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Abstract

In this paper we consider approximations of the occupation measure of the Frac-
tional Brownian motion by means of some functionals defined on regularizations of the
paths. In a previous article Berzin and León proved a cylindrical convergence to a
Wiener process of conveniently rescaled functionals. Here we show tightness of the ap-
proximation in the space of continous functions endowed with the topology of uniform
convergence on compact sets. This allows us to simplify the identification of the limit.
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1 Introduction and notations

Let X = {X(t) : t ∈ R} be a standard Fractional Brownian Motion (FBM) with Hurst
exponent H, 0 < H < 1, that is, a centered Gaussian process with covariance

E(X(s)X(t)) =
1

2

[
|s|2H + |t|2H − |t− s|2H

]
. (1)

In the paper [3] by C. Berzin and J.R. León, the authors study the speed of approxima-
tion of the occupation measure of the process FBM by means of certain functionals defined
on regularizations of the paths. We start with a description of their results.
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Let ψ : R → R+ be a C1-kernel with support contained in [−1, 1] and
∫ +∞
−∞ ψ(x)dx = 1.

By the “regularized process” we mean the convolution

Xε(t) =
1

ε

∫ +∞

−∞
ψ

(t− s

ε

)
X(s)ds.

We set for t ≥ 0, ε > 0:

ζε(t) =
ε1−HẊε(t)

σH

Ẋε denotes the derivative of the function Xε and σH is the positive normalizing constant:

σ2
H = −1

2

∫ 1

−1

∫ 1

−1

ψ̇(v)ψ̇(w)|v − w|2Hdvdw.

Let g : R → R be a function in L2(φ(x)dx), where φ(x) = (2π)−1/2 exp(−x2/2) is
the standard normal density. g has an expansion in the Hermite polynomials (Hn(x) =
exp(x2/2)(−d/dx)n exp(−x2/2), n = 0, 1, 2, ...), having the form g(x) =

∑+∞
n=Ng

anHn(x) (Ng

is called the “Hermite index of g”). With no loss of generality, we assume that Ng ≥ 1; if
this were not the case, we replace the function g by g − a0 = g − E[g(ξ)] where ξ denotes
here and in what follows a standard normal random variable.

We will also assume in what follows that the function g is an even function. This will
simplify somewhat our computations. In particular, it implies that a1 = 0, so that Ng ≥ 2.

Finally, for t ≥ 0, let us define:

Sε(t) =
1

αH,Ng(ε)

∫ t

0

g
(
ζε(u)

)
du (2)

Define the normalization αH,Ng(ε) by means of:

1. αH,Ng(ε) = ε1/2 if 0 < H < 1− 1
2Ng

2. αH,Ng(ε) = [ε | ln(ε)|]1/2 if H = 1− 1
2Ng

3. αH,Ng(ε) = εNg(1−H) if 1− 1
2Ng

< H < 1

The main results proved in [3] are contained in the next statement.

Theorem 1. With the above notations, as ε→ 0:

1. In cases 1. and 2. the random process {Sε(t) : t ≥ 0} converges cylindrically to a
known multiple of the Wiener process.
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2. In case 3, for each t, Sε(t) converges in L2 to a random variable, which can be described
by means of a certain Itô-Wiener integral driven by a standard Wiener process which
can be defined in terms of the FBM X .

The following example can be useful to exhibit the interest in this kind of result. Let
f : I → R be a real-valued function defined on an interval of the line and denote by Nu(f, I)
the number of roots lying in I of the equation f(t) = u.

Then, for any compact interval I and any continuous function h : R → R, almost surely√
π

2

ε1−H

σH

∫ +∞

−∞
h(x)Nx

(
Xε, I)dx

=

√
π

2

∫
I

h(Xε(t))|ζε(t)|dt→
∫
I

h(X(t))dt =

∫ +∞

−∞
h(x)`XI (x)dx.

(3)

In the right-hand side of (3), `XI (.) denotes the local time of the FBM on the interval
I, that is, the Radon-Nikodym derivative of the occupation measure µI(B) = λ({t ∈ I :
X(t) ∈ B}) with respect to the Lebesgue measure λ. The first equality in (3) holds true for
any continuous h and any C1−function Xε and its proof is elementary.

In other words, (3) says that, almost surely, as ε→ 0, the normalized number of crossings
of the regularized path with the level x, namely:√

π

2

ε1−H

σH
Nx

(
Xε, I)

converges (in the above mentioned weak topology) to the local time of the FBM at x. A
proof of (3) along with extensions of this kind of results to general classes of random pro-
cesses, can be found in [2].

Notice that if we put

g0(x) =

√
π

2
|x| − 1, (4)

(3) can be rewritten as ∫
I

h(Xε(t)g0(ζε(t))dt→ 0 almost surely. (5)

Berzin and León theorem allows to compute the speed of convergence in (5) as well as
the limit, in the sense of cylindrical convergence. This is a useful if one is willing to use this
kind of result to make statistical inference (for example, on the value of the Hurst exponent
H) on the basis of data arising from the observation of the smoothed path. We will keep (4)
as a guiding example to understand the conditions that the functions g should verify. Notice
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that Ng0 = 2.

There is still a point to be mentioned on this: we have stated these results choosing the
function h to be identically equal to 1 (see the definition of Sε(t)). In fact, this is essentially
sufficient for our purpose, since if one knows how to proceed for constant functions, it is not
hard to pass to general test functions h having some regularity properties.

The primary aim of this paper is to prove tightness in the space of continuous functions,
of the set of processes {Sε(.) : 0 < ε < 1}.

A proof of tightness has been given in [5] under the additional restriction that the Hermite
coefficients of g satisfy:

+∞∑
n=Ng

3n/2
√
n!|an| <∞.

This condition is obviously verified if g is a polynomial, since in this case an vanishes
when n is larger than the degree. However, it fails to hold in our basic example g0. In fact,
in this case, an vanishes for odd n and an elementary computation gives

a2k =
(−1)k√
π2kk!

,

which implies that the Chambers and Slud series is divergent. Our main Theorem 2 below
states that tightness follows from a general simple condition on the function g which is ob-
viously satisfied by g0.

A by-product of tightness is that it helps at the same time to simplify substantially
the identification of the limit law of the random process {Sε(t) : t ≥ 0} as ε → 0, when
0 < H ≤ 3/4. In fact, it reduces this problem to a computation of second order moments,
instead of the more complicated tools in Berzin-León, based upon Wiener chaos expansions
(See Theorem 4).

From a technical point of view, one of the main points in the proof below is that it
provides a new method - as far as the authors know - that appears to have an independent
interest, when one needs to compute the expectation of crossed moments of functions of
Gaussian random variables. The key step in the proof is that the function F defined in
(21) below is real-analytic in some neighborhood of the origin as a function of the various
covariances, and that one can compute its Taylor expansion.

This paper refers only to Fractional Brownian Motion. In a forthcoming paper, the
authors will consider extensions of these results to more general processes, such as multipa-
rameter and multifractal random fields, where the same questions will be adressed, as well
as their use in various inference problems.
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2 Main theorems.

Theorem 2. Assume that the function g is even and polynomially bounded (that is,

|g(x)| ≤ K (|x|+ 1)M (6)

for some positive constants K,M). We assume further that a0 = 0 and a2 6= 0.
Then, for each T > 0, the set of random processes {Sε(t) : 0 ≤ t ≤ T}0<ε<1 with the
normalization αH,Ng(ε) given above, is tight in the space C

(
[0, T ],R

)
.

Remark Notice that a0 = E(g(ξ)), a2 = E(g(ξ)(ξ2 − 1)). We are assuming that the
Hermite index Ng is equal to 2. In fact, a similar proof with minor changes works for Ng > 2.

For the proof of Theorem 2 we first prove the following one, which is interesting by
itself. In Theorem 3 below we replace the derivatives Ẋε(t) of the regularized process, by

the quotient of increments of the original process X(t+ε)−X(t)
ε

. This amounts to making the
convolution of the path X(.) with the kernel ψ(x) = 1[−1,0] which is not C1, so that the next
statement is not actually included in Theorem 2. However, the proof of Theorem 2 will be
an easy adaptation of the one of the next theorem.

Theorem 3. Assume the same hypotheses of Theorem 2 on the function g. We define:

Zε(t) =
X(t+ ε)−X(t)

εH

and

Yε(t) =
1

αH,2(ε)

∫ t

0

[
g(Zε(s))

]
ds.

Then, the family of random processes {Yε(t) : 0 ≤ t ≤ T}0<ε<1, is tight in C
(
[0, T ],R

)
.

The next theorem yields the limit of the previous functionals, which is a Wiener process
up to a multiplicative constant.

Theorem 4. Let 0 < H ≤ 3/4 and assume the hypotheses of Theorem 2. Let

KH(g, ψ) = 2

∫ +∞

0

du

∫ +∞

−∞

∫ +∞

−∞
g(x)g(y)p(x, y;Aψ(u))dxdy, (7)

where Aψ(u) = − 1
2σ2
H

∫ 1

−1

∫ 1

−1
ψ̇(v)ψ̇(u + w)|v − w|2Hdvdw and where p(x, y; ρ) denotes the

centered Gaussian density of a pair of random variables with variance 1 and covariance ρ.
Let

KH(g) = 2

∫ +∞

0

du

∫ +∞

−∞

∫ +∞

−∞
g(x)g(y)p(x, y;A(u))dxdy, (8)

where A(u) = 1
2

[
|u+ 1|2H + |u− 1|2H − 2|u|2H

]
, if 0 < H < 3/4.

If H = 3/4 let K3/4(g) =
3a2

2

8
, where a2 is the second Hermite coefficient of g.
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Then,

(a) As ε→ 0 the process
{Sε(t) : t ≥ 0}

converges weakly in the space C
(
[0,+∞),R

)
to

{
√
KH(g, ψ)W (t) : t ≥ 0},

where {W (t) : t ≥ 0} is a Wiener process.

(b) Similarly, {Yε(t) : t ≥ 0} converges weakly to

{
√
KH(g)W (t) : t ≥ 0}. (9)

3 Proofs

The normalizing constants αH,2(ε) have been chosen in such a way that V ar(Yε(t)) has a
nice limit behavior as ε → 0. We start with this calculation, that will also be useful as a
preparation to prove tightness.

Proposition 1. Let us assume that the function g satisfies the hypotheses of Theorem 2.

As ε→ 0 we have:

1. 0 < H < 3/4, V ar(Yε(t)) → KH(g)t.
The constant KH(g) is given by formula (8).

2. If H = 3/4 then

V ar(Yε(t)) →
9a2

2t

64
.

3. 3/4 < H < 1

V ar(Yε(t)) →
(2H − 1)H2a2

2t
4H−2

8H − 6
.

Proof. We have:

V ar(Yε(t)) =
1

α2
H,2(ε)

∫ t

0

∫ t

0

E(η1η2) dt1 dt2 (10)

where, for i = 1, 2 (we will be using the same notation afterwards without further reference):

ηi = g(Zε(ti))
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Consider the integral in the right-hand side of (10):

2

∫ ∫
{0<t1<t2<t}

gε(t1, t2) dt1dt2 (11)

where

gε(t1, t2) =

∫ +∞

−∞

∫ +∞

−∞
g(x)g(y)

[
p(x, y; ρε(t1, t2))− p(x, y; 0)

]
dxdy (12)

Let us recall that p(x, y; ρ) denotes the density of a Gaussian centered pair of random
variables, with variance 1 and covariance ρ and let us denote by ρε(t1, t2) the covariance of
the pair (Zε(t1), Zε(t2)). An easy computation shows that

E
(
Zε(s)Zε(t)

)
= A

(t− s

ε

)
, (13)

where

A(u) =
1

2

[
|u+ 1|2H + |u− 1|2H − 2|u|2H

]
. (14)

Moreover one can check that for H 6= 1/2

A(u) ∼ H(2H − 1)
1

u2(1−H)
(15)

when u → +∞. For the expression in brackets in the integrand of (12), we use the iden-
tity (See [7]) :

∂p

∂ρ
=

∂2p

∂x∂y

so that

∂p

∂ρ
(x, y; ρ) = G(x, y; ρ)p(x, y; ρ)

where

G(x, y; ρ) =
(x− ρy)(y − ρx) + ρ(1− ρ2)

(1− ρ2)2
(16)

and differentiating once more:

∂2p

∂ρ2
= p

(
G2 +

∂G

∂ρ

)
Now, use a Taylor expansion for the bracket in (12), change variables t1  u = (t2−t1)/ε

in the integral:
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2

∫ ∫
{0<t1<t2<t}

dt1dt2

∫ +∞

−∞

∫ +∞

−∞
g(x)g(y)

[ ∫ ρε

0

(
G2 +

∂G

∂ρ

)
p(ρε − ρ)dρ

]
dxdy

= 2ε

∫ t

0

dt2

∫ t2/ε

0

du

∫ +∞

−∞

∫ +∞

−∞
g(x)g(y)

[ ∫ A(u)

0

(
G2 +

∂G

∂ρ

)
p
[
A(u)− ρ

]
dρ

]
dxdy

= 2ε

∫ t

0

dt2

∫ t2/ε

0

K(u)du

(17)

where:

K(u) =

∫ +∞

−∞

∫ +∞

−∞
g(x)g(y)p(x, y;A(u))dxdy.

Since the function g is polynomially bounded, it follows that |K(u)| is bounded by some
constant K0.

Let us consider the case 0 < H < 3/4.
To prove part 1. of Proposition 1 it suffices to show that∫ +∞

0

|K(u)|du < +∞. (18)

This will also imply that KH(g) in the statement is finite.

Because of (15), one can choose u0 large enough so that u ≥ u0 implies |A(u)| < 1/2.
For |ρ| < 1/2 one has a polynomial bound on

g(x)g(y)
(
G2 +

∂G

∂ρ

)
which does not depend on ρ. This implies that:∫ +∞

−∞

∫ +∞

−∞

∣∣∣g(x)g(y)(G2 +
∂G

∂ρ

)∣∣∣pdxdy ≤ K1,

where K1 is some constant.

Summing up, we have:∫ +∞

0

|K(u)| ≤ 2K0u0 +K1

∫ +∞

u0

A2(u)du

which is finite, due to the behavior of A2(u) as u → +∞ when 0 < H < 3/4. This finishes
the proof of part 1.

Let us now turn to the proof of parts 2. and 3. of the Proposition.
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First, we notice that as u→ +∞, one can apply Lebesgue theorem to get the equivalent
of the function K(u):

K(u) ∼
[ ∫ +∞

−∞

∫ +∞

−∞
g(x)g(y)

(
x2y2 − x2 − y2 + 1

)
p(x, y; 0)dxdy

]1

2
A2(u)

=
a2

2 A
2(u)

2
.

To finish, replace in the right-hand side of (17), use the equivalent of A(u) as u → +∞
and the definition of the normalizing constants αH,2(ε) for H = 3/4 and for 3/4 < H < 1.

Remark

When 3/4 < H < 1, the above already shows tightness. In fact the same computation
applies to any interval [s, t] instead of [0, t] and one can choose L > 0 large enough, so that
if t− s ≥ Lε, one has:

E
(
[Yε(t)− Yε(s)]

2
)
≤ (const)(t− s)4H−2

where here and in what follows, “const′′ denotes a generic constant that may change from
line to line.
If t− s < Lε, we have the simple bound

E
(
[Yε(t)− Yε(s)]

2
)
≤ (const)

(t− s)2

ε4(1−H)
≤ (const)(t− s)4H−2

Since 4H − 2 > 1 Kolmogorov’s type criterium shows tightness (see for instance [4].

Proof of Theorem 3

For 3/4 < H < 1 this has already been proved.

Let 0 < H < 3/4. Our aim is to obtain an inequality having the form:

E
(
[Yε(t)− Yε(s)]

4
)
≤ (const) (t− s)2 (19)

for 0 ≤ s < t ≤ T . On applying Kolmogorov’s criterium, the result follows.

We have:

E
(
[Yε(t)− Yε(s)]

4
)

=
4!

ε2

∫
{s<t1<t2<t3<t4<t}

E
(
η1η2η3η4

)
dt1dt2dt3dt4. (20)

L denotes a large enough constant, that we will choose later on.

Notice that the integrand in the right-hand side of (20) is bounded. Hence, the contri-
bution of the 4-tuples such that at least two different pairs of consecutive t′is differ less than
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Lε is bounded by (const) ε2 (t− s)2.

So, we need appropriate bounds for the parts of the integral corresponding to each one
of the following subsets of the domain of integration:

Case A. ti − ti−1 > Lε for i = 2, 3, 4

Case B Exactly two consecutive t′is differ less than Lε.

We start with Case A.

Let us first prove the following lemma.

Lemma 1. Let (Y1, Y2, Y3, Y4) be a centered Gaussian vector with covariance matrix Σ =
(ρij)1≤i,j≤4. Let g be a function of class C∞ such that the polynomial bound (6) holds and such
that the derivatives of g are polynomially bounded. Let us assume that ρii = 1 ∀i = 1 to 4, and
ρ = (ρ12, ρ13, ..., ρ34) be in some neighborhood of the origin of R6. Let γi = g(Yi) ∀i = 1 to 4,
then there exists a C∞ function F defined on in some neighborhood of the origin of R6 such
that

E
(
γ1γ2γ3γ4

)
= F (ρij : 1 ≤ i < j ≤ 4). (21)

Moreover the Taylor expansion of F around the origin is convergent to F for ‖ρ‖ ≤ δ for
some positive δ (‖ρ‖ denotes here Euclidean norm in R6).

Proof of Lemma 1

It is easy to see that F is C∞ for ρ in some neighborhood of the origin of R6.
We denote pΣ(x1, x2, x3, x4) the centered Gaussian density with covariance Σ and use (as

above) the standard identity for i < j:

∂pΣ

∂ρij
=

∂2pΣ

∂xi∂xj

Then (integrate by parts to check the third equality):

∂F

∂ρij
=

∫ +∞

−∞
...

∫ +∞

−∞

[ 4∏
h=1

g(xh)
]∂pΣ

∂ρij
dx1dx2dx3dx4

=

∫ +∞

−∞
...

∫ +∞

−∞

[ 4∏
h=1

g(xh)
] ∂2pΣ

∂xi∂xj
dx1dx2dx3dx4

=

∫ +∞

−∞

∫ +∞

−∞

∏
h 6=i,j

[g(xh)dxh]

∫ +∞

−∞

∫ +∞

−∞
g′(xi)g

′(xj) pΣ(x1, x2, x3, x4)dxidxj

= E
(
g′[Yi]g

′[Yj)]
∏
h 6=i,j

g(Yh)
)

(22)
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where the centered Gaussian vector (Y1, Y2, Y3, Y4) has covariance Σ.

The same procedure can be used to compute the successive derivatives of F . We get:

∂mF

∂ρm12
12 ∂ρm13

13 ...∂ρm34
34

= E
(
g(ν1)(Y1)g

(ν2)(Y2)g
(ν3)(Y3)g

(ν4)(Y4)
)

(23)

where

• m12,m13, ...,m34 are respectively the order of differentiation with respect to the 6 vari-
ables ρ12, ..., ρ34, so that the total order of differentiation is m = m12 + ....+m34.

• Y1, Y2, Y3, Y4 are as above. At the origin ρ = 0 these random variables are i.i.d. standard
normal.

• νi is the number of times that the xi variable appears under the integral sign, after
differentiation. Since xi appears once each time one differentiates with respect to a
variable ρkl such that either k or l coincide with i, it turns out that νi is the sum of
the mkl such that either k or l coincide with i, that is:

ν1 = m12 +m13 +m14

ν2 = m12 +m23 +m24

ν3 = m13 +m23 +m34

ν4 = m14 +m24 +m34.

Let us now turn to the convergence of the Taylor series of F . Consider the remainder:

Rm(ρ) =
∑

∑
mij=m

1

m12!m13!...m34!
ρm12

12 ρm13
13 ...ρm34

34

∂mF

∂ρm12
12 ∂ρm13

13 ...∂ρm34
34

(θρ) (24)

with 0 < θ < 1. We want to prove that Rm(ρ) → 0 as m→ +∞.

The number of terms in this sum is equal to

(
m+ 5

5

)
.

So, it is enough to show that if ‖ρ‖ is small enough,

1

m12!m13!...m34!

∣∣∣ ∂mF

∂ρm12
12 ∂ρm13

13 ...∂ρm34
34

(θρ)
∣∣∣ ≤ Lm (25)

for some positive constant L. For this purpose, we need an appropriate upper-bound for the
partial derivative in the left-hand side of (25).
Let us prove the following Lemma.

Lemma 2. Let (Y1, Y2, Y3, Y4) be a centered Gaussian vector with covariance matrix Σ =
(ρij)1≤i,j≤4. Let us assume that ρii = 1 ∀i = 1 to 4, and that ρ = (ρ12, ρ13, ..., ρ34) be in some
neighborhood N of the origin of R6. Let g be a function of class C∞ such that

|g(x)| ≤ K (|x|+ 1)M ,
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and such that the derivatives of g are polynomially bounded. Then there exists a positive
constant C depending only on N , K, M such that for all ν1, ν2, ν3, ν4 positive integers∣∣∣E(

g(ν1)(Y1)g
(ν2)(Y2)g

(ν3)(Y3)g
(ν4)(Y4)

)∣∣∣ ≤ Cννν/2, (26)

where ν = ν1 + ν2 + ν3 + ν4.

Proof of Lemma 2

Let us suppose that N is small enough so that det(Σ) > 1/2.

Write:

E
(
g(ν1)(Y1)g

(ν2)(Y2)g
(ν3)(Y3)g

(ν4)(Y4)
)

=

∫
R4

g(ν1)(x1)g
(ν2)(x2)g

(ν3)(x3)g
(ν4)(x4)pΣ(x1, ..., x4)dx1, ..., x4.

(27)

Integrating by parts successively in (27) - integrate the derivatives of g and differentiate
pΣ - we can rewrite the right-hand side of (27) as:∫

R4

g(x1)g(x2)g(x3)g(x4)
∂νpΣ(x1, ..., x4)

∂ν1x1∂ν2x2∂ν3x3∂ν4x4

dx1, ..., x4. (28)

so that our problem is to obtain an upper-bound for the successive derivatives of the function
of four variables

Q(x) = exp
[
− 1

2
xTΣ−1x

]
, x ∈ R4.

Let A = Σ−1/2 = ((aij))i,j=1,2,3,4 be a square root of Σ−1, that is Σ−1 = ATA and put
y = Ax. We may assume that |aij| ≤ a for some positive constant a.

Let us compute the successive derivatives of Q(x) using the chain rule. The first deriva-
tives are as follows:

∂Q

∂xh
= −

[ ∑
1≤i≤4

aihyi

]
Q(x)

∂2Q

∂xh∂xh′
=

[
−

∑
1≤i≤4

aihaih′ +
∑

1≤i,i′≤4

aihai′h′yiyi′
]
Q(x)

∂3Q

∂xh∂xh′∂x′′h
=

[ ∑
1≤i,i′≤4

(
aihai′h′ai′h′′+ai′haih′ai′h′′+ai′hai′h′aih′′

)
yi−

∑
1≤i,i′,i′′≤4

aihai′h′ai′′h′′yiyi′yi′′
]
Q(x)

and so on.
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Consider a derivative of order n, say

∂nQ

∂xα1
1 ∂x

α2
2 ∂x

α3
3 ∂x

α4
4

with α1 + α2 + α3 + α4 = n. It has the form Pn(y)Q(x) where Pn(y) is a polynomial in the
four variables y1, y2, y3, y4 with the following properties:

• Pn(y) =
∑

0≤k≤n,n−k even Pn,k(y).

• Each Pn,k(y) is a homogeneous polynomial of degree k which can be written in the
following way:

1. If k = n,

Pn,n(y1, ..., y4) = (−1)n
∑

1≤i1,...,in≤4

ai1j1 ....ainjnyi1 ...yin (29)

where j1, ..., jn depend on the various orders of differentiation α1, ..., α4.

2. If 0 < k < n,

Pn,k(y) =
∑

*
∑

1≤i1,...,ik≤4

ai′1j1 ....ai′njnyi1 ...yik (30)

where j1, ..., jn depend again on α1, ..., α4.
∑

* denotes a sum with Nn,k terms.

3. If k = 0, one has:

Pn,0(y) =
∑

* ai1j1 ....ainjn (31)

where
∑

* has Nn,0 terms.

(29) follows from the fact that Pn,n is obtained on multiplying Pn−1,n−1 by the corre-
sponding derivative of the exponent of Q, which is a linear function of y whose coefficients
are entries of the matrix A.

Pn,0 is obtained on differentiating once Pn−1,1. Each term of this polynomial generates
one term in the derivative, so that in (31), the number of terms satisfies

Nn,0 = Nn−1,1

for each even number n.

Let us look at formula (30). If 0 < k < n + 1 and n + 1 − k is even, the homogeneous
polynomial Pn+1,k is obtained as a sum of two parts: first, the one that comes from differ-
entiating once Pn,k+1, which produces k + 1 terms, and second, the product of Pn,k−1 times
the derivative of the exponent of Q, which is a linear form in y with coefficients from the
matrix A. This implies that:

13



Nn+1,k = (k + 1)Nn,k+1 +Nn,k−1. (32)

From this it follows easily that:

Nn,k =
n!

2
n−k

2 ((n− k)/2)!k!

for 0 ≤ k ≤ n, n− k even.
If we take A equal to the identity matrix and α1 = n, observe that

Pn(x) = (−1)nH̄n(x1),

where H̄n is the the probabilistic Hermite polynomial of degree n, i.e.

H̄n(x) = (−1)ne
x2

2
dn

dxn
e−

x2

2 .

(see [1], for example). Hence in this special instance Pn,k is the monomial of degree k in
(−1)nH̄n. By definitions (30) and (31) Nn,k is obtained by fixing y = (1, 1, 1, 1), so this
is exactly the absolute value of the coefficient of the term of degree k of the probabilistic
Hermite polynomial of degree n.

So, we obtain the bound:

∣∣∣ ∂νQ(x1, ..., x4)

∂ν1x1∂ν2x2∂ν3x3∂ν4x4

∣∣∣ ≤ (const)aν
[ ν∑
k=0, ν−k even

ν!

2
ν−k

2
ν−k

2
!k!

( 4∑
i=1

|yi|
)k]

Q(x)

≤ bν
[ ν∑
k=0, ν−k even

ν!

2
ν−k

2
ν−k

2
!k!
‖y‖k

)]
Q(x)

where b is some new positive constant.

Let us use this inequality to get an upper-bound for the left-hand side of (27). Performing
the change of variables y = Ax in the integral (28), and using the polynomial bound (6) on
the function g we can see that:

∣∣∣E(
g(ν1)(Y1)g

(ν2)(Y2)g
(ν3)(Y3)g

(ν4)(Y4)
)∣∣∣ ≤ bν1

ν∑
k=0, ν−k even

ν!

2
ν−k

2
ν−k

2
!k!

E
(
‖ξ4‖k+4M

)
(33)

where ξ4 is standard normal in R4. Replacing the expectation by its value, we get for the
right-hand side of (33) the bound

bν2

ν∑
k=0, ν−k even

ν!Γ(k
2
)

ν−k
2

!k!

14



where b2 is a new constant (depending on M). Using Stirling’s formula and an elementary
maximization, we obtain the bound∣∣∣E(

g(ν1)(Y1)g
(ν2)(Y2)g

(ν3)(Y3)g
(ν4)(Y4)

)∣∣∣ ≤ bν3ν
ν/2,

where b3 is a new constant.
Hence (26) and Lemma 2 are proved.

We are now ready to prove (25). We want to show that the logarithm of the left-hand
side is O(m). On applying again Stirling’s formula, we obtain:

log
{ 1

m12!m13!...m34!

∣∣∣ ∂mF

∂ρm12
12 ∂ρm13

13 ...∂ρm34
34

(θρ)
∣∣∣}

≤ m logm−
∑

1≤i<j≤4, mij≥1

mij logmij +O(m)

≤
∑

1≤i<j≤4, mij≥1

mij

[
logm− logmij

]
+O(m)

≤
∑

1≤i<j≤4, mij≥1

[
m−mij

]
+O(m) = O(m)

where the last inequality above follows from the elementary inequality log(x+y)−log(x) ≤ y
x
,

valid for x, y > 0.

So, we can conclude that the function F can be expressed in a neighborhood of ρ = 0 in
terms of its Taylor series, with the obvious advantage that the coefficients are given by the
expectation of a product of independent random variables.

Let us recall (20) :

E
(
[Yε(t)− Yε(s)]

4
)

=
4!

ε2

∫
{s<t1<t2<t3<t4<t}

E
(
η1η2η3η4

)
dt1dt2dt3dt4.

Let us apply Lemma 1 and consider E
(
η1η2η3η4

)
as a function of the covariance matrix

Σ = (ρij)1≤i,j≤4, where:
ρij = E

(
Zε(ti)Zε(tj)

)
We know that

• ρii = 1

• for i < j, one has ρij = A(
tj−ti
ε

).

In Case A, when we choose L large enough, i.e. if the crossed-covariances are small
enough, ρ is in a neighborhood of the origin, and Lemma 1 can be applied.

Let us look at formula (23) when ρ = 0:

∂mF

∂ρm12
12 ∂ρm13

13 ...∂ρm34
34

(0) =
i=4∏
i=1

E
(
g(νi)(ξ)

)
(34)
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• If some of the νi’s is equal to 0, then the derivative in (34) is equal to 0.

• If some of the integers νi’s is odd, then the derivative in (34) is equal to 0, since g is
an even function.

So, in the Taylor expansion of the function F , only terms with even non-zero νi’s are
to be taken into account.

• We have 3 cases of possible non-vanishing coefficients in the Taylor expansion:

1. At least two mkl are greater or equal than 2.
2. All the mkl are 0 or 1.
3. Only one mkl is greater or equal than 2 and the remaining ones smaller or equal
than 1.

1. Consider the terms which are or type 1., such as, for example,

m13 ≥ 2,m24 ≥ 2 (35)

Then, in each of the corresponding terms of the Taylor expansion, there appears the
derivative of F at zero (computed by (34)), divided by a product of factorials, times
the corresponding product of powers ρm12

12 ...ρm34
34 .

Group all the terms in the series having the property (35) and consider their sum. It
appears clearly, that it is bounded by (const)ρ2

13ρ
2
24. Using that the function A(x) is

monotone decreasing for x > 1, the sum of these terms can be bounded by:

(const)A2
(t2 − t1

ε

)
A2

(t4 − t3
ε

)
Now, let us consider the part of the integral in (20) containing this terms and satisfying
the condition ti − ti−1 > Lε for i = 2, 3, 4 (recall we are considering this part of the
integral). It is bounded above by

(const)

∫ t−3Lε

s

dt1

∫ t−2Lε

(t1+Lε)∧t
dt2

∫ t−Lε

(t2+Lε)∧t
dt3

∫ t

(t3+Lε)∧t
A2((t2 − t1)/ε)A

2((t4 − t3)/ε)dt4

≤ (const)ε2(t− s)2

∫ +∞

L

A2(x)dx

∫ +∞

L

A2(y)dy

where the last inequality follows making the change of variables x = t2−t1
ε
, y = t4−t3

ε
.

The asymptotic (15) plus the fact that 0 < H < 3/4, so that 4(1−H) > 1, imply that∫ +∞
L

A2(x)dx is finite, so that the part of the integral corresponding to the sum of the
terms satisfying (35) is bounded by:
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(const)ε2(t− s)2 (36)

One can now easily see that if instead of (35), some other pair of mkl’s are greater
or equal than 2, the same computation works, in the sense that the sum of the corre-
sponding terms of the series can be bounded by an expression having the form:

(const)A2
(tα − tα−1

ε

)
A2

(tβ − tβ−1

ε

)
where α ≤ β − 1. Proceeding in a similar way, we get a bound with the same form for
the integral of the sum of the corresponding terms in the series.

2. Let us consider now the sums of the terms having the form 2. Check that there are
only three ways in which all the νh’s are even and non-zero, i.e. equal to 2. They are
the following:

a) m12 = m34 = 0,m13 = m14 = m23 = m24 = 1,

b) m13 = m24 = 0,m12 = m14 = m23 = m34 = 1,

c) m14 = m23 = 0,m12 = m13 = m24 = m34 = 1.

For the term satisfying a) we have the bound

(const)A2
(t2 − t1

ε

)
A2

(t3 − t2
ε

)
and for the one satisfying c):

(const)A2
(t2 − t1

ε

)
A2

(t4 − t3
ε

)
Then, one can proceed further as in case 1.

For the sum of the terms satisfying b), one needs a slight change to obtain the bound:

(const)A
(t2 − t1

ε

)
A

(t3 − t2
ε

)
A2

(t4 − t3
ε

)
and after integration one finds the bound (36) again.

3. For the sum of the terms having the form 3. the procedure is similar. One has again
to enumerate the cases and obtains the same bound (36).

Let us now turn to Case B. We will show that the bound (36) also holds true for the
part of the 4-dimensional integral such that exactly 1 consecutive pair of ti’s differs less than
Lε, while the remaining ones differ more that Lε. Of course, the computation for the case
when all consecutive pairs differ more than Lε does not apply here, since there will be a
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covariance which is near to the value 1 (the one corresponding to neighboring points), so
that the matrix Σ becomes nearly singular.

We have three cases, according to which is the pair of consecutive t′is which differ less
than Lε.

Let us assume first that t4 − t3 < Lε and t3 − t2 ≥ Lε, t2 − t1 ≥ Lε. We perform the
Gaussian regression of the pair (Zε(t3), Zε(t4)) on the pair (Zε(t1), Zε(t2)). This gives:

Zε(t3) = ζ3 + λ13Zε(t1) + λ23Zε(t2)

Zε(t4) = ζ4 + λ14Zε(t1) + λ24Zε(t2)
(37)

where:

• (ζ3, ζ4) is independent from (Zε(t1), Zε(t2)).

• Choosing L large enough, V ar(ζ3) and V ar(ζ4) belong to a small neighborhood of 1
and for k = 1, 2; l = 3, 4:

|λkl| ≤ (const)A
(t3 − t2

ε

)
and for l = 3, 4:

1− (const)A2
(t3 − t2

ε

)
≤ V ar(ζl) ≤ 1.

We get

E
(
η1η2η3η4

)
= E

(
η1η2

[
ḡ(ζ3) + ḡ′(ζ3)[λ13Zε(t1) + λ23Zε(t2)] +R3

]
[
ḡ(ζ4) + ḡ′(ζ4)[λ14Zε(t1) + λ24Zε(t2)] +R4

])
(38)

where the remainders satisfy bounds of the form:

|R3| ≤ (const)A2
(t3 − t2

ε

)
V3

|R4| ≤ (const)A2
(t3 − t2

ε

)
V4,

V3 and V4 having bounded moments of all orders.

Now we get bounds for the various terms in (38):

• Using independence and the bound we obtained when computing order 2 moments:∣∣E(
η1η2ḡ(ζ3)ḡ(ζ4)

)∣∣ ≤ (const)E
(
η1η2

)
≤ (const)A2

(t2 − t1
ε

)
Replacing into the 4-dimensional integral and on account of t4 − t3 < Lε, we get for
this part the bound (const)ε2(t− s)2.
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• Next

E
(
η1η2ḡ(ζ3)ḡ

′(ζ4)[λ14Zε(t1) + λ24Zε(t2)]
)

= E(ḡ(ζ3)ḡ
′(ζ4))

[
λ14E(η1η2Zε(t1)) + λ24E(η1η2Zε(t2))

]
.

Let us look at the first term inside the brackets at the right-hand side of the last
equality. To obtain a bound for

E(η1η2Zε(t1))

we proceed in the same form as we did for E(η1η2) with the slight change that we have
to replace in our formulas g(x) by xg(x). We obtain the bound:∣∣E(η1η2Zε(t1))

∣∣ ≤ (const)A2
(t2 − t1

ε

)
The second term is similar.
Again, replacing in the 4-dimensional integral one obtains the same type of bound.

• The remaining terms can be treated in the same way (easier).

In case it is the pair t1, t2 which is the one that satisfies t2 − t1 < Lε, the above compu-
tation is exactly the same, mutatis mutandis. If it is t2, t3, there some slight differences, but
everything is similar.

To finish the proof for 0 < H < 3/4, we still have to remove the added hypothesis that
the function g is C∞ and its derivatives are polynomially bounded. If this does not hold,
one can replace g by the convolution g ∗ γ where γ is a non-negative function of class C∞

with total mass equal to 1, and support contained in [−1, 1]. One can apply the previous
computations to the function g ∗ γ, the only minor change being that instead of condition
(6) we have the inequality |(g ∗ γ)(x)| ≤ K (|x| + 2)M . A careful analysis shows that the
bounds we have found are uniform on γ, and only depend on the constants K,M,H. Hence,
this allows to pass to the limit as γ approaches the Dirac measure, thus finishing the proof
of Theorem 3 when 0 < H < 3/4.

It only remains to prove the statement for H = 3/4. We are not going to perform the
detailed computations, which are essentially the same as before. One gets the bound

E
((
Yε(t)− Yε(s)

)4
)
≤ (const)(t− s)2| ln |t− s||

which suffices to prove tightness with Kolmogorov’s criterium.�

Proof of Theorem 2.
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The proof follows exactly the one of Theorem 3, excepting for the fact that we must
provide an upper-bound for the covariance E

(
ζε(s)ζε(t)

)
instead of the expansion of the

function E
(
Zε(s)Zε(t)

)
= A((t − s)/ε) that we used repeatedly in the proof of Theorem 3.

Let us outline the changes. For 0 < H ≤ 3/4

V ar(Sε(t)) =
1

α2
H,2(ε)

∫ t

0

∫ t

0

E(η1η2) dt1 dt2

where ηi = g(ζε(ti)). If we denote by ρε(t1, t2) = E (ζε(t1)ζε(t2)) , then (12) can still be
written

gε(t1, t2) =

∫ +∞

−∞

∫ +∞

−∞
g(x)g(y)

[
p(x, y; ρε(t1, t2))− p(x, y; 0)

]
dxdy. (39)

But (11), becomes

V ar(Sε(t)) =
2ε

α2
H,2(ε)∫ t

0

dt2

∫ t2/ε

0

du

∫ +∞

−∞

∫ +∞

−∞
g(x)g(y)

[ ∫ ρε(t2−εu,t2)

0

(
G2 +

∂G

∂ρ

)
p
[
ρε(t2− εu, t2)− ρ

]
dρ

]
dxdy.

(40)

Please note

ρε(t2 − εu, t2) =
ε2−2H

σ2
H

E
(
Ẋε(0)Ẋε(εu)

)
=
ε−2−2H

σ2
H

∫ +∞

−∞

∫ +∞

−∞
ψ̇(
−v
ε

)ψ̇(u− w

ε
)E (XvXw) dvdw

=
1

σ2
H

∫ +∞

−∞

∫ +∞

−∞
ψ̇(v)ψ̇(w)E (X−vXu−w) dvdw

by using self-similarity of X. Hence we get

ρε(t2 − εu, t2) = Aψ(u) (41)

because of (1) and of
∫ +∞
−∞ ψ̇(v)dv = 0. Then

V ar(Sε(t)) =
2ε

α2
H,2(ε)∫ t

0

dt2

∫ t2/ε

0

du

∫ +∞

−∞

∫ +∞

−∞
g(x)g(y)

[ ∫ Aψ(u)

0

(
G2 +

∂G

∂ρ

)
p
[
Aψ(u)− ρ

]
dρ

]
dxdy. (42)

Next we rely on Proposition 2.1 (e) in [2] to get the asymptotic of Aψ(u) when u → +∞
analogous to (15). Otherwise the proof of Theorem 2 is similar to that of Theorem 3.

Proof of Theorem 4.
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Part (a) follows from part (b), in a similar way as Theorem 2 follows from Theorem 3.
So, we only prove part (b).

Using tightness, proved in Theorem 3, it suffices to show that if εn is a decreasing sequence
of real numbers tending to zero, and Yεn converges weakly to the process Y∗ = {Y ∗(t) : t ≥ 0}
in the space C

(
[0,+∞),R

)
, then Y∗ has the law of

{
√
KH(g)W (t) : t ≥ 0}.

To prove this, let us introduce the filtration
{
Ft

}
t≥0

generated by the FBM X , that is,

for every t ≥ 0, Ft is the σ-algebra generated by the random variables {X(s) : s ≤ t}.
We will prove that the process Y∗, which has continuous paths, is an Ft-martingale with
quadratic variation KH(g)t. A classical characterization of the Wiener process, due to Paul
Lévy (see for example [I-W], Theorem 6.1., Chapter II), implies the theorem.

It suffices to show that if 0 < s < t, for any choice of the positive integer k, τ1, ..., τk
pairwise different parameter values strictly smaller than s, and F : Rk → R any bounded
continuous function, we have the following equalities:

E
((
Y ∗(t)− Y ∗(s)

)
F

[
X(τ1), ..., X(τk)

])
= 0 (43)

and

E
((
Y ∗(t)− Y ∗(s)

)2
F

[
X(τ1), ..., X(τk)

])
= KH(g)(t− s)E

(
F

[
X(τ1), ..., X(τk)

])
. (44)

Because of a well-known theorem due to Skorokhod (see [6] Chapter 1, Theorem 2.7), we
may assume that we have chosen the probability space, so that, almost surely, convergence
of Yεn(.) to Y ∗(.) is uniform on each compact interval of the positive axis.

We prove (43) and (44) on the basis of computations that are not far away from what
we have done to compute the asymptotic variance of Yε(t).

Let us prove (43) for 0 < H < 3/4. It suffices to show that

lim
ε→0

E
((
Yε(t)− Yε(s)

)
F

[
X(τ1), ..., X(τk)

])
= 0, (45)

since the random variables under the expectation sign are bounded in L4 of the probability
space.

We have:
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E
((
Yε(t)− Yε(s)

)
F

[
X(τ1), ..., X(τk)

])
=

1√
ε

∫ t

s

E
(
g
(
Zε(u)

)
F

[
X(τ1), ..., X(τk)

])
du

=
1√
ε

∫ t

s

du

∫
Rk+1

g(x)F (x1, ..., xk)pΣε(u)(x, x1, ..., xk) dxdx1...dxk,

(46)

where pΣ denotes the centered Gaussian density with variance matrix Σ and in our case,
Σε(u) is the variance matrix of the vector

(
Zε(u), X(τ1), ..., X(τk)

)
.

As ε varies, the density in the integrand of the right-hand side of (46) is a function of
the covariances

ρj,ε(u) = E
(
Zε(u)X(τj)

)
(for j = 1, ..., k)

since the other elements of Σ remain constant.

Let us consider the following Taylor expansion of the density pΣε(u)(x, x1, ..., xk) as a
function of these k covariances, around the value 0 for all of them, namely:

pΣε(u)(x, x1, ..., xk) = pZε(u)(x)pX(τ1),...,X(τk)(x1, ..., xk)

+
k∑
j=1

∂pΣ

∂ρj
(x, x1, ..., xk)

∣∣∣
ρj=0

ρj,ε(u)

+
1

2

k∑
j,j′=1

∂2pΣ

∂ρj∂ρ′j
(x, x1, ..., xk)

∣∣∣
ρj=θρj,ε(u)

ρj,ε(u)ρj′,ε(u),

(47)

where 0 < θ < 1.

From the definition of the FBM:

ρj,ε(u) =
1

2εH

[
(u+ ε)2H − u2H − (u+ ε− τj)

2H + (u− τj)
2H

]
,

so that for any u ∈ [s, t] and any j = 1, ..., k, since τ1, ..., τk are strictly on the left of s, we
have: ∣∣ρj,ε(u)∣∣ ≤ (const) ε1−H , (48)

where the constant depends only on H, s, t, τ1, ..., τk.

We plug the expansion (47) into (46). Clearly:∫
Rk+1

g(x)F (x1, ..., xk)pZε(u)(x)pX(τ1),...,X(τk)(x1, ..., xk)dxdx1...dxk = 0

given that Zε(u) is standard normal and the conditions on g.
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For the next term in the Taylor expansion, let us check that for j = 1, ..., k

∂pΣ

∂ρj
(x, x1, ..., xk)

∣∣∣
ρj=0

is an odd function of x for fixed x1, ..., xk. For that purpose, we use the standard Gaussian
identity for j = 1, ..., k:

∂pΣ

∂ρj
=

∂2pΣ

∂x∂xj

Denote Σ−1 = ((σij))i,j=0,1,...,k, where 0, 1, ..., k correspond respectively to the random vari-
ables Zε(u), X(τ1), ..., X(τk). Notice that for j = 1, ..., k, ρj = 0 implies σ0j = 0. Then, a
direct computation gives for j = 1, ..., k:

∂2pΣ

∂x∂xj

∣∣∣
ρj=0

= pZε(u)(x)pX(τ1),...,X(τk)(x1, ..., xk) x
( k∑
i=1

xiσ
ij
)
,

which is an odd function of x for fixed x1, ..., xk. Since g is even, it follows that:∫
Rk+1

g(x)F (x1, ..., xk)
k∑
j=1

∂pΣ

∂ρj
(x, x1, ..., xk)

∣∣∣
ρj=0

dxdx1...dxk = 0

On account of (48), (47) and the above calculations, we get from (46):∣∣∣E((
Yε(t)− Yε(s)

)
F

[
X(τ1), ..., X(τk)

])∣∣∣ ≤ (const)ε2(1−H)−1/2.

Since 0 < H < 3/4, this implies (45). In case H = 3/4 the proof is similar, with only
minor changes.

Let us now turn to the proof of (44). We have to prove that:

E
((
Yε(t)− Yε(s)

)2
F

[
X(τ1), ..., X(τk)

])
→ KH(g)(t− s)E

(
F

[
X(τ1), ..., X(τk)

])
.

This follows the same lines of the proof of (43), with minor changes. We have:

E
((
Yε(t)− Yε(s)

)2
F

[
X(τ1), ..., X(τk)

])
=

2

α2
H,2(ε)

×∫ t

s

dt2

∫ (t2−s)/ε

0

εdu

∫ +∞

−∞

∫ +∞

−∞
g(x)g(y)F (x1, ..., xk)p(x, y, x1, ..., xk; Γε)dxdydx1, ...dxk

(49)

In (49), p(x, y, x1, ..., xk; Γ) is the centered Gaussian density with covariance Γ and the
(k + 2)× (k + 2) matrix Γε is:

Γε =

(
C(u) Rε

Rε Σ(τ1, ..., τk)

)
where:
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• C(u) =

(
1 A(u)

A(u) 1

)
• Σ(τ1, ..., τk) =

((
E

[
X(τi)X(τj)

]))
i,j=1,...,k

• Rε =
((
ρj,ε(ti)

))
j=1,...,k

, where for j = 1, ..., k ρj,ε(t1) = E
(
Zε(t2 + εu)X(τj) and

ρj,ε(t2) = E
(
Zε(t2)X(τj).

To pass to the limit as ε→ 0 in (49) we apply a similar expansion to the one in the proof
of Proposition 1, and use the bound (48), valid for ε small enough: where the const depends
on H, s, t, τ1, ..., τk but not on ε. �
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