case, this one

entails proving that Vα is the minimal α-excessive function that dominates

the reward function g. By Dynkin’s characterization, this implies that Vα is

the optimal expected reward.

By the definition of Vα, and taking into account that f is a non-negative

function in S, we deduce that Vα is an α-excessive function (see Subsec-

tion 1.1.3). Applying Lemma 4.3 with Wα := Vα, we get Vα(x) = g(x) for

x ∈ S, which in addition to the hypothesis Vα(x) ≥ g(x) for all x ∈ Sc, yield

that Vα is a majorant of the reward. So far, we have established that

sup
τ
Ex
(
e−ατg(Xτ )

)
≤ Vα(x).

By Lemma 4.3 we get

Vα(x) = Ex
(
e−αhSg(XhS)

)
≤ sup

τ
Ex
(
e−ατg(Xτ )

)
,

then, we conclude that the desired equality holds.

The following corollary of Theorem 4.1 provides a practical way of using

this result.

Corolary 4.4. Consider a standard Markov process X with continuous sam-

ple paths. Consider a reward function g : E → R that belongs to the domain

Dα of the extended infinitesimal generator associated with the α-killed process

and satisfying

• limt→∞Ex (e−αtg(Xt)) = 0 and
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• Ex
(∫∞

0
e−αs|Aαg(Xs)|ds

)
<∞.

Assume as well that function g satisfies the conditions for Dynkin’s char-

acterization (see Subsection 1.2.1). Suppose that S ∈ E is a set satisfying

Aαg(x) ≤ 0 for all x ∈ S and define Vα : E → R by:

Vα(x) :=

∫
S

(−Aαg(y))Gα(x, dy).

If

• Vα(x) ≥ g(x) for all x ∈ E \ S;

• Vα(x) = g(x) for all x ∈ ∂S;

then S is the stopping region of the OSP, being hS the optimal stopping time

and Vα the value function.

Proof. Since g is in the domain of the extended infinitesimal generator asso-

ciated with the killed process and the additional hypotheses we made about

g, we know that (1.5) holds, that is

g(x) =

∫
E
−Aαg(y)Gα(x, dy) (x ∈ E).

Therefore, we are in conditions to apply the previous theorem with f(y) :=

−Aαg(y) to complete the proof.

4.3 3-dimensional Brownian motion

Consider a three dimensional Brownian motion X starting from v (i.e. Xt =

v + Bt with {Bt} a three dimensional Brownian motion). The differential

operator of X for g ∈ C 2(R3) is given by

Lg(v) =
3∑
i=1

gi(v) +
1

2

3∑
i=1

gii(v)
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where gi and gii denote the first order and second order partial derivative

with respect to the i-st coordinate. The Green measure of X is given by

Gα(v, dw) =
c

‖v −w‖
e−
√

2α‖v−w‖dw.

for some constant c (see Pinsky, 1995, p.306).

Example 4.5. Consider the OSP, consisting in finding the stopping time τ ∗

such that, for every v ∈ R3

Ev

(
e−ατ

∗
g(Xτ∗)

)
= sup

τ
Ev

(
e−ατg(Xτ )

)
,

with g : R3 → R defined by

g(v) = ‖v‖2 = x2
v + y2

v + z2
v ,

where v is the vector (xv, yv, zv) in R3. For our particular reward function we

have Lg(v) = 3. It can be seen that g satisfies the hypothesis of Corollary 4.4

and −Aαg(v) = (α − L)g(v). We need to find the stopping region S, or

equivalently the continuation region C = R3 \ S. Observe that, in order to

verify the hypothesis of Vα(x) = g(x) in ∂S, we need C to fulfill∫
C
(α− L)g(w)Gα(v, dw) = 0 (4.5)

for all v ∈ ∂C. The symmetry of the problem suggests us to consider C as a

ball centred in (0,0,0). We need to find out the radius. This lead us to look

for r > 0 such that, considering C = {v : ‖v‖ < r} the equation (4.5) holds

for v : ‖v‖ = r. To simplify the computations we consider v = (0, 0, r), but

it is easy to see that this selection does not change the problem. Now we

solve the equation∫
{‖w‖<r}

1

‖v −w‖
e−
√

2α‖v−w‖(α‖w‖2 − 3)dw = 0.

Considering s = w − v the integral becomes∫
{s∈C′}

1

‖s‖
e−
√

2α‖s‖(α‖s‖2 + 2αrzs + αr2 − 3)ds.

where C ′ is the interior of a sphere with center in (0, 0,−r) and radius r.

We consider spherical coordinates (ρ, θ, φ), where ρ = ‖s‖ is the radius,
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θ = arccos(zs/ρ) is the inclination, and φ = arctan(ys/xs) is the azimuth. We

have zs = ρ cos(θ), and ds = ρ2 sin(θ)dρ dθ dφ; we obtain that the previous

integral is∫ 2π

0

dφ

∫ π

π/2

dθ

∫ −2 r cos(θ)

0

1

ρ
e−
√

2αρ(αρ2 + 2αrρ cos(θ) + αr2 − 3)ρ2 sin(θ)dρ.

and doing the computations we conclude that this is equal to

4πr3
(

3−
√

2α r − e−2
√

2α r(
√

2a r + 3)
)
.

In order to find the positive solution of the equation we need to solve

3−
√

2α r − e−2
√

2α r(
√

2a r + 3) = 0;

calling z =
√

2α r and doing computations we obtain the equivalent equation

(1− e−2z)z = (1 + e−2z)3;

multiplying by ez the previous equation it can be easily concluded that z is

a solution of

tanh(z) =
z

3
.

We conclude that the continuation region associated with the optimal stop-

ping is the sphere centered in (0,0,0) with radius r = z/
√

2α. This problem is

equivalent to the one solved in 2.4.6, since the process ‖X‖ is a 3-dimensional

Bessel process; in fact, the obtained solutions agree.

4.4 The ideas for a converse result

The main result of this chapter, Theorem 4.1, gives a number of sufficient

conditions on a certain function Vα in order to be the value function asso-

ciated with the OSP. We would like to find out when those conditions are

actually necessary.

For example, in the context of one-dimensional diffusions, we have Theo-

rem 3.8, which can also be written as follows:
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Theorem 3.8. (Alternative statement.) Consider a one-dimensional dif-

fusion X satisfying the corresponding assumptions. Assume that the reward

function g : I → R satisfy

g(x) =

∫
I
Gα(x, y)(α− L)g(y)m(dy).

Then: S is the stopping region and Vα is the value function for the OSP, if

and only if:

• Vα(x) =
∫
S Gα(x, y)(α− L)g(y)m(dy);

• (α− L)g(x) ≥ 0 for x ∈ S;

• Vα(x) = g(x) for x ∈ ∂S;

• Vα(x) ≥ g(x) for x ∈ C, (C := I \ S).

This alternative statement shows that for one-dimensional diffusions a

converse result holds.

We say that the process X has a Green function if there exist a measure

m over (E ,E ) and a function Gα(x, y), jointly measurable in x and y, such

that

Gα(x,H) =

∫
H

Gα(x, y)m(dy).

The measure m is called a reference measure and Gα(x, y) is the Green func-

tion. It is not an easy problem to determine whether a given process has

Green function. Nevertheless, this happens in the most important cases,

particularly in all the examples considered in this work. (see Blumenthal

and Getoor, 1968; Kunita and Watanabe, 1963; Dynkin, 1969).

The definition of infinitesimal generator L given for one-dimensional diffu-

sion also makes sense for standard Markov processes (see, for instance Revuz

and Yor, 1999). In fact, for functions in the domain DL of the infinitesimal

generator (and also for other functions) the following inversion formula holds:∫
E
Gα(x, y)(α− L)g(y)m(dy) = g(y). (4.6)

We say that the operator L is local if Lf(x) = Lg(x) provided that f = g

in a neighbourhood of x. This is the case when L is a differential operator
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(see Øksendal, 2003). In this situation we can extend the meaning of L, as

we did for one-dimensional diffusions.

Riesz decomposition states that any α-excessive function Vα can be rep-

resented by

Vα(x) =

∫
Gα(x, y)σ(dy) + h(x), (4.7)

where σ is a positive Radon measure and h is an α-harmonic function, which

under mild regularity conditions are unique. (see Kunita and Watanabe,

1963, Theorem 2, and Proposition 13.1).

It also can be seen, under the made assumptions, that if u is given by

u(x) :=

∫
f(y)Gα(x, dy) + h(x), (4.8)

and f is continuous at x, then (α− L)u(x) = f(x).

Consider then a standard Markov process X such that:

• has a Green function and the reference measure m(dx) has no atoms;

• the infinitesimal operator L is local;

• Riesz representation holds.

Consider a reward function g such that:

• satisfies (4.6);

• (α− L)g is a continuous function;

• satisfies the hypotheses for Dynkin’s characterization.

Under the made assumptions, if the solution to the OSP is given by the

stopping region S and the value function Vα we know that

• Vα = g in S (and also in ∂S);

• Vα ≥ g in C;

• (α− L)g is non-negative in S.

Therefore, if we could prove that

Vα(x) =

∫
S
(α− L)g(y)Gα(x, y)m(dy)
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we would have the desired converse result. We know that Vα is an α-excessive

function, then (4.7) holds for some measure σ. If σ(dy) is absolutely contin-

uous with respect to m(dy) we could express

Vα(x) =

∫
E
Gα(x, y)fσ(y)m(dy) + h(x),

where fσ is the Radon-Nikodim derivative of σ with respect to m. We also

know that Vα is α-harmonic in the continuation region, and then σ does not

charge that set (see Dynkin, 1969, Theorem 12.1). Therefore, we may choose

fσ to be 0 in the continuation region. Finally using the fact that L is a local

operator and g = Vα in S we obtain (assuming that S is an open set without

loss of generality)

(α− L)Vα(x) = (α− L)g(x) (x ∈ S).

On the other hand, if we may assume fσ to be continuous in S, we obtain,

by (4.8), that

(α− L)Vα(x) = fσ(x) (x ∈ S);

concluding that fσ = (α − L)g in S. We still need to prove that h in the

representation of Vα vanishes.

Although we do not have a complete proof of the fact that h vanishes,

we think it may be not difficult to prove it –perhaps with some additional

hypothesis–. The assumption we find hard to justify, but we conjecture its

validity, is the existence of fσ.

In the one-dimensional case the representation of the Green function as

the product of the fundamental solutions of (α − L)g(x) = 0 provides an

alternative way to obtain this same result.
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Chapter 5

Optimal stopping for strong

Markov processes with

one-sided jumps

5.1 Introduction

Through this chapter we consider standard Markov processes with only pos-

itive jumps or with only negative jumps. We denote by I its state space,

which we assume to be an interval of R with left endpoint ` and right end-

point r. We use the notation I>a to refer to the set I ∩{x : x > a}, and I≥a,
I<a, I≤a are used in the same sense.

In the case of positive jumps we study optimal stopping problems in which

the stopping region is of the form I≥x∗ (right-sided) and we develop the

theory in detail. In the case of negative jumps we consider optimal stopping

problems in which the stopping region is of the form I≤x∗ but we only state

the main theorem, the proofs being analogous to the previous case.

The most studied subclass of Markov processes with jumps is the class of

Lévy processes, which are processes with independent, stationary increments.

Comprehensive treatment of Lévy processes can be found in the books by

Bertoin (1996); Applebaum (2009); Kyprianou (2006); Sato (1999). In re-
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cent years, several works on optimal stopping for jump processes have been

developed, mostly regarding application to option pricing. In this direction

it can be remarked the books by Cont and Tankov (2004); Boyarchenko and

Levendorskĭı (2002a); Kyprianou et al. (2005), and the Surya’s PhD thesis

(Surya, 2007b). The book Boyarchenko and Levendorskĭı (2007) also includes

optimal stopping for Lévy processes.

Consider a standard Markov process X with state space I, an interval

of R. Denoting by ∆Xt the difference between Xt and Xt− (∆Xt = Xt −
limt→s− Xs), we consider processes satisfying ∆Xt ≥ 0 for all t, also called

spectrally-positive or processes satisfying ∆Xt ≤ 0 for all t, called spectrally-

negative. A spectrally-positive process satisfies the following condition: if at

some time t the process is in the state x and in a posterior time s the process

is in the state y, with y less than x, then for every z such that y < z < x

there exists an intermediate time such that the process is in the state z; in

other words the process do not have negative jumps.

The optimal stopping problem we consider in this chapter is the same

already considered in the previous ones: to find the stopping time τ ∗ and the

value function Vα satisfying

Vα(x) = Ex
(
e−ατ

∗
g(Xτ∗)

)
= sup

τ
Ex
(
e−ατg(Xτ )

)
, (5.1)

where the supremum is taken over all stopping times.

Particular cases of this problem –with specifics reward or with specifics

processes– were solved. About optimal stopping for spectrally one-sided pro-

cesses we may cite Avram et al. (2004); Chan (2005). Some works as Dar-

ling et al. (1972); Mordecki (2002); Boyarchenko and Levendorskĭı (2002b);

Novikov and Shiryaev (2004) solve optimal stopping problems expressing

its solution in terms of the maximum of the process. The works by Alili

and Kyprianou (2005) Christensen and Irle (2009) study the validity of the

smooth fit principle for jump processes. The article Mordecki and Salminen

(2007) provides a verification theorem for optimal stopping of Hunt processes

departing from the Riesz representation of α-excessive functions. Wienner-

Hopf factorization techniques are used by Surya (2007a) and Deligiannidis

et al. (2009) to characterize the solution of the OSP. The articles Pham (1997)

128



and Mordecki (1999) consider the problem of pricing American options for dif-

fusions with jumps. In the articles Kyprianou and Surya (2005) and Novikov

and Shiryaev (2007) are solved the problems with reward g(x) = (x+)n, and

g(x) = (x+)k : k > 0 respectively, giving its solution in terms of the roots of

the Appel polynomial. In the recent article by Christensen et al. (2012) the

authors characterize the solution of a general optimal stopping problem for

strong Markov processes using the characterization of α-excessive functions

as expected supremum.

The main theorem we present in this chapter has the following conse-

quence: Assume that:

• X is a spectrally positive standard Markov process.

• The reward function g satisfies

g(x) =

∫
I
−Aαg(y)Gα(x, dy) (x ∈ I).

• x∗ is a solution of

g(x∗) =

∫
I>x∗

Gα(x∗, y)(α− L)g(y)dy

such that

– for x ≥ x∗, −Aαg(y) ≥ 0 and

– Vα defined by

Vα(x) :=

∫
I>x∗
−Aαg(y)Gα(x, dy),

satisfies Vα(x) ≥ g(x) for x < x∗.

Then the optimal stopping problem is right-sided with optimal threshold x∗

and Vα is the actual value function. Note that this result is analogous to

Theorem 2.3, being the main differences that for one-dimensional diffusions:

• Gα(x, dy) = Gα(x, y)m(dy), where Gα(x, y) can be represented in terms

of ϕα and ψα; and

• −Aαg(y) = (α− L)g(y).
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As an application of the obtained results, we consider the optimal stop-

ping problem associated with the pricing of an American put option on a

spectrally-negative Lévy market finding a generalization of the results ob-

tained by Chan (2005).

At the end of the chapter we solve an OSP whose underlying process is a

diffusion with jumps, actually it is a Lévy-driven Ornstein-Uhlenbeck process.

The consideration of this process is motivated on prices of energy (see Benth

et al., 2008). Up to our knowledge, this is the first concrete optimal stopping

problem solved for a jump-process that is not a Lévy process.

5.2 Main results

We start with a useful lemma concerning the Green kernel of spectrally-

positive processes.

Lemma 5.1. Let X be a standard Markov process without negative jumps.

If z < x and H is a Borel set such that y < z for all y in H, then

Gα(x,H) = Ex
(
e−αhz

)
Gα(z,H),

in other words the ratio between Gα(x,H) and Gα(z,H) is independent of

H.

Proof. Since the process does not have negative jumps every path hits any

intermediate state to go from x to H. In other words, we know that for any

trajectory beginning from x and such that Xt ∈ H there exists some s < t

satisfying Xs = x∗; hence

Px(Xt ∈ H) =

∫ t

0

Px(Xt ∈ H|Xs = x∗)Px(hx∗ ∈ ds)

=

∫ t

0

Px∗(Xt−s ∈ H)Px(hx∗ ∈ ds).
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Using the previous formula we obtain that

Gα(x,H) =

∫ ∞
0

e−αtPx(Xt ∈ H)dt

=

∫ ∞
0

e−αt
(∫ t

0

Px∗(Xt−s ∈ H)Px(hx∗ ∈ ds)
)
dt

=

∫ ∞
0

(∫ ∞
s

e−αtPx∗(Xt−s ∈ H)dt

)
Px(hx∗ ∈ ds),

where in the last equality we have changed the integration order; for the

integral on the right-hand side we have∫ ∞
s

e−αtPx∗(Xt−s ∈ H)dt = e−αs
∫ ∞
s

e−α(t−s)Px∗(Xt−s ∈ H)dt

= e−αs
∫ ∞

0

e−αtPx∗(Xt ∈ H)dt

= e−αsGα(x∗, H),

obtaining that

Gα(x,H) = Gα(x∗, H)

∫ ∞
0

e−αsPx(hx∗ ∈ ds)

= Gα(x∗, H)Ex
(
e−αhx∗

)
to conclude the proof

Lemma 5.2. Consider a spectrally-positive standard Markov process X. As-

sume for all x ∈ I

g(x) =

∫
I
f(y)Gα(x, dy)

and suppose x∗ is such that

g(x∗) =

∫
I>x∗

f(y)Gα(x∗, dy).

Then for all x ∈ I>x∗ we have

g(x) =

∫
I>x∗

f(y)Gα(x, dy).
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Proof. First observe that, from the definition of g and the equation defining

x∗ we conclude that ∫
I≤x∗

f(y)Gα(x∗, dy) = 0. (5.2)

Using the definition of g we get

g(x) =

∫
I
f(y)Gα(x, dy)

=

∫
I≤x∗

f(y)Gα(x, dy) +

∫
I>x∗

f(y)Gα(x, dy).

It remains to be proven that, if x > x∗, the first term on the right-hand side

of the previous equation vanishes; to do this, consider x > x∗, by Lemma 5.1,

we deduce that

H 7→ Gα(x,H) and H 7→ Ex
(
e−αhx∗

)
Gα(x∗, H)

are the same measure in I≤x∗ ; therefore∫
I≤x∗

f(y)Gα(x, dy) = Ex
(
e−αhx∗

) ∫
I≤x∗

f(y)Gα(x∗, dy),

and vanishes by equation (5.2).

Theorem 5.3. Consider a spectrally-positive standard Markov process X,

and g̃ : I 7→ R such that

g̃(x) =

∫
I
f(y)Gα(x, dy). (5.3)

Assume x∗ is a root of

g̃(x∗) =

∫
I>x∗

f(y)Gα(x∗, dy), (5.4)

such that f(x) ≥ 0 for all x in I>x∗. Define

Vα(x) :=

∫
I>x∗

f(y)Gα(x, dy).

Consider the reward function g that satisfies the conditions for Dynkin’s char-

acterization (see Subsection 1.2.1), such that g(x) = g̃(x) for x ≥ x∗. If

Vα(x) ≥ g(x) for all x in I≤x∗, then the optimal stopping problem (5.1) with

reward function g and discount rate α is right-sided, x∗ is an optimal thresh-

old and Vα is the value function.
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Remark 5.4. This theorem is analogous to Theorem 2.3. Observe that

function f takes the part of (α − L)g and function g̃ is given in the Condi-

tion 2.1. The difference in this case is that Gα(x, dy) no necessarily has a

representation as Gα(x, y)m(dy) and there are not functions ϕα and ψα.

Remark 5.5. It is also interesting to compare this result with Theorem

3.1 in Mordecki and Salminen (2007). In that theorem there is a condition

Vα = g for x ≥ x∗, while we just need Vα(x∗) = g(x∗). This difference is a

consequence of the fact that in our theorem we consider spectrally-positive

processes (see Lemma 5.2).

Proof. By hypothesis f(y) is non-negative for y in I>x∗ , then we have that

Vα is an α-excessive function. By the application of Lemma 5.2 we deduce

that Vα(x) coincides with g̃(x) for x in I>x∗ , therefore also coincides with g.

By hypothesis we obtain that Vα dominates g in I≤x∗ . So Vα is a majorant of

g and, by Dynkin’s characterization of the value function, we conclude that

Vα(x) ≥ sup
τ
Ex
(
e−ατg(Xτ )

)
.

To conclude that the other inequality also holds, we apply Lemma 1.3 with

B := I>x∗ and FB := Vα obtaining that

Vα(x) = Ex

(
e−αhI>x∗Vα(XhI>x∗

)
)
.

Since the trajectories are right continuous, it gathers that XhI>x∗
belongs to

I≥x∗ , the region in which Vα and g coincide; therefore

Vα(x) = Ex

(
e−αhI>x∗ g(XhI>x∗

)
)
,

proving

Vα(x) ≤ sup
τ
Ex
(
e−ατg(Xτ )

)
.

We have proved the desired equality concluding that the optimal stopping

problem is right-sided with threshold x∗.

Corolary 5.6. Consider a strong Markov process X with no negative jumps

and a reward function g : E → R that belongs to the domain Dα of the ex-

tended infinitesimal generator associated with the α-killed process and satis-

fying
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• limt→∞Ex (e−αtg(Xt)) = 0 and

• Ex
(∫∞

0
e−αs|Aαg(Xs)|ds

)
<∞.

Assume as well that function g satisfies the conditions for Dynkin’s charac-

terization (see Subsection 1.2.1). Suppose that x∗ ∈ I is a solution of

g(x∗) =

∫
I>x∗

(−Aαg(y))Gα(x∗, dy),

such that Aαg(x) ≤ 0 for all x in I>x∗ . Define

Vα(x) =

∫
I>x∗

(−Aαg(y))Gα(x, dy).

If Vα(x) ≥ g(x) for all x ≤ x∗ then the OSP (2.1) is right-sided, x∗ is an

optimal threshold and Vα is the value function.

Proof. Observe that, by the assumptions on g, for all x in I, (1.5) holds,

that is,

g(x) =

∫
I
(−Aαg(y))Gα(x∗, dy).

So, all the hypotheses of the previous theorem are fulfilled with f(x) :=

−Aαg(x) and g̃ := g, this result leading to the thesis.

The analogous result of Theorem 5.3 for spectrally negative processes is

as follows:

Theorem 5.7. Consider a spectrally-negative standard Markov process X,

and g̃ : I 7→ R such that (5.3) holds. Assume x∗ is a root of

g̃(x∗) =

∫
I<x∗

f(y)Gα(x∗, dy),

such that f(x) ≥ 0 for all x in I<x∗. Define

Vα(x) =

∫
I<x∗

f(y)Gα(x, dy).

Consider the reward function g that satisfies the conditions for Dynkin’s char-

acterization (see Subsection 1.2.1), such that g(x) = g̃(x) for x ≤ x∗. If
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Vα(x) ≥ g(x) for all x in I≥x∗, then the optimal stopping problem (5.1) with

reward function g and discount rate α is left-sided, x∗ is an optimal threshold

and Vα is the value function.

5.3 Applications

5.3.1 American put option on a Lévy market

A particularly interesting subclass of the kind of processes with which we

are dealing in this chapter are the Lévy processes in R. A right continuous

with left hand limits process X is said to be a Lévy process provided that

for every s, t ≥ 0 the increment Xt+s −Xt

• is independent of the process {Xv}0≤v≤t and

• has the same law as Xs.

It can be seen, as a consequence of the definition, that every Lévy process

satisfy P(X0 = 0) = 1.

Lévy-Khintchine representation for Lévy processes in R states that every

Lévy process can be characterized by a triplet (a, σ,Π), with a ∈ R, σ ≥ 0

and Π a measure supported in R \ 0 that satisfies∫
R\{0}

min{x2, 1}Π(dx) <∞. (5.5)

The relation between the Lévy process and the characteristic triplet is the

fact that for every z ∈ iR

E
(
ezXt

)
= etΨ(z) (5.6)

where the so called characteristic exponent Ψ(z) is given by

Ψ(z) = az +
1

2
σ2z2 +

∫
R

(
ezx − 1− zx1|x|<1

)
Π(dx).

In this case we have

Xt = X0 + at+ σBt + Jt
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with

Jt =

∫
(0,t]×{|x|≥1}

xµJ(ω, dt, dx) +

∫
(0,t]×{|x|<1}

x
(
µX(ω, dt, dx)− ν(dt, dx)

)
.

The random measure µX used in the previous formula is defined by (see

Jacod and Shiryaev, 1987, Proposition 1.16)

µX(ω, dt, dx) =
∑
s

1{∆Xs(ω)6=0}δ(s,∆Xs(ω))(dt, dx) (5.7)

(∆Xt = Xt − limt→s−Xs), and ν, the compensator measure, is in this case

ν(dt, dx) = dtΠ(dx).

Lemma 5.8. Given a Lévy process {Xt} with characteristic triplet (a, σ,Π)

and a function h : R → R such that h is bounded, twice differentiable with

continuous and bounded derivatives. Then

h(x) =

∫
(0,∞)

e−αtEx (αh(Xt)− Lh(Xt)) dt

where Lh is given by

Lh(x) = ah′(x) +
σ2

2
h′′(x) +

∫
R

(
h(x+ y)− h(x)− 1|y|<1yh

′(x)
)

Π(dy).

(5.8)

Proof. We apply Ito’s formula (see Protter, 2005, p. 82) to f : f(s, x) =

e−αsh(x) and Yt = (t,Xt), obtaining that

e−αth(Xt)− h(X0) =

∫
(0,t]

−αe−αsh(Xs−)ds+

∫
(0,t]

e−αsh′(Xs−)dXs

+
1

2

∫
(0,t]

e−αsh′′(Xs−)σ2dt

+
∑

0<s≤t

e−αt (h(Xs)− h(Xs−)− h′(Xs−)∆Xs) . (5.9)

Before taking expectation in the previous formula we analyse the second and
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the last term on its right-hand side. For the second term we have∫
(0,t]

e−αsh′(Xs−)dXs =

∫
(0,t]

e−αsah′(Xs−)ds+

∫
(0,t]

e−αsσh′(Xs−)dBs

+

∫
(0,t]

e−αsh′(Xs−)dJs

=

∫
(0,t]

e−αsah′(Xs−)ds+

∫
(0,t]

e−αsσh′(Xs−)dBs

+

∫
(0,t]×{0<|y|<1}

e−αsh′(Xs−)y
(
µX(ω, dt, dy)− ν(dt, dy)

)
+

∫
(0,t]×{|y|≥1}

e−αsh′(Xs−)yµX(ω, dt, dy);

while for the last last term we have∑
0<s≤t

e−αt (g(Xs)− h(Xs−)− h′(Xs−)∆Xs)

=

∫
(0,t]×R∗

e−αs (h(Xs− + y)− h(Xs−)− h′(Xs−)y)µX(ω, ds, dy)

Going back to (5.9) with the previous computations in mind, we obtain that

e−αth(Xt)− h(X0) =

∫
(0,t]

e−αs
(
−αh(Xs−) + ah′(Xs−) +

σ2

2
h′′(Xs−)

)
ds

+

∫
(0,t]

e−αsσh′(Xs−)dBs (5.10)

+

∫
(0,t]×{0<|y|<1}

e−αsh′(Xs−)y
(
µX(ω, dt, dy)− ν(dt, dy)

)
+

∫
(0,t]×R∗

e−αs
(
h(Xs− + y)− h(Xs−)− h′(Xs−)y1{0<|y|<1}

)
µX(ω, ds, dy)

Now we take the expectation and then we take the limit as t→∞: Regarding

to the left-hand side, we have

lim
t→∞

Ex
(
e−αth(Xt)− h(X0)

)
= −h(x)

as h is bounded, e−αt → 0, and Ex (X0) = x. About the right-hand side in

(5.10), we analyse each term:

lim
t→∞

Ex

(∫
(0,t]

e−αs
(
−αh(Xs−) + ah′(Xs−) +

σ2

2
h′′(Xs−)

)
ds

)
=

∫
(0,t]

e−αsEx

(
−αh(Xs−) + ah′(Xs−) +

σ2

2
h′′(Xs−)

)
ds,
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since h, h′, and h′′ are bounded functions; the second term vanishes, as it is

an integral with respect to a martingale of a predictable integrable function;

with respect to the sum of the third and the fourth terms, observe that,

before taking the expectation and the limit, we can rewrite it as∫
(0,t]×R∗

e−αs
(
h(Xs− + y)− h(Xs−)− h′(Xs−)y1{0<|y|<1}

)
ν(ds, dy)

+

∫
(0,t]×R∗

e−αs (h(Xs− + y)− h(Xs−))
(
µX(ω, dt, dy)− ν(dt, dy)

)
,

which after taking the expectation and the limit, we will see, becomes∫
(0,∞)

e−αsEx

(∫
R∗

(
h(Xs− + y)− h(Xs−)− h′(Xs−)y1{0<|y|<1}

)
Π(dy)

)
dt

and we would have completed the proof.

We still have to justify

lim
t→∞

Ex

(∫
(0,t]×R∗

e−αs
(
h(Xs− + y)− h(Xs−)− h′(Xs−)y1{0<|y|<1}

)
ν(ds, dy)

)
=

∫
(0,∞)

e−αsEx

(∫
R∗

(
h(Xs− + y)− h(Xs−)− h′(Xs−)y1{0<|y|<1}

)
Π(dy)

)
dt,

and

lim
t→∞

Ex

(∫
(0,t]×R∗

e−αs (h(Xs− + x)− h(Xs−))
(
µX − ν

))
= 0.

To prove the former equality one can observe that, by Taylor formula and

because of the boundedness of h and h′, there exist a constant K such that

|h(Xs− + y)− h(Xs−)− h′(Xs−)y1{0<|y|<1}| < K min{1, y2};

then, considering (5.5), and ν(ds, dy) = Π(dy)ds, the equality follows by

application of Fubini’s theorem. The latter equality is a direct consequence

of

Mt =

∫
(0,t]×R∗

e−αs (h(Xs− + y)− h(Xs−))
(
µX − ν

)
being a martingale, fact that can be seen as an application of Theorem 1.33

in Jacod and Shiryaev (1987), since

Ht =

∫
(0,t]×R∗

(
e−αs (h(Xs− + y)− h(Xs−))

)2
ν(ds, dy)

138



is an integrable increasing process; to see that H is in fact integrable we need

to check that ∫
R∗

(h(Xs− + y)− h(Xs−))2 Π(dy)

is bounded, what can be done similarly as above, by observing that there

exist some constant K such that (h(Xs− + y)− h(Xs−))2 < K min{1, x2}.

Consider the optimal stopping problem (5.1) where {Xt}t≥0 is a Lévy

process with only negative jumps, i.e. Π is supported in (−∞, 0), and the

reward function g : R → R defined by g(x) = (K − ex)+. We remark that

this is the kind of optimal stopping problems one has to solve to price an

American put option.

First, we observe that the optimal stopping region is contained in the

set {x : g(x) > 0} = (−∞, ln(K)), where the reward function is g(x) =

K−ex. We may construct a function g̃ bounded and with continuous second

derivatives, the derivatives also bounded, such that g̃(x) = g(x) for x <

ln(K). Applying Lemma 5.8 to g̃ and using Fubini’s theorem we conclude

that (5.3) is fulfilled with f : f(x) = αg̃(x)−Lg̃(x). Assume x∗ < ln(K) is a

solution of

g̃(x∗) =

∫
(−∞,x∗)

(α− L)g̃(y)Gα(x∗, y)dy,

such that (α − L)g(x) ≥ 0 for x < x∗. According to Theorem 5.7, we have

that Vα, defined by

Vα(x) =

∫
(−∞,x∗)

(α− L)g̃(y)Gα(x, y)dy,

is the value function of the optimal stopping problem providing that Vα(x) ≥
g(x) for x > x∗. Even though the definition of Vα is given in terms of g̃, it is

in fact independent on the extension of g chosen, since, due to the restriction

on the jumps of the process, the measure Π is supported in (−∞, 0), so, for

x < ln(K)

(α− L)g̃(x) = αg(x)− ag′(x)− σ2

2
g′′(x)

−
∫

(−∞,0)

(
g(x+ y)− g(x)− y1|y|<1g

′(x)
)

Π(dy).
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Substituting in the previous equation g(x) by K − ex, we obtain that

(α− L)g̃(x) = αK − αex + aex +
σ2

2
ex

− ex
∫

(−∞,0)

(
1− ey + y1|y|<1

)
Π(dy)

= αK − (α−Ψ(1))ex.

Considering this previous equality, we have the representation for the value

function

Vα(x) =

∫
(−∞,x∗)

(αK − (α−Ψ(1))ex)Gα(x, y)dy.

For some financial applications it is assumed risk-neutral market, i.e. the

process e−rtXt is a martingale, what is equivalent to α − Ψ(1) = 0. Under

this assumption the value function would be

Vα(x) = αK

∫
(−∞,x∗)

Gα(x, y)dy,

obtaining formula (9.5.2) in (Chan, 2005, p. 207).

5.3.2 Lévy-driven Ornstein-Uhlenbeck with positive jumps

Let X be a Lévy-driven Ornstein-Uhlenbeck process; i.e. a process satisfying

the stochastic differential equation

dXt = −γXt−dt+ dLt, (5.11)

where {Lt} is a Lévy process. The consideration of this process is motivated

by its application to model electricity markets (see Benth et al., 2008). The

only solution of the equation (5.11) is (see Novikov, 2006)

Xt = e−γt
(∫ t

0

eγsdLs +X0

)
. (5.12)

In our example we consider Lt = σBt +Jt where {Jt} is a compound Poisson

process with rate λ and jumps with exponential distribution of parameter β;

i.e.

Jt =
Nt∑
i=1

Yi,
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with {Nt} a Poisson process with rate λ and Yi independent identically dis-

tributed random variables, with exponential distribution of parameter β.

Observe that there are only positive jumps.

We aim to solve the optimal stopping problem (5.1) with reward function

g : g(x) = x+, i.e. to find the stopping time τ ∗ and the value function Vα

such that

Vα(x) = Ex
(
e−ατ

∗
Xτ∗

+
)

= sup
τ

(
Ex
(
e−ατXτ

+
))
.

In order to solve this problem we apply Theorem 5.3 with g̃ : g̃(x) = x; hence

we need to find f satisfying (5.3). Consider the following equalities

e−αtXt −X0 =

∫
(0,t]

Xs−(−αe−αs)ds+

∫
(0,t]

e−αsdXs (5.13)

= −
∫

(0,t]

Xs−(α + γ)e−αsds+

∫
(0,t]

e−αsσdBs +

∫
(0,t]

e−αsdJs.

The expected value of the integral with respect to {Bs} vanishes. Concerning

the integral with respect to the jump process {Js}, we can write it in terms

of the jump measure µ -defined in (5.7)- as∫
(0,t]

e−αsdJs =

∫
(0,t]×R

e−αsyµ(ω, ds, dy)

=

∫
(0,t]×R

e−αsy(µ(ω, ds, dy)− ν(ds, dy)) +

∫
(0,t]×R

e−αsyν(ds, dy),

where ν, the compensator of µ, in this case is given by

ν(ds, dy) = λβ1{y>0}e
−βydyds.

From the application of Corollary 4.6 in Kyprianou (2006), it follows that

Mt =

∫
(0,t]×R

e−αsy(µ(ω, ds, dy)− ν(ds, dy))

is a martingale, then Ex (Mt) = Ex (M0) = 0. It follow that

Ex

(∫
(0,t]

e−αsdJs

)
=

∫
(0,t]×R

e−αsyν(ds, dy)

=

∫
(0,t]

∫
R+

e−αsyλβe−βydyds

=

∫
(0,t]

e−αs
λ

β
ds
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Taking the expectation in (5.13) we obtain that

Ex
(
e−αtXt

)
− x = −Ex

(∫
(0,t]

(
Xs−(α + γ)− λ

β

)
e−αsds

)
. (5.14)

Using (5.12) we compute Ex (Xt):

Ex (Xt) = Ex

(
e−γt

(∫ t

0

eγsdLs +X0

))
= e−γt

(
Ex

(∫ t

0

eγsσdBs

)
+ Ex

(∫ t

0

eγsσdJs

)
+ x

)
= (1− e−γt) λ

βγ
+ xe−γt,

concluding that limt→∞ e
−αtEx (Xt) = 0. With similar arguments we obtain

Ex (|Xt|) ≤ 1√
πγ

+ λt
β

. We can change the order between the expectation and

the integral on the right-hand side of (5.14). Taking the limit as t → ∞ in

(5.14) we obtain that

−x = −
∫ ∞

0

Ex

(
Xs(α + γ)− λ

β

)
e−αsds.

The previous equality can be written in terms of the Green kernel by

x =

∫
R

(
y(α + γ)− λ

β

)
Gα(x, dy) (5.15)

which is (5.3) with

f(y) = y(α + γ)− λ

β
. (5.16)

Now we move on to find the Green kernel of the process.

It can be seen that for the considered process there exist a function

Gα(x, y) such that Gα(x, dy) = Gα(x, y)dy. As we can not find Gα(x, y)

explicitly we compute its Fourier transform,

Ĝα(x, z) =

∫ ∞
−∞

eizyGα(x, y)dy

=

∫ ∞
0

e−αt
∫ ∞
−∞

eizy Px(Xt ∈ dy)dt

=

∫ ∞
0

e−αtEx
(
eizXt

)
dt.
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We need to compute Ex
(
eizXt

)
. In order to do that we apply Dynkin’s

formula to u(x) = eizx. We have

u′(x) = izu(x) and u′′(x) = −z2u(x).

and

Lu(x) = −γxizu(x) +
−z2

2
u(x) + u(x)λβ

∫ ∞
0

(
eizy − 1

)
e−βydy

= u(x)

(
−γxiz +

−z2

2
+

λβ

β − iz
− λ
)

= u(x)

(
−γxiz +

−z2

2
+

izλ

β − iz

)
.

By Dynkin’s formula we obtain that

Ex
(
eizXt

)
− eizx = Ex

(∫ t

0

u(Xs)

(
−γXsiz +

−z2

2
+

izλ

β − iz

)
ds

)
Denoting by h(x, t, z) = Ex

(
eizXt

)
= Ex (u(Xt)) we have

hz(x, t, z) = Ex (iXtu(Xt))

and the previous equation is

h(x, t, z)− eizx =

∫ t

0

−γzhz(x, s, z) +

(
−z

2

2
+

λiz

β − iz

)
h(x, s, z)ds. (5.17)

Instead of solving the previous equation we try to find directly Ĝα(x, z).

Remember that

Ĝα(x, z) =

∫ ∞
0

e−αth(x, t, z)dt.

Taking Laplace transforms in (5.17) we obtain that

Ĝα(x, z)− eizx/α =

∫ ∞
0

ds

∫ ∞
s

(
−γzhz(x, s, z)e−αt +

(
−z

2

2
+

λiz

β − iz

)
h(x, s, z)e−αt

)
dt

=
1

α

∫ ∞
0

(
−γzhz(x, s, z)e−αs +

(
−z

2

2
+

λiz

β − iz

)
h(x, s, z)e−αs

)
ds,

which is equivalent to

αĜα(x, z)− eizx = −γz∂Ĝα

∂z
(x, z) +

(
−z

2

2
+

λiz

β − iz

)
Ĝα(x, z)
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and to (
α +

z2

2
− λiz

β − iz

)
Ĝα(x, z) + γz

∂Ĝα

∂z
(x, z) = eizx. (5.18)

About the initial condition, observe that Ĝα satisfies

Ĝα(x, 0) =

∫ ∞
−∞

Gα(x, dy)

=

∫ ∞
0

e−αt
∫ ∞
−∞
Px(Xt ∈ dy)dt

=

∫ ∞
0

e−αtdt =
1

α
.

We solve explicitly (5.18): Let us start by solving the homogeneous equa-

tion (
α +

z2

2
− λiz

β − iz

)
H(z) + γzHz(z) = 0,

obtaining that

Hz(z)

H(z)
= −

(
α + z2

2
− λiz

β−iz

)
γz

,

and

log(H(z)) =
−α
γ

log(|z|) +
−1

4γ
z2 − λ

γ
log(β − iz),

then

H(z) = e−
1
4γ
z2 |z|−

α
γ (β − iz)−

λ
γ .

The solution of (5.18) is given by

Ĝα(x, z) =
H(z)

γ

∫ z

0

eiζx

ζH(ζ)
dζ

=
1

γ

(
e−

1
4γ
z2|z|−

α
γ (β − iz)−

λ
γ

)∫ z

0

eiζxe
1
4γ
ζ2 |ζ|

α
γ

ζ
(β − iζ)

λ
γ dζ (5.19)

for z 6= 0. Observe that H(z)→∞ as z → 0, being equivalent to |z|−
α
γ β−

λ
γ .

On the other hand ∫ z

0

eiζx

ζH(ζ)
dζ → 0 (z → 0)
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since the integral is convergent. We can use l’Hôpital rule to compute the

limit of Ĝα(x, z) when z goes to 0. We obtain that

lim
z→0

Ĝα(x, z) = lim
z→0

H(z)

γ

∫ z

0

eiζx

ζH(ζ)
dζ

= lim
z→0

1

γ

(
|z|−

α
γ β−

λ
γ

)∫ z

0

eiζx

ζH(ζ)
dζ

= lim
z→0

1

γ

∫ z
0

eiζx

ζH(ζ)
dζ

|z|
α
γ β

λ
γ

= lim
z→0

1

γ

eizxe
1
4γ
z2|z|

α
γ
−1(β − iz)

λ
γ

α
γ
|z|

α
γ
−1β

λ
γ

=
1

α

concluding that the solution we found satisfies the initial condition.

We have obtained an expression for Ĝα(x, z), which allow us, for particular

values of the parameters, to compute a discretization of Ĝα(x, z). From this

discretization, using the discrete Fourier transform, we find a discretization of

Gα(x, y) (we have written an R script to do this, see Appendix A) necessary

to solve equation (5.4) in Theorem 5.3.

Example 5.9 (β = α = γ = λ = 1). Consider the process already presented

with parameters β = α = γ = λ = 1. Equation (5.19) is

Ĝα(x, z) =
(
e−

1
4
z2 |z|−1(β − iz)−1

)∫ z

0

eiζxe
1
4
ζ2 |ζ|
ζ

(β − iζ)dζ

=
(
e−

1
4
z2z−1(β − iz)−1

)
(
i
√
πex

2

(β − 2x)

(
erf

(
x− iz

2

)
− erf(x)

)
− 2i(eizx+ 1

4
z2 − 1)

)

Remember that we are considering the reward function g(x) = x+. To

solve numerically equation (5.4) we use: g̃(x) = x; function f given in (5.16);

and the discretization of Gα(x, y) obtained numerically as described above.

The solution we found is x∗ = 1.1442. Figure 5.1 shows some points of the

value function, obtained numerically by the formula

Vα(x) =

∫ ∞
x∗

Gα(x, y)f(y)dy.
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Figure 5.1: OSP for the Ornstein-Ulhenbeck with jumps. g (continuous

line), V1 (circles).

We also include in the plot the reward function (continuous line). Observe

that for x < x∗ (in the continuation region) Vα > g and the hypothesis of

Theorem 5.3 is fulfilled.

Remarks 5.10. (i) This example gives, up to our knowledge, the first explicit

solution to an optimal stopping problem for a process with jumps that is not

a Lévy process. (ii) We find interesting in this example the way in which the

theoretical results, the Fourier methods and computational power gathers.

Example 5.11 (α = γ = 1 and λ = 0). In this example we consider the

process X already presented with parameter λ = 0, i.e. with no jumps and

the same reward function g(x) = x+. This problem was solved by Taylor

(1968).
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We have

Ĝα(x, z) =
(
e−

1
4
z2|z|−1

)∫ z

0

eiζx|ζ|e 1
4
ζ2

ζ
dζ

= i
√
πe−

1
4
z2z−1ex

2

(
erf

(
x− iz

2

)
− erf(x)

)
As in the previous example, we solve numerically equation (5.4) obtaining

that x∗ ' 0.5939. Figure 5.2 shows some points of the value function obtained

numerically by the formula:

Vα(x) =

∫ ∞
x∗

Gα(x, y)f(y)dy;

we also include in the plot the reward function (continuous line) to show that

in the stopping region they coincide and also to verify that Vα is a majorant

of g (hypothesis of Theorem 5.3). The obtained threshold is in accordance

with the result obtained by Taylor.
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Figure 5.2: OSP for the Ornstein-Ulhenbeck process. g (continuous line),

V1 (circles).
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Appendix A

Numerical method to compute

Gα(x, y)

In this section we show how to use Fourier methods to find a numerical ap-

proximation of the Green function. In our approach it is completely necessary

to know Gα(x, y) in order to solve concrete optimal stopping problems. We

remember the discrete Fourier transform of the vector (v0, . . . , vn−1) is the

vector (w0, . . . , wn−1) such that

wk =
n−1∑
j=0

vje
−i2π j

n
k. (A.1)

As we have seen in the examples, sometimes we do not know the Green

function Gα(x, y) but we can find the transformed function

Ĝα(x, z) =

∫ ∞
−∞

eizyGα(x, y)dy.

To recover Gα(x, y) from Ĝα(x, z) we have

Gα(x, y) =
1

2π

∫ ∞
−∞

e−izyĜα(x, z)dz.

Departing from a discrete vector
(
Ĝα(x, z0), . . . , Ĝα(x, zn−1)

)
we can use

the discrete Fourier transform to find an approximation ofGα(x, y0), . . . , Gα(x, yn−1).
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To do this observe that, assuming that the integral is convergent and with A

sufficiently large we have∫ ∞
−∞

e−izyĜα(x, z)dz '
∫ A/2

−A/2
e−izyĜα(x, z)dz

' A

n

n−1∑
j=0

e−izjyĜα(x, zj)

where zj = −A
2

+ jA
n
. Consider yk = 2π k

A
; we have

Gα(x, yk) '
1

2π

A

n

n−1∑
j=0

e−izjykĜα(x, zj)

' 1

2π

A

n

n−1∑
j=0

e−i(−
A
2

+jA
n

)(2π k
A

)Ĝα(x, zj)

' 1

2π

A

n
eiπk

n−1∑
j=0

e−i2π
j
n
kĜα(x, zj)

From equation (A.1), considering vj = Ĝα(x, zj), for j = 0, . . . , n − 1, we

have

Gα(x, yk) '
1

2π

A

n
eiπkwk

for k = 0, . . . , n − 1, where (w0, . . . , wn−1) is the discrete Fourier transform

of (v0, . . . , vn−1)
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