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Abstract

We consider a random polynomial system with m equations and m
real unknowns. Assume all equations have the same degree d and the
law on the coefficients satisfies the Kostlan-Shub-Smale hypotheses. It is
known that E(NX) = dm/2 where NX denotes the number of roots of the
system. Under the condition that d does not grow very fast, we prove that

lim supm→+∞ V ar( NX

dm/2 ) ≤ 1. Moreover, if d ≥ 3 then V ar( NX

dm/2 )→ 0 as

m→ +∞, which implies NX

dm/2 → 1 in probability.
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1 Introduction

Let us consider m polynomials in m variables with real coefficients Xi(t) =
Xi(t1, ..., tm), i = 1, ...,m.

We use the notation
Xi(t) :=

∑
|j|≤di

a
(i)
j tj, (1)

where j := (j1, ..., jm) is a multi-index of non-negative integers, |j| := j1+...+jm,
j! := j1!...jm!, tj := tj11 ....tjm

m , a
(i)
j := a

(i)
j1...,jm

. 〈., .〉 and ‖.‖ denote respectively
the usual scalar product and Euclidean norm in Rm. AT is the transposed
matrix of A.

The degree of the i− th polynomial is di and we assume that di ≥ 1 ∀i.
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Let NX(V ) be the number of roots lying in the subset V of Rm, of the
system of equations

Xi(t) = 0, i = 1, ...,m (2)

We denote NX = NX(Rm).
Suppose that the coefficients of the polynomials are chosen at random with

a given law and we want to study the probability distribution of NX(V ). Gen-
erally speaking, little is known on this distribution, even for simple choices of
the law on the coefficients. In 1992 Shub and Smale [9] (see also [3] for related
problems) proved that if the a

(i)
j are centered independent Gaussian random

variables, and their variances satisfy

V ar
(
a
(i)
j

)
=

(
di

j1.....jm

)
=

di!
j!(di − |j|)!

,

then, the expectation of the number of roots is:

E
(
NX

)
=
√

D, (3)

where D = d1...dm is the Bézout-number of the polynomial system X(t).
Some extensions to other distributions of the coefficients can be found in the

papers by Edelman and Kostlan [4], Kostlan [7] and Malajovich and Rojas [8],
as well as in Azäıs and Wschebor [2], where a quite different proof of (3) has
been given.

In what follows we will only consider random polynomial systems satisfying
the Shub-Smale hypotheses such that the degrees di are all the same, say di = d
(i = 1, ...m) and d ≥ 2 (in which case Kostlan had earlier proved formula (3),
see [6]).

Let us consider the normalized number of roots

nX =
NX

√
D

which obviously verifies E(nX) = 1. Our main purpose is to study the asymp-
totic behaviour of the variance of nX when the number m of unknowns and
equations tends to infinity. Notice that the common degree d may vary with m.

Under the additional condition that d remains bounded as m grows, we prove
that lim supm→+∞ V ar(nX) ≤ 1.

More interesting is that if moreover d ≥ 3, then limm→+∞ V ar(nX) = 0,
which obviously implies that nX → 1 in probability, that is, the random variable
NX and its expectation

√
D = dm/2 are equivalent in this sense, as m → +∞.

In other words, for large m the Kostlan-Shub-Smale expectation dm/2 is the first
order statistical approximation of the random variable NX . Unfortunately, the
proof does not work for quadratic systems and in this case the precise asymptotic
behaviour of V ar(nX) remains an open problem.

Essentially the same results hold true - and the proof below works with
minor changes - if we allow d tend to infinity not too fast, more precisely, if
d ≤ L1 exp(L2 mβ) for some β < 1/3 and positive constants L1, L2.
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In a certain sense these results are opposite to the behaviour of systems
having a probability law invariant under isometries and translations of Rm

(which of course do not include polynomial systems, see [2], Section 6) in which
the variance of the normalized number of roots lying in a set tends to infinity
at a geometric rate.

Our main tool here are the so-called Rice formulae, which allow to express
the moments of the number of roots of a system of random equations by means
of certain integrals. Let us give a brief description of Rice formulae.

Let V be a measurable subset of Rm and Z : V → Rm a random field
defined on a probability space (Ω,A,P ).

Under certain assumptions on the probability law of Z and on its paths (that
is, the functions t Z(t) defined for fixed ω ∈ Ω) one can prove that:

E
(
NZ(V )

)
=

∫
V

E (|det(Z ′(t))|/Z(t) = 0) pZ(t)(0)dt. (4)

where for each t ∈ V , pZ(t)(x), x ∈ Rm denotes the density of the probability
distribution of the Rm-valued random vector Z(t), Z ′(t) is the derivative con-
sidered as a linear transformation of Rm into itself and the function E(ξ/η = x)
denotes the conditional expectation of the random variable ξ given the value of
the random variable η.

With some additional conditions, if k is a positive integer, one also has a
similar formula for the k-th factorial moment of NZ(V ) :

E
[
NZ(V )

(
NZ(V )− 1

)
...

(
NZ(V )− k + 1

)]
(5)

=
∫

V k

E

 k∏
j=1

|det (Z ′(tj)) |/Z(t1) = ... = Z(tk) = 0

 .pZ(t1),...,Z(tk)(0, ..., 0) dt1...dtk

where pZ(t1),...,Z(tk)(x1, ..., xk) denotes the joint density of the random vectors
Z(t1), ..., Z(tk).

We call (4) and (5) the ”Rice formulae”. In [1] one can find a proof along
with some related subjects.

The main source of difficulties when applying (4) and (5) is the conditional
expectation in the integrand. However, if Z is a Gaussian process - this will be
our case in the present paper - the situation becomes considerably simpler, since
one can get rid of the conditional expectation by using Gaussian regression, a
familiar tool in Statistics (see for example [5], Ch. III). We state this as the
next (very well known) proposition.

Proposition 1 Let X1, X2 be random vectors in Rd1 ,Rd2 respectively.
We assume that the pair (X1, X2) has a centered Gaussian distribution

in Rd1+d2 having covariances Σ11 = E(X1X
T
1 ), Σ22 = E(X2X

T
2 ), Σ12 =

E(X1X
T
2 ) and that Σ22 is non-singular.

Let g : Rd1 → R be continuous and polynomially bounded, i.e. |g(x)| ≤
C

(
1 + ‖x‖M

)
for some positive constants C,M and any x ∈ Rd1 .
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Then, for each x2 ∈ Rd2 :

E (g(X1)/X2 = x2) = E(g(Z + Ax2)) (6)

where A is the d1 × d2 matrix A = Σ12Σ−1
22 and Z is a centered Gaussian

random vector in Rd1 having covariance E
(
ZZT

)
= Σ11 − Σ12Σ−1

22 ΣT
12.

The proof of (6) is as follows: put Z = X1 − AX2 and choose A so that
E

(
ZXT

2

)
= 0, which gives A = Σ12Σ−1

22 . Since the distribution of (Z,X2) is
Gaussian and E

(
ZXT

2

)
= 0, it follows that the random vectors Z and X2 are

independent. The computation of E
(
ZZT

)
is straightforward.

2 Main result

Theorem 2 Let the random polynomial system (2) satisfy the Shub-Smale hy-
potheses, with di = d (i = 1, ...m) and d ≥ 2.

We assume that d ≤ d0 < ∞, where d0 is some constant (independent of
m). Then,

a) lim supm→+∞ V ar(nX) ≤ 1.
b) Under the additional hypothesis that d ≥ 3, one has limm→+∞ V ar(nX) =

0.

Proof. We divide the proof into several steps.

Step 1. Notice that

V ar
(
nX

)
=

1
D

V ar
(
NX

)
=

1
D

{
E

[
NX

(
NX − 1

)]
+ E

(
NX

)
−

(
E

(
NX

))2
}

=
1
D

E
[
NX

(
NX − 1

)]
+

1√
D
− 1

so that it suffices to prove:

lim sup
m→+∞

1
D

E
[
NX

(
NX − 1

)]
≤ 2. (7)

to show a) in the statement of the Theorem and

lim sup
m→+∞

1
D

E
[
NX

(
NX − 1

)]
≤ 1 (8)

to get b).
To compute the factorial moment of NX in the left-hand side of (7) or (8)

we use (5) with k = 2, that is:

E
[
NX

(
NX − 1

)]
(9)

=
∫∫

Rm×Rm

E [|det(X ′(s)) det(X ′(t))| /X(s) = X(t) = 0] pX(s),X(t)(0, 0) ds dt,
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pX(s),X(t)(., .) denotes the joint density of the random vectors X(s), X(t).

Step 2.
A direct computation using the Shub-Smale hypotheses, gives the covariance

of the random processes Xi, that is:

rXi(s, t) = E [Xi(s)Xi(t)] = (1 + 〈s, t〉)d (s, t ∈ Rm, i = 1, ...,m). (10)

Since the random processes Xi are independent, using the form of the cen-
tered Gaussian density, we obtain:

pX(s),X(t)(0, 0) =
1

(2π)m ∆m/2
(11)

=
1

(2π)m
1[(

1 + ‖s‖2
) (

1 + ‖t‖2
)]m

2 d

1

(1− ρ2d)m/2

with the notations

ρ = ρ(s, t) =
1 + 〈s, t〉(

1 + ‖s‖2
)1/2 (

1 + ‖t‖2
)1/2

∆ = ∆(s, t) =
(
1 + ‖s‖2

)d (
1 + ‖t‖2

)d

− [1 + 〈s, t〉]2d

=
(
1 + ‖s‖2

)d (
1 + ‖t‖2

)d

(1− ρ2d).

Step 3. Let us now turn to the conditional expectation in the right-hand
side of (9).

Let us put

E (|det(X ′(s)) det(X ′(t))| /X(s) = X(t) = 0) = E
(∣∣det(As) det(At)

∣∣) ,

where As = ((As
iα)), At = ((At

iα)) are m ×m random matrices having as joint
- Gaussian - distribution the conditional distribution of the pair X ′(s), X ′(t)
given that X(s) = X(t) = 0. (Notice that the probability distributions of As

and At depend both on s and on t).
We use the regression formulae (40),(41),(42) in the auxiliary Proposition

3 below, with Xi instead of ξ. An elementary computation gives the following
covariances:

E
(
As

iαAs
jβ

)
= E

(
As

iαAt
jβ

)
= E

(
At

iαAt
jβ

)
= 0 if i 6= j (12)

E
(
As

iαAs
iβ

)
= d

(
1 + ‖s‖2

)d−1
[
δαβ − sαsβ − d

ρ2(d−1)

1− ρ2d

(
ρsα − tα

) (
ρsβ − tβ

)]
(13)
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where δαβ is the Kronecker symbol and sα = sα

(1+‖s‖2)1/2 , tα = tα

(1+‖t‖2)1/2 .

E
(
At

iαAt
iβ

)
= d

(
1 + ‖t‖2

)d−1
[
δαβ − tαtβ − d

ρ2(d−1)

1− ρ2d

(
ρtα − sα

) (
ρtβ − sβ

)]
(14)

E
(
As

iαAt
iβ

)
= d

(
1 + ‖s‖2

) d−1
2

(
1 + ‖t‖2

) d−1
2

. (15)

.

[
ρd−1δαβ − ρd−2tαsβ + d

ρd−2

1− ρ2d

(
ρsα − tα

) (
ρtβ − sβ

)]
Still, to simplify somewhat the expression of E (|det(As) det(At)|) we put,

for i, α = 1, ...,m :

Y s
iα =

1√
d

1(
1 + ‖s‖2

) d−1
2

As
iα

Y t
iα =

1√
d

1(
1 + ‖t‖2

) d−1
2

At
iα

and express - for each pair s, t ∈ Rm, the random matrices whose determinants
are to be computed, in an orthonormal basis of Rm, say {v1, v2, ..., vm}, such
that {v1, v2} generates the same subspace than {s, t} (Notice that s and t are
linearly independent in the integrand of (9), excepting for a negligible set of
pairs (s, t)).

So, we may write

E
(∣∣det(As) det(At)

∣∣) = D E
(∣∣det(Y s) det(Y t)

∣∣) [(
1 + ‖s‖2

) (
1 + ‖t‖2

)]m d−1
2

(16)
where the centered Gaussian matrices Y s, Y t satisfy the following covariance
relations:

•
E

(
Y s

iαY s
jβ

)
= E

(
Y s

iαY t
jβ

)
= E

(
Y t

iαY t
jβ

)
= 0 if i 6= j (17)

• if either α or β is ≥ 3, then:

E
(
Y s

iαY s
iβ

)
= E

(
Y t

iαY t
iβ

)
= δαβ , E

(
Y s

iαY t
iβ

)
= ρd−1δαβ (18)

• if α, β = 1, 2, then:

E
(
Y s

iαY s
iβ

)
= δαβ − sαsβ − d

ρ2(d−1)

1− ρ2d

(
ρsα − tα

) (
ρsβ − tβ

)
(19)

E
(
Y t

iαY t
iβ

)
= δαβ − tαtβ − d

ρ2(d−1)

1− ρ2d

(
ρtα − sα

) (
ρtβ − sβ

)
(20)
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E
(
Y s

iαY t
iβ

)
= ρd−1δαβ − ρd−2tαsβ + d

ρd−2

1− ρ2d

(
ρsα − tα

) (
ρtβ − sβ

)
(21)

Replacing in (9), on account of (11) and (16) we obtain:

E
[
NX

(
NX − 1

)]
=

D

(2π)m

∫∫
Rm×Rm

E (|det(Y s) det(Y t)|)[(
1 + ‖s‖2

) (
1 + ‖t‖2

)]m
2

(1− ρ2d)m/2
ds dt

(22)
We break the integral in (22) into two terms, writing:

1
D

E
[
NX

(
NX − 1

)]
=

∫∫
ρ2> 1

mγ

... +
∫∫

ρ2≤ 1
mγ

.... = I1 + I2 (23)

where γ is a positive number to be chosen later on.

We will show in step 4 that limm→+∞ I1 = 0. In step 5 we will prove that
lim supm→+∞ I2 ≤ 2 in all cases and lim supm→+∞ I2 ≤ 1 under the additional
hypothesis d ≥ 3 .

Step 4. Let us consider I1 and assume s and t are points in Rm, s, t 6= 0.
Using the definition of ρ given in Step 2, one can check the identity

1− ρ2 =
‖s− t‖2 + ‖s‖2 ‖t‖2 sin2 ϕ(

1 + ‖s‖2
) (

1 + ‖t‖2
) (24)

where ϕ is the angle formed by the vectors
−→
Os and

−→
Ot in Rm.

Next, we write the Laplace expansion of det(Y s) with respect to its first
two columns, using the notation

∆s
ij = det

(
Y s

i1 Y s
i2

Y s
j1 Y s

j2

)
for i < j and ∆̃s

ij for the (m − 2) × (m − 2)- determinant that results from
suppressing in Y s columns 1 and 2 and rows i and j.

So, using the Cauchy-Schwartz inequality and the fact that for fixed i, j the
random variables ∆s

ij and ∆̃s
ij are independent, it follows that

E
[
(det(Y s))2

]
≤ E


 ∑

1≤i<j≤m

∣∣∆s
ij

∣∣ ∣∣∣∆̃s
ij

∣∣∣
2

 (25)

≤ E

 ∑
1≤i<j≤m

(
∆s

ij

)2
(
∆̃s

ij

)2

 =
∑

1≤i<j≤m

E
[(

∆s
ij

)2
]
E

[(
∆̃s

ij

)2
]

It is well-known and easy to prove that E

[(
∆̃s

ij

)2
]

= (m − 2)! since the

elements of the corresponding random matrix are i.i.d. standard Gaussian. For
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the computation of E
[(

∆s
ij

)2
]

we must look at the covariance structure of the
first two columns of Y s. We have:

E
[(

∆s
ij

)2
]

= E
[(

Y s
i1Y

s
j2 − Y s

i2Y
s
j1

)2
]

= E
[
(Y s

i1)
2
]
E

[(
Y s

j2

)2
]

+ E
[
(Y s

i2)
2
]
E

[(
Y s

j1

)2
]
− 2E (Y s

i1Y
s
i2) E

(
Y s

j1Y
s
j2

)
= Ci

11C
j
22 + Ci

22C
j
11 − 2Ci

12C
j
12

with the notation Ci
αβ = E

(
Y s

iαY s
iβ

)
(α, β = 1, 2; i = 1, ...,m).

Now use formula (19) to compute the Ci
αβ ’s.

We obtain:

E
[(

∆s
ij

)2
]

=
2

1 + ‖s‖2

[
1− d

ρ2(d−1)

1− ρ2d

(
1− ρ2

)]
= 2

1− ρ2

1 + ‖s‖2
1 + 2ρ2 + ... + (d− 1)ρ2(d−2)

1 + ρ2 + .... + ρ2(d−1)
≤ 2

1− ρ2

1 + ‖s‖2
(d− 1)

Replacing in (25) we have:

E
[
(det(Y s))2

]
≤ (d− 1)

1− ρ2

1 + ‖s‖2
m!

Using the same method for E
[
(det(Y t))2

]
we obtain for I1 the bound:

I1 ≤ (d− 1)m!
(2π)m

∫∫
ρ2> 1

mγ

1− ρ2(
1 + ‖s‖2

)m+1
2

(
1 + ‖t‖2

)m+1
2

1
(1− ρ4)

m
2

ds dt

≤ (d− 1)m!
(2π)m

1
(1 + 1

mγ )
m
2

∫∫
Rm×Rm

ds dt(
1 + ‖s‖2

)m+1
2

(
1 + ‖t‖2

)m+1
2

1
(1− ρ2)

m
2 −1

=
(d− 1)m!

(2π)m

1
(1 + 1

mγ )
m
2

∫∫
Rm×Rm

ds dt(
1 + ‖s‖2

) 3
2

(
1 + ‖t‖2

) 3
2

(‖s− t‖2 + ‖s‖2 ‖t‖2 sin2 ϕ)
m
2 −1

I1 ≤ (d− 1)m!
(2π)m

1
(1 + 1

mγ )
m
2

(26)

.

∫
Rm

ds(
1 + ‖s‖2

) 3
2

∫
Rm

dt(
1 + ‖t‖2

) 3
2

(‖s− t‖2 + ‖s‖2 ‖t‖2 sin2 ϕ)
m
2 −1

The inner integral in (26) depends only on ‖s‖ so that it is enough to compute
it for s = (‖s‖ , 0, ..., 0) in which case it can be written as:∫

Rm

dt1..., dtm(
1 + ‖t‖2

) 3
2

[
(t1 − ‖s‖)2 + t22 + ... + t2m + ‖s‖2 (t22 + ... + t2m)

]m
2 −1
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=
∫
R

dt1σm−2

∫ +∞

0

um−2du

(1 + t21 + u2)
3
2

[
(t1 − ‖s‖)2 + u2

(
1 + ‖s‖2

)]m
2 −1

(27)

where σm−1 = 2πm/2

Γ(m/2)denotes the geometric measure of the sphere Sm−1 em-

bedded in Rm. Making the change of variables u
(
1 + ‖s‖2

) 1
2

= |t1 − ‖s‖| y,
the inner integral in (27) becomes:

|t1 − ‖s‖|(
1 + ‖s‖2

)m
2 −1

∫ +∞

0

ym−2 dy[
1 + t21 + |t1−‖s‖|2y2

1+‖s‖2

] 3
2

(1 + y2)
m
2 −1

and replacing in (26) and (27) we get the bound:

I1 ≤ Cm

∫ +∞

0

vm−1

(1 + v2)
m+2

2

dv

∫ +∞

−∞
|t1 − v| dt1

∫ +∞

0

ym−2 dy[
1 + t21 + |t1−v|2y2

1+v2

] 3
2

(1 + y2)
m
2 −1

≤ Cm

∫ +∞

0

vm−1

(1 + v2)
m+2

2

dv

∫ +∞

−∞

dt1
1 + t21

∫ +∞

0

dw

(1 + w2)
3
2

with

Cm =
(d− 1)m!

(2π)m

1
(1 + 1

mγ )
m
2

σm−1σm−2

This shows that I1
Cm

is bounded by a constant not depending on m.
Applying Stirling’s formula, it follows that

I1 ≤ K1m
2e−

1
2 m1−γ

(28)

for some positive constant K1.

Step 5. Let us now turn to I2, the second integral in (23).
We introduce the following additional notations:

• Y s
•j (resp. Y t

•j) denotes the j’s column of the matrix Y s (resp. Y t).

• V s
j (resp V t

j ) (j = 0, 1, ...,m−1) denotes the linear subspace of Rm gener-
ated by the set of random vectors

{
Y s
•j+1, ..., Y

s
•m

}
(resp.

{
Y t
•j+1, ..., Y

t
•m

}
).

• δ denotes Euclidean distance in Rm.

• πs
j (resp. πt

j) denotes the orthogonal projection in Rm onto (V s
j )⊥ (resp.

(V t
j )⊥), the orthogonal complement of V s

j (resp. V t
j ). Since almost surely

V s
2 and V t

2 have dimension m − 2, (V s
j )⊥ and (V t

j )⊥ have, almost surely,
dimension 2.

• Take an orthonormal basis of (V s
2 )⊥ (resp. (V t

j )⊥) , say (vs
1, v

s
2) (resp.

(vt
1, v

t
2)), measurable with respect to (Y s

•3, ..., Y
s
•m) (resp. (Y t

•3, ..., Y
t
•m).
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We will be using the fact that the sets of random vectors{
Y s
•1, Y

s
•2, Y

t
•1, Y

t
•2

}
,
{
Y s
•3, ..., Y

s
•m, Y t

•3, ..., Y
t
•m

}
are independent (c.f. (18)).

Then, we may write

|det(Y s)| =

m−1∏
j=1

δ(Y s
•j , V

s
j )

 ‖Y s
•m‖ .

and

E
[
|det(Y s)|

∣∣det(Y t)
∣∣] (29)

= E
(
E

[
|det(Y s)|

∣∣det(Y t)
∣∣ /Y s

•3, ..., Y
s
•m, Y t

•3, ..., Y
t
•m

])
= E

m−1∏
j=3

[
δ(Y s

•j , V
s
j )δ(Y t

•j , V
t
j )

] ‖Y s
•m‖

∥∥Y t
•m

∥∥E12


where E12 is the conditional expectation:

E12 = EslC

 2∏
j=1

[
δ(Y s

•j , V
s
j )δ(Y t

•j , V
t
j )

] (30)

where EslC means conditional expectation given Y s
•3, ..., Y

s
•m, Y t

•3, ..., Y
t
•m

Next we consider the asymptotic behaviour of E12 as m → +∞ for those
pairs (s, t) appearing in the integral I2, that is, such that ρ2 ≤ 1

mγ .
Put

Zs
•j = πs

2(Y
s
•j), Zt

•j = πt
2(Y

t
•j) j = 1, 2

so that

Zs
•j =

2∑
h=1

〈
Y s
•j , v

s
h

〉
vs

h =
2∑

h=1

λs
jh vs

h

and similarly replacing s by t.
Conditionally on Y s

•3, ..., Y
s
•m, Y t

•3, ..., Y
t
•m the random variables λs

jh, λt
jh (j, h =

1, 2) have joint Gaussian centered distribution and the covariances are easily
computed from (17), (19), (20), (21). We have:

EslC

(
λs

jhλs
j′h′

)
= EslC

 m∑
i,i′=1

Y s
ijv

s
ihY s

i′j′v
s
i′h′

 (31)

=
m∑

i=1

E
(
Y s

ijY
s
ij′

)
vs

ihvs
ih′ = E

(
Y s

ijY
s
ij′

)
δhh′

where the last equality follows from the fact that E
(
Y s

ijY
s
ij′

)
does not depend

on i (c.f. (19). In the same way:

EslC

(
λt

jhλt
j′h′

)
= E

(
Y t

ijY
t
ij′

)
δhh′ (32)

10



EslC

(
λs

jhλt
j′h′

)
= E

(
Y s

ijY
t
ij′

) 〈
vs

h, vt
h′

〉
(33)

Notice that E12 is the conditional expectation of the product of the areas of
the random paralellograms - say ∆s (resp. ∆t) {λ1Z

s
•1 + λ2Z

s
•2 : 0 ≤ λ1, λ2 ≤ 1}

(resp. {λ1Z
t
•1 + λ2Z

t
•2 : 0 ≤ λ1, λ2 ≤ 1}) and

∆s =
∣∣det((λs

ij))
∣∣ , ∆t =

∣∣det((λt
ij))

∣∣
If d ≥ 3 for all i = 1, ...,m, using the form of the covariances (19),(20),(21),

one can show that ∆s and ∆t are asymptotically independent, and more pre-
cisely that

EslC (∆s∆t) = E(∆s)E(∆t) + ζm

where

• |ζm| ≤ zm where {zm} is a numerical sequence, limm→+∞ zm = 0.

• ∆s is obtained in the same way as ∆s replacing the 2× 2 matrix ((λs
jh))

by ((λ
s

jh)) having the covariance

E
(
λ

s

jhλ
s

j′h′

)
= (δjj′ − sjsj′) δhh′ (j, h, j′, h′ = 1, 2) (34)

The invariance under isometries of the standard Gaussian distribution
implies that

E(∆s) =
1(

1 + ‖s‖2
)1/2

E (‖η1‖) E (‖η2‖)

where we use ηk (k = 1, 2, ...) to denote a standard Gaussian variable in
Rk. (Notice that E (‖η1‖) =

√
2/π, E (‖η2‖) =

√
π/2).

• ∆t has the same properties than ∆s, mutatis mutandis.

So,

E12 =
1(

1 + ‖s‖2
)1/2 (

1 + ‖t‖2
)1/2

[E (‖η1‖) E (‖η2‖)]2 + ζm. (35)

with
∣∣ζm

∣∣ ≤ zm where {zm} is a numerical sequence, limm→+∞ zm = 0.

The above calculation fails if d = 2, as one can see in formula (21) since in
this case E

(
Y s

iαY t
iβ

)
does not tend to zero as ρ → 0 and one can not assure

asymptotic independence of ∆s and ∆t.
So, when d can take the value 2, we use the Cauchy-Schwartz inequality, and

obtain the more rough bound:

E12 ≤
[
EslC(∆2

s)EslC(∆2
t )

]1/2
(36)

=
2(

1 + ‖s‖2
)1/2 (

1 + ‖t‖2
)1/2

[E (‖η1‖) E (‖η2‖)]2 +ζ∗m.

11



where |ζ∗m| ≤ z∗m and {z∗m} is a numerical sequence, limm→+∞ z∗m = 0.
The last equality follows easily from (31), (32), (33).

Next we consider

E

m−1∏
j=3

[
δ(Y s

•j , V
s
j )δ(Y t

•j , V
t
j )

] ‖Y s
•m‖

∥∥Y t
•m

∥∥ (37)

It will be useful in our computations below to denote ‖.‖j (j = 1, 2, ...) the
Euclidean norm in Rj . When j = m, we simply put ‖.‖ = ‖.‖m as we did until
now.

We now use again Gaussian regression and the covariance formulae (18).
This permits to write for j = 3, ...,m :

Y t
•j = Y t

•j − ρd−1Y s
•j + ρd−1Y s

•j =
(
1− ρ2(d−1)

)1/2
[
ζj +

ρd−1(
1− ρ2(d−1)

)1/2
Y s
•j

]

where the 2(m−2) random vectors ζ3, Y
s
•3, ...., ζm, Y s

•m are independent and each
one of them has standard normal distribution in Rm. Also ζj is independent of
(Y t
•j+1, ..., Y

t
•m) for j = 3, ...,m− 1.

In formula (37) we successively compute the conditional expectation given
the random vectors Y s

•j+1, ..., Y
s
•m, Y t

•j+1, ..., Y
t
•m for j = 3, ...,m.

Then, for j ≥ 3 :

E
[
δ(Y s

•j , V
s
j )δ(Y t

•j , V
t
j )/Y s

•j+1, ..., Y
s
•m, Y t

•j+1, ..., Y
t
•m

]
(38)

=
(
1− ρ2(d−1)

)1/2

E

[∥∥πs
j (Y

s
•j)

∥∥∥∥∥∥∥πt
j(ζj) +

ρd−1(
1− ρ2(d−1)

)1/2
πt

j(Y
s
•j)

∥∥∥∥∥ /Y s
•j+1, ..., Y

s
•m, Y t

•j+1, ..., Y
t
•m

]

=
(
1− ρ2(d−1)

)1/2

E

‖ξ‖j

∥∥∥∥∥η +
ρd−1(

1− ρ2(d−1)
)1/2

ζ

∥∥∥∥∥
j


where each one of the random vectors ξ, η, ζ has a standard normal distribution
in Rj and η is independent of the pair (ξ, ζ).

So, we are led to study the functions Hj : R → R+

Hj(a) = E
[
‖ξ‖j ‖η + a ζ‖j

]
(39)

= E

(
‖ξ‖j

[
(η1 + a ‖ζ‖j)

2 + η2
2 + ... + η2

j

]1/2
)

with j ≥ 3,where η = (η1, η2, ..., ηj)T . Note that we are using the invariance
under isometries of the distribution of η. With the aim of simplying somewhat
the reading of this proof, we have included at the end, in a separate proposition,
the properties of Hj that we will use.

To bound (37), we use (38) and (43),(44), (45), (46) and the Taylor expansion
at zero of the functions Hj .
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We obtain:

E

m−1∏
j=3

[
δ(Y s

•j , V
s
j )δ(Y t

•j , V
t
j )

] ‖Y s
•m‖

∥∥Y t
•m

∥∥
=

(
1− ρ2(d−1)

)m−2
2

H3

 ρd−1(
1− ρ2(d−1)

) 1
2

 .

.
m∏

j=4


[
E(‖ξ‖j)

]2

1 +
1
2

H ′′(0)[
E(‖ξ‖j)

]2

ρ2(d−1)

1− ρ2(d−1)
+

1
6

H ′′′(τ)[
E(‖ξ‖j)

]2

ρ3(d−1)[
1− ρ2(d−1)

] 3
2




where τ denotes some intermediate value between 0 and ρd−1

(1−ρ2(d−1))1/2 .

For ρ2 ≤ 1
mγ we obtain the inequalities:

E

m−1∏
j=3

[
δ(Y s

•j , V
s
j )δ(Y t

•j , V
t
j )

] ‖Y s
•m‖

∥∥Y t
•m

∥∥
≤ H3

 ρd−1(
1− ρ2(d−1)

) 1
2

 .

. exp

−m− 2
2

ρ2(d−1) +
1
2

m∑
j=3

(
1 +

C2

j

)
ρ2(d−1)

1− ρ2(d−1)
+

C3

6
ρ3(d−1)[

1− ρ2(d−1)
]3/2

(m− 2)

 m∏
j=3

[
E(‖ξ‖j)

]2

≤ exp
[
C2

log m

mγ
+ C4

1

m
3γ
2 −1

] m∏
j=3

[
E(‖ξ‖j)

]2

where C4 is a universal constant.
Check the formula∏m

j=1 E(‖ηj‖)

(2π)m/2

∫
Rm

dt(
1 + ‖t‖2

)m+1
2

= 1.

Finally, choosing γ so that 2
3 < γ < 1 and taking again into account that

d ≥ 2 in the general case, using inequality (36) and replacing in (29) we obtain
the bound lim supm→+∞ I2 ≤ 2 which together with (28) shows part a) in the
statement of the Theorem. When d ≥ 3 we use (35) and obtain part b).

Proposition 3 If ξ : Rm → R is a centered Gaussian random process with a
regular covariance r(s, t) = E (ξ(s)ξ(t)) and the 2-dimensional distribution of
(ξ(s), ξ(t)) does not degenerate, then for α, β = 1, ...,m we have:

E (∂αξ(s)∂βξ(s)/ξ(s) = ξ(t) = 0) =
∂2r

∂sα∂tβ
(s, s)−Cs,t

α

∂r

∂sβ
(s, s)−Ds,t

α

∂r

∂sβ
(s, t)

(40)
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E (∂αξ(t)∂βξ(t)/ξ(s) = ξ(t) = 0) =
∂2r

∂tα∂sβ
(t, t)− Ct,s

α

∂r

∂tβ
(t, t)−Dt,s

α

∂r

∂tβ
(t, s)

(41)

E (∂αξ(s)∂βξ(t)/ξ(s) = ξ(t) = 0) =
∂2r

∂sα∂tβ
(s, t)− Ct,s

α

∂r

∂tβ
(s, t)−Dt,s

α

∂r

∂tβ
(t, t)

(42)
In these formulae, ∂αξ(s) denotes the first partial derivative of ξ with respect
to the α-coordinate of the argument, ∂r

∂sβ
(s, t) the first partial derivative of r

with respecto to the β-coordinate of the first variable, ∂2r
∂sα∂tβ

(s, t) the crossed
partial derivative of r with respect to the α-coordinate of the first variable and
the β-coordinate of the second, etc.

As for the regression coefficients Cs,t
α , Ds,t

α they are given by:

Cs,t
α =

r(t, t) ∂r
∂sα

(s, s)− r(s, t) ∂r
∂sα

(s, t)
r(s, s)r(t, t)− r2(s, t)

Ds,t
α =

−r(s, t) ∂r
∂sα

(s, s) + r(s, s) ∂r
∂sα

(s, t)
r(s, s)r(t, t)− r2(s, t)

.

Proof. We apply the regression formula (6), taking into account that differ-
entiation under the expectation sign permits to express the covariances in terms
of the covariance function r:

E (∂αξ(s)ξ(t)) =
∂r

∂sα
(s, t)

E (∂αξ(s)∂βξ(t)) =
∂2r

∂sα∂tβ
(s, t).

Proposition 4 Let us consider the functions Hj (j ≥ 3), defined in the proof
of the Theorem.

Then:

•
Hj(0) =

[
E(‖ξ‖j)

]2

(43)

•

H ′
j(a) = E

(
‖ξ‖j ‖ζ‖j

[
(η1 + a ‖ζ‖j)

2 + η2
2 + ... + η2

j

]−1/2

(η1 + a ‖ζ‖j)
)

.

so that
H ′(0) = 0. (44)
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•
H ′′

j (0)[
E(‖ξ‖j)

]2 ≤ 1 +
C2

j
for j = 3, 4, .. (45)

where C2 is some universal constant.

• for j ≥ 4 and any a, ∣∣H ′′′
j (a)

∣∣[
E(‖ξ‖j)

]2 ≤ C3 (46)

where C3 is some universal constant.

Proof. (43) and (44) are immediate from the definition of Hj and its deriva-
tive.

To prove (45), we compute H ′′
j (a) :

H ′′
j (a) = E

(
‖ξ‖j ‖ζ‖

2
j

[
(η1 + a ‖ζ‖j)

2 + η2
2 + ... + η2

j

]−3/2

(η2
2 + ... + η2

j )
)

which implies:

0 ≤ H ′′
j (a) ≤ E

(
‖ξ‖j ‖ζ‖

2
j (η2

2 + ... + η2
j )−1/2

)
= E

(
‖ξ‖j ‖ζ‖

2
j

)
E

(
(η2

2 + ... + η2
j )−1/2

)
< ∞ since j ≥ 3.

Also,

H ′′
j (0) = E(‖ξ‖j ‖ζ‖

2
j ) (j − 1) E(

η2
1

‖η‖3
)

=
j − 1

j
E(‖ξ‖j ‖ζ‖

2
j )E(

1
‖η‖

) ≤ j − 1
j

m
1/2
2,j m

1/2
4,j m−1,j

on applying Schwarz inequality and putting, for j − 1 + k ≥ 0 :

mk,j = E(‖ξ‖k
j ) =

σj−1

(2π)j/2

∫ +∞

0

uj−1+ke−
u2
2 du

An elementary computation shows that

mk,j =
σj−1

(2π)j/2
(j + k − 2)!! if j + k − 1 is odd,

mk,j =
σj−1

(2π)j/2
(j + k − 2)!!

√
π

2
if j + k − 1 is even and 6= 0

mk,j =
σj−1

(2π)j/2

√
π

2
if j + k − 1 = 0.
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In these formulae for integer n we use the notation:

n!! =
∏

0≤ν<n/2

(n− 2.v).

Using Stirling’s formula we obtain (45).
As for the last part of the statement, for j ≥ 4 we have:

H ′′′
j (a) = −3 E

‖ξ‖j ‖ζ‖
3
j

(η2
2 + ... + η2

j )(η1 + a ‖ζ‖j)[
(η1 + a ‖ζ‖j)2 + η2

2 + ... + η2
j

]5/2


which implies the bound

∣∣H ′′′
j (a)

∣∣ ≤ 3 E

[
‖ξ‖j ‖ζ‖

3
j

1
η2
2 + ... + η2

j

]
≤ 3 m

1/2
2,j m

1/2
6,j m−2,j−1

and again the formulae for mk,j plus a direct computation show (46).
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