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Abstract

Let A = ((aij)) be an m × m (m ≥ 3) real random matrix,
with independent Gaussian entries with a common variance σ2. De-
note by M the matrix of expected values of the entries of A. For
x > 0 we prove that P (κ(A) > m.x) < 1

x

(
1

4
√

2πm
+ C(M,σ,m)

)
with

C(M, σ,m) = 7
(
5 + 4‖M‖2(1+log m)

σ2m

) 1
2
. Here κ(A) = ‖A‖

∥∥A−1
∥∥ is

the usual condition number of A, ‖.‖ is Euclidean operator norm.
This implies that if 0 < σ ≤ 1 and ‖M‖ ≤ 1 then, for x > 0,
P (κ(A) > m.x) < K

σx where K is a universal constant.

Mathematics Subject Classification (2000): Primary: 15A12, 15A52.
Secondary: 60G15, 60G60, 65F35.

Key words and phrases: Random matrices, Condition Number, Smoothed
Analysis, Rice formulae for random fields.

Let A = ((aij))i,j=1,...,m be an m × m real matrix. Denote by ‖A‖ =
sup‖x‖=1 ‖Ax‖ its Euclidean operator norm. ‖x‖ denotes Euclidean norm of
x in Rm. We assume throughout that m ≥ 3.

If A is non-singular, its condition number κ(A) is defined by

κ(A) = ‖A‖‖A−1‖

and if A is singular we put κ(A) = +∞ ([11], [12]). The role of κ(A) in
numerical linear algebra is well-established (see for example [3], [5], [8], [13])
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In [7] it was conjectured that if the entries aij are independent Gaussian
random variables having a common variance σ2, 0 < σ ≤ 1 and supi,j |mij | ≤
1, where mij = E(aij) then

P (κ(A) > x) = O
( m

σx

)
. (1)

(see also [9] for some related questions).

In a recent paper this has been proved in the centered case. More pre-
cisely:

Theorem 1 (Azäıs & Wschebor 2003) Assume that A = ((aij))i,j=1,...,m,
m ≥ 3, and that the aij’s are i.i.d. Gaussian standard random variables.

Then, there exist universal positive constants c, C (for example, c = 0, 13
and C = 5, 60) such that for x > 1:

c

x
< P (κ(A) > m.x) <

C

x
(2)

This implies (1) when mij = 0 for all i, j (notice that κ(σA) = κ(A) for
any σ > 0). Moreover, the lower bound shows that in this case this is the
precise behaviour up to a constant factor.

We will use the following notations. Given A, an m × m real matrix,
we denote by λ1, ...., λm, 0 ≤ λ1 ≤ .... ≤ λm the eigenvalues of AT A. If
X : Sm−1 → R is the quadratic polynomial X(x) = xT AT Ax, then:

• λm = ‖A‖2 = maxx∈Sm−1 X(x)

• in case λ1 > 0, λ1 = 1
‖A−1‖2 = minx∈Sm−1 X(x).

Then,

κ(A) =
(

λm

λ1

) 1
2

when λ1 > 0.

• < ., . > is usual scalar product in Rm.

• Ik denotes the k × k identity matrix.

• B = AT A = ((bij))i,j=1,...,m
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• For s 6= 0 in Rm, πs : Rm → Rm is the orthogonal projection onto
{s}⊥, the orthogonal complement of s in Rm.

• C Â 0 (resp. C ≺ 0) means that the symmetric matrix C is positive
definite (resp. negative definite).

• If ξ is a random vector pξ(.) is the density of its distribution whenever
it exists.

• For a differentiable function F defined on a smooth manifold S em-
bedded in some Euclidean space, F ′(s) and F ′′(s) are the first and
the second derivative of F that we will represent, in each case, with
respect to an appropriate orthonormal basis of the tangent space.

• M = ((mij))i,j=1,...,m will denote the matrix of the expected values of
the entries of A.

The next proposition exhibits an example which shows that in the non-
centered case (1) does not hold with the hypotheses proposed by Sankar,
Spielman & Teng.

Proposition 1 Let aij = 1+σgij for all i, j, where the gij’s i.i.d. Gaussian,
with mean zero and variance 1, 0¡σ < 1

2 .
Then, there exists a positive constant K such that for each h > 3

2 , one
can find an integer mh so that for all m ≥ mh one has

P (κ(A) > x) ≥ K
m3/2

σx
for

m3/2

σ
< x <

mh

σ
(3)

Proof.
We denote G = ((gij)).
Clearly ‖M‖ = m. Fix ε > 0 in such a way that

(2 + ε)
√

m ≤ m

for any m ≥ 5.
We have the inclusions:

{κ(A) > (1− σ)mα} ⊃ {‖A‖ ≥ (1− σ)m} ∩ {∥∥A−1
∥∥ > α

}

{‖A‖ ≥ (1− σ)m} ⊃ {‖A‖ ≥ m− σ(2 + ε)
√

m
} ⊃ {‖G‖ ≤ (2 + ε)

√
m

}
.
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Hence,

P (κ(A) > (1− σ)mα) ≥ P
(∥∥A−1

∥∥ > α
)− P

(‖G‖ > (2 + ε)
√

m
)

(4)

The second term in (4) is bounded by

C1e
−C2mε2

(5)

where C1, C2 are positive constants. This is a well-known bound on the
largest eigenvalue of Wishart matrices (see for example [10], [2] or [6]).

As for the first term in the right-hand side of (4), one has

P
(∥∥A−1

∥∥ > α
)

= P (λ1 <
1
α2

)

Let u be the point u = (1, ..., 1)T and L the subspace

L = {x ∈ Rm : 〈x, u〉 = 0} .

Then,

λ1 = min
x∈Sm−1

xT AT Ax ≤ min
x∈Sm−1,x∈L

xT AT Ax = σ2 min
x∈Sm−1,x∈L

xT GT Gx = λ̃1

Since the law of G is independent of the choice of an orthonormal basis in
Rm, one may choose a basis of the form

{
u
‖u‖ , u2, ..., um

}
and the quadratic

form to be minimized in the computation of λ̃1 is
∑m

i,j=2 g̃ijyiyj where ((g̃ij))
is the associated matrix to the linear transformation x Ã Gx in the new
basis and the yi’s are the new coordinates. In other words, λ̃1 is the smallest
eigenvalue of a matrix of size (m−1)× (m−1) which is σ2 times a standard
Wishart. We can then use a known lower bound (see for example [10] or [1])
and obtain, if (m−1)

σ2α2 < 1:

P (λ1 <
1
α2

) ≥ P (λ̃1 <
1
α2

) ≥ β

√
m− 1
σα

(6)

where β is a positive constant.

Putting together (5) and (6), since 0 < σ < 1
2 we get:

P
(
κ(A) >

mα

2

)
≥ P (κ(A) > (1− σ)mα) ≥ β

√
m− 1
σα

− C1e
−C2mε2

(7)
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Replacing in (7) x = mα
2 and noticing that mhC1e

−C2mε2
is bounded by

a constant K(h) depending on h, we see that (7) implies that

if x >
m

3
2

2σ
then P (κ(A) > x) ≥ βm

√
m− 1

2σx
− K(h)

mh
.

To conclude, take

K <
β

2

and mh large enough to insure that m ≥ mh implies βm
√

m− 1−K(h) ≥
Km

3
2 . Then, under the additional condition x < mh

σ , inequality (3) follows.¤

The aim of the present paper is to prove Theorem 2 below, in which a
positive result is given in the non-centered case, but using a different norm
on the expected matrix, i.e., replacing sup norm by Euclidean norm.

Theorem 2 Assume that the aij’s are independent with a common variance
σ2.

Then, for x > 0 one has:

P (κ(A) > m.x) <
1
x

(
1

4
√

2πm
+ C(M,σ,m)

)
(8)

where

C(M,σ,m) = 7

(
5 +

4 ‖M‖2 (1 + log m)
σ2m

) 1
2

Remarks.

1. Theorem 2 implies a modified form of conjecture (1), namely if 0 <
σ ≤ 1 and ‖M‖ ≤ 1 then, for x > 0:

P (κ(A) > m.x) <
20
σx

(9)

This is an immediate consequence of the statement in the Theorem.

2. With similar calculations than the ones we will perform for the proof
of Theorem 2, one can improve somewhat the constants in (8) and (9).
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Proof of Theorem 2.
Due to the homogeneity of κ(A), with no loss of generality we may

assume σ = 1, changing the expected matrix M by 1
σM in the final result.

We follow closely the proof of Theorem 1 in [1], with some changes to
adapt it to the present conditions. In exactly the same way as it is done in
that paper, using a so-called Rice-type formula for the expectation of the
number of critical points of a random field, one can prove that the joint
density g(a, b), a > b of the random variables λm, λ1 satisfies inequality:

g(a, b) (10)

≤
∫

V
E

(
∆(s, t)1I{X′′(s)≺0,X′′(t)Â0}/X(s) = a,X(t) = b, Y (s, t) = 0

)
.

.pX(s),X(t),Y (s,t)(a, b, 0) σV (d(s, t)).

Here,

• V =
{
(s, t) : s, t ∈ Sm−1, < s, t >= 0

}
is a C∞-differentiable manifold

without boundary, embedded in R2m, dim(V ) = 2m − 3. τ = (s, t)
denotes a generic point in V and σV (dτ) the geometric measure on
V . It is not hard to check that σV (V ) =

√
2σm−1.σm−2 where σm−1

denotes the surface area of Sm−1 ⊂ Rm, that is σm−1 = 2πm/2

Γ(m/2) .

• Y : V → R2m is the random field defined by

Y (s, t) =
(

πs(Bs)
πt(Bt)

)
.

• For τ = (s, t) a given point in V , we have that

Y (τ) ∈ {(t,−s)}⊥ ∩
[
{s}⊥ × {t}⊥

]
= Wτ

for any value of the matrix B, where {(t,−s)}⊥ is the orthogonal
complement of the point (t,−s) in R2m. Notice that dim(Wτ ) = 2m−
3.

• pX(s),X(t),Y (s,t) is the density of the triplet X(s), X(t), Y (s, t) in R ×
R×W(s,t).

• ∆(τ) =
[
det

[
(Y ′(τ))T Y ′(τ)

]] 1
2
.
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Next, we compute the ingredients in the right-hand member of (10).
This has some differences with the centered case.

Put aij = mij + gij with the gij ’s i.i.d. Gaussian standard and G =
((gij)).

For each (s, t) ∈ V , we take an orthonormal basis of Rm so that its
first two elements are respectively s and t, say {s, t, w3, ..., wm}. When
expressing the linear transformation x Ã A.x (x ∈ Rm) in this new basis,
we denote As,t the associated matrix and by as,t

ij its i, j entry. In a similar
way we get Gs,t,M s,t, Bs,t. Notice that Gs,t has the same law than G, but
the non-random part M s,t can vary with the point (s, t).

We denote by Bs,t
1 (respectively Bs,t

2 ) the (m − 1) × (m − 1) matrix
obtained from Bs,t by supressing the first (respectively the second) row and
column. Bs,t

1,2 denotes the (m − 2) × (m − 2) matrix obtained from Bs,t by
supressing the first and second row and column.

To get an estimate for the right-hand member in (10) we start with the
density pX(s),X(t),Y (s,t)(a, b, 0).

We denote Bs,t = ((bs,t
ij )) (and similarly for the other matrices).

We have:

X(s) = bs,t
11

X(t) = bs,t
22

X ′′(s) = Bs,t
1 − bs,t

11Im−1

X ′′(t) = Bs,t
2 − bs,t

22Im−1.

Take the following orthonormal basis of the subspace W(s,t):

{(w3, 0), ..., (wm, 0), (0, w3), ..., (0, wm),
1√
2
(t, s)} = Ls,t

Since the expression of Y (s, t) in the canonical basis of R2m is:

Y (s, t) = (0, bs,t
21 , bs,t

31 , ..., bs,t
m1, b

s,t
12 , 0, bs,t

32 , ..., bs,t
m2, b

s,t
12 )T ,

it is written in the orthonormal basis Ls,t as the linear combination:

Y (s, t) =
m∑

i=3

[
bs,t
i1 .(wi, 0) + bs,t

i2 .(0, wi)
]

+
√

2bs,t
12 .

[
1√
2
(t, s)

]

It follows that the joint density of X(s), X(t), Y (s, t) appearing in (10) in
the space R×R×W(s,t) is the joint density of the r.v.’s

bs,t
11 , bs,t

22 ,
√

2bs,t
12 , bs,t

31 , ..., bs,t
m1, b

s,t
32 , ..., bs,t

m2
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at the point (a, b, 0). To compute this density, first compute the joint density
q of

bs,t
31 , ..., bs,t

m1, b
s,t
32 , ..., bs,t

m2,

given as,t
1 , as,t

2 , where as,t
j denotes the j-th column of As,t, with the additional

conditions that
∥∥∥as,t

1

∥∥∥ = bs,t
11 = a,

∥∥∥as,t
2

∥∥∥ = bs,t
22 = b,

〈
as,t

1 , as,t
2

〉
= bs,t

12 = 0

q is the normal density in R2(m−2), with the same variance matrix as in
the centered case, that is

(
a.Im−2 0

0 b.Im−2

)
.

but not necessarily centered.
So, the conditional density q is bounded above by

1
(2π)m−2

1

(ab)
m−2

2

. (11)

Our next task is to obtain an upper bound useful for our purposes for
the density of the triplet

(bs,t
11 , bs,t

22 , bs,t
12 ) = (‖as,t

1 ‖2, ‖as,t
2 ‖2, < as,t

1 , as,t
2 >)

at the point (a, b, 0) which together with (11) will provide an upper bound
for pX(s),X(t),Y (s,t)(a, b, 0). We do this in the next Lemma, which we will
apply afterwards with ξ = as,t

1 , η = as,t
2 .

Lemma 1 Let ξ, η be to independent Gaussian vectors in Rm (m ≥ 2),
E(ξ) = µ, E(η) = ν, V ar(ξ) = V ar(η) = Im.

Then, the density p of the random triplet
(
‖ξ‖2 , ‖η‖2 , 〈ξ, η〉

)
satisfies

the following inequality, for a ≥ 4 ‖µ‖2:

p(a, b, 0) ≤ 1
4(2π)m

σm−1σm−2(ab)
m−3

2 exp(−a

8
) (a, b > 0) (12)

Proof. Let F : Rm ×Rm →R3 be the function

F (x, y) =
(
‖x‖2 , ‖y‖2 , 〈x, y〉

)T
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According to the coarea formula, the density p at the point (a, b, 0) can be
written as

p(a, b, 0) (13)

=
∫

F−1(a,b,0)

(
det

[
F ′(x, y).

(
F ′(x, y)

)T
])− 1

2 1
(2π)m

e−
1
2 [‖x−µ‖2+‖y−ν‖2]dγ(x, y)

where γ denotes the geometric measure on F−1(a, b, 0).
The C∞-differentiable manifold F−1(a, b, 0) is given by the set of equa-

tions
‖x‖2 = a, ‖y‖2 = b, 〈x, y〉 = 0

and has dimension 2m− 3. One can verify that

γ(F−1(a, b, 0)) = (a + b)
1
2 σm−1σm−2(ab)

m−2
2 .

(note that the manifold V considered above is F−1(1, 1, 0)).
On the other hand,

F ′(x, y) =




2.xT 0
0 2.yT

yT xT




so that if (x, y) ∈ F−1(a, b, 0), one gets:

det
[
F ′(x, y).

(
F ′(x, y)

)T
]

= 16.ab(a + b)

Replacing into (13) and taking into account condition a ≥ 4 ‖µ‖2, the result
in the Lemma follows.¤

Summing up this part, (11) plus (12) imply that

pX(s),X(t),Y (s,t)(a, b, 0) ≤ 1

22m− 3
2 πm−2

1
Γ

(
m
2

)
Γ

(
m−1

2

) exp(−a
8 )√

ab
(14)

We now consider the conditional expectation in (10).
First, observe that the (2m− 3)- dimensional tangent space to V at the

point (s, t) is parallel to the orthogonal complement in Rm × Rm of the
triplet of vectors (s, 0); (0, t); (t, s). This is immediate from the definition of
V .

To compute the associated matrix for Y ′(s, t) take the set

{(w3, 0), ..., (wm, 0), (0, w3), ..., (0, wm),
1√
2
(t,−s)} = Ks,t.
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as orthonormal basis in the tangent space. As for the codomain of Y , we
take the canonical basis in R2m.

A direct calculation gives :

Y ′(s, t) =




−vT 01,m−2 − 1√
2
bs,t
21

wT 01,m−2
1√
2
(−bs,t

11 + bs,t
22 )

Bs,t
12 − bs,t

11Im−2 0m−2,m−2
1√
2
w

01,m−2 −wT 1√
2
(−bs,t

11 + bs,t
22 )

01,m−2 vT 1√
2
bs,t
21

0m−2,m−2 Bs,t
12 − bs,t

22Im−2 − 1√
2
v




where vT = (bs,t
31 , ..., bs,t

m1), w
T = (bs,t

32 , ..., bs,t
m2), 0i,j is a null matrix with i rows

and j columns. The columns represent the derivatives in the directions of
Ks,t at the point (s, t). The first m rows correspond to the components of
πs(Bs), the last m ones to those of πt(Bt).

Thus, under the conditioning in (10),

Y ′(s, t) =




01,m−2 01,m−2 0
01,m−2 01,m−2

1√
2
(b− a)

Bs,t
12 − aIm−2 0m−2,m−2 0m−2,1

01,m−2 01,m−2
1√
2
(b− a)

01,m−2 01,m−2 0
0m−2,m−2 Bs,t

12 − bIm−2 0m−2,1




and
[
det

[(
Y ′(s, t)

)T
Y ′(s, t)

]] 1
2 = |det(Bs,t

12 − aIm−2)||det(Bs,t
12 − bIm−2)|(a− b)

Since Bs,t
12 Â 0 one has

|det(Bs,t
12 − aIm−2)|1IBs,t

12 −aIm−2≺0 ≤ am−2

and the conditional expectation in (10) is bounded by:

am−1E

[
| det(Bs,t

12 − bIm−2)|1IBs,t
12 −bIm−2Â0/

bs,t
11 = a, bs,t

22 = b, bs,t
12 = 0, bs,t

i1 = bs,t
i2 = 0 (i = 3, ...,m).

]
(15)

We further condition on as,t
1 and as,t

2 , with the additional requirement

that
∥∥∥as,t

1

∥∥∥
2

= a,
∥∥∥as,t

2

∥∥∥
2

= b,
〈
as,t

1 , as,t
2

〉
= 0. Since unconditionally,
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a3, ..., am are independent Gaussian vectors in Rm each having variance
equal to 1 and mean smaller or equal to ‖M‖, under the conditioning, their
joint law becomes the law of (m−2) Gaussian vectors in Rm−2,independent
of the condition and also having variance equal to 1 and mean with Euclidean
norm smaller than or equal to ‖M‖.

As a consequence, the conditional expectation in (15) is bounded by

E
(
det(Cs,t)

)

where Cs,t is an (m − 2) × (m − 2) random matrix, Cs,t = ((cs,t
ij )), cs,t

ij =<

us,t
i , us,t

j >, (i, j = 3, ..., m),

us,t
i = ζi + µs,t

i i = 3, ...,m,

ζ3, ..., ζm are i.i.d. standard normal in Rm−2 and
∥∥∥µs,t

i

∥∥∥ ≤ ‖M‖ for i =
3, ...,m.

The usual argument to compute det(Cs,t) as the square of the volume
in Rm−2 of the set of linear combinations of the form

∑i=m
i=3 λiu

s,t
i with

0 ≤ λi ≤ 1 (i = 3, ..., m), shows that

E
(
det(Cs,t)

) ≤
(
1 + ‖M‖2

)(
2 + ‖M‖2

)
...

(
m− 2 + ‖M‖2

)

= (m− 2)!
i=m−2∏

i=1

(
1 +

‖M‖2

i

)

≤ (m− 2)!
[(

1 + ‖M‖2 1 + log m

m

)]m

where we have bounded the geometric mean by the arithmetic mean.
Replacing in (15) and on account of the bound (14) we get from (10) the

following bound for the joint density, valid for a ≥ 4 ‖M‖2 :

g(a, b) ≤ Cm
e−

a
8√

ab
am−1 (16)

where

Cm =
1

4(m− 2)!

[
1 + ‖M‖2 1 + log m

m

]m

We now turn to the proof of (8).
One has, for x > 1 :

P (κ(A) > x) = P (
λm

λ1
> x2) ≤ P (λ1 <

L2m

x2
) + P (

λm

λ1
> x2, λ1 ≥ L2m

x2
)

(17)

11



where L is a positive number to be chosen later on.
For the first term in (17), we use Proposition 9 in [2], which is a slight

modification of Theorem 3.2. in [7]; see also [4]:

P (λ1 <
L2m

x2
) = P (‖A−1‖ >

x

L
√

m
) ≤ C2

Lm

x
(18)

where C2 is a constant, C2 ≈ 2.35.
Impose first on L the condition

L2m ≥ 4 ‖M‖2

so that for the second term in (17) we can make use of the bound (16) on
the joint density g(a, b) :

P (
λm

λ1
> x2, λ1 ≥ L2m

x2
) =

∫ +∞

L2mx−2

db

∫ +∞

bx2

g(a, b)da ≤ Hm(x2) (19)

with

Hm(y) = Cm

∫ +∞

L2my−1

db

∫ +∞

by

exp(−a
8 )√

ab
am−1da,

We have:

H ′
m(y) = Cm



− ∫ +∞

L2my−1 exp(− by
8 )(by)m−1 db√

y

+Lm
1
2

y
3
2

∫ +∞
L2m exp

(−a
4

)
am−3/2da




which implies

−H ′
m(y) ≤ Cmym−3/2

∫ +∞

L2my−1

exp
(
−by

8

)
bm−1db

≤ Cm

y3/2
8m

∫ +∞

L2m
8

e−zzm−1dz ≤ Cm

y3/2
8m 5

3
e−

L2m
8

(
L2m

8

)m−1

= Dm
1

y3/2

if we choose L2 > 20.
So,

Hm(y) = −
∫ +∞

y
H ′

m(s)ds ≤ Dm

∫ +∞

y

ds

s
3
2

≤ 2Dm
1

y1/2
(20)

where

Dm ≤ 10
3
√

2πL2

m√
m− 2

exp
[(

1− L2

8
+ log L2 + log θ

)
m

]
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where θ = 1 + ‖M‖2 1+log m
m .

Choosing
L = 2

√
2(1 + 4θ)

1
2

conditions L2 > 20 and L2m ≥ 4 ‖M‖2 are verified and 1 − L2

8 + log L2 +
log θ < 0.

Hence,

2Dm ≤ 1
4

√
m

2π
.

On account of (18), (19) and (20), replacing in the right-hand side of
(17), inequality (8) in the statement of the Theorem follows.¤

The author wants to thank Professor Jean-Marc Azäıs for frutiful dis-
cussions on the subject.
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