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Abstract

This thesis discusses limit theorems for density dependent families of continuous
time Markov chains and their application to the stochastic analysis of large scale
cloud computing environments and data centers. On the purely theoretical side, we
review the classic functional strong law of large numbers and central limit theorem
due to Kurtz, which characterize the asymptotic behavior of density dependent
families in terms of their drift. In the case of the central limit theorem we provide
extensions in two directions: to consider small order perturbations in the transition
rates of the family and non-differentiable drifts. The classic theorems and the latter
extensions are used to study the dynamic right sizing of capacity in large scale
cloud environments and data centers, aimed at the adjustment of this capacity to
an uncertain workload. Under a central queue scheme and Markovian assumptions,
we design a policy that eliminates queueing almost completely, at the expense of a
slight over-provisioning; if ρ the traffic intensity, then the over-provisioning scales
as O(√ρ) when ρ→∞. In this sense our policy automatically adjusts the system’s
capacity according to the well-known square root staffing rule.

Key words: Markov chain, strong law of large numbers, fluid limit, central limit
theorem, diffusion approximation, queueing theory, heavy traffic, feedback control,
cloud computing, data center, auto-scaling.

Resumen

En esta tesis se estudian teoremas ĺımite para familias de cadenas de Markov
de tiempo continuo, aśı como su aplicación al análisis estocástico de ambientes tipo
cloud y data centers. En un comienzo se presentan resultados clásicos debidos a
Kurtz, que caracterizan el comportamiento asintótico de estas familias a partir de
su drift; a saber, una ley fuerte de grandes números y un teorema central del ĺımite,
ambos funcionales. En el último caso obtenemos extensiones en dos direcciones:
considerando perturbaciones de pequeño orden en las tasas de transición de la familia
y drifts no diferenciables. Los teoremas clásicos y las extensiones anteriores se
emplean para estudiar el ajuste dinámico de la capacidad de cómputo de ambientes
tipo cloud y data centers de gran escala, orientado a ajustar la capacidad de cómputo
a una demanda incierta. Utilizando un esquema de cola centralizada y bajo hipótesis
Markovianas, diseñamos una poĺıtica que evita el encolado de tareas a expensas de un
pequeño sobre dimensionamiento de la capacidad de cómputo; si ρ is la intensidad
de tráfico, entonces la capacidad ociosa escala como O(√ρ) cuando ρ → ∞. En
este sentido nuestra poĺıtica ajusta automáticamente la capacidad de cómputo del
sistema según el conocido criterio de la ráız cuadrada.

Palabras clave: cadena de Markov, ley furte de los grandes números, ĺımite fluido,
teorema central del ĺımite, difusión, teoŕıa de colas, control automático, heavy traffic,
computación en la nube, data center, auto-scaling.
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Introduction

In spite of their simple structure, Markov chains can be used to describe the
behavior of a wide variety of random phenomena evolving in time, and because of
this they have been extensively used in applied probability along the years. For
instance, in the study of epidemics, a vector valued Markov chain can be used to
describe how the number of infected and immune people evolve over time. Another
example, from the field of chemistry, is the study of chemical reactions, where the
state space of the Markov chain has vectorial nature as well, and the coordinates
represent the amount of reactants and products at a given time.

An application that is more relevant to the scope of this thesis is the study of
computing systems, which belong to the much broader class of queueing systems;
the reader may find a classical study of the latter objects in [18, 19]. Within the
framework of queueing theory, the simplest model of a computing system is a first-
come-first-served queue with a single server. In this model, requests requiring to
perform a certain task or job arrive sequentially to the system and are stored in
the queue, where they wait to be processed at the server, in order of arrival; some
relevant parameters are the arrival rate of job requests, the service rate of jobs and
the quotient of these two, the traffic intensity or workload that the system faces.
Considering a number of servers that is greater than one, we may model the behavior
of a larger class of computing systems, and if we moreover let the number of servers
change over time, then we may study the behavior of modern data centers and cloud
computing environments.

Under suitable hypothesis, the behavior of computing systems may be described
using continuous time Markov chains. Usually, the relevant questions about the
performance of computing systems concern their typical or stationary behavior, and
in the Markovian framework these questions can be formulated in terms of the
invariant distribution of the chain. Unfortunately, an explicit computation of this
distribution is usually not possible, especially when the dimension of the state space
is higher than one; solving the balance equations of the Markov chain is in general
prohibitively involved. This is the situation when the number of servers changes over
time, here the state of the chain must store information about both the number of
tasks and servers in the system and thus we have a bidimensional state-space.

In order to overcome this hurdle, a standard methodology is to let the arrival rate
of jobs approach infinity, after an adequate normalization this results in a sequence of
Markov chains that converges to a process which is sometimes easier to analyze; some
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of the first works to embrace this approach are [5, 15]. This procedure is especially
justified in the large scale context of modern data centers: with facilities that may
reach the 60 Hectare of size, the equivalent of 110 football pitches. Depending on
the type of normalization that we adopt, the result is a law of large numbers or a
central limit theorem. In the first case, the limit process is deterministic and solves
an ordinary differential equation (ODE), which arises naturally from the transition
rates of the Markovian model. This sheds light on the macroscopic behavior of the
computing system, nevertheless it removes all stochasticity, which warrants taking
a closer look. To achieve this, we adopt a different normalization and in this case
the process that we see after taking the limit is a diffusion, that solves a stochastic
differential equation (SDE). The stationary distribution of this process may be used
to estimate the typical behavior of the system that we are modeling. The quality
of the approximations that derive from these limit procedures may be judge by
numerical comparisons, but in any case this methodology provides a valuable insight
on the asymptotic behavior of the metrics that characterize the system, and their
relative orders of magnitude.

The technical name for the sequences of continuous time Markov chains that arise
when we consider increasing arrival rates approaching infinity is density dependent
families, and the classical limit theorems in this setting are due to Kurtz; the reader
may find them in [8, 20–22]. In this work we review these theorems, providing de-
tailed proofs, with the intention of using them in the analysis of computing systems
where the number of servers is being dynamically right sized for an improved perfor-
mance. Nevertheless, the fact that some of these systems do not fit the hypothesis
of the latter theorems motivates us to develop extensions, particularly in the case
of the central limit theorem. Afterwards, we propose feedback control rules to right
size the capacity of computing systems, and use these extensions to assess their per-
formance, elucidating the minimum over-provisioning, in terms of idle servers, that
ensures virtually none queueing delay to customers.

Contributions of this work

In the classical theorems due to Kurtz, the limit behavior of density dependent
families is characterized by their drift: a vector field that is constructed using the
intensities of the chains in the family. Indeed, the limit process in the law of large
numbers, called fluid limit, is deterministic and solves an ODE whose field is the
drift. Moreover, in the central limit theorem the limit is a diffusion, which solves a
SDE that may be written in terms of the drift’s Jacobian matrix.

Naturally, the hypothesis of the last theorem require the drift of the family to
be smooth. One of the contributions of this work is a central limit theorem, around
an equilibrium point of the fluid dynamics, for density dependent families whose
drift is not differentiable at the latter point. This is an important result, because
central limit theorems around globally asymptotically stable fluid equilibriums are
especially useful for estimating the steady-state behavior of computing systems.
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Another contribution of this work is an extension of the classical theorems to
families whose elements may display small order perturbations in their transition
rates. Kurtz had already considered perturbed intensities in [22], but in his work
the perturbations disappear both in the fluid and diffusion scale. The kind of per-
turbations that we consider in this work disappear in the fluid scale as well, however
they give rise to a new term in the SDE that appears in the diffusion scale.

Finally, this work proposes a feedback control rule designed to right size the
capacity of computing systems with a centralized queue. Denoting by ρ the traffic
intensity that the system faces, this rule achieves virtually zero queueing delay at
the expense of an average over-provisioning of O(√ρ) idle servers. Thus, our rule
automatically tracks the Halfin-Whitt regime, which was originally described in [14].

Organization of the thesis

We begin Chapter 1 specifying the mathematical model of a computing system
that we will use throughout the thesis. Afterwards, we use a traditional example,
the infinite-server queue, to illustrate the model and also some of the ideas that give
birth to the theorems of the following chapter.

In Chapter 2 we define density dependent families of continuous time Markov
chains and we review the classical limit theorems due to Kurtz. Here we provide a
detailed proof of the law of large numbers, but we do not give a full proof of the
central limit theorem to avoid repeating some of the arguments that will appear
in the next chapter, where we provide extensions to this theorem. However, we
outline the proof of the central limit theorem due to Kurtz, and we point out some
differences with respect to the proofs that will appear in Chapter 3.

In Chapter 3 we extend the central limit theorem of Chapter 2 in two different
directions, as it was described in the contributions section of this introduction. We
provide full proofs of these theorems, and afterwards we discuss the problem of
finding the stationary distribution of some switched diffusions, which arise when we
consider the limit of a density dependent family whose drift is not differentiable.

The application of the latter theorems is illustrated in Chapter 4. Here we con-
sider the problem of right sizing the capacity of computing systems and we provide
several control rules with this objective in mind. The latter policies ultimately derive
in the rule that was announced in the contributions section, which automatically
tracks the Halfin-Whitt regime.

Finally, conclusions appear in Chapter 5, and additional material for the reader
is provided in the appendices. Namely, Appendix A is concerned with the topology
of Skorohod spaces and the weak convergence of processes that take values there.
Appendix B contains limit theorems for the Poisson process. Appendix C refers
to Markov processes and their characterization by means of semigroups and their
infinitesimal generators. Appendix D concerns Itô calculus and stochastic differential
equations. Finally, Appendix E contains the proofs of some useful propositions.
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Comments on notation

In general we will consider a probability space (Ω,F ,P) and we will use the
term almost sure instead of the measure theoretic terminology P-almost everywhere.
Whenever we say that some property holds almost everywhere, this will mean that
the property holds outside of a subset of Rd that is null with respect to the Lebesgue
measure, in the sense that it is contained in a set of measure zero. In addition, we
will adopt the following notation.

a.s.−−→ almost sure convergence
P−−→ convergence in probability
Lp−−→ convergence in Lp(Ω)
⇒ convergence in distribution
E expectation
V variance
σ(A) σ-algebra generated by A

We will usually consider stochastic processes on Rd. The symbol || · || will denote
any norm in Rd, the choice of the norm will not matter in general; in the few cases
where it matters we will specify the norm. We will further use the next notation.

B(Rd) measurable and bounded real functions

C(Rd) continuous real functions

Cb(Rd) continuous and bounded real functions

C0(Rd) continuous real functions that vanish at infinity

Ck
c (Rd) k times continuously differentiable real functions with compact support

C∞c (Rd) infinitely differentiable real functions with compact support

x+ max(x, 0)
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Notation

qkx,y = kβkk(y−x)(x).

βkl (x) = γl(x) + δkl (x).

F (x) =
∑

l∈D
lγl(x) (drift).

Gk(x) =
∑

l∈D
lδkl (x) (perturbing drift).

Σk(t) =
∑

l∈D

l

k
Yl

(∫ t

0
kβkl (Xk(τ))dτ

)
.

Xk(t) = Xk(0) + Σk(t) +
∫ t

0
F (Xk(τ))dτ +

∫ t

0
Gk(Xk(τ))dτ.

x(t) = x(0) +
∫ t

0
F (x(τ))dτ (fluid limit).

Zk(t) =
√
k[Xk(t)− x(t)].

Uk(t) =
√
kΣk(t).

δk(t) =
∫ t

0

√
k [Gk(Xk(τ)) +Rτ (Xk(τ))] dτ.

Zk(t) = Zk(0) + Uk(t) + δk(t) +
∫ t

0
∂F (Zk(τ))dτ.

U(t) =
∑

l∈D
lWl

(∫ t

0
γl(x(τ))dτ

)
.

Z(t) = Z(0) + U(t) +
∫ t

0
∂F (Z(τ)) +G(x(τ))dτ.

dZt = [∂F (Zt) +G(x(t))]dt+BtdWt (diffusion approximation).
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Chapter 1

Modeling computing systems

1.1 Queueing system model

The model of a computing system that we will adopt falls into the framework of
queueing theory, it comprises a single dispatcher, with a centralized queue, and a
pool of server instances; this is illustrated in Figure 1.1. In this model jobs arrive to
the dispatcher sequentially, where they are sent to an idle server unless all servers
are busy; in the latter case jobs are queued in order of arrival and wait until some
server becomes available. After receiving service, jobs leave the system.

...

(a) Since all servers are busy, jobs must
be queued at the dispatcher.

...

(b) Arriving jobs are immediately dis-
patched to one of the idle servers.

Figure 1.1: Model of a computing system consisting of a single dispatcher with a centralized
queue and a pool of servers. The queue is represented as a rectangular shape, the dispatcher is the
crossed circle, servers are the white circles and jobs are depicted as black circles.

In this work job arrivals will be triggered by a Poisson process of intensity λ jobs
per second, equivalently inter-arrival times will be independent and exponentially
distributed with mean 1/λ seconds. The service time of jobs is the processing time
that they require from servers, these times will be assumed to be independent and
exponentially distributed as well, with mean 1/µ seconds. A relevant parameter is
the traffic intensity or workload that the system faces, which is defined as the ratio
ρ = λ/µ between the mean service time and the mean inter-arrival time.
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1.2 The infinite-server queue

In order to illustrate the methodology that we will use, we begin with a simple
example: the infinite-server queue; in this queuing system a dedicated server is
summoned upon the arrival of a new query, and this server leaves the system after
processing the new job. Hence, the number of servers always matches the number of
requests, and in particular there is no need to maintain a queue. Since the number
of servers and jobs is the same, the behavior of this system can be characterized
using the birth-death process depicted in Figure 1.2, which describes the evolution
of the number of jobs in the system, or equivalently the number of servers. Note
that the service time of a single job is exponential of parameter µ, thus when there
are n tasks in the system, the time until one of them is finished is the minimum of
n exponentials of parameter µ, which is exponential of parameter nµ.

0 1 · · · n− 1 n · · ·

λ λ

µ nµ

Figure 1.2: Birth-death process describing the number of jobs in an infinite-server queue.

Standard computations show that this birth-death process is ergodic. Further-
more, after writing the balance equations of the chain, it is easy to check that the
stationary distribution π is Poisson of parameter ρ. In other words, the steady-state
probability that there are exactly n jobs in the system is

π(n) = ρne−ρ

n! ∀ n ≥ 0.

In particular, the mean and variance of the number of jobs both are equal to ρ in
the steady-state.

The stationary distribution of the infinite-server queue can be easily computed
from the chain’s balance equations. However, in many other cases this is not pos-
sible and we must resort to an asymptotic analysis by means of limit theorems.
Moreover, even in the present example, the limit theorems that we will see may help
us characterize the transient behavior of the system.

1.2.1 Strong law of large numbers

In order to derive these theorems, in the context of the infinite-server queue,
consider two independent Poisson processes with unitary intensity Na and Nd, de-
fined over the same probability space (Ω,F ,P). Also, consider a deterministic initial
condition X(0) ≥ 0, and let X be a process such that

X(t) = X(0) +Na(λt)−Nd
(∫ t

0
µX(τ)dτ

)
∀ t ≥ 0. (1.1)
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Such a process exists, is Markov and also unique, as it is shown in [8, Chapter 6.4].
Furthermore, when the system’s initial occupation is X(0) jobs, this process has the
same infinitesimal generator as the chain represented in Figure 1.2; this fact is also
proved in [8, Chapter 6.4] and is in line with one of the three characterizations of
continuous time Markov chains that are given in [29, Chapter 2.6].

An interpretation of equation (1.1) is that the process Na triggers job arrivals,
while the process Nd represents departures from the system; note that the latter
process can only increase, to indicate that a departure occurs, when the number of
pending requests X(t) is greater than zero.

It is convenient to consider the centered processes Yi(t) = Ni(t)− t, rather than
the processes Ni themselves. We will also consider the field F : R −→ R such that

F (x) = λ− µx, (1.2)

which represents the mean drift away from the state x in the chain of Figure 1.2; not
in vain this map is referred to as the drift of the chain. Using these new definitions,
we may rewrite equation (1.1) as follows.

X(t) = X(0) + Ya(λt)− Yd
(∫ t

0
µX(τ)dτ

)
+
∫ t

0
F (X(τ)) dτ ∀ t ≥ 0. (1.3)

Hence, X may be regarded as the solution to a stochastically perturbed version
of the initial value problem ẋ = F (x). In the large scale, when the traffic intensity
ρ approaches infinity, and under an adequate normalization, we will see that the
stochastic perturbations vanish.

To this purpose, consider a scale parameter k ≥ 1 and a sequence of infinite-
server queues X̂k, each with job arrival rate kλ; we are keeping the service rate µ
fixed, and thus the workload kρ approaches infinity. All these processes may be
constructed over (Ω,F ,P) in such a way that they satisfy the equations

X̂k(t) = X̂k(0) + Ya(kλt)− Yd
(∫ t

0
µX̂k(τ)dτ

)
+
∫ t

0
kλ− µX̂k(τ)dτ

= X̂k(0) + Ya(kλt)− Yd
(∫ t

0
µX̂k(τ)dτ

)
+
∫ t

0
kF

(
X̂k(t)
k

)
dτ ∀ t ≥ 0.

The steady-state mean kρ of X̂k increases to infinity as k → ∞, and thus we must
resort to some kind of normalization if we want to see a nondegenerate limit. A
natural choice is to consider the processes Xk = X̂k/k, which have the same mean
as the original process X. These processes satisfy the equations

Xk(t) = Xk(0) + 1
k

[
Ya(kλt)− Yd

(∫ t

0
kµXk(t)t

)]

+
∫ t

0
F (Xk(τ)) dτ ∀ t ≥ 0.

(1.4)

According to the strong law of large numbers for the Poisson process, provided in
Appendix B, the second term in the right-hand side of the previous equation should
vanish in the limit. Therefore, it is reasonable to expect that the processes Xk will
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converge to a deterministic process solving the initial value problem ẋ = F (x). More
precisely, if we consider some initial condition x0 ≥ 0 and the solution x to the latter
ODE, starting at x0, then we have the following result.

Theorem 1.2.1. Assume that Xk(0)→ x0 as k →∞, then

sup
t∈[0,T ]

|Xk(t)− x(t)| a.s.−−→ 0 ∀ T ≥ 0.

We defer the proof of this strong law of large numbers until Chapter 2, where
in fact we will prove a more general result. For now we provide the reader some
simulations that advocate the veracity of our claim, these appear in Figure 1.3.

0 2 4 6 8 10 12 14 16 18 200

5

10

15

t

X
k

k = 1
k = 10
k = 100
x(t)

Figure 1.3: Paths of the processes Xk converging uniformly to x over a finite interval of time.

Note that the limit process x, usually referred to as fluid limit, solves an ODE
that arises naturally from the drift of the chain:

ẋ = λ− µx. (1.5)

As Figure 1.3 shows, this equation captures both the steady-state and transient
behavior of the infinite-server queue, in the macroscopic scale.

If the number of requests is regarded as a real-valued variable, which makes sense
in a large scale regime, then equation (1.5) represents a flow conservation law: the
rate of change in the number of jobs equals the difference between the arrival rate
of requests and their departure rate.

1.2.2 Central limit theorem

The normalization Xk = X̂k/k, that we adopted above, results in all the stochas-
ticity vanishing as k → ∞, leaving us with a deterministic limit. The rationale is
that the standard deviation of the process X̂k, in the steady-state, is of order

√
k,

18



and thus normalizing by k causes stochastic fluctuations to disappear after tak-
ing the limit. The latter observation suggests that in order to recover some of the
stochasticity, we could consider the processes Zk =

√
k(Xk−x), which represent the

fluctuations of Xk around the fluid limit x, amplified by a factor of
√
k. Since the

standard deviations of the processes Xk are of order 1/
√
k, multiplication by

√
k

should compensate for the effect of our previous normalization.

If we write equation (1.5) in integral form, subtracting the resulting expression
from equation (1.4), and multiplying by

√
k, we see that

Zk(t) = Zk(0) + 1√
k

[
Ya(kλt)− Yd

(∫ t

0
kµXk(t)t

)]

+
∫ t

0

√
k [F (Xk(τ))− F (x(τ))] dτ ∀ t ≥ 0.

It is convenient to denote the middle term in the right-hand side by Uk(t). Using
this notation, and since F is an affine transformation, the above equation becomes

Zk(t) = Zk(0) + Uk(t)−
∫ t

0
µZk(τ)dτ ∀ t ≥ 0. (1.6)

It is possible to show that the process below is the solution to equation (1.6); details
are given in Chapter 2 in a more general context.

Zk(t) = Zk(0) + Uk(t)−
∫ t

0
µe−µ(t−τ) [Zk(0) + Uk(τ)] dτ ∀ t ≥ 0. (1.7)

A right-continuous function with left-hand limits is called a càdlàg function,
and the space of real-valued càdlàg functions that are defined on [0, T ] is denoted
DR[0, T ] when it is endowed with the Skorohod topology; the main properties of this
space are reviewed in Appendix A. The above equation (1.7) determines a mapping
φ : DR[0, T ] −→ DR[0, T ] such that Zk = φ(Zk(0) + Uk). Furthermore, this map is
continuous, as we will see in Chapter 2. Therefore, the continuous mapping theorem
tells us that if Zk(0) + Uk had a limit in distribution, then the processes Zk would
have a limit in distribution as well.

As a matter of fact, if Zk(0) → Z(0) as k → ∞, for some constant Z(0) ∈ R,
then the processes Uk converge weakly in DR[0, T ]. More precisely, if we let Wa

and Wd be independent standard Wiener processes, then the limit in distribution of
these processes is

U(t) = Wa(λt)−Wd

(∫ t

0
µx(τ)dτ

)
. (1.8)

A detailed proof of this fact will be given in Chapter 3. For now we only tell the
reader that the central limit theorem for the Poisson process, which can be found
in Appendix B, will play an important role in the proof.

Returning to the processes Zk, if we define Z = φ(Z(0) +U), then the condition
Zk(0)→ Z(0) as k →∞ implies Zk ⇒ Z in DR[0, T ]; where the process Z may also
be regarded as the solution to the implicit integral equation

Z(t) = Z(0) + U(t)−
∫ t

0
µZ(τ)dτ ∀ t ≥ 0. (1.9)

19



As explained in Appendix A, convergence in DR[0, T ] for all T ≥ 0 implies conver-
gence in DR[0,∞). Since the time interval [0, T ] that we considered above is generic,
this observation yields the following limit in distribution.
Theorem 1.2.2. Suppose that Zk(0) → Z(0), for some constant Z(0) ∈ R, as
k → ∞. Then Zk ⇒ Z in DR[0,∞) as k → ∞, where Z solves equation (1.9).
Moreover, the limit Z may also be regarded as the solution to the SDE

dZt = −µZtdt+
√
λ+ µx(t)dWt, (1.10)

with initial condition Z(0).

Note that the hypothesis of the last theorem implies Xk(0) → x0 as k → ∞,
hence Theorem 1.2.1 holds. Therefore, the processes Zk indeed represent the small
fluctuations of the processes Xk around the fluid limit x.

In order to justify the connection between equation (1.9) and the SDE (1.10), let
W be a standard unidimensional Wiener process and let f : [0,+∞) −→ [0,+∞) be
a nonnegative and locally integrable function. In addition, consider the processes

W1(t) = W
(∫ t

0
f(τ)dτ

)
and W2(t) =

∫ t

0

√
f(τ)dWτ .

The latter Itô integral, seen as a function of its upper limit, defines a stochastic
process. This process has a continuous martingale version and we are defining W2
to be this version; we refer the reader to Appendix D. Equivalently, W2 may be
regarded as the solution to dXt =

√
f(t)dWt when the initial condition is X0 = 0.

Note that the processes W1 and W2 are Gaussian, centered and have the same
covariance, namely

E [W1(s)W1(t)] =
∫ s

0
f(τ)dτ = E [W2(s)W2(t)] ∀ s ≤ t.

Therefore, they have the same finite-dimensional distributions.

Recall from equation (1.8) the definition of U as a sum of independent Wiener
processes. Since the sum of two independent Gaussian random variables is also
Gaussian, with variance the sum of the other two variances, then U has the same
finite dimensional distributions as

W
(∫ t

0
λ+ µx(τ)dτ

)
∼
∫ t

0

√
λ+ µx(τ)dWτ .

Here the term on the right has the same finite-dimensional distributions as the
process on the left because of the observation at the end of the preceding paragraph.

Consequently, we see from equation (1.9) that Z has the same finite-dimensional
distributions as the unique strong solution to equation (1.10). The results that are
surveyed in Appendix D may be used to check that strong solutions to this SDE
exist and are unique.

An important feature of equation (1.10) is that the drift coefficient is given by
the derivative of F evaluated at the fluid limit x, specifically

dZt = F ′(x(t))Ztdt+
√
λ+ µx(t)dWt.
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1.2.3 Steady-state estimates

We may now use the previous theorems to describe the steady-state behavior
of the infinite-server queue in a large scale regime, that is with the traffic intensity
ρ approaching infinity; the mean number of jobs equals ρ in steady-state, which
justifies the terminology large scale. Before we provide this description, it is worth
emphasizing that these results only allow to estimate the stationary distribution of
the chain of Figure 1.2, whereas the actual distribution is Poisson of parameter ρ.

First, we observe that equation (1.5) has a single equilibrium point x∗ = ρ, which
is moreover a global attractor. This suggests that the processes Xk approach x∗ as
t → +∞, as it is shown in Figure 1.3. Therefore, if we want to understand the
steady-state behavior of the infinite-server queue, it makes sense to set x0 = x∗ in
Theorem 1.2.1, so that the fluid limit of the infinite-server queue is the equilibrium
solution x ≡ x∗ of the dynamics (1.5).

Under the above choice, the diffusion of Theorem 1.2.2 is an Ornstein-Uhlenbeck
process. Indeed, if we set x ≡ x∗ in equation (1.10) then this SDE becomes

dZt = −µZtdt+
√

2λdWt.

The stationary distribution Z(∞) of the Ornstein-Uhlenbeck process is well-known,
it is absolutely continuous and its density p may be derived by solving the Fokker-
Planck equation associated to the latter SDE, under the condition that the solution
must integrate one over the real line. This Fokker-Planck equation is

λ
∂2p

∂x2 + µ
∂(xp)
∂x

= 0

and its solution is the density of a centered Gaussian with variance ρ, namely

p(x) = 1√
2πρe

−x2
2ρ .

In order to interpret the above results, remember that Zk represents the fluctu-
ations of Xk around the fluid limit, in this case the equilibrium point x∗. Using the
definitions of these processes we may write

X̂k = kx∗ +
√
kZk,

where we recall that X̂k is the number of jobs in an infinite-server queue with
workload kρ. Now Theorem 1.2.2 suggest the steady-state estimate

X̂k(∞) ∼ kx∗ +
√
kZ(∞).

Note that kx∗ = kρ and
√
kZ(∞) ∼ N(0, kρ), therefore the last expression tells us

that X̂k(∞) is approximately N(kρ, kρ) when k is large enough. Since kρ is the
traffic intensity that X̂k faces, then we could incorporate the scaling in the estimate
and say that the number of jobs in an infinite-server queue is approximately

X(∞) ∼ N(ρ, ρ)

in the steady-state and when the traffic intensity ρ is large enough.
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As a final remark, we reconcile our previous Gaussian estimate with the fact
that the steady-state distribution of the infinite-server queue is exactly Poisson of
parameter ρ. To this end, recall that the stationary distribution of X̂k, that we
computed from the chain, is Poisson of parameter kρ, which is the distribution of
the sum of k independent Poisson random variables of parameter ρ. Thus, by the
central limit theorem for random variables, we have

Zk(∞) = X̂k(∞)− kρ√
k

⇒ N(0, ρ) ∼ Z(∞) in R as k →∞.

1.3 Introducing further complexities

The infinite-server queue exhibits an ideal operation because customers do not
experience any queueing delay and idle capacity does not exist. We would like to
mimic this performance in practice, but the hurdle that we encounter is the delay
in the execution of decisions within the cloud or data center infrastructure: it is not
possible to spawn a server immediately, and neither can we get rid of idle servers
right away. The lags in the creation and deletion of servers are random, and we will
assume that they are exponential, to ensure that the model is still Markovian.

Let us imagine what the analog of the infinite-server queue would be like in the
setting that we have described above. First, note that the algorithm behind the
infinite-server queue can be described as follows.

� Immediately after a job departure, the infrastructure is asked to remove one
server, and this action is executed right away.

� A new server is summoned whenever a job arrives and there are no idle servers;
this new server is instantly created by the infrastructure.

In the presence of creation and deletion lags, servers cannot be dismissed or
summoned right away, but we may consider the following alternative algorithm.

� A request is issued to the cloud or data center infrastructure, asking to shut
down a server, immediately after each job departure; these requests are exe-
cuted with an exponential delay of mean 1/c seconds.

� If a job arrives in the presence of idle servers, then the job is assigned to one
of the idle servers and one of the shut down requests is withdrawn, if there are
any of them pending.

� When a job arrives, and has to be queued, a new server is requested, but
the infrastructure makes the server available only after an exponential time of
mean 1/b seconds.

� If in the meanwhile one of the busy servers becomes idle, then the request is
canceled and this idle server takes care of the queued job.

22



Note that the lags in the creation and deletion of servers, that we have introduced,
prevent the number of servers and jobs from being equal. We are going to denote the
number of servers in the system by M , whereas the number of jobs, either waiting in
the queue or receiving service, will be called N ; the stochastic process X = (M,N)
takes now values in the lattice N2.

In order to elucidate the Markovian model that describes the evolution of X over
time, we first note that the number of pending server requests to the infrastructure
is always equal to the number of queued jobs. Indeed, a new request is issued
whenever a job is queued, and one request is removed when a job leaves the queue;
either because the requested server appeared and took the job, or because an idle
server took the job and one request was canceled. Similarly, the number of pending
shut down requests is always equal to the number of idle servers: a request is made
whenever a server finishes a job, and one request is canceled when an idle server takes
a job; note that servers that appear in the system because they were summoned by
the infrastructure become busy at once. Summing up, the number of pending server
requests is [N −M ]+ and the number of pending shut down requests is [M −N ]+.
Therefore, the dynamics of the queue that we have just described are given by the
transitions diagram of Figure 1.4.

(m,n)

(m,n+ 1)

(m+ 1, n)

(m,n− 1)

(m− 1, n)

λ

b[n−m]+

µmin(m,n)

c[m− n]+

Figure 1.4: Markovian model of a system that attempts to emulate the infinite-server queue in
the presence of non-negligible creation and deletion lags.

Computing the stationary distribution of this chain explicitly, from its balance
equations, is at least a very difficult challenge, in contrast to the birth-death process
that we studied in the previous section. Consequently, to understand the steady-
state of the system, we must resort to the limit theorems that will be developed in
the following chapters.

Even though we have not stated these theorems yet, we may extrapolate what
we expect from the analysis of the last section’s example. For instance, the drift
of the chain is the field F : R2 −→ R

2 that results from adding the intensities,
regarded as vectors, that push away from a given state:

F (m,n) =
[
b[n−m]+ − c[m− n]+

λ− µmin(m,n)

]
;

here we are letting the lower case m and n denote real numbers, representing the
state of the system in the fluid scale. Comparing with Theorem 1.2.1 we expect that
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the fluid limit x = (m,n) of this chain will solve the initial value problem ẋ = F (x)
or, in coordinates, the ODE

ṁ = b[n−m]+ − c[m− n]+,
ṅ = λ− µmin(m,n).

Note that the second of these equations is independent of the provisioning rule that
we choose, or in other words the way in which we summon and dismiss servers. It is
instead determined by the central queue scheme that we have adopted. The law of
large numbers that we will prove in Chapter 2 yields the previous fluid limit under
mild hypothesis on the intensities of Figure 1.4, the main of which is that F has to
be locally Lipschitz, which is the case of the current chain.

We may also conjecture a central limit theorem for the chain of Figure 1.4. If we
extrapolate the results of Subsection 1.2.2, a diffusion approximating this system’s
behavior should solve the SDE

dZt = AtZtdt+BtdWt;

where W should be a bidimensional Wiener process, since we now have transitions
in two possible directions, At should be the Jacobian matrix of F at the point x(t)
and Bt should be the matrix

Bt =
[
b11(t) 0

0 b22(t)

]
,

with b11 =
√
b[n−m]+ + c[m− n]+ and b22 =

√
λ+ µmin(m,n).

The definition of At only makes sense when m(t) 6= n(t), because F is not differen-
tiable along the diagonal. The central limit theorem that we will see in Chapter 2
requires the drift of the chain to be differentiable. However, in Chapter 3 we will
extend this result to contemplate chains with non-differentiable drifts, which is the
case of the current chain.

The mathematical background that we need in order to analyze chains like that
of Figure 1.4 will be developed in the two following chapters. In Chapter 2 we will
review the classical limit theorems due to Kurtz, for density dependent families of
continuous time Markov chains. Afterwards, we will extend some of these results in
Chapter 3; for instance, to contemplate chains with a non-differentiable drift. We
will then return to the analysis of the queuing system that we have just described.
Moreover, in Chapter 4 we will present alternative provisioning rules which aim at
the elimination of queueing.
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Chapter 2

Classical limit theorems

2.1 Density dependent families

In this section we specify the class of one parameter families of continuous time
Markov chains that we will study throughout this chapter and the following. We
will then prove a strong law of large numbers, analog of Theorem 1.2.1, and a
central limit theorem, analog of Theorem 1.2.2, for these families of Markov chains.
Before we do that, we introduce some convenient notation for the state-space and
the transition rates of the Markov chains that will appear in the sequel.

Let Zd ∪ {∆} denote the one-point compactification of Zd. The Markov chains
that we will consider take values on a subset of a the d-dimensional lattice, for
starters given by the intersection of Zd with some open set E ⊂ R

d; the point
∆ is reserved to denote the state of the chain after explosion. The possible jump
directions will be given by a finite set D ⊂ Z

d and the transition rates will be
determined by a family {βl}l∈D of non-negative functions with domain E. We will
assume that x ∈ E ∩Zd and βl(x) > 0 imply x+ l ∈ E ∩Zd, this allows to define a
continuous time Markov chain with state-space E∩Zd and intensities qxy = βy−x(x).

Theorem 2.1.1. Consider a deterministic initial condition X(0) ∈ E ∩ Zd and
let {Nl}l∈D be an independent family of Poisson processes with unitary intensity,
defined over some probability space (Ω,F ,P). There exists a unique stochastic
process X such that

X(t) = X(0) +
∑

l∈D
lNl

(∫ t

0
βl(X(τ))dτ

)
∀ t ∈ [0, ζ),

X(t) = ∆ ∀ t ∈ [ζ,+∞) and

ζ = inf
{
t ≥ 0 : lim

s→t−
X(s) = ∆

}
;

we are adopting the convention that the infimum of an empty set equals infinity.
Furthermore, X is a continuous time Markov chain with state-space E ∩Zd, transi-
tion rates qxy = βy−x(x), initial condition X(0) and explosion time ζ.
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This is the theorem that we used at the beginning of Subsection 1.2.1 to write
the state of the infinite-server queue in terms of two independent Poisson processes.
As mentioned there, the proof of this theorem is given in [8, Chapter 6.4] and its
statement is also in line with one of the characterizations of continuous time Markov
chains that are provided in [29, Chapter 2.6]. The importance of this theorem is that
it will allow to construct sequences of continuous time Markov chains over the same
probability space and, moreover, driven by the same family of Poisson processes.
The first is clearly an essential condition for proving a strong law of large numbers.

Let us now introduce the notion of density dependent family. In order to do
this, we will consider a sequence of spaces Sk = E ∩ k−1

Z
d and we will assume that

x ∈ Sk and βl(x) > 0 imply x + k−1l ∈ Sk. As before, this hypothesis allows to
define continuous time Markov chains with state-space Sk and transition rates qkxy
that are proportional to βk(y−x)(x).

Definition 2.1.2. A density dependent family is a sequence of continuous time
Markov chains Xk with state-space Sk and intensities qkxy = kβk(y−x)(x).

Note that as k increases the state-space Sk consists of a larger number of points
which, furthermore, are closer to each other; for instance, if we compare Sk with
S1, neighboring states are k times closer. At the same time, as k grows the speed
of transitions increases as well; indeed, if x lies both in S1 and Sk, then transitions
away from x occur k times faster in Xk than they occur in X1. Informally speaking,
the chain Xk jumps k times faster than X1, but it covers a k times smaller distance
every time it jumps. This yields the averaging phenomenon that we need to prove
the law of large numbers of the following section.

Before we continue developing the theory, let us illustrate the above construction
using the infinite-server queue as an example. The Markovian model of this queue,
when the arrival rate is kλ, has as in Section 1.2 the following intensities.

qn,n+1 = kλ and qn,n−1 = µn = kµ
n

k
.

Recall that n denotes the number of jobs in the system. In order to make the latter
intensities fit into the framework of density dependent families we define the maps

β1(x) = λ and β−1(x) = µx,

and we see that the above rates may be rewritten in terms of these maps as

qn,n+1 = kβ1

(
n

k

)
and qn,n−1 = kβ−1

(
n

k

)
;

the domain E of the maps βl is discussed below. The intuition is that these intensities
scale linearly with the parameter k and only depend on the “density” n/k; this name
is inherited from epidemics models, where the latter fraction indeed represents a
density, for instance the number of infected people among the whole population.

Finally, to define the chain Xk and make the infinite-server queue fit in the
definition of density dependent families, we only need to introduce the change of
variables x = n/k. This results in a Markov chain whose state x lies in k−1

Z, and
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has the following transition rates.

qx,x+k−1 = kβ1(x) and qx,x−k−1 = kβ−1(x).

In the present example, the natural choice of the set E would be [0,+∞), which
is not an open set. Instead we may let E be any open set that contains [0,+∞);
the form of the maps βl ensures that the chain is confined to [0,+∞) if the initial
condition lies inside of this interval. In general, we can always extend the natural
domain of a density dependent family to an open set E, and this allows to adopt the
convention that E is open. The latter is not essential, the proofs of the subsequent
theorems may be carried out anyway, however this convention is convenient.

Returning to the general framework, we are going to let the maps βl, that appear
in Definition 2.1.2, depend on the scale parameter k, so that a broader class of
sequences of continuous time Markov chains may fall into the category of density
dependent families; this will be important in Chapter 4. Namely, differing with the
notation that Kurtz uses, we are going to consider maps of the form

βkl = γl + δkl ,

where βkl is still a non-negative map on E, such that x ∈ Sk and βkl (x) > 0 imply
x+ k−1l ∈ Sk. The terms δkl are small perturbations, in the following sense.

Assumption 2.1.3. The next conditions hold inside of each compact set K ⊂ E.
sup
x∈K
|δkl (x)| <∞ ∀ l ∈ D, k ≥ 1 and

lim
k→∞

sup
x∈K
|δkl (x)| = 0 ∀ l ∈ D.

As mentioned above, Theorem 2.1.1 allows to construct the elements of a den-
sity dependent family over the same probability space. To do this we consider an
independent family {Nl}l∈D of Poisson processes with unitary intensity, defined over
some probability space (Ω,F ,P), and the maps

β̂kl (u) = kβkl

(
u

k

)
u ∈ kE ∩ Zd.

Note that u ∈ kE ∩ Zd and β̂kl (u) > 0 imply that u + l ∈ kE ∩ Zd. Therefore,
given some deterministic initial conditions X̂k(0) ∈ kE ∩ Zd, by Theorem 2.1.1
it is possible to construct continuous time Markov chains X̂k on (Ω,F ,P), with
state-space kE ∩ Zd and transition rates q̂kxy = β̂ky−x(x), such that

X̂k(t) = X̂k(0) +
∑

l∈D
lNl

(∫ t

0
β̂kl
(
X̂k(τ)

)
dτ
)

holds for all t smaller than the explosion time ζ̂k of the chain. If we now consider
the chains Xk = X̂k/k, then the sequence {Xk}k≥1 is a density dependent family
defined on (Ω,F ,P), and its elements satisfy the equations

Xk(t) = Xk(0) +
∑

l∈D

l

k
Nl
(∫ t

0
kβkl (Xk(τ))dτ

)
∀ t ∈ [0, ζk), (2.1)
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where ζk = ζ̂k is the explosion time of Xk.

It is convenient to consider the centered Poisson processes Yl(t) = Nl(t)−t rather
than the the processes Nl themselves. Using the processes Yl we may write

∑

l∈D

l

k
Nl
(∫ t

0
kβkl (Xk(τ))dτ

)
=
∑

l∈D

l

k
Yl

(∫ t

0
kβkl (Xk(τ))dτ

)

+
∫ t

0

∑

l∈D
l
[
γl(Xk(τ)) + δkl (Xk(τ))

]
dτ.

We will introduce the notation Σk(t) to denote the first term on the right-hand side:

Σk(t) =
∑

l∈D

l

k
Yl

(∫ t

0
kβkl (Xk(τ))dτ

)
. (2.2)

It is also convenient to introduce the following definition.

Definition 2.1.4. The drift and perturbing drifts of a density dependent family
are, respectively, the vector fields F,Gk : E −→ R

d such that

F (x) =
∑

l∈D
lγl(x) and Gk(x) =

∑

l∈D
lδkl (x).

Using the above definition, we may rewrite equation (2.1) in terms of the drift
and perturbing drift to yield

Xk(t) = Xk(0) + Σk(t) +
∫ t

0
F (Xk(τ))dτ +

∫ t

0
Gk(Xk(τ))dτ ∀ t ∈ [0, ζk). (2.3)

As in Section 1.2 this equation may be interpreted as an stochastically perturbed
version of the initial value problem ẋ = F (x).

2.1.1 An alternative approach

The purpose of this subsection is to comment on a different approach to the
study of density dependent families; we will not adopt this approach, and thus the
reader may skip this brief digression.

This alternative approach is based upon the following observation. If X is a
Markov chain with infinitesimal generator Q, and f is a real-valued function defined
on the the state-space of X, then

Mf (t) = f(X(t))− f(X(0))−
∫ t

0
Qf(X(τ))dτ

is a local martingale; we refer the reader to [32, Appendix B.3] and references therein.

Suppose now that {Xk}k≥1 is a density dependent family whose elements are not
necessarily defined over the same probability space. The infinitesimal generator Qk

of Xk acts on the identity e as follows.

Qke(x) =
∑

l∈D
[e(x+ l)− e(x)] βkl (x) =

∑

l∈D
lβkl (x) = F (x) +Gk(x),
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and applying the previous observation to each component of e, we see that

Mk
e (t) = Xk(t)−Xk(0)−

∫ t

0
F (X(τ))dτ −

∫ t

0
Gk(X(τ))dτ (2.4)

is a vector local martingale. In particular, we have the following remark.

Remark 2.1.5. The process Σk of equation (2.3) is a local martingale. Particularly,
if E

(
sups∈[0,t] ||Σk(s)||

)
<∞ for all t ≥ 0, then Σk is a martingale by [23, 8.a.4].

Equation (2.4) allows to prove a weak law of large numbers for density dependent
families; we suggest the reader to look at [6]. However, the crucial advantage of the
construction that leads to equation (2.3) is that the chains Xk are defined over the
same probability space, and this is essential if we want to prove a strong law of
large numbers. Another advantage of using equation (2.3) is that we may exploit
the features of Poisson processes when we handle the local martingale term Σk; in
fact, we will often do this rather than use generic martingale properties.

2.2 Strong law of large numbers

In this section our goal is to show that, under suitable hypothesis, there exists a
set of probability one where the processes Xk converge uniformly over finite intervals
of time to a deterministic process that solves the ODE ẋ = F (x).

Lemma 2.2.1. Consider a bounded set A ⊂ E. Let X = Xm for some fixed m ≥ 1
and assume that X(0) ∈ A. With probability one X cannot take infinitely many
jumps in A in finite time.

Proof. Let τi(ω) be the time of the i-th jump of the path X(ω). As stated in
[29, Theorem 2.8.4], conditional to Fn = σ({Xτi : i = 0, . . . , n}), the holding times
{τi+1 − τi : i = 0, . . . , n} are independent and exponential, with rates

λi =
∑

l∈D
mβml (Xτi).

The boundedness of A implies that A∩Sm is finite, and thus these rates are uniformly
bounded on the set Ωn

A = {ω ∈ Ω : Xτi(ω) ∈ A ∀ i = 0, . . . , n} by the finite constant

λ =
∑

l∈D
sup

x∈A∩Sm
mβml (x).

Define ηi(ω) = 1 if Xτi(ω) ∈ A and ηi(ω) = ∞ if Xτi(ω) /∈ A. Using the bound
that we gave above we see that

E

[
E

[
n∏

i=0
e−ηi(τi+1−τi)

∣∣∣∣∣Fn
]]

= E

[
1ΩnAE

[
n∏

i=0
e−(τi+1−τi)

∣∣∣∣∣Fn
]]

= E

[
1ΩnA

n∏

i=0

∫ ∞

0
e−tλie

−λitdt

]
≤
(

1 + 1
λ

)−n
;

for the second equality we used the disintegration theorem [16, Theorem 5.4].
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Letting F∞ = σ({Xτi : i ≥ 0}) we get the following inequality by using domi-
nated convergence twice; the first time applying [23, Theorem 4.c.2] to deal with
the conditional expectations.

E

[
e−
∑∞

i=0 ηi(τi+1−τi)
]

= E

[
E

[
e−
∑∞

i=0 ηi(τi+1−τi)
∣∣∣∣F∞

]]

= E

[
lim
n→∞E

[
n∏

i=0
e−ηi(τi+1−τi)

∣∣∣∣∣Fn
]]

= lim
n→∞E

[
E

[
n∏

i=0
e−ηi(τi+1−τi)

∣∣∣∣∣Fn
]]

= 0.

This equation shows that, with probability one, X would need infinite time to
jump infinitely many times inside of A.

The last lemma is essentially a version of [29, Theorem 2.7.1] and, moreover, is
implied in Theorem 2.1.1 in the definition of the time ζ. We will use this lemma
jointly with the following, which provides a sort of induction principle.
Lemma 2.2.2. Let f : [0, η] −→ E be a right continuous and piecewise constant
function with finitely many jumps. Also, consider a proposition P : E −→ {0, 1}
and assume that:

1. P (f(0)) = 1.

2. P (f(s)) = 1 for all s ∈ [0, t) implies P (f(t)) = 1.

Then P (f(t)) = 1 for all t ∈ [0, η].

Proof. Suppose that there exists some t0 ∈ (0, η] such that P (f(t0)) = 0. Since
f is a right continuous and piecewise constant function with finitely many jumps,
there exists t = min {s ∈ [0, t0] : P (f(s)) = 0}. This implies that P (f(s)) = 1 for
all s ∈ [0, t), and thus P (f(t)) = 1 contradicting the definition of t, and hence our
initial assumption. We conclude that P (f(t)) = 1 for all t ∈ [0, η].

We will now continue under the following hypothesis.
Assumption 2.2.3. Suppose that F is locally Lipschitz and that the next condition
holds inside of each compact set K ⊂ E.

sup
x∈K
|γl(x)| <∞ ∀ l ∈ D

Since F is now locally Lipschitz, we may consider the unique solution x to the
ODE ẋ = F (x), starting at some x0 ∈ E and defined on some interval [0, T ]. We
want to prove that the limit Xk(0)→ x0 as k →∞ implies that

sup
t∈[0,T ]

||Xk(t)− x(t)|| a.s.−−→ 0 as k →∞.

This strong law of large numbers, which is the goal of this section, will be a straight-
forward consequence of the following result.
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Lemma 2.2.4. Assume that Xk(0) → x0 as k → ∞. Then there exist a compact
neighborhood A of {x(t) : t ∈ [0, T ]}, non-negative constants βl and a null set N ⊂ Ω
with the following property: for each ω ∈ N c there exists k0(ω) such that

sup
t∈[0,T ]

||Xk(ω, t)− x(t)|| ≤ εk(ω)eMT ∀ k ≥ k0(ω);

where M is a Lipschitz constant for F inside the set A and

εk = ||Xk(0)− x0||+ T sup
x∈A
||Gk(x)||+

∑

l∈D
||l|| sup

t∈[0,T ]

∣∣∣Yl(kβlt)
∣∣∣

k
.

Proof. Fix some ε > 0 and note that since {x(t) : t ∈ [0, T ]} is compact, the neigh-
borhood A = {y ∈ E : ||y − x(t)|| ≤ ε for some t ∈ [0, T ]} is compact as well, for a
small enough ε. Therefore, it is possible to choose a uniform Lipschitz constant M
inside of A for F .

By assumptions 2.1.3 and 2.2.3, the compactness of A implies that

βl = sup
k≥1,x∈A

βkl (x) <∞ ∀ l ∈ D.

Restating the hypothesis and using Assumption 2.1.3 again, together with the
finiteness of the set of directions D, we also have

ak = ||Xk(0)− x0|| → 0 and bk = T sup
x∈A
||Gk(x)|| → 0 as k →∞.

These limits, together with the strong law of large numbers for the Poisson process,
see Theorem B.1.1, and the finiteness of D, imply that

εk = ak + bk +
∑

l∈D
||l|| sup

t∈[0,T ]

∣∣∣Yl(kβlt)
∣∣∣

k
a.s.−−→ 0 as k →∞.

Then, by Lemma 2.2.1 we may choose a null set N ⊂ Ω outside of which:

1. εk → 0 as k →∞.

2. For each k ≥ 1, such that Xk(0) ∈ A, the paths of Xk are right continuous,
piecewise constant and take finitely many jumps in A in finite time.

Let δ > 0 be such that δ+δeMT ≤ ε. For each ω ∈ N c we may choose k0(ω) such
that k ≥ k0(ω) implies that εk(ω) ≤ δ, and also that Xk(ω) has jumps of length
smaller than δ; the last condition may also be stated as

max
l∈D
||l|| ≤ δk0(ω).

Fix some ω ∈ N c and k ≥ k0(ω), we will show that Xk(ω, t) ∈ A for all t ∈ [0, T ].
To this end, suppose the contrary, namely η = min {t ≥ 0 : Xk(ω, t) /∈ A} ≤ T .

In order to arrive to a contradiction, fix t ∈ (0, η] and assume that Xk(ω, s) ∈ A
for all s ∈ [0, t). Since Xk(ω) has finitely many jumps in [0, η], then ζk(ω) > η ≥ t,
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and thus we may use equation (2.3). Moreover, for all s ∈ [0, t) we have
∫ s

0
||Gk(Xk(ω, τ))|| dτ ≤ bk and

||Σk(ω, s)|| ≤ sup
τ∈[0,s]

||Σk(ω, τ)|| ≤ εk(ω)− ak − bk,
(2.5)

because Xk(ω, τ) ∈ A for all τ ∈ [0, s]; recall that Σk was defined in equation (2.2).
These observations and equation (2.3) yield the following bound.

||Xk(ω, s)− x(s)|| ≤ ak + bk + ||Σk(ω, s)||+
∫ s

0
||F (Xk(ω, τ))− F (x(τ))|| dτ

≤ εk(ω) +
∫ s

0
||F (Xk(ω, τ))− F (x(τ))|| dτ

≤ δ +
∫ s

0
M ||Xk(ω, τ)− x(τ)|| dτ ∀ s ∈ [0, t).

An application of Gronwall’s inequality now implies ||Xk(ω, s)− x(s)|| ≤ δeMT

for all s ∈ [0, t). Recalling that Xk(ω) has jumps of length smaller than δ, this proves
that ||Xk(ω, t)− x(t)|| ≤ δ + δeMT ≤ ε, and thus Xk(ω, t) ∈ A. Then, Xk(ω, t) ∈ A
for all t ∈ [0, η] by Lemma 2.2.2; note that Xk(0) ∈ A and since all jumps of Xk(ω),
prior to time η, take place in A, then Xk(ω) has finitely many jumps in [0, η].

The latter is a contradiction, because we had assumed that Xk(ω, η) /∈ A. Thus,
we have shown that Xk(ω, t) ∈ A for all t ∈ [0, T ].

Finally, fix ω ∈ N c and k ≥ k0(ω). Since Xk(ω, t) ∈ A for all t ∈ [0, T ], then the
set of equations (2.5) holds, so we may write

||Xk(ω, t)− x(t)|| ≤ εk(ω) +
∫ t

0
M ||Xk(ω, τ)− x(τ)|| dτ ∀ t ∈ [0, T ],

and the claim follows from another application of Gronwall’s inequality.

As it was announced, we now have the following theorem.

Theorem 2.2.5. Assume that Xk(0)→ x0 as k →∞, then

sup
t∈[0,T ]

||Xk(t)− x(t)|| a.s.−−→ 0 as k →∞.

Here the fluid limit x is the unique solution to

ẋ = F (x), (2.6)

which we are assuming to be defined over the interval [0, T ].

Proof. Let M , N and εk be as in the statement of Lemma 2.2.4, then

lim
k→∞

sup
t∈[0,T ]

||Xk(ω, t)− x(t)|| ≤ lim
k→∞

εk(ω)eMT = 0 ∀ ω ∈ N c.

The limit on the right follows from the strong law of large numbers for the Poisson
process; see Theorem B.1.1. Since N is a null set, this completes the proof.

As a final remark, we note that it is possible to extend the last theorem in several
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directions. First, one may show that the same result holds when the set of directions
D is infinite; we refer the reader to [8,22] for a proof. Second, it is possible to prove
a law of large numbers for density dependent families whose drift is discontinuous,
in this case the limit solves an inclusion differential equation and may not be unique;
this is done in [10]. Finally, a weak law of large numbers holds in the more general
context of pure jump Markov processes; the reader may find a proof in [20].

2.3 Central limit theorem

In order to motivate the developments of this section, we begin with the following
observation: as we saw in Theorem 2.2.5, under mild assumptions, the error

sup
t∈[0,T ]

||Xk(t)− x(t)||

converges to zero as k → ∞, and thus it is now natural to ask about the speed of
convergence, or more precisely the order of magnitude of the latter error. Namely,
we could ask how small α must be to ensure that the expression

sup
t∈[0,T ]

kα ||Xk(t)− x(t)||

has still got a trivial limit. To give an answer to this question we will assume that

lim
k→∞

√
k sup
x∈K
|δkl (x)| = 0 ∀ l ∈ D (2.7)

holds inside each compact set K ⊂ E.
Theorem 2.3.1. Assume that kα ||Xk(0)− x0|| → 0 as k →∞, then

sup
t∈[0,T ]

kα ||Xk(t)− x(t)|| P−−→ 0 as k →∞ ∀ α ∈ [0, 1/2)

and the limit also holds almost surely for all α ∈ [0, 1/4).

Proof. Since Xk(0) → x0 as k → ∞, Lemma 2.2.4 holds. Consider the definitions
that we made in the statement of this lemma, and note that for ω ∈ N c we have

sup
t∈[0,T ]

kα ||Xk(ω, t)− x(t)|| ≤ kαεk(ω)eMT ∀ k ≥ k0(ω).

The hypothesis of this theorem and equation (2.7) imply that

ak = kα ||Xk(0)− x0||+ kαT sup
x∈A
||Gk(x)|| → 0 as k →∞.

Therefore, it only remains to deal with the following term of kαεk.

bk = kα
∑

l∈D
||l|| sup

x∈A

∣∣∣Yl(kβlt)
∣∣∣

k
.

For α ∈ [0, 1/4) the above expression converges almost surely to zero as k →∞
by the strong law of large numbers for the Poisson process; see Theorem B.1.1.
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For α ∈ [0, 1/2) fix some ε > 0 and let Ak be the set of the ω ∈ Ω where

sup
t∈[0,T ]

nα ||Xn(ω, t)− x(t)|| ≤ nαεn(ω)eMT ∀ n ≥ k;

these sets increase to a set that contains N c and hence has probability one. Also,
Theorem B.1.1 implies that bk P−−→ 0 as k → 0, and thus there exists a sequence of
sets Bk ⊂ Ω where bkeMT < ε/2 and such that P(Bk) → 1 as k → ∞. Moreover,
the inequality akeMT < ε/2 holds on all Ω for large enough k, so we may write

lim
k→∞

P

(
sup
t∈[0,T ]

kα ||Xk(ω, t)− x(t)|| < ε

)
≥ lim

k→∞
P (Ak ∩Bk) = 1.

As a matter of fact, it turns out that [0, 1/2) is the maximal interval with the
following property: α ∈ [0, 1/2) and kα ||Xk(0)− x0|| → 0 as k →∞ imply that

sup
t∈[0,T ]

kα ||Xk(t)− x(t)|| P−−→ 0 as k →∞.

Indeed, as we will see below, for α = 1/2 the process kα(Xk − x) has a non-trivial
limit in distribution, provided that kα [Xk(0)− x0] converges; this would answer the
question that we posed at the beginning of this section completely.

Let us then address the case α = 1/2. To this end let x be the solution to the
initial value problem ẋ = F (x), starting at x0 and defined in [0, T ]. Also let

Zk =
√
k(Xk − x),

this process describes the fluctuations of Xk around the fluid limit x.

Theorem 2.3.2. Assume that the maps γl are locally Lipschitz, that the drift F
is continuously differentiable, that assumptions 2.1.3 and 2.2.3 hold and also that
equation (2.7) holds as well.

Suppose in addition that there exists some constant Z(0) ∈ R
d such that

Zk(0) → Z(0) as k → ∞. Then Zk ⇒ Z in DRd [0, T ] as k → ∞, where Z is
the continuous process such that

Z(t) = Z(0) +
∑

l∈D
lWl

(∫ t

0
γl(x(τ))dτ

)
+
∫ t

0
F ′(x(τ))Z(τ)dτ ∀ t ∈ [0, T ]. (2.8)

Here {Wl}l∈D is an independent family of standard unidimensional Wiener processes
and F ′ is the Jacobian matrix of F . By the same arguments of Subsection 1.2.2 this
process has the same finite-dimensional distributions as the solution to the SDE

dZt = F ′(x(t))Ztdt+BtdWt

with initial condition Z(0), where W is a d-dimensional Wiener process and

Bt =
√∑

l∈D
llTγl(x(t)).

Here the square root is that of a positive semi-definite symmetric matrix.
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A generalization of this theorem will be proved in Section 3.2, and therefore we
will not provide a full proof here; nevertheless we will outline the proof that appears
in [8, Chapter 11.2] and we will seize this opportunity to point out the differences
with the arguments that will appear in Chapter 3.

To this purpose, we begin by observing that, if we subtract the integral form of
the ODE ẋ = F (x) from equation (2.3), and then multiply by

√
k, the result is

Zk(t) = Zk(0) +
√
kΣk(t) +

∫ t

0

√
kGk(Xk(τ))dτ

+
∫ t

0

√
k [F (Xk(τ))− F (x(τ))] dτ ∀ t ∈ [0, T ].

Furthermore, if we consider the series expansion of F around the point x(t), to the
first order, then we see that the last integrand equals
√
kF ′(x(τ)) [Xk(τ)− x(τ)] +

√
kRτ (Xk(τ)) = F ′(x(τ))Zk(τ) +

√
kRτ (Xk(τ)),

where Rτ is the first order remainder of the Taylor series around x(τ) and satisfies

lim
y→x(τ)

||Rτ (y)||
||y − x(τ)|| = 0.

Using this observation we obtain the following equations for the processes Zk.

Zk(t) = Zk(0) + Uk(t) + δk(t) +
∫ t

0
F ′(x(τ))Zk(τ)dτ ∀ t ∈ [0, T ], (2.9)

where Uk and δk are, respectively, the processes

Uk(t) =
√
kΣk(t) =

∑

l∈D

l√
k
Yl

(∫ t

0
kβkl (Xk(τ))dτ

)
and

δk(t) =
∫ t

0

√
k [Rτ (Xk(τ)) +Gk(Xk(τ))] dτ.

Moreover, if we further let

U(t) =
∑

l∈D
lWl

(∫ t

0
γl(x(τ))dτ

)
,

then we obtain a very similar equation for Z, indeed equation (2.8) becomes

Z(t) = Z(0) + U(t) +
∫ t

0
F ′(x(τ))Z(τ)dτ ∀ t ∈ [0, T ]. (2.10)

For each path outside a null set, equations (2.9) and (2.10) are of the form

ϕ(t) = f(t) +
∫ t

0
A(τ)ϕ(τ)dτ ∀ t ∈ [0, T ], (2.11)

where f ∈ DRd [0, T ] and A(t) is a d×d matrix that varies continuously with respect
to the parameter t. If we consider the fundamental matrix Φ(s, t) such that

∂Φ(s, t)
∂t

= A(t)Φ(s, t) and Φ(s, s) = Id ∀ s, t ∈ [0, T ],

then equation (2.11) may be solved explicitly, as it is proved below.
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Lemma 2.3.3. There exists a unique function ϕ such that ϕ− f is continuous and
ϕ satisfies equation (2.11). Moreover, this function is

ϕ(t) = f(t) +
∫ t

0
Φ(τ, t)A(τ)f(τ)dτ.

Proof. To begin, let us check that the latter expression solves equation (2.11). In
order to do this we will compute, term by term, the integral

∫ t

0
A(s)ϕ(s)ds = I1 + I2.

We are going to leave the first term I1 unchanged,

I1 =
∫ t

0
A(s)f(s)ds,

while for the integral I2 of the second term we have

I2 =
∫ t

0
A(s)

∫ s

0
Φ(τ, s)A(τ)f(τ)dτds =

∫ t

0

∫ s

0
A(s)Φ(τ, s)A(τ)f(τ)dτds

=
∫ t

0

∫ s

0

∂Φ(τ, s)
∂s

A(τ)f(τ)dτds

=
∫ t

0

∂

∂s

[∫ s

0
Φ(τ, s)A(τ)f(τ)dτ

]
ds

−
∫ t

0
Φ(s, s)A(s)f(s)ds

=
∫ t

0
Φ(s, t)A(s)f(s)ds−

∫ t

0
A(s)f(s)ds.

The fourth equality follows after applying Leibniz’s rule; see Proposition E.1.1.
Finally, adding f(t) + I1 + I2 we confirm that the solution that we proposed in the
statement of the lemma indeed satisfies equation (2.11).

In order to check that this solution is unique, it is enough to observe that the
difference between two solutions is continuous and satisfies the equation

ψ(t) =
∫ t

0
A(τ)ψ(τ)dτ ∀ t ∈ [0, T ],

which only has one continuous solution, this is ψ ≡ 0.

This lemma allows to define a mapping φ : DRd [0, T ] −→ DRd [0, T ] carrying
each f ∈ DRd [0, T ] to the unique φf ∈ DRd [0, T ] such that φf − f is continuous and

φf (t) = f(t) +
∫ t

0
F ′(x(τ))φf (τ)dτ ∀ t ∈ [0, T ].

An explicit construction of this function will no longer be possible in Section 3.4,
where we will consider density dependent families with a non-differentiable drift.

Note that in equation (2.9) the integrand F ′(x(τ))Zk(τ) is a càdlàg function, and
therefore the corresponding integral, seen as a function of the upper limit, defines
a continuous map. Equivalently, the function Zk − Zk(0) − Uk − δk is continuous,
and hence Zk = φ(Zk(0) + Uk + δk). As a result, in order to prove Theorem 2.3.2
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it suffices to show that φ is a continuous map and Zk(0) + Uk + δk ⇒ Z(0) + U in
DRd [0, T ] as k → ∞. Indeed, if we could prove that, then the continuous mapping
theorem would yield the weak convergence of the processes Zk to the continuous
process Z = φ(Z(0) + U); here Z satisfies equation (2.10) by the definition of φ.

By Proposition A.1.8, in order to prove that Zk(0) + Uk + δk ⇒ Z(0) + U in
DRd [0, T ] as k →∞, it is enough to show that Uk ⇒ U in DRd [0, T ] and

sup
t∈[0,T ]

||δk(t)|| P−−→ 0 as k →∞;

note that the hypothesis of Theorem 2.3.2 already says that Zk(0)→ Z(0).

A proof of the limit Uk ⇒ U , in the context of pure jump Markov processes and
under very general conditions, may be found in [21]. However, the proof that we are
going to give in Chapter 3 is different and it is based on the central limit theorem
for the Poisson process. There we will also deal with the processes δk, which in
the setting of Chapter 3 will converge in probability to a deterministic process, not
necessarily zero; here the limit is zero as a consequence of equation (2.7).

Thus, we will defer the proof of Zk(0) +Uk + δk ⇒ Z(0) +U until Chapter 3. If
we assume this fact for now, then in order to complete the proof of Theorem 2.3.2 it
only remains to be shown that the mapping φ is continuous, and this is done below.

Lemma 2.3.4. The map φ : DRd [0, T ] −→ DRd [0, T ] is continuous.

Proof. Fix some f ∈ DRd [0, T ], by Lemma 2.3.3 we know that

φf (t) = f(t) +
∫ t

0
Γ(τ, t)f(τ)dτ,

where Γ(s, t) = Φ(s, t)F ′(x(s)) is a continuous function.

To prove that φ is continuous at f , we will work with one of the metrics that
generate the Skorohod topology, namely d0. Given some g ∈ DRd [0, T ], the distance
d0(f, g) is defined as the infimum of those δ > 0 for which there exists an increasing
and continuous bijection λ : [0, T ] −→ [0, T ] with the following properties.

sup
s,t∈[0,T ]

∣∣∣∣∣log
(
λ(t)− λ(s)

t− s

)∣∣∣∣∣ ≤ δ and sup
t∈[0,T ]

||f(λ(t))− g(t)|| ≤ δ;

further details are provided in Appendix A. To show that d0(f, g) → 0 implies
d0(φf , φg) → 0, we first note that given δ ≥ d0(f, g) there exists some λδ with the
above characteristics; we will drop the subscript δ to simplify the notation.

The first property implies that |λ(t) − λ(s)| ≤ eδ|t − s| for all s, t ∈ [0, T ],
which means that λ is Lipschitz and in particular absolutely continuous. Hence, its
derivative exists almost everywhere on [0, T ], and at the points where it exists we
have |λ′(t)− 1| ≤ eδ − 1. Using the absolute continuity of λ we may write

φf (λ(t))− φg(t) = f(λ(t))− g(t) +
∫ λ(t)

0
Γ(τ, λ(t))f(τ)dτ −

∫ t

0
Γ(s, t)g(s)ds

= f(λ(t))− g(t) +
∫ t

0
Γ(λ(s), λ(t))f(λ(s))λ′(s)ds−

∫ t

0
Γ(s, t)g(s)ds.
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Operating on the right-hand side we see that

φf (λ(t))− φg(t) = f(λ(t))− g(t) +
∫ t

0
Γ(λ(s), λ(t))f(λ(s)) [λ′(s)− 1] ds

+
∫ t

0
[Γ(λ(s), λ(t))− Γ(s, t)] f(λ(s))ds

+
∫ t

0
Γ(s, t) [f(λ(s))− g(s)] ds,

therefore we have
sup
t∈[0,T ]

||φf (λ(t))− φg(t)|| ≤ sup
t∈[0,T ]

||f(λ(t))− g(t)||

+ sup
s,t∈[0,T ]

T ||Γ(λ(s), λ(t))|| ||f(λ(s))|| (eδ − 1)

+ sup
s,t∈[0,T ]

T ||Γ(λ(s), λ(t))− Γ(s, t)|| ||f(λ(s))||

+ sup
s,t∈[0,T ]

T ||Γ(s, t)|| ||f(λ(s))− g(s)|| ,

Since Γ is continuous we know that Γ is bounded in [0, T ]2. Also, the fact that
f is càdlàg implies that f is bounded in [0, T ] as well, thus the second term on the
right hand side converges to zero as δ → 0.

The third term also converges to zero as δ → 0. To prove this note that

|λ(t)− t| = t

∣∣∣∣∣
λ(t)− λ(0)

t− 0 − 1
∣∣∣∣∣ ≤ t(eδ − 1) ≤ T (eδ − 1) ∀ t ∈ [0, T ].

Using the continuity of Γ and the compactness of [0, T ]2 we may then see that
||Γ(λ(s), λ(t))− Γ(s, t)|| → 0 as δ → 0.

Finally, the first and fourth terms converge to zero as δ → 0 as well, because

sup
t∈[0,T ]

||f(λ(t))− g(t)|| ≤ δ.

This proves that φ is continuous at f .

2.3.1 Characterization of the limit

In the central limit theorem that we stated above, the limit

Z(t) = Z(0) + U(t) +
∫ t

0
Φ(τ, t)F ′(x(τ)) [Z(0) + U(τ)] dτ (2.12)

is a time inhomogeneous Gaussian process. Below we prove this fact and we then
compute the mean and covariance of Z.

In order to prove this, we begin by noticing that the process U , that appears in
equation (2.10), is a time inhomogeneous Wiener process. Indeed, we recall that

U(t) =
∑

l∈D
lWl

(∫ t

0
γl(x(τ))dτ

)
.
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It is clear that we only need to show that the sum of the last two terms of
equation (2.12) is a Gaussian process, as a function of t. To this end, consider a
sequence of partitions 0 = sn0 < · · · < snrn = T such that

lim
n→∞ max

1≤i≤rn
sni − sni−1 = 0.

Fix some t ∈ [0, T ], let tni = t ∧ sni and define ∆n
i = tni − tni−1 to be the length of the

interval [sni−1, s
n
i ] ∩ [0, t]. Then by the continuity of U we have

U(t) +
rn∑

i=1
Φ(tni , t)F ′(x(tni ))U(tni )∆n

i
a.s.−−→ U(t) +

∫ t

0
Φ(τ, t)F ′(x(τ))U(τ)dτ

as n → ∞. Since the summations on the left define Gaussian processes, then their
limit is also of this kind, and thus Z is a Gaussian process.

Before we compute the mean and covariance of Z, we recall that this process has
the same law as the solution to the SDE

dZt = AtZtdt+BtdWt, (2.13)

where At is the Jacobian matrix of F at x(t), Wt is a d-dimensional Wiener process,
with independent coordinates, and Bt is the d× d matrix

Bt =
√∑

l∈D
llTγl(x(t)).

If we take expectations on both sides of the integral version of equation (2.13),
then the Itô integral vanishes. Therefore, the mean of Z satisfies

µt = Z0 +
∫ t

0
Aτµτdτ,

and using the fundamental matrix Φ to solve this equation, we get µ(t) = Φ(0, t)Z(0).

Proposition 2.3.5. The covariance of Z is

Σ(s, t) = E

[
(Zs − µs) (Zt − µt)T

]
=
∫ s

0
Φ(τ, s)BτB

T
τ Φ(τ, t)Tdτ

for all 0 ≤ s ≤ t ≤ T .

Proof. The centered process Z −µ solves equation (2.13) when the initial condition
is zero. Thus, we may assume that Z0 = 0, or equivalently that Z is centered.

By the Itô formula, the matrix process Xt = ZtZ
T
t satisfies the SDE

dXt = (dZt)ZT
t + Zt(dZt)T +BtB

T
t dt

= (AtXt +XtA
T
t +BtB

T
t )dt+ (BtdWt)ZT

t + Zt(BtdWt)T .

If we take expectations in both sides of the above equation, then the integrals
with respect to Wiener processes vanish. Therefore, letting xt = E[Xt] and noting
that x0 = 0, because Z0 = 0, we see that

xt =
∫ t

0
Aτxτ + xτA

T
τ +BτB

T
τ dτ.
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We are going to check that

xt =
∫ t

0
G(τ, t)dτ where G(τ, t) = Φ(τ, t)BτB

T
τ Φ(τ, t)T .

To this purpose, we use Leibniz’s rule to compute

Aτ

∫ τ

0
G(σ, τ)dσ +

∫ τ

0
G(σ, τ)dσATτ =

∫ τ

0

∂G(σ, τ)
∂τ

dσ = ∂

∂τ

∫ τ

0
G(σ, τ)dσ −G(τ, τ)

= ∂

∂τ

∫ τ

0
G(σ, τ)dσ −BτB

T
τ .

If we now integrate the first term in the right-hand side, then we have
∫ t

0

∂

∂τ

[∫ τ

0
G(σ, τ)dσ

]
dτ =

∫ t

0
G(τ, t)dτ ;

this proves that Σ(t, t) is as we claimed.

Now fix some s ∈ [0, T ] and consider the matrix process Yt = ZsZ
T
t defined in

the interval [s, T ]. Note that this process satisfies

dYt = ZsZ
T
t A

T
t dt+ Zs(BtdWt)T = YtA

T
t dt+ Zs(BtdWt)T .

When we take the expectation of the right-hand side, the last term vanishes because
it is a martingale. Hence, if we let yt = E[Yt], then we have

yt = Σ(s, s) +
∫ t

s
yτA

T
τ dτ.

Since Z is continuous, we know that y is continuous as well. Recall that At is also
continuous, thus the fact that y solves this equation implies that y is differentiable.
As a result, y solves the ODE ẏt = ytA

T
t , starting at ys = Σ(s, s).

The solution to this equation is yt = Σ(s, s)Φ(s, t)T , or equivalently

yt =
∫ s

0
Φ(τ, s)BτB

T
τ Φ(τ, s)TdτΦ(s, t)T

=
∫ s

0
Φ(τ, s)BτB

T
τ Φ(τ, s)TΦ(s, t)Tdτ =

∫ s

0
Φ(τ, s)BτB

T
τ Φ(τ, t)Tdτ.

2.4 Affine and stable drifts

In this section we assume that the drift F is an affine vector field with an stable
Jacobian matrix A, by this we mean that A has eigenvalues with strictly negative
real parts. We will suppose in addition that δkl ≡ 0 for all l ∈ D and k ≥ 1 and we
will introduce the technical hypothesis that the following function is affine.

x 7−→
∑

l∈D
γl(x)

Below we first prove that, in this case, the chainsXk have an almost surely infinite
explosion time; here we use our technical hypothesis. Afterwards, we observe that

40



E[Xk] solves the fluid equation ẋ = F (x), the ODE that governs the fluid limit of
the density dependent family. Then, we study the limit of Theorem 2.3.2 when we
take an equilibrium point of ẋ = F (x) as nominal solution. In particular, we see
that the matrix Bt of equation (2.13) is constant and we use this to characterize the
steady-state of the limit, showing that its covariances solves a Lyapunov equation.

Proposition 2.4.1. Let X = Xm for some fixed m ≥ 1, then X is non-explosive.

Proof. As in the proof of Lemma 2.2.1 let τi(ω) be the time of the i-th jump of
the path X(ω). Remember that conditional to Fn = σ ({Xτi : i = 0, . . . , n}), the
holding times {τi+1 − τi : i = 0, . . . , n} are independent and exponential with rates

λi =
∑

l∈D
mγl(Xτi).

Furthermore, since this is an affine map, as a function of Xτi , then there exist a
constant α ∈ R and a linear transformation S : Rd −→ R such that λi = α+S(Xτi).
Therefore, these rates are bounded by

λi ≤ |α|+ ||S|| ||Xτi || ≤ |α|+ ||S||
(
||X(0)||+ imax

l∈D
||l||

)
= a+ bi,

where a and b are non-negative constants. This implies that
∞∏

i=0

(
1 + 1

λi

)
>
∞∑

i=1

1
λi
≥
∞∑

i=0

1
a+ bi

= +∞.

As a result, using the disintegration theorem [16, Theorem 5.4] as in the proof
of Lemma 2.2.1, we see that

lim
n→∞E

[
E

[
n∏

i=0
e−(τi+1−τi)

∣∣∣∣∣Fn
]]

= lim
n→∞E

[
n∏

i=0

∫ ∞

0
e−tλie

−λitdt

]

= lim
n→∞E

[
n∏

i=0

(
1 + 1

λi

)−1]
= 0.

Hence, the same computation that we used at the end of Lemma 2.2.1 shows that

E

[
e−
∑∞

i=0(τi+1−τi)
]

= lim
n→∞E

[
E

[
n∏

i=0
e−(τi+1−τi)

∣∣∣∣∣Fn
]]

= 0.

Thus, X needs infinite time to accomplish infinitely many jumps, almost surely.

In the setting of this section, equation (2.3) simplifies to

Xk(t) = Xk(0) + Σk(t) +
∫ t

0
F (Xk(τ))dτ ∀ t ≥ 0 a.s. (2.14)

Because Gk ≡ 0 and the explosion time of Xk is almost surely infinite for all k ≥ 0.

Taking expectations on both sides of equation (2.14) we have

E[Xk(t)] = Xk(0) +
∫ t

0
F (E[Xk(τ)])dτ ∀ t ≥ 0,
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because under the hypothesis of this section one can check that Σk is a martingale
by Remark 2.1.5. The mean of Xk thus solves ẋ = F (x); since F is affine, solutions
to this ODE are defined for all times t ≥ 0.

Recall that the fluid limit solves this ODE as well, and since solutions are defined
for all t ≥ 0, we can say that the limit Xk(0)→ x0 as n→∞ implies

sup
t∈[0,T ]

||Xk(t)− x(t)|| a.s.−−→ 0 as k →∞ ∀ T ≥ 0,

where x is the solution to ẋ = F (x) that starts at x0.

The fact that A is stable implies that ẋ = F (x) has a global attractor x∗.
Moreover, it is always possible to find a positive definite symmetric matrix P such
that ATP +PA is negative definite. This allows to construct a quadratic Lyapunov
function V (y) = (y − x∗)TP (y − x∗) for the fluid dynamics.

Note that x∗ has the property that Xk(0)→ x∗ as k →∞ implies

sup
t∈[0,T ]

||Xk(t)− x∗|| a.s.−−→ 0 as k →∞ ∀ T ≥ 0.

2.4.1 The Lyapunov equation

The diffusion that appears in the claim of Theorem 2.3.2, for a generic solution
x to the fluid dynamics, is given in this case by the SDE

Zt = AZtdt+BtdWt, (2.15)

where W is a d-dimensional Wiener process and B is as in Subsection 2.3.1. Since
solutions to ẋ = F (x) are defined for all t ≥ 0, Theorem 2.3.2 yields weak conver-
gence in DRd [0, T ] for all T ≥ 0. This implies that the limit takes place in DRd [0,∞)
as well, by Theorem A.3.6.

Note that the fundamental matrix of ẋ = F (x) is Φ(s, t) = eA(t−s), therefore the
mean and covariance of Z are given by

µ(t) = eAtZ(0) and Σ(s, t) =
∫ s

0
eA(s−τ)BτB

T
τ e

AT (t−τ)dτ ∀ 0 ≤ s < t.

In the special case where the nominal solution to the fluid dynamics is an equi-
librium point x ≡ x∗, the dispersion coefficient B turns out to be constant in time:

B =
√∑

l∈D
llTγl(x∗).

In this case Σ(t) = Σ(t, t) solves Σ̇ = AΣ + ΣAT + BBT . Since A is stable, Σ(t)
has a limit Σ∞ when t→ +∞. Moreover, this implies that Σ̇(t) has a limit as well,
because Σ̇(t) = AΣ(t) + Σ(t)AT + BBT . This limit is necessarily zero, otherwise
Σ(t) would not converge as t→ +∞. Hence, the matrix Σ∞ solves

AΣ∞ + Σ∞AT +BBT = 0. (2.16)

Assuming that the invariant measure of equation (2.15) exists, this Lyapunov equa-
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tion provides an easy way to compute its covariance matrix. Below we give a condi-
tion that ensures the existence of this measure. Moreover, we prove that under this
condition the stationary distribution is a centered Gaussian whose covariance solves
the above Lyapunov equation.

Suppose that the diffusion coefficient BBT is non-singular; this condition may be
weakened as it is explained in Appendix D. We may then use the Foster-Lyapunov
criteria of the same appendix to prove that a unique invariant measure exists and
is exponentially ergodic. To this end, consider the quadratic Lyapunov function
V (y) = (y− x∗)TP (y− x∗) that we mentioned above, when we discussed the global
asymptotic stability of the fluid dynamics.

To use the above mentioned Foster-Lyapunov criteria, we need to work with the
second order differential operator L that characterizes the SDE (2.15), specifically

Lf(y) = ∇f(y)Ay + 1
2tr

[
BHf (y)BT

]
∀ f ∈ C2(Rd). (2.17)

The reader may see appendices C and D for further details.

Since the second order derivatives of V are constant, the second term of (2.17)
is equal to some constant κ when we replace f by V . Hence, we see that

LV (y) = 2(y − x∗)TPAy + κ

= 2(y − x∗)TPA(y − x∗) + 2(y − x∗)TPAx∗ + κ

= (y − x∗)T (ATP + PA)(y − x∗) + 2(y − x∗)TPAx∗ + κ,

Recall that ATP +PA is negative definite, whereas P is positive definite. Then,
there exists a constant c > 0 such that

(y − x∗)T (ATP + PA)(y − x∗) < −c(y − x∗)TP (y − x∗) = −cV (y) ∀ y ∈ Rd.

The left-hand side is quadratic in the coefficients of y, while the other terms in
LV (y) are at most linear in these coefficients. This implies that

lim inf
y→∞

LV (y)
−cV (y) = lim inf

y→∞
(y − x∗)T (ATP + PA)(y − x∗)

−cV (y) > 1.

Therefore, there exists r > 0 such that LV (y) ≤ −cV (y) whenever ||y|| > r. If we
define d = max {LV (y) : ||y|| ≤ r}, then LV (y) ≤ −cV (y)+d for all y ∈ Rd. Hence,
by the Foster-Lyapunov criteria of Subsection D.3.1, we know that equation (2.15)
admits a exponentially ergodic invariant measure.

Let Z∞ be distributed according to the invariant measure of equation (2.15)
and consider any solution Z to this SDE, starting at some point Z0 ∈ Rd. The
exponential ergodicity of equation (2.15) implies that Zt ⇒ Z∞ in Rd as t → +∞;
see Section D.3.1. In particular we have

E

[
ei〈y,Z∞〉

]
= lim

t→+∞
E

[
ei〈y,Zt〉

]
= lim

t→+∞
e−

1
2y
TΣ(t)y+iµ(t)T y = e−

1
2y
TΣ∞y.

Thus, Z∞ is a centered Gaussian whose covariance solves equation (2.16).
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Chapter 3

Extensions of the central limit
theorem

3.1 A motivating example

In order to illustrate the problems that this chapter addresses, we begin with a
classical example: the heavy traffic analysis of the many-server queue in the Halfin-
Whitt regime; the reader may find the original work in [14].

The many-server queue models a data center with fixed capacity: it is a queueing
system consisting of a centralized queue and a finite number of servers. Under the
exponential assumptions of Section 1.1, if we let m be the number of servers, then
the number of jobs n evolves according to the birth-death process of Figure 3.1. We
are letting λm be the arrival rate of jobs and we are denoting by µ the service rate of
each server; note that at any given time the number of active servers is min(m,n).

· · · n− 1 n n+ 1 · · ·

λm λm

µmin(m,n+ 1)µmin(m,n)

Figure 3.1: Birth-death process describing the number of jobs in a many-server queue.

In order to understand the behavior of a large scale many-server queue, we may
let λm and m approach infinity; the condition λm/mµ < 1 must be enforced if we
want the chain to be stable, and thus we need to scale the arrival rate and the
number of servers simultaneously. Halfin and Whitt proposed a scaling of the form

λm = mµ−O
(√

m
)
.

The result is a sequence of many-server queues approaching heavy traffic: they
work increasingly closer to the border of their capacity as the number of servers
grows, because λm/mµ → 1. Moreover, we will see that after taking the limit the
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steady-state probability of finding idle capacity is positive but strictly smaller than
one. This is the situation in real-life data centers, which are designed for a certain
tradeoff between user perceived performance and operation costs; this feature is
what works prior to [14] failed to capture.

Remark 3.1.1. Let ρm = λm/µ be the traffic intensity, in the Halfin-Whitt scaling
ρm/m → 1 as m → ∞. Thus, m = ρm + O(√ρm) which yields the square root
staffing rule: estimate the traffic intensity that the data center will face and let the
number of servers be this quantity plus its square root.

Let us adopt, in this section, a scaling of the kind that Halfin and Whitt proposed.
More precisely, in order to fix ideas, we will simply let

λm = mµ− ν√m,
where ν is some positive constant. Under this choice of scaling, the transition rates
of the many-server queue X̂m, with m servers, are given by

q̂mn,n+1 = λm = m

(
µ− ν√

m

)
and q̂mn,n−1 = µmin(m,n) = mµmin

(
1, n
m

)
.

We now choose an open set E containing [0,+∞) and we set

γ1(x) = µ, γ−1(x) = µmin(1, x) δm1 (x) = − ν√
m

and δm−1(x) = 0

Letting x = n/m we obtain the intensities of Xm = X̂m/m, namely

qmx,x+m−1 = mγm1 (x) +mδm1 (x) = mβm1 (x) and
qmx,x−m−1 = mγ−1(x) +mδm−1(x) = mβm−1(x).

Note that Xm is confined to [0,+∞) if the initial condition lies there. By Definition
2.1.4 we see that the drift and perturbing drift of this density dependent family are

F (x) = µmax(0, 1− x) and Gm(x) = − ν√
m
∀ m ≥ 1.

Let x be the solution, starting at some x0 ≥ 0, to the ODE (2.6); in this case

ẋ = µmax(0, 1− x). (3.1)

By Theorem 2.2.5 this is the fluid limit of {Xm}m≥1. More precisely, if Xm(0)→ x0
as m→∞, then we have

sup
t∈[0,T ]

||Xm(t)− x(t)|| a.s.−−→ 0 as m→∞ ∀ T ≥ 0.

Recall that Xm is the ratio between jobs and servers in the many-server queue
with m servers, hence the meaning of the limit x is the ratio between jobs and servers
in the fluid scale. The equilibria of equation (3.1) are all the points in [1,+∞), which
represent systems where there are more jobs than servers. Moreover, x0 < 1 implies
x(t) → 1 as t → +∞. This is all reasonable because we are letting λm/mµ → 1,
and thus the queues X̂m work closer to the border of their capacity as m→∞.
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In order to estimate the probability that all the servers in the data center are
busy, we need to take a closer look; to this end we could try to use Theorem 2.3.2 to
compute a diffusion that approximately describes the system’s behavior. However,
there are two reasons why this is not possible, specifically, the following hypothesis
of Theorem 2.3.2 do not hold.

1. F is not differentiable at y = 1.

2.
√
mδm1 (y) = −ν for all y ∈ [0,+∞), thus

√
mδm1 does not vanish as m→∞.

In the following sections we will extend Theorem 2.3.2 to contemplate these
two situations. Namely, we will prove central limit theorems for families with non-
differentiable drifts, and for families whose perturbing drifts do not vanish in the
diffusion scale. Before we do that, let us explain what the diffusion approximation
should look like in this particular case.

Consider the equilibrium point x∗ = 1 of equation (3.1), which corresponds to
a system where the number of jobs and servers is the same. Also, consider the
processes Zm =

√
m(Xm − x∗), assume that Zm(0) → Z(0) as m → ∞, for some

Z(0) ∈ R, and as we did in Section 2.3 write

Zm(t) = Zm(0) +
√
mΣm(t) +

∫ t

0

√
mGm(Xm(τ))dτ

+
∫ t

0

√
m [F (Xm(τ))− F (x∗)] dτ ∀ t ≥ 0;

(3.2)

in fact here F (x∗) = 0. Recall that
√
mΣm is given in terms of two independent and

centered Poisson processes of unitary intensity, Y1 and Y−1, by the expression
√
mΣm(t) = 1√

m
Y1

(∫ t

0
mβm1 (Xm(τ))dτ

)
− 1√

m
Y−1

(∫ t

0
mβm−1(Xm(τ))dτ

)
.

The first hurdle that we encounter, when we try to reproduce the arguments of
Section 2.3, is that we are no longer able to use the series expansion of F to make Zm
appear in the right-hand side of equation (3.2). Indeed, the procedure of Section 2.3
fails because F is not differentiable at x∗ = 1. Nevertheless, the lateral derivatives
of F exist at this point, and this allows to define the map ∂F : R −→ R given by

∂F (y) = ∂F−(x∗)
∂x

y1y<0 + ∂F+(x∗)
∂x

y1y≥0 = −µy1y<0,

where the two terms in the middle expression denote, respectively, the left and right
lateral derivatives of F . The key features of this map are:

1. It is positively homogeneous in the sense that ∂F (αy) = α∂F (y) for all α ≥ 0
and for all y ∈ R.

2. It is Lipschitz; in fact it is piecewise linear in this particular example.

3. The remainder R(y) = F (y)− F (x∗)− ∂F (y − x∗) satisfies the condition

lim
y→x∗

R(y)
y − x∗ = 0;
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as a matter of fact R ≡ 0 in this case.

The first of these properties allows to write
√
m [F (Xm(τ))− F (x∗)] =

√
m∂F (Xm(τ)− x∗) +

√
mR (Xm(τ))

= ∂F (Zm(τ)) +
√
mR (Xm(τ)) .

The above in turn yields an equation that is similar to equation (2.9), namely

Zm(t) = Zm(0) + Um(t) + δm(t) +
∫ t

0
∂F (Zm(τ)) dτ ∀ t ≥ 0, (3.3)

where, as in Section 2.3, Um and δm are the processes

Um(t) =
√
mΣm(t) and δm(t) =

∫ t

0

√
m [R(Xm(τ)) +Gm(Xm(τ))] dτ.

A key difference is that the integrand ∂F (Zm) is not linear on Zm. In Section 2.3,
this allowed to explicitly construct a continuous mapping φ : DR[0, T ] −→ DR[0, T ]
for each T ≥ 0, such that φf − f was continuous and

φf (t) = f(t) +
∫ t

0
∂F (φf (τ))dτ ∀ t ∈ [0, T ],

for each f ∈ DR[0, T ]. In particular, we had Zm = φ(Zm(0) +Um + δm). An explicit
construction is not possible in this case. However, as we will see in Section 3.3, it is
possible to prove that a map φ with the latter characteristics exists.

The subsequent step to prove Theorem 2.3.2, after we had constructed φ, was to
show that Um + δm ⇒ U in DR[0, T ] as m→∞, where

U(t) = W1

(∫ t

0
γ1(x∗)dτ

)
−W−1

(∫ t

0
γ−1(x∗)dτ

)
= W1(γ1(x∗)t)−W−1(γ−1(x∗)t)

for some independent standard Wiener processes W1 and W−1. Recall that the
strategy was to show that Um ⇒ U in DRd [0, T ] and

sup
t∈[0,T ]

|δm(t)| P−−→ 0 as m→∞.

The latter is no longer true in this case, because the maps
√
mGm converge uniformly

to the non-zero constant −ν. However, the integral of
√
mR(Xm(τ)) in the definition

of δm vanishes, in fact R ≡ 0 as we commented before. This results in

sup
t∈[0,T ]

|δm(t) + νt| P−−→ 0 as m→∞.

Consequently, we actually have the limit Um(t) + δm(t)⇒ U(t)− νt, and after using
the continuous mapping theorem this results in Zm ⇒ Z in DR[0, T ], where

Z(t) = Z(0) + U(t)− νt+
∫ t

0
∂F (Z(τ))dτ

= Z(0) + U(t) +
∫ t

0
∂F (Z(τ))− νdτ ∀ t ∈ [0, T ];

note the differences in the integrand, in comparison with equation (2.10). Moreover,
since Zm ⇒ Z holds in DR[0, T ] for all T ≥ 0, then this also holds in DR[0,∞).
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As in Theorem 2.3.2, the limit process Z may also be regarded as the solution
to an SDE. Specifically, Z solves the equation

dZt = A(Zt)dt+BdWt,

where W is a unidimensional Wiener process, and A and B are, respectively, the
following scalar function and constant.

A(y) =
{−µy − ν if y < 0,
−ν if y > 0,

and B =
√

2µ.

The proof in [14], of this limit in distribution, uses some criteria due to Stone for
the convergence of suitably normalized birth-death processes to a diffusion process;
these criteria are summarized in [15, Theorem 3.2]. Furthermore, the steady-state
Z∞ of the solutions to the last SDE is computed in [14], and its density is half
normal and half exponential:

p(y) = (1− α)ϕ(β + y)
Φ(β) 1y<0 + αβe−βy1y>0; (3.4)

here ϕ is the density of the standard normal distribution, Φ is its cumulative distri-
bution function, β = ν/µ and α ∈ (0, 1) is the probability that Z∞ > 0, which may
be expressed in terms of β. The meaning of Z∞ > 0 is that there are more jobs than
servers in the system, whereas Z∞ < 0 means that there are more servers than jobs,
and these two scenarios have positive probability. This is the distinctive feature of
the Halfin-Whitt scaling.

The above computation, of the steady-sate distribution of Z, is carried out in [14]
without using the SDE at all; Halfin and Whitt find the stationary distribution of
the many-server queue explicitly, and then obtain the steady-state distribution of Z
after taking the limit as m→∞. In Section 3.5 we will instead find the stationary
distribution of Z directly from the SDE.

The organization of the subsequent sections is as follows. First, we prove in
Section 3.2 a central limit theorem for density dependent families whose perturbing
drifts are not negligible in the diffusion scale, but still have a differentiable drift.
Afterwards, we prove a central limit theorem, around an equilibrium solution to the
fluid dynamics, for density dependent families with a non-differentiable drift, and
also non-negligible perturbing drifts. To this end, we study in Section 3.3 solutions
to integral equations with a càdlàg input and a Lipschitz field, that is with the form
of equation (3.3). The results in this section will help us prove the existence of
the map φ that we used in the above example, and this will lead to the announced
central limit theorem, for families with a non-differentiable drift; this theorem will
be proven in Section 3.4. Finally, in Section 3.5, we will discuss the steady-state of
some switched diffusions, which appear when we use the results of Section 3.4.
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3.2 Generalization of the central limit theorem

Consider an open set E ⊂ Rd, a finite set of directions D ⊂ Zd and families of
non-negative maps {βkl }l∈D with domain E, of the form

βkl = γl + δkl .

We will consider the density dependent family of continuous time Markov chains Xk

that is given by the above maps according to Definition 2.1.2. Moreover, we will
continue under the following hypothesis.

Assumption 3.2.1. The maps γl are locally Lipschitz. Also, for each compact set
K ⊂ E, the maps δkl satisfy the two following conditions.

sup
x∈K
|δkl (x)| <∞ ∀ l ∈ D, k ≥ 1 and

lim
k→∞

sup
x∈K

kα|δkl (x)| = 0 ∀ l ∈ D, α ∈ [0, 1/2).

Note that Theorem 2.3.1 is still true under this assumption, although in Section 2.3
we assumed that the last of these conditions also held for α = 1/2. This was only
needed to prove the central limit theorem of Chapter 2.

The drift and perturbing drifts are defined as in Section 2.1, respectively:

F (x) =
∑

l∈D
lγl(x) and Gk(x) =

∑

l∈D
lδkl (x).

Assumption 3.2.1 implies that the drift is locally Lipschitz, and thus Theorem 2.2.5
holds. Namely, suppose that there exists x0 ∈ E such that Xk(0) → x0 as k → ∞,
and let x be the solution to the initial value problem ẋ = F (x), starting at x0 and
defined in [0, T ]. Then we have

sup
t∈[0,T ]

||Xk(t)− x(t)|| a.s.−−→ 0 as k →∞.

We will now consider the processes Zk =
√
k(Xk − x), that are defined on [0, T ]

and describe the fluctuations of the processes Xk around their fluid limit x. As in
Section 2.3, we will assume that there exists Z(0) ∈ Rd such that Zk(0)→ Z(0) as
k → ∞, and we will show that the processes Zk converge weakly in DRd [0, T ]. To
this end, we will adopt the following assumptions.

Assumption 3.2.2. Suppose that the drift F is continuously differentiable. More-
over, assume that there exists a continuous field G : E −→ R

d such that

lim
k→∞

sup
x∈K

∣∣∣
∣∣∣
√
kGk(x)−G(x)

∣∣∣
∣∣∣ = 0

holds inside of each compact set K ⊂ E. This hypothesis, regarding the perturbing
drifts, will determine the appearance of an extra term in the SDE that we wrote in
the statement of the central limit theorem of Chapter 2.

In order to prove that the processes Zk have a limit in distribution, we first
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observe that these processes satisfy the equations

Zk(t) = Zk(0) + Uk(t) + δk(t) +
∫ t

0
F ′(x(τ))Zk(τ)dτ ∀ t ∈ [0, T ], (3.5)

which we had already introduced in Section 2.3; see equation (2.9). Recall that the
processes Uk and δk are given by the expressions

Uk(t) =
∑

l∈D

l√
k
Yl

(∫ t

0
kβkl (Xk(τ))dτ

)
and

δk =
∫ t

0

√
k [Rτ (Xk(τ)) +Gk(Xk(τ))] dτ,

where {Yl}l∈D is and independent family of centered Poisson processes with unitary
intensity, and Rτ (y) = F (y)− F (x(τ))− F ′(x(τ)) (y − x(τ)).

By the results in Section 2.3, we know that there exists a continuous mapping
φ : DRd [0, T ] −→ DRd [0, T ] such that the image of f ∈ DRd [0, T ] is the unique
function φf such that φf − f is continuous and

φf (t) = f(t) +
∫ t

0
F ′(x(τ))φf (τ)dτ ∀ t ∈ [0, T ].

In particular Zk = φ(Zk(0) +Uk + δk); note that since Zk is a càdlàg function, then
the integral in the right-hand side of equation (3.5) is continuous as a function of
its upper limit, and hence Zk − Zk(0)− Uk − δk is continuous as well.

To prove that the processes Zk have a limit in distribution, we will first show
that the processes Zk(0) + Uk + δk converge weakly in DRd [0, T ], and then use the
continuous mapping theorem.

To this purpose, we will consider the process

U(t) =
∑

l∈D
lWl

(∫ t

0
γl(x(τ))dτ

)
,

where {Wl}l∈D is an independent family of standard Wiener processes, and we will
prove that the following limit holds.

Theorem 3.2.3. Under the above assumptions Uk ⇒ U in DRd [0, T ] as k →∞.

Proof. Consider the processes

Ũk(t) =
∑

l∈D

l√
k
Yl

(∫ t

0
kγl(x(τ))dτ

)
.

By Theorem B.2.1 we know that Ũk ⇒ U in DRd [0, T ] as k → ∞. As a result, by
Theorem A.1.7 it is enough to show that

sup
t∈[0,T ]

∣∣∣
∣∣∣Uk(t)− Ũk(t)

∣∣∣
∣∣∣ P−−→ 0 as k →∞,

and to do this it suffices to prove that

sup
t∈[0,T ]

∣∣∣∣∣
Yl(kIkl (t))− Yl(kJl(t))√

k

∣∣∣∣∣
P−−→ 0 as k →∞ ∀ l ∈ D,
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where Ikl and Jl are defined, respectively, as follows.

Ikl (t) =
∫ t

0
βkl (Xk(τ))dτ and Jl(t) =

∫ t

0
γl(x(τ))dτ.

Fix some l ∈ D and ε > 0. Since γl is locally Lipschitz and {x(t) : t ∈ [0, T ]} is
compact, there exist M,ρ > 0 such that M is a Lipschitz constant for γl in the set
Γρ = {y ∈ E : ||y − x(t)|| ≤ ρ for some t ∈ [0, T ]}; we may choose ρ so that this set
is compact. Now choose some α ∈ (0, 1/2) and consider the random variables

∆k = max
{

sup
t∈[0,T ]

kαMT ||Xk(t)− x(t)|| , sup
y∈Γρ

kαT |δkl (y)|
}
.

Assumption 3.2.1 implies that Theorem 2.3.1 holds and ∆k
P−−→ 0 as k →∞. Thus,

if we fix 0 < ∆ ≤ 2MTρ, then the probability of the sets Ωk = {ω ∈ Ω : 2∆k(ω) > ∆}
converges to zero as k →∞.

Note that ω ∈ Ωc
k implies that ||Xk(ω, t)− x(t)|| ≤ (MT )−1∆k(ω) ≤ ρ for all

t ∈ [0, T ], and hence we have the following inequality for all ω ∈ Ωc
k.

|kIkl (ω, t)− kJl(t)| ≤
∫ t

0
k|γl(Xk(ω, τ))− γl(x(τ))|+ k|δkl (Xk(ω, τ))|dτ

≤
∫ t

0
kM ||Xk(ω, τ)− x(τ)||+ k|δkl (Xk(ω, τ))|dτ

≤ 2k1−α∆k(ω) ≤ k1−α∆.

It is now convenient to introduce the following notation.

Ak =
{
ω ∈ Ω : sup

t∈[0,T ]

∣∣∣∣∣
Yl(kIkl (t))− Yl(kJl(t))√

k

∣∣∣∣∣ ≥ ε

}
and

Bk =
{
ω ∈ Ω : sup

t∈[0,T ],δ∈[0,∆]

∣∣∣∣∣
Yl(kJl(t) + k1−αδ)− Yl(kJl(t))√

k

∣∣∣∣∣ ≥ ε

}
.

We would like to show that P(Ak)→ 0 as k →∞ and, to this end, it is enough to
prove that P(Bk)→ 0 as k →∞. Indeed, since Ak ∩ Ωc

k ⊂ Bk ∩ Ωc
k, then

P(Ak) ≤ P(Ωk) +P(Bk ∩ Ωc
k) ≤ P(Ωk) +P(Bk).

Let us introduce the notation:

∆̃k = k−α∆ and Ỹl(t) = Yl(kt).

Using the above notation we may write

sup
t∈[0,T ],δ∈[0,∆]

∣∣∣∣∣
Yl(kJl(t) + k1−αδ)− Yl(kJl(t))√

k

∣∣∣∣∣ = sup
s∈[0,S],δ̃∈[0,∆̃k]

∣∣∣∣∣∣

Ỹl
(
s+ δ̃

)
− Ỹl(s)√
k

∣∣∣∣∣∣
,

where S = Jl(T ); note that Jl is continuous and non-decreasing with Jl(0) = 0, and
thus the image of [0, T ] under Jl is [0, S].

We will derive a bound for the numerator on the right. In order to do this, let
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Sk = S + ∆̃k and consider partitions {0 = sk0 < · · · < skrk = Sk} such that

∆̃k

2 ≤ skn+1 − skn ≤ ∆̃k ∀ n = 0, . . . , rk − 1.

Given s ∈ [0, S] and θ ∈ [0, ∆̃k] we have three possible scenarios.

1. skn ≤ s ≤ s+ θ ≤ skn+1 for some n = 0, . . . , rk − 1.

2. skn ≤ s < skn+1 < s+ θ ≤ skn+2 for some n = 0, . . . , rk − 2.

3. skn ≤ s < skn+1 < skn+2 < s+ θ ≤ skn+3 for some n = 0, . . . , rk − 3.

We will derive the following inequality assuming that s and θ are as in the third
case, but similar computations are possible in the two remaining cases.

∣∣∣Ỹl(s+ θ)− Ỹl(s)
∣∣∣ ≤

∣∣∣Ỹl(s+ θ)− Ỹl(skn+2)
∣∣∣+

∣∣∣Ỹl(skn+2)− Ỹl(skn+1)
∣∣∣

+
∣∣∣Ỹl(skn+1)− Ỹl(skn)

∣∣∣+
∣∣∣Ỹl(skn)− Ỹl(s)

∣∣∣

≤ 4 max
0≤n<rk

sup
δ̃∈[0,∆̃k]

∣∣∣Ỹl
(
skn + δ̃

)
− Ỹl(skn)

∣∣∣ .

Using the bound that we have just computed we obtain the following inequality.

P(Bk) = P


 sup
s∈[0,S],δ̃∈[0,∆̃k]

∣∣∣∣∣∣

Ỹl
(
s+ δ̃

)
− Ỹl(s)√
k

∣∣∣∣∣∣
≥ ε




≤
rk−1∑

n=0
P


 sup
δ̃∈[0,∆̃k]

∣∣∣∣∣∣

Ỹl
(
skn + δ̃

)
− Ỹl(skn)

√
k

∣∣∣∣∣∣
≥ ε

4




= rkP

(
sup
δ∈[0,∆]

∣∣∣∣∣
Yl(k1−αδ)√

k

∣∣∣∣∣ ≥
ε

4

)
.

Since skn − skn−1 ≥ ∆̃k/2 for all k = 1, . . . , rk, then we have

rk ≤
2Sk
∆̃k

= 2kαS
∆ + 2 ≤ 2kα

(
S

∆ + 1
)
.

Thus, applying Doob’s maximal inequality to the submartingale Y 4
l , we see that

rkP

(
sup
δ∈[0,∆]

∣∣∣∣∣
Yl(k1−αδ)√

k

∣∣∣∣∣ ≥
ε

4

)
≤ rk

(4
ε

)4 k1−α∆ + 3 (k1−α∆)2

k2

≤ 2
(
S

∆ + 1
)(4

ε

)4 (∆
k

+ 3∆2

kα

)
,

The right-hand side of this equation converges to zero as k → ∞, and thus
P(Bk)→ 0 as k →∞. This completes the proof.

By Proposition A.1.8, to establish that

Zk(0) + Uk(t) + δk(t)⇒ Z(0) + U(t) +
∫ t

0
G(x(τ))dτ in DRd [0, T ] as k →∞,

53



it only remains to prove the following lemma.

Lemma 3.2.4. Under the above assumptions we have

sup
t∈[0,T ]

∣∣∣∣
∣∣∣∣δk(t)−

∫ t

0
G(x(τ))dτ

∣∣∣∣
∣∣∣∣
P−−→ 0 as k →∞.

Proof. Using the definition of δk, given below equation (3.5), we may write

sup
t∈[0,T ]

∣∣∣∣
∣∣∣∣δk(t)−

∫ t

0
G(x(τ))dτ

∣∣∣∣
∣∣∣∣ ≤ T sup

t∈[0,T ]

√
k ||Rt(Xk(t))||

+ T sup
t∈[0,T ]

∣∣∣
∣∣∣
√
kGk(Xk(t))−G(x(t))

∣∣∣
∣∣∣

(3.6)

To begin, we will deal with the second term on the right-hand side:

sup
t∈[0,T ]

∣∣∣
∣∣∣
√
kGk(Xk(t))−G(x(t))

∣∣∣
∣∣∣ ≤ sup

t∈[0,T ]

∣∣∣
∣∣∣
√
kGk(Xk(t))−G(Xk(t))

∣∣∣
∣∣∣

+ sup
t∈[0,T ]

||G(Xk(t))−G(x(t))|| .

Consider the set Γρ = {y ∈ E : ||y − x(t)|| ≤ ρ for some t ∈ [0, T ]}, which is com-
pact for any sufficiently small constant ρ > 0. By Theorem 2.2.5, we know that for
each ω, outside some fixed null set, there exists k0(ω) such that k ≥ k0(ω) implies
Xk(ω, t) ∈ Γρ for all t ∈ [0, T ]. Hence, Assumption 3.2.2 implies that the first term
on the right-hand side converges to zero almost surely as k → ∞. Moreover, since
G is uniformly continuous in Γρ, then the second term also converges to zero almost
surely as k →∞ by Theorem 2.2.5.

Now it only remains to be shown that the first term on the right-hand side of
equation (3.6) converges to zero in probability as k →∞. Before we do that, since
the remainder Rt(y) → 0 faster than ||y − x(t)|| as y → x(t), we may agree on
defining the next expression as zero at y = x(t), namely

Rt(y)
||y − x(t)|| = 0 at y = x(t).

Under this convention it is possible to write the following inequality.

sup
t∈[0,T ]

√
k ||Rt(Xk(t))|| = sup

t∈[0,T ]

√
k ||Xk(t)− x(t)|| ||Rt(Xk(t))||

||Xk(t)− x(t)||

≤ sup
t∈[0,T ]

√
k ||Xk(t)− x(t)|| sup

t∈[0,T ]

||Rt(Xk(t))||
||Xk(t)− x(t)|| .

We will now make use of Lemma 2.2.4 and the definitions therein. Using the
notation in this lemma, we may write for each ω outside of the null set N , the
following inequality.

sup
t∈[0,T ]

√
k ||Xk(ω, t)− x(t)|| ≤

√
kεk(ω)eMT ∀ k ≥ k0(ω).
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Let Ak be the set of those ω ∈ Ω for which

sup
t∈[0,T ]

√
n ||Xn(ω, t)− x(t)|| ≤ √nεn(ω)eMT (3.7)

for all n ≥ k. These sets increase to a set that contains N c, and thus has probability
one. Also, given ε > 0, consider the set

Bk =
{
ω ∈ Ω :

√
kεk(ω) sup

t∈[0,T ]

||Rt(Xk(ω, t))||
||Xk(ω, t)− x(t)|| ≥

ε

eMT

}
.

Since equation (3.7) holds inside Ak, then we have

P

(
T sup
t∈[0,T ]

√
k ||Rt(Xk(t))|| ≥ ε

)
≤ P(Ack) +P(Ak ∩Bk) ≤ P(Ack) +P(Bk).

We already know that P(Ack)→ 0 as k →∞. Thus, it will be enough to show that
P(Bk)→ 0 as k →∞. In other words, we would like to prove that

√
kεk sup

t∈[0,T ]

||Rt(Xk(t))||
||Xk(t)− x(t)||

P−−→ 0 as k →∞.

Since F is continuously differentiable, then we know that F is uniformly differen-
tiable on any compact set K. By this we mean that for all ε > 0, there exists δ > 0
with the following property: if ||z − y|| < δ and the line segment [y, z] is contained
inside of K, then

||Ry(z)||
||z − y|| = ||F (z)− F (y)− F ′(y)(z − y)||

||y − z|| < ε;

we refer the reader to Proposition E.2.1. Note that given any sufficiently small
constant ρ > 0, the set Γρ = {y ∈ E : ||y − x(t)|| ≤ ρ for some t ∈ [0, T ]} is compact
and has the property that ||y − x(t)|| < ρ implies [x(t), y] ⊂ Γρ. As a result, the
uniform differentiability of F and Theorem 2.2.5 imply that

sup
t∈[0,T ]

||Rt(Xk(t))||
||Xk(t)− x(t)||

a.s.−−→ 0 as k →∞.

Furthermore, recalling from Lemma 2.2.4 the definition of εk, we may write

√
kεk = ||Zk(0)||+ T sup

x∈A

√
k ||Gk(x)||+

∑

l∈D
||l|| sup

t∈[0,T ]

∣∣∣Yl(kβlt)
∣∣∣

√
k

.

On the one hand, we have, by Assumption 3.2.2, the bound

lim sup
k→∞

[
||Zk(0)||+ T sup

x∈A

√
k ||Gk(x)||

]
≤ ||Z(0)||+ T sup

x∈A
||G(x)|| ,

and consequently, we see that
[
||Zk(0)||+ T sup

x∈A

√
k ||Gk(x)||

]
sup
t∈[0,T ]

||Rt(Xk(t))||
||Xk(t)− x(t)||

a.s.−−→ 0 as k →∞.

On the other hand, consider an independent family {Wl}l∈D of standard Wiener
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processes. Note that the supremum norm is continuous in the Skorohod topology.
Therefore, using Theorem B.2.1, the independence of the family {Yl}l∈D and the
continuous mapping theorem, we conclude that

∑

l∈D
||l|| sup

t∈[0,T ]

|Yl(kβlt)|√
k

⇒
∑

l∈D
||l|| sup

t∈[0,T ]
|Wl(βlt)| in R as k →∞,

and using Proposition A.1.9 we may write

∑

l∈D
||l|| sup

t∈[0,T ]

|Yl(kβlt)|√
k


 sup
t∈[0,T ]

||Rt(Xk(t))||
||Xk(t)− x(t)||

P−−→ 0 as k →∞.

This completes the proof.

Now we are ready to prove the main result of this section.

Theorem 3.2.5. Assume that Zk(0) → Z(0) as k → ∞, for some Z(0) ∈ Rd.
Also, suppose that assumptions 3.2.1 and 3.2.2 hold. Then Zk ⇒ Z in DRd [0, T ] as
k →∞, where Z is the continuous process that satisfies the equation

Z(t) = Z(0) + U(t) +
∫ t

0
F ′(x(τ))Z(τ) +G(x(τ))dτ ∀ t ∈ [0, T ].

Furthermore, Z has the same finite-dimensional distributions as the solution to

dZt = [AtZt +G(x(t))] dt+BtdWt, (3.8)

where Wt is a d-dimensional Wiener process with independent coordinates, At is the
Jacobian matrix of F at the point x(t) and Bt is the d× d matrix

B(t) =
√∑

l∈D
llTγl(x(t)).

Here the square root is that of a positive semi-definite matrix. Note that the drift
of this SDE has an extra term in comparison with equation (2.13)

Proof. As we have already observed, Zk = φ(Zk(0) + Uk + δk) for all k ≥ 1. Define

Ũ(t) = U(t) +
∫ t

0
G(x(τ))dτ.

Theorem 3.2.3 and Lemma 3.2.4 imply that Zk(0)+Uk+δk ⇒ Z(0)+ Ũ in DRd [0, T ]
as k →∞, by Proposition A.1.8.

If Z = φ(Z(0)+ Ũ), then the continuity of φ implies that Zk ⇒ Z in DRd [0, T ] as
k →∞, by the continuous mapping theorem. Moreover, the definition of φ implies
that Z − Ũ is continuous, and thus Z is continuous as well. Also, we have

Z(t) = Z(0) + U(t) +
∫ t

0
F ′(x(τ))Z(τ) +G(x(τ))dτ ∀ t ∈ [0, T ],

again by the definition of φ. The link between this equation and the SDE (3.8) is
as in Subsection 1.2.2.
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As in Section 2.3 we may also write an explicit equation for Z, namely

Z(t) = Z(0) + Ũ(t) +
∫ t

0
Φ(τ, t)F ′(x(τ))

[
Z(0) + Ũ(τ)

]
dτ,

where Ũ is as in the proof of the preceding theorem and Φ is the fundamental matrix
that solves the initial value problem

∂Φ(s, t)
∂t

= F ′(x(t))Φ(s, t) and Φ(s, s) = Id ∀ s, t ∈ [0, T ].

This allows to show, by the same arguments of Section 2.3, that Z is a time inho-
mogeneous Gaussian process.

In this case we see from equation (3.8) that the mean of Z solves the ODE

µ(t) = Z(0) +
∫ t

0
A(τ)µ(τ) +G(x(τ))dτ,

which is different from the corresponding equation of Subsection 2.3.1. However,
the centered process Z − µ solves the SDE

d(Z − µ)t = At(Z − µ)tdt+BtdWt,

which is equation (2.13) from Subsection 2.3.1, and therefore the covariance of Z is
exactly as in Proposition 2.3.5, that is

Σ(s, t) =
∫ s

0
Φ(τ, s)BτB

T
τ Φ(τ, t)Tdτ ∀ 0 ≤ s ≤ t ≤ T.

3.3 Integral equations with a càdlàg input

A key step for proving the central limit theorems of Chapter 2 and the previous
section is the construction of the mapping φ, and to that end the hypothesis that F
is continuously differentiable is crucial. As a matter of fact, in the case of families
with a non-differentiable drift we cannot construct this mapping explicitly.

However, we still may prove that a map with the same properties exists. To this
purpose, consider a càdlàg function f : [0, T ] −→ R

d and a globally Lipschitz field
H : Rd −→ R

d. In this section we will study equations of the form

ϕ(t) = f(t) +
∫ t

0
H(ϕ(τ))dτ ∀ t ∈ [0, T ].

Definition 3.3.1. We will say that ϕ : [0, T ] −→ R
d is a solution to the integral

equation with input f and field H if ϕ satisfies the above and ϕ− f is continuous.

Moreover, given some interval I ⊂ [0, T ] and an initial condition (t0, x0) ∈ I×Rd,
we will say that ϕ : I −→ R

d is a local solution if ϕ− f is continuous and

ϕ(t) = x0 + f(t)− f(t0) +
∫ t

t0
H(ϕ(τ))dτ ∀ t ∈ I.

The next lemma is the analog of Picard’s theorem within the context of the
equations that we are considering in this section.
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Lemma 3.3.2. There exists ε > 0 such that for all t0 ∈ [0, T ] and x0 ∈ Rd there
exists a unique local solution starting at (t0, x0) and defined on (t0−ε, t0 +ε)∩ [0, T ].

Proof. Let M be a Lipschitz constant for H and choose ε > 0 such that Mε < 1.
Fix (t0, x0) ∈ [0, T ] × Rd, let I = (t0 − ε, t0 + ε) ∩ [0, T ] and note that if a local
solution exists, then by definition, it must lie in

F =
{
ϕ : I −→ R

d : ϕ− f is continuous
}
.

Endow this space with the metric ρ inherited from the supremum norm

ρ(ϕ, ψ) = sup
t∈I
||ϕ(t)− ψ(t)|| ∀ ϕ, ψ ∈ F .

It is clear that (F , ρ) is a complete metric space. Furthermore, F is isometrically
isomorphic to the space of continuous functions with domain I. We are going to
consider the map T : F −→ F such that

Tϕ(t) = x0 + f(t)− f(t0) +
∫ t

t0
H(ϕ(τ))dτ ∀ t ∈ I.

Note that ϕ is càdlàg because f has this property and ϕ− f is continuous. Hence,
since H is continuous, H(ϕ) is càdlàg and thus integrable. Moreover, the integral
on the right-hand side is continuous as a function of the upper limit, because the
integrand is bounded, and therefore Tϕ− f is continuous, in other words Tϕ ∈ F .
The following inequality shows that T is a contraction.

ρ(Tϕ, Tψ) = sup
t∈I
||Tϕ(t)− Tψ(t)|| ≤ sup

t∈I

∣∣∣∣
∫ t

t0
||H(ϕ(τ))−H(ψ(τ))|| dτ

∣∣∣∣

≤Mε sup
t∈I
||ϕ(t)− ψ(t)|| < ρ(ϕ, ψ).

Therefore, the fixed point theorem ensures that there exists a unique ϕ ∈ F such
that Tϕ = ϕ, and this completes the proof of the claim.

The radius ε of the time interval where local solutions exist and are unique is
independent of the initial condition (t0, x0). This happens because H is uniformly
Lipschitz, and it will help us prove the following theorem.

Theorem 3.3.3. There exists a unique solution ϕ : [0, T ] −→ R
d to

ϕ(t) = f(t) +
∫ t

0
H(ϕ(τ))dτ ∀ t ∈ [0, T ]. (3.9)

Proof. Let ε > 0 be as in the statement of Lemma 3.3.2 and choose a partition
0 = t0 < · · · < tn = T such that ti+1 − ti < ε for all i = 0, . . . , n− 1. Furthermore,
let Ii = (ti− ε, ti + ε)∩ [0, T ] and define inductively ϕi : Ii −→ R

d to be the unique
local solution to the corresponding equation of the ones below.

ϕ0(t) = f(0) + f(t)− f(0) +
∫ t

0
H(ϕ0(τ))dτ ∀ t ∈ I0,

ϕi(t) = ϕi−1(ti) + f(t)− f(ti) +
∫ t

ti
H(ϕi(τ))dτ ∀ t ∈ Ii.
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Consider the map ϕ : [0, T ] −→ R
d such that ϕ(t) = ϕi(t) for all t ∈ [ti, ti+1],

since ϕi−1(ti) = ϕi(ti), this map is well defined. Moreover, it is easy to check that
ϕ solves equation (3.9). The uniqueness of ϕ follows from the uniqueness of the
solutions ϕi in the intervals Ii for all i = 0, . . . , n− 1.

For some fixed Lipschitz field H : Rd −→ R
d, the previous theorem allows to

define a map φ : DRd [0, T ] −→ DRd [0, T ] such that the image of f ∈ DRd [0, T ] is
the unique solution φf to equation (3.9) when f is the input. In other words, φf is
the unique function such that φf − f is continuous and

φf (t) = f(t) +
∫ t

0
H(φf (τ))dτ ∀ t ∈ [0, T ].

Theorem 3.3.4. Assume that H(0) = 0, then the map φ : DRd [0, T ] −→ DRd [0, T ]
is continuous in the Skorohod topology.

Proof. Let M > 0 be a Lipschitz constant for H. Then ||H(x)|| ≤ M ||x|| because
H(0) = 0. As a result, we have the following for each f ∈ DRd [0, T ].

||φf (t)|| ≤ ||f(t)||+
∫ t

0
||H(φf (τ))|| dτ

≤ ||f(t)||+
∫ t

0
M ||φf (τ)|| dτ ∀t ∈ [0, T ],

and now the boundedness of f , and Gronwall’s inequality, yield a uniform bound
for ||φf (t)|| that we will denote Kf , specifically

sup
t∈[0,T ]

||φf (t)|| ≤ eMT sup
t∈[0,T ]

||f(t)|| = Kf .

Consider some g ∈ DRd [0, T ] and suppose that δ > d0(f, g). Recall that the
metric d0, that we used in Lemma 2.3.4 and is defined in Appendix A, generates
the Skorohod topology. Moreover, remember that the condition d0(f, g) < δ implies
that there exists some increasing continuous bijection λ : [0, T ] −→ [0, T ] such that

sup
0≤s<t≤T

∣∣∣∣∣log
(
λ(t)− λ(s)

t− s

)∣∣∣∣∣ ≤ δ and sup
t∈[0,T ]

||f(λ(t))− g(t)|| ≤ δ.

The first inequality implies that λ is differentiable almost everywhere in [0, T ] and
its derivative satisfies |λ′(t)− 1| ≤ eδ − 1 at the points where it is defined, thus

φf (λ(t))− φg(t) = f(λ(t))− g(t) +
∫ λ(t)

0
H(φf (τ))dτ −

∫ t

0
H(φg(τ))dτ

= f(λ(t))− g(t) +
∫ t

0
H(φf (λ(s)))λ′(s)ds−

∫ t

0
H(φg(s))ds

= f(λ(t))− g(t) +
∫ t

0
H(φf (λ(s)))[λ′(s)− 1]ds

+
∫ t

0
H(φf (λ(s)))−H(φg(s))ds ∀ t ∈ [0, T ],
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and we have the following inequality for all t ∈ [0, T ].

||φf (λ(t))− φg(t)|| ≤ ||f(λ(t))− g(t)||+
∫ t

0
M ||φf (λ(s))||

(
eδ − 1

)
ds

+
∫ t

0
M ||φf (λ(s))− φg(s)|| ds

≤ δ +MKf

(
eδ − 1

)
T +

∫ t

0
M ||φf (λ(s))− φg(s)|| ds.

Finally, using Gronwall’s inequality we obtain the bound

sup
t∈[0,T ]

||φf (λ(t))− φg(t)|| ≤
[
δ +MKf

(
eδ − 1

)
T
]
eMT .

This holds for all δ > d0(f, g), and therefore we may write

d0(φf , φg) ≤
[
d0(f, g) +MKf

(
ed0(f,g) − 1

)
T
]
eMT .

For some fixed f ∈ DRd [0, T ], the expression on the right converges to zero as
d0(f, g)→ 0, and this implies that φ is continuous at f .

The previous theorem is also true without the assumption H(0) = 0; the proof
is almost the same, although slightly messier. However, we will only apply this
theorem to fields such that H(0) = 0.

3.4 Refinement for non-differentiable drifts

In this section we consider density dependent families whose drifts are not dif-
ferentiable, and we prove a central limit theorem in the case where the nominal
solution to the fluid dynamics (2.6) is an equilibrium point.

As in the previous section, we will consider an open set E ⊂ Rd, a finite set of
directions D ⊂ Rd and a family {βkl }l∈D of non-negative maps with domain E, again
of the form βkl = γl + δkl . We will further consider the density dependent family of
continuous time Markov chains Xk that the above maps define.

We will suppose that Assumption 3.2.1 holds, as in Section 3.2. Recall that this
implies that the drift of the family is locally Lipschitz, and therefore we know that
the strong law of large numbers of Section 2.2 holds. Furthermore, we will assume
that the ODE ẋ = F (x) admits some equilibrium point x∗ ∈ E, and we will suppose
that Xk(0)→ x∗ as k →∞. Then, by Theorem 2.2.5, we know that

sup
t∈[0,T ]

||Xk(t)− x∗|| a.s.−−→ 0 as k →∞ ∀ T ≥ 0.

Now we may consider the process Zk =
√
k(Xk − x∗) that describes the fluctua-

tions of Xk around the fluid equilibrium x∗. To begin we will fix some T ≥ 0 and let
these processes be defined in [0, T ], but we will get rid of this restriction afterwards.
As in the previous section, we will assume that there exists some Z(0) ∈ Rd such
that Zk(0) → Z(0) as k → ∞. Our goal is to show that the processes Zk have a
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limit in distribution in DRd [0, T ] as k →∞, and to this end we will continue under
the following hypothesis.

Assumption 3.4.1. Suppose that there exists a Lipschitz field ∂F : Rd −→ R
d

with the following properties.

1. ∂F is positively homogeneous, in the sense that ∂F (αx) = α∂F (x) for all
x ∈ Rd and for all α ≥ 0.

2. The remainder R(x) = F (x)− F (x∗)− ∂F (x− x∗) is such that

lim
x→x∗

||R(x)||
||x− x∗|| = 0.

As the reader may have noticed, the Lipschitz field ∂F plays the role of the drift’s
differential at the equilibrium point x∗. Moreover, this field is easy to construct when
the drift is piecewise differentiable around x∗. In order to provide this construction,
let us introduce the notation I− = (−∞, 0), I+ = [0,+∞) and J = {−,+}d. Also,
consider a basis {v1, . . . , vd} of Rd, such that ||vi|| = 1 for all i = 1, . . . , d, and note
that we have the decomposition

R
d =

⋃

j∈J
{x∗ + Ij1v1 × · · · × Ijdvd}.

Consider the lateral directional derivatives at x∗, along v1, . . . , vd, specifically
∂F−(x∗)
∂vi

= lim
h→0+

F (x∗ − hvi)− F (x∗)
h

,
∂F+(x∗)
∂vi

= lim
h→0+

F (x∗ + hvi)− F (x∗)
h

.

We may now prove the following.

Proposition 3.4.2. Suppose that for each j ∈ J there exists a differentiable field
Fj : E −→ R

d such that F (x) = Fj(x) for all x ∈ E ∩ {x∗ + Ij1v1 × · · · × Ijdvd}.
Given v ∈ Rd consider the unique decomposition v = α1v1 + · · ·+ αdvd and define

∂F (v) =
d∑

i=1

[
∂F−(x∗)
∂vi

αi1αi<0 + ∂F+(x∗)
∂vi

αi1αi≥0

]
vi.

Then Assumption 3.4.1 holds.

Proof. It is easy to check that ∂F is positively homogeneous and Lipschitz; each of
the terms in the sum that defines ∂F have these properties.

Therefore, we only need to check that the remainder R(x) converges to zero
faster than ||x− x∗|| as x→ x∗, namely we must prove that

lim
x→x∗

||F (x)− F (x∗)− ∂F (x− x∗)||
||x− x∗|| = 0.

Note that ∂F agrees with the differential of Fj at x∗ on Ij1v1× · · · × Ijdvd. Also, for
each x ∈ E there exists i ∈ J such that x − x∗ ∈ Ii1v1 × · · · × Iidvd, and hence we
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may write the inequality
||F (x)− F (x∗)− ∂F (x− x∗)||

||x− x∗|| = ||F (x)− F (x∗)− F ′i (x∗)(x− x∗)||
||x− x∗||

≤ max
j∈J

∣∣∣
∣∣∣F (x)− F (x∗)− F ′j(x∗)(x− x∗)

∣∣∣
∣∣∣

||x− x∗|| .

The right-hand side converges to zero as x→ x∗ and this completes the proof.

Returning to the proof of the weak convergence of the processes Zk, we will need,
as in Section 3.2, the following hypothesis.

Assumption 3.4.3. There exists a continuous field G : E −→ R
d such that

lim
k→∞

sup
x∈K

∣∣∣
∣∣∣
√
kGk(x)−G(x)

∣∣∣
∣∣∣ = 0

holds inside of each compact set K ⊂ E.

By the positive homogeneity of ∂F we have
√
k [F (Xk(t))− F (x∗)] = ∂F (Zk(t)) +

√
kR(Xk(t)),

which allows to write an equation for Zk that is very similar to the one that we used
in sections 2.3 and 3.2, namely

Zk(t) = Zk(0) + Uk(t) + δk(t) +
∫ t

0
∂F (Zk(τ))dτ ∀ t ∈ [0, T ]. (3.10)

If we compare with equations (2.9) and (3.5), in this case ∂F (Zk(τ)) replaces
F ′(x∗)Zk(τ) in the integral that appears on the right-hand side. Also, recall that

Uk(t) =
∑

l∈D

l√
k
Yl

(∫ t

0
kβkl (Xk(τ))dτ

)
and

δk =
∫ t

0

√
k [R(Xk(τ)) +Gk(Xk(τ))] dτ,

where {Yl}l∈D is and independent family of centered Poisson processes with unitary
intensities; these are the same expressions that appeared in sections 2.3 and 3.2.

The fact that ∂F is Lipschitz is what allows to use the results of Section 3.3,
which tell us that there exists a continuous φ : Rd −→ R

d such that

φf (t) = f(t) +
∫ t

0
∂F (φf (τ))dτ ∀ t ∈ [0, T ]

and φf − f is continuous, for all f ∈ DRd [0, T ]. Probably the main difference with
the central limit theorems of sections 2.3 and 3.2 is that, in the context of this
section, it is no longer possible to construct φ explicitly. Because of this, the results
of Section 3.3 are crucial.

Since Zk is a càdlàg function and ∂F is continuous, then the integral on the right-
hand side of equation (3.10) is continuous as a function of its upper limit, and hence
Zk − Zk(0)− Uk − δk is continuous as well. Consequently, Zk = φ(Zk(0) + Uk + δk)
and as in Section 3.2 we now want to show that Uk + δk has a limit in distribution,
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so that we can afterwards use the continuous mapping theorem to prove that the
processes Zk themselves have a limit in distribution as well.

As in Section 3.2, the processes Uk converge weakly to

U(t) =
∑

l∈D
lWl

(∫ t

0
γl(x∗)dτ

)
=
∑

l∈D
lWl (γl(x∗)t) ,

where {Wl}l∈D is an independent family of standard Wiener processes. Indeed, the
reader may check that the proof of Theorem 3.2.3 only relies on Assumption 3.2.1
and the hypothesis Zk(0)→ Z(0) as k →∞.

Also, the claim of Lemma 3.2.4 is still true in the context of this section, namely

sup
t∈[0,T ]

∣∣∣∣
∣∣∣∣δk(t)−

∫ t

0
G(x∗)dτ

∣∣∣∣
∣∣∣∣
P−−→ 0 as k →∞.

The proof follows from the same arguments that we used in Section 3.2, using the
hypothesis that we stated in Assumption 3.4.1 for the remainder R.

We are now ready to prove the central limit theorem that we were seeking. The
proof will be as in Section 3.2 with the difference that we will now be able to prove
weak convergence in DRd [0,∞), rather than only in DRd [0, T ] for some fixed T ≥ 0.

Theorem 3.4.4. Assume that Zk(0)→ Z(0) as k →∞, for some Z(0) ∈ Rd. Also,
suppose that assumptions 3.2.1, 3.4.1 and 3.4.3 hold. Then Zk ⇒ Z in DRd [0,∞)
as k →∞, where Z is the continuous process that satisfies the equation

Z(t) = Z(0) + U(t) +
∫ t

0
∂F (Z(τ)) +G(x∗)dτ ∀ t ≥ 0.

Furthermore, Z has the same finite-dimensional distributions as the solution to

dZt = [∂F (Zt) +G(x∗)] dt+BdWt, (3.11)

where W is a d-dimensional Wiener process, with independent coordinates, and B
is the square root of the following positive semi-definite symmetric matrix.

B =
√∑

l∈D
llTγl(x∗).

Proof. For each n ≥ 1 let φn : DRd [0, n] −→ DRd [0, n] be the continuous function
such that the image of f ∈ DRd [0, n] is the unique φnf ∈ DRd [0, n] such that φnf − f
is continuous and

φnf (t) = f(t) +
∫ t

0
∂F (φnf (τ))dτ ∀ t ∈ [0, n].

Consider now the process

Ũ(t) = U(t) + tG(x∗).

For each n ≥ 1 define Zn = φn(Z(0) + Ũ); here we are in fact considering the
restriction of Ũ to [0, n]. The processes Zn are continuous and m ≤ n implies
Zm(t) = Zn(t) for all t ∈ [0,m]. Therefore, the process Z such that Z(t) = Zn(t)
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for all t ∈ [0, n] is well defined, continuous and satisfies the equation

Z(t) = Z(0) + U(t) +
∫ t

0
∂F (Z(τ)) +G(x∗)dτ ∀ t ≥ 0.

If we now fix some T ≥ 0, then Zk(0) + Uk + δk ⇒ Z(0) + Ũ in DRd [0, T ] as
k → ∞. Hence, by the continuous mapping theorem Zk ⇒ Z in DRd [0, T ] as well.
Since this is true for all T ≥ 0, then the convergence in distribution also holds in
DRd [0,∞) by Theorem A.3.6.

Even though the SDE (3.11) is similar to that of Section 3.2, the fact that the
drift is no longer affine on Z complicates the characterization of solutions. For
instance, solutions to this SDE will in general not be time inhomogeneous Gaussian
processes, as we will see in the next section.

In the sequel we discuss the problem of finding the steady-state of solutions
to SDEs with the form of equation (3.11); we more precisely assume that ∂F is
piecewise linear, which is the case when ∂F is constructed using Proposition 3.4.2.
Finding the steady-state of solutions to equation (3.11) is of particular interest if
we want to use this equation to characterize the typical behavior of a system within
any application.

3.5 The steady-state of some switched diffusions

We begin by providing some background and specifying the type of processes
that we will consider. To this purpose, let a : Rd −→ R

d and b : Rd −→ S+
d

be coefficients satisfying the hypothesis of Theorem D.2.2, for the existence and
uniqueness of solutions to SDEs; here S+

d is the space of symmetric positive semi-
definite matrices. Consider now the Feller diffusion X associated to the SDE

dXt = a(Xt)dt+ b(Xt)dWt. (3.12)

If X admits an exponentially ergodic invariant measure, as in Definition D.3.3, then
the steady-state of solutions to equation (3.12) exists and it is distributed according
to this measure. The Foster-Lyapunov criteria of Section D.3 is useful for proving
exponential ergodicity, but it does not characterize the invariant measure. We would
like to know, for instance, if this measure is absolutely continuous with respect to
the Lebesgue measure; and in that case we would like to compute its density.

Suppose that {Tt}t≥0 is the Feller semigroup of operators defined by the transition
function P of the Feller process X, specifically

Ttf(x) =
∫

Rd
f(y)Pt(x, dy) = Ex[f(Xt)]

for all x ∈ Rd and f ∈ C0(Rd).

An initial distribution π of X is said to be an invariant measure if∫

Rd
Pt(x,Γ)π(dx) = π(Γ)
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for all t ≥ 0 and all Borel sets Γ ⊂ R
d. In terms of the semigroup of operators

{Tt}t≥0, the latter condition is equivalent to
∫

Rd
Ttf(x)− f(x)π(dx) = 0 ∀ f ∈ C0(Rd).

Furthermore, if we let A be the infinitesimal generator of {Tt}t≥0, and we pick some
function f in the domain D(A) of A, then by definition we have

lim
t→0

sup
x∈Rd

∣∣∣∣∣

∣∣∣∣∣
Ttf(x)− f(x)

t
− Af(x)

∣∣∣∣∣

∣∣∣∣∣ = 0.

Therefore, using this uniform convergence, we see that the invariance of π implies
∫

Rd
Af(x)π(dx) = lim

t→0

1
t

∫

Rd
Ttf(x)− f(x)π(dx) = 0.

The converse is also true by the first item of Proposition C.1.6, which implies that
for each f ∈ C0(Rd) there exists some g ∈ D(A) such that Ttf − f = Ag. Hence, a
probability measure π is invariant for X if and only if

∫

Rd
Af(x)π(dx) = 0 ∀ f ∈ D(A). (3.13)

By the observations at the end of Appendix C, we know that C∞c (Rd) ⊂ D(A).
Furthermore, if we let σ2 = bbT , then A agrees in C∞c (Rd) with the second order
differential operator L : C∞c (Rd) −→ C∞c (Rd) such that

Lϕ =
d∑

i=1
ai
∂ϕ

∂xi
+ 1

2

d∑

i,j=1
σ2
i,j

∂2ϕ

∂xi∂xj
∀ ϕ ∈ C∞c (Rd).

In fact C2(Rd) ⊂ D(A) and Aϕ is given by the above expression for all ϕ ∈ C2(Rd).
As a result of the previous observation, equation (3.13) implies that

∫

Rd
Lϕ(x)π(dx) = 0 ∀ ϕ ∈ C∞c (Rd), (3.14)

which is called a weak elliptic equation for measures. Note that this is a weaker
statement than that of equation (3.13), and consequently it does not necessarily
imply that π is an invariant measure for X. The point is that the space C∞c (Rd) may
be much smaller than D(A). Nevertheless, equation (3.14) may help us find potential
invariant measures. With this in mind we introduce the following definition.

Definition 3.5.1. A multi-index is α ∈ Nd and we let |α| = α1 + · · · + αd. In
addition, given any ϕ ∈ C∞c (Rd) we define

∂αϕ = ∂|α|ϕ

∂xα1
1 . . . ∂xαdd

∀ α ∈ Nd.

We say that a locally integrable function f has weak α-derivative of order |α| if there
exists a locally integrable function ∂αf such that

∫

Rd
f(x)∂αϕ(x)dx = (−1)|α|

∫

Rd
∂αf(x)ϕ(x)dx ∀ ϕ ∈ C∞c (Rd).

Proposition E.3.1 implies that weak α-derivatives are unique.
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Let µ be a Borel probability measure satisfying equation (3.14) and assume
that µ has a density p with respect to the Lebesgue measure; in fact under fairly
weak hypothesis it is proven in [3, Chapter 1.1] that this happens. Furthermore,
suppose that aip and σ2

i,jp have weak derivatives up to the second order for all
i, j ∈ {1, . . . , d}. Then we may write equation (3.14) in terms of the weak derivatives
of aip and σ2

i,jp. Specifically, for each ϕ ∈ C∞c (Rd) we have
∫

Rd
Lϕ(x)µ(dx) =

∫

Rd




d∑

i=1
ai(x)∂ϕ(x)

∂xi
+ 1

2

d∑

i,j=1
σ2
i,j(x)∂

2ϕ(x)
∂xi∂xj


 p(x)dx

=
∫

Rd


−

d∑

i=1
∂i [ai(x)p(x)] + 1

2

d∑

i,j=1
∂i,j

[
σ2
i,j(x)p(x)

]

ϕ(x)dx

Equation (3.14) tells us that the left-hand side is equal to zero for all ϕ ∈ C∞c (Rd),
then by Proposition E.3.1 we know that

−
d∑

i=1
∂i (aip) + 1

2

d∑

i,j=1
∂i,j

(
σ2
i,jp
)

= 0 a.e. (3.15)

Furthermore, reversing the above procedure it is easy to see that µ solves the weak
elliptic equation (3.14) whenever p satisfies equation (3.15), which is known as the
Fokker-Planck equation or the forward Kolmogorov equation.

It is important to stress that, in general, solutions to equation (3.15) only give
potential solutions to equation (3.13). However, there are cases where solutions to
equation (3.14) are unique and may be found by solving the Fokker-Planck equation.
In these cases, if we know that a solution to equation (3.13) exists, then the measure
that arises from the Fokker-Planck equation is the unique invariant measure.

3.5.1 Piecewise affine unidimensional SDEs

Consider a unidimensional SDE with the form of equation (3.11) when ∂F is
piecewise linear. Specifically, suppose that σ2 > 0 is constant and that

a(x) =



α−x+ β if x < 0,
α+x+ β if x ≥ 0.

In the unidimensional case is possible to prove that equation (3.14) has at most one
solution, even when a is just a locally integrable function; see [3, Proposition 1.6.2].
We will use the Fokker-Planck equation to find the solution when a is as above.

Assume that p is twice differentiable, except at x = 0, with locally integrable
derivatives; we may rewrite equation (3.15) as follows.

σ2

2
∂2p(x)
∂x2 − ∂[(α−x+ β)p(x)]

∂x
= 0 ∀ x < 0 and

σ2

2
∂2p(x)
∂x2 − ∂[(α+x+ β)p(x)]

∂x
= 0 ∀ x > 0.

(3.16)

Each of these equations is a second order homogeneous ODE, in particular the
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space of solutions of either of the above equations has dimension two. Let us focus
on solving the second equation; the analysis is analogous for the other one.

Case I

First, suppose that α+ 6= 0. Let µ = −β/α+ and ν = −σ2/2α+, then we have

ν
∂2p(x)
∂x2 + ∂[(x− µ)p(x)]

∂x
= 0 ∀ x > 0.

Note that p solves this equation if and only if there exists c1 ∈ R such that

ν
∂p(x)
∂x

+ (x− µ)p(x) = c1 ∀ x > 0.

The general solution to this first order ODE is

p(x) = e−
(x−µ)2

2ν

[
c1

ν

∫ x

0
e

(t−µ)2
2ν dt+ c2

]
.

Since p is the density of a probability measure, we need it to be non-negative and
to integrate one over the real line. In particular the integral of p over (0,+∞) must
be finite. If ν < 0 this requires that c1 and c2 are such that

lim
x→+∞

c1

ν

∫ x

0
e

(t−µ)2
2ν dt+ c2 = 0,

otherwise p would not vanish at infinity. However, p is not integrable even in the
latter case: using L’Hôpital’s rule we see that p(x) decays as 1/x as x→ +∞.

lim
x→+∞

xp(x) = lim
x→+∞

xe−
(x−µ)2

2ν

[
c1

ν

∫ x

0
e

(t−µ)2
2ν dt+ c2

]
= c1 > 0.

The last inequality follows from the fact that c1 < 0 < c2. It is clear that c1 and c2
must have different sign for p to vanish at infinity. Also, if c1 was positive and c2
negative, then p(x) would be negative for all sufficiently small x > 0.

In the case ν > 0 a similar analysis shows that c1 has to be zero. Here the
integral in the definition of p diverges when x→ +∞, and when c1 6= 0 this allows
to use L’Hôpital’s rule to show again that p(x) decays as 1/x as x → +∞. Hence,
we see that p is as below, it has the form of a Gaussian kernel.

p(x) = c2e
− (x−µ)2

2ν .

Case II

Suppose now that α+ = 0, in this case we let ν = −σ2/2β and we see that

ν
∂2p(x)
∂x2 + ∂p(x)

∂x
= 0 ∀ x > 0.

Any solution p to the last equation solves the first order ODE

ν
∂p(x)
∂x

+ p(x) = c1 ∀ x > 0,
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In this case the general solution is

p(x) = e−
x
ν

[
c1

ν

∫ x

0
e
t
ν dt+ c2

]
= c1 + (c2 − c1)e−xν .

For ν < 0 the last expression is not integrable over (0,+∞) unless p ≡ 0, whereas
in the case ν > 0 we must take c1 = 0 so that p vanishes at infinity. This yields that
p is as follows, it has the form of an exponential kernel.

p(x) = c2e
−x
ν .

Summarizing, some twice differentiable probability density function p solves
equation (3.16) if and only if the two following conditions hold.

1. α− < 0 or α− = 0 and β > 0.

2. α+ < 0 or α+ = 0 and β < 0.

Furthermore, in that case p(x) = p−(x)1x<0 + p+(x)1x>0, where

p−(x) =




c−e

−(x−µ−)2

2ν−1 if α− < 0,
c−e−

x
ν2 if α− = 0, β > 0;

p+(x) =




c+e

−(x−µ+)2

2ν+
1 if α+ < 0,

c+e
− x
ν2 if α+ = 0, β < 0;

here the c− and c+ are such that p integrates one over the real line, also

µi = − β
αi
, νi1 = − σ2

2αi and ν2 = −σ
2

2β ∀ i ∈ {−,+}.

In other words p results from pasting two densities, which may be Gaussian or
exponential depending on the coefficients of the SDE.

Note that pmay solve equation (3.16) and still not solve equation (3.15). Nonethe-
less, if the weak derivatives of p were

∂1p(x) = ∂p−(x)
∂x

1x<0 + ∂p+(x)
∂x

1x>0 and

∂2p(x) = ∂2p−(x)
∂x2 1x<0 + ∂2p+(x)

∂x2 1x>0,

then it is clear that p would solve equation (3.15). In order to determine when this
happens, pick some ϕ ∈ C∞c (R) and compute

∫ +∞

−∞
p(x)∂ϕ(x)

∂x
dx =

∫ 0

−∞
p−(x)∂ϕ(x)

∂x
dx+

∫ +∞

0
p+(x)∂ϕ(x)

∂x
dx

= −
∫ 0

−∞

∂p−(x)
∂x

ϕ(x)dx−
∫ +∞

0

∂p+(x)
∂x

ϕ(x)dx

+ [p−(0)− p+(0)]ϕ(0).

This means that we must have p−(0) = p+(0) if we want ∂1p to be as above, in other
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words p has to be continuous; note that this gives another equation for c− and c+.
Moreover, if we use the integration by parts formula again, we get

∫ +∞

−∞
p(x)∂

2ϕ(x)
∂x2 dx =

∫ 0

−∞
p−(x)∂

2ϕ(x)
∂x2 dx+

∫ +∞

0
p+(x)∂

2ϕ(x)
∂x2 dx

=
∫ 0

−∞

∂2p−(x)
∂x2 ϕ(x)dx+

∫ +∞

0

∂2p+(x)
∂x2 ϕ(x)dx

+
[
p−(0)− p+(0)

] ∂ϕ(0)
∂x

+
[
∂p+(0)
∂x

− ∂p−(0)
∂x

]
ϕ(0).

Thus, we also need p to have a continuous derivative if we want ∂2p to be as above.
However, the reader may check that this is automatic once that we have imposed
the condition p−(0) = p+(0); this is a consequence of µiν2 +νi1 = 0 for all i ∈ {−,+}.

Note that the set of equations



c−
∫ 0

−∞
p−(x)dx+ c+

∫ +∞

0
p+(x)dx = 1,

p+(0)− p−(0) = 0,

completely determines the constants c− and c+. The resulting p is a probability
density function that is twice differentiable, except at x = 0, and is a solution to
equation (3.15). Recall that equation (3.14) has at most one solution in the current
setting by [3, Proposition 1.6.2], thus π(dx) = p(x)dx is this solution.

Moreover, it is easy to see that the SDE with coefficients a and σ2 admits a
unique and exponentially ergodic invariant measure; the reader may check that the
Foster-Lyapunov function V (x) = x2 satisfies the hypothesis of Theorem D.3.4.
Since π is the unique solution to equation (3.14), then π is this measure.

Remark 3.5.2. The SDE that appears at the end of Section 3.1 is a particular
case of the piecewise affine unidimensional SDEs that we are considering here. The
density of its invariant measure, which appears in equation (3.4), corresponds to the
half-Gaussian half-exponential case.

3.5.2 Comments on the multidimensional case

Finding the invariant measure ofX is much more difficult in the multidimensional
case. Indeed, the first hurdle that we encounter is that solutions to equation (3.14)
need not be unique when d > 1. As a matter of fact, equation (3.14) may admit
several solutions even in the case where a is smooth and σ2 is constant; the reader
may find an example of this in [3, Example 1.6.3].

Another obstacle that we encounter is that the Fokker-Planck equation (3.15)
takes the form of a partial differential equation (PDE) in the multidimensional case.
Therefore, it is not always possible to completely characterize its solutions, and it
may even be difficult to find particular solutions unless the PDE. However, if the
PDE is well-known, it may be possible to prove that the Fokker-Planck equation
has a unique solution and it may also be possible to find this solution explicitly.
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Chapter 4

Dynamic right sizing of computing
capacity

4.1 Motivation

The Internet has expanded unceasingly since its beginnings, and it currently
hosts numerous online services. The implementation of these services typically re-
quires considerable infrastructure, because of the sheer volume of information that
needs to be handled; not in vain the last two decades have seen data centers multiply
around the globe to provide the necessary computing resources. These digital fac-
tories are not always exploited directly by their owners; because of the high initial
costs of infrastructure, many application providers are not owners of data centers,
but prefer to avoid startup costs by sharing the computing resources. In this con-
text, landlords of the Internet, such as Amazon and Google, have founded cloud
networks: hosts of large numbers of servers that are rented on the fly to businesses
worldwide.

A major concern among application providers is that costumers today are highly
delay sensitive: a small wait in accessing a service can unfavorably affect the per-
ceived quality of the application, and lead to a decline in usage; with the obvious
adverse impact on revenues. For instance, studies show that delaying results to
shopping queries in a second may result in e-commerce sales dropping noticeably.
Fortunately, the performance of online applications, particularly in terms of latency,
may be enhanced by increasing the computing capacity; but this has the obvious
drawback of requiring to rent additional servers, in the case of cloud-based service
providers, and the disadvantage of higher maintenance costs for data center owners.
Indeed, the price of supplying energy to active servers within a data center, and
the associated cooling expenditures, comprise a significant fraction of the budget of
these facilities.

Hence, a crucial challenge for large scale cloud-based businesses and data centers
is to achieve a highly efficient server utilization, that yields excellent user-perceived
performance, while using the smallest possible amount of resources. A major compli-

71



cation is that many applications must deal with uncertain and time-varying demand
patterns, which calls for a dynamic right sizing of the active computing capacity.
Specifically, this refers to designing an automatic control rule capable of deciding
in real time whether there are dispensable servers or, on the contrary, additional
capacity needs to be summoned; this decision could be taken, for instance, by as-
sessing the number of pending requests in the system. In cloud-based applications
the corresponding action is executed by adjusting the number of instances in use,
whereas the implementation in data centers requires servers to transition between
active and power-saving modes.

The notion of service elasticity is essential to our hopes of deploying systems
with auto-scaling capacity, and lies at the heart of the cloud computing paradigm.
This notion hinges on the premise that the vast amount of resources is not likely
to act as a bottleneck in any practical sense. Nevertheless, ideal service elasticity
does not exist, in the sense that ramping up servers involves a significant time lag,
which cannot be ignored. As a result, we must resort to a slight over-provisioning
of computing systems if we want to minimize the delay experienced by application
users, while we simultaneously cope with the setup lag of servers. An important
question, that this work intends to answer, concerns elucidating the extent of the
over-provisioning that we need.

In this chapter we perform a mathematical study of the above problem, using
tools from queueing theory. Recall that within this framework, the simplest model
of a computing system comprises a pool of servers and a single dispatcher; jobs that
require to be processed are received sequentially by the dispatcher, and are then sent
to an available server. Since servers cannot be spawned instantly, it is necessary to
include at least one queue in this model, to hold requests when there are no idle
servers to process them.

A very active and recent literature assumes that jobs must be immediately dis-
patched to a server which, if currently busy, may retain the job in a dedicated queue;
for examples on this treatment of the problem see [13,26,27]. However, the approach
of this work is to allow the dispatcher to store pending requests in a centralized queue
until some server becomes idle; this has been studied for instance in [11, 12, 28, 35].
In this setting it is essential to reduce the number of queued queries to a minimum,
not only to ensure that application costumers experience a small latency, but also
to maintain the dispatcher’s buffer as empty as possible; because storing a large
number of queries in a centralized queue may be technologically infeasible. The
challenge is to achieve this in a regime where the computing capacity is being dy-
namically right sized to match the workload. The more general situation where, as
in the latter case, a system works close to the limit of its capacity, has been termed
heavy traffic in the queueing literature. Understanding the behavior of systems that
operate in this setting, but with a fixed number of servers, is a classical problem;
for example see [14] and references therein.
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4.2 A more realistic infinite-server queue

In the preceding section we posed the problem of right sizing the active capacity
of cloud environments and data centers to an unknown external demand; being
the best case scenario that of active capacity matching the workload exactly: this
prevents the waste of capital in idle capacity and avoids costumers the annoying
waits caused by queueing delays. In an idealized setting, where servers can be
spawned or deleted instantly, this is achieved by the infinite-server queue, which
serves jobs upon their arrival without having to maintain any otiose capacity; in
practice there exist, however, non-negligible lags in the creation and deletion of
servers. In this chapter we discuss the right sizing of capacity in this context,
following the lines of our recent paper [12]. We begin by looking at an analog of the
infinite-server queue in a setting where creation and deletion lags are contemplated.

Let us recall the model introduced in Section 1.3 with the latter situation in
mind; the provisioning rule that we proposed there was as follows.

� A request is issued to the cloud or data center infrastructure, asking to shut
down a server, immediately after each job departure; these requests are exe-
cuted with an exponential delay of mean 1/c seconds.

� If a job arrives in the presence of idle servers, then the job is assigned to one
of the idle servers and one of the shut down requests is withdrawn, if there are
any of them pending.

� When a job arrives, and has to be queued, a new server is requested, but
the infrastructure makes the server available only after an exponential time of
mean 1/b seconds.

� If in the meanwhile one of the servers becomes idle, then the request is canceled
and this idle server takes care of the queued job.

In the above model jobs are supposed to arrive according to a Poisson process of
intensity λ jobs per second, and service times are assumed to be exponential with
mean 1/µ seconds. The state of the queueing system that we have just described
is characterized by the number of servers and jobs, respectively, M and N ; we will
often use the coordinate notation X = (M,N). As we commented in Section 1.3,
the number of pending shut down requests coincides with the number of idle servers
[M − N ]+, whereas the number of pending server requests is equal to the number
of queued jobs [N −M ]+. Therefore, the dynamics of this system are given by the
transitions diagram of Figure 4.1.

We would like to understand the large scale behavior of the number of jobs and
servers, that is with the arrival rate λ approaching infinity; note that λ is a measure
of demand, whereas the service rate µ represents the individual capacity of servers,
and thus shall remain fixed. The number of jobs is clearly greater than it would be
in an ideal infinite-server queue facing the same arrivals, where each job is assigned
a server right away upon its arrival. In the latter case, the average occupancy in the
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(m,n)

(m,n+ 1)

(m+ 1, n)

(m,n− 1)

(m− 1, n)

λ

b[n−m]+

µmin(m,n)

c[m− n]+

Figure 4.1: Markovian model of a more realistic infinite-server queue, considering the existence
of lags in the creation and deletion of servers.

steady-state is equal to the traffic intensity ρ = λ/µ, and the fact that this number
diverges as λ→∞ justifies the terminology large scale.

Consider then a sequence of systems X̂k = (M̂k, N̂k) facing arrivals at rate kλ; in
any other respect these are identical to the system that we have described above, in
particular they behave according to Figure 4.1 with λ replaced by kλ. The average
occupancy in X̂k is greater than kρ, therefore the sequence has a degenerate limit
as k → ∞. This motivates the normalization Xk = X̂k/k; in coordinates we write
Xk = (Mk, Nk). The latter yields a density dependent family, generated by the maps

βl(m,n) =





b[n−m]+ if l = (1, 0),
c[m− n]+ if l = −(1, 0),
λ if l = (0, 1),
µmin(m,n) if l = −(0, 1).

It is worth pointing out that the perturbations δkl are identically zero and because
of that we omit the superscript k when we write βl.

Before we can apply the results of the last two chapters, we must compute the
drift of this density dependent family, which is

F (m,n) =
[
b[n−m]+ − c[m− n]+

λ− µmin(m,n)

]
.

This is a Lipschitz field that is not differentiable along the diagonal of the first
quadrant. Hence, we may use the strong law of large numbers of Chapter 2, but we
must resort to Chapter 3 for a central limit theorem.

First, we compute the fluid limit of the family, which is given by Theorem 2.2.5.
At a macroscopic level, this theorem tells us that the behavior of the chains Xk is
governed by the ODE

ṁ = b[n−m]+ − c[m− n]+,
ṅ = λ− µmin(m,n).

(4.1)

More precisely, suppose that the chains Xk are realized over the same probability
space and have deterministic initial conditions that converge to some x0 lying in the
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first quadrant. In that case

lim
k→∞

sup
t∈[0,T ]

||Xk(t)− x(t)|| a.s.−−→ 0 ∀ T ≥ 0,

where x is the solution to equation (4.1) that starts at x0. Figure 4.2 illustrates how
the processes Xk are approximated by x when k is large.

60 80 100 120 140

100

120

140

160

180

m

n

Markov chain
Fluid limit

Figure 4.2: Sample path of the Markov chain Xk(t) and the fluid limit x(t); the parameters of
the simulation are λ = 100, µ = 1, b = 1/2, c = 3, x0 = (50, 150) and k = 10.

As shown in Figure 4.2, regardless of the initial condition, the processes Xk

eventually end up hovering around (ρ, ρ), where capacity matches demand.

Proposition 4.2.1. The dynamics (4.1) have a unique equilibrium point x∗, with
coordinates m∗ = ρ and n∗ = ρ, and this equilibrium is a global attractor.

Proof. The set {(m,n) ∈ [0,+∞)2 : m > n ≥ ρ} is invariant under (4.1) because
the field points downwards at {(m,n) ∈ [0,+∞)2 : m = n > ρ} and the half line
{(m,n) ∈ [0,+∞)2 : m > ρ, n = ρ} is traveled by solutions. Since the Jacobian ma-
trix of the field in {(m,n) ∈ [0,+∞)2 : m > n ≥ ρ} has negative eigenvalues, solu-
tions starting in this set remain there forever and approach x∗ as t→ +∞.

Consider now the restriction of (4.1) to the set {(m,n) ∈ [0,+∞)2 : m ≤ n}.
The linear extension of these dynamics to the entire quadrant would have x∗ as a
global attractor. Moreover, the field of the dynamics (4.1) points upwards at the
line segment {(m,n) ∈ [0,+∞)2 : m = n < ρ}. Thus, solutions starting inside of
{(m,n) ∈ [0,+∞)2 : m ≤ n} remain in this set forever and approach x∗ as t→ +∞,
or alternatively fall into {(m,n) ∈ [0,+∞)2 : m > n ≥ ρ}, where they remain and
approach x∗ as t→ +∞.

Finally, consider the restriction of (4.1) to {(m,n) ∈ [0,+∞)2 : m > n, n < ρ};
its linear extension to the entire quadrant would have x∗ as a global attractor. Hence,
solutions starting in {(m,n) ∈ [0,+∞)2 : m > n, n < ρ} remain in this set forever
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and approach x∗ as t → +∞, or alternatively fall into either of the other already
analyzed sets; more precisely, they may only fall into {(m,n) ∈ [0,+∞)2 : m ≤ n}
but this is not relevant for proving the claim.

The interpretation of the last result, taking into account the strong law of large
numbers of Theorem 2.2.5, is that the processes Xk are attracted towards the equi-
librium x∗ as t→ +∞, especially when k is large; this is depicted in Figure 4.2.

Moreover, by Theorem 2.3.1 we know that

sup
t∈[0,T ]

∣∣∣
∣∣∣X̂k(t)− kx(t)

∣∣∣
∣∣∣ = sup

t∈[0,T ]
k ||Xk(t)− x(t)|| = o(k1−α) a.s. ∀ α ∈ [0, 1/4).

This means that the difference between X̂k and kx is negligible as k →∞; it scales
sublinearly, while the arrival rate of jobs is scaling linearly.

In order to prove a central limit theorem for the Markov chains Xk, we must
resort to Theorem 3.4.4, which requires to construct a field ∂F : R2 −→ R

2 that
satisfies Assumption 3.4.1. Since F is piecewise affine, we may use Proposition 3.4.2
to the latter end. With this in mind, let ν = [−1 1]T , and consider the matrices

A1 =
[
−b b
−µ 0

]
and A2 =

[
−c c
0 −µ

]
,

the Jacobians of F in {(m,n) ∈ [0,∞)2 : m < n} and {(m,n) ∈ [0,∞)2 : m > n},
respectively. According to Proposition 3.4.2 we may take

∂F (y) = A1y1〈y,ν〉≥0 + A2y1〈y,ν〉<0.

Now let W be a bidimensional Wiener process and consider the matrix

B =


√
β(1,0)(x∗) + β(−1,0)(x∗) 0

0
√
β(0,1)(x∗) + β(0,−1)(x∗)


 =

[
0 0
0
√

2λ

]
.

By Theorem 3.4.4, under suitable hypothesis on the initial conditions, the pro-
cesses Zk =

√
k(Xk − x∗) converge weakly in DR2 [0,∞), as k → ∞, to a diffusion

Z that solves the SDE

dZt = ∂F (Zt)dt+BdWt.

Unfortunately, the non-linear switching in ∂F precludes us from computing the
stationary distribution of Z. Still, we may say something about the steady-state of
our original system X by just looking at the chain of Figure 4.1. Specifically, we will
prove that this chain is positive recurrent, and we will then use this fact to compute
the ratio between queue length and over-provisioning in the steady-state.

In order to prove that X is positive recurrent, we will use a classic Foster-
Lyapunov criteria for continuous time Markov chains; we state it below.

Theorem 4.2.2. Consider a continuous time Markov chain with state-space S and
infinitesimal generator Q. Suppose in addition that there exists V : S −→ [0,+∞)
with the following properties.
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1. There exist positive constants d and e, and a finite set C ⊂ S, such that
QV (y) ≤ −d+ e1C(y) for all y ∈ S.

2. The chain is non-explosive or {y ∈ S : V (y) ≤M} is finite for all M ≥ 0.

Then the chain is positive recurrent.

The state-space of our Markov chain X is the lattice N2. Thus, QV (y)→ −∞ as
y →∞ implies the first of the above conditions. Similarly, V (y)→ +∞ as y →∞
implies the second of these conditions. We will show that X is positive recurrent by
exhibiting a non-negative function V with these two properties, and to this end we
will use the following result. We omit the proof because it is very similar to that of
Proposition 4.3.1, which is given in the next section.

Proposition 4.2.3. Suppose that 4b ≥ c. There exists a positive definite symmetric
matrix P such that ATi P + PAi is negative definite for all i ∈ {1, 2}.

The existence of P implies that V : R2 −→ R such that V (y) = (y−x∗)TP (y−x∗)
is a common quadratic Lyapunov function for the dynamics (4.1). This means that
V (x∗) = 0 and that for all y 6= x∗ we have V (y) > 0 and ∇V (y)∂F (y) < 0. In
particular, this implies Proposition 4.2.1 in the case 4b ≥ c.

To show that V is a Foster-Lyapunov function for X, let Q be the infinitesimal
generator of this chain, and let D = {±(1, 0),±(0, 1)}, then we have

QV (y) =
∑

l∈D
[V (y + l)− V (y)]βl(y)

=
∑

l∈D
[(y − x∗ + l)TP (y − x∗ + l)− (y − x∗)TP (y − x∗)]βl(y)

=
∑

l∈D
[2(y − x∗)TPl + lTPl]βl(y)

= 2(y − x∗)TPF (y) +
∑

l∈D
lTPlβl(y) ∀ y ∈ R2.

The last term on the right-hand side is a piecewise affine function of the coefficients
of y, whereas the first term is piecewise quadratic and given by

2(y − x∗)TPF (y) =




(y − x∗)T (AT1 P + PA1)(y − x∗) if 〈y, ν〉 ≥ 0,
(y − x∗)T (AT2 P + PA2)(y − x∗) if 〈y, ν〉 < 0;

this results from the identity F (y) = ∂F (y − x∗). Since the above quadratic forms
are negative definite, we see that QV (y) → −∞ as y → ∞; note in addition that
V (y)→ +∞ as y →∞. This proves that X is positive recurrent.

Suppose now that X∞ = (M∞, N∞) is distributed according to the invariant
measure π of X, and let e be the identity function, then

E[F (X∞)] = E


∑

l∈D
lβl(X∞)


 = E


∑

l∈D
[e(X∞ + l)− e(X∞)] βl(X∞)


 = πQe = 0.
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In particular, looking at the first entry of F , we obtain the identity
E[N∞ −M∞]+
E[M∞ −N∞]+ = c

b
.

Indeed, Figure 4.3 shows how this ratio changes depending on the quotient c/b.

−40 −30 −20 −10 0 10 20 30 400

0.02

0.04

0.06

n − m

c/b = 10
c/b = 1
c/b = 0.1

Figure 4.3: Histograms of N∞ −M∞ for different ratios between b and c; the parameters of the
simulations are λ = 1000 and µ = 1.

This means that, in the steady-state, the ratio between the mean number of
queued jobs and idle servers is determined by the lags b and c. These lags are
inherent to the system and thus not under our control, which means that we cannot
trade off queueing delay and over-provisioning at will. However, we will see in the
next section that the latter can be achieved if we introduce some modifications in
the provisioning rule. For simplicity we will assume b = c in the sequel.

4.3 Controlling for zero queue length

We now plan to modify the provisioning rule that we have described above to
manage the tradeoff between queue length and over-provisioning; now the question
arises as to which of the two penalties is more troublesome from a practical per-
spective. According to recent literature on the subject [34], the entity in control of
the server dynamics, in cloud-based systems and data centers, is a dispatcher which
may not have enough local storage, or would rather avoid the overhead of holding
jobs. Because of this, we will aim at the almost complete elimination of queueing.

The fluid dynamics of the system that we studied in the last section have a
global attractor at the point (ρ, ρ). The equation ṅ = λ − µmin(m,n), that ap-
pears in the dynamics (4.1), is inherent in the central queue scheme that we have
adopted, and in particular independent of the provisioning rule that we choose.
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Hence, a change in that rule will not move the system’s equilibria away from the set
{(m,n) ∈ [0,∞)2 : min(m,n) = ρ} that is depicted in Figure 4.4.

n

m

m = n

min(m,n) = ρ

m = (1 + α)n

ρ

ρ (1 + α)ρ

x∗

Figure 4.4: Feasible equilibria and shift of the equilibrium point of the dynamics (4.1).

In the last section we saw that, in the steady-state, the system hovers around
the equilibrium of the fluid dynamics. Therefore, a strategy that could lead to
the elimination of queueing is to move the equilibrium point of the dynamics (4.1)
into the set {(m,n) ∈ [0,+∞)2 : m > n}, where the number of servers exceeds the
number of jobs. To this end, fix some α ∈ (0, 1) and consider the modification that
Figure 4.5 introduces to the transitions diagram that appeared in Figure 4.2; we
defer for now the discussion on implementation issues.

(m,n)

(m,n+ 1)

(m+ 1, n)

(m,n− 1)

(m− 1, n)

λ

b[(1 + α)n−m]+

µmin(m,n)

b[m− (1 + α)n]+

Figure 4.5: Modification of the Markovian model of Section 4.2, aiming to avoid queueing.

As it is illustrated in Figure 4.4, this modification is intended to shift the equi-
librium of the dynamics (4.1) to the right, into the set {(m,n) ∈ [0,+∞)2 : m > n}.
We will now perform a large scale analysis of the resulting system, in order to asses
the effect of this change. To this purpose, we consider processes X, X̂k and Xk

analogous to those of Section 4.2; note that {Xk}k≥1 is still a density dependent
family, in this case generated by the maps

βl(m,n) =





b[(1 + α)n−m]+ if l = (1, 0),
b[m− (1 + α)n]+ if l = −(1, 0),
λ if l = (0, 1),
µmin(m,n) if l = −(0, 1).
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The drift of this family is still Lipschitz, and differentiable in the whole first quadrant
except for the line m = n, indeed

F (m,n) =
[
b[(1 + α)n−m]
λ− µmin(m,n)

]
;

differentiability at the line m = (1 + α)n results from the assumption that b = c,
which simplifies computations significantly but does not modify the essence of the
problem that we are discussing.

As in the previous section, we begin by computing the fluid limit of the family
using Theorem 2.2.5. In this case, the macroscopic behavior of the Markov chains
Xk is governed by the ODE

ṁ = b[(1 + α)n−m],
ṅ = λ− µmin(m,n).

(4.2)

Proposition 4.3.1. The dynamics (4.2) have a unique equilibrium point x∗, with
coordinates m∗ = (1 + α)ρ and n∗ = ρ, and this equilibrium is a global attractor.
Furthermore, it is even possible to find a common quadratic Lyapunov function for
the dynamics (4.2).

Proof. Consider the matrices

A1 =
[
−b (1 + α)b
−µ 0

]
and A2 =

[
−b (1 + α)b
0 −µ

]
,

the Jacobians of F in {(m,n) ∈ [0,∞)2 : m < n} and {(m,n) ∈ [0,∞)2 : m > n},
respectively. We claim that there exists a positive definite symmetric matrix

P =
[
1 q
q r

]

such that ATi P + PAi is negative definite for i ∈ {1, 2}. If we let Ti and Di denote
the trace and determinant of the matrices ATi P + PAi, then we must find q, r ∈ R
such that P is positive definite and the following inequalities hold:

T1(q, r) = 2[(1 + α)b− µ]q − 2b < 0,
D1(q, r) = −4(1 + α)b(b+ µq)q − [(1 + α− q)b− µr]2 > 0,
T2(q, r) = 2(1 + α)bq − 2µr − 2b < 0 and
D2(q, r) = 4b[µr − (1 + α)bq]− [(1 + α− q)b− µq]2 > 0.

The set {(q, r) ∈ R2 : D1(q, r) > 0} is the interior of an ellipse that is located
inside the strip {(q, r) ∈ R2 : −b/µ < q < 0} and is tangent to the line q = 0 at the
point (0, (1 + α)b/µ). Also, {(q, r) ∈ R2 : D2(q, r) > 0} is the open set above the
graph of a parabola that contains the point (0, (1 + α)2b/(4µ)). These two sets are
illustrated in Figure 4.6.

It is clear that the two sets intersect, because (1 + α)b/µ > (1 + α)2b/(4µ) for
all α ∈ (0, 1). Moreover, there exists δ > 0 such that (−ε, (1 + α)b/µ) lies in the
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Figure 4.6: The conics D1(q, r) = 0 and D2(q, r) = 0 for µ = 1, b = 1 and α = 1/2.

intersection for all ε ∈ (0, δ). Consequently, since

lim
ε→0

T1

(
−ε, (1 + α)b

µ

)
= −2b and lim

ε→0
T2

(
−ε, (1 + α)b

µ

)
= −2(2 + α)b,

there exists ε > 0 such that q = −ε and r = (1 + α)b/µ are as desired.

The interpretation of the last proposition is that the processes Xk are attracted
towards the equilibrium point x∗ as t → +∞. On the one hand, we see that the
number of jobs still operates around ρ, as in the system of Section 4.2; this is a
hard lower bound for the mean number of jobs, achieved by the ideal infinite-server
queue. On the other hand, we are now accepting an over-provisioning of αρ servers,
and this will help us reduce the mean queue length at the dispatcher.

Another consequence of Proposition 4.3.1 is the following.

Corollary 4.3.2. The Markov chain X given by the transitions diagram that ap-
pears in Figure 4.5 is positive recurrent for all λ, µ, b > 0 and α ∈ (0, 1). In
particular, the Markov chains X̂k and Xk are positive recurrent for all k ≥ 1.

Proof. The proof is as in Section 4.2, defining a Foster-Lyapunov function from the
matrix P that we computed in Proposition 4.3.1, namely V (y) = (y−x∗)TP (y−x∗).

As in Section 4.2, if we let D = {±(1, 0),±(0, 1)}, then

QV (y) = 2(y − x∗)TPF (y) +
∑

l∈D
lTPlβl(y) ∀ y ∈ R2.

Also, for all y ∈ {(m,n) ∈ [0,+∞)2 : m ≥ n} we have F (y) = A2(y − x∗) and thus

2(y − x∗)TPF (y) = (y − x∗)T (AT2 P + PA2)(y − x∗).
The only difference with Section 4.2 is that for y ∈ {(m,n) ∈ [0,+∞)2 : m < n} we
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have F (y) = A1(y − x∗)− αλ[0 1]T , and hence

2(y − x∗)TPF (y) = (y − x∗)T (AT1 P + PA1)(y − x∗)− 2αλ(y − x∗)TP
[
0
1

]
.

However, QV (y) → −∞ as y → ∞ still, and clearly V (y) → +∞ as y → ∞.
Therefore, the result follows from the Foster-Lyapunov criteria for positve recurrence
that we stated in the previous section.

Understanding how the system behaves near the equilibrium x∗ warrants taking
a closer look. To this end, we may use Theorem 3.4.4 to compute a central limit
theorem around the point x∗; note that in this case Assumption 3.4.1 is automatic
because F is differentiable at x∗. Consider then the matrices

A = A2 =
[
−b (1 + α)b
0 −µ

]
and B =

[
0 0
0
√

2λ

]
.

The first of these is the drift’s Jacobian matrix at x∗, and the second is the dispersion
coefficient of the SDE that appears in the statement of Theorem 3.4.4. In addition,
if we let W be a bidimensional Wiener process, then this theorem tells us that,
under suitable hypothesis on the initial conditions, the processes Zk =

√
k(Xk−x∗)

converge weakly in DR2 [0,∞), as k →∞, to a process Z that solves

dZt = AZtdt+BdWt.

This is a linear SDE where the drift coefficient A is a stable matrix: its eigenval-
ues have negative real parts. Therefore, using the arguments of Subsection 2.4.1 we
may prove that this SDE is exponentially ergodic and that the invariant distribution
Z∞ is a bivariate Normal; in this case we have to resort to Remark D.3.5 because
BBT is singular. Furthermore, we know that Z∞ has mean zero and its covariance
matrix Σ∞ is given by the Lyapunov equation

AΣ∞ + Σ∞AT +BBT = 0.

The solution to this equation may be written in terms of the traffic intensity ρ,
the fraction of over-provisioning α and the ratio η = µ/b between the mean server
creation lag and the mean service time, specifically

Σ∞ = ρ
1 + α

1 + η

[
1 + α 1

1 1+η
1+α

]
. (4.3)

The strong law of large numbers and the central limit theorem that we have
computed suggest that X̂k(∞) is approximately kx∗ +

√
kZ∞, in the steady-state

and when k is large enough. We corroborate this numerically in Figure 4.7, by
plotting a phase diagram of the system X̂k and a level set of the Gaussian density
corresponding to the random vector kx∗ +

√
kZ∞.

Note that the system X̂k receives jobs at rate kλ, its steady-state mean is lo-
cated at the point kx∗ = (kρ, kρ) and the covariance of

√
kZ∞ is as in equation

(4.3) but replacing ρ by the traffic intensity kρ that the system X̂k faces. Hence, we
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Figure 4.7: Level set of (y− x∗)T Σ−1
∞ (y− x∗) and the states visited by a sample path of X̂k; the

parameters of the simulation are λ = 100, µ = 1, b = 10, α = 3% and k = 10.

could rephrase the statement of the last paragraph saying that X∞ is approximately
x∗ + Z∞ when λ is large enough, incorporating the scaling in the estimate. In par-
ticular, this suggests to approximate the difference M∞−N∞, between the number
of servers and jobs, using a Normal random variable N(αρ, σ2) with variance

σ2 =
[
1 −1

]
Σ∞

[
1
−1

]
= α2 + η

1 + η
ρ.

Using this approximation we may compute

P(M∞ −N∞ ∈ [αρ− cσ, αρ+ cσ]) = P

(
M∞ −N∞ − αρ

σ
∈ [−c, c]

)
≈ 2Φ(c)− 1,

where Φ is the cumulative distribution function of the standard Normal. This esti-
mate may be used to design the system to avoid queueing with high probability.

Indeed, we may choose c so that the right-hand side of the above equation is
close to one, and then compute α so that αρ− σc > 0, or equivalently

1
ρ(1 + η) + η

ρα2(1 + η) <
1
c2 . (4.4)

For instance, in the simulation of Figure 4.8 we computed α so that the above
condition held for c = 2; in this case we have 2Φ(c) − 1 > 0.95. This simulation
shows how the difference between the number of jobs and servers stays within the
confidence interval [αρ− 2σ, αρ+ 2σ] with high probability, thus avoiding queueing.

We may also use our Gaussian approximation to estimate the mean queue length
in the steady-state. Letting ϕ be the density of the standard Normal we have

E[N∞ −M∞]+ ∼= σϕ
(
αρ

σ

)
− αρΦ

(−αρ
σ

)
.

This function of α is plotted in Figure 4.9 for different traffic intensities ρ; there
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Figure 4.8: Simulation of the system X showing the over-provisioning level and the avoidance of
the queueing zone; the parameters of the simulation are λ = 1000, η = 0.1 and α = 3%.

we see that the mean queue length approaches zero rapidly as α increases, which is
reasonable since αρ is the system’s over-provisioning level. For instance, when the
traffic intensity is ρ = 1000, a 2% over-provisioning yields a mean queue length of
order two, and a 5% over-provisioning results in nearly zero queue at the dispatcher.
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Figure 4.9: Steady-state estimate of the mean queue length at the dispatcher for η = 1.

For the plots in Figure 4.9 we assumed η = 1, which means that the mean creation
lag of servers is equal to the mean service time of jobs. Clearly the performance is
better when η is smaller than one as Figure 4.8 shows; there a 3% over-provisioning
is enough to eliminate queueing almost completely when ρ = 1000. On the contrary,
the performance declines when η is greater than one; this is captured by our model
since an increase in η causes an increase in σ2. Still, for reasonable values of η a
moderate amount of over-provisioning yields almost zero queue at the dispatcher.
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Figure 4.10: Automatic rule for adjusting the over-provisioning level to the uncertain load.

Besides, we see in Figure 4.9 that the queue length decays more sharply with α
for higher values of ρ. This suggests that, rather than selecting a fixed fraction of
over-provisioning, we could try to adapt the over-provisioning level to the uncertain
traffic intensity ρ. We return to equation (4.4) with this in mind, and see that in
order to satisfy this criteria one must let α = O(1/√ρ). Equivalently, the minimum
over-provisioning that we need to avoid queuing is αρ = O(√ρ) as in the Halfin-
Whitt regime of the many-server queue; recall the squre root staffing rule that we
explained in Remark 3.1.1. In the next section we propose a method that self-adjusts
the number of idle servers to this level.

4.4 Automatic control of the over-provisioning

We now focus on an automatic rule, independent of the traffic intensity ρ, with
the aim of achieving the desired over-provisioning level of O(√ρ) servers. The main
idea is to replace the constant α in the transitions diagram of Figure 4.5 by a
function of the form α(n) = d/

√
n, approximating ρ by its instantaneous estimate,

the current occupation level n. The chain X that results from this modification is
shown in Figure 4.10.

(m̂, n̂)

(m̂, n̂+ 1)

(m̂+ 1, n̂)

(m̂, n̂− 1)

(m̂− 1, n̂)

kλ

kb

[
n̂
k

+ d√
k

√
n̂
k

− m̂
k

]+

kµmin
(

m̂
k
, n̂

k

)kb

[
m̂
k

− n̂
k

− d√
k

√
n̂
k

]+

Figure 4.11: Transition rates of the processes X̂k.

As before we consider the systems X̂k that face arrival rates of kλ jobs per second;
recall that these systems are described by the chain of Figure 4.10 with λ replaced
by kλ. The normalization Xk = X̂k/k yields once more a density dependent family,
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but in this case the intensities are given by maps of the form βkl = γl + δkl , where
the perturbation terms δkl are non-zero. To compute these maps we first write the
intensities of X̂k as in Figure 4.11, and then we perform the change of variables
m = m̂/k and n = n̂/k. In this way we find expressions for the maps βkl (m,n),
which we may write in terms of:

γl(m,n) =





b[n−m]+ if l = (1, 0),
b[m− n]+ if l = −(1, 0),
λ if l = (0, 1),
µmin(m,n) if l = −(0, 1).

and

δkl (m,n) =





b
[
n+ d√

k

√
n−m

]+ − b[n−m]+ if l = (1, 0),
b
[
m− n− d√

k

√
n
]+ − b[m− n]+ if l = −(1, 0),

0 if l = (0, 1),
0 if l = −(0, 1).

Furthermore, we see from the above definitions that the drift and perturbing drifts
are given, respectively, by the expressions

F (m,n) =
[

b(n−m)
λ− µmin(m,n)

]
and Gk(m,n) = bd√

k

[√
n

0

]
.

The drift F is Lipschitz. Furhtermore, it is easy to check that the other hypoth-
esis of Theorem 2.2.5 hold as well. Consequently, the fluid limit of the processes Xk

is given by the dynamics
ṁ = b(n−m),
ṅ = λ− µmin(m,n).

(4.5)

Note that this is the same ODE of Section 4.2, the only difference is that we are
now assuming that b = c. In particular, x∗ = (ρ, ρ) is a global attractor of the
dynamics, and thus the number of jobs and servers both operate around ρ in the
fluid scale, which corresponds to zero over-provisioning. The rationale is that the
number of idle servers in the system, which operates around √ρ, is negligible in this
macroscopic scale when ρ→ +∞. Hence, in order to see how the system counteracts
the queuing delay, we need to look into the diffusion scale.

To this purpose, we will make use of Theorem 3.4.4, but first we must verify its
hypothesis. To begin, we note that the field ∂F of Assumption 3.4.1 may be defined
as in Section 4.2. Specifically, let ν = [−1 1]T and consider the matrices

A1 =
[
−b b
−µ 0

]
and A2 =

[
−b b
0 −µ

]
,

the Jacobians of F in {(m,n) ∈ [0,+∞)2 : m < n} and {(m,n) ∈ [0,+∞)2 : m > n},
respectively; we may then let

∂F (y) = A1y1〈y,ν〉≥0 + A2y1〈y,ν〉<0.

It is furthermore easy to check that Assumption 3.2.1 holds, and Assumption 3.4.3
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holds as well if we let

G(m,n) = bd

[√
n

0

]
.

Consequently, we may indeed use Theorem 3.4.4, under the hypothesis on the
initial conditions that are stated therein. According to this theorem, the processes
Zk =

√
k(Xk − x∗) converge weakly in DR2 [0,∞) to a diffusion Z such that

dZt = [∂F (Zt) +G(x∗)]dt+BdWt,

where W is a bidimensional Wiener process and B is given by

B =


√
γ(1,0)(x∗) + γ(−1,0)(x∗) 0

0
√
γ(0,1)(x∗) + γ(0,−1)(x∗)


 =

[
0 0
0
√

2λ

]
.

In order to see how the system’s over-provisioning becomes apparent in the dif-
fusion scale, it helps to write the dynamics of Z = (U, V ) in coordinates:

dUt = b (Vt − Ut + d
√
ρ) dt,

dVt = −µmin(Ut, Vt)dt+
√

2λdWt.

The offset d√ρ in the first of these equations suggests that the system operates with
O(√ρ) idle servers, and this is confirmed by the simulations of the following section.

Unfortunately, the switching in the drift coefficient precludes us from computing
an invariant measure. However, in the sequel we will corroborate numerically that
the estimates of the preceding section can be used to predict the performance of the
system that we have described here. The difference between the current system and
that of Section 4.3 is that we have replaced the constant over-provisioning fraction
α by a function α(n) = d/

√
n that tracks d/√ρ. Hence, it is reasonable to expect

the same behavior that we saw in Section 4.3 for α = d/
√
ρ.

Remark 4.4.1. The most suitable value of the constant d depends on the ratio η
between the mean server creation lag and the mean service time, and the criteria
of equation (4.4) provides a practical rule for choosing d. Indeed, letting α = d/

√
ρ

this equation becomes
1

ρ(1 + η) + η

d(1 + η) <
1
c2 ,

where c is chosen in advance to ensure that queuing is avoided with high probability.
In the above equation, the first term is negligible when the traffic intensity is high;
we may then compute d in terms of c and η.

4.5 Implementation and further simulations

We begin this section providing an implementation of the provisioning rule that
we studied in Section 4.3, which requires to determine how server creation and
deletion requests have to be managed. For example, the transitions in Figure 4.5
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that correspond to the creation of servers should take place at a rate that is b times
the number of pending server requests.

In the boundary case α = 0, which corresponds to the system of Section 4.2, we
were able to provide an exact implementation of the Markov chain that appeared
in Figure 4.1. Unfortunately, this will not be possible in the general case, because
that would require to maintain non-integral numbers of pending server and shut
down requests. For instance, in the chain of Figure 4.5 servers are created at rate
b[(1 + α)n−m]+ and the number [(1 + α)n−m]+ is in general not an integer.

An approximate implementation is however possible. Let r(x) denote the integer
that lies closest to x ∈ R. In the implementation that we propose, the dispatcher
keeps track of the number q(m,n) = (1+α)n−m, updating it whenever the number
of servers or jobs changes. This variable is used to compute a target value for the
number of server and shut down requests that should be pending; in the case of
server requests the target value is r([q(m,n)]+), while in the case of shut down
requests the target is r([−q(m,n)]+). The actual number of either of these requests
is kept aligned with the corresponding target by issuing or withdrawing requests
when deviations occur.

950 1,000 1,050 1,100 1,150900
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m
= n

m

n

Markov chain
Implementation

Figure 4.12: Simulation of the Markov chain of Figure 4.10 and the proposed implementation,
the plot shows the states that each of these systems visited. The parameters of the simulation are
λ = 1000, µ = 1, b = 10 and d = 1.

A similar implementation is possible for the system of Section 4.4; the algorithm
is as above but replacing the constant α with the function α(n) = d/

√
n. This

implementation is compared with the Markov chain of Figure 4.10 by means of
the simulation that we plot in Figure 4.12; the similarity between the two phase
diagrams suggests that the approximations that we have made are accurate.

Furthermore, Table 4.1 compares time averages of the relevant metrics with the
Gaussian estimates of Section 4.3, and we only see minor differences; the estimates
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Time averages
(Markov chain)

Time averages
(Implementation) Estimates

E[M ] 1031 1029 1032
E[N ] 999 997 1000

V[M −N ] 94 96 92
E[M−N ]+ 32 31 32
E[N−M ]+ 0.0007 0.0007 0.0012

Table 4.1: Data corresponding to simulations with λ = 1000, µ = 1, b = 10 and d = 1. The
first row corresponds to a simulation of the chain of Figure 4.10, the second row corresponds to
the approximate implementation that we proposed and the third row shows the estimates that we
computed in Section 4.3 for α = d/

√
ρ.

are evaluated considering an over-provisioning fraction of α = d/
√
ρ. As we com-

mented at the end of Section 4.4, the only difference between the systems of sections
4.3 and 4.4 is that, in the second, the static over-provisioning fraction α is replaced
by a dynamic over-provisioning fraction α(n) = d/

√
n. However, since this function

is designed to track d/√ρ, it is therefore reasonable to expect a behavior similar to
that of Section 4.3 when α = d/

√
ρ.
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Chapter 5

Conclusions

In this thesis we discussed functional laws of large numbers and central limit
theorems for density dependent families of continuous time Markov chains. These
are natural generalizations of their analogs for random variables, in the sense that the
law of large numbers yields a deterministic limit, whereas the central limit theorem
produces a Gaussian limit; at least in its classical version. In the dynamic case the
limits are governed, respectively, by an ODE and a SDE; a very elegant feature is
that these arise from the Markovian dynamics of the family.

A wide variety of continuous parameter families of Markov chains arise naturally
in applied probability and fall into the category of density dependent families; for
instance in epidemics, chemistry and stochastic networks. The above limit theorems
can be used to obtain useful quantitative estimates of the metrics that are relevant
for the application; the quality of these approximations can always be judge by nu-
merical comparisons. Besides these estimates, the methodology provides a valuable
insight on the asymptotic behavior of the metrics and their relative orders of mag-
nitude as the parameter of the family approaches infinity; moreover, it indicates the
regions where the numerical approximations may fail.

Some of the density dependent families that arise in the stochastic analysis of
networks do not fit the hypothesis of the classic central limit theorem due to Kurtz.
The latter motivated us to extend this theorem in two directions: to contemplate
small order perturbations in the intensities of the density dependent family and
to consider non-differentiable drifts. Families with these characteristics had been
studied in the literature before, but only in particular cases, and to our knowledge
a general treatment of the problem had not been performed until this work.

The central limit theorem that we developed for families with a non-differentiable
drift produces a limit that is governed by a SDE with switching in the drift coeffi-
cient. In general, the analysis of the corresponding diffusion goes beyond the state
of the art techniques, and even proving its ergodicity is usually non-trivial; we note
however that we did carry out the analysis in the unidimensional case. Understand-
ing these diffusions is a very difficult and interesting problem that is connected to
the study of elliptic equations for measures and PDEs.
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The classical limit theorems for density dependent families, and the extensions
that we developed, were used to study the dynamic right sizing of computing re-
sources in large scale cloud environments and data centers; the goal was to design a
provisioning rule capable of adjusting the active computing capacity to an uncertain
workload. Since we opted for a central queue scheme, we were particularly interested
in eliminating queueing, because storing a large amount jobs in a single queue can
be problematic from a technological perspective.

With the latter in mind, we proposed a rule capable of eliminating queueing
almost completely, at the expense of a small amount of over-provisioning: for a
traffic intensity of ρ, the number of idle servers scales as O(√ρ) when the arrival
rate of jobs approaches infinity. In other words, the number of active servers operates
around ρ + O(√ρ), and in this sense our policy tracks the celebrated Halfin-Whitt
regime in a automatic fashion. The analysis of this provisioning rule was carried out
using the limit theorems that we developed throughout the thesis and by means of
numerical simulations.
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Appendix A

Weak convergence in Skorohod
spaces

This appendix contains some basic definitions and results regarding the weak
convergence of probability measures in Skorohod spaces. Its whole content is based
on [2, Chapter 1, Chapter 3], where the reader may find complete proofs of the
results that are stated below.

A.1 Weak convergence

We begin with some general facts regarding the weak convergence of probability
measures in metric spaces. To this end, consider a metric space (E, ρ), let B(E)
denote its Borel σ-algebra and define Cb(E) to be the set of all continuous and
bounded functions f : E −→ R. The notation

Pf =
∫

E
fdP

will be used to denote the integral of a function f ∈ Cb(E) with respect to a prob-
ability measure P on B(E). In the sequel P and Pn will always denote probability
measures on B(E).

Definition A.1.1. The sequence of probability measures Pn converges weakly to P
if Pnf → Pf as n→∞ for all f ∈ Cb(E), and we denote this by writing Pn ⇒ P .

The uniqueness of the limit is given by the next theorem.

Theorem A.1.2. Two probability measures P and Q on B(E) coincide if and only
if Pf = Qf for all bounded and uniformly continuous f : E −→ R.

A set A ⊂ E is said to be a P -continuity set if P (∂A) = 0; here ∂A denotes
the boundary of A, which is a closed set, and hence belongs to B(E). We may now
state the “portmanteau” theorem, which characterizes weak convergence.
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Theorem A.1.3 (Portmanteau theorem). The following statements are equivalent.

1. Pn ⇒ P as n→∞.

2. Pnf → Pf as n→∞ for all bounded and uniformly continuous f : E −→ R.

3. lim supn→∞ Pn(F ) ≤ P (F ) for all closed sets F ⊂ E.

4. lim infn→∞ Pn(G) ≥ P (G) for all open sets G ⊂ E.

5. Pn(A)→ P (A) as n→∞ for all P -continuity sets A ⊂ E.

Let h : E −→ F be a measurable map between metric spaces. For each proba-
bility measure P on B(E) this map induces another probability measure Ph−1 on
B(F ), which is given by Ph−1(A) = P (h−1(A)) for all A ∈ B(F ). A straightforward,
although very useful result, is the following.

Theorem A.1.4 (Continuous mapping theorem). Consider a continuous mapping
h : E −→ F between two metric spaces. If Pn ⇒ P in E as n → ∞, then
Pnh

−1 ⇒ Ph−1 in F as n→∞.

As a matter of fact we even have the following refinement.

Theorem A.1.5. Consider a map h : E −→ F between metric spaces and let Dh

be the set of its discontinuities. If Pn ⇒ P in E as n → ∞, and P (Dh) = 0, then
Pnh

−1 ⇒ Ph−1 in F as n→∞.

A.1.1 Convergence in distribution

Consider a probability space (Ω,F ,P). A random element is just a measurable
map X : Ω −→ E, and each random element induces a probability measure on
B(E), namely the measure PX−1. A sequence of random elements Xn converges in
distribution to X if the corresponding measures PX−1

n converge weakly to PX−1,
or equivalently E[f(Xn)] → E[f(X)] as n → ∞ for all f ∈ Cb(E). We will use the
notation Xn ⇒ X to denote convergence in distribution.

Definition A.1.6. The sequence of random elements Xn converges in probability
to the constant x ∈ E if P(ρ(Xn, x) < ε) → 1 as n → ∞ for all ε > 0, and we
denote this by writing Xn

P−−→ x.

By the fourth item of the portmanteau theorem Xn
P−−→ x is equivalent to

Xn ⇒ x; here x is being regarded as a constant random element whose corresponding
probability measure is the unit mass at x.

Consider two metric spaces (E1, ρ1) and (E2, ρ2), the product space E1×E2 may
be regarded as a metric space with the product topology; for instance, this is the
case if we endow E1 × E2 with the metric

%((x1, x2), (y1, y2)) = max(ρ1(x1, y1), ρ2(x2, y2)).
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In what follows, the product spaces E1 × E2 are always endowed with some metric
that generates the product topology.
Theorem A.1.7. Let (Xn, Yn) be random elements in E × E. If Xn ⇒ X in E,
and ρ(Xn, Yn) P−−→ 0 in R, as n→∞, then Yn ⇒ X in E as n→∞.

Suppose that (X, Y ) is a random element in E1×E2, then X and Y are random
elements in E1 and E2, respectively; because the natural projections are continuous.
Furthermore, the converse is true if E1 and E2 are separable. The next propositions
do not appear in [2], and thus we prove them, even though they are a almost
straightforward consequence of the last theorem.
Proposition A.1.8. Consider two separable metric spaces E1 and E2. Suppose
that Xn ⇒ X in E1, and Yn

P−−→ y in E2, as n → ∞; where y ∈ E2 is a constant.
Then (Xn, Yn)⇒ (X, y) in E1 × E2 as n→∞.

Proof. Choose some f ∈ Cb(E1 × E2). It is clear that x 7→ f(x, y) is a continuous
and bounded map on E1, and therefore E[f(Xn, y)]→ E[f(X, y)] as n→∞. As a
result (Xn, y)⇒ (X, y) in E1 × E2 as n→∞.

Suppose that E1 × E2 is endowed with the metric

ρ((x1, x2), (y1, y2)) = max(ρ1(x1, y1), ρ2(x2, y2)),

which generates the product topology; here ρ1 and ρ2 are, respectively, the metrics
of E1 and E2. The product space E = E1 × E2 is separable, this implies that
((Xn, Yn), (Xn, y)) is a random element in E × E. Hence, the observation that

P (ρ((Xn, Yn), (Xn, y)) < ε) = P (ρ2(Yn, y) < ε)→ 1 as n→∞ ∀ ε > 0

completes the proof by Theorem A.1.7.

A random element X : Ω −→ R is called a random variable.
Proposition A.1.9. Let E be a separable Banach space. If Xn ⇒ X in E, and
Yn

P−−→ 0 in R, as n→∞, then XnYn
P−−→ 0 in E as n→∞.

Proof. By Proposition A.1.8 we know that (Xn, Yn)⇒ (X, 0) in E ×R as n→∞.
The result now follows from the continuous mapping theorem; recall that conver-
gence in probability and convergence in distribution to a constant random element
are the same thing.

A.1.2 The Prohorov theorem

The following notion of relative compactness is very useful for proving the weak
convergence of probability measures.
Definition A.1.10. A family of probability measures Π on B(E) is said to be
relatively compact if each sequence contained in Π has a subsequence that converges
weakly to some probability measure on B(E).
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The strategy is to use relative compactness together with the following result.

Proposition A.1.11. Pn ⇒ P as n→∞ if and only if each subsequence (Pnm)m≥1
contains a further subsequence (Pnmk )k≥1 such that Pnmk ⇒ P as k →∞.

When the sequence (Pn)n≥1 is relatively compact, we already now that each
subsequence (Pnm)m≥1 has a further subsequence (Pnmk )k≥1 that converges weakly
to some probability measure Q on B(E). Hence, if we want to show that Pn ⇒ P
as n→∞, we only need to prove that Q is always equal to P . The point is that we
only have to deal with the problem of characterizing the limit, and we may dodge
the problem of proving its existence.

If we want to embrace this approach, then we need effective means of proving
relative compactness. It is usually easier to prove tightness, which is defined below.

Definition A.1.12. A family of probability measures Π on B(E) is tight if for each
ε > 0 there exists a compact set K ⊂ E such that P (K) > 1− ε for all P ∈ Π.

The relation between relative compactness and tightness is given by the following
theorem, which is due to Prohorov.

Theorem A.1.13 (Prohorov theorem). Let Π be a family of probability measures
on B(E). If Π is tight, then Π is relatively compact. Moreover, if E is separable
and Π is relatively compact, then Π is tight as well.

A.2 The space D
Rd[0, T ]

Throughout this section we are going to consider a fixed interval [0, T ], and for
each x : [0, T ] −→ R

d we will let

x(t−) = lim
s→t−

x(s) and x(t+) = lim
s→t+

x(s),

whenever the limits are defined and exist. We say that x has left limits if the first
of these limits exists at all t ∈ (0, T ], and we say that x is right continuous if the
second of these limits exists, and moreover x(t+) = x(t), at all t ∈ [0, T ).

Definition A.2.1. The Skorohod space DRd [0, T ] consists of all right continuous
functions x : [0, T ] −→ R

d with left limits, which are usually called càdlàg functions.

For each x : [0, T ] −→ R
d we have the following continuity moduli.

wx(S) = sup
s,t∈S
||x(t)− x(s)|| ∀ S ⊂ [0, T ] and

wx(δ) = sup
|t−s|≤δ

||x(t)− x(s)|| ∀ δ > 0.

The analog of the uniform continuity of continuous functions with a compact domain
is given in the next proposition.
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Proposition A.2.2. For each x ∈ DRd [0, T ] and each ε > 0, there exists a partition
0 = t0 < · · · < tn = T such that wx[ti−1, ti) < ε for all i = 1, . . . , n.

The preceding proposition implies that, given ε > 0, each càdlàg function x has
finitely many discontinuity points t where ||x(t)− x(t−)|| ≥ ε. As a result, càdlàg
functions have at most countably many discontinuities. Another consequence of the
last proposition is the following.

Corollary A.2.3. If x ∈ DRd [0, T ], then x has a bounded range.

The moduli of continuity wx(δ) are adequate for characterizing continuous func-
tions; for instance, wx(δ) → 0 as δ → 0 if and only if x is continuous. In order to
define the analog moduli for càdlàg functions, let us consider the collection Πδ of all
partitions π = {0 = t0 < · · · < tnπ = T} such that ti − ti−1 > δ for all i = 1, . . . , nπ.
Now we may define the moduli

w′x(δ) = inf
π∈Πδ

max
1≤i≤nπ

wx[ti−1, ti) ∀ δ ∈ (0, T ).

Proposition A.2.4. A map x : [0, T ] −→ R
d belongs to DRd [0, T ] if and only if

lim
δ→0

w′x(δ) = 0.

The moduli wx(δ) and w′x(δ) are essentially the same for continuous functions.
Indeed, if for each càdlàg x we let j(x) = max {||x(t)− x(t−)|| : t ∈ [0, T ]}, then

w′x(δ) ≤ wx(2δ) ≤ 2w′x(2δ) + j(x);

note that the maximum in the definition of j(x) is attained by Proposition A.2.2.

A.2.1 The Skorohod topology

Suppose just for a moment that d = 1 and consider two continuous functions
x, y : [0, T ] −→ R. These functions are said to be near in the uniform topology if
the graph of x can be carried out onto the graph of y by means of an uniformly
small perturbation of the ordinates, keeping the abscissas fixed. In the Skorohod
topology we will allow a uniformly small deformation of the time scale as well. The
deformation in the time scale will be given by a continuous and increasing bijection
λ : [0, T ] −→ [0, T ]; the set of all these bijections will be denoted Λ.

Definition A.2.5. For each x, y ∈ DRd [0, T ] we define

d(x, y) = inf
λ∈Λ

max
{

sup
t∈[0,T ]

|λ(t)− t|, sup
t∈[0,T ]

||x(λ(t))− y(t)||
}
.

Equivalently, d(x, y) is the infimum of those ε > 0 for which there exists λ ∈ Λ such
that the following hold.

sup
t∈[0,T ]

|λ(t)− t| < ε and sup
t∈[0,T ]

||x(λ(t))− y(t)|| < ε.
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Note that the boundedness of càdlàg functions implies that d is always finite,
and it is easy to check that d is a metric; the corresponding topology is called
the Skorohod topology. Convergence in the Skorohod topology implies pointwise
convergence at continuity points. Specifically, if d(xn, x) → 0 as n → ∞ and x is
continuous at t, then xn(t) → x(t) as n → ∞. Moreover, the Skorohod topology
relativized to the subspace CRd [0, T ], of continuous functions, coincides with the
uniform topology.

The metric space (DRd [0, T ], d) has the disadvantage of not being complete.
However, it is possible to define a metric d0, equivalent to d in the sense that it
generates the same topology, and such that (DRd [0, T ], d0) is complete. To this end,
we define for each non-decreasing λ : [0, T ] −→ [0, T ] the quantity

||λ|| = sup
s<t

∣∣∣∣∣log
(
λ(t)− λ(s)

t− s

)∣∣∣∣∣ .

When ||λ|| is finite the slopes of the chords of λ are bounded away from zero and
infinity. This implies that λ is continuous and strictly increasing, thus λ ∈ Λ; note
however that λ may belong to Λ and still ||λ|| may not be finite.
Definition A.2.6. For each x, y ∈ DRd [0, T ] we define

d0(x, y) = inf
λ∈Λ

max
{
||λ|| , sup

t∈[0,T ]
||x(λ(t))− y(t)||

}
.

Equivalently, d0(x, y) is the infimum of those ε > 0 for which there exists λ ∈ Λ
such that the following conditions hold.

||λ|| < ε and sup
t∈[0,T ]

||x(λ(t))− y(t)|| < ε.

As we commented d0 is a metric. Furthermore, we have the next theorem.
Theorem A.2.7. The metrics d and d0 are equivalent, and (DRd [0, T ], d0) is a
complete and separable metric space.

Recall that a subspace Y of a topological space X is said to be relatively compact
if its closure is a compact set; in the case of metric spaces it is equivalent to say that
Y is relatively compact if every sequence in Y has a converging subsequence.
Theorem A.2.8. A set A ⊂ DRd [0, T ] is relatively compact if and only if

sup
x∈A

sup
t∈[0,T ]

||x(t)|| <∞ and lim
δ→0

sup
x∈A

w′x(δ) = 0.

The last theorem is the analog of the Arzelá-Ascoli theorem, but for the Skorohod
topology instead of the uniform topology, which is used with continuous functions.

A.2.2 Finite-dimensional sets

Given 0 ≤ t1 < · · · < tn ≤ T we define πt1,...,tk : DRd [0, T ] −→ R
k such that

πt1,...,tk(x) = (x(t1), . . . , x(tk)).
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Since all λ ∈ Λ fix 0 and T , then the projections π0 and πT are continuous. However,
for t ∈ (0, T ) the projection πt is continuous at x if and only if x is continuous at t.
In addition, if we let D denote the Borel σ-algebra of DRd [0, T ], then the projection
πt1,...,tk is always measurable with respect to D and the Borel σ-algebra of Rk.

We are particularly interested in the collections of finite-dimensional sets

FS =
{
π−1
t1,...,tk

(H) : H ∈ Rk; t1 < · · · < tk ∈ S; k ≥ 1
}
,

where S may be any subset of [0, T ]. The reason is that these collections can be
used to characterize probability measures on D.

Theorem A.2.9. Let S be a dense subset of [0, T ] containing T . Then FS generates
the whole σ-algebra D. In particular FS is a separating class, in the sense that any
two probability measures on D, which agree on FS, are the same.

A.2.3 Weak convergence

For each t ∈ [0, T ] let Dt be the set of those càdlàg functions x such that πt is
discontinuous at x. Given a probability measure P on D we may now consider the
set CP of those t ∈ [0, T ] for which P (Dt) = 0. It is clear that 0, T ∈ CP , and we
further have the following.

Proposition A.2.10. Let P be a probability measure on D. Then 0, T ∈ CP and
the complement of CP is countable.

Given two probability measures P and Q on D, the last proposition tells us that
CP ∩ CQ is a dense subset of [0, T ] that contains T . Therefore, by Theorem A.2.9,
we know that FCP∩CQ is a separating class. Moreover, if t1 < · · · < tk lie in CP and
Pn ⇒ P in DRd [0, T ] as n → ∞, then Pnπ

−1
t1,...,tk ⇒ Pπ−1

t1,...,tk in Rk as n → ∞, by
Theorem A.1.5. Using Proposition A.1.11 we get the following converse.

Theorem A.2.11. If (Pn)n≥1 is tight and Pnπ
−1
t1,...,tk ⇒ Pπ−1

t1,...,tk in Rk as n → ∞
for all t1 < · · · < tk lying in CP , then Pn ⇒ P in DRd [0, T ] as n→∞.

Moreover, Theorem A.2.8 gives the following criteria for proving tightness.

Theorem A.2.12. A sequence (Pn)n≥1 of probability measures on D is tight if and
only if the following conditions hold.

1. For each η > 0 there exists M > 0 such that

sup
n≥1

Pn ({x ∈ DRd [0, T ] : ||x|| ≥M}) ≤ η.

2. For each ε, η > 0 there exist δ ∈ (0, T ) and n0 ≥ 1 such that

sup
n≥n0

Pn ({x ∈ DRd [0, T ] : w′x(δ) ≥ ε}) ≤ η.
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A.3 The space D
Rd[0,∞)

We now define the space DRd [0,∞) and establish the relation between weak
convergence in the spaces DRd [0, T ] and weak convergence in DRd [0,∞).

Definition A.3.1. The space DRd [0,∞) is the space of càdlàg functions on [0,+∞).

Given an interval [0, t] ⊂ [0,+∞) we let dt0 denote the metric that we introduced
in Definition A.2.6. All functions x, y ∈ DRd [0,∞) may be restricted to a càdlàg
function on [0, t], and thus it makes sense to write dt0(x, y) to denote the distance
between their restrictions to [0, t]. In the sequel x and xn always lie in DRd [0,∞).

Proposition A.3.2. Suppose that dt0(xn, x) → 0 as n → ∞. If s ∈ (0, t) and x is
continuous at s, then ds0(xn, x)→ 0 as n→∞.

For each integer m ≥ 1 we define

gm(t) =





1 if t ∈ [0,m− 1],
m− t if t ∈ (m− 1,m),
0 if t ∈ [m,+∞).

For each x ∈ DRd [0,∞) note that xm(t) = gm(t)x(t) is continuous at m.

Definition A.3.3. For all x, y ∈ DRd [0,∞) we define

d∞0 (x, y) =
∞∑

m=1

1
2m min(1, dm0 (xm, ym)).

It is easy to see that d∞0 is a metric. Moreover, d∞0 has the natural property
that d∞0 (xn, x) → 0 implies, by Proposition A.3.2, that dt0(xn, x) → 0 as n → ∞
whenever x is continuous at t; the converse is also true.

Theorem A.3.4. There is convergence d∞0 (xn, x) → 0 as n → ∞ if and only if
dt0(xn, x)→ 0 as n→∞ for each continuity point t of x.

For each x ∈ DRd [0,∞) let ψmx be the restriction of xm to [0,m]; this defines a
continuous map ψm : DRd [0,∞) −→ DRd [0,m]. Consider now the product space

Π =
∞∏

m=1
DRd [0,m],

whose elements will be denoted α = (αm)m≥1. The metric

ρ(α, β) =
∞∑

m=1

1
2m min(1, dm0 (αm, βm))

generates the product topology in Π; thus this metric makes Π separable and com-
plete. Also, the map ψ : DRd [0,∞) −→ Π, such that (ψx)m = ψmx, is an isometry.

Theorem A.3.5. The image of DRd [0,∞) under ψ is closed in Π. In particular,
(DRd [0,∞), d∞0 ) is separable and complete.
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It is possible to characterize the compact sets and the finite-dimensional sets
of DRd [0,∞) as it was done for DRd [0, T ], and afterwards one may obtain criteria
for proving the weak convergence of probability measures in DRd [0,∞). We will
however just state a result establishing the relation between the weak convergence
in DRd [0,∞) and the weak convergence in the spaces DRd [0, T ].

Let D∞ denote the Borel σ-algebra of DRd [0,∞). Given a probability measure
P on D∞ we let Dt be the set of those x ∈ DRd [0,∞) that are discontinuous at
t, and we define CP to be the set of those t ≥ 0 such that P (Dt) = 0; this is the
same definition that we gave in Subsection A.2.3. In addition, we define for each
t ≥ 0 the map rt : DRd [0,∞) −→ DRd [0, t] that restricts each x ∈ DRd [0,∞) to
the interval [0, t]. It is possible to prove that these maps are Borel measurable; we
moreover have the following theorem.

Theorem A.3.6. Consider probability measures P and Pn on D∞. The weak
convergence Pn ⇒ P in DRd [0,∞) as n → ∞ occurs if and only if Pnr−1

t ⇒ Pr−1
t

in DRd [0, t] as n→∞ for all t ∈ CP .
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Appendix B

Limit theorems for the Poisson
process

In this appendix we state and prove some laws of large numbers, and a central
limit theorem, for the Poisson process. We assume that the reader is familiar with
the definitions of the Poisson and Wiener processes.

B.1 Laws of large numbers

Let N be a Poisson process with unitary intensity, defined over some probability
space (Ω,F ,P). The centered Poisson process Y is given by Y (t) = N (t)− t.

Theorem B.1.1. Let α be a non-negative constant.

1. sup
t∈[0,T ]

∣∣∣∣∣
Y (nt)
n1−α

∣∣∣∣∣
a.s.−−→ 0 as n→∞ for all α ∈ [0, 1/4) and all T ≥ 0.

2. sup
t∈[0,T ]

∣∣∣∣∣
Y (nt)
n1−α

∣∣∣∣∣
P−−→ 0 as n→∞ for all α ∈ [0, 1/2) and all T ≥ 0.

Proof. Since Y 4 is a submartingale, Doob’s maximal inequality yields the following
equation for each ε > 0.

P

(
sup
t∈[0,T ]

∣∣∣∣∣
Y (nt)
n1−α

∣∣∣∣∣ ≥ ε

)
≤ E [Y 4(nT )]

ε4n4(1−α) = nT + 3(nT )2

ε4n4(1−α) = T

ε4n3−4α + 3T 2

ε4n2−4α .

The right-hand side of the above equation converges to zero as n → ∞ for all
α ∈ [0, 1/2), and this observation proves the second claim. Furthermore, if we
assume that α ∈ [0, 1/4), then

∞∑

n=1
P

(
sup
t∈[0,T ]

∣∣∣∣∣
Y (nt)
n1−α

∣∣∣∣∣ ≥ ε

)
<∞,
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and the following observation completes the proof of the first claim.

P

( ∞⋂

m=1

∞⋃

n=m

{
sup
t∈[0,T ]

∣∣∣∣∣
Y (nt)
n1−α

∣∣∣∣∣ ≥ ε

})
≤ lim

m→∞

∞∑

n=m
P

(
sup
t∈[0,T ]

∣∣∣∣∣
Y (nt)
n1−α

∣∣∣∣∣ ≥ ε

)
= 0.

B.2 Central limit theorem

We prove the central limit theorem in a time inhomogeneous setting.

Theorem B.2.1. Consider an integrable and bounded map f : [0, T ] −→ [0,+∞),
a centered Poisson process Y with intensity one and a standard Wiener process W .

1√
n
Y
(∫ t

0
nf(τ)dτ

)
⇒ W

(∫ t

0
f(τ)dτ

)
in DR[0, T ] as n→∞.

Proof. Define the processes

Un(t) = 1√
n
Y
(∫ t

0
nf(τ)dτ

)
and U(t) = W

(∫ t

0
f(τ)dτ

)
.

Also, using the notation of Subsection A.1.1, let Pn = PU−1
n and P = PU−1. It is

easy to see, using the continuous mapping theorem, that the convergence of

(Un(t1), Un(t2)− Un(t1), . . . , Un(tk)− Un(tk−1)), (B.1)

in distribution as n→∞, to the random vector

(U(t1), U(t2)− U(t1), . . . , U(tk)− U(tk−1)) (B.2)

implies the weak convergence of the finite-dimensional distributions; namely, the
limit in distribution Pnπ

−1
t1,...,tk ⇒ Pπ−1

t1,...,tk in Rk as n→∞.

Note that the increments Un(ti)−Un(ti−1) are independent, as well as the incre-
ments U(ti)−U(ti−1). Moreover, by the central limit theorem for random variables

Un(ti)−Un(ti−1) ∼ 1√
n

n∑

i=1
Yi

(∫ ti

ti−1
f(τ)dτ

)
⇒ N

(
0,
∫ ti

ti−1
f(τ)dτ

)
∼ U(ti)−U(ti−1)

as n → +∞, where {Yi}i≥1 is an independent family of centered Poisson processes
with unitary intensity. These two observations imply that the expression (B.1)
converges to (B.2) for all 0 ≤ t1 < · · · < tk ≤ T . Hence, the finite-dimensional
distributions of Un converge to those of U .

Consequently, by Theorem A.2.11, it is now enough to show that the sequence
(Un)n≥1 is tight. To do this, by Theorem A.2.12, it suffices to prove that:

1. For each η > 0 there exists M > 0 such that

P

(
sup
t∈[0,T ]

|Un(t)| ≥M

)
≤ η ∀ n ≥ 1.
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2. For each ε, η > 0 there exist δ ∈ (0, T ) and n0 ≥ 1 such that

P

(
w′Un(δ) ≥ ε

)
≤ η ∀ n ≥ n0.

In order to check that the above conditions hold, define

J(t) =
∫ t

0
f(τ)dτ

and let S = J(T ). Since J is a non-decreasing continuous function with J(0) = 0,
then the image of the interval [0, T ] under J is exactly [0, S].

For the first condition, suppose that we are given some η > 0 and choose M > 0
such that S + 3S2 ≤ M4η. Then, after applying Doob’s maximal inequality to the
submartingale Y 4, we see that

P

(
sup
t∈[0,T ]

|Un(t)| ≥M

)
≤ P

(
sup
s∈[0,S]

|Y (ns)| ≥ √nM
)

≤ nS + 3(nS)2

n2M4 ≤ S + 3S2

M4 ≤ η ∀ n ≥ 1.

In order to prove that the second condition also holds, we are going to fix some
ε, δ > 0 and n ≥ 1, and then we will provide a bound for

P

(
w′Un(δ) ≥ ε

)
.

To this end, consider the set Ψδ of all partitions π = {0 = t0 < · · · < tmπ = T},
such that δ < ti+1 − ti ≤ 2δ for all i = 0, . . . ,mπ − 1. Note that we may write

w′Un(δ) = inf
π∈Ψδ

max
0≤i<mπ

wUn [ti, ti+1).

This expression is difficult to handle because it depends on all the partitions in Ψδ,
we will thus provide a bound for this expression that we may handle more easily. To
this purpose, choose a partition 0 = s0 < · · · < sm = T such that δ ≤ si+1− si ≤ 2δ
for all i = 0, . . . ,m − 1. Also, assume that π = {0 = t0 < · · · < tmπ = T} ∈ Ψδ

and take two constants 0 ≤ α ≤ β < T , such that ti ≤ α ≤ β < ti+1 for some
i ∈ {0, . . . ,mπ − 1}. Since β − α < 2δ, we have three possible scenarios:

1. sk ≤ α ≤ β ≤ sk+1 for some k = 0, . . . ,m− 1.

2. sk ≤ α < sk+1 < β ≤ sk+2 for some k = 0, . . . ,m− 2.

3. sk ≤ α < sk+1 < sk+2 < β ≤ sk+3 for some k = 0, . . . ,m− 3.

We will derive the following inequality assuming that we are in the third case, but
the same may be done in the other two cases.
|Un(β)− Un(α)| ≤ |Un(β)− Un(sk+2)|+ |Un(sk+2)− Un(sk+1)|+ |Un(sk+1)− Un(sk)|

+ |Un(sk)− Un(α)| ≤ 4 max
0≤k<m

sup
θ∈[0,2δ]

|Un(sk + θ)− Un(sk)|.
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In particular, this implies that

wUn [ti, ti+1) ≤ 4 max
0≤k<m

sup
θ∈[0,2δ]

|Un(sk + θ)− Un(sk)|.

The above is true for all i = 0, . . . ,mπ − 1 and for all π ∈ Ψδ, and thus we have

P

(
w′Un(δ) ≥ ε

)
≤ P

(
max

0≤k<m
sup

θ∈[0,2δ]
|Un(sk + θ)− Un(sk)| ≥

ε

4

)

≤
m−1∑

k=0
P

(
sup

θ∈[0,2δ]
|Un(sk + θ)− Un(sk)| ≥

ε

4

)
.

Let Mf = sup {|f(t)| : t ∈ [0, T ]} and note that |J(t) − J(s)| ≤ Mf |t − s| for all
s, t ∈ [0, T ]. In particular, |J(sk + θ)− J(sk)| ≤Mfθ and thus

P

(
w′Un(δ) ≥ ε

)
≤

m−1∑

k=0
P

(
sup

ν∈[0,2Mf δ]

|Y (nJ(sk) + nν)− Y (nJ(sk))|√
n

≥ ε

4

)

= mP

(
sup

ν∈[0,2Mf δ]

|Y (nν)|√
n
≥ ε

4

)
,

Furthermore, since m ≤ T/δ, we see that

mP

(
sup

ν∈[0,2Mf δ]

|Y (nν)|√
n
≥ ε

4

)
≤ T

δ

(4
ε

)4 2Mfδn+ 3(2Mfδn)2

n2

= T
(
ε

4

)4 (2Mf

n
+ 12M2

f δ
)
.

It is clear that if we are given some ε, η > 0, then we may choose δ > 0 and
n0 ≥ 1 such that the right-hand side is smaller than η for all n ≥ n0.
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Appendix C

Markov processes and
infinitesimal generators

In this appendix we present, in a rather concise manner, several definitions and
results regarding Markov processes and their characterization by means of infinitesi-
mal generators. Section C.1 concerns semigroups of operators and their infinitesimal
generators, and it is based on [8, Chapter 1]. Markov processes are introduced in
Section C.2 which is entirely based on [8, Chapter 4]. Afterwards, we discuss Feller
semigroups of operators, and the corresponding processes, in Section C.3, which is
based on [16, Chapter 17] and [31, Chapter 7.1]. Feller diffusions are defined in
Section C.4, which is also based on [16, Chapter 17].

C.1 Operator semigroups

Consider a Banach space (M, || · ||) and denote by B(M) the set of all bounded
linear operators T : M −→M ; we will use the notation || · || to denote the operator
norm as well.

Definition C.1.1. An operator semigroup is a family {Tt}t≥0 ⊂ B(M) such that

1. T0 is the identity operator.

2. TsTt = Ts+t for all s, t ≥ 0.

An operator semigroup is strongly continuous if

lim
t→0
||Ttf − f || = 0 ∀ f ∈M.

Besides, an operator semigroup is contractive if ||Tt|| ≤ 1 for all t ≥ 0.

The basic example of a strongly continuous semigroup of operators is the expo-
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nential of a bounded operator B ∈ B(M), which is given by

etB =
∞∑

n=0

tn

n!B
n ∀ t ≥ 0.

Furthermore, the bound
∣∣∣
∣∣∣etB

∣∣∣
∣∣∣ ≤

∞∑

n=0

tn

n! ||B||
n = et||B||

implies that Tt = e−t||B||etB is also a contraction semigroup. A similar inequality
holds for strongly continuous semigroups in general.

Proposition C.1.2. Let {Tt}t≥0 be a strongly continuous semigroup of operators
on M . There exist constants K,α > 0 such that

||Tt|| ≤ Keαt ∀ t ≥ 0.

Using the last proposition it is possible to prove following.

Proposition C.1.3. Let {Tt}t≥0 be a strongly continuous semigroup of operators
on M . For each f ∈M the map [0,+∞)→M such that t 7→ Ttf is continuous.

A linear operator A on M is a linear mapping whose domain D(A) is a subspace
of M ; its range is denoted R(A). The graph of A is defined to be the set

G(A) = {(f, Af) : f ∈ D(A)} ⊂M ×M.

The linear space M × M , with componentwise addition and multiplication, is a
Banach space if we endow it with the norm |||(f, g)||| = ||f || + ||g||. A linear
operator A is said to be closed if its graph is a closed subspace of M ×M .

Definition C.1.4. The infinitesimal generator of a semigroup of operators {Tt}t≥0
on M is the linear operator A defined by the limit

Af = lim
t→0

1
t
(Ttf − f),

whose domain is the subspace of all f ∈M such that the limit exists.

Before we can state some properties of infinitesimal generators, we need to discuss
the calculus of functions taking values in Banach spaces. To this purpose, suppose
that I = [a, b] is a bounded and closed interval, and consider a set of points of
the form π = {t0 ≤ s1 ≤ t1 ≤ · · · ≤ tn−1 ≤ sn ≤ tn} such that the subset
{a = t0 < t1 < · · · < tn = b} is a partition of I; we define the norm of such a set by

||π|| = max
1≤i≤n

ti − ti−1

A function u : I −→M is Riemann integrable on I if the limit
∫ b

a
u(t)dt = lim

||π||→0

n∑

i=1
u(si)(ti − ti−1)
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exists. In the case of an unbounded closed interval, for instance I = [a,+∞), we say
that a function u : I −→ M is Riemann integrable on I if it is Riemann integrable
on [a, b] for all b ≥ a and the following limit exists.

∫ +∞

a
u(t)dt = lim

b→+∞

∫ b

a
u(t)dt

We are going to let CM(I) denote the set of all continuous functions u : I −→M ,
and we will let C1

M(I) be the set of all continuously differentiable functions; the
derivative of u at t ∈ I is defined as the limit

du

dt
(t) = lim

h→0

1
h

[u(t+ h)− u(t)],

whenever the limit exists.

Lemma C.1.5. Consider a closed interval I ⊂ R.

1. If u ∈ CM(I) and ||u|| has a finite integral, then u is integrable over I, and
∣∣∣∣
∣∣∣∣
∫

I
u(t)dt

∣∣∣∣
∣∣∣∣ ≤

∫

I
||u(t)|| dt.

In particular, if I is bounded, then u is integrable over I.

2. Let A be a closed linear operator on M , and suppose that u ∈ CM(I). Fur-
thermore, assume that u(t) ∈ D(A) for all t ≥ 0, Au ∈ CM(I) and both u and
Au are integrable over I. Then the integral of u over I belongs to D(A) and

A
∫

I
u(t)dt =

∫

I
Au(t)dt.

3. Assume that I = [a, b] and u ∈ C1
M(I), then

∫ b

a

du

dt
(t)dt = u(b)− u(a).

We may now state the following properties.

Proposition C.1.6. Let {Tt}t≥0 be a strongly continuous semigroup of operators
on M with infinitesimal generator A.

1. If f ∈M and t ≥ 0, then the integral of Ttf over [0, t] belongs to D(A), and

Ttf − f = A
∫ t

0
Tsfds.

2. If f ∈ D(A) and t ≥ 0, then Ttf ∈ D(A), and
dTtf

dt
= ATtf = TtAf.

3. If f ∈ D(A) and t ≥ 0, then

Ttf − f =
∫ t

0
ATsfds =

∫ t

0
TsAfds.
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Note that the integrals exist because the map t 7→ Ttf is continuous for all
f ∈ B(M). Moreover, using the last proposition it is possible to prove the following.

Proposition C.1.7. If A is the infinitesimal generator of a strongly continuous
semigroup of operators on M , then D(A) is dense in M and A is closed.

Given a closed linear operator A on M , we say that λ ∈ R belongs to the
resolvent set ρ(A) if the map λ − A is injective, the range R(λ − A) = M and the
inverse (λ− A)−1 is a bounded operator. In that case we say that Rλ = (λ− A)−1

is the resolvent operator at λ.

In general, for any linear closed operator A, the fact that the maps (λ−A) and
(µ−A) commute for all λ, µ ∈ R implies that their inverses commute as well, when
they exist. Furthermore, we have the identity

RλRµ = 1
λ− µ(Rµ −Rλ) = RµRλ ∀ λ, µ ∈ ρ(A).

Also, if λ ∈ ρ(A) and |λ− µ| < ||Rλ||−1, then
∞∑

n=0
(λ− µ)nRn+1

λ

defines a bounded operator that is in fact (µ−A)−1. This implies that ρ(A) is open.

In the special case of the infinitesimal generator A of a strongly continuous
contraction semigroup of operators {Tt}t≥1 on M , we see that for each λ > 0 the
linear map

Uλg =
∫ +∞

0
e−λtTtgdt

is a bounded operator on M . Indeed, the integrand belongs to CM([0,+∞)) and the
exponential, together with the fact that {Tt}t≥0 is a contraction semigroup, ensure
that the integral converges. Moreover, the contraction property also implies, by the
first item of Lemma C.1.5, that ||Uλg|| ≤ λ−1 ||g||.
Proposition C.1.8. Let {Tt}t≥0 be a strongly continuous contraction semigroup of
operators on M with infinitesimal generator A. Then (0,+∞) ⊂ ρ(A), and moreover

Rλg = Uλg =
∫ +∞

0
e−λtTtgdt ∀ g ∈M, λ > 0.

A linear operator A is said to be dissipative if ||λf − Af || ≥ λ ||f || for each
f ∈ D(A) and each λ > 0. We now state a version of the Hille-Yosida theorem.

Theorem C.1.9 (Hille-Yosida theorem). A linear operator A on M is the generator
of a strongly continuous contraction semigroup on M if and only if

1. D(A) is dense in M .

2. A is dissipative.

3. There exists λ > 0 such that the range R(λ− A) = M .
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Note that the necessity is a consequence of the results that we have already
seen; the fact that infinitesimal generators are dissipative results from the inequality
||Rλg|| ≤ λ−1 ||g||, which was proven above.

Another very important fact about infinitesimal generators is the following.

Theorem C.1.10. Let {Tt}t≥0 and {St}t≥0 be strongly continuous contraction semi-
groups of operators on M , with infinitesimal generators A and B, respectively. If
A = B, then Tt = St for all t ≥ 0.

C.2 Markov processes

Consider a complete and separable metric space E, and let B(E) denote its Borel
σ-algebra. We are going to let B(E) be the space of bounded measurable functions
f : E −→ R, which is a Banach space if we endow it with the norm

||f || = sup
x∈E
|f(x)|.

Fix some probability space (Ω,F ,P). Given an stochastic process {Xt}t≥0, de-
fined over this space, and taking values inE, we are going to let Ft = σ({Xs : s ≥ t}).

Definition C.2.1. An stochastic process X is a Markov process if

P(Xs+t ∈ Γ|Fs) = P(Xs+t ∈ Γ|Xs) a.s.

for all s, t ≥ 0 and all Γ ⊂ B(E). The latter is called the Markov property and it
means that, given the present, the future does not depend on the past.

An equivalent formulation of the Markov property is

E[f(Xs+t)|Fs] = E[f(Xs+t)|Xs] a.s.

for all s, t ≥ 0 and all f ∈ B(E).

Definition C.2.2. A function P : [0,+∞)×E ×B(E) −→ [0, 1] is a time homoge-
neous transition function if it poses the following properties.

1. P (t, x, · ) is a probability measure for all t ∈ [0,+∞) and all x ∈ E.

2. P (0, x, · ) = δx, the unit mass at x for all x ∈ E.

3. P ( · , · ,Γ) is Borel measurable for all Γ ∈ B(E).

4. For all s, t ≥ 0, x ∈ E and Γ ∈ B(E)

P (s+ t, x,Γ) =
∫

E
P (t, y,Γ)P (s, x, dy),

which is called the Chapman-Kolmogorov property.
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Furthermore, we say that P is the transition function of the time homogeneous
Markov process X if for all s, t ≥ 0 and Γ ∈ B(E) we have

P(Xs+t ∈ Γ|Fs) = P (t,Xs,Γ) a.s.

Intuitively, the meaning of P (t, x,Γ) is the probability that Xt ∈ Γ given that the
initial state of X was X0 = x.

Again, we observe that the last equation is equivalent to

E[f(Xs+t)|Fs] =
∫

E
f(x)P (t,Xs, dx) a.s. (C.1)

for all s, t ≥ 0 and all f ∈ B(E).

We will often write Pt(x,Γ) instead of P (t, x,Γ).

Definition C.2.3. A probability measure ν on B(E) is said to be the initial distri-
bution of the Markov process X if

P(X0 ∈ Γ) = ν(Γ) ∀ Γ ∈ B(E).

An important property is that a transition function and an initial distribution
for a Markov process X determine its finite-dimensional distributions.

Proposition C.2.4. Let P and ν be, respectively, a transition function and an
initial distribution for the Markov process X, then

P(Xt1 ∈ Γ1, . . . , Xtn ∈ Γn) =
∫

E
ν(dx0)

∫

Γ1
Pt1(x0, dx1) . . .

∫

Γn
Ptn−tn−1(xn−1, dxn)

for all 0 ≤ t1 < · · · < tn and Γ1, . . . ,Γn ∈ B(E).

In particular, this allows to prove the following.

Theorem C.2.5. Let P and ν be, respectively, a transition function and a proba-
bility measure on B(E). There exists a Markov process X whose transition function
and initial distribution are P and ν, respectively.

For each x ∈ E we are going to let Pν denote the probability measure on the
product σ-algebra⊗[0,+∞)B(E), associated to the Markov processX in the statement
of the last theorem; in the special case when the initial distribution is ν = δx we use
the notation Px instead.

C.2.1 Operator semigroups and Markov processes

In general it is not possible to define transition functions explicitly. However, we
may instead exploit the fact that

Ttf(x) =
∫

E
f(y)Pt(x, dy)
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defines a contraction semigroup of operators on B(E), whenever P is a transition
function. Indeed, by the Chapman-Kolmogorov property we have

TsTtf(x) =
∫

E

∫

E
f(z)Pt(y, dz)Ps(x, dy) =

∫

E
f(z)Ps+t(x, dz) = Ts+tf(x)

for all s, t ≥ 0 and f ∈ B(E). Also note that T0 = Id because P0(x, · ) = δx, and
that, since Pt(x, · ) is a probability measure, then ||Tt|| ≤ 1.
Definition C.2.6. An operator semigroup {Tt}t≥0 defined on some closed subspace
M ⊂ B(E) corresponds to a Markov process X if

E[f(Xs+t)|Fs] = Ttf(Xs) a.s. (C.2)

for all s, t ≥ 0 and f ∈M .

The above is intended to be the analog of equation (C.1), in the definition of
the transition function of a Markov process; in particular, note that when {Tt}t≥0
comes from a transition function then equation (C.2) holds.

We say that M ⊂ B(E) is separating if for all x, y ∈ E there exists f ∈M such
that f(x) 6= f(y). The following is an important fact.
Proposition C.2.7. Let X be a Markov process with initial distribution ν, corre-
sponding to a operator semigroup {Tt}t≥0, defined on M . If M is separating, then
ν and {Tt}t≥0 determine the finite-dimensional distributions of X.

Suppose that the initial distribution of a Markov process X is given, and that
this process corresponds to some strongly continuous contraction semigroup of op-
erators {Tt}t≥0, defined on a closed and separating subspace M ⊂ B(E). Then its
infinitesimal generator A determines the finite-dimensional distributions of X by
Theorem C.1.10. In the general case, when {Tt}t≥0 is a generic semigroup of opera-
tors, it is necessary to consider its full generator, or a sufficiently large subset of it;
however we will not discuss this problem here.

C.3 Feller processes

Assume that the space E in the latter section is a complete, separable and locally
compact metric space, and let C0(E) denote the closed and separating subspace of
B(E) consisting of all continuous functions that vanish at infinity. Specifically,
f ∈ C0(E) if f is continuous and for all ε > 0 there exists a compact set K ⊂ E
such that |f(x)| < ε for all x /∈ K.
Definition C.3.1. A contraction semigroup of operators {Tt}t≥0 on C0(E) is said
to be a Feller semigroup if

1. {Tt}t≥0 is positive, meaning that Ttf ≥ 0 for all f ≥ 0.

2. For each x ∈ E and each f ∈ C0(E) we have

lim
t→0

Ttf(x) = f(x).
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Here we are considering a pointwise limit, but as it is stated below Feller
semigroups are actually strongly continuous as well.

A Markov process with a transition function that defines a Feller semigroup of
operators is called a Feller process.

Theorem C.3.2. Feller semigroups of operators are strongly continuous. In par-
ticular the infinitesimal generator of a Feller semigroup of operators completely
determines the semigroup.

A linear operator A on a Banach space M is said to be closable if there exists a
linear operator A, called closure of A, such that G(A) = G(A). We may now state
the following analog of the Hille-Yosida theorem for Feller semigroups of operators.

Theorem C.3.3. Let A be a linear operator on C0(E). Then A is closable and its
closure is the infinitesimal generator of a Feller semigroup if and only if

1. D(A) is dense in C0(E).

2. If sup {f+(y) : y ∈ E} ≤ f(x) for some f ∈ D(A) and x ∈ E, then Af(x) ≤ 0.

3. There exists λ > 0 such that R(λ− A) is dense in C0(E).

The second condition is known as the positive maximum principle.

C.3.1 Feller processes

Consider a Feller semigroup of operators {Tt}t≥0. For each t ≥ 0 and x ∈ E, the
map f 7→ Ttf(x) is a linear functional on C0(E). Then, by the Riesz representation
theorem, there exists a Borel measure Pt(x, · ) such that

Ttf(x) =
∫

E
f(y)Pt(x, dy) ∀ f ∈ C0(E).

Since Tt is a positive contraction, then Pt(x, · ) is a non-negative and finite measure.
However, Pt(x, · ) may not be a probability measure, because its total variation
might be smaller than one. In order to ensure that Pt(x, · ) is a probability measure,
we need Tt to be conservative, namely we must require that

sup
||f ||≤1

Ttf(x) = 1 ∀ x ∈ E.

This is equivalent to requesting that f 7→ Ttf(x) has norm one; by Riesz’s theorem
the norm of this map equals the total variation of the corresponding measure.

To avoid restricting ourselves to conservative semigroups, we may consider the
one-point compactification E ∪ {∆} of E, and the space C(E ∪ {∆}) of continuous
functions on E∪{∆}. Each f ∈ C0(E) may be extended to a function in C(E∪{∆})
by setting f(∆) = 0, and we may moreover extend each Tt defining

T̂tf = f(∆) + Tt(f − f(∆)) ∀ f ∈ C(E ∪ {∆}).
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This results in a positive contraction and strongly continuous semigroup of operators
which is furthermore conservative, and it is possible to construct a transition function
from this semigroup.

Theorem C.3.4. Let {Tt}t≥0 be a Feller semigroup of operators. There exists a
unique transition function P on E ∪ {∆} such that

Ttf(x) =
∫

E
f(y)Pt(x, dy)

for all x ∈ E and f ∈ C0(E).

As a result, a Feller semigroup {Tt}t≥0 and a probability ν on B(E∪{∆}) define
a unique Markov process taking values in E∪∆. Furthermore, we have the following
result concerning the regularity of paths.

Theorem C.3.5. Let X be the process in E∪∆ determined by the Feller semigroup
{Tt}t≥0 and the initial distribution ν. There exists a version X̃ of this process that
has càdlàg paths and is such that Xs− = ∆ or Xs = ∆ imply X̃t = ∆ for all t ≥ s.
Moreover, if {Tt}t≥0 is conservative and ν can be restricted to a probability measure
on E, then X̃ can be chosen to be a càdlàg process in E.

Suppose that X is a Feller process in E ∪∆ with the properties that we stated
in the last theorem. Then we may define the explosion time of X to be

ζ = inf {t ≥ 0 : Xt− = ∆ orXt = ∆} ,
and this results in Xt = ∆ for all t ≥ ζ.

We conclude this section with the Dynkin formula.

Theorem C.3.6. Consider a right-continuous Feller process X with infinitesimal
generator A and initial distribution ν. Then the process

f(Xt)− f(X0)−
∫ t

0
Af(Xs)ds

is a martingale with respect to its natural filtration and Pν , for all f ∈ D(A);
furthermore in the especial case ν = δx, where x ∈ E, we have the Dynkin formula

Ex[f(Xt)] = f(x) +Ex
[∫ t

0
Af(Xs)ds

]
.

We also have the following reverse formula.

Theorem C.3.7. Let X be a Feller process with infinitesimal generator A. Suppose
that f, g ∈ C0(E) are such that

f(Xt)− f(x)−
∫ t

0
g(Xs)ds

is a martingale with respect to the natural filtration of X and Px, for each x ∈ E.
Then f ∈ D(A) and Af = g.
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C.4 Feller diffusions

In this section we let E = R
d and we consider the space C∞c (Rd) of all infinitely

differentiable functions with compact support. A linear operator in C∞c (Rd) is said
to be local if Af(x) = 0 whenever f vanishes in some neighborhood of x.

Theorem C.4.1. Let A be the infinitesimal generator of a Feller process X and
assume that C∞c (Rd) ⊂ D(A). Then X is Pν-almost surely continuous on [0, ζ), for
each initial distribution ν, if and only if A is local; here ζ is the explosion time of X.
Moreover, in the latter case there exist continuous functions ai, σ2

i,j, c : Rd −→ R

such that σ2 = (σ2
i,j) is a symmetric positive semi-definite matrix and

Af =
d∑

i=1
ai
∂f

∂xi
+ 1

2

d∑

i,j=1
σ2
i,j

∂2f

∂xi∂xj
− cf ∀ f ∈ C∞c (Rd).

Consider now the second order differential operator L on C∞c (Rd) such that

Lf =
d∑

i=1
ai
∂f

∂xi
+ 1

2

d∑

i,j=1
σ2
i,j

∂2f

∂xi∂xj
∀ f ∈ C∞c (Rd), (C.3)

where a and σ2 are as above; note that we have taken c = 0. The functions a and
σ2 are called, respectively, the drift and the diffusion coefficients; the dispersion
coefficient is defined as the square root of the positive semi-definite matrix σ2.

Definition C.4.2. A Feller diffusion is a Feller process with continuous paths and
such that the restriction of its infinitesimal generator to C∞c (Rd) is a second order
differential operator as the one above.

The following appendix provides a means of constructing diffusions, using stochas-
tic differential equations.
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Appendix D

Itô calculus and stochastic
differential equations

The first part of this appendix concerns the definition of Itô integrals and their
most relevant properties, including the Itô formula; this is covered in Section D.1
which is based on [4, Chapter 2] and [30, Chapter 4]. The second part of this
appendix is devoted to stochastic differential equations and their invariant measures.
In Section D.2 we give criteria for the existence and uniqueness of strong solutions
to these equations, and we observe that these solutions are Feller diffusions; this
section is based on [17, Chapter 5.2] and [33, Chapter 5.2]. Invariant measures are
defined in Section D.3 where we further give criteria for their existence, uniqueness
and ergodicity; this is based on [1, 7, 24,25]

D.1 Itô calculus

Consider a complete probability space (Ω,F ,P), endowed with a right-continuous
and complete filtration {Ft}t≥0. This means that Ft = ⋂

s>tFs for all t ≥ 0 and
F0 contains the null sets. Suppose in addition that W is a standard Ft-measurable
Wiener process, such that for all t ≥ s the increment Wt −Ws is independent of
the past Fs. For instance, this is the case when {Ft}t≥0 is the augmentation of the
natural filtration Gt = σ({Ws : s ∈ [0, t]}).

We would like to give some meaning to the stochastic integral
∫ t

0
f(s)dWs,

where f is a well-behaved stochastic process. Since the Wiener process has infinite
variation on bounded intervals, it is not possible to define this integral pathwise by
means of classical integration theory.

Let us fix the domain of integration to be the interval [0, T ]. The class of inte-
grands that we are going to consider is the setH2[0, T ] of all progressively measurable
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processes f : [0, T ]× Ω −→ R such that
∫ T

0
E[f 2(τ)]dτ <∞.

The progressive measurability of f means that the restriction f |[0,t]×Ω is measurable
with respect to the product σ-algebra Bt ⊗Ft for all t ∈ [0, T ]; here Bt denotes the
Borel σ-algebra of the interval [0, t].

We remark that H2[0, T ] is a closed subspace of L2([0, T ]×Ω) and thus a Hilbert
space. The stochastic integral will first be defined on a class of elementary processes
which are dense in H2[0, T ] and this fact will then be used to define the stochastic
integral in all H2[0, T ].

Definition D.1.1. A simple process is a stochastic process of the form

f̄(t) =
m−1∑

k=0
fk1[tk,tk+1)(t) t ∈ [0, T ],

where 0 = t0 < · · · < tm = T , the random variables fk are Ftk-measurable and
E[f 2

k ] <∞ for all k = 0, . . . ,m− 1. Note that f̄ ∈ H2[0, T ].

The Itô integral of f̄ is defined to be the following random variable.
∫ T

0
f̄(τ)dWτ =

m−1∑

k=0
fk(Wtk+1 −Wtk).

It is easy to check that the Itô integral is linear within the class of simple pro-
cesses. Moreover, using the independence of the increments of W with respect to
the past, we see that this integral has mean zero and variance

E



(∫ T

0
f̄(τ)dWτ

)2

 =

∫ T

0
E

[
f̄ 2(τ)

]
dτ.

In other words, the norm of the Itô integral, as an element of L2(Ω), is the same as
the norm of the integrand as an element of L2([0, T ]× Ω). This isometry is key for
extending the definition of the Itô integral to other processes in H2[0, T ], but first
we need the following result.

Proposition D.1.2. The set of simple processes is dense in H2[0, T ]. Specifically,
for each f ∈ H2[0, T ] there exists a sequence of simple processes f̄n such that

lim
n→∞

∫ T

0
E

[(
f(τ)− f̄n(τ)

)2
]
dτ = 0

The last proposition can be used to define the stochastic integral of a generic
process f ∈ H2[0, T ]. According to the proposition, we know that there exists a
sequence of simple processes f̄n that converge to f in L2([0, T ]×Ω) and the isometry
property implies that

E



(∫ T

0
f̄m(τ)dWτ −

∫ T

0
f̄n(τ)dWτ

)2

 =

∫ T

0
E

[(
f̄m(τ)− f̄n(τ)

)2
]
dτ.
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Hence, the sequence formed by the Itô integrals of the processes f̄n is a Cauchy
sequence in L2(Ω). The Itô integral of f is defined to be the limit of this sequence:

∫ T

0
f̄n(τ)dWτ

L2−−→
∫ T

0
f(τ)dWτ .

The limit is independent of the sequence of simple processes that we choose.

Proposition D.1.3. The Itô integral has the following properties.

1. The integral is linear with respect to the integrand.

2. E
[∫ T

0
f(τ)dWτ

]
= 0 ∀ f ∈ H2[0, T ].

3. E


(∫ T

0
f(τ)dWτ

)2

 =

∫ T

0
E

[
f 2(τ)

]
dτ ∀ f ∈ H2[0, T ].

4. If fn → f in H2[0, T ], with respect to the norm of L2([0, T ]× Ω), then
∫ T

0
fn(τ)dWτ

L2−−→
∫ T

0
f(τ)dWτ .

5. If ξ is a bounded and Fs-measurable random variable and t > s, then
∫ T

0
ξ1[s,t)(τ)f(τ)dWτ = ξ

∫ T

0
1[s,t)(τ)f(τ)dWτ a.s. ∀ f ∈ H2[0, T ].

D.1.1 Stochastic integrals with variable upper limit

Let us define for each t ∈ [0, T ] the integral
∫ t

0
f(τ)dWτ =

∫ T

0
1[0,t)(τ)f(τ)dWτ .

We would like to view this integral as a random function of its upper limit. Recall
that the Itô integral is defined as a limit in L2(Ω) and it is thus uniquely determined
up to a set of probability zero, that depends on the integrand. The problem is
that the integrands in the above expression depend on the time parameter t, that
ranges in the uncountable set [0, T ]. Therefore, the stochastic integral with variable
upper limit could a priori not be determined as a function of t in a set of positive
probability.

For a simple process f̄ we may write
∫ t

0
f̄(τ)dWτ =

∫ t

0
1[0,t)(τ)f̄(τ)dWτ =

m−1∑

k=0
fk
(
Wt∧tk+1 −Wt∧tk

)
.

In this case the stochastic integral with variable upper limit is a well-defined stochas-
tic process which is moreover a continuous martingale. The fact that simple pro-
cesses are dense in H2[0, T ] allows to prove the following theorem.
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Theorem D.1.4. Consider a process f ∈ H2[0, T ]. There exists a martingale I
with almost surely continuous paths such that

It =
∫ t

0
f(τ)dWτ a.s. ∀ t ∈ [0, T ].

In the sequel, whenever we consider the integral
∫ t

0
f(τ)dWτ

as a function of its upper limit, we will assume that the corresponding stochastic
process is given by its continuous martingale version I.

The fact that the Itô integral is a martingale implies that Doob’s maximal in-
equality holds, and this allows to prove an important property of stochastic integrals.
Namely, suppose that fn → f in H2[0, T ], in other words

lim
n→∞

∫ T

0
E

[
(f(τ)− fn(τ))2

]
dτ = 0.

Then the following limit holds.

sup
t∈[0,T ]

∣∣∣∣
∫ t

0
f(τ)dWτ −

∫ t

0
fn(τ)dWτ

∣∣∣∣
L2−−→ 0 as n→∞.

D.1.2 Extension of the class of integrands

The condition that the integrand must have a finite second moment is rather
restrictive. Thus, we will extend the definition of the Itô integral to the class L2[0, T ]
of progressively measurable processes f : [0, T ]× Ω −→ R such that

P

(∫ T

0
f 2(τ)dτ <∞

)
= 1.

Simple processes within L2[0, T ] are defined as in Definition D.1.1, except that
we do not require anymore that the second moments of the random variables fk are
finite. The Itô integral of a simple process is also defined as before, specifically

∫ T

0
f̄(τ)dWτ =

m−1∑

k=0
fk(Wtk+1 −Wtk).

In order to extend the definition of the Itô integral, we once more approximate
a generic integrand by simple processes.

Proposition D.1.5. For any f ∈ L2[0, T ] there exists a sequence f̄n of simple
processes in L2[0, T ] such that

∫ T

0

(
f(τ)− f̄n(τ)

)2
dτ

a.s.−−→ 0 as n→∞.
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It is possible to prove that

sup
t∈[0,T ]

∣∣∣∣
∫ t

0
f̄m(τ)dWτ −

∫ t

0
f̄n(τ)dτ

∣∣∣∣
P−−→ 0 as m,n→∞.

In other words, the stochastic integrals of the simple processes form a Cauchy se-
quence and thus we may define the Itô integral of f as the limit of this sequence:

sup
t∈[0,T ]

∣∣∣∣
∫ t

0
f(τ)dWτ −

∫ t

0
f̄n(τ)dWτ

∣∣∣∣
P−−→ 0 as n→∞.

We remark that this limit does not depend on the choice of the simple processes.

It is easy to check that the Itô integrals of simple processes are continuous with
respect to the upper limit. Since convergence in probability implies almost sure
convergence of a subsequence, the Itô integral of a generic process in L2[0, T ] is
almost surely the uniform limit of continuous processes, and hence it is a continuous
process itself. Nevertheless, the Itô integral of a process in L2[0, T ] may not be a
martingale anymore.

An important property of these Itô integrals is the following. Suppose that
∫ T

0
(f(τ)− fn(τ))2 dτ

P−−→ 0 as n→∞,

where f and fn belong to L2[0, T ] for all n ≥ 1. Then

sup
t∈[0,T ]

∣∣∣∣
∫ t

0
f(τ)dWτ −

∫ t

0
fn(τ)dWτ

∣∣∣∣
P−−→ 0 as n→∞.

D.1.3 The Itô formula

As it happens with Riemann integrals, the definition of the Itô integral is not
very useful for handling these stochastic integrals. To compute Riemann integrals
we usually resort to differentiation techniques: the Barrow rule, the chain rule or
the integration by parts formula, but in the context of Itô calculus there is no
differentiation theory. However, there exists an integral analog of the chain rule
that turns out to be a very powerful tool, namely the Itô formula.

Let a, b : [0, T ]× Ω −→ R be progressively measurable processes such that
∫ T

0
|a(τ)|dτ <∞ a.s. and

∫ T

0
b2(τ)dτ <∞ a.s.

Note that b ∈ L2[0, T ]. Suppose in addition that X0 is F0-measurable and let

Xt = X0 +
∫ t

0
a(τ)dτ +

∫ t

0
b(τ)dWτ t ∈ [0, T ].

The latter is denoted by means of the stochastic differential

dXt = a(t)dt+ b(t)dWt.

The Itô formula tells us how smooth functions act on processes of this kind.

121



Theorem D.1.6 (Itô formula). Suppose that X is as above and let f : R −→ R

be a twice continuously differentiable function, then

df(Xt) =
[
f ′(Xt)a(t) + 1

2b
2(t)f ′′(Xt)

]
dt+ f ′(Xt)b(t)dWt.

Under the convention that dt · dWt, dWt · dt and (dt)2 are all equal to zero, and
(dWt)2 = dt, we may express the above stochastic differential as follows.

df(Xt) = f ′(Xt)dXt + 1
2f
′′(Xt)(dXt)2.

This mnemonic device has a mathematical foundation; for instance, (dWt)2 = t
comes from the fact that the quadratic variation of Wt is t.

Consider now a d-dimensional Wiener process W , with independent coordinates,
that is adapted to {Ft}t≥0 with increments that are independent of the past. Also,
suppose that X is a d-dimensional vector random process with coordinates

dX i
t = ai(t)dt+ bi,1(t)dW 1

t + · · ·+ bi,n(t)dW n
t ,

where the coefficients ai and bi,j are progressively measurable processes such that
∫ T

0
|ai(τ)|dτ <∞ a.s. and

∫ T

0
b2
i,j(τ)dτ <∞ a.s.

for all i, j = 1, . . . , d. If we let a = (ai) and b = (bi,j), then we may return to the
more compact notation

dXt = a(t)dt+ b(t)dWt.

Theorem D.1.7. Suppose that X is as above and let f : Rd −→ R
p be a twice

continuously differentiable function with f = (f1, . . . , fp). The process Yt = f(Xt)
is given by the following stochastic differentials.

dY k
t =

d∑

i=1

∂fk
∂xi

(Xt)dX i
t + 1

2

d∑

i,j=1

∂2fk
∂xi∂xj

(Xt)(dX i
t · dXj

t ).

The differentials are computed under the convention that dW i
t · dW j

t = δi,jdt.

Note that we may condensate the above equations in the following.

dYt = f ′(Xt)dXt + 1
2

p∑

k=1
tr
[
(dXt)THfk(Xt)dXt

]
ek,

where f ′ is the Jacobian matrix of f , Hfk is the Hessian matrix of fk and {e1, . . . , ek}
is the canonical basis of Rp.

D.2 Stochastic differential equations

Consider a multidimensional Wiener process W and a random vector ξ, both
of them defined over the same probability space (Ω,F ,P) and taking values in
R
d; suppose in addition that ξ is independent of the history σ({Wt : t ≥ 0}) of
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the Wiener process. Let {Ft}t≥0 be the right-continuous and complete filtration
generated by ξ and W . Moreover, let a : Rd −→ R

d and b : Rd −→ S+
d be two

continuous maps; where S+
d denotes de space of symmetric and positive semi-definite

matrices. We are gonig to consider the stochastic differential equation
dXt = a(Xt)dt+ b(Xt)dWt,

X0 = ξ.
(D.1)

The functions a and b are called, respectively, the drift and the dispersion coefficient
of the SDE; the matrix σ2 = bbT is known as the diffusion coefficient.

Definition D.2.1. A strong solution to equation (D.1) is a process X defined over
(Ω,F ,P) and such that the following conditions hold.

1. X is Ft-adapted and continuous.

2. P(X0 = ξ) = 1.

3. P
(∫ t

0
|ai(Xs)|+ |bi,j(Xs)|2ds <∞

)
= 1 for all t ≥ 0 and all i, j ∈ {1, . . . , d}.

4. P
(
Xt = X0 +

∫ t

0
a(Xs)ds+

∫ t

0
b(Xs)dWs ∀ t ≥ 0

)
= 1

The following theorem is due to Itô.

Theorem D.2.2. Suppose that ξ is square integrable, namely E ||ξ||2 < ∞, and
that a and b satisfy the Lipschitz condition

||a(y)− a(x)||+ ||b(y)− b(x)|| ≤M ||y − x|| ∀ x, y ∈ Rd,

for some M ≥ 0. There exists a strong solution X to equation (D.1), which is square
integrable: for each T ≥ 0 there exists a constant C ≥ 0, which only depends on M
and T , such that

E ||Xt||2 ≤ C(1 +E ||ξ||2)eCt ∀ t ∈ [0, T ].

Moreover, if Y is another strong solution then X = Y with probability one.

Consider coefficients a and b satisfying the hypothesis of the last theorem. For
each initial condition equation (D.1) gives us a unique strong solution. It is possible
to see that this defines a Feller diffusion X whose infinitesimal generator coincides in
C2(Rd) with the second order differential operator L of equation (C.3), specifically

Lf =
d∑

i=1
ai
∂f

∂xi
+ 1

2

d∑

i,j=1
σ2
i,j

∂2f

∂xi∂xj
∀ f ∈ C2(Rd).

Remark D.2.3. The above existence and uniqueness theorem may be extended to
the time inhomogeneous case, where a and b depend on the time variable. Here we
must additionally request that there exists some K ≥ 0 such that

||a(t, x)||2 + ||b(t, x)||2 ≤ K(1 + ||x||2) ∀ x ∈ Rd, t ≥ 0.
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D.3 Invariant measures and ergodicity

Fix a probability space (Ω,F ,P) and consider a process (Xt)t≥0 defined on it,
taking values in Rd. We say that X is stationary if its finite-dimensional distribu-
tions are invariant under time shifts. Specifically, the random tuples

(Xt1+h, . . . , Xtn+h) ∼ (Xt1 , . . . , Xtn)

have the same distribution for all times 0 ≤ t1 < · · · < tn and each shift h ≥ 0.
When X is the solution to an SDE, and in particular a Markov process, it is possible
to give another characterization of stationarity.

Suppose now that X is a Markov process with initial distribution ν and transition
function P . We know by Proposition C.2.4 that the finite-dimensional distributions
of X are determined by ν and P , because

P(Xt1 ∈ Γ1, . . . , Xtn ∈ Γn) =
∫

Rd
ν(dx0)

∫

Γ1
Pt1(x0, dx1) . . .

∫

Γn
Ptn−tn−1(xn−1, dxn)

for all 0 ≤ t1 < · · · < tn and any choice of Borel sets Γ1, . . . ,Γn.

Definition D.3.1. A probability measure π, defined on the Borel subsets of Rd, is
an invariant measure for the Markov process X if it satisfies the condition

∫

Rd
Pt(x,Γ)π(dx) = π(Γ).

for each t ≥ 0 and all Borel sets Γ.

If we let π be an invariant measure for X, then the above definition, together
with the Chapman-Kolmogorov property, yield

∫

Rd
π(dx)

∫

Γ
Pt+h(x, dz) =

∫

Rd
π(dx)

∫

Rd
Ph(x, dy)

∫

Γ
Pt(y, dz)

=
∫

Rd
π(dy)

∫

Γ
Pt(y, dz)

for all h, t ≥ 0 and all Borel sets Γ. It is now easy to check that X is stationary
whenever its initial distribution is π. Conversely, if X is stationary and has initial
distribution ν, then

∫

Rd
Pt(x,Γ)ν(dx) = P(Xt ∈ Γ) = P(X0 ∈ Γ) = ν(Γ)

for all t ≥ 0 and all Borel sets Γ, which means that ν is invariant. Therefore, X is
stationary if and only if its initial distribution is an invariant measure.

In the sequel we give criteria for the existence, uniqueness and ergodicity of
invariant measures, in the special case where X is the Feller diffusion associated to
equation (D.1); the notion of ergodicity is defined below.
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D.3.1 Foster-Lyapunov criteria

Consider the Feller diffusion X on Rd associated to equation (D.1), with drift
coefficient a, dispersion coefficient b and diffusion coefficient σ2 = bbT . Recall that
the infinitesimal generator of X coincides on C2(Rd) with

Lf =
d∑

i=1
ai
∂f

∂xi
+ 1

2

d∑

i,j=1
σ2
i,j

∂2f

∂xi∂xj
∀ f ∈ C2(Rd),

this is the second order differential operator of equation (C.3).

Suppose that the diffusion coefficient σ2 is non-singular, in the sense that there
exists α > 0 such that

xTσ2(y)x ≥ αxTx ∀ x, y ∈ Rd.

Under this hypothesis we have the next criteria for proving the existence and unique-
ness of invariant measures.

Theorem D.3.2. Suppose that there exist a non-negative function V ∈ C2(Rd),
called Foster-Lyapunov function, and some r > 0 such that

1. LV (x) ≤ −1 for all x ∈ Rd such that ||x|| > r.

2. V (x)→ +∞ as x→∞.

Then X admits a unique invariant measure π.

Given a signed measure µ taking values in the Borel subsets of Rd, and a mea-
surable function f : Rd −→ R with f ≥ 1, we define

||µ||f = sup
|g|≤f

∣∣∣∣
∫

Rd
g(x)dµ(x)

∣∣∣∣ .

Definition D.3.3. Assume that X admits a unique invariant measure π. Given a
measurable function f ≥ 1 we say that X is f -exponentially ergodic if there exist
α ∈ (0, 1) and a non-negative function M such that

||Pt(x, · )− π( · )||f ≤M(x)αt ∀ t ≥ 0, x ∈ Rd.

Note that exponential ergodicity implies that, for each x ∈ Rd, the measures
Pt(x, · ) converge in distribution to π as t → +∞. Indeed, suppose that X has
this property, and let α and M be as in the above definition. Each bounded and
continuous g : Rd −→ R may be normalized to a function that is smaller than one
at each y ∈ Rd, and using this observation we see that

lim
t→+∞

∣∣∣∣Ex[g(Xt)]−
∫

Rd
g(y)π(dy)

∣∣∣∣ ≤ lim
t→+∞

M(x)αt sup
y∈Rd
|g(y)| = 0,

where Ex denotes the expectation with respect to probability measure defined by X
when the initial distribution is the unit mass at x; see Section C.2.
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Theorem D.3.4. Assume that X admits a unique invariant measure. Moreover,
suppose that there exist c > 0, d ∈ R and a non-negative V ∈ C2(Rd) such that

1. LV (x) ≤ −cV (x) + d for all x ∈ Rd.

2. V (x)→ +∞ as x→∞.

Then X is (V + 1)-exponentially ergodic.

It is worth pointing out that a Foster-Lyapunov function that satisfies the con-
ditions of the last theorem also satisfies those of Theorem D.3.2.

Remark D.3.5. As a final remark we note that it is possible to weaken the hy-
pothesis regarding the non-singularity of σ2. Roughly speaking, this hypothesis
guarantees that the noise in the dispersion term of equation (D.1) spreads in all
directions. In the singular case this may still happen with the help of the drift term.

Suppose that a and σ2 are infinitely differentiable. Let {e1, . . . , ed} be the canon-
ical basis of Rd and consider the smooth vector fields

Y0(x) =
d∑

i=1


ai(x)−

d∑

j=1

∂σ2
i,j(x)
∂j


 ei and Yk(x) =

d∑

j=1
σ2
i,j(x)ej ∀ k ∈ {1, . . . , d}.

The previous theorem holds if the Lie algebra L, generated by {Y0, . . . , Yd}, has
dimension d. Note that this condition is easy to corroborate in the especial case
where a(x) = Ax and σ2 is constant. Indeed, if we let Jk denote the Jacobian of Yk,
then the Lie bracket between Y0 and Yk is given by

[Y0, Yk] = JkY0 − J0Yk = −Aσ2
k ∀ k = {1, . . . , d},

where σ2
k denotes the k-th row of σ2. Hence, it is enough to check that the vector

space generated by {σ2
k, Aσ

2
k : k = 1, . . . , d} has dimension d; note that this is true

in the non-singular case, where σ2 has linearly independent rows.
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Appendix E

Additional material

This appendix contains the proofs of three proposition that were used throughout
this work. The first one is a refinement of the Leibniz rule, the second one concerns
uniform differentiability and the third one is a result from harmonic analysis.

E.1 Refinement of the Leibniz rule

Proposition E.1.1. Consider a function g : R2 −→ R such that:

1. g is continuous in R2 except ⋃s∈I {(s, t) : t ∈ R}, where I has measure zero.

2. g(s, · ) is differentiable for all s ∈ R with ∂g(·,·)
∂t

locally bounded.

Then, for almost every t ∈ R, we have
∂

∂t

∫ t

0
g(s, t)ds = g(t, t) +

∫ t

0

∂g(s, t)
∂t

ds.

Proof. The proof is based on [9, Theorem 2.27]. Given h ∈ R we have

1
h

[∫ t+h

0
g(s, t+ h)ds−

∫ t

0
g(s, t)ds

]
= 1
h

∫ t+h

t
g(s, t)ds

+
∫ t+h

t

g(s, t+ h)− g(s, t)
h

ds

+
∫ t

0

g(s, t+ h)− g(s, t)
h

ds.

The first term converges to g(t, t) for all t /∈ I as h → 0 by the fundamental
theorem of calculus.

For the second term we first observe that, given a sequence hn → 0, we have
∂g( · , t)
∂t

= lim
n→∞

g( · , t+ hn)− g( · , t)
hn

.
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Thus, the function on the left is measurable. Moreover, by the mean value theorem
∣∣∣∣∣
g(s, t+ hn)− g(s, t)

hn

∣∣∣∣∣ ≤ sup
ζ,τ∈(a,b)

∣∣∣∣∣
∂g(ζ, τ)
∂t

∣∣∣∣∣ < +∞ ∀ s ∈ (a, b);

where (a, b) can be chosen to be any finite interval containing [0, t]. Hence, since

lim
n→∞1[t,t+hn](s)

g(s, t+ hn)− g(s, t)
hn

= 0 ∀ s 6= t,

by the dominated convergence theorem we have

lim
n→∞

∫ t+hn

t

g(s, t+ hn)− g(s, t)
hn

ds = 0.

Similarly, for the third term, since

lim
n→∞

g(s, t+ hn)− g(s, t)
hn

= ∂g(s, t)
∂t

∀ s ∈ R,

we have, again by dominated convergence, that

lim
n→∞

∫ t

0

g(s, t+ hn)− g(s, t)
hn

ds =
∫ t

0

∂g(s, t)
∂t

ds.

E.2 Uniform differentiability

Proposition E.2.1. Let f : U ⊂ R
d −→ R

d be a continuously differentiable
function, defined on the open set U , and consider a compact set K ⊂ U . For all
ε > 0, there exists δ > 0 with the following property: if the linear segment [x, y] is
contained in K and ||y − x|| < δ, then

||f(y)− f(x)− f ′(x)(y − x)||
||y − x|| < ε;

where f ′(x) denotes the Jacobian matrix of f at the point x.

Proof. Suppose that f = [f1 · · · fd]T . It is enough to prove for all i ∈ {1, . . . , d}
that, for all ε > 0, there exists δ > 0, such that [x, y] ⊂ K, and ||y − x|| < δ, imply

|fi(y)− fi(x)−∇fi(x)(y − x)|
||y − x|| < ε.

Choose some i ∈ {1, . . . , d} and let g = fi. Also, fix some x, y ∈ K and define

η = y − x
||y − x|| , t = ||y − x|| .

Assume that [x, y] ⊂ K, by the mean value theorem there exists s ∈ (0, t) such that
g(y)− g(x)
||y − x|| = g(x+ tη)− g(x)

t
= ∇g(x+ sη)η.
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As a result, we have
|g(y)− g(x)−∇g(x)(y − x)|

||y − x|| = |∇g(x+ sη)η −∇g(x)η| ≤ ||∇g(x+ sη)−∇g(x)|| .

Since g is continuously differentiable and K is compact, there exists δ > 0 such
that u, v ∈ K, and ||v − u|| < δ, imply

||∇g(v)−∇g(u)|| < ε.

If ||y − x|| < δ, then ||x+ sη − x|| = s ||η|| < δ, and we also know that x+ sη ∈ K
because [x, y] ⊂ K, therefore

||∇g(x+ sη)−∇g(x)|| < ε.

This completes the proof.

E.3 A result from harmonic analysis

Proposition E.3.1. Let f be a locally integrable function such that
∫

Rd
f(x)ϕ(x)dx = 0 ∀ ϕ ∈ C∞c (Rd),

then f = 0 almost everywhere.

Proof. First, suppose that f has bounded support and consider some non-negative
ϕ ∈ C∞c (Rd) such that

∫

Rd
ϕ(x)dx = 1.

For instance, we could let ϕ be an adequate normalization of

ψ(x) =



e
− 1

1−||x||2 if ||x|| < 1,
0 if ||x|| ≥ 1;

in this case || · || = || · ||2 denotes the usual euclidean norm. For each λ > 0
consider the function ϕλ(x) = λdϕ(λx); note that ϕλ ∈ C∞c (Rd). The family
{ϕλ}λ>0 constitutes what is called an approximate identity and has the property
that ||g − g ∗ ϕλ||1 → 0 as λ→ +∞ for each g ∈ L1(Rd), where

g ∗ ϕλ(x) =
∫

Rd
g(x− y)ϕλ(y)dy =

∫

Rd
g(y)ϕλ(x− y)dy.

Since f has bounded support, then its sign g(x) = 1f(x)>0 − 1f(x)<0 belongs to
L1(Rd), and therefore we have

||g − g ∗ ϕλ||1 → 0 as λ→ +∞.
This limit also holds almost everywhere with respect to the Lebesgue measure for
a suitable subsequence; we refer the reader to [9, Theorem 2.30]. Specifically, there
exists a sequence (λn)n≥1 such that the functions gn = g ∗ ϕλn converge to g almost
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everywhere. Furthermore, note that gn ∈ C∞c (Rd) for all n ≥ 1 and

|gn(x)| ≤
∫

Rd
|g(x− y)ϕλn(y)|dy ≤

∫

Rd
ϕλn(y)dy = 1 ∀ x ∈ Rd.

We may now write the following equation.
∫

Rd
|f(x)|dx =

∫

Rd
f(x)g(x)dx

=
∫

Rd
f(x)gn(x)dx+

∫

Rd
f(x) [g(x)− gn(x)] dx.

The first term on the right-hand side is zero because gn ∈ C∞c (Rd). Also, the
integrand in the second term converges almost everywhere to zero and is dominated
by 2|f |. Hence, the second term on the right-hand side converges to zero as well by
dominated convergence. This proves that f = 0 almost everywhere.

For the general case, pick any ball B centered at the origin and some ξ ∈ C∞c (Rd)
such that ξ(x) > 0 for all x ∈ B. For example, we could let ξ = ψ ∗1B. Now fξ has
bounded support and

∫

Rd
[f(x)ξ(x)]ϕ(x)dx =

∫

Rd
f(x) [ξ(x)ϕ(x)] dx = 0 ∀ ϕ ∈ C∞c (Rd).

Therefore, fξ = 0 almost everywhere, and this implies that f1B = 0 almost every-
where, because ξ(x) > 0 for all x ∈ B. Since B is arbitrary, this proves that f = 0
almost everywhere.
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